供应链下的多级存货管理【外文翻译】

合集下载

《 供应商管理库存和联合库存管理多级库存管理(PPT 32页) 》

《 供应商管理库存和联合库存管理多级库存管理(PPT 32页) 》
• 减少了供应链中的需求扭曲现象,降低库 存的不确定性,提高了供应链的稳定性。
• 库存作为供需双方的信息交流和协调的纽 带,可以暴露供应链管理中的缺陷,为改 进供应链管理水平提供依据。
• 为实现零库存管理、准时采购以及精细供 应链管理创造了条件。
的渠道,时间间隔等; 11. 付款条款的拟订,包括付款方式,有关文件准备等; 12. 罚款条约的拟订,例如供应商装错了货物或装了空箱,他
将承担哪些额外的费用;如果用户提供了不充分或另人误 解的信息导致供应商出错,有关损失费用如何分摊;如果 用户取消了产品而因为信息渠道或其他原因供应商已经送 货,谁将对这批存货负责等。
四、实施VMI、IS等新策略的要 点
• 分析传统的库存管理——RMI,即零售商(需求方) 管理的库存——的弊端
1. 要控制库存资源 2. 导致与现代市场竞争环境的不适应性
• 供应商管理的库存——VMI
1. 由供应商监控库存变化 2. 信息高度共享和开放 3. 双方的信任 4. 共同降低成本、提高赢利水平
VMI全称Vendor Managed Inventory, 即供应商管理库存。它是一种在供应链环 境下的库存运作模式,本质上,它是将多 级供应链问题变成单级库存管理问题,相 对于按照传统用户发出订单进行补货的传 统做法。VMI是以实际或预测的消费需求 和库存量,作为市场需求预测和库存补货 的解决方法,即由销售资料得到消费需求 信息,供货商可以更有效的计划、更快速 的反应市场变化和消费需求。
3. 供应商使用什么样的工具交货,在哪里建立仓库,其 面积能否保证产品的进出和不断增长的产品需求;
4. 谁将代表供应商管理存货,其管理能力、声誉、业务 范围和过去的经验、财务状况、人力资源等需要达到 什么标准?

供应链管理—多级库存优化管理

供应链管理—多级库存优化管理

多级库存优化管理——基础库存的最优化配置是企业重要的业务功能。

低库存带来的制造、分销或零售运作上的优势表现为营运资本的永久性减少、更高的销售量和客户满意度。

正如Forrester Research在近期的一份报告上指出的那样,增强库存周转的能力是企业导致成功与失败的主要因素之一。

管理库存是企业的艰巨任务,特别是那些在多个地方都拥有好几万种商品的企业。

当这些商品处于企业分销网络的不同层级时,这种挑战就更为突出了。

在这种多层级网络中,新产品出货后首先储存在地区或者中心机构中。

这些中心机构是面对客户端的内部供应商。

对于零售渠道和大型分销商和制造商而言,这是一种普遍的分销模式。

比如,大型的医药批发商的分销网络包括一个地区性分销中心(RDC)和超过30种的前向分销中心(DC)。

另一种汽车零部件和设备的全国性零售商管理了超过2500万库存单元(SKU),这些库存单元跨越了10个DC和超过900家店。

最后家具构件的全球制造商/分销商在将产成品运送到全世界15个当地DC前,首先从位于工厂附近的欧洲DC装货。

然后由这15个DC服务终端的顾客。

与单层网络相比,在多层级网络中管理库存都存在很多缺陷。

缺陷之一是不能实现真正的网络库存优化,因为补货战略通常是应用于同一级的,而没有考虑对其他层级的冲击。

当你仅仅处理一个单一层级时,通常缺乏对整个需求链上的库存使用状况的系统性看法。

另一大缺陷是将上一层级的补货决策建立在华而不实的需求预测基础上。

而这些缺陷能产生出各种相关的负结果,包括:●网络以多余安全库存的形式保留了过多的库存;●即使网络中存在充足的库存,终端顾客服务缺陷仍然发生;●当层级之间的服务超过可接受的范围时,面对客户的供应点发生令人不快的存货短缺;●外部供应商提供不可靠的业绩信息,因为他们接收了令人不满意的需求指示;●目光短浅的内部产品配置决策是非常有限的。

本文将会考察解决多级网络中管理库存问题的两种可供选择的方法,此外,文章也会提出在满足所有客户服务目标的同时,最小化各层级库存的最佳方法。

供应链物流中的多级仓储优化研究

供应链物流中的多级仓储优化研究

供应链物流中的多级仓储优化研究随着市场的竞争越来越激烈,物流和仓储也成为了一种重要的服务。

供应链物流中的仓储环节对于整体的供应链效率起着至关重要的作用,特别是在多级供应链中,仓储的效率和确认性要求更高。

多级供应链是指生产和销售之间跨越多个环节,比如说从原材料的生产到成品的制造,或者从产品制造到完成交付等。

这种供应链在整体的生产和销售过程中有价值的流动。

不过,在这种情况下,对于仓储的优化和管理,成为了一个非常关键的话题。

一般来讲,多级供应链的仓储可以被分为“一级仓储”和“多级仓储”。

所谓的一级仓储一般指的是仓库或者物流中心。

而多级仓储则一般指的是分仓库,比如像分储存库、分拣和分配中心等。

对于供应链物流中的多级仓储,优化研究需要遵循一下几个原则。

首先,关注对于生产和配送效率的影响。

其次,优化应该不仅仅是关注仓储运行的效率,还需要考虑与运输和配送的其他环节相联系。

最后,还需要考虑关于货物的质量、稳定性和安全性的进一步以及储备与备份的管理。

对于多级仓储的优化,首先需要有一个合理的库存管理。

这个库存管理必须要考虑到在任何时点的仓储场地的使用和维护,保持不低于合意的服务水平和库存成本的数量。

同时,一个好的库存管理需要确保在高峰期和淡季时期都能够快速地调配更多或更少的人力资源。

其次,必须要考虑到多个仓库之间的供货关系。

具体而言,需要确定一个最佳的货物流动路径,以减少所需的仓库运行时间,进而减少可能存在的繁琐等待和混乱。

同时,这也需要确保物流和运输环节的配合和协调。

除了这些必要的方法之外,还存在许多可以被使用的工具和技术。

比如说,使用一些开源的系统,可以让复杂的仓储和物流环节变得更加可视化,同时也可以极大地简化流程的管理和操作。

不仅如此,一些先进的数据分析和预测工具都可以被用来在仓储中优化供应链和项目控制,比如说关注物流成本的优化、减少供应链拖延和失误、优化储存空间和提高货物追踪精度等。

总之,供应链物流中的多级仓储优化研究是个复杂的问题,需要考虑到许多因素。

外文翻译--- 供应链管理下的库存控制

外文翻译--- 供应链管理下的库存控制

外文翻译--- 供应链管理下的库存控制在供应链管理环境下,库存控制仍然存在一些问题,需要企业及时解决。

主要问题包括以下几个方面:1.信息不对称在供应链中,不同企业之间的信息不对称问题比较严重,导致企业难以准确预测市场需求,从而影响库存控制的效果。

2.订单不稳定供应链中的订单不稳定性也是影响库存控制的重要因素之一。

订单不稳定会导致企业难以确定库存水平,从而影响供应链整体绩效。

3.物流配送问题物流配送问题也是影响库存控制的重要因素之一。

物流配送不畅会导致库存积压,增加企业的库存成本。

4.缺乏协调供应链中各个企业之间缺乏协调也是影响库存控制的重要因素之一。

缺乏协调会导致企业之间的库存信息不同步,从而影响供应链整体绩效。

为了解决这些问题,企业需要采取一系列措施,如加强信息共享、优化订单管理、完善物流配送体系、建立协调机制等,以提高供应链整体绩效和库存控制的效果。

尽管从宏观角度来看,供应链管理环境下的库存控制比传统管理更具优势,但实际操作中,由于每个企业对供应链管理的理解存在差异,存在利益冲突等问题,导致实际运用时也会出现许多问题。

其中,主要存在以下几个方面的问题:1.各企业缺乏供应链管理的整体观念,导致各自为政的行为降低了供应链整体效率。

2.交货状态数据不准确,导致客户不满和供应链中某些企业增加库存量。

3.信息传递系统低效率,导致延迟和不准确的信息,影响库存量的精确度和短期生产计划的实施。

4.缺乏合作与协调性,组织障碍是库存增加的一个重要因素。

5.产品的过程设计没有考虑供应链上库存的影响,导致成本效益被库存成本抵消,引进新产品时也会遇到问题。

因此,在供应链管理环境下,需要制定合适的库存控制策略,包括建立整体观念,提高信息传递效率,加强合作与协调性,考虑库存影响的产品设计等措施,以提高供应链整体效率。

针对库存管理问题,我们推出以下策略:1.供应商管理库存策略:VMI(Vendor Managed Inventory)库存管理模式。

供应商管理库存和联合库存管理多级库存管理

供应商管理库存和联合库存管理多级库存管理


好的事情马上就会到来,一切都是最 好的安 排。下 午2时17分29秒 下午2时17分14:17:2920.10.27

一马当先,全员举绩,梅开二度,业 绩保底 。20.10.2720.10.2714:1714:17:2914:17:29Oc t-20

牢记安全之责,善谋安全之策,力务 安全之 实。2020年10月27日 星期二2时17分 29秒T uesday, October 27, 2020
的合作框架协议。 第四、组织机构的变革。
基本步骤
• 进行基于活动的成本分 析(activity-based costing, 简称ABC)
• 组建多功能小组
1. 供应链中企业的仓储人员可能认为VMI对他们在企业 中的地位是一种威胁,必须做好他们的工作以保证有 效地实施VMI。
2. 拟定一份粗略的存货品种和补充计划,讨论VMI包含 哪些存货品种,开始应该管理多少产品,何时增加新 产品;
零售商成本中心 成本
Dt=∑dt 优化
控制策略
(三)基于时间优化的多级库存控制
– 在供应链管理环境下,库存优化还应该考虑对 时间的优化,比如库存周转率的优化、供应提 前期优化、平均上市时间的优化等。库存时间 过长对于产品的竞争力不利,因此供应链系统 应从提高用户响应速度的角度提高供应链的库 存管理水平。

踏实肯干,努力奋斗。2020年10月27日下午2时17分 20.10.2720.10.27

追求至善凭技术开拓市场,凭管理增 创效益 ,凭服 务树立 形象。2020年10月27日星期 二下午2时17分 29秒14:17:2920.10.27

按章操作莫乱改,合理建议提出来。2020年10月下 午2时17分20.10.2714:17October 27, 2020

基于供应链环境的多级库存优化管理研究

基于供应链环境的多级库存优化管理研究

基于供应链环境的多级库存优化管理研究基于供应链环境的多级库存优化管理研究1. 引言随着全球化经济的发展和供应链管理的日益重要,多级库存管理在现代供应链中扮演着至关重要的角色。

随着市场竞争加剧,企业需要寻求有效的库存管理方法来降低库存成本,提高客户满意度,并确保供应链的可靠性和灵活性。

因此,本文将研究基于供应链环境的多级库存优化管理,旨在提供有效的库存管理策略,以满足供需平衡和经济效益的要求。

2. 多级库存的定义和特点多级库存是指在供应链中各级节点上的库存,这些节点包括供应商、生产商、分销商和最终客户等。

多级库存的管理涉及到从供应链的源头到终端,以及供应链内部的库存转移和协同。

多级库存管理具有以下特点:首先,在供应链中的每个节点上都存在库存,这些节点之间的关系和交互会对库存管理产生影响。

因此,多级库存管理需要考虑不同节点之间的信息传递、协作和协调。

其次,多级库存管理需要解决不同节点之间的信息不对称和延迟的问题。

供应链中的每个节点都有不同的库存需求和预测,但这些信息通常存在不确定性和时滞性。

因此,多级库存管理需要考虑如何准确地收集、分析和利用节点之间的信息,以实现优化的库存管理。

最后,供应链中的多级库存管理需要考虑不同节点之间的协同和协调。

在实际情况下,供应链中的库存决策往往是分散的,各个节点往往只看到局部的库存需求和预测。

因此,多级库存管理需要确保不同节点之间的协同和协调,以实现整体的供需平衡和经济效益。

3. 多级库存优化的挑战实现基于供应链环境的多级库存优化管理面临着许多挑战,包括库存需求的不确定性、供应链节点之间的信息流通和协调以及库存管理策略的决策问题等。

首先,库存需求的不确定性是多级库存优化管理的主要挑战之一。

供应链中的库存需求受到市场需求、产品周期和季节性等因素的影响,这些因素往往难以准确预测。

因此,如何处理库存需求的不确定性,实现供需平衡和库存成本的最优化是多级库存优化管理的重要问题。

供应链环境下的库存管理

供应链环境下的库存管理

供应链环境下的库存管理引言在现代全球化的市场中,供应链管理是企业成功的关键要素之一。

一个高效的供应链系统可以帮助企业降低成本、提高客户满意度并保持竞争力。

在供应链中,库存管理是一个至关重要的环节,对于企业的运营和盈利能力有着直接的影响。

本文将探讨供应链环境下的库存管理问题,并提供一些有效的解决方案和最佳实践。

供应链环境下的库存管理挑战在现代供应链环境下,库存管理面临着一系列的挑战。

以下是一些常见的挑战:1. 多级供应商和分散的供应网络现代供应链通常涉及多级供应商和分散的供应网络。

这使得库存的可见性和控制变得更加复杂,容易导致缺货或过剩。

2. 不确定的需求和供应市场需求和供应的不确定性是库存管理的一大挑战。

需求波动和供应延迟可能导致库存过剩或缺货问题。

3. 成本压力和资金流问题库存堆积可能导致资金流问题。

大量的库存需要额外的资金投入,并增加货物滞销和降价的风险。

4. 信息不对称和协作困难供应链中的参与方之间的信息不对称和协作困难会给库存管理带来挑战。

缺乏及时和准确的信息可能导致库存水平不准确,影响到库存决策的准确性。

供应链环境下的库存管理解决方案1. 数据驱动的需求预测一个高效的库存管理系统需要基于准确的需求预测。

通过采用数据驱动的需求预测方法,可以减少需求的不确定性,并提取出需求的趋势和模式。

这有助于提高库存的准确性和可见性。

2. 建立合理的库存规模与服务水平的平衡库存规模和服务水平之间存在着权衡。

过高的库存规模会增加成本,而过低的库存规模可能导致缺货问题。

通过分析和优化库存规模与服务水平之间的平衡,可以确保库存水平在满足客户需求的同时最大限度地降低库存成本。

3. 供应链协作和信息共享一个有效的库存管理系统需要供应链中各个环节之间的协作和信息共享。

通过建立供应链合作伙伴之间的紧密联系和信息共享机制,可以提高供应链的可见性和协作效率,减少信息不对称和误差。

4. 库存透明度和追踪能力有效的库存管理需要实时的库存透明度和追踪能力。

供应链下的多级存货管理外文文献

供应链下的多级存货管理外文文献

供应链下的多级存货管理外文文献1、IntroductionIn today's globalized and interconnected business environment, supply chain management has become an essential component of enterprise success. One of the key elements of supply chain management is inventory management, which involves the effective management of inventory levels across multiple tiers of the supply chain. This article examines the concept of multi-level inventory management within the context of supply chain management and explores relevant literature from foreign sources.2、Supply Chain Management and Inventory ManagementSupply chain management involves the integration and coordination of various activities across all levels of a supply chain, from suppliers to manufacturers, distributors, and consumers. Inventory management, specifically, refers to the effective management of inventory levels in order to meet demand while minimizing costs and risks. It involves theidentification of demand patterns, the determination of appropriate inventory levels, and the implementation of policies and procedures to ensure that inventory is rotated and utilized effectively.3、Multi-Level Inventory Management in the Supply ChainMulti-level inventory management refers to the management of inventory across multiple tiers or levels within a supply chain. It involves the coordination and synchronization of inventory levels across different stages of the supply chain to ensure efficient flow of goods and materials. By managing inventory at multiple levels simultaneously, enterprises can optimize overall inventory levels while ensuring that each tier of the supply chain is able to meet demand.4、Foreign Literature Review on Multi-Level Inventory ManagementA review of foreign literature on multi-level inventory management reveals a growing body of research on this topic. Studies have focused on various aspects of multi-levelinventory management, including demand forecasting, inventory policies, and supply chain coordination. Notably, research has shown that multi-level inventory management can significantly improve overall supply chain performance by reducing costs and increasing efficiency.5、ConclusionThe concept of multi-level inventory management within the context of supply chain management has gained significant attention in recent years. A review of foreign literature suggests that effective multi-level inventory management can lead to significant improvements in overall supply chain performance by optimizing inventory levels across different stages of the supply chain. Enterprises that adopt multi-level inventory management strategies can expect to achieve cost savings, increased efficiency, and a more robust supply chain overall.6、Recommendations for Future ResearchDespite the growing body of research on multi-level inventorymanagement, there are still several areas that require further exploration. Future research could focus on developing more advanced demand forecasting techniques to improve accuracy and reduce demand uncertnty. Additionally, studies could investigate novel inventory policies and strategies that can further optimize inventory levels across different tiers of the supply chn. Finally, research could also examine the role of technology in supporting multi-level inventory management, including the use of artificial intelligence, big data analytics, and other emerging technologies.供应链管理外文翻译供应链管理是一种全面的管理方法,旨在优化供应链的运作,提高效率和竞争力。

供应链之采购与库存管理

供应链之采购与库存管理

供应链管理————-—供应商管理与库存管理1。

供应链管理定义1。

1 引述"供应链管理"是管理从供应商的供应商,到客户的客户之间,所有一切与成品相关的生产与配给作业。

包含了计划、供应商寻觅、制造与交货。

(Supply—Chain Council)供应链(Supply Chain,SC)的概念在80年代末提出,近年来随着全球制造(Global Manufacturing)的出现,供应链在制造业管理中得到普遍应用,成为一种新的管理模式。

供应链管理的本质就是同时实现服务水平与运作成本的优化,不需要在库存与缺货之间平衡.直接的说,就是缺货与库存同时降低。

我们可以把供应链比做一条龙,龙头是商品的销售环节,即产品生产出来以后,企业与客户交互的过程;龙身是生产制造环节,是企业内部产品生产的过程;龙尾是原材料采购环节,即在适当的时间向适当的厂商采购适当的商品.供应链管理的作用就是把这条龙体内的资金流、信息流和物流三者整合起来,使企业能够获得采购、生产和销售的最优路线,提高企业的竞争力。

供应链管理的关键就在于供应链各结点企业(部门)之间的联接和合作,以及相互之间在设计、生产、竞争策略等方面良好的协凋。

如果供应链的所有结点企业(部门)都采取能促使总利润提升的行为,则供应链的协调性就会得到改善。

供应链协调要求供应链的每个结点企业(部门)都考虑自身行为对其他结点企业(部门)的影响。

然而,在供应链上,常常存在着如预测不准确、需求不明确,供给不稳定,企业(部门)间合作性与协调性差、造成了供应缺乏,生产与运输作业不均衡、库存居高不下,成本过高等现象.引起这些问题的根源有许多,但主要原因之一是牛鞭效应(Bullwhip Effect)。

牛鞭效应扭曲了供应链内的需求信息,不同阶段对需求状况有着截然不同的估计,其结果导致供应链失调。

做物流的有一句话,物流管理就是在服务水平与运作成本之间权衡;做采购的呢?在库存与缺料之间如何实现最优的平衡。

供应链下库存管理

供应链下库存管理

库存管理
7
供应链下库存管理
❖2. JMI的实施
(1)建立供应链协调管理机制
建立供应链共同目标。 建立联合库存的协调控制方法。 建立利益的分配激励机制。
(2)建立信息沟通渠道 (3)发挥第三方物流系统的作用 (4)选择恰当的联合库存管理模式:集中库存模式和无库存模式。
库存管理
8
库存管理
❖第一节 库存与库存管理 ❖第二节 库存管理方法 ❖ 供应链下库存管理
库存管理
5
供应链下库存管理
❖ 二、联合库存管理
联合库存管理(Joint Managed Inventory,JMI)是一种在供应商管理库存的基础 上发展起来,上游企业和下游企业权利责任平衡且风险共担的库存管理模式。 JMI体现了战略供应商联盟的新型企业合作关系,强调了供应链企业之间的互利 合作关系。联合库存管理是解决供应链系统中由于各节点企业的相互独立库存运 作模式导致的需求放大现象,是提高供应链同步化程度的一种有效方法。
库存管理
Байду номын сангаас
2
供应链下库存管理
❖1. VMI管理的原则
(1)合作精神(合作性原则)。 (2)使双方成本最小(互惠原则)。 (3)框架协议(目标一致性原则)。 (4)连续改进原则。
库存管理
3
供应链下库存管理
❖2. VMI的主要特征
(1)管理责任和决策主体转移。 (2)销售活动延迟。 (3)信息共享。
库存管理
库存管理
6
供应链下库存管理
❖1. JMI的优势
(1)信息优势。信息是企业的一项重要资源,而缺乏信息沟通也是上述库存管 理中出现问题的主要原因。 (2)成本优势。JMI实现了从分销商到制造商到供应商之间在库存管理方面的一 体化,可以让三方都能够实现准时采购。 (3)物流优势。在传统的库存管理中存在着各自为政的弊端,上下游企业之间 都是各自管理自己的库存,这就不可避免地会出现需求预测扭曲现象,产生的 “牛鞭效应”极大的降低了企业的运作效率并增加了企业的成本。 (4)战略联盟的优势。

供应链环境下的多级库存优化及控制研究

供应链环境下的多级库存优化及控制研究

Development and Innovation| 发展与创新 | ·225·2016年11月供应链环境下的多级库存优化及控制研究*吴占坤,赵英姝(齐齐哈尔大学经济与管理学院,黑龙江 齐齐哈尔 161006)摘 要:制造企业供应链的链接纽带是库存。

在供应链管理环境下,企业既要使自身的利益最大化,还得促使整个供应链的利益的优化,而多级库存优化的目标就是追求整个供应链的利益最优化。

因此,供应链的环境下的多级库存优化,在实际工作中具有非常重要的意义。

文章建立了以制造商为核心、上游供应商和下游分销商组成的供应链库存系统,并在此基础上构建了多级库存的库存模型,最后用遗传学算法进行优化。

关键词:供应链;多级库存;成本优化;遗传学算法中图分类号:F27 文献标志码:A 文章编号:2096-2789(2016)11-0225-021 供应链及库存控制相关理论1.1 供应链的定义及类型供应链是服务及消费品经过制造商、经销商、零售商最终到达消费者手中的过程。

供应链是一个以核心企业为中心,由上游供应商、核心企业、下游分销商以及用户组成的网链结构[1]。

供应链主要有以下特征:复杂性、动态性、交叉性、面向用户需求。

根据不同的标准,供应链通常有以下几种类型:①按照区分范围不同:分为内部供应链和外部供应链;②根据不同的稳定性:分为稳定的和动态的供应链;③针对不同尺寸的高度:分为平衡的供应链和倾斜供应链;④根据性能的不同:分为有效供应链和反应供应链[2]。

1.2 库存控制理论(1)库存与库存成本。

在企业的生产经营中,库存管理是其中的一个重要组成部分,实现了价值链估计值过程的重要部分在这个环节中。

库存控制在供应链体系中是供应链管理的最大的阻碍,直接影响着节点企业的综合成本的是库存的持有量的高低,而且还会使整个供应链的整体绩效与性能受到牵制[3]。

因此,想办法怎么样使库存成本最低,从而达到最好的效益,是每个企业管理者在实施供应链管理过程中必须要优先考虑的问题。

供应链下的多级存货管理【外文翻译】

供应链下的多级存货管理【外文翻译】

本科毕业论文(设计)外文翻译原文:Multi-echelon inventory management in supply chains Historically, the echelons of the supply chain, warehouse, distributors, retailers, etc., have been managed independently, buffered by large inventories. Increasing competitive pressures and market globalization are forcing firms to develop supply chains that can quickly respond to customer needs. To remain competitive and decrease inventory, these firms must use multi-echelon inventory management interactively, while reducing operating costs and improving customer service.Supply chain management (SCM) is an integrative approach for planning and control of materials and information flows with suppliers and customers, as well as between different functions within a company. This area has drawn considerable attention in recent years and is seen as a tool that provides competitive power .SCM is a set of approaches to integrate suppliers, manufacturers, warehouses, and stores efficiently, so that merchandise is produced and distributed at right quantities, to the right locations and at the right time, in order to minimize system-wide costs while satisfying service-level requirements .So the supply chain consists of various members or stages. A supply chain is a dynamic, stochastic, and complex system that might involve hundreds of participants.Inventory usually represents from 20 to 60 per cent of the total assets of manufacturing firms. Therefore, inventory management policies prove critical in determining the profit of such firms. Inventory management is, to a greater extent, relevant when a whole supply chain (SC), namely a network of procurement, transformation, and delivering firms, is considered. Inventory management is indeed a major issue in SCM, i.e. an approach that addresses SC issues under an integrated perspective.Inventories exist throughout the SC in various forms for various reasons. Thelack of a coordinated inventory management throughout the SC often causes the bullwhip effect, namely an amplification of demand variability moving towards the upstream stages. This causes excessive inventory investments, lost revenues, misguided capacity plans, ineffective transportation, missed production schedules,and poor customer service.Many scholars have studied these problems, as well as emphasized the need of integration among SC stages, to make the chain effectively and efficiently satisfy customer requests (e.g. reference). Beside the integration issue, uncertainty has to be dealt with in order to define an effective SC inventory policy. In addition to the uncertainty on supply (e.g. lead times) and demand, information delays associated with the manufacturing and distribution processes characterize SCs.Inventory management in multi-echelon SCs is an important issue, because thereare many elements that have to coordinate with each other. They must also arrangetheir inventories to coordinate. There are many factors that complicate successful inventory management, e.g. uncertain demands, lead times, production times, product prices, costs, etc., especially the uncertainty in demand and lead times where the inventory cannot be managed between echelons optimally.Most manufacturing enterprises are organized into networks of manufacturingand distribution sites that procure raw material, process them into finished goods, and distribute the finish goods to customers. The terms ‘multi-echelon’ or ‘multilevel‘production/distribution networks are also synonymous with such networks(or SC), when an item moves through more than one step before reaching the final customer. Inventories exist throughout the SC in various forms for various reasons. Atany manufacturing point, they may exist as raw materials, work in progress, or finished goods. They exist at the distribution warehouses, and they exist in-transit, or‘in the pipeline’, on each path linking these facilities.Manufacturers procure raw material from suppliers and process them into finished goods, sell the finished goods to distributors, and then to retail and/or customers. When an item moves through more than one stage before reaching thefinal customer, it forms a ‘multi-echelon’ inventory system. The echelon stock of a stock point equals all stock at this stock point, plus in-transit to or on-hand at any of its downstream stock points, minus the backorders at its downstream stock points.The analysis of multi-echelon inventory systems that pervades the business world has a long history. Multi-echelon inventory systems are widely employed to distribute products to customers over extensive geographical areas. Given the importance of these systems, many researchers have studied their operating characteristics under a variety of conditions and assumptions. Since the development of the economic order quantity (EOQ) formula by Harris (1913), researchers and practitioners have been actively concerned with the analysis and modeling of inventory systems under different operating parameters and modeling assumptions .Research on multi-echelon inventory models has gained importance over the last decade mainly because integrated control of SCs consisting of several processing and distribution stages has become feasible through modern information technology. Clark and Scarf were the first to study the two-echelon inventory model. They proved the optimality of a base-stock policy for the pure-serial inventory system and developed an efficient decomposing method to compute the optimal base-stock ordering policy. Bessler and Veinott extended the Clark and Scarf model to include general arbores cent structures. The depot-warehouse problem described above was addressed by Eppen and Schrage who analyzed a model with a stockless central depot. They derived a closed-form expression for the order-up-to-level under the equal fractile allocation assumption. Several authors have also considered this problem in various forms. Owing to the complexity and intractability of the multi-echelon problem Hadley and Whitin recommend the adoption of single-location, single-echelon models for the inventory systems.Sherbrooke considered an ordering policy of a two-echelon model for warehouse and retailer. It is assumed that stock outs at the retailers are completely backlogged. Also, Sherbrooke constructed the METRIC (multi-echelon technique for coverable item control) model, which identifies the stock levels that minimize the expected number of backorders at the lower-echelon subject to a bud get constraint. This modelis the first multi-echelon inventory model for managing the inventory of service parts. Thereafter, a large set of models which generally seek to identify optimal lot sizes and safety stocks in a multi-echelon framework, were produced by many researchers. In addition to analytical models, simulation models have also been developed to capture the complex interaction of the multi-echelon inventory problems.So far literature has devoted major attention to the forecasting of lumpy demand, and to the development of stock policies for multi-echelon SCs Inventory control policy for multi-echelon system with stochastic demand has been a widely researched area. More recent papers have been covered by Silver and Pyke. The advantage of centralized planning, available in periodic review policies, can be obtained in continuous review policies, by defining the reorder levels of different stages, in terms of echelon stock rather than installation stock.Rau et al. , Diks and de Kok , Dong and Lee ,Mitra and Chatterjee , Hariga , Chen ,Axsater and Zhang , Nozick and Turnquist ,and So and Zheng use a mathematic modeling technique in their studies to manage multi-echelon inventory in SCs. Diks and de Kok’s study considers a divergent multi-echelon inventory system, such as a distribution system or a production system, and assumes that the order arrives after a fixed lead time. Hariga, presents a stochastic model for a single-period production system composed of several assembly/processing and storage facilities in series. Chen, Axsater and Zhang, and Nozick and Turnquist consider a two-stage inventory system in their papers. Axsater and Zhang and Nozickand Turnquist assume that the retailers face stationary and independent Poisson demand. Mitra and Chatterjee examine De Bodt and Graves’ model (1985), which they developed in their paper’ Continuous-review policies for a multi-echelon inventory problem with stochastic demand’, for fast-moving items from the implementation point of view. The proposed modification of the model can be extended to multi-stage serial and two -echelon assembly systems. In Rau et al.’s model, shortage is not allowed, lead time is assumed to be negligible, and demand rate and production rate is deterministic and constant. So and Zheng used an analytical model to analyze two important factors that can contribute to the high degree of order-quantity variability experienced bysemiconductor manufacturers: supplier’s lead time and forecast demand updating. They assume that the external demands faced by there tailor are correlated between two successive time periods and that the retailer uses the latest demand information to update its future demand forecasts. Furthermore, they assume that the supplier’s delivery lead times are variable and are affected by the retailer’s order quantities. Dong and Lee’s paper revisits the serial multi-echelon inventory system of Clark and Scarf and develops three key results. First, they provide a simple lower-bound approximation to the optimal echelon inventory levels and an upper bound to the total system cost for the basic model of Clark and Scarf. Second, they show that the structure of the optimal stocking policy of Clark and Scarf holds under time-correlated demand processing using a Martingale model of forecast evolution. Third, they extend the approximation to the time-correlated demand process and study, in particular for an autoregressive demand model, the impact of lead times, and autocorrelation on the performance of the serial inventory system.After reviewing the literature about multi-echelon inventory management in SCs using mathematic modeling technique, it can be said that, in summary, these papers consider two, three, or N-echelon systems with stochastic or deterministic demand. They assume lead times to be fixed, zero, constant, deterministic, or negligible. They gain exact or approximate solutions.Dekker et al. analyses the effect of the break-quantity rule on the inventory costs. The break-quantity rule is to deliver large orders from the warehouse, and small orders from the nearest retailer, where a so-called break quantity determines whether an order is small or large. In most l-warehouse–N-retailers distribution systems, it is assumed that all customer demand takes place at the retailers. However, it was shown by Dekker et al. that delivering large orders from the warehouse can lead to a considerable reduction in the retailer’s inventory costs. In Dekker et al. the results of Dekker et al. were extended by also including the inventory costs at the warehouse. The study by Mohebbi and Posner’s contains a cost analysis in the context of a continuous-review inventory system with replenishment orders and lost sales. The policy considered in the paper by V ander Heijden et al. is an echelon stock, periodicreview, order-up-to policy, under both stochastic demand and lead times.The main purpose of Iida’s paper is to show that near-myopic policies are acceptable for a multi-echelon inventory problem. It is assumed that lead times at each echelon are constant. Chen and Song’s objective is to minimize the long-run average costs in the system. In the system by Chen et al., each location employs a periodic-review, or lot-size reorder point inventory policy. They show that each location’s inventory positions are stationary and the stationary distribution is uniform and independent of any other. In the study by Minner et al., the impact of manufacturing flexibility on inventory investments in a distribution network consisting of a central depot and a number of local stock points is investigated. Chiang and Monahan present a two-echelon dual-channel inventory model in which stocks are kept in both a manufacturer warehouse (upper echelon) and a retail store (lower echelon), and the product is available in two supply channels: a traditional retail store and an internet-enabled direct channel. Johansen’s system is assumed to be controlled by a base-stock policy. The independent and stochastically dependent lead times are compared.To sum up, these papers consider two- or N-echelon inventory systems, with generally stochastic demand, except for one study that considers Markov-modulated demand. They generally assume constant lead time, but two of them accept it to be stochastic. They gain exact or approximate solutions.In multi-echelon inventory management there are some other research techniques used in literature, such as heuristics, vary-METRIC method, fuzzy sets, model predictive control, scenario analysis, statistical analysis, and GAs. These methods are used rarely and only by a few authors.A multi-product, multi-stage, and multi-period scheduling model is proposed by Chen and Lee to deal with multiple incommensurable goals for a multi-echelon SC network with uncertain market demands and product prices. The uncertain market demands are modeled as a number of discrete scenarios with known probabilities, and the fuzzy sets are used for describing the sellers’ and buyers’ incompatible preference on product prices.In the current paper, a detailed literature review, conducted from an operational research point of view, is presented, addressing multi-echelon inventory management in supply chains from 1996 to 2005.Here, the behavior of the papers, against demand and lead time uncertainty, is emphasized.The summary of literature review is given as: the most used research technique is simulation. Also, analytic, mathematic, and stochastic modeling techniques are commonly used in literature. Recently, heuristics as fuzzy logic and GAs have gradually started to be used.Source: A Taskin Gu¨mu¨s* and A Fuat Gu¨neri Turkey, 2007. “Multi-echelon inventory management in supply chains with uncertain demand and lead times: literature review from an operational research perspective”. IMechE V ol. 221 Part B: J. Engineering Manufacture. June, pp.1553-1570.译文:供应链下的多级存货管理从历史上看,多级供应链、仓库、分销商、零售商等,已经通过大量的库存缓冲被独立管理。

供应链管理多级库存优化管理.doc

供应链管理多级库存优化管理.doc

供应链管理—多级库存优化管理1多级库存优化管理——基础库存的最优化配置是企业重要的业务功能。

低库存带来的制造、分销或零售运作上的优势表现为营运资本的永久性减少、更高的销售量和客户满意度。

正如Forrester Research在近期的一份报告上指出的那样,增强库存周转的能力是企业导致成功与失败的主要因素之一。

管理库存是企业的艰巨任务,特别是那些在多个地方都拥有好几万种商品的企业。

当这些商品处于企业分销网络的不同层级时,这种挑战就更为突出了。

在这种多层级网络中,新产品出货后首先储存在地区或者中心机构中。

这些中心机构是面对客户端的内部供应商。

对于零售渠道和大型分销商和制造商而言,这是一种普遍的分销模式。

比如,大型的医药批发商的分销网络包括一个地区性分销中心(RDC)和超过30种的前向分销中心(DC)。

另一种汽车零部件和设备的全国性零售商管理了超过2500万库存单元(SKU),这些库存单元跨越了10个DC和超过900家店。

最后家具构件的全球制造商/分销商在将产成品运送到全世界15个当地DC前,首先从位于工厂附近的欧洲DC装货。

然后由这15个DC服务终端的顾客。

与单层网络相比,在多层级网络中管理库存都存在很多缺陷。

缺陷之一是不能实现真正的网络库存优化,因为补货战略通常是应用于同一级的,而没有考虑对其他层级的冲击。

当你仅仅处理一个单一层级时,通常缺乏对整个需求链上的库存使用状况的系统性看法。

另一大缺陷是将上一层级的补货决策建立在华而不实的需求预测基础上。

而这些缺陷能产生出各种相关的负结果,包括:●网络以多余安全库存的形式保留了过多的库存;●即使网络中存在充足的库存,终端顾客服务缺陷仍然发生;●当层级之间的服务超过可接受的范围时,面对客户的供应点发生令人不快的存货短缺;●外部供应商提供不可靠的业绩信息,因为他们接收了令人不满意的需求指示;●目光短浅的内部产品配置决策是非常有限的。

本文将会考察解决多级网络中管理库存问题的两种可供选择的方法,此外,文章也会提出在满足所有客户服务目标的同时,最小化各层级库存的最佳方法。

供应链管理中的库存控制

供应链管理中的库存控制

未来发展趋势和 挑战
建立供应链协同机制:明确各参与方的职责和利益,制定协同规则和流程,确保信息 共享和沟通畅通。
强化供应链信息平台建设:通过建立统一的信息平台,实现各参与方之间的信息共享 和协同操作,提高供应链的透明度和响应速度。
优化供应链物流运作:通过优化物流运作流程,降低库存成本和运输成本,提高物流 效率和响应速度,实现供应链的快速响应和协同。
汇报人:
特点:订货批量固定,订货时间灵活,适用于需求量稳定且可预测的情况。
订货点确定:订货点通常根据历史需求数据、安全库存等因素来确定,以确保库存量在到达订货点之前能够满足 需求。
实施步骤:实施定量订货策略需要确定订货批量、订货点、安全库存等参数,并定期检查库存水平,当库存量下 降到订货点时,发出订货。
定义:按照固定的 时间间隔进行订货, 以补充库存
加强供应链风险管理:通过建立风险评估机制和应对措施,降低供应链中断的风险, 确保供应链的稳定性和可靠性。
数字化供应链协同:利 用大数据、人工智能等 技术实现供应链各环节 的实时数据共享和协同 工作。
智能化供应链协同:通 过智能算法和自动化设 备实现供应链各环节的 智能预测、优化和决策。
绿色化供应链协同:注 重环保和可持续发展, 推动绿色供应链建设, 减少资源浪费和环境污 染。
缺点:需要准确的预测数据和合理的安全库存水平设置,否则可能导致库存波动过大或过小。 应用场景:适用于需求变化较大、波动性较强的产品或服务。
适用范围:适用于需求稳定、 波动较小的情况
固定订货间隔时间策略:按照 固定的订货间隔时间进行库存 补充,不考虑订货量
固定订货量策略:按照固定的 订货量进行库存补充,不考虑 订货间隔时间
优点:可以减少订 货次数,提高工作 效率

供应链环境下库存管理研究综述(精)

供应链环境下库存管理研究综述(精)

Review of Research on Inventory Management in theEnvironment of Supply ChainHE Cai-hong ,ZHOU Xian-cheng(Finance School,Hunan University of Commerce,Changsha,Hunan 410205;School of Compute and Electronic Engineering,Hunan University of Commerce,Changsha,Hunan 410205Abstract :With the spread and application of supply chain,the research on inventory management in the environment of supply chain has attracted significant attentions from the academic world.Present research is reviewed on inventory management in the environment of supply chain,including two aspects of inventory model and inventory management strategy.In the end,the paper discusses the future research tendency.Key words :supply chain management;inventory management;review供应链环境下库存管理研究综述贺彩虹,周鲜成(湖南商学院财务处,湖南长沙410205;湖南商学院计算机与电子工程学院,湖南长沙410205摘要:随着供应链管理的推广和应用,供应链环境下的库存管理研究得到了学者们的广泛关注。

供应链管理中的库存控制--ambivalent

供应链管理中的库存控制--ambivalent

9
库存的ABC分类
按实际使用成本进行分类(20/80原则)
数量
2019/11/23
5-15%
A
60-80%
C
20-30%
B
深圳市博维企业管理咨询有限公司
物料种类
10
库存的ABC分类
在ABC分类基础上的库存管理策略:
1. 花费在A类库存的资金应大大多于花费在C类库存上 的资金。 2. 对A类库存的管理应更严格,它们应存放在更安全的 地方,而且为了保证它们的记录准确性,应对它们更频 繁地进行盘点。 3. A类物料的计划与采购应比B、C类物料更为严格。
2019/11/23
深圳市博维企业管理咨询有限公司
5
库存是浪费? 库存是必要的储备?
库存是企业生产运作及供应链管理全过程的
“无缝连接器”!
2019/11/23
深圳市博维企业管理咨询有限公司
6
不合理的库存管理曾使许多国际大公司 陷入困境:
-- 诺基亚(NOKIA) -- 戴尔电脑 (DELL) -- 国际商用机器 (IBM) -- 思科(CISCO) -- 爱立信
16
2. 集中策略和分散策略
安全库存:集中库存同时也集中了风险,库存越集中,抵 御缺货风险能力越强,安全库存水平越低。
提前期:集中库存的提前期长,库存分散使库存更加靠近 需求点。
管理费用:集中仓库所需的管理费用低于分散仓库管理费 用。
运输成本和客户服务水平:仓库越多,运输总距离长,成 本越高,但由于接近客户点,送货成本会降低,客户满意 度也较高。
染色 Dyeing
50
深圳市博维企业管理咨询有限公司
22
补充:VMI库存管理方法

存货管理【外文翻译】

存货管理【外文翻译】

外文翻译1 n V ent o ry man a g em e nt"In ventory" to many $ ma I 1 bus in c s s o wne r s is oneb e wel 1 managed in order to max i mize pr 0 f il s . I n f acl» ma n y small businescan n ot absorb the t yp c s of 1 0 S S esa r i $ i ng from poor i nv e nto r y mana gUnless invenlor i c s are c o ntroll c d ,they are un r eliabl c » i n eff i cient an c r e a sing i nventor y turnover — but not s a crif i cin g the Ser vice levo I : Keepingith obsol c te i tern $。

The degree o f sue c ess i n a d dress i ng the s e cone c rns S ome tha n for o ther s , F o r e x ample, comput i ng th c in v entory t u r nove r ra t i o is a $ imple m c asure of manager i al pe r fo r m a nc c . This valu c g ive $ a rough guideli n c by which ma n a g c rs can se t g o a Is and eval u at c p c rforniance» but it m u st be realized that the tu r nover rate varies w i th the function o I in v e n to r y , t he typMa t erial Source: spr i n g link Author: F 1 0yd Hedr i cki ble and t a n g i b le aspects of doing bu $ ine $ s 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科毕业论文(设计)外文翻译原文:Multi-echelon inventory management in supply chains Historically, the echelons of the supply chain, warehouse, distributors, retailers, etc., have been managed independently, buffered by large inventories. Increasing competitive pressures and market globalization are forcing firms to develop supply chains that can quickly respond to customer needs. To remain competitive and decrease inventory, these firms must use multi-echelon inventory management interactively, while reducing operating costs and improving customer service.Supply chain management (SCM) is an integrative approach for planning and control of materials and information flows with suppliers and customers, as well as between different functions within a company. This area has drawn considerable attention in recent years and is seen as a tool that provides competitive power .SCM is a set of approaches to integrate suppliers, manufacturers, warehouses, and stores efficiently, so that merchandise is produced and distributed at right quantities, to the right locations and at the right time, in order to minimize system-wide costs while satisfying service-level requirements .So the supply chain consists of various members or stages. A supply chain is a dynamic, stochastic, and complex system that might involve hundreds of participants.Inventory usually represents from 20 to 60 per cent of the total assets of manufacturing firms. Therefore, inventory management policies prove critical in determining the profit of such firms. Inventory management is, to a greater extent, relevant when a whole supply chain (SC), namely a network of procurement, transformation, and delivering firms, is considered. Inventory management is indeed a major issue in SCM, i.e. an approach that addresses SC issues under an integrated perspective.Inventories exist throughout the SC in various forms for various reasons. The lack of a coordinated inventory management throughout the SC often causes the bullwhip effect, namely an amplification of demand variability moving towards the upstream stages. This causes excessive inventory investments, lost revenues, misguided capacity plans, ineffective transportation, missed production schedules, and poor customer service.Many scholars have studied these problems, as well as emphasized the need of integration among SC stages, to make the chain effectively and efficiently satisfy customer requests (e.g. reference). Beside the integration issue, uncertainty has to be dealt with in order to define an effective SC inventory policy. In addition to the uncertainty on supply (e.g. lead times) and demand, information delays associated with the manufacturing and distribution processes characterize SCs.Inventory management in multi-echelon SCs is an important issue, because there are many elements that have to coordinate with each other. They must also arrange their inventories to coordinate. There are many factors that complicate successful inventory management, e.g. uncertain demands, lead times, production times, product prices, costs, etc., especially the uncertainty in demand and lead times where the inventory cannot be managed between echelons optimally.Most manufacturing enterprises are organized into networks of manufacturing and distribution sites that procure raw material, process them into finished goods, and distribute the finish goods to customers. The terms ‘multi-echelon’or ‘multilevel‘production/distribution networks are also synonymous with such networks (or SC), when an item moves through more than one step before reaching the final customer. Inventories exist throughout the SC in various forms for various reasons. At any manufacturing point, they may exist as raw materials, work in progress, or finished goods. They exist at the distribution warehouses, and they exist in-transit, or ‘in the pipeline’, on each path linking these facilities.Manufacturers procure raw material from suppliers and process them into finished goods, sell the finished goods to distributors, and then to retail and/or customers. When an item moves through more than one stage before reaching thefinal customer, it forms a ‘multi-echelon’ inventory system. The echelon stock of a stock point equals all stock at this stock point, plus in-transit to or on-hand at any of its downstream stock points, minus the backorders at its downstream stock points.The analysis of multi-echelon inventory systems that pervades the business world has a long history. Multi-echelon inventory systems are widely employed to distribute products to customers over extensive geographical areas. Given the importance of these systems, many researchers have studied their operating characteristics under a variety of conditions and assumptions. Since the development of the economic order quantity (EOQ) formula by Harris (1913), researchers and practitioners have been actively concerned with the analysis and modeling of inventory systems under different operating parameters and modeling assumptions .Research on multi-echelon inventory models has gained importance over the last decade mainly because integrated control of SCs consisting of several processing and distribution stages has become feasible through modern information technology. Clark and Scarf were the first to study the two-echelon inventory model. They proved the optimality of a base-stock policy for the pure-serial inventory system and developed an efficient decomposing method to compute the optimal base-stock ordering policy. Bessler and Veinott extended the Clark and Scarf model to include general arbores cent structures. The depot-warehouse problem described above was addressed by Eppen and Schrage who analyzed a model with a stockless central depot. They derived a closed-form expression for the order-up-to-level under the equal fractile allocation assumption. Several authors have also considered this problem in various forms. Owing to the complexity and intractability of the multi-echelon problem Hadley and Whitin recommend the adoption of single-location, single-echelon models for the inventory systems.Sherbrooke considered an ordering policy of a two-echelon model for warehouse and retailer. It is assumed that stock outs at the retailers are completely backlogged. Also, Sherbrooke constructed the METRIC (multi-echelon technique for coverable item control) model, which identifies the stock levels that minimize the expected number of backorders at the lower-echelon subject to a bud get constraint. This modelis the first multi-echelon inventory model for managing the inventory of service parts. Thereafter, a large set of models which generally seek to identify optimal lot sizes and safety stocks in a multi-echelon framework, were produced by many researchers. In addition to analytical models, simulation models have also been developed to capture the complex interaction of the multi-echelon inventory problems.So far literature has devoted major attention to the forecasting of lumpy demand, and to the development of stock policies for multi-echelon SCs Inventory control policy for multi-echelon system with stochastic demand has been a widely researched area. More recent papers have been covered by Silver and Pyke. The advantage of centralized planning, available in periodic review policies, can be obtained in continuous review policies, by defining the reorder levels of different stages, in terms of echelon stock rather than installation stock.Rau et al. , Diks and de Kok , Dong and Lee ,Mitra and Chatterjee , Hariga , Chen ,Axsater and Zhang , Nozick and Turnquist ,and So and Zheng use a mathematic modeling technique in their studies to manage multi-echelon inventory in SCs. Diks and de Kok’s study considers a divergent multi-echelon inventory system, such as a distribution system or a production system, and assumes that the order arrives after a fixed lead time. Hariga, presents a stochastic model for a single-period production system composed of several assembly/processing and storage facilities in series. Chen, Axsater and Zhang, and Nozick and Turnquist consider a two-stage inventory system in their papers. Axsater and Zhang and Nozickand Turnquist assume that the retailers face stationary and independent Poisson demand. Mitra and Chatterjee examine De Bodt and Graves’ model (1985), which they developed in their paper’ Continuous-review policies for a multi-echelon inventory problem with stochastic demand’, for fast-moving items from the implementation point of view. The proposed modification of the model can be extended to multi-stage serial and two -echelon as sembly systems. In Rau et al.’s model, shortage is not allowed, lead time is assumed to be negligible, and demand rate and production rate is deterministic and constant. So and Zheng used an analytical model to analyze two important factors that can contribute to the high degree of order-quantity variability experienced bysemiconductor manufacturers: supplier’s lead time and forecast demand updating. They assume that the external demands faced by there tailor are correlated between two successive time periods and that the retailer uses the latest demand information to update its future demand forecasts. Furthermore, they assume that the supplier’s delivery lead times are variable and are affected by the retailer’s order quant ities. Dong and Lee’s paper revisits the serial multi-echelon inventory system of Clark and Scarf and develops three key results. First, they provide a simple lower-bound approximation to the optimal echelon inventory levels and an upper bound to the total system cost for the basic model of Clark and Scarf. Second, they show that the structure of the optimal stocking policy of Clark and Scarf holds under time-correlated demand processing using a Martingale model of forecast evolution. Third, they extend the approximation to the time-correlated demand process and study, in particular for an autoregressive demand model, the impact of lead times, and autocorrelation on the performance of the serial inventory system.After reviewing the literature about multi-echelon inventory management in SCs using mathematic modeling technique, it can be said that, in summary, these papers consider two, three, or N-echelon systems with stochastic or deterministic demand. They assume lead times to be fixed, zero, constant, deterministic, or negligible. They gain exact or approximate solutions.Dekker et al. analyses the effect of the break-quantity rule on the inventory costs. The break-quantity rule is to deliver large orders from the warehouse, and small orders from the nearest retailer, where a so-called break quantity determines whether an order is small or large. In most l-warehouse–N-retailers distribution systems, it is assumed that all customer demand takes place at the retailers. However, it was shown by Dekker et al. that delivering large orders from the warehouse can lead to a considerable reduct ion in the retailer’s inventory costs. In Dekker et al. the results of Dekker et al. were extended by also including the inventory costs at the warehouse. The study by Mohebbi and Posner’s contains a cost analysis in the context of a continuous-review inventory system with replenishment orders and lost sales. The policy considered in the paper by Vander Heijden et al. is an echelon stock, periodicreview, order-up-to policy, under both stochastic demand and lead times.The main purpose of Iida’s paper is to show that near-myopic policies are acceptable for a multi-echelon inventory problem. It is assumed that lead times at each echelon are constant. Chen and Song’s objective is to minimize the long-run average costs in the system. In the system by Chen et al., each location employs a periodic-review, or lot-size reorder point inventory policy. They show that each location’s inventory positions are st ationary and the stationary distribution is uniform and independent of any other. In the study by Minner et al., the impact of manufacturing flexibility on inventory investments in a distribution network consisting of a central depot and a number of local stock points is investigated. Chiang and Monahan present a two-echelon dual-channel inventory model in which stocks are kept in both a manufacturer warehouse (upper echelon) and a retail store (lower echelon), and the product is available in two supply channels: a traditional retail store and an internet-enabled direct channel. Johansen’s system is assumed to be controlled by a base-stock policy. The independent and stochastically dependent lead times are compared.To sum up, these papers consider two- or N-echelon inventory systems, with generally stochastic demand, except for one study that considers Markov-modulated demand. They generally assume constant lead time, but two of them accept it to be stochastic. They gain exact or approximate solutions.In multi-echelon inventory management there are some other research techniques used in literature, such as heuristics, vary-METRIC method, fuzzy sets, model predictive control, scenario analysis, statistical analysis, and GAs. These methods are used rarely and only by a few authors.A multi-product, multi-stage, and multi-period scheduling model is proposed by Chen and Lee to deal with multiple incommensurable goals for a multi-echelon SC network with uncertain market demands and product prices. The uncertain market demands are modeled as a number of discrete scenarios with known probabilities, and the fuzzy sets are used for describing the sellers’ and buyers’ incom patible preference on product prices.In the current paper, a detailed literature review, conducted from an operational research point of view, is presented, addressing multi-echelon inventory management in supply chains from 1996 to 2005.Here, the behavior of the papers, against demand and lead time uncertainty, is emphasized.The summary of literature review is given as: the most used research technique is simulation. Also, analytic, mathematic, and stochastic modeling techniques are commonly used in literature. Recently, heuristics as fuzzy logic and GAs have gradually started to be used.Source: A Taskin Gu¨mu¨s* and A Fuat Gu¨neri Turkey, 2007. “Multi-echelon inventory management in supply chains with uncertain demand and lead times: literature review from an operational research perspective”. IMechE V ol. 221 Part B: J. Engineering Manufacture. June, pp.1553-1570.译文:供应链下的多级存货管理从历史上看,多级供应链、仓库、分销商、零售商等,已经通过大量的库存缓冲被独立管理。

相关文档
最新文档