2002年全国硕士研究生入学统一考试数学一试题

合集下载

2002考研数一真题及解析

2002考研数一真题及解析

2002年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上) (1)2eln dxx x+∞=⎰(2) 已知函数()y y x =由方程2610ye xy x ++-=确定,则''(0)y = . (3) 微分方程2'''0yy y +=满足初始条件11,'2yy x x ====的特解是 . (4) 已知实二次型222123123121323(,,)()444f x x x a x x x x x x x x x =+++++经正交变换x Py =可化成标准型216f y =,则a = .(5) 设随机变量X 服从正态分布2(,)(0),N μσσ>且二次方程240y y X ++=无实根的概 率为12,则μ=二、选择题(本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1) 考虑二元函数(,)f x y 的下面4条性质:①(,)f x y 在点00(,)x y 处连续, ②(,)f x y 在点00(,)x y 处的两个偏导数连续, ③(,)f x y 在点00(,)x y 处可微, ④(,)f x y 在点00(,)x y 处的两个偏导数存在. 若用""P Q ⇒表示可由性质P 推出Q ,则有 ( ) (A) ②⇒③⇒①. (B)③⇒②⇒①. (C) ③⇒④⇒①. (D)③⇒①⇒④.(2) 设0(1,2,3,...),n u n ≠=且lim1,n nnu →∞=则级数11111(1)()n n n n u u ∞+=+-+∑ ( ) (A) 发散. (B)绝对收敛.(C)条件收敛. (D)收敛性根据所给条件不能判定.(3) 设函数()y f x =在(0,)+∞内有界且可导,则 ( )(A) 当lim ()0x f x →+∞=时,必有lim '()0x f x →+∞=.(B)当lim '()x f x →+∞存在时,必有lim '()0x f x →+∞=.(C) 当0lim ()0x f x +→=时,必有0lim '()0x f x +→=. (D)当0lim '()x f x +→存在时,必有0lim '()0x f x +→=.(4) 设有三张不同平面的方程123,1,2,3,i i i i a x a y a z b i ++==它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为 ( )(5) 设1X 和2X 是任意两个相互独立的连续型随机变量,它们的概率密度分别为1()f x 和2()f x ,分布函数分别为1()F x 和2()F x ,则 ( )(A)12()()f x f x +必为某一随机变量的概率密度. (B)12()()f x f x 必为某一随机变量的概率密度. (C) 12()()F x F x +必为某一随机变量的分布函数. (D) 12()()F x F x 必为某一随机变量的分布函数.三、(本题满分6分)设函数()f x 在0x =的某邻域内具有一阶连续导数,且(0)0,'(0)0,f f ≠≠若()(2)(0)af h bf h f +-在0h →时是比h 高阶的无穷小,试确定,a b 的值.四、(本题满分7分)已知两曲线()y f x =与2arctan 0xt y e dt -=⎰在点(0,0)处的切线相同,写出此切线方程,并求极限2lim ().n nf n→∞五、(本题满分7分)计算二重积分22max{,},x y De dxdy ⎰⎰其中{(,)|01,01}D x y x y =≤≤≤≤.六、(本题满分8分)设函数()f x 在(,)-∞+∞内具有一阶连续导数,L 是上半平面(0)y >内的有向分段光滑曲线,其起点为(,)a b ,终点为(,)c d .记2221[1()][()1],L x I y f xy dx y f xy dy y y=++-⎰ (1)证明曲线积分I 与路径L 无关; (2)当ab cd =时,求I 的值.七、(本题满分7分)(1)验证函数3693()13(3)!nx x x x y x x n =+++++∞<<+∞+(-)!6!9!满足微分方程''';x y y y e ++=(2)利用(1)的结果求幂级数30(3)!nn x n ∞=∑的和函数.八、(本题满分7分)设有一小山,取它的底面所在的平面为xoy 坐标面,其底部所占的区域为{}22(,)75D x y x y xy =+-≤,小山的高度函数为22(,)75h x y x y xy =--+.(1)设00(,)M x y 为区域D 上的一点,问(,)h x y 在该点沿平面上什么方向的方向导数最大?若记此反向导数的最大值为00(,)g x y ,试写出00(,)g x y 表达式.(2)现欲利用此小山开展攀岩活动,为此需要在山脚寻找一上山坡度最大的点作为攀登的起点.也就是说,要在D 的边界线2275x y xy +-=上找出使(1)中的(,)g x y 达到最大值的点.试确定攀登起点的位置.九、(本题满分6分)已知4阶方阵1234(,,,),A αααα=1234,,,αααα均为4维列向量,其中234,,ααα线性无关,1232ααα=-.如果1234βαααα=+++,求线性方程组Ax β=的通解.十、(本题满分8分)设,A B 为同阶方阵,(1)如果,A B 相似,试证,A B 的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立. (3)当,A B 均为实对称矩阵时,试证(1)的逆命题成立.十一、(本题满分8分)设随机变量X 的概率密度为1cos0()220,x x f x π⎧≤≤⎪=⎨⎪⎩其他对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望.十二、(本题满分8分)其中0<<)2θθ(是未知参数,利用总体X 的如下样本值3,1,3,0,3,1,2,3,求θ的矩阵估计值和最大似然函数估计值.2002年全国硕士研究生入学统一考试数学一试题解析一、填空题(1)【答案】 1【详解】先将其转化为普通定积分,求其极限即得广义积分.222ee e ln 11lim lim lim lim 11ln ln ln ln ln b b b b b b b dx dx d x e x x x x x x b +∞→+∞→+∞→+∞→+∞⎡⎤⎡⎤===-=-+=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰(2)【答案】 -2【详解】y 是由2610ye xy x ++-=确定的x 的函数,两边对x 求导,6620,y e y xy y x ''+++=所以 62,6yy xy e x+'=-+两边再对x 求导,得 2(6)62(62)(6),(6)y y y e x y y x e y y e x ''++++''=-+()- 把0x =代入,得(0)0y =,(0)0y '=,代入y '',得(0)2y ''=-.(3)【答案】y =【详解】方法1:这是属于缺x 的(,)y f y y '''=类型. 命,dp dp dy dp y p y p dx dy dx dy'''====. 原方程20yy y '''+=化为20dpypp dy+=,得 0p =或0dpyp dy+= 0p =,即0dy dx =,不满足初始条件1'02y x ==,弃之;所以0p ≠ 所以,0dp yp dy +=,分离变量得dy dp y p =-,解之得1.C p y = 即1.C dy dx y= 由初始条件11,'2yy x x ====,可将1C 先定出来:1111,212C C ==. 于是得12dy dx y=解之得,22,y x C y =+=以01x y ==代入,得1=“+”号且21C =.于是特解是y =方法2:将20yy y '''+=改写为()0yy ''=,从而得1yy C '=. 以初始条件1(0)1,(0)2y y '==代入,有1112C ⨯=,所以得12yy '=. 即21yy '=,改写为2()1y '=. 解得2,y x C =+y =再以初值代入,1=""+且21C =. 于是特解y =(4)【答案】2【详解】方法1:二次型f 的对应矩阵222222a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,经正交变换x Py =,可化成标准型216f y =,故P 为正交矩阵,有1T P P -=,且对实对称矩阵A ,有600T P AP ⎛⎫ ⎪= ⎪⎪⎝⎭,故1600T P AP P AP -⎛⎫ ⎪== ⎪ ⎪⎝⎭,即 600000000A⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦因为矩阵的n 个特征值之和等于它的主对角元素之和,33113iii i i aa λ====∑∑,相似矩阵具有相同的特征值,316006ii λ==++=∑故有36a =,得2a =.方法2:二次型f 的对应矩阵222222a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,经正交变换x Py =,可化成标准型216f y =,故P 为正交矩阵,有1T P P -=,且对实对称矩阵A ,有1600T P AP P AP -⎛⎫⎪== ⎪ ⎪⎝⎭,即600000000A⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦相似矩阵具有相同的特征值,知0是A 的特征值,根据特征值的定义,有00E A A -==222222a A a a =4222314242a a a a a+++把第,列加到第列 1221(4)1212a a a +提取第列的公因子12221(4)02031002a a a -+---行行行行2(4)(2)0a a =+-=,得 4a =-或2a =, (1) 又6是A 的特征值,根据特征值的定义,有60E A -=,由6226226622262622226a a E A a a a a ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-=---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦(对应元素相减)两边取行列式,6226262226aE A a a----=------222231262226a a aa a---------把第,列加到第列1221(2)162126a a a -------提取第列的公因子12221(2)08031008a a a -------行行行行2(2)(8)0a a =--=得 2a =或8a = (2)因为(1),(2)需同时成立,取它们的公共部分,得2a =.方法3:f 的对应矩阵为222222a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,经正交变换x Py =,可化成标准型216f y =,故P 为正交矩阵,有1T P P -=,且对实对称矩阵A ,有1600T P AP P AP -⎛⎫ ⎪== ⎪ ⎪⎝⎭,即 600000000A⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦相似矩阵具有相同的特征值,知A 的特征值,其中一个单根是6,一个二重根应是0,直接求A 的特征值,即由222222222222a a E A a a a a λλλλλλλ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-=---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦(对应元素相减)两边取行列式,222222aE A a a λλλλ----=------4222342142a a a a aλλλλλ------------把第,列加到第列1221(4)1212a aa λλλ--------提取第列的公因子12221(4)0(2)03100(2)a a a λλλ----------行行行行2[(4)][(2)]a a λλ=----其中单根为4a +,二重根为2a -,故46a +=,及20a -=,故知2a =.方法4:f 的对应矩阵为222222a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,经正交变换x Py =,可化成标准型216f y =,故P 为正交矩阵,有1T P P -=,且对实对称矩阵A ,有1600T P AP P AP -⎛⎫⎪== ⎪ ⎪⎝⎭,即 226220220a A a a ⎡⎤⎡⎤⎢⎥⎢⎥=Λ=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦故()()1r A r =Λ=,222222a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦22122322a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦交换第和第行的顺序222210223120222a a a a a a ⎡⎤-⎢⎥⎢⎥--⎢⎥-⨯⎢⎥--⎣⎦行行行行222320220042a a a a a⎡⎤⎢⎥⎢⎥+--⎢⎥⎢⎥⎢⎥--⎣⎦行行2223202200(28)a a a a a ⎡⎤⎢⎥⨯--⎢⎥⎢⎥-+-⎣⎦行2202200(2)(4)a a a a a ⎡⎤⎢⎥→--⎢⎥⎢⎥--+⎣⎦因()1r A =,故20a -=,且(2)(4)0a a -+=,故应取2a =.(5)【答案】4.【详解】二次方程无实根,即240y y X ++=的判别式1640X ∆==-<,也就有4X >. 此事发生概率为12,即{}142P X >=, 对于2(,)(0),XN μσσ>{}12P X μ>=,因为正态分布的密度函数为22()()2x f x μσ⎧⎫-=-⎨⎬⎩⎭x -∞<<+∞ 关于x μ=对称;另一方面,由概率的计算公式,()f x 与x 轴所围成的面积是1,所以x μ=将面积平分为两份 {}12P X μ>=,所以4μ=.二、选择题(1)【详解】下述重要因果关系应记住,其中A B ⇒表示由A 可推出B . 无箭头者无因果关系,箭头的逆向不成立.(,)x f x y '与(,)y f x y '连续(,)f x y ⇒可微(,)(,)(,)xy f x y f x y f x y ⎧''⎪⇒⎨⎪⎩与存在连续 其中均指在同一点处. 记住上述关系,不难回答本选择题,故应选(A).(2)【详解】首先要分清绝对收敛和条件收敛的定义,通过定义判定级数的敛散性.考察原级数11111(1)()n n n n u u ∞+=+-+∑的前n 项部分和1122334111111111()()()(1)()n n n n S u u u u u u u u ++=+-+++-+-+11111(1)n n u u ++=+- 由lim10n n n u →∞=>知,当n 充分大时,0n u >且lim n n u →∞=+∞. 所以11lim n n S u →∞=(收敛),另一方面,1111()n n n u u ∞=++∑为正项级数,用比较判别法的极限形式,由题设条件lim1n nnu →∞=的启发,考虑1111111()(1)lim lim lim 1121(21)1(1)n n n n n n n n n n n n n u u u u u u u u n n n u u n n n n n ++++→∞→∞→∞+++++==+++++ 11(1)(1)[](1)lim21n n n n n u u n n n n n n n u u n +→∞+++++=+11(1)(1)lim 1211n nn nn u u n n n nu u n n n n+→∞++++==+⋅⋅+ 而级数1111111()11n n n n n n n ∞∞∞===+=+++∑∑∑是发散的,所以1111()n n n u u ∞=++∑也发散,所以选(C).(3)【详解】方法1:排斥法.令21()sin f x x x =,则()f x 在(0,)+∞有界,2221()sin 2cos f x x x x'=-+, lim ()0x f x →+∞=,但lim ()x f x →+∞'不存在,故(A)不成立;0lim ()0x f x +→=,但 0lim ()10x f x +→'=≠,(C)和(D)不成立,故选(B). 方法2:证明(B)正确. 设lim ()x f x →+∞'存在,记lim ()x f x A →+∞'=,证明0A =.用反证法,若0A >,则对于02Aε=>,存在0X >,使当x X >时,()2A f x A ε'-<=,即3()2222A A A AA f x A '=-<<+=由此可知,()f x '有界且大于2A.在区间[,]x X 上应用拉格朗日中值定理,有()()()()()()2Af x f X f x X f X x X ξ'=+->+-从而lim ()x f x →+∞=+∞,与题设()f x 有界矛盾.类似可证当0A <时亦有矛盾. 故0A =.(4) 【答案】(B)【详解】三张不同平面的方程分别为123,1,2,3,i i i i a x a y a z b i ++==判断三个平面有无公共点即判断方程组111213121222323132333a x a y a z b a x a y a z b a x a y a z b++=⎧⎪++=⎨⎪++=⎩有无公共解,且方程组有多少公共解平面就有多少公共点,由于方程组的系数矩阵与增广矩阵的秩都是23<(未知量的个数),所以方程组有解且有无穷多解,故三个平面有无穷多个公共点,故应排除(A)三平面唯一交点(即方程组只有唯一解)(C)、(D)三平面没有公共交点(即方程组无解).故应选(B),三个平面相交于一条直线,直线上所有的点均是平面的公共点,即有无穷多个公共点.(5)【答案】D【分析】函数()f x 成为概率密度的充要条件为:(1)()0;f x ≥ (2)() 1.f x dx +∞-∞=⎰函数()F x 成为分布函数的充要条件为:(1)()F x 单调不减; (2)lim ()0,lim ()1;x x F x F x →-∞→+∞==(3)()F x 右连续.我们可以用以上的充要条件去判断各个选项,也可以用随机变量的定义直接推导. 【详解】方法1:(A)选项不可能,因为1212[()()]()()1121f x f x dx f x dx f x dx +∞+∞+∞-∞-∞-∞+=+=+=≠⎰⎰⎰也不能选(B),因为可取反例,令121,101,01()()0,0,x x f x f x -<<<<⎧⎧==⎨⎨⎩⎩其他其他显然12()()f x f x ,均是均匀分布的概率密度. 而12()()0f x f x =,不满足12()()1f x f x dx +∞-∞=⎰条件.(C)当然也不正确,因为12lim[()()]1121x F x F x →+∞+=+=≠根据排除法,答案应选(D).方法2:令12max(,)X X X =,显然X 也是一个随机变量. X 的分布函数为{}{}{}1212()max(,),F x P X x P X X x P X x X x =≤=≤=≤≤{}{}1212()()P X x P X x F x F x =≤≤=.三【详解】方法1:由题设条件知有lim[()(2)(0)](1)(0)0h af h bf h f a b f →+-=+-=由于(0)0f ≠,所以10a b +-=. 又由洛必达法则,00()(2)(0)limlim(()2(2))(2)(0)h h af h bf h f af h bf h a b f h→→+-'''=+=+由于()(2)(0)af h bf h f +-在0h →时是比h 高阶的无穷小,由高阶无穷小的定义知上式等于0,又由'(0)0,f ≠ 得20a b +=.解1020a b a b +-=⎧⎨+=⎩联立方程组得,2,1a b ==-.方法2:分别将(),(2)f h f h 按佩亚诺余项泰勒公式展开到()o h ,有1()(0)(0)()f h f f h o h '=++,2(2)(0)2(0)()f h f f h o h '=++从而 3()(2)(0)(1)(0)(2)(0)()af h bf h f a b f a b f h o h '+-=+-+++ 由题设条件知,10,20,a b a b +-=+= 所以2,1a b ==-. 方法3:由题设条件,有lim[()(2)(0)](1)(0)0h af h bf h f a b f →+-=+-=由于(0)0f ≠,所以10a b +-=. 再将1a b =-代入01lim [()(2)(0)]h af h bf h f h→+-,并凑成导数定义形式,有000()(2)(0)(1)()(2)(0)0limlim()(0)()(0)(2)(0)lim[2]2(0)(0)2(0)1)(0)h h h af h bf h f b f h bf h f h hf h f f h f f h f b b h h h f bf bf b f →→→+--+-==---=-+''''=-+=+( 从而 2,1a b ==-.四【详解】由2arctan 0xt y e dt -=⎰知(0)0y =,由变上限积分的求导公式得2(arctan )(arctan )x y e x -''=⋅2(arctan )21,1x e x-=+ 所以 2(arctan0)210110y e-'==+() 因此,过点(0,0)的切线方程为.y x = ()y f x =在点(0,0)处与上述曲线有相同的切线方程,于是(0)0,(0)1f f '==.2()(0)2lim ()lim 1n n f f nnf nn→∞→∞-=2()(0)2lim 2n f f n n →∞-=2(0)2f '==五【详解】应先将{}22max ,x y e写成分块表达式. 记{}{}12(,)01,0,(,)01,1D x y x y x D x y x x y =≤≤≤≤=≤≤≤≤于是 {}2222max ,12(,);(,).x x y y ex y D e ex y D ⎧∈⎪=⎨∈⎪⎩从而{}{}{}222222221212max ,max ,max ,x y x y x y x y DD D D D ed ed ed e d e d σσσσσ=+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰22111xx y dx e dy dy e dx =+⎰⎰⎰⎰2211x y e xdx e ydy =+⎰⎰212x e xdx =⎰212x e dx =⎰21x de =⎰210|x e =(1)e =-六【详解】(1) 记21(,)[1()]P x y y f xy y =+,22(,)[()1]xQ x y y f xy y=- 22([()1])x y f xy Qy xx∂-∂=∂∂2222()([()1])([()1])x x y f xy y y f xy x y x ∂∂-=⨯-+⨯∂∂22221(()([()1])x y f xy y f xy y y x ∂=⨯-+⨯∂21()()()xy f xy x f xy y x∂'=-+⨯∂ 21()()f xy xyf xy y '=+-21([1()])y f xy P yyy ∂+∂=∂∂221()1([1()])([1()])y f xy y y f xy y y y∂∂+=++∂∂222211()1(())([1()])()y f xy y f xy f xy y y y y y y∂∂=-+++⨯⨯∂∂21()()()f xy f xy xyf xy y'=--++ 所以,(0)Q Py x y∂∂=>∂∂当. 故在上半平面(0y >),该曲线积分与路径无关. (2)方法1:由该曲线积分与路径无关而只与端点有关所以用折线把两个端点连接起来. 先从点(,)a b 到点(,),c b 再到点(,)c d . 有2221[1()][()1]cd ab c I b f bx dx y f cy dy by =++-⎰⎰()]()c d a b c a c cbf bx dx cf cy dy b d b-=+++-⎰⎰经积分变量变换后,()cd ab c a I f t dt d b =-+⎰. 当ab cd =时,推得c aI d b=-.方法2:原函数法.2221[1()][()1]L xI y f xy dx y f xy dy y y=++-⎰2()()()()()LL L L ydx xdy xf xy ydx xdy d f xy d xy y y-=++=+⎰⎰⎰⎰ 由原函数法计算第二型曲线积分的公式(与定积分的牛顿—莱布尼茨公式类似),有(,)();(,)L c d x x c ad a b y y d b ==-⎰(,)()()()()()0,(,)Lc d f xy d xy F xy F cd F ab a b ==-=⎰其中()F u 为()f u 的一个原函数,即设()()F u f u '=.由此有c aI d b=-. 方法3:由于与路径无关,又由ab cd =的启发,取路径xy k =,其中k ab =. 点(,)a b 与点(,)c d 都在此路径上. 于是将kx y=代入之后,22221[(1())()(()1)]d a k kI y f k y f k dy y y y=+-+-⎰32()dbk dy y =-⎰2dk by =22k k d b =-22cd ab d b =-.c a d b =-七【解】(1) 369331()113(3)!(3)!nnn x x x x x y x n n ∞==+++++=+∑+!6!9!,由收敛半径的求法知收敛半径为∞,故由幂级数在收敛区间上逐项可导公式得3311()(1)(3)!(3)!nn n n x x y x n n ∞∞=='⎛⎫''=+= ⎪⎝⎭∑∑3113(3)!n n nx n -∞==∑311(31)!n n x n -∞==-∑,同理得 321(32)!n n x y n -∞=''=-∑从而()()()y x y x y x '''++32313111()()(1)(32)!(31)!(3)!n n nn n n x x x n n n --∞∞∞====+++--∑∑∑ 11!nn x n ∞==+∑(由x e 的麦克劳林展开式)x e =这说明,30()(3)!n n x y x n ∞==∑是微分方程xy y y e '''++=的解,并且满足初始条件310(0)1(3)!n n y n ∞==+∑1=,3110(0)(31)!n n y n -∞='=-∑0=. (2)微分方程xy y y e '''++=对应的齐次线性方程为0y y y '''++=,其特征方程为210λλ++=,其特征根为12-±,所以其通解为 212[]xy e C x C -=+. 另外,该非齐次方程的特解形式为xy ce =,代入原非齐次方程得x x x xce ce ce e ++=,所以13c =.故微分方程xy y y e '''++=的通解为2121[cossin ]223x x y e C x C x e -=++. 故22121211[cossin ][sin cos ]2222223x xx y e C x C x e C x x e --'=-⨯++-⨯++222112111(2(22222223x x x e C C x e C C x e --=-⨯-⨯-⨯-⨯+由初始条件(0)1,(0)0y y '==得0212100022*********[cos 0sin 0]22331110(20(2022222231123e C C e C e C C e C C e C C ---⎧=++=+⎪⎪⎪=-⨯--⨯-⨯+⎨⎪⎪⎪=-+⎩解得11211311023C C ⎧+=⎪⎪⎨⎪-+=⎪⎩, 于是得到惟一的一组解:122,0.3C C ==从而得到满足微分方程x y y y e '''++=及初始条件(0)1,(0)0y y '==的解,只有一个,为22133x x y e x e -=+另一方面,由(1)已知30()(3)!n n x y x n ∞==∑也是微分方程xy y y e '''++=及初始条件(0)1,(0)0y y '==的解,由微分方程解的唯一性,知321211().(3)!33xn x n x e x e x n ∞-=+=+-∞<<+∞∑八【详解】(1)根据方向导数和梯度的定义,知方向导数的最大值是梯度的模长,()00,(,)x y gradh x y {}0000(,)(,)0000|,|2,2.y x y x h hy x x y x y ⎧⎫∂∂==--⎨⎬∂∂⎩⎭()()0000,,max(,)x y x y u gradh x y l∂==∂00(,).x y =(2) 命2(,)(,)f x y g x y ==22558x y xy +-,求f 在约束条件22750x y xy --+=下的最大值点. 为此,构造拉格朗日函数2222(,,)558(75)F x y x y xy x y xy λλ=+-+--+则 108(2)0x F x y y x λ'=-+-令,108(2)0y F y x x y λ'=-+-令,22750F x y xy λ'=--+令.由第1、第2 两式相加可得 ()(2)0x y λ+-=. 从而得y x =-或2λ=,再分别讨论之.若2λ=,则解得1(,)x y = 或 2(,)(x y =-- 若y x =-,则解得3(,)(5,5)x y =- 或 4(,)(5,5)x y =- 于是得到如上4个可能极值点. 将(,)i x y 记为(1,2,3,4)i M i =. 由于1234()()150,()()450f M f M f M f M ====故点34(5555M M =-=-,),(,)可作为攀登起点.九【详解】方法1:记[]1234,,,A αααα=,由234,,ααα线性无关,及123420,αααα=-+即1α可以由234,,ααα线性表出,故1234,,,αααα线性相关,及1234βαααα=+++即β可由1234,,,αααα线性表出,知[][][][]12341234123,,,,,,,(),,3r A r r r A r βααααβααααααα=====系数矩阵的秩与增广矩阵的秩相等,故Ax β=有解.对应齐次方程组0Ax =,其系数矩阵的秩为3,故其基础解系中含有4-3(未知量的个数-系数矩阵的秩)个线性无关的解向量,故其通解可以写成k ξ,η*是Ax β=的一个特解,根据非齐次线性方程组的解的结构定理,知Ax β=的通解为k ξη*+,其中k ξ是对应齐次方程组0Ax =的通解,η*是Ax β=的一个特解,因123420,αααα=-+故[]123412341220,,,010αααααααα⎡⎤⎢⎥-⎢⎥-+-==⎢⎥⎢⎥⎣⎦,故[]1,2,1,0Tξ=-是0Ax =的一个非零解向量,因为0Ax =的基础解系中只含有一个解向量,故[]1,2,1,0Tξ=-是0Ax =的基础解系.又[]1234123411,,,11βαααααααα⎡⎤⎢⎥⎢⎥=+++=⎢⎥⎢⎥⎣⎦,即1111A β⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦故[]1,1,1,1Tη*=是Ax β=的一个特解,根据非齐次线性方程组的解的结构定理,方程组的通解为[][]1,2,1,01,1,1,1T Tk -+.(其中k 是任意常数) 方法2:令[]1234,,,Tx x x x x =,则线性非齐次方程为[]1234,,,Ax x αααα=[]12123434,,,x x x x αααα⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦11223344x x x x ααααβ=+++=已知1234βαααα=+++,故11223344x x x x αααα+++=1234αααα+++将1232ααα=-代入上式,得23122334423234(2)(2)x x x x αααααααααα-+++=-+++⇒21312233442323424223x x x x x αααααααααααα-+++=-+++=+ ⇒12231334424(2)30x x x x x αααααα+-++--= ⇒12213344(23)()(1)0x x x x x ααα+-+-++-=由已知234,,ααα线性无关,根据线性无关的定义,不存在不全为零的常数使得2233440k k k ααα++=,上式成立当且仅当1213423010x x x x x +=⎧⎪-+=⎨⎪-=⎩ 其系数矩阵为210010100001⎛⎫⎪- ⎪ ⎪⎝⎭,因为3阶子式10001010001=≠,其秩为3,故其齐次线性方程组的基础解系中存在1个(4-3)线性无关的解向量,取自由未知量3x k =,则方程组有解431321,,,23x x k x x k x k =====-+故方程组Ax β=有通解123410232310101x k x k k x k x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-+-⎢⎥⎢⎥⎢⎥⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦.(其中k 是任意常数)十【详解】(1) 因AB ,由定义知,存在可逆阵P ,使得1P AP B -=,故1111()E B E P AP P P P AP P E A P λλλλ-----=-=-=-1P E A P E A λλ-=-=-故,A B 有相同的特征多项式.(2) 取0001,0000A B ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,2201,00E A E B λλλλλλλλ--==-==,则有2,,E A E B A B λλλ-==-有相同的特征多项式,但A 不相似于B ,因为对任何的2阶可逆阵P ,均有11P AP P OP O B --==≠,故(1)的逆命题不成立.(3) 即要证如果,A B 的特征多项式相等,则,A B 相似.当,A B 都是实对称矩阵时,,A B 均能相似于对角阵,且该对角阵的对角线元素由,A B 的特征值组成. 若,A B 有相同的特征多项式,则,A B 有相同的特征值(包含重数),故,A B 将相似于同一个对角阵. 设特征值为12,,,n λλλ,则有1122,n n A B λλλλλλ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦由相似的传递性,知A B . (1)的逆命题成立.十一【答案】5.【详解】如果将观察值大于3π这事件理解为试验成功的话,则Y 表示对X 独立地重复试验4次中成功的次数.即是(4,)YB p ,其中{}p P X π=>由一维概率计算公式,{}()bX aP a X b f x dx ≤≤=⎰,有3311()cos 3222x p P X f x dx dx ππππ+∞⎧⎫=>===⎨⎬⎩⎭⎰⎰,所以,1(4,)2Y B ~.由公式22()[()]()D Y E Y E Y =-以及若(,)Y B n p ~,其数学期望和方差分别为();()E Y np D Y npq ==,其中1.q p =-得 2222111()()[()]()4(4) 5.222E Y D Y E Y npq np =+=+=⨯⨯+⨯=十二【分析】矩估计的实质在于用样本矩来估计相应的总体矩,此题中被估参数只有一个,故只需要用样本一阶原点矩(样本均值)来估计总体的一阶原点矩(期望)最大似然估计,实质上就是找出使似然函数最大的那个参数,问题的关键在于构造似然函数.【详解】矩估计:由离散型随机变量期望的定义1()()niii E X x P X x ===∑,有:22()012(1)23(12)34E X θθθθθθ=⨯+⨯-+⨯+⨯-=-样本均值11n i i X X n ==∑1(31303123)28=⨯+++++++=用样本均值估计期望有 EX X =,即342θ-=. 解得的矩估计值为1.4θ∧=由离散型随机变量似然函数的定义:设 12,,...,n x x x 是相应于样本12,,...,n X X X 的一组观测值,则似然函数为:200221 121()(,,,;)(;)nn i i L P x x x P x θθθ===∏由于样本值中0出现一次,故用0的对应概率2θ一次. 样本值中数值1出现二次,故用两个21-θθ()相乘,数值2出现一次,故用2的对应概率2θ一次,数值3出现四次,故用1-2θ4().总之,对于给定的样本值的似然函数为: []2224624()21-(12)4(1)(12)L θθθθθθθθθ=⋅⋅⋅-=--()()0L θ>,等式两边同取自然对数得ln ()ln 46ln 2ln(1)4ln(12),L θθθθ=++-+-ln ()L θ和()L θ在θ的同一点取得最大值,所以2ln ()62862824112(1)(12)d L d θθθθθθθθθθ-+=--=---- 令ln ()0d L d θθ=,解得1,2712θ±=因71122+>与题目中10<<2θ矛盾,不合题意,所以θ的最大似然估计值为θ∧=。

2000年全国硕士研究生入学统一考试数学一、二、三、四试题完整版附答案解析及评分标准

2000年全国硕士研究生入学统一考试数学一、二、三、四试题完整版附答案解析及评分标准

x y2
f12)
1 y2
f2
1 y
(xf21
x y2
f
22
)
1 x2
g
y x3
g
2000 年 • 第 2 页
f1
1 y2
f2 ' xyf11
x y3
f22
1 x2
g
y x3
g .
„„5 分
五、(本题满分 6 分)
计算曲线积分 I
L
xdy ydx 4x2 y2
,其中
L
是以点(1,0)为中心,R
三、(本题满分 5 分)
1

lim(
x0
2
ex
4
sin x
x) .
1 ex
1
4
3
解:因
lim
x0
(
2
ex
4
sin x
2e
) lim (
x
x0
x e
4
x
sin x) 1 x

1 ex
e x 1
1
1
2 ex
lim (
x0
4
sin x) x
2 ex
lim (
x0
4
sin x) 2 1 1, x
(5) 设二维随机变量 X ,Y 服从二维正态分布,则随机变量 X Y 与 X Y 不相关
的充分必要条件为
(B)
(A) E(X)=E(Y)
(B) E X 2 E X 2 E Y 2 E Y 2
(C) E X 2 E Y 2
(D) E X 2 E X 2 E Y 2 E Y 2
为半径的圆周(R>1).取逆时

历年考研数学一真题及答案

历年考研数学一真题及答案
(C)必有一列向量是其余列向量的线性组合(D)任一列向量是其余列向量的线性组合
三、(本题共3小题,每小题5分,满分15分)
(1)设 其中函数 二阶可导 具有连续二阶偏导数,求
(2)设曲线积分 与路径无关,其中 具有连续的导数,且 计算
的值.
(3)计算三重积分 其中 是由曲面 与 所围成的区域.
四、(本题满分6分)
(1)过点 且与直线 垂直的平面方程是_____________.
(2)设 为非零常数,则 =_____________.
(3)设函数 ,则 =_____________.
(4)积分 的值等于_____________.
(5)已知向量组
则该向量组的秩是_____________.
二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)
(3)与两直线
及 都平行且过原点的平面方程为_____________.
(4)设 为取正向的圆周 则曲线积分 = _____________.
(5)已知三维向量空间的基底为 则向量 在此基底下的坐标是_____________.
二、(本题满分8分)
求正的常数 与 使等式 成立.
三、(本题满分7分)
(1)设 、 为连续可微函数 求
(1)设 是连续函数,且 则 等于
(A) (B)
(C) (D)
(2)已知函数 具有任意阶导数,且 则当 为大于2的正整数时 的 阶导数 是
(A) (B)
(C) (D)
(3)设 为常数,则级数
(A)绝对收敛(B)条件收敛
(C)发散(D)收敛性与 的取值有关
(4)已知 在 的某个邻域内连续,且 则在点 处

2022年考研数学一真题解析

2022年考研数学一真题解析

2022年全国硕士研究生入学统一考试数学(一)试题解析一、选择题:1~10小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.(1)已知()f x 满足1()lim1ln x f x x→=,则()(A )(1)0f =.(B )1lim ()0x f x →=.(C )(1)1f '=.(D )1lim ()1x f x →'=.【答案】(B ).【解析】11()lim ()lim ln 0ln x x f x f x x x →→⎡⎤=⋅=⎢⎥⎣⎦,(B )正确,但()f x 连续性未知,故(1)f 未知,其他三项均错.(2)已知()yz xyf x=,且()f u 可导,2(ln ln )z zxy y y x x y∂∂+=-∂∂,则()(A )1(1),(1)02f f '==.(B )1(1)0,(1)2f f '==.(C )1(1),(1)12f f '==.(D )(1)0,(1)1f f '==.【答案】(B ).【解析】21z z y y y y y xy x yf xyf y xf xyf x y x x x x x x ∂∂⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫''+=+-++ ⎪ ⎪⎪ ⎪⎢⎥⎢⎥∂∂⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦212ln ln ()ln ,22y y y yy xyf y f f u u u x x x x x ⎛⎫⎛⎫==⇒=⇒= ⎪ ⎪⎝⎭⎝⎭1111(1)0,(1)ln 222u f f u =⎛⎫'∴==+=⎪⎝⎭,选(B ).(3)设有数列{}n x ,其中n x 满足ππ22n x -,则()(A )若lim cos(sin )n n x →∞存在,则lim n n x →∞存在.(B )若lim sin(cos )n n x →∞存在,则n n x ∞→lim 存在.(C )若)cos(sin lim n n x ∞→存在,则n n x sin lim ∞→存在,但n n x ∞→lim 不一定存在.(D )若)sin(cos lim n n x ∞→存在,则n n x cos lim ∞→存在,但n n x ∞→lim 不一定存在.【答案】(D ).【解析】取π(1)2nn x =-,则(A )、(B )、(C )均错,且(D )的“lim n n x →∞不一定存在”是正确的;(D )的“lim cos n n x →∞存在”的原因:当ππ22n x - 时,0cos 1n x ,而sin x 在[0,1]上单调,故lim cos n n x →∞存在.(4)已知110d 2(1cos )x I x x =+⎰,120ln(1)d 1cos x I x x +=+⎰,1302d 1sin xI x x=+⎰,则()(A )321I I I <<.(B )312I I I <<.(C )231I I I <<.(D )123I I I <<.【答案】(A ).【解析】令()ln(1)2x f x x =-+,111()212(1)x f x x x -'=-=++,当01x <<时,()0f x '<,所以()f x 在[0,1]上单调递减,当01x <<时()(0)0f x f <=,所以ln(1)2x x <+,ln(1)2(1cos )1cos x x x x +<++,12I I <;又01x 时,ln(1)2111cos 1cos 11sin sin 22x x x x xx x xx +<=++++ ,故23I I <,选(A ).(5)下列4个条件中,3阶矩阵A 可以相似对角化的一个充分但不必要条件为()(A )A 有3个不相等的特征值.(B )A 有3个线性无关的特征向量.(C )A 有3个两两线性无关的特征向量.(D )A 的属于不同特征值的特征向量相互正交.【答案】(A ).【解析】选项(A ):A 有3个互不相同特征值,则A 可对角化,但是A 可相似对角化,A 的特征值可能有重根,正确;选项(B ):A 有3个线性无关的特征向量是A 可对角化的充要条件;选项(C ):3个特征向量两两线性无关,不能保证整体线性无关,故不能推出A 可对角化;选项(D ):实对称矩阵不同特征值的特征向量正交,可对角化的矩阵不一定是实对称矩阵.(6)设A ,B 均为n 阶矩阵,若方程组=0Ax 与x =0B 同解,则()(A )方程组⎛⎫=⎪⎝⎭0A O y E B 只有零解.(B )方程组⎛⎫=⎪⎝⎭0EA y OAB 只有零解.(C )方程组⎛⎫=⎪⎝⎭0A B y O B 与⎛⎫=⎪⎝⎭0BA y OA 同解.(D )方程组⎛⎫=⎪⎝⎭0ABB y OA 与⎛⎫= ⎪⎝⎭0BA A y O B 同解.【答案】(C).【解析】由,A B 为n 阶实矩阵,0=Ax 与0Bx =同解,则⎛⎫==⎪⎝⎭()()A r A r B r B ,即,A B 行向量组等价.由⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 行行A B A O B A B O O B O B OA O A ,则0⎛⎫=⎪⎝⎭A B y O B 与0⎛⎫= ⎪⎝⎭A O y O B 同解,0⎛⎫=⎪⎝⎭BA y O A 与0⎛⎫= ⎪⎝⎭B O y O A 同解,令12⎛⎫= ⎪⎝⎭y y y ,12,y y 均为n 维向量,则12000⎧⎛⎫=⇔⎨⎪⎝=⎭⎩=By Ay A O y O B ,12000⎧⎛⎫=⇔⎨ ⎪⎝=⎭⎩=Ay By B O y O A .由1100==,By Ay 同解,2200==,By Ay 通解,故0⎛⎫=⎪⎝⎭A B y O B 与0⎛⎫=⎪⎝⎭BA y O A 同解.故选(C).(7)设向量组123241111111λλλλλ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,,,αααα,若向量组123,,ααα与412,,ααα等价,则λ可取()(A )01{,}.(B )2λλλ∈≠-R {|,}.(C )12λλλλ∈≠-≠-{|,,}R .(D )1λλλ∈≠-{|,}R .【答案】(C).【解析】记123ααα=(,,)A ,142ααα=(,,)B ,由222211λλλ==+--||()(),||()A B ,当21λλ≠-≠±,时,00≠≠,||||B A ,即3==()()r A r B ,则123,,ααα与412,,ααα均为3R 的基,故等价;当1λ=-时,33=<(),()r A r B ,故123,,ααα与412,,ααα不等价;当2λ=-时,33<=(),()r A r B ,故123,,ααα与412,,ααα不等价;当1λ=时,1===()()(,)r A r B r A B ,故123ααα,,,124ααα,,等价;故选(C).(8)设随机变量(0,3)X U ,随机变量Y 服从参数为2的泊松分布,且X 与Y 协方差为1-,则(21)D X Y -+=()(A )1.(B )5.(C )9.(D )12.【答案】(C ).【解析】(21)4()()4(,)D X Y D X D Y Cov X Y -+=+-由(0,3)X U ,2(30)3()124D X -==;(2)Y P ,()2D Y =所以(21)4()()4(,)9D X Y D X D Y Cov X Y -+=+-=,选(C ).(9)设随机变量1234,,,X X X X 独立同分布,且1X 的4阶矩存在.设1(),1,2,3,4kk E X k μ==,则由切比雪夫不等式,对于任意的0ε>,有2211n i i P X n με=⎧⎫-⎨⎬⎩⎭∑ ()(A )2422n μμε-.(B2.(C )2212n μμε-.(D2.【答案】(A ).【解析】记211n i i X Y n ==∑,显然可得2()E Y μ=;则22211()n i i D Y P X n μεε=⎧⎫-⎨⎬⎩⎭∑ ;又22422211142211111()()[()()]()n i i D Y D X D X E X E X n nn n μμ=⎛⎫===-=- ⎪⎝⎭∑所以22422211n i i P X n n μμμεε=⎧⎫--⎨⎬⎩⎭∑ ,选(A ).(10)设随机变量(0,1)X N ,在X x =条件下随机变量(,1)Y N x ,则X 与Y 的相关系数为()(A )14.(B )12.(C)3.(D)2.【答案】(D ).【解析】由题意22(),xf x x -=-∞<<+∞且2()2(),,y x Y X f y x y --=-∞<<+∞所以22()21(,)()()e ,,2x y x X Y X f x y f x f y x x y +--==-∞<<+∞π又22()22()(,)d d d d xy x E XY xyf x y x y xx yy---+∞+∞+∞+∞-∞-∞-∞-∞==⎰⎰⎰⎰222d 1xxx -+∞-∞==⎰又因为222222()2211()(,)d ed eed 22y x xyyx xy Y f y f x y x x x+---+∞+∞+∞---∞-∞-∞===ππ⎰⎰⎰222()4241eed ,2yy yx x y ----+∞-∞==-∞<<+∞π⎰故(0,2),()2Y N D Y = ;所以2XY ρ--==,选(D ).二、填空题:11~16小题,每小题5分,共30分.(11)函数22(,)2f x y x y =+在点(0,1)的最大方向导数为_______.【答案】4.【解析】(,)f x y 在某一点处的最大方向导数是其梯度的模,(0,1)(0,1)20f xx∂==∂,(0,1)(0,1)44f yy∂==∂4=.(12)2e 1x =⎰_______.【答案】4.【解析】2e 1x⎰2e1ln 2d t t t t⋅e 14ln d t t =⎰e14(ln )4t t t =-=(13)当0,0x y 时,22e x yx k y ++ 恒成立,则k 的取值范围是_______.【答案】)24e ,-⎡+∞⎣.【解析】原不等式即22()(0,0)e ,,x y k y y x x -++ 令22()(,))(0,0,e ,x y x y f x y y x -+=+ 当0,0x y >>时,直接求驻点,22()22()(2)e 0(2)e 0x y x y x y f x x y f y x y -+-+''=--==--=,,解得1x y ==,且2(1,1)2e f -=.当0x =时,2e (0()),yf y yg y -==,2()2e e 0,0y y g y y y y --'=-==或2,且2(0)0,(2)4e g g -==.当0y =时,同理解得2(0,0)0,(2,0)4e f f -==.比较可得,(,)f x y 的最大值为2(0,2)(2,0)4e f f -==.于是24e k - .(14)已知级数1!e nnxn n n-=∞∑的收敛域为(),a +∞,则a =_______.【答案】1-.【解析】令e xt -=,11!!e nx nn n n n n n t n n ∞-∞===∑∑,1(1)!11(1)!(1)e1lim lim lim 1n n nn n n nn n n n n n n n +→∞→∞→∞++===+⎛⎫+ ⎪⎝⎭,于是1!n nnn t n =∞∑的收敛区间为e e t -<<,那么e e e x--<<,解得1x >-,于是1a =-.(15)已知矩阵A 和-E A 可逆,其中E 为单位矩阵,若矩阵B 满足1---=(())E E A B A ,则-=_____B A .【答案】-E .【解析】由1---=(())E E A B A ⇒1----=()()E A E A E B A⇒2-=-AB A A ⇒-=-B E A ⇒-=-B A E .(16)设,,A B C 随机事件,且A 与B 互不相容,A 与C 互不相容,B 与C 相互独立.若1()()()3P A P B P C ===,则()P B C A B C =【答案】58.【解析】因为B 与C 相互独立,有)()()(C P B P BC P ==111339= .又因A 与B 互不相容,A 与C 互不相容,有()()()0P AB P AC P ABC ===.[()()]()(|)()()P B C A B C P B C P B C A B C P A B C P A B C ==()()()()()()()()()()P B P C P BC P A P B P C P AB P BC P AC P ABC +-=++---+1115339111180003339+-==++---+.三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设函数()y x是微分方程2y y '=+的满足()13y =的解,求曲线()y y x =的渐近线.【答案】斜渐近线2y x =.【解析】(e2ed xxy x C -⎡⎤=++⎢⎥⎢⎥⎣⎦⎰2e x C =+.将()13y =代入可得e C =,即()12e0y x x =+>.由函数解析式可知,曲线没有垂直渐近线;又由于()(12e lim lim x x y x x →+∞→+∞+==+∞,曲线没有水平渐近线;又()1limlim 2e 2x x y x k xx x→+∞→+∞=+==,()()1lim lim 20e 2x x b y x kx x x →+∞→+∞=-==⎡⎤⎣⎦+-,故曲线有斜渐近线2y x =.(18)(本题满分12分)已知平面区域{}(,)22D x y y x y =- ,计算222()d d Dx y I x y x y -=+⎰⎰.【答案】2(π1)-.【解析】将积分区域D 分为两部分12D D D =+,其中:1{(,)2,20,02}D x y y x x y =+- ,222{(,)4,0,0}D x y x y x y =+ ,故1222122222()()d d d d =+D D x y x y I x y x y I I x y x y --=+++⎰⎰⎰⎰记.其中:()()()2ππ22sin cos ππ12222=d cos sin d cos sin d πsin cos I r r θθθθθθθθθθ-⋅-=-⋅=-⎰⎰⎰,()()()πππ22222220=d cos sin d 2cos sin d 21sin 2d π2I r r θθθθθθθθ⋅-=-=-=-⎰⎰⎰⎰---故:()π2π2π1I =-+=-.(19)(本题满分12分)L 是曲面∑:22241x y z ++=,0,0,0x y z 的边界,曲面方向朝上,已知曲线L 的方向和曲面的方向符合右手法则,求()()22cos d 2d 2sin d LI yzz x xz y xyz x z z=-+++⎰ 【答案】0.【解析】由斯托克斯公式可得:()222d d d d d d 2d d d d cos 22sin y zz x x yI xz y z z x yx y z yz zxz xyz x z∑∑∂∂∂==-+∂∂∂-+⎰⎰⎰⎰令1∑:2241,0,0x y x y + ,指向z 轴负向,2∑:2241,0,0x z x z + ,指向y 轴负向,3∑:221,0,0y z y z + ,指向x 轴负向,则()()1231222d d d d 2d d d d I xz y z z x y xz y z z x y ∑+∑+∑+∑∑=-+--+⎰⎰⎰⎰ ()()23222d d d d 2d d d d xz y z z x y xz y z z x y ∑∑--+--+⎰⎰⎰⎰(22)d d d 0000z z x y z Ω=----=⎰⎰⎰.(20)(本题满分12分)设()f x 在()-∞+∞,有二阶连续导数,证明:0()f x '' 的充要条件为对不同实数,a b ()1(d 2b a a b f f x x b a+-⎰ .【证明】()21()()()((22222a b a b a b a b f x f f x f x ξ++++'''=+-+-,ξ介于x 与2a b+之间,()21()d (()(()d 22222bbaa a ba b a b a b f x x f f x f x xξ++++⎡⎤'''=+-+-⎢⎥⎣⎦⎰⎰()21()(d 222b a a b a b f b a f x xξ++⎡⎤''=-+-⎢⎥⎣⎦⎰必要性:若()0f x '' ,则()0f ξ'' ,有()d (()2baf x x a b f b a +-⎰ .充分性:若存在0x 使得0()0f x ''<,因为()f x 有二阶连续导数,故存在0δ>使得()f x ''在[]00,x x δδ-+内恒小于零,记00,a x b x δδ=-=+,此时()21()d ()()()d 222bb aa ab a b f x x f b a f x xξ++⎡⎤''=-+-⎢⎥⎣⎦⎰⎰()()2a bf b a +<-,矛盾!故()0f x '' .综上,充分性必要性均得证.(21)(本题满分12分)已知二次型3312311(,,)iji j f x x x ij x x===⋅∑∑.(1)写出123(,,)f x x x 对应的矩阵;(2)求正交变换x =Qy ,将123(,,)f x x x 化为标准形;(3)求123(,,)0f x x x =的解.【答案】(1)123246369⎛⎫ ⎪⎪ ⎪⎝⎭;(2)令正交矩阵0⎛⎝Q =,利用正交变换x =Qy ,化为标准形2314f y =;(3)12231605c c --⎛⎫⎛⎫ ⎪ ⎪=+- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭x ,(12,c c 为任意常数)【解析】(1)3312311(,,)iji j f x x x ij x x===⋅∑∑22211213212233132323246369x x x x x x x x x x x x x x x =++++++++222123121323494612x x x x x x x x x =+++++112323123(,,)246369x x x x x x ⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪⎝⎭⎝⎭.(2)123246369----=------E A λλλλ2(14)0=-=λλ得1230,14===λλλ;1230000000r⎛⎫ ⎪-−−→ ⎪ ⎪⎝⎭E A ,解得12231,001αα--⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;153********r-⎛⎫ ⎪-−−→- ⎪ ⎪⎝⎭E A ,解得3123α⎛⎫ ⎪= ⎪ ⎪⎝⎭;将12,αα进行施密特正交化可得211221123(,)11,6(,)505αβββαβββ--⎛⎫⎛⎫⎪⎪==-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;将123(,,)ββα单位化,可得123,,,0γγγ⎛⎛⎪=== ⎪⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭令正交矩阵0⎛⎝Q =,利用正交变换x =Qy ,将123(,,)f x x x 化为标准形2314f y =;(3)令21233(,,)140f x x x y ==,则112230y k y k y =⎧⎪=⎨⎪=⎩,12kk⎛⎛⎫⎪⎪⎪⎝⎭⎝x=Qy=1212231605k k c c⎛⎛---⎛⎫⎛⎫⎪ ⎪ ⎪=+-=+-⎪ ⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⎪ ⎪⎝⎭⎝⎭,(12,c c为任意常数)(22)(本题满分12分)设12,,,nX X X来自均值为θ的指数分布总体的简单随机样本,设12,,,mY Y Y来自均值为2θ的指数分布总体的简单随机样本,且两样本相互独立,其中()0θθ>为未知数,利用样本1212,,,,,,,n mX X X Y Y Y,求θ的最大似然估计量θ∧,并求()Dθ∧.【答案】(1)1122ˆ2()2()θ==++==++∑∑n mi ji jX YnX mYm n m n;(2)2m nθ+.【解析】(1)由题意知12,,,nX X X的总体X服从1Eθ⎛⎫⎪⎝⎭,12,,,mY Y Y的总体Y服从12θ⎛⎫⎪⎝⎭E,从而X的概率密度为1e,0,()0,其他.θθ-⎧>⎪=⎨⎪⎩xXxf x,Y的概率密度为21e,0,()20,其他.θθ-⎧>⎪=⎨⎪⎩yYyf y构造最大似然函数为()1111211e e(2)θθθθθ==--∑∑=⋅mnjijiyxn mL,()1111ln ln ln(2)2θθθθθ===----∑∑n mi ji jL n x m y()2211d ln 110d 2θθθθθθ===-+-+=∑∑n mi j i j L n m x y 1122ˆ2()2()θ==++==++∑∑nmi ji j X Y nX mYm n m n (2)221ˆ()(2)2()4()nX mY D D D nX mY m n m n θ⎡⎤+==+⎢++⎣⎦;2222222221144()()44()4()n D X m D Y n m m n m n n m m nθθθ⎡⎤⎡⎤=+=⋅+⋅=⎢⎥⎣⎦+++⎣⎦。

2002全国硕士研究生入学统一考试-数三真题、标准答案及解析

2002全国硕士研究生入学统一考试-数三真题、标准答案及解析

[ C]
【详解】 由于 X、Y 不一定相互独立,故(A) 、 (B) 、(D)不一定成立,只有(C)为正 确选项.
三 、 (本题满分 8 分)
求极限 lim
x →0

x
0
[ ∫ arctan(1 + t )dt ]du
0
u2
x(1 − cos x)
【详解 1】
培训网: 北京市海淀区王庄路 1 号清华同方科技广场 B 座 609 -5电话: 62701055
: 81
( D ) ( P −1 ) α
T
.(4)设 A 是 n 阶实对称矩阵, P 是 n 阶可逆矩阵.已知 n 维列向量 α 是 A 的属于特征
32
有非零解,故应选[ D]
16
当 m > n 时, 有 r ( AB ) ≤ r ( A ) ≤ n < m 对应 ( AB ) x = 0 【详解】 AB 为 m × m 矩阵,
a=________ 【答】 -1 【详解】 由题设,存在 k,使得 Αα
= kα ,即
故所求 a 为-1. (4) 设随机变量 X 和 Y 的联合概率分布为
P X 0 1
2 2
Y

0.07 0.08
2

−1

QQ
0
0.18 0.32
: 81
1
0.15 0.20
⎧a + 2 − 2 = ka, ⎪ 即 ⎨ 2a + 1 + 2 = k , 可得 a = −1, k = 1. ⎪3a + 4 = k , ⎩
所以 lim ln[
n →∞
【答】

dx ∫ 2 f ( x, y )dy

考研数学历年真题(1987-2012)年数学一_可直接打印(纯试题)

考研数学历年真题(1987-2012)年数学一_可直接打印(纯试题)

1987年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)当x =_____________时,函数2xy x =⋅取得极小值.(2)由曲线ln y x =与两直线e 1y x =+-及0y =所围成的平面图形的面积是_____________.1x =(3)与两直线 1y t =-+及121111x y z +++==都平行且过原点的平面方程为_____________.2z t =+(4)设L 为取正向的圆周229,x y +=则曲线积分2(22)(4)Lxy y dx x x dy -+-⎰Ñ= _____________. (5)已知三维向量空间的基底为123(1,1,0),(1,0,1),(0,1,1),===ααα则向量(2,0,0)=β在此基底下的坐标是_____________.二、(本题满分8分)求正的常数a 与,b 使等式201lim 1sin x x bx x →=-⎰成立.三、(本题满分7分)(1)设f 、g 为连续可微函数,(,),(),u f x xy v g x xy ==+求,.u v x x ∂∂∂∂(2)设矩阵A 和B 满足关系式2,+AB =A B 其中301110,014⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 求矩阵.B四、(本题满分8分)求微分方程26(9)1y y a y ''''''+++=的通解,其中常数0.a >五、选择题(本题共4小题,每小题3分,满分12分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设2()()lim1,()x af x f a x a →-=--则在x a =处 (A)()f x 的导数存在,且()0f a '≠ (B)()f x 取得极大值(2)设()f x 为已知连续函数0,(),s t I t f tx dx =⎰其中0,0,t s >>则I 的值(A)依赖于s 和t (B)依赖于s 、t 和x (C)依赖于t 、x ,不依赖于s(D)依赖于s ,不依赖于t(3)设常数0,k >则级数21(1)nn k nn ∞=+-∑ (A)发散 (B)绝对收敛(C)条件收敛(D)散敛性与k 的取值有关(4)设A 为n 阶方阵,且A 的行列式||0,a =≠A 而*A 是A 的伴随矩阵,则*||A 等于 (A)a(B)1a(C)1n a -(D)n a六、(本题满分10分) 求幂级数1112n nn x n ∞-=∑g 的收敛域,并求其和函数.七、(本题满分10分) 求曲面积分2(81)2(1)4,I x y dydz y dzdx yzdxdy ∑=++--⎰⎰其中∑是由曲线13()0z y f x x ⎧=≤≤⎪=⎨=⎪⎩绕y 轴旋转一周而成的曲面,其法向量与y 轴正向的夹角恒大于.2π八、(本题满分10分)设函数()f x 在闭区间[0,1]上可微,对于[0,1]上的每一个,x 函数()f x 的值都在开区间(0,1)内,且()f x '≠1,证明在(0,1)内有且仅有一个,x 使得().f x x =九、(本题满分8分) 问,a b 为何值时,现线性方程组123423423412340221(3)2321x x x x x x x x a x x b x x x ax +++=++=-+--=+++=-有唯一解,无解,有无穷多解?并求出有无穷多解时的通解.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)设在一次实验中,事件A 发生的概率为,p 现进行n 次独立试验,则A 至少发生一次的概率为____________;而事件A 至多发生一次的概率为____________.(2)有两个箱子,第1个箱子有3个白球,2个红球, 第2个箱子有4个白球,4个红球.现从第1个箱子中随机地取1个球放到第2个箱子里,再从第2个箱子中取出1个球,此球是白球的概率为____________.已知上述从第2个箱子中取出的球是白球,则从第一个箱子中取出的球是白球的概率为____________.(3)已知连续随机变量X的概率密度函数为221(),xx f x -+-=则X 的数学期望为____________,X 的方差为____________.十一、(本题满分6分)设随机变量,X Y 相互独立,其概率密度函数分别为()X f x = 1001x ≤≤其它,()Y f y = e 0y - 00y y >≤,求2Z X Y =+的概率密度函数.1988年全国硕士研究生入学统一考试数学(一)试卷一、(本题共3小题,每小题5分,满分15分)(1)求幂级数1(3)3nnn x n ∞=-∑的收敛域. (2)设2()e ,[()]1x f x f x x ϕ==-且()0x ϕ≥,求()x ϕ及其定义域. (3)设∑为曲面2221x y z ++=的外侧,计算曲面积分333.I x dydz y dzdx z dxdy ∑=++⎰⎰Ò二、填空题(本题共4小题,每小题3分,满分12分.把答案填在题中横线上) (1)若21()lim (1),tx x f t t x→∞=+则()f t '= _____________.(2)设()f x 连续且31(),x f t dt x -=⎰则(7)f =_____________.(3)设周期为2的周期函数,它在区间(1,1]-上定义为()f x =22x1001x x -<≤<≤,则的傅里叶()Fourier 级数在1x =处收敛于_____________.(4)设4阶矩阵234234[,,,],[,,,],==A αγγγB βγγγ其中234,,,,αβγγγ均为4维列向量,且已知行列式4,1,==A B 则行列式+A B = _____________.三、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 可导且01(),2f x '=则0x ∆→时,()f x 在0x 处的微分dy 是 (A)与x ∆等价的无穷小 (B)与x ∆同阶的无穷小 (C)比x ∆低阶的无穷小(D)比x ∆高阶的无穷小(2)设()y f x =是方程240y y y '''-+=的一个解且00()0,()0,f x f x '>=则函数()f x 在点0x 处 (A)取得极大值(B)取得极小值 (C)某邻域内单调增加(D)某邻域内单调减少(3)设空间区域2222222212:,0,:,0,0,0,x y z R z x y z R x y z Ω++≤≥Ω++≤≥≥≥则 (A)124xdv dv ΩΩ=⎰⎰⎰⎰⎰⎰(B)124ydv ydv ΩΩ=⎰⎰⎰⎰⎰⎰(C)124zdv zdv ΩΩ=⎰⎰⎰⎰⎰⎰(D)124xyzdv xyzdv ΩΩ=⎰⎰⎰⎰⎰⎰(4)设幂级数1(1)nn n a x ∞=-∑在1x =-处收敛,则此级数在2x =处 (A)条件收敛(B)绝对收敛(C)发散(D)收敛性不能确定(5)n 维向量组12,,,(3)s s n ≤≤αααL 线性无关的充要条件是 (A)存在一组不全为零的数12,,,,s k k k L 使11220s s k k k +++≠αααL (B)12,,,s αααL 中任意两个向量均线性无关(C)12,,,s αααL 中存在一个向量不能用其余向量线性表示 (D)12,,,s αααL 中存在一个向量都不能用其余向量线性表示四、(本题满分6分)设()(),x yu yf xg y x=+其中函数f 、g 具有二阶连续导数,求222.u u x yx x y ∂∂+∂∂∂五、(本题满分8分)设函数()y y x =满足微分方程322e ,xy y y '''-+=其图形在点(0,1)处的切线与曲线21y x x =--在该点处的切线重合,求函数().y y x = 六、(本题满分9分)设位于点(0,1)的质点A 对质点M 的引力大小为2(0kk r>为常数,r 为A 质点与M 之间的距离),质点M沿直线y =自(2,0)B 运动到(0,0),O 求在此运动过程中质点A 对质点M 的引力所作的功.七、(本题满分6分)已知,=AP BP 其中100100000,210,001211⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦B P 求5,.A A八、(本题满分8分)已知矩阵20000101x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 与20000001y ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B 相似. (1)求x 与.y(2)求一个满足1-=P AP B 的可逆阵.P九、(本题满分9分)设函数()f x 在区间[,]a b 上连续,且在(,)a b 内有()0,f x '>证明:在(,)a b 内存在唯一的,ξ使曲线()y f x =与两直线(),y f x a ξ==所围平面图形面积1S 是曲线()y f x =与两直线(),y f x b ξ==所围平面图形面积2S 的3倍.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)设在三次独立试验中,事件A 出现的概率相等,若已知A 至少出现一次的概率等于19,27则事件A 在一次试验中出现的概率是____________. (2)若在区间(0,1)内任取两个数,则事件”两数之和小于65”的概率为____________. (3)设随机变量X 服从均值为10,均方差为0.02的正态分布,已知22(),(2.5)0.9938,u xx du φφ-==⎰则X 落在区间(9.95,10.05)内的概率为____________.十一、(本题满分6分)设随机变量X 的概率密度函数为21(),(1)X f x x π=-求随机变量1Y =-的概率密度函数().Y f y1989年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)已知(3)2,f '=则0(3)(3)lim2h f h f h→--= _____________.(2)设()f x 是连续函数,且1()2(),f x x f t dt =+⎰则()f x =_____________.(3)设平面曲线L为下半圆周y =则曲线积分22()Lx y ds +⎰=_____________.(4)向量场div u 在点(1,1,0)P 处的散度div u =_____________.(5)设矩阵300100140,010,003001⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A I 则矩阵1(2)--A I =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)当0x >时,曲线1siny x x= (A)有且仅有水平渐近线 (B)有且仅有铅直渐近线(C)既有水平渐近线,又有铅直渐近线(D)既无水平渐近线,又无铅直渐近线(2)已知曲面224z x y =--上点P 处的切平面平行于平面2210,x y z ++-=则点的坐标是 (A)(1,1,2)- (B)(1,1,2)- (C)(1,1,2)(D)(1,1,2)--(3)设线性无关的函数都是二阶非齐次线性方程的解是任意常数,则该非齐次方程的通解是 (A)11223c y c y y ++(B)1122123()c y c y c c y +-+(C)1122123(1)c y c y c c y +---(D)1122123(1)c y c y c c y ++--(4)设函数2(),01,f x x x =≤<而1()sin ,,nn S x bn x x π∞==-∞<<+∞∑其中102()sin ,1,2,3,,n b f x n xdx n π==⎰L 则1()2S -等于(A)12- (B)14-(C)14 (D)12(5)设A 是n 阶矩阵,且A 的行列式0,=A 则A 中 (A)必有一列元素全为0 (B)必有两列元素对应成比例 (C)必有一列向量是其余列向量的线性组合(D)任一列向量是其余列向量的线性组合三、(本题共3小题,每小题5分,满分15分)(1)设(2)(,),z f x y g x xy =-+其中函数()f t 二阶可导,(,)g u v 具有连续二阶偏导数,求2.zx y ∂∂∂(2)设曲线积分2()cxy dx y x dy ϕ+⎰与路径无关,其中()x ϕ具有连续的导数,且(0)0,ϕ=计算(1,1)2(0,0)()xy dx y x dy ϕ+⎰的值.(3)计算三重积分(),x z dv Ω+⎰⎰⎰其中Ω是由曲面z =与z =所围成的区域.四、(本题满分6分) 将函数1()arctan 1xf x x+=-展为x 的幂级数.五、(本题满分7分) 设0()sin ()(),xf x x x t f t dt =--⎰其中f 为连续函数,求().f x六、(本题满分7分)证明方程0ln e x x π=-⎰在区间(0,)+∞内有且仅有两个不同实根. 七、(本题满分6分)问λ为何值时,线性方程组13x x λ+=123422x x x λ++=+ 1236423x x x λ++=+有解,并求出解的一般形式.八、(本题满分8分)假设λ为n 阶可逆矩阵A 的一个特征值,证明 (1)1λ为1-A 的特征值. (2)λA为A 的伴随矩阵*A 的特征值.九、(本题满分9分) 设半径为R 的球面∑的球心在定球面2222(0)x y z a a ++=>上,问当R 为何值时,球面∑在定球面内部的那部分的面积最大?十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)已知随机事件A 的概率()0.5,P A =随机事件B 的概率()0.6P B =及条件概率(|)0.8,P B A =则和事件A B U 的概率()P A B U =____________.(2)甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为____________. (3)若随机变量ξ在(1,6)上服从均匀分布,则方程210x x ξ++=有实根的概率是____________.十一、(本题满分6分)设随机变量X 与Y 独立,且X 服从均值为1、标准差(均方差)的正态分布,而Y 服从标准正态分布.试求随机变量23Z X Y =-+的概率密度函数.1990年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)2x t=-+(1)过点(1,21)M-且与直线34y t=-垂直的平面方程是_____________.1z t=-(2)设a为非零常数,则lim()xxx ax a→∞+-=_____________.(3)设函数()f x=111xx≤>,则[()]f f x=_____________.(4)积分222e yxdx dy-⎰⎰的值等于_____________.(5)已知向量组1234(1,2,3,4),(2,3,4,5),(3,4,5,6),(4,5,6,7),====αααα则该向量组的秩是_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x是连续函数,且e()(),xxF x f t dt-=⎰则()F x'等于(A)e(e)()x xf f x----(B)e(e)()x xf f x---+(C)e(e)()x xf f x---(D)e(e)()x xf f x--+(2)已知函数()f x具有任意阶导数,且2()[()],f x f x'=则当n为大于2的正整数时,()f x的n阶导数()()nf x是(A)1![()]nn f x+(B)1[()]nn f x+(C)2[()]nf x(D)2![()]nn f x(3)设a为常数,则级数21sin()[nnan∞=∑(A)绝对收敛(B)条件收敛(C)发散(D)收敛性与a的取值有关(4)已知()f x在0x=的某个邻域内连续,且()(0)0,lim2,1cosxf xfx→==-则在点0x=处()f x(A)不可导(B)可导,且(0)0f'≠(C)取得极大值(D)取得极小值(5)已知1β、2β是非齐次线性方程组=AX b的两个不同的解1,α、2α是对应其次线性方程组=AX0的基础解析1,k、2k为任意常数,则方程组=AX b的通解(一般解)必是(A)1211212()2k k-+++ββααα(B)1211212()2k k++-+ββααα(C)1211212()2k k-+++ββαββ(D)1211212()2k k++-+ββαββ三、(本题共3小题,每小题5分,满分15分)(1)求12ln(1).(2)xdxx+-⎰(2)设(2,sin),z f x y y x=-其中(,)f u v具有连续的二阶偏导数,求2.zx y∂∂∂(3)求微分方程244e xy y y -'''++=的通解(一般解).四、(本题满分6分) 求幂级数(21)nn n x∞=+∑的收敛域,并求其和函数.五、(本题满分8分) 求曲面积分2SI yzdzdx dxdy =+⎰⎰其中S 是球面2224x y z ++=外侧在0z ≥的部分.六、(本题满分7分)设不恒为常数的函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且()().f a f b =证明在(,)a b 内至少存在一点,ξ使得()0.f ξ'> 七、(本题满分6分) 设四阶矩阵1100213401100213,0011002100010002-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦B C 且矩阵A 满足关系式1()-''-=A E C B C E其中E 为四阶单位矩阵1,-C 表示C 的逆矩阵,'C 表示C 的转置矩阵.将上述关系式化简并求矩阵.A八、(本题满分8分)求一个正交变换化二次型22212312132344448f x x x x x x x x x =++-+-成标准型.九、(本题满分8分)质点P 沿着以AB 为直径的半圆周,从点(1,2)A 运动到点(3,4)B 的过程中受变力F r 作用(见图).F r的大小等于点P 与原点O 之间的距离,其方向垂直于线段OP 且与y 轴正向的夹角小于.2π求变力F r 对质点P 所作的功.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上) (1)已知随机变量X 的概率密度函数1()e ,2xf x x -=-∞<<+∞则X 的概率分布函数()F x =____________.(2)设随机事件A 、B 及其和事件的概率分别是0.4、0.3和0.6,若B 表示B 的对立事件,那么积事件AB 的概率()P AB =____________.(3)已知离散型随机变量X 服从参数为2的泊松()Poisson 分布,即22e {},0,1,2,,!k P X k k k -===L 则随机变量32Z X =-的数学期望()E Z =____________.十一、(本题满分6分)设二维随机变量(,)X Y 在区域:01,D x y x <<<内服从均匀分布,求关于X 的边缘概率密度函数及随机变量21Z X =+的方差().D Z1991年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设21cos x t y t=+=,则22d ydx =_____________.(2)由方程xyz =(,)z z x y =在点(1,0,1)-处的全微分dz =_____________.(3)已知两条直线的方程是1212321:;:.101211x y z x y zl l ---+-====-则过1l 且平行于2l 的平面方程是_____________. (4)已知当0x →时123,(1)1ax +-与cos 1x -是等价无穷小,则常数a =_____________.(5)设4阶方阵52002100,00120011⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦A 则A 的逆阵1-A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)曲线221e 1ex x y --+=- (A)没有渐近线 (B)仅有水平渐近线(C)仅有铅直渐近线(D)既有水平渐近线又有铅直渐近线(2)若连续函数()f x 满足关系式20()()ln 2,2tf x f dt π=+⎰则()f x 等于 (A)e ln 2x (B)2e ln 2x (C)e ln 2x +(D)2e ln 2x +(3)已知级数12111(1)2,5,n n n n n a a ∞∞--==-==∑∑则级数1n n a ∞=∑等于(A)3 (B)7(C)8(D)9(4)设D 是平面xoy 上以(1,1)、(1,1)-和(1,1)--为顶点的三角形区域1,D 是D 在第一象限的部分,则(cos sin )Dxy x y dxdy +⎰⎰等于(A)12cos sin D x ydxdy ⎰⎰(B)12D xydxdy ⎰⎰(C)14(cos sin )D xy x y dxdy +⎰⎰(D)0(5)设n 阶方阵A 、B 、C 满足关系式,=ABC E 其中E 是n 阶单位阵,则必有 (A)=ACB E (B)=CBA E (C)=BAC E (D)=BCA E三、(本题共3小题,每小题5分,满分15分)(1)求20).x π+→(2)设n r 是曲面222236x y z ++=在点(1,1,1)P 处的指向外侧的法向量,求函数u =P 处沿方向n r 的方向导数.(3)22(),x y z dv Ω++⎰⎰⎰其中Ω是由曲线 220y zx ==绕z 轴旋转一周而成的曲面与平面4z =所围城的立体.四、(本题满分6分)过点(0,0)O 和(,0)A π的曲线族sin (0)y a x a =>中,求一条曲线,L 使沿该曲线O 从到A 的积分3(1)(2)Ly dx x y dy +++⎰的值最小.五、(本题满分8分)将函数()2(11)f x x x =+-≤≤展开成以2为周期的傅里叶级数,并由此求级数211n n∞=∑的和. 六、(本题满分7分)设函数()f x 在[0,1]上连续,(0,1)内可导,且1233()(0),f x dx f =⎰证明在(0,1)内存在一点,c 使()0.f c '=七、(本题满分8分)已知1234(1,0,2,3),(1,1,3,5),(1,1,2,1),(1,2,4,8)a a ===-+=+αααα及(1,1,3,5).b =+β (1)a 、b 为何值时,β不能表示成1234,,,αααα的线性组合?(2)a 、b 为何值时,β有1234,,,αααα的唯一的线性表示式?写出该表示式.八、(本题满分6分)设A 是n 阶正定阵,E 是n 阶单位阵,证明+A E 的行列式大于1.九、(本题满分8分)在上半平面求一条向上凹的曲线,其上任一点(,)P x y 处的曲率等于此曲线在该点的法线段PQ 长度的倒数(Q 是法线与x 轴的交点),且曲线在点(1,1)处的切线与x 轴平行.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)若随机变量X 服从均值为2、方差为2σ的正态分布,且{24}0.3,P X <<=则{0}P X <=____________.(2)随机地向半圆0y a <<为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与x 轴的夹角小于4π的概率为____________.十一、(本题满分6分)设二维随机变量(,)X Y 的密度函数为(,)f x y =(2)2e 0,00 x y x y -+>>其它求随机变量2Z X Y =+的分布函数.1992年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)设函数()y y x =由方程ecos()0x yxy ++=确定,则dydx=_____________.(2)函数222ln()u x y z =++在点(1,2,2)M -处的梯度grad Mu =_____________.(3)设()f x =211x -+0x x ππ-<≤<≤,则其以2π为周期的傅里叶级数在点x π=处收敛于_____________.(4)微分方程tan cos y y x x '+=的通解为y =_____________.(5)设111212121212,n n n n n n a b a b a b a b a b a b a b a b a b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A L L L L L L L其中0,0,(1,2,,).i i a b i n ≠≠=L 则矩阵A 的秩()r A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)当1x →时,函数1211e 1x x x ---的极限 (A)等于2 (B)等于0(C)为∞(D)不存在但不为∞(2)级数1(1)(1cos )(nn an∞=--∑常数0)a >(A)发散 (B)条件收敛(C)绝对收敛(D)收敛性与a 有关(3)在曲线23,,x t y t z t ==-=的所有切线中,与平面24x y z ++=平行的切线 (A)只有1条 (B)只有2条 (C)至少有3条(D)不存在(4)设32()3,f x x x x =+则使()(0)n f存在的最高阶数n 为(A)0 (B)1 (C)2(D)3(5)要使12100,121⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ξξ都是线性方程组=AX 0的解,只要系数矩阵A 为(A)[]212-(B)201011-⎡⎤⎢⎥⎣⎦(C)102011-⎡⎤⎢⎥-⎣⎦(D)011422011-⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦三、(本题共3小题,每小题5分,满分15分)(1)求x x →(2)设22(e sin ,),xz f y x y =+其中f 具有二阶连续偏导数,求2.zx y ∂∂∂(3)设()f x = 21e xx -+ 00x x ≤>,求31(2).f x dx -⎰四、(本题满分6分) 求微分方程323e xy y y -'''+-=的通解.五、(本题满分8分)计算曲面积分323232()()(),x az dydz y ax dzdx z ay dxdy ∑+++++⎰⎰其中∑为上半球面z =.六、(本题满分7分)设()0,(0)0,f x f ''<=证明对任何120,0,x x >>有1212()()().f x x f x f x +<+七、(本题满分8分)在变力F yzi zxj xyk =++r r r r 的作用下,质点由原点沿直线运动到椭球面2222221x y z a b c++=上第一卦限的点(,,),M ξηζ问当ξ、η、ζ取何值时,力F r所做的功W 最大?并求出W 的最大值.八、(本题满分7分)设向量组123,,ααα线性相关,向量组234,,ααα线性无关,问: (1)1α能否由23,αα线性表出?证明你的结论. (2)4α能否由123,,ααα线性表出?证明你的结论. 九、(本题满分7分)设3阶矩阵A 的特征值为1231,2,3,λλλ===对应的特征向量依次为1231111,2,3,149⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ξξξ又向量12.3⎛⎫⎪= ⎪ ⎪⎝⎭β(1)将β用123,,ξξξ线性表出. (2)求(nn A β为自然数).十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上) (1)已知11()()(),()0,()(),46P A P B P C P AB P AC P BC ======则事件A 、B 、C 全不发生的概率为____________. (2)设随机变量X 服从参数为1的指数分布,则数学期望2{e }XE X -+=____________.十一、(本题满分6分)设随机变量X 与Y 独立,X 服从正态分布2(,),N Y μσ服从[,]ππ-上的均匀分布,试求Z X Y =+的概率分布密度(计算结果用标准正态分布函数Φ表示,其中22()e)t xx dt --∞Φ=⎰.1993年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)函数1()(2(0)xF x dt x =->⎰的单调减少区间为_____________.(2)由曲线223212x y z +==绕y 轴旋转一周得到的旋转面在点处的指向外侧的单位法向量为_____________.(3)设函数2()()f x x x x πππ=+-<<的傅里叶级数展开式为01(cos sin ),2n n n a a nx b nx ∞=++∑则其中系数3b 的值为_____________. (4)设数量场u =则div(grad )u =_____________.(5)设n 阶矩阵A 的各行元素之和均为零,且A 的秩为1,n -则线性方程组=AX 0的通解为_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设sin 2340()sin(),(),xf x t dtg x x x ==+⎰则当0x →时,()f x 是()g x 的(A)等价无穷小 (B)同价但非等价的无穷小 (C)高阶无穷小(D)低价无穷小(2)双纽线22222()x y x y +=-所围成的区域面积可用定积分表示为(A)402cos 2d πθθ⎰(B)404cos 2d πθθ⎰(C)2θ(D)2401(cos 2)2d πθθ⎰(3)设有直线1158:121x y z l --+==-与2:l 623x y y z -=+=则1l 与2l 的夹角为 (A)6π(B)4π (C)3π(D)2π(4)设曲线积分[()e ]sin ()cos x Lf t ydx f x ydy --⎰与路径无关,其中()f x 具有一阶连续导数,且(0)0,f =则()f x 等于(A)e e 2x x --(B)e e 2x x --(C)e e 12x x-+-(D)e e 12x x-+-(5)已知12324,369t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦Q P 为三阶非零矩阵,且满足0,=PQ 则 (A)6t =时P 的秩必为1(B)6t =时P 的秩必为2 (C)6t ≠时P 的秩必为1(D)6t ≠时P 的秩必为2三、(本题共3小题,每小题5分,满分15分) (1)求21lim(sincos ).x x x x →∞+(2)求.x(3)求微分方程22,x y xy y '+=满足初始条件11x y ==的特解.四、(本题满分6分) 计算22,xzdydz yzdzdx z dxdy ∑+-⎰⎰Ò其中∑是由曲面z =与z =.五、(本题满分7分)求级数20(1)(1)2n nn n n ∞=--+∑的和.六、(本题共2小题,每小题5分,满分10分) (1)设在[0,)+∞上函数()f x 有连续导数,且()0,(0)0,f x k f '≥><证明()f x 在(0,)+∞内有且仅有一个零点. (2)设,b a e >>证明.b a a b >七、(本题满分8分)已知二次型22212312323(,,)2332(0)f x x x x x x ax x a =+++>通过正交变换化成标准形22212325,f y y y =++求参数a 及所用的正交变换矩阵.八、(本题满分6分)设A 是n m ⨯矩阵,B 是m n ⨯矩阵,其中,n m <I 是n 阶单位矩阵,若,=AB I 证明B 的列向量组线性无关.九、(本题满分6分)设物体A 从点(0,1)出发,以速度大小为常数v 沿y 轴正向运动.物体B 从点(1,0)-与A 同时出发,其速度大小为2,v 方向始终指向,A 试建立物体B 的运动轨迹所满足的微分方程,并写出初始条件.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为____________.(2)设随机变量X 服从(0,2)上的均匀分布,则随机变量2Y X =在(0,4)内的概率分布密度()Y f y =____________.十一、(本题满分6分)设随机变量X 的概率分布密度为1()e ,.2xf x x -=-∞<<+∞ (1)求X 的数学期望EX 和方差.DX(2)求X 与X 的协方差,并问X 与X 是否不相关? (3)问X 与X 是否相互独立?为什么?1994年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)011limcot ()sin x x xπ→-= _____________.(2)曲面e 23xz xy -+=在点(1,2,0)处的切平面方程为_____________.(3)设e sin ,xx u y -=则2u x y ∂∂∂在点1(2,)π处的值为_____________.(4)设区域D 为222,x y R +≤则2222()Dx y dxdy a b +⎰⎰=_____________.(5)已知11[1,2,3],[1,,],23==αβ设,'=A αβ其中'α是α的转置,则n A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设4342342222222sin cos ,(sin cos ),(sin cos ),1x M xdx N x x dx P x x x dx x ππππππ---==+=-+⎰⎰⎰则有 (A)N P M << (B)M P N << (C)N M P <<(D)P M N <<(2)二元函数(,)f x y 在点00(,)x y 处两个偏导数00(,)x f x y '、00(,)y f x y '存在是(,)f x y 在该点连续的 (A)充分条件而非必要条件 (B)必要条件而非充分条件(C)充分必要条件(D)既非充分条件又非必要条件(3)设常数0,λ>且级数21nn a ∞=∑收敛,则级数1(1)nn ∞=-∑(A)发散(B)条件收敛 (C)绝对收敛(D)收敛性与λ有关(4)2tan (1cos )lim2,ln(12)(1)x x a x b x c x d e -→+-=-+-其中220,a c +≠则必有(A)4b d = (B)4b d =- (C)4a c =(D)4a c =-(5)已知向量组1234,,,αααα线性无关,则向量组 (A)12233441,,,++++αααααααα线性无关 (B)12233441,,,----αααααααα线性无关 (C)12233441,,,+++-αααααααα线性无关 (D)12233441,,,++--αααααααα线性无关三、(本题共3小题,每小题5分,满分15分)(1)设2221cos()cos()t x t y t t udu==-⎰,求dydx 、22d y dx 在t =. (2)将函数111()ln arctan 412x f x x x x +=+--展开成x 的幂级数.(3)求.sin(2)2sin dxx x +⎰四、(本题满分6分)计算曲面积分2222,Sxdydz z dxdy x y z +++⎰⎰其中S 是由曲面222x y R +=及,(0)z R z R R ==->两平面所围成立体表面的外侧.五、(本题满分9分)设()f x 具有二阶连续函数,(0)0,(0)1,f f '==且2[()()][()]0xy x y f x y dx f x x y dy '+-++=为一全微分方程,求()f x 及此全微分方程的通解.六、(本题满分8分)设()f x 在点0x =的某一邻域内具有二阶连续导数,且0()lim 0,x f x x →=证明级数11()n f n ∞=∑绝对收敛.七、(本题满分6分)已知点A 与B 的直角坐标分别为(1,0,0)与(0,1,1).线段AB 绕x 轴旋转一周所成的旋转曲面为.S 求由S 及两平面0,1z z ==所围成的立体体积.八、(本题满分8分) 设四元线性齐次方程组(Ⅰ)为122400x x x x +=-=,又已知某线性齐次方程组(Ⅱ)的通解为12(0,1,1,0)(1,2,2,1).k k +- (1)求线性方程组(Ⅰ)的基础解析.(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由. 九、(本题满分6分) 设A 为n 阶非零方阵*,A 是A 的伴随矩阵,'A 是A 的转置矩阵,当*'=A A 时,证明0.≠A十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)已知A 、B 两个事件满足条件()(),P AB P AB =且(),P A p =则()P B =____________. (2)设相互独立的两个随机变量,X Y 具有同一分布率,且X 的分布率为则随机变量max{,}Z X Y =的分布率为____________.十一、(本题满分6分)设随机变量X 和Y 分别服从正态分布2(1,3)N 和2(0,4),N 且X 与Y 的相关系数1,2xy ρ=-设,32X Y Z =+ (1)求Z 的数学期望EZ 和DZ 方差.(2)求X 与Z 的相关系数.xz ρ (3)问X 与Y 是否相互独立?为什么?1995年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)2sin 0lim(13)xx x →+=_____________.(2)202cos x d x t dt dx⎰= _____________.(3)设()2,⨯=a b c g 则[()()]()+⨯++a b b c c a g =_____________.(4)幂级数2112(3)n n nn nx ∞-=+-∑的收敛半径R =_____________. (5)设三阶方阵,A B 满足关系式16,-=+A BA A BA 且100310,41007⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A 则B =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设有直线:L 321021030x y z x y z +++=--+=,及平面:4220,x y z π-+-=则直线L(A)平行于π (B)在π上 (C)垂直于π(D)与π斜交(2)设在[0,1]上()0,f x ''>则(0),(1),(1)(0)f f f f ''-或(0)(1)f f -的大小顺序是 (A)(1)(0)(1)(0)f f f f ''>>- (B)(1)(1)(0)(0)f f f f ''>-> (C)(1)(0)(1)(0)f f f f ''->>(D)(1)(0)(1)(0)f f f f ''>->(3)设()f x 可导,()()(1sin ),F x f x x =+则(0)0f =是()F x 在0x =处可导的 (A)充分必要条件 (B)充分条件但非必要条件(C)必要条件但非充分条件 (D)既非充分条件又非必要条件(4)设(1)ln(1nn u =-则级数 (A)1nn u∞=∑与21nn u∞=∑都收敛(B)1nn u∞=∑与21nn u∞=∑都发散(C)1nn u∞=∑收敛,而21nn u∞=∑发散 (D)1nn u∞=∑收敛,而21nn u∞=∑发散(5)设11121311121321222321222312313233313233010100,,100,010,001101a a a a a a a a a a a a a a a a a a ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦A B P P 则必有(A)12AP P =B (B)21AP P =B (C)12P P A =B(D)21P P A =B三、(本题共2小题,每小题5分,满分10分) (1)设2(,,),(,e ,)0,sin ,yu f x y z x z y x ϕ===其中,f ϕ都具有一阶连续偏导数,且0.z ϕ∂≠∂求.du dx(2)设函数()f x 在区间[0,1]上连续,并设1(),f x dx A =⎰求11()().xdx f x f y dy ⎰⎰四、(本题共2小题,每小题6分,满分12分)(1)计算曲面积分,zdS ∑⎰⎰其中∑为锥面z =在柱体222x y x +≤内的部分.(2)将函数()1(02)f x x x =-≤≤展开成周期为4的余弦函数.五、(本题满分7分)设曲线L 位于平面xOy 的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记为.A 已知,MA OA =且L 过点33(,),22求L 的方程.六、(本题满分8分)设函数(,)Q x y 在平面xOy 上具有一阶连续偏导数,曲线积分2(,)Lxydx Q x y dy +⎰与路径无关,并且对任意t恒有(,1)(1,)(0,0)(0,0)2(,)2(,),t t xydx Q x y dy xydx Q x y dy +=+⎰⎰求(,).Q x y七、(本题满分8分)假设函数()f x 和()g x 在[,]a b 上存在二阶导数,并且()0,()()()()0,g x f a f b g a g b ''≠====试证:(1)在开区间(,)a b 内()0.g x ≠(2)在开区间(,)a b 内至少存在一点,ξ使()().()()f f g g ξξξξ''=''八、(本题满分7分)设三阶实对称矩阵A 的特征值为1231,1,λλλ=-==对应于1λ的特征向量为101,1⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ξ求.A九、(本题满分6分)设A 为n 阶矩阵,满足('=AA I I 是n 阶单位矩阵,'A 是A 的转置矩阵),0,<A 求.+A I十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上) (1)设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则2X 的数学期望2()E X =____________.(2)设X 和Y 为两个随机变量,且34{0,0},{0}{0},77P X Y P X P Y ≥≥=≥=≥=则{max(,)0}P X Y ≥=____________.十一、(本题满分6分)设随机变量X 的概率密度为()X f x = e 0x - 0x x ≥<,求随机变量e X Y =的概率密度().Y f y1996年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设2lim()8,xx x a x a→∞+=-则a =_____________.(2)设一平面经过原点及点(6,3,2),-且与平面428x y z -+=垂直,则此平面方程为_____________. (3)微分方程22e xy y y '''-+=的通解为_____________. (4)函数ln(u x =+在点(1,0,1)A 处沿点A 指向点(3,2,2)B -方向的方向导数为_____________.(5)设A 是43⨯矩阵,且A 的秩()2,r =A 而102020,103⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B 则()r AB =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)已知2()()x ay dx ydyx y +++为某函数的全微分,a 则等于 (A)-1 (B)0 (C)1(D)2(2)设()f x 具有二阶连续导数,且0()(0)0,lim1,x f x f x→'''==则 (A)(0)f 是()f x 的极大值 (B)(0)f 是()f x 的极小值(C)(0,(0))f 是曲线()y f x =的拐点(D)(0)f 不是()f x 的极值,(0,(0))f 也不是曲线()y f x =的拐点 (3)设0(1,2,),n a n >=L 且1n n a ∞=∑收敛,常数(0,),2πλ∈则级数21(1)(tan )n n n n a n λ∞=-∑ (A)绝对收敛(B)条件收敛(C)发散(D)散敛性与λ有关(4)设有()f x 连续的导数22,(0)0,(0)0,()()(),x f f F x x t f t dt '=≠=-⎰且当0x →时,()F x '与k x 是同阶无穷小,则k 等于(A)1 (B)2 (C)3 (D)4(5)四阶行列式112233440000000a b a b a b b a 的值等于(A)12341234a a a a b b b b -(B)12341234a a a a b b b b + (C)12123434()()a a b b a a b b --(D)23231414()()a a b b a a b b --三、(本题共2小题,每小题5分,满分10分) (1)求心形线(1cos )r a θ=+的全长,其中0a >是常数.四、(本题共2小题,每小题6分,满分12分)(1)计算曲面积分(2),Sx z dydz zdxdy ++⎰⎰其中S 为有向曲面22(01),z x y x =+≤≤其法向量与z 轴正向的夹角为锐角.(2)设变换 2u x y v x ay =-=+可把方程2222260z z z x x y y ∂∂∂+-=∂∂∂∂简化为20,zu v∂=∂∂求常数.a五、(本题满分7分) 求级数211(1)2nn n ∞=-∑的和.六、(本题满分7分)设对任意0,x >曲线()y f x =上点(,())x f x 处的切线在y 轴上的截距等于01(),xf t dt x ⎰求()f x 的一般表达式.七、(本题满分8分)设()f x 在[0,1]上具有二阶导数,且满足条件(),(),f x a f x b ''≤≤其中,a b 都是非负常数,c 是(0,1)内任意一点.证明()2.2b f c a '≤+设,T A =-I ξξ其中I 是n 阶单位矩阵,ξ是n 维非零列向量,Tξ是ξ的转置.证明 (1)2=A A 的充分条件是 1.T=ξξ (2)当1T=ξξ时,A 是不可逆矩阵. 九、(本题满分8分)已知二次型222123123121323(,,)55266f x x x x x cx x x x x x x =++-+-的秩为2, (1)求参数c 及此二次型对应矩阵的特征值. (2)指出方程123(,,)1f x x x =表示何种二次曲面.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属A 生产的概率是____________.(2)设,ξη是两个相互独立且均服从正态分布2)N 的随机变量,则随机变量ξη-的数学期望()E ξη-=____________.十一、(本题满分6分)设,ξη是两个相互独立且服从同一分布的两个随机变量,已知ξ的分布率为1(),1,2,3.3P i i ξ=== 又设max(,),min(,).X Y ξηξη==(1)写出二维随机变量的分布率:(2)求随机变量X 的数学期望().E X。

2002考研数学一真题及答案解析

2002考研数学一真题及答案解析

2002年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.) (1)⎰∞+exx dx2ln =.(2)已知函数()y y x =由方程0162=-++x xy e y 确定,则(0)y ''=. (3)微分方程02='+''y y y 满足初始条件0011,'2x x yy ====的特解是.(4)已知实二次型323121232221321444)(),,(x x x x x x x x x a x x x f +++++=经正交变换x Py =可化成标准型216y f =,则a =.(5)设随机变量X 服从正态分布2(,)(0)N μσσ>,且二次方程042=++X y y 无实根的概率为12,则μ= .二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)考虑二元函数),(y x f 的下面4条性质: ①),(y x f 在点),(00y x 处连续; ②),(y x f 在点),(00y x 处的两个偏导数连续; ③),(y x f 在点),(00y x 处可微;④),(y x f 在点),(00y x 处的两个偏导数存在.若用“P Q ⇒”表示可由性质P 推出性质Q ,则有(A ) ②⇒③⇒①. (B ) ③⇒②⇒①. (C ) ③⇒④⇒①.(D ) ③⇒①⇒④.(2)设0(1,2,3,)n u n ≠=L ,且lim1n nnu →∞=,则级数11111(1)()n n n n u u ∞+=+-+∑ (A ) 发散. (B ) 绝对收敛.(C ) 条件收敛.(D ) 收敛性根据所给条件不能判定.(3)设函数()y f x =在(0,)+∞内有界且可导,则 (A ) 当0)(lim =+∞→x f x 时,必有0)(lim ='+∞→x f x .(B ) 当)(lim x f x '+∞→存在时,必有0)(lim ='+∞→x f x .(C ) 当0lim ()0x f x +→=时,必有0lim ()0x f x +→'=. (D ) 当0lim ()x f x +→'存在时,必有0lim ()0x f x +→'=.(4)设有三张不同平面的方程123i i i i a x a y a z b ++=,3,2,1=i ,它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为(5)设1X 和2X 是任意两个相互独立的连续型随机变量,它们的概率密度分别为1()f x 和2()f x ,分布函数分别为1()F x 和2()F x ,则(A ) 1()f x +2()f x 必为某一随机变量的概率密度. (B ) 1()f x 2()f x 必为某一随机变量的概率密度. (C ) 1()F x +2()F x 必为某一随机变量的分布函数. (D ) 1()F x 2()F x 必为某一随机变量的分布函数.三、(本题满分6分) 设函数)(x f 在0x =的某邻域内具有一阶连续导数,且(0)0,(0)0f f '≠≠,若()(2)(0)af h bf h f +-在0→h 时是比h 高阶的无穷小,试确定b a ,的值.四、(本题满分7分) 已知两曲线)(x f y =与⎰-=x t dt e yarctan 02在点(0,0)处的切线相同,写出此切线方程,并求极限)2(lim nnf n ∞→.五、(本题满分7分) 计算二重积分dxdy e Dy x⎰⎰},max{22,其中}10,10|),{(≤≤≤≤=y x y x D .六、(本题满分8分)设函数)(x f 在(,)-∞+∞内具有一阶连续导数,L 是上半平面(y >0)内的有向分段光滑曲线,其起点为(b a ,),终点为(d c ,).记2221[1()][()1],L xI y f xy dx y f xy dy y y=++-⎰(1)证明曲线积分I 与路径L 无关; (2)当cd ab =时,求I 的值.七、(本题满分7分)(1)验证函数333369()1()3!6!9!(3)!nx x y x x n =++++++-∞<<+∞L L 满足微分方程x e y y y =+'+'';(2)利用(1)的结果求幂级数30(3)!nn x n ∞=∑的和函数.八、(本题满分7分)设有一小山,取它的底面所在的平面为xOy 坐标面,其底部所占的区域为2{(,)|D x y x =275}y xy +-≤,小山的高度函数为),(y x h xy y x +--=2275.(1)设),(00y x M 为区域D 上一点,问),(y x h 在该点沿平面上什么方向的方向导数最大?若记此方向导数的最大值为),(00y x g ,试写出),(00y x g 的表达式.(2)现欲利用此小山开展攀岩活动,为此需要在山脚下寻找一上山坡最大的点作为攀登的起点.也就是说,要在D 的边界线2275x y xy +-=上找出使(1)中),(y x g 达到最大值的点.试确定攀登起点的位置.九、(本题满分6分)已知四阶方阵),,,(4321αααα=A ,4321,,,αααα均为4维列向量,其中432,,ααα线性无关,3212ααα-=,如果4321ααααβ+++=,求线性方程组β=Ax 的通解.十、(本题满分8分) 设,A B 为同阶方阵,(1)若,A B 相似,证明,A B 的特征多项式相等. (2)举一个二阶方阵的例子说明(1)的逆命题不成立. (3)当,A B 均为实对称矩阵时,证明(1)的逆命题成立.十一、(本题满分7分) 设维随机变量X 的概率密度为10,cos ,()220,x x f x π⎧≤≤⎪=⎨⎪⎩其他.对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望.十二、(本题满分7分)其中1(0)2θθ<<是未知参数,利用总体X 的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和最大似然估计值.2002年考研数学一试题答案与解析一、填空题 (1)【分析】 原式2ln 11.ln ln eed x x x+∞+∞==-=⎰(2)【分析】 方程两边对x 两次求导得'6'620,y e y xy y x +++=① 2'''6''12'20.y y e y e y xy y ++++=②以0x =代入原方程得0y =,以0x y ==代入①得'0,y =,再以'0x y y ===代入②得''(0) 2.y =-(3)【分析】 这是二阶的可降阶微分方程.令'()y P y =(以y 为自变量),则'''.dy dP dPy P dx dx dy=== 代入方程得20dP yPP dy +=,即0dP y P dy+=(或0P =,但其不满足初始条件01'2x y ==). 分离变量得0,dP dy P y+= 积分得ln ln ',P y C +=即1C P y=(0P =对应10C =); 由0x =时11,',2y P y ===得11.2C =于是又由01x y==得21,C =所求特解为y =(4)【分析】 因为二次型Tx Ax 经正交变换化为标准型时,标准形中平方项的系数就是二次型矩阵A 的特征值,所以6,0,0是A 的特征值.又因iiia λ=∑∑,故600, 2.a a a a ++=++⇒=(5)【分析】 设事件A 表示“二次方程042=++X y y 无实根”,则{1640}{A X X =-<=>4}.依题意,有1(){4}.2P A P X =>=而 4{4}1{4}1(),P X P X μΦσ->=-≤=-即414141(),(),0. 4.22μμμΦΦμσσσ----===⇒=二、选择题(1)【分析】 这是讨论函数(,)f x y 的连续性,可偏导性,可微性及偏导数的连续性之间的关系.我们知道,(,)f x y 的两个偏导数连续是可微的充分条件,若(,)f x y 可微则必连续,故选(A ).(2)【分析】 由1lim 101n n un n →+∞=>⇒充分大时即,N n N ∃>时10n u >,且1lim 0,n nu →+∞=不妨认为,0,n n u ∀>因而所考虑级数是交错级数,但不能保证1nu 的单调性. 按定义考察部分和111111111111(1)()(1)(1)nn nk k k n k k k k k k k S u u u u +++===++=-+=-+-∑∑∑1111111(1)11(1)1(1)(),k n nn l k l k l n n u u u u u ++==+--=-+-=+→→+∞∑∑⇒原级数收敛.再考察取绝对值后的级数1111()n nn u u ∞=++∑.注意111112,11n n n n u u n n n u u n n++++=+⋅→+ 11n n ∞=∑发散⇒1111()n n n u u ∞=++∑发散.因此选(C ).(3)【分析】 证明(B )对:反证法.假设lim ()0x f x a →+∞'=≠,则由拉格朗日中值定理,(2)()'()()f x f x f x x ξ-=→∞→+∞(当x →+∞时,ξ→+∞,因为2x x ξ<<);但这与(2)()(2)()2f x f x f x f x M -≤+≤矛盾(()).f x M ≤(4)【分析】 因为()()23r A r A ==<,说明方程组有无穷多解,所以三个平面有公共交点且不唯一,因此应选(B ).(A )表示方程组有唯一解,其充要条件是()() 3.r A r A ==(C )中三个平面没有公共交点,即方程组无解,又因三个平面中任两个都不行,故()2r A =和()3r A =,且A 中任两个平行向量都线性无关.类似地,(D )中有两个平面平行,故()2r A =,()3r A =,且A 中有两个平行向量共线.(5)【分析】 首先可以否定选项(A )与(C ),因121212[()()]()()21,()()112 1.f x f x dx f x dx f x dx F F +∞+∞+∞-∞-∞-∞+=+=≠+∞++∞=+=≠⎰⎰⎰对于选项(B ),若121,21,1,01,()()0,0,x x f x f x -<<-<<⎧⎧==⎨⎨⎩⎩其他,其他,则对任何(,),x ∈-∞+∞ 12()()0f x f x ≡,12()()01,f x f x dx +∞-∞=≠⎰因此也应否定(C ),综上分析,用排除法应选(D ).进一步分析可知,若令12max(,)X X X =,而~(),1,2,i i X f x i =则X 的分布函数()F x 恰是12()().F x F x1212(){max(,)}{,}F x P X X x P X x X x =≤=≤≤1212{}{}()().P X x P X x F x F x =≤≤=三、【解】 用洛必达法则.由题设条件知lim[()(2)(0)](1)(0).h af h bf h f a b f →+-=+-由于(0)0f '≠,故必有10.a b +-=(2)'(0)0,a b f =+=及(0)0f '≠,则有20a b +=. 综上,得2, 1.a b ==-四、【解】 由已知条件得(0)0,f =22arctan arctan 02'(0)()'1,1xx t xx x e f e dt x --=====+⎰故所求切线方程为y x =.由导数定义及数列极限与函数极限的关系可得五、【分析与求解】 D 是正方形区域如图.因在D 上被积函数分块表示2222,,max{,}(,),,,x x y x y x y D y x y ⎧≥⎪=∈⎨≤⎪⎩于是要用分块积分法,用y x =将D 分成两块:1212,{},{}.D D D D D y x D D y x ==≤=≥U I I⇒I 222212max{,}max{,}xy xy D D e dxdy e dxdy =+⎰⎰⎰⎰2221212x y x D D D e dxdy e dxdy e dxdy =+=⎰⎰⎰⎰⎰⎰(D 关于y x =对称)2102xx dx e dy =⎰⎰(选择积分顺序)221102 1.x xxe dx e e ===-⎰六、【分析与求解】(1)易知Pdx Qdy +∃原函数,2211()()()()()x Pdx Qdy dx yf xy dx xf xy dy dy ydx xdy f xy ydx xdy y y y+=++-=-++ 0()()()[()].xy x xd f xy d xy d f t dt y y =+=+⎰⇒在0y >上Pdx Qdy +∃原函数,即0(,)()xy xu x y f t dt y =+⎰. ⇒积分I 在0y >与路径无关.(2)因找到了原函数,立即可得(,)(,)(,).c d a b c a I u x y d b==-七、【证明】 与书上解答略有不同,参见数三2002第七题(1)因为幂级数3693()13!6!9!(3)!nx x x x y x n =++++++L L的收敛域是()x -∞<+∞,因而可在()x -∞<+∞上逐项求导数,得25831'()2!5!8!(31)!n x x x x y x n -=+++++-L L ,4732''()4!7!(32)!n x x x y x x n -=+++++-L L ,所以2'''12!!nx x x y y y x e n ++=+++++=L L ()x -∞<+∞.(2)与'''xy y y e ++=相应的齐次微分方程为'''0y y y ++=,其特征方程为210λλ++=,特征根为1,2122λ=-±.因此齐次微分方程的通解为212(cossin )22x Y eC x C x -=+. 设非齐次微分方程的特解为xy Ae *=,将y *代入方程'''xy y y e ++=可得13A =,即有13x y e *=.于是,方程通解为2121(cossin )223xx y Y y eC x C x e -*=+=++. 当0x =时,有112121(0)1,23,0.311'(0)0.223y C C C y C ⎧==+⎪⎪⇒==⎨⎪==-++⎪⎩于是幂级数30(3)!n n x n ∞=∑的和函数为221()33x x y x e x e -=+()x -∞<+∞八、【分析与求解】(1)由梯度向量的重要性质:函数),(y x h 在点M 处沿该点的梯度方向0000(,)(,)0000(,){,}{2,2}x y x y h h h x y x y y x x y∂∂==-+-+∂∂grad方向导数取最大值即00(,)(,)x y h x y grad 的模,00(,)g x y ⇒=(2)按题意,即求(,)g x y 求在条件22750x y xy +--=下的最大值点⇔22222(,)(2)(2)558g x y y x x y x y xy =-+-=+-在条件22750x y xy +--=下的最大值点. 这是求解条件最值问题,用拉格朗日乘子法.令拉格朗日函数2222(,,)558(75),L x y x y xy x y xy λλ=+-++--则有22108(2)0,108(2)0,750.Lx y x y x Ly x y x y L x y xy λλλ⎧∂=-+-=⎪∂⎪∂⎪=-+-=⎨∂⎪⎪∂=+--=⎪∂⎩ 解此方程组:将①式与②式相加得()(2)0.x y x y λ++=⇒=-或 2.λ=-若y x =-,则由③式得2375x =即5, 5.x y =±=m 若2,λ=-由①或②均得y x =,代入③式得275x =即x y =±=±于是得可能的条件极值点1234(5,5),(5,5),(M M M M ----现比较222(,)(,)558f x y g x y x y xy ==+-在这些点的函数值:1234()()450,()()150.f M f M f M f M ====因为实际问题存在最大值,而最大值又只可能在1234,,,M M M M 中取到.因此2(,)g x y 在12,M M 取到在D 的边界上的最大值,即12,M M 可作为攀登的起点.九、【解】由432,,ααα线性无关及3212ααα-=知,向量组的秩1234(,,,)3r αααα=,即矩阵A 的秩为3.因此0Ax =的基础解系中只包含一个向量.那么由123412312(,,,)2010ααααααα⎡⎤⎢⎥-⎢⎥=-+=⎢⎥⎢⎥⎣⎦知,0Ax =的基础解系是(1,2,1,0).T-再由123412341111(,,,)1111A βαααααααα⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=+++==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦知,(1,1,1,1)T是β=Ax 的一个特解.故β=Ax 的通解是1121,1101k ⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦其中k 为任意常数.十、【解】 (1)若,A B 相似,那么存在可逆矩阵P ,使1,P AP B -=故111E B E P AP P EP P AP λλλ----=-=-11().P E A P P E A P E A λλλ--=-=-=-(2)令0100,,0000A B ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦那么2.E A E B λλλ-==- 但,A B 不相似.否则,存在可逆矩阵P ,使10P AP B -==.从而100A P P -==,矛盾,亦可从()1,()0r A r B ==而知A 与B 不相似.(3)由,A B 均为实对称矩阵知,,A B 均相似于对角阵,若,A B 的特征多项式相等,记特征多项式的根为1,,,n λλL 则有A 相似于1,n λλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦O B也相似于1.n λλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦O 即存在可逆矩阵,P Q ,使111.n P AP Q BQ λλ--⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦O 于是111()().PQ A PQ B ---=由1PQ -为可逆矩阵知,A 与B 相似.十一、【解】 由于311{}cos ,3222x P X dx πππ>==⎰依题意,Y 服从二项分布1(4,)2B ,则有2222111()()4(4) 5.222EY DY EY npq np =+=+=⨯⨯+⨯=十二、【解】 22012(1)23(12)34,EX θθθθθθ=⨯+⨯-+⨯+⨯-=-1(3).4EX θ=- θ的矩估计量为1ˆ(3),4X θ=-根据给定的样本观察值计算1(31303123)8x =+++++++ 2.=因此θ的矩估计值11ˆ(3).44x θ=-= 对于给定的样本值似然函数为624()4(1)(12),ln ()ln 46ln 2ln(1)4ln(12),L L θθθθθθθθ=--=++-+-2ln ()62824286.112(1)(12)d L d θθθθθθθθθθ-+=--=----令ln ()0d L d θθ=,得方程2121430θθ-+=,解得θ=1,2θ=>不合题意). 于是θ的最大似然估计值为ˆθ=。

2002年全国硕士研究生入学统一考试数学一真题及答案

2002年全国硕士研究生入学统一考试数学一真题及答案

2002年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.) (1)=⎰+∞e2ln d xx x.【答案】1【考点】反常(广义)积分 【难易度】★★ 【详解】解析:22ee 11lim lim lim 11ln ln ln ln b b b b b dx dx e x x x x x b +∞→+∞→+∞→+∞⎡⎤⎡⎤==-=-+=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰ (2)已知函数)(x y y =由方程0162=-++x xy e y 确定,则)0(y ''= . 【答案】2-【考点】隐函数的导数 【难易度】★★【详解】解析:由2610ye xy x ++-=两边对x 求导,将y 看成由此式确定的x 的函数,有6620,y e y xy y x ''+++=62,6yy x y e x+'=-+ 2(6)62(62)(6),(6)y y y e x y y x e y y e x ''++++''=-+()-以0x =代入原方程,得(0)0y =.再代入y '的表达式,得(0)0y '=.于是(0)2y ''=-. (3)微分方程02='+''y y y 满足初始条件21,100='===x x y y 的特解是 .【答案】y =【考点】可降阶的高阶微分方程 【难易度】★★★【详解】本题涉及到的主要知识点:缺x 的可降阶的高阶微分方程,令dydp py p y =''=',; 解析:方法1:将20yy y '''+=改写为()0yy ''=,从而得1yy C '=.以初始条件1(0)1,(0)2y y '==代入,有1112C ⨯=,所以得12yy '=.即21yy '=,改写为2()1y '=.解得2,y x C =+y =再以初值代入,1=""+且21C =.于是特解y =方法2:这是属于缺x 的类型(,)y f y y '''=.命,dp dp dy dpy p y p dx dy dx dy'''====. 原方程20yy y '''+=化为20dpypp dy +=,得 0p =或0dpyp dy+= 0p =即0dy dx =,不满足初始条件1'02y x ==,弃之,由0dp y p dy +=按分离变量法解之,得1.C y 由初始条件11,'002y y x x ====可将1C 先定出来:1111,212C C ==.于是得 12dy dx y=解之,得22,y x C y =+=以01x y ==代入,得1=+”号且21C =.于是特解是y =(4)已知实二次型323121232221321444)(),,(x x x x x x x x x a x x x f +++++=经正交变换Py x =可化成标准形216y f =,则a = .【答案】2【考点】用正交变换化二次型为标准形 【难易度】★★★【详解】解析:方法1:二次型f 的对应矩阵222222a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,且600000000A ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦: 故有331136006iii i i aa λ=====++=∑∑,得2a =.方法2:由226220220a A a a ⎡⎤⎡⎤⎢⎥⎢⎥=Λ=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦:知0是A 的特征值,故22212222(4)12(4)(2)02212a A a a a a a aa==+=+-=,得4a =-或2a =, (1)又6是A 的特征值,故26221226262(2)162(2)(8)0226126a E A a a a a a a a -----⎡⎤⎡⎤⎢⎥⎢⎥-=---=---=--=⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦得2a =或8a = (2) 取(1),(2)的公共部分,得2a =.方法3:f 的对应矩阵为222222a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,直接求A 的特征值,其中一个单根是6,一个二重根应是0,即由22212222(4)12[(4)][(2)]2212a E A a a a a a a a λλλλλλλλλ-----⎡⎤⎡⎤⎢⎥⎢⎥-=---=----=----⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦其中单根46a +=,及二重根20a -=,故知2a =.方法4:226220220a A a a ⎡⎤⎡⎤⎢⎥⎢⎥=Λ=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦:有()()1r A r =Λ=因2222222222202222220222a a a A a a a a a a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→→--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥--⎣⎦22222022022002(28)002(2)(4)a a a a a a a a a a ⎡⎤⎡⎤⎢⎥⎢⎥→--→--⎢⎥⎢⎥⎢⎥⎢⎥-+---+⎣⎦⎣⎦因()1r A =,故应取2a =.(5)设随机变量X 服从正态分布)0)(,(2>σσμN ,且二次方程042=++X y y 无实根的概率为21,则μ= . 【答案】4 【考点】正态分布 【难易度】★★【详解】解析:二次方程无实根,即240y y X ++=的判别式1640X -<,也就有4X >.此事发生概率为12,即{}142P X >=,所以4μ=. 二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1)考虑二元函数),(y x f 的下面4条性质:①),(y x f 在点),(00y x 处连续; ②),(y x f 在点),(00y x 处的两个偏导数连续; ③),(y x f 在点),(00y x 处可微; ④),(y x f 在点),(00y x 处的两个偏导数存在. 若用""Q P ⇒表示可由性质P 推出性质Q ,则有( ) (A )②⇒③⇒①. (B )③⇒②⇒①. (C )③⇒④⇒①. (D )③⇒①⇒④. 【答案】A【考点】二元函数的连续的概念、全微分存在的必要条件、全微分存在的充分条件 【难易度】★【详解】本题涉及到的主要知识点:①(必要条件) 如果函数),(y x f z =在点),(y x 可微分,则该函数在点),(y x 的偏导数y z x z ∂∂∂∂,必定存在,且函数),(y x f z =在点),(y x 的全微分为dy yzdx x z dz ∂∂+∂∂=; ②(充分条件) 如果函数),(y x f z =的偏导数yzx z ∂∂∂∂,在点),(y x 连续,则函数在该点可微分.解析:(,)x f x y '与(,)y f x y '连续(,)f x y ⇒可微(,)(,)(,)x y f x y f x y f x y ⎧''⎪⇒⎨⎪⎩与存在连续(2)设0(1,2,)n u n ≠=L ,且1lim =∞→nn u n ,则级数)11()1(111++∞=+-∑n n n n u u ( )(A )发散. (B )绝对收敛.(C )条件收敛. (D )收敛性根据所给条件不能判定. 【答案】C【考点】绝对收敛与收敛的关系 【难易度】★★【详解】解析:由lim 1n n n u →∞=知,当n 充分大时,0n u >,1111()n n n u u ∞=++∑为正项级数,用比较判别法的极限形式,由题设条件lim1n nnu →∞=知:111111111lim lim lim()lim(1)111221111n n n n n n n n n n n n nu u u u n n n n n u u u n n n n ++→∞→∞→∞→∞+++++==+=+⋅=+++++, 而级数111121()1(1)n n n n n n n ∞∞==++=++∑∑是发散的,所以1111()n nn u u ∞=++∑也发散; 考察原级数的前n 项部分和1122334111111111()()()(1)()n n n n S u u u u u u u u ++=+-+++-+-+L 11111(1)n n u u ++=+-由lim1n n n u →∞=知,当n 充分大时,0n u >,且lim n n u →∞=+∞.所以11lim n n S u →∞=(收敛),所以选(C ).(3)设函数)(x f y =在),0(+∞内有界且可导,则( ) (A )当0)(lim =+∞→x f x 时,必有.0)(lim ='+∞→x f x(B )当)(lim x f x '+∞→存在时,必有.0)(lim ='+∞→x f x(C )当0)(lim 0=+→x f x 时,必有0)(lim 0='+→x f x .(D )当)(lim 0x f x '+→存在时,必有0)(lim 0='+→x f x .【答案】B【考点】导数的概念 【难易度】★★★★【详解】解析:方法1:排斥法 (A )的反例21()sin ,f x x x =它有界,221()sin 2cos ,lim ()0x f x x x f x x→+∞'=-+=,但lim ()x f x →+∞'不存在.(C)与(D)的反例同(A )的反例.0lim ()0x f x →+=,但0lim ()10x f x →+'=≠,(C )不成立;0lim ()10x f x →+'=≠,(D )也不成立.(A )、(C )、(D )都不对,故选(B ).方法2:证明(B )正确.设lim ()x f x →+∞'存在,记为A ,求证0A =.用反证法,设0A ≠.若0A >,则由保号性知,存在00x >,当0x x >时()2Af x '>,在区间0[,]x x 上对()f x 用拉格朗日中值定理知,有00000()()()()()(),.2Af x f x f x x f x x x x x ξξ'=+->+-<<,x →+∞,从而有()f x →+∞,与()f x 有界矛盾.类似可证若0A <亦矛盾.(4)设有三张不同平面的方程a i 1x +a i 2y +a i 3z =b i ,i =1,2,3,它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为( )【答案】B【考点】线性方程组有解和无解的判定【难易度】★★【详解】解析:由于方程组的系数矩阵与增广矩阵的秩都是23<(未知量的个数),所以方程组有无穷多解,应排除(A )三平面唯一交点(唯一解)(C )、(D )三平面没有公共交点. 故应选(B).(5)设1X 和2X 是任意两个相互独立的连续型随机变量,它们的概率密度分别为)(1x f 和)(2x f ,分布函数分别为)(1x F 和)(2x F ,则( )(A ))()(21x f x f +必为某一随机变量的概率密度. (B ))()(21x f x f 必为某一随机变量的概率密度. (C ))()(21x F x F +必为某一随机变量的分布函数. (D ))()(21x F x F 必为某一随机变量的分布函数. 【答案】D【考点】随机变量的分布函数的性质、连续型随机变量的概率密度的性质 【难易度】★★★【详解】本题涉及到的主要知识点:①若)(x f 为某一随机变量的概率密度,则必有⎰+∞∞-=1)(dx x f ;②若)(x F 为某一随机变量的分布函数,则必有)()0(;1)(,0)(00x F x F F F =+=+∞=-∞ 解析:方法1:(A )选项不可能,因为1212[()()]()()1121f x f x dx f x dx f x dx +∞+∞+∞-∞-∞-∞+=+=+=≠⎰⎰⎰也不能选(B ),因为可令121,101,01()()0,0,x x f x f x -<<<<⎧⎧==⎨⎨⎩⎩其他其他显然12()()f x f x ,均是均匀分布的概率密度.而12()()0f x f x =, 不满足12()()1f x f x dx +∞-∞=⎰条件.(C)当然也不正确,因为12lim[()()]1121x F x F x →+∞+=+=≠ 根据排除法,答案应选(D ).方法2:令12max(,)X X X =,显然X 也是一个随机变量.X 的分布函数为{}{}{}1212()max(,),F x P X x P X X x P X x X x =≤=≤=≤≤{}{}1212()()P X x P X x F x F x =≤≤=.所以答案应选(D ) 三、(本题满分6分)设函数)(x f 在0=x 的某邻域内具有一阶连续导数,且,0)0(,0)0(≠'≠f f 若)0()2()(f h bf h af -+在0→h 时是比h 高阶的无穷小,试确定b a ,的值.【考点】无穷小的比较,洛必达法则 【难易度】★★★【详解】解析:方法1:由题设条件知有0lim[()(2)(0)](1)(0)0h af h bf h f a b f →+-=+-=由于(0)0f ≠,所以10a b +-=. 又由洛必达法则,00()(2)(0)limlim(()2(2))(2)(0)h h af h bf h f af h bf h a b f h→→+-'''=+=+由题设,上式应等于0,从而又有20a b +=与10a b +-=联立解之,2,1a b ==-. 方法2:分别将(),(2)f h f h 按佩亚诺余项泰勒公式展开到()o h ,有1()(0)(0)()f h f f h o h '=++ 2(2)(0)2(0)()f h f f h o h '=++从而 3()(2)(0)(1)(0)(2)(0)()af h bf h f a b f a b f h o h '+-=+-+++ 由题设条件知,10,20,a b a b +-=+=所以2,1a b ==-.方法3:由题设条件,有0lim[()(2)(0)](1)(0)0h af h bf h f a b f →+-=+-=由于(0)0f ≠,所以10a b +-=.再将01lim [()(2)(0)]h af h bf h f h→+- 以代1a b =-入,并凑成导数定义形式,有000()(2)(0)(1)()(2)(0)0limlim()(0)()(0)(2)(0)lim[2]2h h h af h bf h f b f h bf h f h hf h f f h f f h f b b h h h→→→+--+-==---=-+(0)(0)2(0)1)(0),f bf bf b f ''''=-+=+(从而知2,1a b ==-. 四、(本题满分7分) 已知两曲线)(x f y =与t y xt d e arctan 02⎰-=在点)0,0(处的切线相同,写出此切线方程,并求极限)2(lim nnf n ∞→.【考点】积分上限的函数及其导数、平面曲线的切线、导数的概念 【难易度】★★★ 【详解】解析:由2arctan 0xt y e dt -=⎰知(0)0y =,2(arctan )21,011x y e y x-''=⋅=+() 因此过点(0,0)的切线方程为.x y =)(x f y =在点(0,0)处与上述曲线有相同的切线方程,于是(0)0,(0)1f f '==.2()(0)2lim ()2lim 2(0) 2.2n n f f n nf f nn→∞→∞-'=== 五、(本题满分7分) 计算二重积分{}y x Dy xd de 22,max ⎰⎰,其中}10,10),{(≤≤≤≤=y x y x D .【考点】二重积分的计算 【难易度】★★★ 【详解】解析:应先将{}22max ,x y e写成分块表达式.记{}{}12(,)01,0,(,)01,1D x y x y x D x y x x y =≤≤≤≤=≤≤≤≤于是有 {}2222max ,12(,);(,).x x y y ex y D e ex y D ⎧∈⎪=⎨∈⎪⎩从而 {}{}{}222222221212max ,max ,max ,x y xy xy x y DD D D D ed e d e d e d e d σσσσσ=+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰22111xx y dx e dy dy e dx =+⎰⎰⎰⎰221111(1)(1) 1.22x y e xdx e ydy e e e =+=-+-=-⎰⎰ 六、(本题满分8分)设函数)(x f 在),(+∞-∞内具有一阶连续导数,L 是上半平面)0(>y 内的有向分段光滑曲线,其起点为),,(b a 终点为),(d c .记y xy f y yx x xy f y y I L d ]1)([d )](1[1222-++=⎰, (1)证明曲线积分I 与路径L 无关;(2)当cd ab =时,求I 的值. 【考点】第二类曲线积分的计算 【难易度】★★★★【详解】解析:(1)记 2221(,)[1()],(,)[()1]xP x y y f xy Q x y y f xy y y=+=- 2211()(),()()Q P f xy xyf xy f xy xyf xy x y y y ∂∂''=+-=-++∂∂ (0)Q P y x y∂∂=>∂∂当 所以在上半平面0y >,该曲线积分与路径无关.(2)方法1:用折线法计算I .先从点(,)a b 到点(,),c b 再到点(,)c d .有2221[1()][()1]cd ab c I b f bx dx y f cy dy by =++-⎰⎰()]()c d a b c a c c bf bx dx cf cy dy b d b-=+++-⎰⎰经积分变量变换后, ()cd abc aI f t dt d b =-+⎰当ab cd =时,推得c aI d b=-.方法2:原函数法.2221[1()][()1]L xI y f xy dx y f xy dy y y=++-⎰2()()()()()LL L L ydx xdy xf xy ydx xdy d f xy d xy y y-=++=+⎰⎰⎰⎰ 由原函数法计算第二型曲线积分的公式(与定积分的牛顿—莱布尼茨公式类似),有(,)();(,)L c d x x c ad a b y y d b ==-⎰(,)()()()()()0,(,)Lc d f xy d xy F xy F cd F ab a b ==-=⎰其中()F u 为()f u 的一个原函数,即设()()F u f u '=.由此有c a I d b=-. 方法3:由于与路径无关,又由ab cd =的启发,取路径xy k =,其中k ab =.点(,)a b 与点(,)c d 都在此路径上.于是将kx y=代入之后, 22221[(1())()(()1)]da k kI y f k y f k dy y y y=+-+-⎰32222().dbd k k k k c ady b y y d b d b=-==-=-⎰ 七、(本题满分7分)(1)验证函数)()!3(!9!6!31)(3963+∞<<-∞++++++=x n x x x x x y n ΛΛ满足微分方程x e y y y =+'+'';(2)利用(1)的结果求幂级数)!3(30n x nn ∑∞=的和函数.【考点】自由项为指数函数的二阶常系数非齐次线性微分方程、简单幂级数的和函数的求法 【难易度】★★★★【详解】解析: (1) 369331()113(3)!(3)!n nn x x x x x y x n n ∞==+++++=+∑L L +!6!9!, 33313111113()(1)(3)!(3)!(3)!(31)!nn n n n n n n x x nx x y x n n n n --∞∞∞∞===='⎛⎫''=+=== ⎪-⎝⎭∑∑∑∑, 321(32)!n n x y n -∞=''=-∑从而 1()()()1!nx n x y x y x y x e n ∞='''++=+=∑ 说明30()(3)!n n x y x n ∞==∑是微分方程xy y y e '''++=的解,并且满足初始条件(0)1,(0)0.y y '==(2)微分方程xy y y e '''++=对应的齐次线性微分方程为0y y y '''++=,特征方程为012=++r r ,解得i r 2321±-=,所以齐次微分方程的通解为1212[]x y eC x C x -=+ 设非齐次线性微分方程的特解为x Ce y =*,则x Ce y ='*,x Ce y ="*,代入非齐次线性微分方程得:x x e Ce =3,解得31=C , 所以非齐次线性微分方程的通解为*2121[]3x x y y y e C x C e -=+=++. 从中找出满足初始条件(0)1,(0)0y y '==的解.为此,将初始条件代入通解中,得到111,3C +=1211023C -+=, 于是得到惟一的一组解:122,0.3C C ==从而得到满足微分方程x y y y e '''++=及初始条件(0)1,(0)0y y '==的解,只有一个,为22133x x y e x e -=+另一方面,由(1)已知30()(3)!n n x y x n ∞==∑也是微分方程x y y y e '''++=及初始条件(0)1,(0)0y y '==的解,由唯一性,所以级数321211().(3)!33xn x n x e x e x n ∞-=+=+-∞<<+∞∑八、(本题满分7分)设有一小山,取它的底面所在的平面为xOy 坐标面,其底部所占的区域为}75),{(22≤-+=xy y x y x D ,小山的高度函数为xy y x y x h +--=2275),(.(1)设),(00y x M 为区域D 上一点,问),(y x h 在该点沿平面上什么方向的方向导数最大?若记此方向导数的最大值为),(00y x g ,试写出),(00y x g 的表达式.(2)现欲利用此小山开展攀岩活动,为此需要在山脚寻找一上山坡度最大的点作为攀登的起点.也就是说,要在D 的边界线7522=-+xy y x 上找出使(1)中的),(y x g 达到最大值的点.试确定攀登起点的位置. 【考点】方向导数、梯度、多元函数的条件极值 【难易度】★★★★【详解】解析:(1)方向导数的最大值为梯度的模(){}()()0000000000,,,(,)2,2.max(,)x y x y x y grad x h y x x y ugrad x h l=--∂==∂00(,).x y =(2)命2(,)(,)f x y g x y ==22558x y xy +-,由题意,求f 在约束条件22750x y xy --+=下的最大值点.为此,命 2222(,,)558(75)F x y x y xy x y xy λλ=+-+--+则 108(2)0x F x y y x λ'=-+-令,108(2)0y F y x x y λ'=-+-令,22750F x y xy λ'=--+令.由第1、第2 两式相加可得 ()(2)0x y λ+-=. 从而得y x =-或2λ=,再分别讨论之.若2λ=,则解得1(,)x y = 或2(,)(x y =-- 若y x =-,则解得3(,)(5,5)x y =- 或 4(,)(5,5)x y =-于是得到如上4个可能极值点.将(,)i x y 记为(1,2,3,4)i M i =.由于1234()()150,()()450f M f M f M f M ==== 故点34(5555M M =-=-,)(,)可作为攀登起点.九、(本题满分6分)已知4阶方阵43214321,,,),,,,(αααααααα=A 均为4维列向量,其中432,,ααα线性无关,,2321ααα-=如果4321ααααβ+++=,求线性方程组β=Ax 的通解.【考点】线性方程组解的性质和解的结构、非齐次线性方程组的基础解系和通解 【难易度】★★★★【详解】解析:方法1:由234,,ααα线性无关,及123420,αααα=-+即1234,,,αααα线性相关,及1234βαααα=+++知[][][]12341234,,,()3,,,,r r A r A r ααααβααααβ====M故Ax β=有解,且其通解为k ξη*+,其中k ξ是对应齐次方程0Ax =的通解,η*是Ax β=的一个特解,因 123420,αααα=-+故 []123412341220,,,010αααααααα⎡⎤⎢⎥-⎢⎥=-+==⎢⎥⎢⎥⎣⎦故[]1,2,1,0Tξ=-是0Ax =的基础解系.又[]1234123411,,,11βαααααααα⎡⎤⎢⎥⎢⎥=+++=⎢⎥⎢⎥⎣⎦故[]1,1,1,1Tη*=是Ax β=的一个特解,故方程组的通解为[][]1,2,1,01,1,1,1TTk -+.(其中k 是任意常数)方法2:令[]1234,,,Tx x x x x =则线性非齐次方程为[]112233441234,,,x x x x x ααααααααβ+++==已知1234βαααα=+++,故11223344x x x x αααα+++=1234αααα+++将1232ααα=-代入上式,得12213344(23)()(1)0x x x x x ααα+-+-++-=由已知234,,ααα线性无关,上式成立当且仅当1213423010x x x x x +=⎧⎪-+=⎨⎪-=⎩ 取自由未知量3x k =,则方程组有解431321,,,23x x k x x k x k =====-+即方程组Ax β=有通解123410232310101x k x k k x k x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-+-⎢⎥⎢⎥⎢⎥⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦.(其中k 是任意常数) 十、(本题满分8分) 设B A ,为同阶方阵,(1)如果B A ,相似,试证B A ,的特征多项式相等. (2)举一个二阶方阵的例子说明(1)的逆命题不成立. (3)当B A ,均为实对称矩阵时,试证(1)的逆命题成立. 【考点】相似矩阵的概念、矩阵可相似对角化的充分必要条件 【难易度】★★★【详解】解析:(1)因A B :,由定义知,存在可逆阵P ,使得1P AP B -=,故1111()E B E P AP P P P AP P E A P λλλλ-----=-=-=-1P E A P E A λλ-=-=-故,A B 有相同的特征多项式.(2)取0001,0000A B ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,则有2,,E A E B A B λλλ-==-有相同的特征多项式,但A 不相似于B ,因为对任何的2阶可逆阵P ,均有11P AP P OP O B --==≠, 故(1)的逆命题不成立.(3)当,A B 都是实对称矩阵时,,A B 均能相似于对角阵,若,A B 有相同的特征多项式,则,A B 有相同的特征值(包含重数),,A B 将相似于同一个对角阵,设特征值为12,,,nλλλL 则有 12n A B λλλ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦::O 从而知A B :.(1)的逆命题成立. 十一、(本题满分7分) 设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=.,0,π0,2cos 21)(其他x x x f对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望. 【考点】独立重复试验、二项分布、随机变量的数字特征 【难易度】★★★【详解】解析:由于3311()cos 3222x P X f x dx dx ππππ+∞⎧⎫>===⎨⎬⎩⎭⎰⎰ 所以 1(4,)2Y B ~.2222111()()[()]()4(4) 5.222E Y D Y E Y npq np =+=+=⨯⨯+⨯=十二、(本题满分7分) 设总体X 的概率分布为其中)210(<<θθ是未知参数,利用总体X 的如下样本值 3,1,3,0,3,1,2,3,求θ的矩估计值和最大似然估计值. 【考点】矩估计法、最大似然估计法 【难易度】★★★【详解】解析:先求矩估计值22()012(1)23(12)34E X θθθθθθ=⨯+⨯-+⨯+⨯-=-1(31303123)28x =⨯+++++++=令()E X x =,即342θ-=. 解得的矩估计值为1.4θ∧=对于给定的样本值似然函数为624()4(1)(12)L θθθθ=--ln ()ln 46ln 2ln(1)4ln(12),L θθθθ=++-+- 2ln ()62862824112(1)(12)d L d θθθθθθθθθθ-+=--=----令ln ()0d L d θθ=解得1,2θ=12>不合题意,所以θ的最大似然估计值为θ∧=。

2002-数一真题、标准答案及解析

2002-数一真题、标准答案及解析

2002年全国硕士研究生入学统一考试 理工数学一试题详解及评析一、填空题 (1)2ln edxx x+∞=∫.【答】 1. 【详解】()2101 1.ln ln |e edx x xx +∞+∞=−=−−=∫(2)已知函数()y y x =由方程2610ye xy x ++−=确定,则()''0y = . 【答】 -2. 【详解】将方程两边对x 求导,视y 为x 的函数,得''6620,y e y xy y x +++= (1) 再对x 求导,y ,'y 均视为x 的函数,得 ()2''''''61220,yye y ey xy y ++++= (2)当0x =时,由原方程知0,y =再以0x =,0y =代入(1)式中得()'0y =0,再代入(2)式中得()''0y =-2.(3)微分方程'''20yy y +=满足初始条件'011,2||x x y y ====的特解是 . 【答】 1y x =+21y x =+【详解】 令'y p =,则''',dy dp dp dy dpy p dx dx dy dx dy===== 原方程可化为20dyypp dp+= 于是 0p =或0dyypp dp+= 前者显然不满足初始条件'12|x y==,因此必有0dy yp p dp +=,积分得1,py C =即1.dyy C dx = 由初始条件'0011,2||x x y y ====得112C =,于是1,2dy y dx = 即 12ydy =积分得22.y x C =+ 再由初始条件01|x y==,得21C =.故所求特解为21y x =+ 或1y x =+(4)已知实二次型()()222123123121323,,444f x x x a x x x x xx x x x =+++++经正文变换x Py =,可化标准形216,f y =则a = .【答】 2. 【详解1】二次型()()222123123121323,,444f x x x a x x x x x x x x x =+++++所对应矩阵为2222,22a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦标准形216f y =所对应矩阵为 600000.000B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦根据题设知,A B 为相似矩阵,所以,A B 的特征值相同,可见A 的三个特征值为6,0,0.而()()2222222 42a E A a aa a λλλλλλ−−−−=−−−−−−=−+−−⎡⎤⎡⎤⎣⎦⎣⎦可见46,20,a a +=−= 故有a =2【详解2】 由,A B 为相似矩阵知,对应特征多项式相同,即 E A E B λλ−=−于是有226002200,2200aa a λλλλλλ−−−−−−−=−−− 即()()()()()232232232426334426,a a a a a a λλλλλλλλλ−+−−=−⎡⎤⎡⎤⎣⎦⎣⎦−+−−+−=−比较同次幂的系数知 a =2 (5)设随机变量X 服从正态分布()()2,0N µσσ>;且二次方程240yy X ++=无实根的概率为12,则µ= . 【答】 4 【详解】二次方程240y y X ++=无实根的充要条件是40X −<.故由条件知有{}142P X >=于是{}{}14414124411X P X P X P X P Y P µµσσµµµσσσ−−⎧⎫=>=−≤=−≤⎨⎬⎩⎭−−−⎧⎫⎛⎞⎧⎫=−≤=−Φ⎨⎬⎨⎬⎜⎟⎩⎭⎝⎠⎩⎭()2212t xx eπ−−∞=−Φ=∫于是 4140 4.2µµµσσ−−⎛⎞Φ=⇒=⇒=⎜⎟⎝⎠二、选择题(1) 考虑二元函数(),f x y 的下面4条性质:①(),f x y 在点()00,x y 处连续;②(),f x y 在点()00,x y 处的两个偏导数连续; ③(),f x y 在点()00,x y 处可微;④(),f x y 在点()00,x y 处的两个偏导数存在. 若用“P Q ⇒”表示可由性质P 推出Q ,则有(A )②⇒③⇒① (B )③⇒②⇒① (C )③⇒④⇒① (D )③⇒①⇒④【 】【答】 应选(A )【详解】 若(),f x y 在点()00,x y 处的两个偏导数连续,则(),f x y 在点()00,x y 处可微,而可微又必联系,因此有②⇒③⇒①,故应选(A ).(2)设()01,2,3,n u n ≠=L 且lim 1,n n n u →∞=则级数()111111n n n n u u ∞+=⎛⎞−+⎜⎟+⎝⎠∑ 发散.(A)发散 (B )绝对收敛(C )条件收敛 (D )收敛性根据所给条件不能判定.【 】【答】 应选(C ) 【详解】 lim1,n nnu →∞=知11limlim 0,n n n nnu n u →∞→∞=⋅=又原级数的前n 项部分和为()()1122334111111111111111 1n n nn n n S u u u u u u u u u u ++++⎛⎞⎛⎞⎛⎞⎛⎞=+−+++++−+⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠⎝⎠=+−L 可见有11lim n n S u →∞=,因此原级数收敛,排除(A ),(D ),再考虑()1111111111n n n n n n n u u u u ∞∞+==⎛⎞⎛⎞−+=+⎜⎟⎜⎟++⎝⎠⎝⎠∑∑因为 1lim lim1,1n n n n u n u n →∞→∞== 1111lim lim 1,11n n n n u n u n +→∞→∞++==+ 所以有11111,,n n n n u u ∞∞==+∑∑均发散,从而1111n nn u u ∞=⎛⎞+⎜⎟+⎝⎠∑也发散,故级数()111111n n n n u u ∞+=⎛⎞−+⎜⎟+⎝⎠∑条件收敛,应选(C ) (3)设函数()y f x =在()0,+∞内有界且可导,则 (A ) 当()lim 0x f x →+∞=时,必有()'lim 0x fx →+∞=(B ) ()'lim x fx →+∞存在时,必有()'lim0x f x →+∞= (C ) 当()0lim 0x f x +→=时,必有()'lim 0x f x +→=(D ) ()0lim 0x f x +→=存在时,必有()'lim 0x f x +→=【 】【答】 应选(B ) 【详解1】设()2sin ,x f x x=则()0lim 0x f x +→=,所以()f x 在()0,+∞内有界,由于()2222'2222cos sin sin 2cos x x x x f x x x x−==−可见()f x 在()0,+∞内可导,但()'lim x fx →+∞不存在,()'0lim10x f x +→=≠,排除(A ),(D ) 又设()sin f x x =,则()f x 在()0,+∞内有界且可导,()0lim 0x f x +→= 但 ()'lim limcos 10x x f x x ++→→==≠ 进一步排除(C ),故应选(B ). 【详解2】直接证明(B )正确,用反正法,由题设()'lim x fx →+∞存在,设()'lim 0,x f x A →+∞=≠不妨设0A >,则对于2Aε=>0,存在0X >,当x X >时,有 ()'.2Af x A ε−<=即 ()'222A A A A f x A =−<<+,可见()'2A f x >,在区间[],X x 上应用拉格朗日中值定理,有()()()()()()''2A f x f X f x X f X x X ζ=+−>+−于是 ,与题设()f x 在()0,+∞内有界矛盾,故()'lim 0x fx →+∞=(4)设有三张不同平面的方程123,1,2,3,i i i i a x a y a z b i ++==它们所组成的线性方程组的系数矩阵与增广矩阵的秩都是2,则这三张平面可能的位置关系为【 】【答】 应选(B )【详解】 由题设,线性方程组111213121222323132333a x a y a z b a x a y a z b a x a y a z b++=⎧⎪++=⎨⎪++=⎩ 系数矩阵和增广矩阵的秩相等且为2,由非齐次线性方程组解的判定定理知,此方程有无穷多组解,即三平面有无穷多个交点,对照四个选项,(A )只有一个交点;(C ),(D )无交点,因此只有(B )复合要求.(5)设1X 和2X 是任意两个相互独立的连续型随机变量,它们的概率密度分别为()1f x 和()2f x ,分布函数分别为()1F x 和()2F x ,则(A )()()12f x f x +必为某一随机变量的概率密度. (B )()()12f x f x 必为某一随机变量的概率密度. (C )()()12F x F x +必为某一随机变量的分布函数 (D )()()12F x F x 必为某一随机变量的分布函数.【 】【答】 应选(D ) 【详解】 由于()()()()12122,21,f x f x dx F F +∞−∞+=≠+∞++∞=≠⎡⎤⎣⎦∫因此可先排除(A ),(C ) 又设()1,00, 0x e x f x x −⎧>=⎨≤⎩ ,()222,00, 0x e x f x x −⎧>=⎨≤⎩则 ()()3122,00, 0x e x f x f x x −⎧>=⎨≤⎩显然不满足概率密度函数的要求,进一步排除(B ),故应选(D ). 事实上,可检验()()12F x F x 却是满足分布函数的三个条件.三、设函数()f x 在0x =的某邻域内具有一阶连续导数,且()()'00,00,f f≠≠若()()()20af h bf h f +−在0h →时是比h 高阶的无穷小,试确定,a b 的值.【详解1】 由题设,知()()()020lim0h af h bf h f h→+−=于是()()()()()0lim 20100.h af h bf h f a b f →+−=+−=⎡⎤⎣⎦ 由于()00,f ≠故必有10a b +−=又由洛比达法则,有()()()()()()()'''0020220lim lim 201h h af h bf h f af h bf h a b f h →→+−+===+因()'00,f≠故20,a b +=于是可解得 2,1a b ==− 【详解2】 由题设条件()()()()()()()()()()00200lim020000 lim 2h h af h bf h f ha f h fb f h f af bf f h h h →→+−=⎧⎫−−⎡⎤⎡⎤+−⎪⎪⎣⎦⎣⎦=++⎨⎬⎪⎪⎩⎭若上式右端第3项分子不为零,则上式得极限不存在,与左边为零矛盾,所以()()()()()000100af bf f a b f +−=+−=从而10a b +−=,于是原式可化为()()()()()()()()()()()00'''200lim020 lim 2020 20h h af h bf h f h a f h f b f h f h h af bf a b f →→+−=⎧⎫−−⎡⎤⎡⎤⎪⎪⎣⎦⎣⎦=+⎨⎬⎪⎪⎩⎭=+=+ 有20a b +=, 解得2,1a b ==−四、已知两曲线()2arctan 0,xt y f x y e −==∫在点()0,0处的切线相同,写出此切线方程,并求极限2lim n nf n →∞⎛⎞⎜⎟⎝⎠【详解】 由已知条件得()00f =,且()()2arctan '201,1|x x ef x−===+故所求切线方程为,y x =则()()'202lim lim 220 2.2n n f f n nf f n n→∞→∞⎛⎞−⎜⎟⎛⎞⎝⎠=⋅==⎜⎟⎝⎠五、计算二重积分()22max ,,x y Dedxdy ∫∫其中(){},|01,01D x y x y =≤≤≤≤【详解】设(){}(){}12,|01,0,|01,1D x y x y x D x y x x y =≤≤≤≤=≤≤≤≤于是()()()2222221222221122max ,max ,max ,110111x y x y x y DD D xyx y x y D D x y e dxdy e dxdy edxdye dxdy e dxdy dx e dy dy e dx xe dx ye dy e =+=+=+=+=−∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫六、设函数()f x 在(),−∞+∞内具有一阶连续导数,L 是上半平面()0y >内的有向分段光滑曲线,其起点为(),a b ,终点为(),c d ,记()()222111Lx I y f xy dx y f xy dy y y⎡⎤⎡⎤=++−⎣⎦⎣⎦∫(1) 证明曲线积分I 与路径L 无关; (2) 当ab cd =时,求I 的值. 【详解】(1)因为()()()()2'2221111xy f xy f xy xyf xy x y y y f xy y y ⎧⎫∂⎡⎤−=−+⎨⎬⎣⎦∂⎩⎭⎧⎫∂⎡⎤=+⎨⎬⎣⎦∂⎩⎭在上半平面处成立,所以在上半平面内曲线积分I 与路径L 无关;(2)由于I 与路径无关,故可取积分路径L 为由点(),a b 到点(),c b 再到点(),c d 的折线段,于是有()()()()()()()222111 cd a b c d a b bc ad abbc ad abc I b f bx dx y f cy dy b y c a c c bf bx dx cf cy dy bd b c af t dt f t dtd b c af t dtd b ⎡⎤⎡⎤=++−⎣⎦⎣⎦−=+++−=−++=−+∫∫∫∫∫∫∫ 当ab cd =时,()0,adabf t dt =∫由此得c a Id b=−七、(1)验证函数()()()369313!6!9!3!nx x x x y x x n =++++++−∞<<+∞L L 满足微分方程''';x y y y e ++=(2) 利用(1)的结果求幂级数()303!nn x n ∞=∑的和函数.【详解】(1)因为()()()()369325831'1,3!6!9!3!,2!5!8!31!nn x x x x y x n x x x x y x n −=++++++=+++++−L L L L()()4732'',4!7!32!n x x x y x x n −=+++++−L L于是23'''1;2!3!x x x y y y x e ++=++++=L(2)对应齐次微分方程'''0y y y ++=的特征方程为210λλ++=特征根是1,21322i λ=−±,由于1a =不是特征根,可设非齐次微分方程的特解为 *xy Ae =将*y 代入方程'''y y y ++=xe 得1,3A =于是*13x y e = 故非齐次微分方程得通解为2212133cos sin 322x xx y e C e x C e x −−=++又显然()y x 满足初始条件()()'01,00.y y ==代入上式得 122,0.3C C == 故所求幂级数的各函数为()2123cos 332xx y e e x x −=+−∞<<+∞八、设有一小山,取它的底面所在的平面为xOy 坐标面,其底部所占的区域为(){}22,|75D x y x y xy =+−≤,小山的高底函数为()22,75h x y x y xy =−−+.(1)设()00,M x y 为区域D 上一点,问(),h x y 在该点沿平面上什么方向的方向导数最大?若记此方向导数的最大值为()00,g x y ,试写出()00,g x y 的表达式.(2)现欲利用此小山开展攀岩活动,为此需要在山脚寻找一上山度最大的点作为攀登的起点,也就是说,要在D 的边界线2275x y xy +−=上找出使(),g x y 达到最大值的点,试确定攀登起点的位置. 【详解】(1)根据梯度与方向导数的关系知,沿梯度方向导数值最大,且其值为()()()()()000000220000220000,22 22 558M g x y gradh y x i x y j y x x y x y x y ==−+−=−+−=+−(2)由题设,问题转化为求()00,g x y 220000558x y x y +−便起见,令()()222,,558f x y gx y x y xy ==+−,构造拉格朗日函数()()()22,,,558F x y f x y x y xy λλ=++−()()2210820 (1)10820 (2)750 Fx y y x x Fx y y x y Fx y xy λλλ∂=−+−=∂∂=−+−=∂∂=+−−=∂ (3) (1)与(2)相加得()()20.x y λ+−= 从而得,y x =−或2λ=若2λ=,由(1)得y x =,再由(3)得53,53x y =±=±若,y x =−由(3)得5,5x y =±=m 于是得到4个可能极值点:()()((12345,5;5,5;53,53;53,53.M M M M −−−−分别计算,有()()()()1234450;150.f M f M f M f M ====可见点1M 或2M 可作为攀登的起点.九、已知4阶方阵()1234,,,A αααα=1234,,,αααα均为4维列向量,其中234,,ααα线性无关,1232ααα=−,如果1234βαααα=+++,求线性方程组Ax β=的通解. 【详解1】令1234x x x x x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,则由,得 112233441234x x x x αααααααα+++=+++, 将1232ααα=−代入上式,整理后得()()()122133442310x x x x x ααα+−+−++−=由234,,ααα线性无关,知12134230010x x x x x +−=⎧⎪−+=⎨⎪−=⎩解此方程组,得0132,0110x k ⎧⎫⎧⎫⎪⎪⎪⎪−⎪⎪⎪⎪=+⎨⎬⎨⎬⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭⎩⎭其中k 为任意常数.【详解2】由234,,ααα线性无关和123420αααα=−+,知A 的秩为3,因此0Ax =的基础解系中只包含一个向量.由1234200αααα−++=,知1210⎧⎫⎪⎪−⎪⎪⎨⎬⎪⎪⎪⎪⎩⎭为齐次线性方程组0Ax =的一个解,所以其通解为12,10x k ⎧⎫⎪⎪−⎪⎪=⎨⎬⎪⎪⎪⎪⎩⎭k 为任意常数.再由()123412341111,,,1111A βαααααααα⎧⎫⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪=+++==⎨⎬⎨⎬⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭⎩⎭,知1111⎧⎫⎪⎪⎪⎪⎨⎬⎪⎪⎪⎪⎩⎭为非齐次线性方程组Ax β=的一个特解,于是Ax β=的通解为1112,1110x k ⎧⎫⎧⎫⎪⎪⎪⎪−⎪⎪⎪⎪=+⎨⎬⎨⎬⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭⎩⎭其中k 为任意常数.十、设,A B 为同阶方阵,(1)如果,A B 相似,试证,A B 的特征多项式相等; (2)举一个二阶方阵的例子说明(1)的逆命题不成立; (3)当,A B 均为实对称矩阵时,试证(1)的逆命题成立.【详解】(1)若,A B 相似,则存在可逆矩阵,P 使得1P AP B −=,故()111 E B E P AP P E A PP E A P E Aλλλλλ−−−−=−=−=−=−(2)令1111,0101A B ⎛⎞⎛⎞==⎜⎟⎜⎟⎝⎠⎝⎠则E A λ−=E B λ−=()21λ−但,A B 不相似,否则,存在可逆矩阵,P 使得11,B P AP P P E −−===矛盾.(3)由,A B 均为实对称矩阵知,,A B 均象素于对角阵,若,A B 得特征多项式相等,记特征多项式得根为1,,n λλL ,则有1111~,~n n A B λλλλλλ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦O O 即存在可逆矩阵,P Q ,使1111n P AP Q BQ λλλ−−⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦O 于是()()111.PQA PQB −−−=故,A B 为相似矩阵.十一、设随机变量X 的概率密度为()1cos ,0220, x x f x π⎧≤≤⎪=⎨⎪⎩其他,对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望. 【详解】 因为()333011331 1cos 2211sin 22|P X P X f x dxxdx x πππππ−∞−∞⎧⎫⎧⎫>=−≤=−⎨⎬⎨⎬⎩⎭⎩⎭=−=−=∫∫所以11~,42Y B ⎛⎞⎜⎟⎝⎠,从而 ()()()142,2111411,22E Y np D Y np p ==⋅=⎛⎞=−=⋅⋅−=⎜⎟⎝⎠故 ()()()222125E Y D Y E Y =+=+=⎡⎤⎣⎦十二、设总体X 的概率分布为X0 1 2 3P2θ()21θθ−2θ12θ−其中102θθ⎛⎞<<⎜⎟⎝⎠是未知参数,利用总体X 的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和最大似然估计值. 【详解】()()()220121231234E X θθθθθθ=×+×−+×+×−=−()13130312328x =×+++++++=令(),E X x =即 342,θ−= 得θ的矩估计值为14θ=对于给定的样本值,似然函数为(){}()()()()1234567824222463,1,3,0,3,1,2,3 2112 4112L P X X X X X X X X θθθθθθθθθ==========−−⎡⎤⎣⎦=−−则()()()ln ln 46ln 2ln 14ln 12,L θθθθ=++−+− 那么()()2ln 62862824112112d d θθθθθθθθθθ−+=−−=−−−− 令ln 0,d d θθ=解得 (1,21713,12θ=± 但(117122θ=>,不合题意,故θ的最大似然估计值(1713θ=12。

2002考研数一真题及解析

2002考研数一真题及解析

八【详解】(1)根据方向导数和梯度的定义,知方向导数的最大值是梯度 的模长,
(2) 命=,求在约束条件下的最大值点. 为此,构造拉格朗日函数 则
. 由第1、第2 两式相加可得 . 从而得或,再分别讨论之.
若,则解得 或 若,则解得 或 于是得到如上4个可能极值点. 将记为. 由于 故点可作为攀登起点.
五【详解】应先将写成分块表达式. 记 于是
从而
六【详解】(1) 记, 所以,. 故在上半平面(),该曲线积分与路径无关. (2)方法1:由该曲线积分与路径无关而只与端点有关所以用折线把两个端
点连接起来. 先从点到点 再到点. 有 经积分变量变换后,. 当时,推得.
方法2:原函数法. 由原函数法计算第二型曲线积分的公式(与定积分的牛顿—莱布尼
0,又由 得. 解联立方程组得,.
方法2:分别将按佩亚诺余项泰勒公式展开到,有 ,
从而 由题设条件知, 所以. 方法3:由题设条件,有 由于,所以. 再将代入,并凑成导数定义形式,有 从而 .
四【详解】由知,由变上限积分的求导公式得 所以
因此,过点的切线方程为 在点处与上述曲线有相同的切线方程, 于是.
方法2:证明(B)正确. 设存在,记,证明. 用反证法,若,则对于,存在,使当时,,即 由此可知,有界且大于.在区间上应用拉格朗日中值定理,有
从而,与题设有界矛盾.类似可证当时亦有矛盾. 故.
(4) 【答案】(B)
【详解】三张不同平面的方程分别为判断三个平面有无公共点即判 断方程组有无公共解,且方程组有多少公共解平面就有多少公共点,由 于方程组的系数矩阵与增广矩阵的秩都是(未知量的个数),所以方程组 有解且有无穷多解,故三个平面有无穷多个公共点,故应排除(A)三平 面唯一交点(即方程组只有唯一解)(C)、(D)三平面没有公共交点(即方程 组无解).

2001年全国硕士研究生入学统一考试数学一、二、三、四试题完整版附答案解析及评分标准

2001年全国硕士研究生入学统一考试数学一、二、三、四试题完整版附答案解析及评分标准

2001 年 • 第 3 页
不妨设 f (x) 0 ,则 f (x) 在 (1,1) 内严格单调递增,故 (x) 唯一.
……3 分
(2) 由泰勒公式得 f (x) f (0) f (0)x 1 f ( )x2, 2
(5) 设随机变量 X 的方差为 2,则根据切比雪夫不等式有估计 P{ X E(X ) 2} 1 . 2
二、选择题:(本题共 5 小题,每小题 3 分,满分 15 分)
(1) 设函数 f (x) 在定义域内可导, y f (x) 的图形如右图所示,
则导函数 y f (x) 的图形为
(D)
(2)
设函数
f
(x, y) 在点 (0, 0) 附近有定义,且
f
x
(0,
0)
3,
f y(0,0) 1,则
(C)
(A) dz |(0,0) 3dx dy
(B) 曲面 z f (x, y) 在点 (0, 0, f (0, 0)) 的法向量为{3,1,1}
(C)
曲线
z y
f 0
x,
y 在点(0,0,
(2) lim (x) 1 .
x0
2
证法一:(1) 任给非零 x (1,1) ,由拉格朗日中值定理得
f (x) f (0) xf ( (x)x) (0 (x) 1) .
……1 分
因为 f (x) 在 (1,1) 内连续且 f (x) 0 ,所以 f (x) 在 (1,1) 内不变号.
n1 2n 1
n0 2n 1
n1 2n 1
n1 2n 1
1
n1
(1)n 2 1 4n2
x2n ,
x [1,1] ,
……6 分

2002年全国考研数学一真题

2002年全国考研数学一真题
第 7 页 共 14 页
(5)【分析】
设 事 件 A 表 示 “ 二 次 方 程 y 2 4 y X 0 无 实 根 ” , 则
A {16 4X 0} {X 4}. 依题意,有 而 即 二、选择题 (1)【分析】 这是讨论函数 f (x, y) 的连续性,可偏导性 ,可微性及偏导数的连续 1 P( A) P{X 4} . 2 4 P{X 4} 1 P{X 4} 1( , 1( 4
1
u 再考察取绝对值后的级数 ( 1 1 ) .注意 n un1 n 1 un 1 发散 1 1 发散.因此选(C). ) n ( u un1 n1 n 1 n (3)【分析】


1 u n 1 n n 1 n 2, 1 u n u n 1 n 1 n
=
.
二、选择题(本题共 5 小题,每小题 3 分,满分 15 分.每小题给出的四个选项中,只有一个符合题目 要求,把所选项前的字母填在题后的括号内) (1)考虑二元函数 f ( x, y) 的四条性质:(
)
① f ( x, y) 在点( x0 , y0 ) 处连续, ② f ( x, y) 在点( x0 , y0 ) 处的一阶偏导数连续, ③ f ( x, y) 在点( x0 , y0 ) 处可微, ④ f ( x, y) 在点( x0 , y0 ) 处的一阶偏导数存在. 则有: (A)② ③ ① (C)③ ④ ① (2)设 u n 0 ,且 lim
代入方程得 yP
dP P
dP
dy
P 2 0 ,即 y
dP
dy
P 0 (或 P 0 ,但其不满足初始条件 y '
x0

2002考研数一真题解析

2002考研数一真题解析

P1AP
0
0
,即
淘宝店铺:光速考研工作室
6 0 0 A 0 0 0
0 0 0 相似矩阵具有相同的特征值,知 0 是 A 的特征值,根据特征值的定义,有 0E A A 0
a22
a4 2 2
A 2 a 2 把第2,3列加到第1列 a 4 a 2
22a
a4 2 a
12 2
12 2
提取第1列 (a
解之得, y2 x C2, y x C2 .以 y x0 1 代入,得1 C2 ,所以应取“+”号
且 C2 1. 于是特解是 y x 1 .
方法 2:将
yy
y2
0 改写为 ( yy) 0 ,从而得
yy C1 .
以初始条件
y(0) 1, y(0)
1 2




1
1 2
(2) lim F (x) 0, lim F (x) 1; (3) F (x) 右连续.
x
x
我们可以用以上的充要条件去判断各个选项,也可以用随机变量的定义直接推导.
【详解】方法 1:
(A)选项不可能,因为
[ f1(x) f2 (x)]dx f1(x)dx f2 (x)dx 11 2 1
n1
un un1
淘宝店铺:光速考研工作室
淘宝店铺:光速考研工作室
Sn
1 ( u1
1 u2
)( 1 u2
1 u3
)
( 1 u3
1 u4
)
(1)n1( 1 un
1 )
un1
1 u1
(1)n1 1 un1
n 由 lim
u n n
1 0 知,当 n 充分大时, un

2002年全国硕士研究生入学统一考试数一试题及答案

2002年全国硕士研究生入学统一考试数一试题及答案

2002年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)⎰∞+exx dx2ln = _____________.(2)已知2e 610yxy x ++-=,则(0)y ''=_____________. (3)02='+''y y y 满足初始条件1(0)1,(0)2y y '==的特解是_____________. (4)已知实二次型323121232221321444)(),,(x x x x x x x x x a x x x f +++++=经正交变换可化为标准型216y f =,则a =_____________.(5)设随机变量),(~2σμN X ,且二次方程042=++X y y 无实根的概率为0.5,则μ=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)考虑二元函数),(y x f 的四条性质:①),(y x f 在点),(00y x 处连续, ②),(y x f 在点),(00y x 处的一阶偏导数连续, ③),(y x f 在点),(00y x 处可微, ④),(y x f 在点),(00y x 处的一阶偏导数存在. 则有:(A)②⇒③⇒① (B)③⇒②⇒① (C)③⇒④⇒①(D)③⇒①⇒④(2)设0≠n u ,且1lim=∞→nn u n ,则级数)11()1(11+++-∑n n n u u 为 (A)发散(B)绝对收敛(C)条件收敛(D)收敛性不能判定.(3)设函数)(x f 在+R 上有界且可导,则 (A)当0)(lim =+∞→x f x 时,必有0)(lim ='+∞→x f x(B)当)(lim x f x '+∞→存在时,必有0)(lim ='+∞→x f x(C) 当0)(lim 0=+→x f x 时,必有0)(lim 0='+→x f x (D)当)(lim 0x f x '+→存在时,必有0)(lim 0='+→x f x .(4)设有三张不同平面,其方程为i i i i d z c y b x a =++(3,2,1=i )它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为(5)设X 和Y 是相互独立的连续型随机变量,它们的密度函数分别为)(x f X 和)(y f Y ,分布函数分别为)(x F X 和)(y F Y ,则(A))(x f X +)(y f Y 必为密度函数 (B) )(x f X )(y f Y 必为密度函数 (C))(x F X +)(y F Y 必为某一随机变量的分布函数 (D) )(x F X )(y F Y 必为某一随机变量的分布函数.四、(本题满分7分)已知两曲线)(x f y =与2arctan 0ex t y dt -=⎰在点(0,0)处的切线相同.求此切线的方程,并求极限)2(lim nnf n ∞→.五、(本题满分7分) 计算二重积分22max{,}e x y Ddxdy ⎰⎰,其中}10,10|),{(≤≤≤≤=y x y x D .六、(本题满分8分)设函数)(x f 在R 上具有一阶连续导数,L 是上半平面(y >0)内的有向分段光滑曲线,起点为(b a ,),终点为(d c ,).记dy xy f y y x dx xy f y y I ]1)([)](1[1222-++=⎰, (1)证明曲线积分I 与路径L 无关.(2)当cd ab =时,求I 的值.七、(本题满分7分)(1)验证函数∑∞==03)!3()(n n n x x y (+∞<<∞-x )满足微分方程e xy y y '''++=.(2)求幂级数∑∞==03)!3()(n nn x x y 的和函数.八、(本题满分7分)设有一小山,取它的底面所在的平面为xoy 面,其底部所占的区域为}75|),{(22≤-+=xy y x y x D ,小山的高度函数为),(y x h xy y x +--=2275.(1)设),(00y x M 为区域D 上一点,问),(y x h 在该点沿平面上何方向的方向导数最大?若此方向的方向导数为),(00y x g ,写出),(00y x g 的表达式.(2)现欲利用此小山开展攀岩活动,为此需要在山脚下寻找一山坡最大的点作为攀登的起点.也就是说要在D 的边界线上找出使(1)中),(y x g 达到最大值的点.试确定攀登起点的位置.九、(本题满分6分)已知四阶方阵1234(,,,)=A αααα, 1234,,,αααα均为四维列向量,其中234,,ααα线性无关,1232=-ααα.若1234=+++βαααα,求线性方程组x =A β的通解.十、(本题满分8分) 设,A B 为同阶方阵,(1)若,A B 相似,证明,A B 的特征多项式相等. (2)举一个二阶方阵的例子说明(1)的逆命题不成立. (3)当,A B 为实对称矩阵时,证明(1)的逆命题成立.十一、(本题满分7分)设维随机变量X 的概率密度为()f x= 1cos 0220 xx x≤≤其它对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望.十二、(本题满分7分) 设总体的概率分布为其中θ(02θ<<)是未知参数,利用总体X 的如下样本值 3,1,3,0,3,1,2,3.求θ的矩估计和最大似然估计值.2002年考研数学一试题答案与解析一、填空题(1)【分析】 原式2ln 11.ln ln eed x x x+∞+∞==-=⎰(2)【分析】 方程两边对x 两次求导得'6'620,y e y xy y x +++=① 2'''6''12'20.y y e y e y xy y ++++=②以0x =代入原方程得0y =,以0x y ==代入①得'0,y =,再以'0x y y ===代入②得''(0) 2.y =-(3)【分析】 这是二阶的可降阶微分方程.令'()y P y =(以y 为自变量),则'''.dy dP dPy P dx dx dy=== 代入方程得 20dP yPP dy +=,即0dP y P dy+=(或0P =,但其不满足初始条件01'2x y ==). 分离变量得 0,dP dyP y+= 积分得 ln ln ',P y C +=即1C P y=(0P =对应10C =); 由0x =时11,',2y P y ===得11.2C =于是1',2,2y P ydy dx y===积分得22y x C =+.又由01x y ==得21,C =所求特解为y =(4)【分析】 因为二次型T x Ax 经正交变换化为标准型时,标准形中平方项的系数就是二次型矩阵A 的特征值,所以6,0,0是A 的特征值.又因ii i a λ=∑∑,故600, 2.a a a a ++=++⇒=(5)【分析】 设事件A 表示“二次方程042=++X y y 无实根”,则{1640}{A X X =-<=> 4}.依题意,有1(){4}.2P A P X =>=而 4{4}1{4}1(),P X P X μΦσ->=-≤=-即414141(),(),0. 4.22μμμΦΦμσσσ----===⇒=二、选择题(1)【分析】 这是讨论函数(,)f x y 的连续性,可偏导性,可微性及偏导数的连续性之间的关系.我们知道,(,)f x y 的两个偏导数连续是可微的充分条件,若(,)f x y 可微则必连续,故选(A ).(2)【分析】 由1lim 101n n un n →+∞=>⇒充分大时即,N n N ∃>时10nu >,且1lim0,n n u →+∞=不妨认为,0,n n u ∀>因而所考虑级数是交错级数,但不能保证1n u 的单调性.按定义考察部分和111111111111(1)()(1)(1)nn nk k k n k k k k k k k S u u u u +++===++=-+=-+-∑∑∑ 1111111(1)11(1)1(1)(),k n nn l k l k l n n u u u u u ++==+--=-+-=+→→+∞∑∑⇒原级数收敛.再考察取绝对值后的级数1111()n n n u u ∞=++∑.注意111112,11n n n n u u n n n u u n n++++=+⋅→+11n n ∞=∑发散⇒1111()n n n u u ∞=++∑发散.因此选(C ).(3)【分析】 证明(B )对:反证法.假设lim ()0x f x a →+∞'=≠,则由拉格朗日中值定理,(2)()'()()f x f x f x x ξ-=→∞→+∞(当x →+∞时,ξ→+∞,因为2x x ξ<<);但这与(2)()(2)()2f x f x f x f x M -≤+≤矛盾(()).f x M ≤(4)【分析】 因为()()23r A r A ==<,说明方程组有无穷多解,所以三个平面有公共交点且不唯一,因此应选(B ).(A )表示方程组有唯一解,其充要条件是()() 3.r A r A ==(C )中三个平面没有公共交点,即方程组无解,又因三个平面中任两个都不行,故()2r A =和()3r A =,且A 中任两个平行向量都线性无关.类似地,(D )中有两个平面平行,故()2r A =,()3r A =,且A 中有两个平行向量共线.(5)【分析】 首先可以否定选项(A )与(C ),因121212[()()]()()21,()()112 1.f x f x dx f x dx f x dx F F +∞+∞+∞-∞-∞-∞+=+=≠+∞++∞=+=≠⎰⎰⎰对于选项(B ),若121,21,1,01,()()0,0,x x f x f x -<<-<<⎧⎧==⎨⎨⎩⎩其他,其他,则对任何(,),x ∈-∞+∞12()()0f x f x ≡,12()()01,f x f x dx +∞-∞=≠⎰因此也应否定(C ),综上分析,用排除法应选(D ).进一步分析可知,若令12max(,)X X X =,而~(),1,2,i i X f x i =则X 的分布函数()F x 恰是12()().F x F x1212(){max(,)}{,}F x P X X x P X x X x =≤=≤≤1212{}{}()().P X x P X x F x F x =≤≤=三、【解】 用洛必达法则.由题设条件知lim[()(2)(0)](1)(0).h af h bf h f a b f →+-=+-由于(0)0f '≠,故必有10.a b +-= 又由洛必达法则00()(2)(0)'()2'(2)limlim1h h af h bf h f af h bf h h →→+-+= (2)'(0)0,a b f =+=及(0)0f '≠,则有20a b +=.综上,得2, 1.a b ==-四、【解】 由已知条件得(0)0,f =22arctan arctan 02'(0)()'1,1xx t xx x e f e dt x --=====+⎰故所求切线方程为y x =.由导数定义及数列极限与函数极限的关系可得02()(0)2()(0)lim ()2lim 2lim 2'(0) 2.2n n x f f f x f n nf f n xn→∞→∞→--==== 五、【分析与求解】 D 是正方形区域如图.因在D 上被积函数分块表示2222,,max{,}(,),,,x x y x y x y D y x y ⎧≥⎪=∈⎨≤⎪⎩于是要用分块积分法,用y x =将D 分成两块:1212,{},{}.D D D D D y x D D y x ==≤=≥U I I⇒I 222212max{,}max{,}xy xy D D e dxdy e dxdy =+⎰⎰⎰⎰2221212x y x D D D e dxdy e dxdy e dxdy =+=⎰⎰⎰⎰⎰⎰(D 关于y x =对称)2102xx dx e dy =⎰⎰(选择积分顺序)221102 1.x xxe dx e e ===-⎰六、【分析与求解】 (1)易知Pdx Qdy +∃原函数,2211()()()()()x Pdx Qdy dx yf xy dx xf xy dy dy ydx xdy f xy ydx xdy y y y+=++-=-++ 0()()()[()].xy x xd f xy d xy d f t dt y y =+=+⎰⇒在0y >上Pdx Qdy +∃原函数,即0(,)()xy xu x y f t dt y=+⎰.⇒积分I 在0y >与路径无关.(2)因找到了原函数,立即可得(,)(,)(,).c d a b c a I u x y d b==- 七、【证明】与书上解答略有不同,参见数三2002第七题(1)因为幂级数3693()13!6!9!(3)!nx x x x y x n =++++++L L的收敛域是()x -∞<+∞,因而可在()x -∞<+∞上逐项求导数,得25831'()2!5!8!(31)!n x x x x y x n -=+++++-L L ,4732''()4!7!(32)!n x x x y x x n -=+++++-L L ,所以2'''12!!nx x x y y y x e n ++=+++++=L L ()x -∞<+∞.(2)与'''x y y y e ++=相应的齐次微分方程为'''0y y y ++=,其特征方程为210λλ++=,特征根为1,212λ=-.因此齐次微分方程的通解为212(cossin )22x Y e C x C x -=+. 设非齐次微分方程的特解为x y Ae *=,将y *代入方程'''x y y y e ++=可得13A =,即有13x y e *=.于是,方程通解为2121(sin )3xx y Y y e C x C x e -*=+=++. 当0x =时,有112121(0)1,23,0.311'(0)0.23y C C C y C ⎧==+⎪⎪⇒==⎨⎪==-+⎪⎩于是幂级数30(3)!n n x n ∞=∑的和函数为221()cos323x x y x e x e -=+()x -∞<+∞八、【分析与求解】 (1)由梯度向量的重要性质:函数),(y x h 在点M 处沿该点的梯度方向0000(,)(,)0000(,){,}{2,2}x y x y h hh x y x y y x x y∂∂==-+-+∂∂grad方向导数取最大值即00(,)(,)x y h x y grad 的模,00(,)g x y ⇒=(2)按题意,即求(,)g x y 求在条件22750x y xy +--=下的最大值点⇔22222(,)(2)(2)558g x y y x x y x y xy =-+-=+-在条件22750x y xy +--=下的最大值点. 这是求解条件最值问题,用拉格朗日乘子法.令拉格朗日函数2222(,,)558(75),L x y x y xy x y xy λλ=+-++--则有22108(2)0,108(2)0,750.Lx y x y x Ly x y x y L x y xy λλλ⎧∂=-+-=⎪∂⎪∂⎪=-+-=⎨∂⎪⎪∂=+--=⎪∂⎩ 解此方程组:将①式与②式相加得()(2)0.x y x y λ++=⇒=-或 2.λ=-若y x =-,则由③式得2375x =即5, 5.x y =±=m 若2,λ=-由①或②均得y x =,代入③式得275x =即x y =±=±于是得可能的条件极值点1234(5,5),(5,5),(M M M M ----现比较222(,)(,)558f x y g x y x y xy ==+-在这些点的函数值:1234()()450,()()150.f M f M f M f M ====因为实际问题存在最大值,而最大值又只可能在1234,,,M M M M 中取到.因此2(,)g x y 在12,M M 取到在D 的边界上的最大值,即12,M M 可作为攀登的起点.九、【解】 由432,,ααα线性无关及3212ααα-=知,向量组的秩1234(,,,)3r αααα=,即矩阵A 的秩为3.因此0Ax =的基础解系中只包含一个向量.那么由123412312(,,,)2010ααααααα⎡⎤⎢⎥-⎢⎥=-+=⎢⎥⎢⎥⎣⎦知,0Ax =的基础解系是(1,2,1,0).T -再由123412341111(,,,)1111A βαααααααα⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=+++==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦知,(1,1,1,1)T 是β=Ax 的一个特解.故β=Ax 的通解是1121,1101k ⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦其中k 为任意常数.十、【解】 (1)若,A B 相似,那么存在可逆矩阵P ,使1,P AP B -=故111E B E P AP P EP P AP λλλ----=-=-11().P E A P P E A P E A λλλ--=-=-=-(2)令0100,,0000A B ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦那么2.E A E B λλλ-==- 但,A B 不相似.否则,存在可逆矩阵P ,使10P AP B -==.从而100A P P -==,矛盾,亦可从()1,()0r A r B ==而知A 与B 不相似.(3)由,A B 均为实对称矩阵知,,A B 均相似于对角阵,若,A B 的特征多项式相等,记特征多项式的根为1,,,n λλL 则有A 相似于1,n λλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦O B 也相似于1.n λλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦O 即存在可逆矩阵,P Q ,使111.n P AP Q BQ λλ--⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦O 于是111()().PQ A PQ B ---=由1PQ -为可逆矩阵知,A 与B 相似.十一、【解】 由于311{}cos ,3222x P X dx πππ>==⎰依题意,Y 服从二项分布1(4,)2B ,则有2222111()()4(4) 5.222EY DY EY npq np =+=+=⨯⨯+⨯=十二.解 22012(1)23(12)34,EX θθθθθθ=⨯+⨯-+⨯+⨯-=-1(3).4EX θ=-θ的矩估计量为1ˆ(3),4X θ=-根据给定的样本观察值计算1(31303123)8x =+++++++ 2.=因此θ的矩估计值11ˆ(3).44x θ=-= 对于给定的样本值似然函数为624()4(1)(12),ln ()ln 46ln 2ln(1)4ln(12),L L θθθθθθθθ=--=++-+-2ln ()62824286.112(1)(12)d L d θθθθθθθθθθ-+=--=----令ln ()0d L d θθ=,得方程2121430θθ-+=,解得712θ-=(71,122θ+=>不合题意).于是θ的最大似然估计值为ˆθ=(范文素材和资料部分来自网络,供参考。

2022年考研数学一真题

2022年考研数学一真题

2022年全国硕士研究生入学统一考试数学(一)试题一、选择题:1~10小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.(1)已知()f x 满足1()lim1ln x f x x→=,则()(A )(1)0f =.(B )1lim ()0x f x →=.(C )(1)1f '=.(D )1lim ()1x f x →'=.(2)已知()y z xyf x =,且()f u 可导,2(ln ln )z zxy y y x x y∂∂+=-∂∂,则()(A )1(1),(1)02f f '==.(B )1(1)0,(1)2f f '==.(C )1(1),(1)12f f '==.(D )(1)0,(1)1f f '==.(3)设有数列{}n x ,其中n x 满足ππ22n x -,则()(A )若lim cos(sin )n n x →∞存在,则lim n n x →∞存在.(B )若lim sin(cos )n n x →∞存在,则n n x ∞→lim 存在.(C )若)cos(sin lim n n x ∞→存在,则n n x sin lim ∞→存在,但n n x ∞→lim 不一定存在.(D )若)sin(cos lim n n x ∞→存在,则n n x cos lim ∞→存在,但n n x ∞→lim 不一定存在.(4)已知110d 2(1cos )x I x x =+⎰,120ln(1)d 1cos x I x x +=+⎰,1302d 1sin xI x x =+⎰,则()(A )321I I I <<.(B )312I I I <<.(C )231I I I <<.(D )123I I I <<.(5)下列4个条件中,3阶矩阵A 可以相似对角化的一个充分但不必要条件为()(A )A 有3个不相等的特征值.(B )A 有3个线性无关的特征向量.(C )A 有3个两两线性无关的特征向量.(D )A 的属于不同特征值的特征向量相互正交.(6)设A ,B 均为n 阶矩阵,若方程组=0Ax 与x =0B 同解,则()(A )方程组⎛⎫=⎪⎝⎭0A O y E B 只有零解.(B )方程组⎛⎫=⎪⎝⎭0EA y OAB 只有零解.(C )方程组⎛⎫= ⎪⎝⎭0A B y O B 与⎛⎫=⎪⎝⎭0BA y OA 同解.(D )方程组⎛⎫=⎪⎝⎭0AB B y O A 与⎛⎫= ⎪⎝⎭0BA A y O B 同解.(7)设向量组123241111111λλλλλ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,,,αααα,若向量组123,,ααα与412,,ααα等价,则λ可取()(A )01{,}.(B )2λλλ∈≠-R {|,}.(C )12λλλλ∈≠-≠-{|,,}R .(D )1λλλ∈≠-{|,}R .(8)设随机变量(0,3)X U ,随机变量Y 服从参数为2的泊松分布,且X 与Y 协方差为1-,则(21)D X Y -+=()(A )1.(B )5.(C )9.(D )12.(9)设随机变量1234,,,X X X X 独立同分布,且1X 的4阶矩存在.设1(),1,2,3,4kk E X k μ==,则由切比雪夫不等式,对于任意的0ε>,有2211n i i P X n με=⎧⎫-⎨⎬⎩⎭∑ ()(A )2422n μμε-.(B2.(C )2212n μμε-.(D2.(10)设随机变量(0,1)X N ,在X x =条件下随机变量(,1)Y N x ,则X 与Y 的相关系数为()(A )14.(B )12.(C )33.(D )22.二、填空题:11~16小题,每小题5分,共30分.(11)函数22(,)2f x y x y =+在点(0,1)的最大方向导数为_______.(12)2e 1x =⎰_______.(13)当0,0x y 时,22e x yx k y ++ 恒成立,则k 的取值范围是_______.(14)已知级数1!e n nxn n n -=∞∑的收敛域为(),a +∞,则a =_______.(15)已知矩阵A 和-E A 可逆,其中E 为单位矩阵,若矩阵B 满足1---=(())E E A B A ,则-=_____B A .(16)设,,A B C 随机事件,且A 与B 互不相容,A 与C 互不相容,B 与C 相互独立.若1()()()3P A P B P C ===,则()________P B C A B C = .三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设函数()y x是微分方程2y y '=+的满足()13y =的解,求曲线()y y x =的渐近线.(18)(本题满分12分)已知平面区域{}(,)22D x y y x y =- ,计算222()d d Dx y I x y x y -=+⎰⎰.(19)(本题满分12分)L 是曲面∑:22241x y z ++=,0,0,0x y z 的边界,曲面方向朝上,已知曲线L 的方向和曲面的方向符合右手法则,求()()22cos d 2d 2sin d LI yzz x xz y xyz x z z=-+++⎰ (20)(本题满分12分)设()f x 在()-∞+∞,有二阶连续导数,证明:0()f x '' 的充要条件为对不同实数,a b ()1()d 2ba ab f f x x b a+-⎰ .(21)(本题满分12分)已知二次型3312311(,,)iji j f x x x ij x x===⋅∑∑.(1)写出123(,,)f x x x 对应的矩阵;(2)求正交变换x =Qy ,将123(,,)f x x x 化为标准形;(3)求123(,,)0f x x x =的解.(22)(本题满分12分)设12,,,n X X X 来自均值为θ的指数分布总体的简单随机样本,设12,,,m Y Y Y 来自均值为2θ的指数分布总体的简单随机样本,且两样本相互独立,其中()0θθ>为未知数,利用样本1212,,,,,,,n m X X X Y Y Y ,求θ的最大似然估计量θ∧,并求()D θ∧.。

2023年全国硕士研究生招生考试数学试题及参考答案(数学一)

2023年全国硕士研究生招生考试数学试题及参考答案(数学一)

2023年全国硕士研究生招生考试数学试题及参考答案(数学一)(科目代码:301)一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将所选选项前的字母填在答题卡指定位置。

1、曲线y=的渐近线方程为()A、y=x+eB、y= x+C、y=xD、y= x-2、若微分方程y+ay+by=0的解在(-,+)上有界,则()A、a<0 ,b>0B、a>0 ,b>0C、a=0 ,b>0D、a=0 ,b<03、设函数y=由确定,则()A、连续,不存在B、存在,在x=0处不连续C、连续,不存在D、存在,在x=0处不连续4、已知(n=1,2,……),若级数与均收敛,则“绝对收敛”是“绝对收敛”的()A、充分必要条件B、充分不必要条件C、必要不充分条件D、既不充分也不必要条件5、已知n阶矩阵A,B,C满足ABC=0,E为n阶单位矩阵,记矩阵,,的秩分别为,,,责()C、D、6、下列矩阵中不能相似于对角矩阵的是()A、B、C、D、7、已知向量= ,=,= ,= ,若既可由,线性表示,也可由线性表示,则=()A、k,k RB、k,k RC、k,k RD、k,k R8、设随机变量X服从参数为1的泊松分布,则E(|X-EX|)=( ) A、B、C、D、19、设,为来自总体N()的简单随机样本,,为来自总体N()的简单随机样本,且两样本相互独立,记=,=,=,=, 则()B、C、D、10、设 ,为来自总体N()的简单随机样本,其中是未知参数,若=为的无偏估计,则a=( )A、B、C、D、二、填空题:11~16小题,每小题5分,共30分。

11、x时,函数与是等价无穷小,则ab=12、曲面z=x+2y+在点(0,0,0)处的切平面方程为13、设为周期为2的周期函数,且=1-x,x,若=+ ,则=14、设连续函数满足=x,,则=15、已知向量 ,,,,,若(i=1,2,3),则16、设随机变量X与Y相互独立,且X Y则P{X=Y}=三、解答题:1722小题,共70分。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档