2015第7次课 第五章 半导体异质结中的二维电子气及调制掺杂器件解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
Ez En
2 mL2 z
2 2
n
2
n 1,2,3,
沟道中运动电子的总能量为: E En E ( x, y )
2 2
X、y平面内以 m*自由运动
2 2 n ( k k x y) 2m 2 mL2

2
2
z
(5.7)
V0
Z向处在一维势阱 中具有量子化的 束缚态
1. 2. 3. 4. High Mobility Due to Suppression of Ionized Impurity Scattering: Superior Low Temperature Performance: Use of Superior Materials in the Channel: High Sheet Charge Density:
5.1.3 二维电子气的应用
FET 原理
二维电子气迁移率(Electron Mobility)μ
迁移率: 在低电场下,电子的漂移速度正比于电 场强度,比例系数即定义为迁移率,又 叫漂移迁移率。随温度的增加,声学声 子和电离杂质等散射作用增强,载流子 受到的散射增强从而迁移率降低。此外 ,迁移率还随载流子的有效质量的增加 而减少。
g c ( E ) 4 V
* 3/ 2 (2 mn )
h3
同理,可推得价带顶状态密度:
k E Ev 2 m *
2 2 p
(5.11)
h3
gv ( E ) 4V
基于低维半导体材料的量子器件的特性 低维半导体材料是一种人工设计、制造的新型半导体材料, 是新一代量子器件的基础。 基于它的纳米电子学器件和电路具有超高速、超高频 ( 1000GHz )、高集成度 ( 1010元器件/cm2 ) 和高效、低功耗 等特点。 基于它的光电子器件,如量子点激光器等,则有 极低的阈 值电流 ( 亚微安 ) 、极高的量子效率、极高的调制速度、极 窄的线宽和高的特征温度等。 这些特性在未来的纳米电子学、光电子学、光子学和新一 代 VLSI 以及光电集成、光集成等方面有著极其重要的应用前 景, 可能触发新的技术革命, 并将成为本世纪 二维电子气系统的态密度 三角势阱的能级特点 量子极限
第五章 半导体异质结中的 二维电子气及调制掺杂器件 5.1 二维电子气简介 5.2 方形势阱中粒子的运动特性 5.3 异质结量子势阱中的二维电子气
5.1
二维电子气简介
5.1.1低维物理及其应用
一维和二维物理又称为低维物理。 物理上的研究价值和强烈的应用背景。 制作技术主要采用MBE和MOCVD。 1966 由Fowler等人首先提出。Si-MOS 反型层存在着 磁阻振荡。在垂直于反型层的z方向电子是量子化的。 既Si-MOS 反型层是一个准二维电子气系统。 二维电子气是指在空间z方向电子被限制在一个薄层内 的系统。 二维电子气散射几率比3-DEG的小得多,有效迁移率将 较高。
z方向:量子化, xy 平面:连续,总能量:连续
Lz
5.2.2 二维电子气的状态密度
载流子的统计分布
1电子的热激发。 2 载流子的复合。 3 二者达到平衡。 4 导电性依赖于温度 -------载流子浓度随温度的变化造成的。 5 要探求导电性随温度的规律。
EC
Ev
半导体的基本性质敏感地依赖温度
1 允许的量子态按能量如何分布。 2 电子在允许的量子态中如何分布。
导带和价带中有很多能级: 相邻能级间隔:10-22eV E-E+dE 内有dZ个量子态
状态密度
dZ g ( E) dE
(5. 8)
对体材料(三维)
球形等能面导带底状态密度(假设导带底在k=0处)
E (k ) Ec
h2 k 2 * 2 mn
(5. 9) ( E Ec )1/ 2 (5.10)
5.2 方形势阱中粒子运动的特性
5.2.1 方形沟道势阱中的粒子。
无限深势阱 有限深势阱 势阱的构造 二维:量子阱 一维:量子线 零维:量子点
宽带 窄带
宽带 V0
Lz
[ 2m V ( z )] ( x, y, z ) E ( x, y, z )
2
2
(5.1) (5.2) (5.3) (5.4) (5.5) (5.6)
新的物理效应的出现 库仑阻塞,量子限域效应 量子相干、量子纠缠 • 出路:要有概念上的突破:寻找新体系,运用新现象
5.1.2
几种获得二维电子气的方法
(1)利用反型层获得二维电子气
(2)利用异质结界面获得二维电子气。
-
(3)利用超晶格结构获得二维电子气
1 量子力学中的量子阱 2 半导体器件中的量子阱结构 3 有效质量
对GaN基HEMT结构材料来说,电子的迁 移率越高,器件的工作速度越快,从而 器件的截止频率高,器件便可以在较高 的频率下工作。此外,高电子迁移率可 以减少器件的膝点电压,从而使器件具 有更高的效率。因而迁移率是电子材料 的一项重要指标
HEMT是一种异质结场效应晶体管(HFET),又称为调制掺杂 场效应晶体管(MODFET。这种器件及其集成电路都能够工作于 超高频(毫米波)、超高速领域,原因就在于它采用了异质结 及其中的具有很高迁移率的所谓二维电子气来工作的。 势阱中的电子即为高迁移率的二维电子气(2-DEG),因为 电子在势阱中不遭受电离杂质散射,则迁移率很高。 这种2-DEG不仅迁移率很高,而且在极低温度下也不“冻结, 有很好的低温性能, 可用于低温研究工作 (如分数量子Hall效 应) 中。 异质结界面附近的另一层很薄的本征层(i-AlGaAs),是用 于避免势阱中2-DEG受到n-AlGaAs中电离杂质中心的影响,以 进一步提高迁移率。
( x, y, z ) ( x, y) ( z )
[
2 2 m z 2
2
V ( z )] ( z ) Ez ( z )
2 x 2 y
( x, y) A exp(ik x x ik y y )
[ 2m (k k ) ( x, y) E ( x, y ) ( x, y)
相关文档
最新文档