北师版初三数学二次函数所描述的关系
二次函数的图像和各项系数间的关系+课件+-2023-2024学年北师大版数学九年级下册数学
1 y=x2−x+3
a=1>0,开口向上 b=-1 ,a,b异号,对称轴在y轴右侧 C=3>0,与y轴交点在y轴正半轴
Y
y=x2−x+3
O
X
2 y=-2x2−x-4
a=-2<0,开口向下 b=-1 ,a,b同号,对称轴在y轴左侧 C=-4<0,与y轴交点在y轴负半轴
Y
O
X
y=-2x2−x-4
(3) 4a+b=0;
x
(4)当y=–2时,x的值只能取0; –1 O
3
其中正确的是 (2) .
–2
直线x=1
3.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=-1
是对称轴,有下列判断:①b-2a=0;②4a-2b+c<0;③
a-b+c= -9a;④若(-3,y1),( 点,则y1>y2.其中正确的是(
1 y=-x2+x+2 2 y=2x2+x-4
(A) (C)
y=-x2+x+2
(B)
y=2x2+x-4
(D)
二次函数 y=-x2+x-1,不描点, 如何快速确定出该抛物线在平 面直角坐标系的大致位置?
y=-x2+x-1
当堂练习
1.已知二次函数y=ax2+bx+c(a≠0)
y
的图象如图所示,则下列结论:
y
A.①②③ C.①②④
B.①③④ D.②③④
O 2x x=-1
23,y2)是抛物线上两
)
y
A.①②③ C.①②④
B.①③④ D.②③④
O 2x x=-1
北师大版九年级数学下册2.1《二次函数所描述的关系》优质课件 (共16张PPT)
(2)两数之和为20,设其中一个数是x ,这两数之积为 2 y x 20 x y ,则 y 与 x之间的关系表达式为____________________
正比例函数
y=kx (k≠0) 函 数
反比例函数
k y ( k 0) x
二次函数?
【导学一】 理解二次函数的定义:课本P30
一般地,若两个变量 x , y 之间的对应关系可以 2 表示成 y ax bx c ( a , b, c 是常数, a 0 )的形式,则 称 y 是 x 的二次函数. 其中 x 是自变量,y 是因变量.
【课后作业】
4.某超市欲购进一种今年新上市的产品,购进 价为 20 元/件. 为了调查这种新产品的销路,该 超市进行了试销售,得知该产品每天的销售量 t(件)与每件的销售价 x(元/件) 之间有如下 关系: t = -3 x + 70. 请写出该超市销售这种产品 每天的销售利润 y( 元)与 x 之间的函数关系式.
y=100+100x+(100+100x)x=100x² +200x+100
或y=100(1+x)² =100x² +200x+100
【自主提升】 课本P29 引例(做在课本上)
8.某果园有100棵橙子树,每一棵树平均结600个橙子. 关键词句 现准备多种一些橙子树以提高产量,但是如果多种树, 那么树之间的距离和每一棵树所接受的阳光就会减少。 根据经验估计,每多种一棵树,平均每棵树就会少结5 个橙子.(且增加的橙子树最多不得超过20棵。)
二次函数的关系知识点总结
二次函数的关系知识点总结一、基本概念1. 二次函数的定义:二次函数是指数为2的多项式函数,形如y=ax^2+bx+c的函数,其中a、b、c是常数,且a不等于0。
2. 二次函数的一般形式:y=ax^2+bx+c,其中a、b、c分别表示二次项系数、一次项系数和常数项。
3. 二次函数的定义域:二次函数的定义域是实数集R,即自变量x的取值范围是整个实数集。
4. 二次函数的值域:二次函数的值域取决于二次项系数a的正负性,当a>0时,值域为[0,+∞),当a<0时,值域为(-∞,0]。
5. 二次函数的最值:二次函数的最值与二次项系数a的正负性有关,当a>0时,最小值为c,无最大值;当a<0时,最大值为c,无最小值。
6. 二次函数的零点:二次函数的零点是指二次函数与x轴相交的点,是方程ax^2+bx+c=0的根,可以通过求根公式或配方法求得。
二、图像特征1. 二次函数的图像特征:二次函数的图像是一个抛物线,抛物线开口的方向取决于二次项系数a的正负性,当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
2. 二次函数的对称轴:二次函数的对称轴是垂直于x轴的一条直线,x=-b/2a即为二次函数的对称轴,对称轴上的点为抛物线的对称中心。
3. 二次函数的顶点:二次函数的顶点是抛物线的最低点或最高点,即抛物线的最值点,顶点的横坐标为对称轴的横坐标,纵坐标为函数的最值。
4. 二次函数的焦点:二次函数的焦点是指抛物线的对称轴与抛物线的顶点之间的中点。
5. 二次函数的平移变换:二次函数的图像可以通过平移变换实现平移,平移的一般形式为y=ax^2+b(x-h)+k,其中h、k分别表示横坐标和纵坐标的平移量。
三、性质1. 二次函数的奇偶性:二次函数的奇偶性与一次项系数b有关,当b为偶数时,二次函数为偶函数;当b为奇数时,二次函数为奇函数。
2. 二次函数的导数:二次函数的导数是一次函数,由导数的定义可知,二次函数的导数等于二次项系数与一次项系数的和。
二次函数课标细化解读
细化解读课程标准案例设计科目:数学年级:九年级教材版本:北师大版章(节)或单元:九年级下册第二章第二节课题:2.1 二次函数所描述的关系一、教学目标确定依据一:数学课程标准的有关内容:通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。
课程标准为本节制定的教学目标,目标用含糊的内隐心理活动词语,而不是可观察测量的外显行为动词,不够具体、明晰。
需对课程标准作进一步的细化、分解,以使不同的人在数学上得到不同的发展。
分析课程标准发现:(名词)核心知识是分析确定二次函数的表达式,并体会二次函数的意义。
1、确定二次函数的表达式。
细化为:根据具体的问题情境,通过自主探究、合作交流,能找到常量、变量之间的关系,列出二次函数表达式。
达标率为80%。
2、体会二次函数的意义。
体会一词含糊,不够具体,可分解为说出、概述、判断等动词。
因此,可细化为:能根据所列函数表达式,通过观察、交流,能说出它们的共同特征,能概述出二次函数的意义。
能判断所给的函数表达式是否二次函数的。
达标率90%依据二:教学参考书要求:1、经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验。
2、能过表示简单变量之间的二次函数关系。
3、你能过利用尝试求值的方法解决实际问题,如猜测增种多少棵橙子树可以使橙子的总产量最多的问题。
依据三:中招考试说明在每年的中招试题中常常二次函数解答题,并且是作为大题、难题出现,有明显的区分度。
所以它是中招的重要知识点。
依据四:教材内容二次函数使描述现实世界变量之间关系的重要数学模型,也是某些单变量最优化的数学模型,如本章所提及的求最大利润、最大面积等实际问题。
二次函数还是一种非常基本的初等的函数,对二次函数的研究将为学生进一步学习函数、进而体会函数的思想奠定基础。
依据五:学生情况我校是农村初中,地处边远,学生程度参差不齐。
学生在八、九年级已经学一次函数、反比例函数。
导学法教学模式在我校已全面开展,学生能够通过自主探究、合作交流、教师引领等方式探索新知。
北师大版九下二次函数所描述的关系word教案2篇
§二次函数所描述的关系一、教学目标(一)知识与能力:1.探讨并归纳二次函数的概念;2.能够表示简单变量之间的二次函数关系(二)进程与方式:1.经历探讨,分析和成立两个变量之间的二次函数关系的进程,进一步体验如何用数学的方式描述变量之间的关系;2.能够利用尝试求值的方式解决实际问题.(三)情感态度与价值观:把数学问题和实际问题相联系,使学生初步体会数学与人类生活的紧密联系及对人类历史进展的作用.(四)教学重点:经历探讨和表示二次函数关系的进程,取得用二次函数表示变量之间关系的体验;能够表示简单变量之间的二次函数关系.(五)教学难点:用二次函数表示变量之间关系.二、教学设计(一)温习引入回忆学过的函数类型-一次函数(正比例函数)、反比例函数、三角函数;函数概念-在某个转变进程中,有两个变量x和y,若是给定一个x值,相应地就确信了一个y值,那么咱们称y是x的函数,其中x是自变量,y是因变量.本节课咱们将开始学习初中时期的最后一个函数二次函数.(二)新课一、由实际问题探讨二次函数某果园有100棵橙子树,每一棵树平均结600个橙子,现预备多种一些橙子树以提高产量,可是若是多种树,那么树之间的距离和每一棵树所同意的阳光就会减少.依照经验估量,每多种一棵树,平均每棵树就会少结5个橙子(1)问题中有哪些变量?其中哪些是自变量?哪些因变量?(2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?(3)若是果园橙子的总产量为y个,那么请你写出y与x之间的关系式果园共有(100+x)棵树,平均每棵树结(600-5x)个橙子,因此果园橙子的总产量y=(100+x)(600—5x)=-5x2+100x+60000.提出问题:判定上式中的y是不是是x的函数?若是,与咱们前面所学的函数相同吗?(依照函数的概念,y是x的函数,从形式上看不同于咱们所学函数,猜想是二次函数)二、想一想在上述问题中,种多少棵橙子树,可使果园橙子的产量最多?咱们能够列表表示橙子的总产量随橙子树的增加而转变情况.你能依照表格中的数据作出猜想吗?自己试一试.x/棵8 9 10 11 12y/个 60480 60495 60500 60495 60480从表格中发觉:增种10棵橙子树时,橙子的总产量最多 3、做一做银行的储蓄利率是随时刻的转变而转变的。
北师大版数学九年级下册:二次函数知识点总结
北师大版数学九年级下册:二次函数知识点总结二次函数知识点总结一、二次函数概念:二次函数是指形如y=ax^2+bx+c(a、b、c为常数,a≠0)的函数。
需要注意的是,和一元二次方程类似,二次项系数a≠0,而b、c可以为零。
二次函数的定义域是全体实数。
二、二次函数的基本形式1.二次函数基本形式:y=ax^2的性质:a的绝对值越大,抛物线的开口越小,a的符号决定开口方向,顶点坐标在对称轴上方(a>0)或下方(a<0)。
性质:当x增大时,y随之增大,当x减小时,y随之减小,当x等于顶点时,y有最小值(a>0)。
当x增大时,y随之减小,当x减小时,y随之增大,当x等于顶点时,y有最大值(a<0)。
2.y=ax^2+c的性质:上加下减,a的符号决定开口方向,顶点坐标在对称轴上方(a>0)或下方(a<0)。
性质:当x增大时,y随之增大,当x减小时,y随之减小,当x等于顶点时,y有最小值c(a>0)。
当x增大时,y随之减小,当x减小时,y随之增大,当x等于顶点时,y有最大值c(a<0)。
3.y=a(x-h)^2的性质:左加右减,a的符号决定开口方向,顶点坐标为(h,k)。
性质:当x大于h时,y随之增大,当x小于h时,y随之减小,当x等于h时,y有最小值k。
当x大于h时,y随之减小,当x小于h时,y随之增大,当x等于h时,y有最大值k。
4.y=a(x-h)^2+k的性质:a的符号决定开口方向,顶点坐标为(h,k)。
性质:当x大于h时,y随之增大,当x小于h时,y随之减小,当x等于h时,y有最小值k。
当x大于h时,y随之减小,当x小于h时,y随之增大,当x等于h时,y有最大值k。
三、二次函数图象的平移平移步骤:方法一:将抛物线解析式转化成顶点式y=a(x-h)^2+k,确定其顶点坐标(h,k)处,具体平移方法如下:保持抛物线y=ax^2的形状不变,将其顶点平移到(h,k),向上(k>0)或向下(k<0)平移|k|个单位。
(完整版)新北师大版九年级数学二次函数知识点归纳总结
二次函数知识点归纳1.定义:一般地,如果y =ax +bx +c (a ,b ,c 是常数,a ≠0),那么y 叫做x 的二次函数.2.二次函数y =ax 的性质(1)抛物线y =ax 的顶点是坐标原点,对称轴是y 轴.(2)函数y =ax 的图像与a 的符号关系.①当a >0时⇔抛物线开口向上⇔顶点为其最低点;②当a <0时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为y =ax (a ≠0).3.二次函数y =ax +bx +c 的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数y =ax +bx +c 用配方法可化成:y =a (x -h )22222222b 4ac -b 2+k 的形式,其中h =-,k =.2a 4a22225.二次函数由特殊到一般,可分为以下几种形式:①y =ax ;②y =ax +k ;③y =a (x -h );④y =a (x -h )+k ;2⑤y =ax +bx +c .6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当a >0时,开口向上;当a <0时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作x =h .特别地,y 轴记作直线x =0.7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法b 4ac -b 2b b ⎫4ac -b 2⎛2(-,)(1)公式法:y =ax +bx +c =a x +,∴顶点是,对称轴是直线x =-.⎪+2a 4a 2a 2a 4a ⎝⎭(2)配方法:运用配方的方法,将抛物线的解析式化为y =a (x -h )+k 的形式,得到顶点为(h ,k ),对称轴是直线22x =h .(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.9.抛物线y =ax +bx +c 中,a ,b ,c 的作用(1)a 决定开口方向及开口大小,这与y =ax 中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线y =ax +bx +c 的对称轴是直线222x =-b b b ,故:①b =0时,对称轴为y 轴;②>0(即a 、b 同号)时,对称轴在y 轴左侧;③<0(即a 、2a a a b 异号)时,对称轴在y 轴右侧.(3)c 的大小决定抛物线y =ax +bx +c 与y 轴交点的位置.当x =0时,y =c ,∴抛物线y =ax +bx +c 与y 轴有且只有一个交点(0,c ):①c =0,抛物线经过原点;②c >0,与y 轴交于正半轴;③c <0,与y 轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则10.几种特殊的二次函数的图像特征如下:函数解析式开口方向当a >0时开口向上对称轴顶点坐标(0,0)(0,k )(h ,0)(h ,k )22b <0.ay =ax 2y =ax +k y =a (x -h )2x =0(y 轴)x =0(y 轴)x =h x =hx =-b 2a 22y =a (x -h )+k 当a <0时开口向下y =ax +bx +c 2b 4ac -b 2,(-)2a 4a11.用待定系数法求二次函数的解析式(1)一般式:y =ax +bx +c .已知图像上三点或三对x 、y 的值,通常选择一般式.(2)顶点式:y =a (x -h )+k .已知图像的顶点或对称轴,通常选择顶点式.22(3)交点式:已知图像与x 轴的交点坐标x 1、x 2,通常选用交点式:y =a (x -x 1)(x -x 2).12.直线与抛物线的交点(1)y 轴与抛物线y =ax +bx +c 得交点为(0,c ).2(2)与y 轴平行的直线x =h 与抛物线y =ax +bx +c 有且只有一个交点(h ,ah +bh +c ).22(3)抛物线与x 轴的交点2二次函数y =ax +bx +c 的图像与x 轴的两个交点的横坐标x 1、x 2,是对应一元二次方程ax +bx +c =0的两2个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔∆>0⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔∆=0⇔抛物线与x 轴相切;③没有交点⇔∆<0⇔抛物线与x 轴相离.(4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是ax +bx +c =k 的两个实数根.(5)一次函数y =kx +n (k ≠0)的图像l 与二次函数y =ax +bx +c (a ≠0)的图像G 的交点,由方程组22y =kx +ny =ax +bx +c 2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点;②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.0),B (x 2,0),由于x 1、x 2是(6)抛物线与x 轴两交点之间的距离:若抛物线y =ax +bx +c 与x 轴两交点为A (x 1,2方程ax +bx +c =0的两个根,故2b c x 1+x 2=-,x 1⋅x 2=a aAB =x 1-x 2=(x 1-x 2)2=(x 1-x 2)24c b 2-4ac ∆⎛b ⎫-4x 1x 2= -⎪-==a a a ⎝a ⎭2。
北师大版九年级下册数学第2章 二次函数 2.1 二次函数的概念
第一节 二次函数的概念◆ 问题:(1)矩形周长为16cm, 它的一边长为xcm ,面积为ycm 2,则y 与x 之间函数关系为 。
(2)某地区原有20个养殖场,平均每个养殖场养奶牛2000头。
后来由于市场原因,决定减少养殖场的数量,当养殖场每减少1个时,平均每个养殖场的奶牛数将增加300头。
如果养殖场减少x 个,求该地区奶牛总数y (头)与x (个)之间的函数关系式.◆ 归纳:在上述问题中,用来表示函数的式子都是关于自变量的二次整式。
小结:(1)二次函数的概念一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.a为二次项系数, b 为一次项系数,c 为常数项.(2)二次函数的定义域二次函数c b a c bx ax y ,,(2++=是常数,)0≠a 的定义域为一切实数◆ 例题讲解:例1:判断下列函数是否为二次函数,如果是,指出其中常数a.b.c 的值.(1) y =1— 23x (2)y =x(x -5) (3)y =x 21-23x +1(4) y =3x(2-x)+ 3x 2 (5)y = 12312++x x (6) y =652++x x(7)y = x 4+2x 2-1 (8)y =ax 2+bx +c例2:当k 为何值时,函数1)1(2+-=+k k x k y 为二次函数?例3:写出下列各函数关系,并判断它们是什么类型的函数.(1)正方体的表面积S (cm 2)与棱长a (cm )之间的函数关系;(2) 圆的面积y (cm 2)与它的周长x (cm )之间的函数关系;(3)某种储蓄的年利率是1.98%,存入10000元本金,若不计利息税,求本息和y (元)与所存年数x 之间的函数关系;(4)菱形的两条对角线的和为26cm ,求菱形的面积S (cm 2)与一对角线长x (cm )之间的函数关系.课堂练习:1、判断下列函数是否是二次函数,若是,请指出它的二次项系数、一次项系数、常数项。
新北师大版九年级数学二次函数知识点归纳总结
九年级数学中的二次函数是一个非常重要的内容,主要包括函数定义、图像和性质、解析式、根与系数之间的关系、应用等方面的知识。
下面对这些知识点进行归纳总结。
1. 二次函数的定义:二次函数是指形如f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a ≠ 0。
2.二次函数的图像和性质:-当a>0时,二次函数的图像是一个开口向上的抛物线,顶点在最低点;当a<0时,二次函数的图像是一个开口向下的抛物线,顶点在最高点。
-顶点坐标为(-b/2a,f(-b/2a)),其中-b/2a为对称轴的横坐标,f(-b/2a)为对称轴上的纵坐标。
-当函数的a值较大时,抛物线开口越大,图像越扁平;当a值较小时,抛物线开口越小,图像越瘦高。
-当函数的c值为正时,图像在y轴上方;当c值为负时,图像在y轴下方。
-二次函数的对称轴与x轴交点为顶点坐标的x坐标。
-二次函数的图像关于对称轴对称。
3. 二次函数的解析式:二次函数的一般形式是f(x) = ax^2 + bx + c,其中a、b、c为常数,可以用来表示二次函数的解析式。
4.根与系数之间的关系:- 二次函数的根是函数f(x) = ax^2 + bx + c的解,即使得f(x) = 0的x值。
二次函数的根可能有两个、一个或没有。
-当二次函数有两个根时,即存在两个解x1和x2,那么二次函数可以表示为f(x)=a(x-x1)(x-x2)。
-二次函数的根与系数之间的关系可由韦达定理得到。
设二次函数的两个根为x1和x2,则有以下关系:-x1+x2=-b/a-x1*x2=c/a5.二次函数的应用:-二次函数可以应用于描述各类抛物线问题,如求抛物线的顶点、根、对称轴等。
-二次函数可以用来表示抛物线轨迹的运动问题,如抛物线运动的高度、时间等。
总结:二次函数是九年级数学中的重要内容,掌握二次函数的定义、图像和性质、解析式、根与系数之间的关系以及应用可以帮助我们更好地理解和解决与抛物线相关的问题。
《二次函数所描述的关系》二次函数PPT课件-北师大版九年级数学下册
思索归纳
二次函数
y=-5x²+100x+60000, y=100x²+200x+100.
定义:一般地,形如y=ax²+bx+c(a,b, c是常数,a≠ 0)的函数叫做x的二次函
提数示.:
(1)关于x的代数式一定是整式,a,b,c为常数, 且
(2a)等≠0式.的右边最高次数为2,可以没有一次项 和常数项,但不能没有二次项.
①问题中有那些变量?其中哪些是自变量?哪些是 因变量? ②假设果园增种x棵橙子树, 那么果园共有多少 棵橙子树?这时平均每棵树结多少个橙子?
③如果果园橙子的总产量为y个, 那么请你写 出y与x之间的关系式。
想一想
生活问题数学化
果园共有(100+x)棵树,平均每棵树 结(600-5x)个橙子,因此果园橙子的总 产量y=(100+x)(600-5x)=-
?
y=100(x+1)²=100x²+200x+100.
思索归纳
二次函数
y=-5x²+100x+60000, y=100x²+200x+数?是反比例函数?
有何 特点
定义:一般地,形如 y=ax²+bx+c(a,b,c是常数,
a≠ 0)的函数叫做x的二次函数.
随堂练习 在实践中感悟
1.下列函数中,哪些是二次函数?
怎么(1)y=3((x是-1))²+1;
判 (3) s=3断 2t².(是)
1 (2).y x .
(不是)x
1 (4).y x2 x .
? (5)y=(x+3)²-
(不是)
x².(不是)
新北师大版九年级数学二次函数的相关概念梳理
新北师大版九年级数学二次函数的相关概
念梳理
本文主要介绍新北师大版九年级数学中关于二次函数的相关概念。
二次函数的定义
二次函数是指自变量的二次多项式函数,通常表达式为
$f(x)=ax^2+bx+c$,其中 $a\ne0$。
二次函数的图像
二次函数的图像通常是一个开口朝上或朝下的抛物线。
当$a>0$ 时,抛物线开口朝上;当 $a<0$ 时,抛物线开口朝下。
二次函数的顶点
当 $a>0$ 时,二次函数的最小值(即顶点)为 $f\left(-
\dfrac{b}{2a}\right)$;当 $a<0$ 时,二次函数的最大值(即顶点)
为 $f\left(-\dfrac{b}{2a}\right)$。
轴对称
二次函数的图像关于垂直于 $x$ 轴的直线 $x=-
\dfrac{b}{2a}$ 对称。
零点
二次函数的零点是指函数值等于$0$ 时,对应的自变量的取值。
二次函数的零点可以通过求解二次方程 $ax^2+bx+c=0$ 来确定。
总结
二次函数是初中数学中非常重要的一个概念,在应用数学、高
中数学以及大学数学中都有广泛的应用。
通过本文的梳理,相信读
者可以更深入地理解和掌握二次函数的相关概念。
二次函数所描述的关系(北师九下) 精选教学PPT课件
小结 拓展 回 味 无 穷
2.定义的实质是:ax²+bx+c是整 式,自变量x的最高次数是二次
作业
课本P36页习题2.1
第1,2题;
有信心 的人,可以 化渺小为伟 大,化平庸 为神奇.
同学们再见
长久以来,一颗流浪的心忽然间找到了一个可以安歇的去处。坐在窗前,我在试问我自己:你有多久没有好好看看这蓝蓝的天,闻一闻这芬芳的花香,听一听那鸟儿的鸣唱?有多久没有回家看看,听听家人的倾诉?有多久没和他们一起吃饭了,听听那年老的欢笑?有多久没与他们谈心,听听他门的烦恼、他们的心声呢?是不是因为一路风风雨雨, 而忘了天边的彩虹?是不是因为行色匆匆的脚步,而忽视了沿路的风景?除了一颗疲惫的心,麻木的心,你还有一颗感恩的心吗?不要因为生命过于沉重,而忽略了感恩的心! 也许坎坷,让我看到互相搀扶的身影; 也许失败,我才体会的一句鼓励的真诚; 也许不幸,我才更懂得珍惜幸福。 生活给予我挫折的同时,也赐予了我坚强,我也就有了另一种阅历。对于热爱生活的人,它从来不吝啬。 要看你有没有一颗包容的心,来接纳生活的恩赐。酸甜苦辣不是生活的追求,但一定是生活的全部。试着用一颗感恩的心来体会,你会发现不一样的人生。不要因为冬天的寒冷而失去对春天的希望。我们感谢上苍,是因为有了四季的轮回。拥有了一颗感恩的心,你就没有了埋怨,没有了嫉妒,没有了愤愤不平,你也就有了一颗从容淡然的心! 我常常带着一颗虔诚的心感谢上苍的赋予,我感谢天,感谢地,感谢生命的存在,感谢阳光的照耀,感谢丰富多彩的生活。 清晨,当欢快的小鸟把我从睡中唤醒,我推开窗户,放眼蓝蓝的天,绿绿的草,晶莹的露珠,清清爽爽的早晨,我感恩上天又给予我一个美好的一天。 入夜,夜幕中的天空繁星点点,我打开日记,用笨拙的笔描画着一天的生活感受,月光展露着温柔的笑容,四周笼罩着夜的温馨,我充满了感恩,感谢大地赋予的安宁。 朋友相聚,酒甜歌美,情浓意深,我感恩上苍,给了我这么多的好朋友,我享受着朋友的温暖,生活的香醇,如歌的友情。 走出家门,我走向自然。放眼花红草绿,我感恩大自然的无尽美好,感恩上天的无私给予,感恩大地的宽容浩博。生活的每一天,我都充满着感恩情怀,我学会了宽容,学会了承接,学会了付出,学会了感动,懂得了回报。用微笑去对待每一天,用微笑去对待世界,对待人生,对待朋友,对待困难。所以,每天,我都有一个好心情,我幸福的生活着每一天。 我感恩,感恩生活,感恩网络,感恩朋友,感恩大自然,每天,我都以一颗感动的心去承接生活中的一切。 我感谢…… 感谢伤害我的人,因为他磨练了我的心志; 感谢欺骗我的人, 因为他增进了我的见识; 感谢遗弃我的人, 因为他教导了我应自立; 感谢绊倒我的人,因为他强化了我的能力; 感谢斥责我的人,因为他助长了我的智慧; 感谢藐视我的人,因为他觉醒了我的自尊; 感谢父母给了我生命和无私的爱; 感谢老师给了我知识和看世界的眼睛; 感谢朋友给了我友谊和支持; 感谢完美给了我信任和展示自己能力的机会; 感谢邻家的小女孩给我以纯真无邪的笑脸; 感谢周围所有的人给了我与他人交流勾通时的快乐; 感谢生活所给予我的一切,虽然并不全都是美满和幸福; 感谢天空,给我提供了一个施展的舞台 感谢大地,给我无穷的支持与力量; 感谢太阳,给我提供光和热; 感谢天上所有的星,与我一起迎接每一个黎明和黄昏。 感谢我爱的人和爱我的人,使我的生命不再孤单; 感谢我的敌人,让我认识自己和看清别人; 感谢鲜花的绽放, 绿草的如茵,鸟儿的歌唱, 让我拥有了美丽,充满生机的世界; 感谢日升,让我在白日的光辉中有明亮的心情; 感谢日落,让我在喧嚣疲惫过后有静夜可依。 感谢快乐,让我幸福地绽开笑容,在美好生活着; 感谢伤痛,让我学会了坚忍,也练就了我释怀生命之起落的本能; 感谢生活,让我在漫长岁月的季节里拈起生命的美丽; 感谢有你,尽管远隔千里,可你寒冬里也给我温暖的心怀; 感谢关怀,生命因你而多了充实与清新;
初中数学(北师大版)九年级-二次函数所描述的关系(课件免费下载)(001)
课题二次函数所描述的关系课时安排1教学目标1. 经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间的关系的体验。
理解并掌握二次函数的概念。
能够利用尝试求值的方法解决实际问题。
能够表示简单变量之间的二次函数关系。
2. 类比对一元二次方程以及已学函数模型理解二次函数的相关概念并会应用3. 感受与生活有关的数学,体会数学学习的相关性,更好地理解本节课所学的知识。
重点难点重点:二次函数的概念难点:建立实际问题中的二次函数关系式.教学方法自主探索教具准备多媒体预习学案某果园有100棵橙子树,每一棵树平均结600个橙子。
现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。
根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子。
请问种多少棵树才能达到30000个的总产量?你能解决这个问题吗?基本环节集智备课个人备课教学过程温故知新:1、正比例函数的表达式为2、一次函数3、反比例函数表达式为。
回忆你所学习的这些函数模型的意义及知识。
导入预习:某果园有100棵橙子树,每一棵树平均结600个橙子。
现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。
根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子。
请问种多少棵树才能达到30000个的总产量?你能解决这个问题吗?会减少。
根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子。
(1)问题中有哪些变量?其中哪些是自变量?哪些是因变量?(2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?(3)如果果园橙子的总产量为y个,那么请你写出y与x之间的关系式。
结合上面的问题思考:种多少棵橙子树,可以使果园橙子的总产量最多?你有什么方法?和你的同伴交流一下。
【迁移延伸二】银行的储蓄利率是随时间的变化而变化的,也就是说,利率是一个变量。
在我国,利率的调整是由中国人民银行根据国民经济发展的情况而决定的。
二次函数所描述的关系
二次函数所描述的关系引言二次函数是一种常见的数学函数形式,由形如y=ax2+bx+c的方程所描述。
其中a、b和c是实数常数,并且a eq0。
二次函数的图像通常是一个开口朝上或朝下的曲线,它在数学、物理和工程等领域中都有广泛的应用。
本文将介绍二次函数的基本概念,探讨二次函数图像的性质,以及二次函数在现实世界中的应用。
二次函数的基本形式二次函数是一种以x的二次幂为最高次的多项式函数。
其基本形式是y=ax2+bx+c,其中a、b和c分别是函数的系数。
•当a>0时,二次函数的图像开口朝上,称为正向开口的二次函数。
•当a<0时,二次函数的图像开口朝下,称为负向开口的二次函数。
二次函数的图像通常是一条平滑的曲线,关于 $x = -\\frac{b}{2a}$ 对称。
二次函数图像的性质二次函数的图像具有一些重要的性质,包括顶点、对称轴、开口方向和零点等。
1.顶点:二次函数的顶点表示图像的最高点或最低点。
顶点坐标可以通过 $x = -\\frac{b}{2a}$ 计算得出,并且x的值表示对称轴的位置,y的值表示函数的最大值或最小值。
2.对称轴:二次函数的对称轴是通过顶点和垂直于x轴的直线得出的。
对称轴的方程是 $x = -\\frac{b}{2a}$,它将图像分成两个对称的部分。
3.开口方向:二次函数的开口方向由系数a的符号决定。
当a>0时,图像开口朝上;当a<0时,图像开口朝下。
4.零点:二次函数的零点是函数曲线与x轴交点的横坐标值。
零点可以通过求解方程ax2+bx+c=0得到。
当方程有两个不同的实数解时,图像与x轴交于两个点;当方程有一个实数解时,图像与x轴相切;当方程无实数解时,图像与x轴没有交点。
二次函数的应用二次函数在现实世界中有着广泛的应用,以下是其中几个常见的应用领域:物理学二次函数的图像可以描述一些物体的运动轨迹。
例如,抛体运动的高度和时间之间的关系可以用二次函数来表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 二次函数
第七课时
§2.1 二次函数所描述的关系
●教学目标
1、探索并归纳二次函数的定义。
2、能够表示简单变量之间的二次函数关系。
3、经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系。
4.让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系.
●教学重点
1、经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验。
2、能够表示简单变量之间的二次函数关系。
●教学难点
经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验。
●教学方法
讨论探索法.
●教学过程
Ⅰ、创设问题情境,引入新课
在某个变化过程中,有两个变量x 和y ,如果给定一个x 值,相应地就确定了一个y 值,那么我们称y 是x 的函数,其中x 是自变量,y 是因变量.
一次函数y=kx+b 。
(其中k 、b 是常数,且k≠0)
正比例函数y =kx (k 是不为0的常数)。
反比例函数y=x k
(A 是不为0的常数)。
Ⅱ、新课讲解
一、由实际问题探索二次函数关系
某果园有100棵橙子树,每一棵树平均结600个橙子,现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子。
(1)问题中有哪些变量?其中哪些是自变量?哪些是因变量?
(2)假设果园增种;棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?
(3)如果果园橙子的总产量为y 个,那么请你写出y 与x 之间的关系式.
二、想一想
在上述问题中,种多少棵橙子树,可以使果园橙子的总产量最多?
三、做一做
银行的储蓄利率是随时间的变化而变化的,也就是说,利率是一个变量.在我国,利率的调整是由中国人民银行根据国民经济发展的情况而决定的.
设人民币一年定期储蓄的年利率是x ,一年到期后,银行将本金和利息自动按一年定期储蓄转存.如果存款额是100元,那么请你写出两年后的本息和y(元)的表达式(不考虑利息税),
四、二次函数的定义
从我们刚才推导出的式子y=-5x2+100x+60000和y=100x2+200x+100中,大家能否根据式子的形式,猜想出二次函数的定义及一般形式呢?
Ⅲ、课堂练习
随堂练习(P36) Ⅳ、课后作业习题2.1。