《三维设计》2014届高考数学一轮复习教学案(+解题训练)平面向量的概念及其线性运算(含解析)
(完整word版)高三一轮复习平面向量复习优秀教案
平面向量第一课时平面向量的概念【重要知识】知识点一:向量的概念既有大小又有方向的量叫向量。
注意数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小.知识点二:向量的表示法①用有向线段表示;②用字母a、b(黑体,印刷用)等表示;①用有向线段表示;③用有向线段的起点与终点字母:AB;④向量AB的大小――长度称为向量的模,记作|AB|.知识点三:有向线段(1)有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.(2)向量与有向线段的区别:①向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;②有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.知识点四:两个特殊的向量(1)零向量:长度为0的向量叫零向量,记作0. 0的方向是任意的.注意0与0的含义与书写区别.(2)单位向量:长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都只是限制了大小。
知识点五:平行向量、共线向量(1)定义:方向相同或相反的非零向量叫平行向量。
(2)规定:规定0与任一向量平行.(3)共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).说明:①综合(1)、(2)才是平行向量的完整定义;a b c平行,记作a∥b∥c②向量,,③平行向量可以在同一直线上,要区别于两平行线的位置关系;④共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.知识点六:相等向量(1) 定义长度相等且方向相同的向量叫相等向量.(2)向量a 与b 相等,记作a b =;(3)零向量与零向量相等;(4)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.【典型例题】1.下列命题正确的是 ( )A .向量AB 与BA 是两平行向量B .若b a 、都是单位向量,则a b =C .若AB =DC ,则A 、B 、C 、D 四点构成平行四边形D .两向量相等的充要条件是它们的始点、终点相同2.若b a 、都是单位向量,则||b a -的取值范围是 () A .(1,2) B .(0,2)C .[1,2] D .[0,2]3.在正六边形ABCDEF 中,O 为其中心,则2FA AB BO ED +++等于( )A .FE B.AC C DC D FC 4. 如图,在△ABC 中,AB = a , BC = b ,AD 为边BC 的中线,G 为△ABC 的重心,求:向量AG .5.已知△ABC 及一点O ,求证:O 为△ABC 的重心的充要条件是.O OC OB OA =++D A B C ab G·6.设平面内有四边形ABCD 和O 点,,,,OA a OB b OC c OD d ====,若a c b d +=+,则四边形ABCD 的形状为 。
《三维设计》2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)函数的图象(含解析)
Go the distance
D. 答案:(1)2 (2)D
函数图象的应用
典题导入 [例 3] (2011· 新课标全国卷)已知函数 y=f(x)的周期为 2,当 x∈[-1,1]时 f(x)=x2,那 么函数 y=f(x)的图象与函数 y=|lg x|的图象的交点共有( A.10 个 C.8 个 B.9 个 D.1 个 )
10≤x≤1, 所以 f(2-x)= 2-x1<x≤2,
Go the distance -10≤x≤1, 故 y=-f(2-x)= x-21<x≤2.
法二:当 x=0 时,-f(2-x)=-f(2)=-1;当 x=1 时,-f(2-x)=-f(1)=-1.观察各 选项,可知应选 B. [答案] B
a,a-b≤1, 6.(2011· 天津高考)对实数 a 和 b,定义运算“⊗”:a⊗b= 设函数 f(x) b,a-b>1.
=(x2-2)⊗(x-x2),x∈R.若函数 y=f(x)-c 的图象与 x 轴恰有两个公共点,则实数 c 的取值 范围是( )
3 A.(-∞,-2]∪ -1,2 3 B.(-∞,-2]∪ -1,-4
2 x -2x-1,x≥0, (3)y= 2 图象如图 3. x +2x-1,x<0.
由题悟法 画函数图象的一般方法 (1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数 的特征直接作出. (2)图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可 利用图象变换作出,但要注意变换顺序,对不能直接找到熟悉的基本函数的要先变形,并应 注意平移变换与伸缩变换的顺序对变换单位及解析式的影响. 以题试法 1.作出下列函数的图象: (1)y=|x-x2|; x+2 (2)y= . x-1
《三维设计》2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)直线、平面平行的判定及性质
Go the distance
若 M 在四边形 EFGH 及其内部运动”,则 M 满足什么条件时,有 MN∥平面 A1C1CA. 解:如图, ∵GN∥平面 AA1C1C, EG∥平面 AA1C1C, 又 GN ∩EG=G, ∴平面 EGN∥平面 AA1C1C. ∴当 M 在线段 EG 上运动时,恒有 MN∥平面 AA1C1C.
AB1C∩平面 ABCD=AC,所以 EF∥AC.又因为点 E 是 DA 的中点,所以 F 是 DC 的中点, 1 由中位线定理可得 EF= AC.又因为在正方体 ABCD-A1B1C1D1 中,AB=2,所以 AC=2 2. 2 所以 EF= 2. [答案] 2
本例条件变为“E 是 AD 中点,F,G,H,N 分别是 AA1,A1D1,DD1 与 D1C1 的中点,
解析:选 A 对于命题①,若 a∥b,b⊂α,则应有 a∥α 或 a⊂α,所以①不正确; 对于命题②,若 a∥b,a∥α,则应有 b∥α 或 b⊂α,因此②也不正确;
对于命题③,若 a∥α,b∥α,则应有 a∥b 或 a 与 b 相交或 a 与 b 异面,因此③也不正 确. 3.(教材习题改编)若一直线上有相异三个点 A,B,C 到平面 α 的距离相等,那么直线 l 与平面 α 的位置关系是( A.l∥α C.l 与 α 相交且不垂直 ) B.l⊥α D.l∥α 或 l⊂α
1.(2013· 浙江模拟)已知直线 m⊥平面 α,直线 n⊂平面 β,则下列命题正确的是( A.若 n∥α,则 α∥β C.若 m⊥n,则 α∥β 解析:选 D 由 m⊥α,α∥β,n⊂β⇒m⊥n. 2.平面 α∥平面 β 的一个充分条件是( A.存在一条直线 a,a∥α,a∥β B.存在一条直线 a,a⊂α,a∥β C.存在两条平行直线 a,b,a⊂α,b⊂β,a∥β,b∥α D.存在两条异面直线 a,b,a⊂α,b⊂β,a∥β,b∥α ) B.若 α⊥β,则 m∥n D.若 α∥β,则 m⊥n
《三维设计》2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)数列求和(含解析)
(1)求数列{an}的通项公式; (2)若数列{bn}满足:bn=an+(-1)nln an,求数列{bn}的前 2n 项和 S2n. [自主解答] (1)当 a1=3 时,不合题意; 当 a1=2 时,当且仅当 a2=6,a3=18 时,符合题意; 当 a1=10 时,不合题意. 因此 a1=2,a2=6,a3=18.所以公比 q=3,故 an=2· 3n 1.
-
(2)因为 bn=an+(-1)nln an=2· 3n 1+(-1)nln(2· 3n 1)=2· 3n 1+(-1)n(ln 2-ln 3)+(-
- - -
1)nnln 3, 所以 S2n=b1+b2+…+b2n=2(1+3+…+32n 1)+[-1+1-1+…+(-1)2n](ln 2-ln 3)
+ + + +1
由题悟法 用错位相减法求和应注意: (1)要善于识别题目类型,特别是等比数列公比为负数的情形; (2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出 “Sn-qSn”的表达式. (3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于 1 和不等于 1 两种情况求解.
Go the distance
以题试法 2.(2012· 济南模拟)已知等比数列{an}的前 n 项和为 Sn,且满足 Sn=3n+k. (1)求 k 的值及数列{an}的通项公式; an+1 (2)若数列{bn}满足 =(4+k)anbn,求数列{bn}的前 n 项和 Tn. 2 解:(1)当 n≥2 时,由 an=Sn-Sn-1=3n+k-3n 1-k=2· 3n 1,得等比数列{an}的公比 q
- -
=3,首项为 2. ∴a1=S1=3+k=2,∴k=-1,∴数列{an}的通项公式为 an=2· 3n 1.
《三维设计》2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)等差数列及其前n项和(含解析)
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校第二节等差数列及其前n 项和[知识能否忆起]一、等差数列的有关概念1.定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).2.等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.二、等差数列的有关公式 1.通项公式:a n =a 1+(n -1)d . 2.前n 项和公式:S n =na 1+n (n -1)2d =(a 1+a n )n2. 三、等差数列的性质1.若m ,n ,p ,q ∈N *,且m +n =p +q ,{a n }为等差数列,则a m +a n =a p +a q . 2.在等差数列{a n }中,a k ,a 2k ,a 3k ,a 4k ,…仍为等差数列,公差为kd . 3.若{a n }为等差数列,则S n ,S 2n -S n ,S 3n -S 2n ,…仍为等差数列,公差为n 2d . 4.等差数列的增减性:d >0时为递增数列,且当a 1<0时前n 项和S n 有最小值.d <0时为递减数列,且当a 1>0时前n 项和S n 有最大值.5.等差数列{a n }的首项是a 1,公差为d .若其前n 项之和可以写成S n =An 2+Bn ,则A =d 2,B =a 1-d2,当d ≠0时它表示二次函数,数列{a n }的前n 项和S n =An 2+Bn 是{a n }成等差数列的充要条件.[小题能否全取]1.(2012·福建高考)等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1 B .2 C .3D .4解析:选B 法一:设等差数列{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧2a 1+4d =10,a 1+3d =7.解得⎩⎪⎨⎪⎧a 1=1,d =2.故d =2.法二:∵在等差数列{a n }中,a 1+a 5=2a 3=10,∴a 3=5. 又a 4=7,∴公差d =7-5=2.2.(教材习题改编)在等差数列{a n }中,a 2+a 6=3π2,则sin ⎝⎛⎭⎫2a 4-π3=( ) A.32B.12 C .-32D .-12解析:选D ∵a 2+a 6=3π2,∴2a 4=3π2.∴sin ⎝⎛⎭⎫2a 4-π3=sin ⎝⎛⎭⎫3π2-π3=-cos π3=-12. 3.(2012·辽宁高考)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( ) A .58 B .88 C .143D .176解析:选B S 11=11(a 1+a 11)2=11(a 4+a 8)2=88.4.在数列{a n }中,若a 1=1,a n +1=a n +2(n ≥1),则该数列的通项a n =________. 解析:由a n +1=a n +2知{a n }为等差数列其公差为2. 故a n =1+(n -1)×2=2n -1. 答案:2n -15.(2012·北京高考)已知{a n }为等差数列,S n 为其前n 项和,若a 1=12,S 2=a 3,则a 2=________,S n =________.解析:设{a n }的公差为d ,由S 2=a 3知,a 1+a 2=a 3,即2a 1+d =a 1+2d , 又a 1=12,所以d =12,故a 2=a 1+d =1,S n =na 1+12n (n -1)d =12n +12(n 2-n )×12=14n 2+14n .答案:1 14n 2+14n1.与前n 项和有关的三类问题(1)知三求二:已知a 1、d 、n 、a n 、S n 中的任意三个,即可求得其余两个,这体现了方程思想.(2)S n =d2n 2+⎝⎛⎭⎫a 1-d 2n =An 2+Bn ⇒d =2A . (3)利用二次函数的图象确定S n 的最值时,最高点的纵坐标不一定是最大值,最低点的纵坐标不一定是最小值.2.设元与解题的技巧已知三个或四个数组成等差数列的一类问题,要善于设元,若奇数个数成等差数列且和为定值时,可设为…,a -2d ,a -d ,a ,a +d ,a +2d ,…;若偶数个数成等差数列且和为定值时,可设为…,a -3d ,a -d ,a +d ,a +3d ,…,其余各项再依据等差数列的定义进行对称设元.等差数列的判断与证明典题导入[例1] 在数列{a n }中,a 1=-3,a n =2a n -1+2n +3(n ≥2,且n ∈N *). (1)求a 2,a 3的值;(2)设b n =a n +32n (n ∈N *),证明:{b n }是等差数列.[自主解答] (1)∵a 1=-3,a n =2a n -1+2n +3(n ≥2,且n ∈N *),∴a 2=2a 1+22+3=1,a 3=2a 2+23+3=13.(2)证明:对于任意n ∈N *,∵b n +1-b n =a n +1+32n +1-a n +32n =12n +1[(a n +1-2a n )-3]=12n +1[(2n +1+3)-3]=1,∴数列{b n }是首项为a 1+32=-3+32=0,公差为1的等差数列.由题悟法1.证明{a n }为等差数列的方法:(1)用定义证明:a n -a n -1=d (d 为常数,n ≥2)⇔{a n }为等差数列; (2)用等差中项证明:2a n +1=a n +a n +2⇔{a n }为等差数列; (3)通项法:a n 为n 的一次函数⇔{a n }为等差数列; (4)前n 项和法:S n =An 2+Bn 或S n =n (a 1+a n )2.2.用定义证明等差数列时,常采用的两个式子a n +1-a n =d 和a n -a n -1=d ,但它们的意义不同,后者必须加上“n ≥2”,否则n =1时,a 0无定义.以题试法1.已知数列{a n }的前n 项和S n 是n 的二次函数,且a 1=-2,a 2=2,S 3=6. (1)求S n ;(2)证明:数列{a n }是等差数列. 解:(1)设S n =An 2+Bn +C (A ≠0), 则⎩⎪⎨⎪⎧-2=A +B +C ,0=4A +2B +C ,6=9A +3B +C ,解得A =2,B =-4,C =0.故S n =2n 2-4n . (2)证明:∵当n =1时,a 1=S 1=-2.当n ≥2时,a n =S n -S n -1=2n 2-4n -[2(n -1)2-4(n -1)]=4n -6. ∴a n =4n -6(n ∈N *).a n +1-a n =4, ∴数列{a n }是等差数列.等差数列的基本运算典题导入[例2] (2012·重庆高考)已知{a n }为等差数列,且a 1+a 3=8,a 2+a 4=12. (1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,若a 1,a k ,S k +2成等比数列,求正整数k 的值. [自主解答] (1)设数列{a n }的公差为d ,由题意知⎩⎪⎨⎪⎧ 2a 1+2d =8,2a 1+4d =12,解得⎩⎪⎨⎪⎧a 1=2,d =2.所以a n =a 1+(n -1)d =2+2(n -1)=2n .(2)由(1)可得S n =n (a 1+a n )2=n (2+2n )2=n (n +1).因为a 1,a k ,S k +2成等比数列,所以a 2k =a 1S k +2. 从而(2k )2=2(k +2)(k +3),即k 2-5k -6=0, 解得k =6或k =-1(舍去),因此k =6.由题悟法1.等差数列的通项公式a n =a 1+(n -1)d 及前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d ,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.以题试法2.(1)在等差数列中,已知a 6=10,S 5=5,则S 8=________.(2)(2012·江西联考)设等差数列{a n }的前n 项和为S n ,若S 412-S 39=1,则公差为________.解析:(1)∵a 6=10,S 5=5,∴⎩⎪⎨⎪⎧a 1+5d =10,5a 1+10d =5. 解方程组得⎩⎪⎨⎪⎧a 1=-5,d =3.则S 8=8a 1+28d =8×(-5)+28×3=44. (2)依题意得S 4=4a 1+4×32d =4a 1+6d ,S 3=3a 1+3×22d =3a 1+3d ,于是有4a 1+6d 12-3a 1+3d9=1,由此解得d =6,即公差为6. 答案:(1)44 (2)6等差数列的性质典题导入[例3] (1)等差数列{a n }中,若a 1+a 4+a 7=39,a 3+a 6+a 9=27,则前9项和S 9等于( )A .66B .99C .144D .297(2)(2012·天津模拟)设等差数列{a n }的前n 项和S n ,若S 4=8,S 8=20,则a 11+a 12+a 13+a 14=( )A .18B .17C .16D .15[自主解答] (1)由等差数列的性质及a 1+a 4+a 7=39,可得3a 4=39,所以a 4=13.同理,由a 3+a 6+a 9=27,可得a 6=9.所以S 9=9(a 1+a 9)2=9(a 4+a 6)2=99.(2)设{a n }的公差为d ,则a 5+a 6+a 7+a 8=S 8-S 4=12,(a 5+a 6+a 7+a 8)-S 4=16d ,解得d =14,a 11+a 12+a 13+a 14=S 4+40d =18.[答案] (1)B (2)A由题悟法1.等差数列的性质是等差数列的定义、通项公式以及前n 项和公式等基础知识的推广与变形,熟练掌握和灵活应用这些性质可以有效、方便、快捷地解决许多等差数列问题.2.应用等差数列的性质解答问题的关键是寻找项的序号之间的关系.以题试法3.(1)(2012·江西高考)设数列{a n },{b n }都是等差数列,若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________.(2)(2012·海淀期末)若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9解析:(1)设两等差数列组成的和数列为{c n },由题意知新数列仍为等差数列且c 1=7,c 3=21,则c 5=2c 3-c 1=2×21-7=35.(2)∵a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列,∴a n =19+(n-1)×(-3)=22-3n .设前k 项和最大,则有⎩⎪⎨⎪⎧ a k ≥0,a k +1≤0,即⎩⎪⎨⎪⎧22-3k ≥0,22-3(k +1)≤0,解得193≤k ≤223.∵k ∈N *,∴k =7.故满足条件的n 的值为7.答案:(1)35 (2)B1.(2011·江西高考){a n }为等差数列,公差d =-2,S n 为其前n 项和.若S 10=S 11,则a 1=( )A .18B .20C .22D .24解析:选B 由S 10=S 11,得a 11=S 11-S 10=0,a 1=a 11+(1-11)d =0+(-10)×(-2)=20.2.(2012·广州调研)等差数列{a n }的前n 项和为S n ,已知a 5=8,S 3=6,则S 10-S 7的值是( )A .24B .48C .60D .72解析:选B 设等差数列{a n }的公差为d ,由题意可得⎩⎪⎨⎪⎧ a 5=a 1+4d =8,S 3=3a 1+3d =6,解得⎩⎪⎨⎪⎧a 1=0,d =2,则S 10-S 7=a 8+a 9+a 10=3a 1+24d =48.3.(2013·东北三校联考)等差数列{a n }中,a 5+a 6=4,则log 2(2a 1·2a 2·…·2a 10)=( ) A .10 B .20 C .40D .2+log 25解析:选B 依题意得,a 1+a 2+a 3+…+a 10=10(a 1+a 10)2=5(a 5+a 6)=20,因此有log 2(2a 1·2a 2·…·2a 10)=a 1+a 2+a 3+…+a 10=20.4.(2012·海淀期末)已知数列{a n }满足:a 1=1,a n >0,a 2n +1-a 2n =1(n ∈N *),那么使a n <5成立的n 的最大值为( )A .4B .5C .24D .25解析:选C ∵a 2n +1-a 2n =1,∴数列{a 2n }是以a 21=1为首项,1为公差的等差数列.∴a 2n =1+(n -1)=n .又a n >0,∴a n =n .∵a n <5,∴n <5.即n <25.故n 的最大值为24.5.已知等差数列{a n }的前n 项和为S n ,并且S 10>0,S 11<0,若S n ≤S k 对n ∈N *恒成立,则正整数k 的值为( )A .5B .6C .4D .7解析:选A 由S 10>0,S 11<0知a 1>0,d <0,并且a 1+a 11<0,即a 6<0,又a 5+a 6>0,所以a 5>0,即数列的前5项都为正数,第5项之后的都为负数,所以S 5最大,则k =5.6.数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *).若b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .11解析:选B 因为{b n }是等差数列,且b 3=-2,b 10=12, 故公差d =12-(-2)10-3=2.于是b 1=-6,且b n =2n -8(n ∈N *),即a n +1-a n =2n -8.所以a 8=a 7+6=a 6+4+6=a 5+2+4+6=…=a 1+(-6)+(-4)+(-2)+0+2+4+6=3.7.(2012·广东高考)已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________.解析:设等差数列公差为d ,∵由a 3=a 22-4,得1+2d =(1+d )2-4,解得d 2=4,即d=±2.由于该数列为递增数列,故d =2.∴a n =1+(n -1)×2=2n -1. 答案:2n -18.已知数列{a n }为等差数列,S n 为其前n 项和,a 7-a 5=4,a 11=21,S k =9,则k =________. 解析:a 7-a 5=2d =4,则d =2.a 1=a 11-10d =21-20=1, S k =k +k (k -1)2×2=k 2=9.又k ∈N *,故k =3.答案:39.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 解析:∵{a n },{b n }为等差数列, ∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6.∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941,∴a 6b 6=1941.答案:194110.(2011·福建高考)已知等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值. 解:(1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d . 由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n . (2)由(1)可知a n =3-2n , 所以S n =n [1+(3-2n )]2=2n -n 2.由S k =-35,可得2k -k 2=-35, 即k 2-2k -35=0,解得k =7或k =-5. 又k ∈N *,故k =7.11.设数列{a n }的前n 项积为T n ,T n =1-a n ,(1)证明⎩⎨⎧⎭⎬⎫1T n 是等差数列;(2)求数列⎩⎨⎧⎭⎬⎫a n T n 的前n 项和S n .解:(1)证明:由T n =1-a n 得,当n ≥2时,T n =1-T nT n -1,两边同除以T n 得1T n -1T n -1=1.∵T 1=1-a 1=a 1, 故a 1=12,1T 1=1a 1=2.∴⎩⎨⎧⎭⎬⎫1T n 是首项为2,公差为1的等差数列. (2)由(1)知1T n =n +1,则T n =1n +1,从而a n =1-T n =n n +1.故a nT n=n .∴数列⎩⎨⎧⎭⎬⎫a n T n 是首项为1,公差为1的等差数列.∴S n =n (n +1)2. 12.已知在等差数列{a n }中,a 1=31,S n 是它的前n 项和,S 10=S 22.(1)求S n ;(2)这个数列的前多少项的和最大,并求出这个最大值.解:(1)∵S 10=a 1+a 2+…+a 10,S 22=a 1+a 2+…+a 22,又S 10=S 22,∴a 11+a 12+…+a 22=0,即12(a 11+a 22)2=0,故a 11+a 22=2a 1+31d =0. 又∵a 1=31,∴d =-2,∴S n =na 1+n (n -1)2d =31n -n (n -1)=32n -n 2. (2)法一:由(1)知S n =32n -n 2,故当n =16时,S n 有最大值,S n 的最大值是256.法二:由S n =32n -n 2=n (32-n ),欲使S n 有最大值,应有1<n <32,从而S n ≤⎝ ⎛⎭⎪⎫n +32-n 22=256, 当且仅当n =32-n ,即n =16时,S n 有最大值256.1.等差数列中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列前13项的和是( )A .156B .52C .26D .13解析:选C ∵a 3+a 5=2a 4,a 7+a 10+a 13=3a 10,∴6(a 4+a 10)=24,故a 4+a 10=4.∴S 13=13(a 1+a 13)2=13(a 4+a 10)2=26. 2.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是( )A .24B .48C .60D .84解析:选C 由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0,故T 18=a 1+…+a 10-a 11-…-a 18=S 10-(S 18-S 10)=60.3.数列{a n }满足a n +1+a n =4n -3(n ∈N *).(1)若{a n }是等差数列,求其通项公式;(2)若{a n }满足a 1=2,S n 为{a n }的前n 项和,求S 2n +1.解:(1)由题意得a n +1+a n =4n -3,①a n +2+a n +1=4n +1,②②-①得a n +2-a n =4,∵{a n }是等差数列,设公差为d ,∴d =2.∵a 1+a 2=1,∴a 1+a 1+d =1,∴a 1=-12, ∴a n =2n -52. (2)∵a 1=2,a 1+a 2=1,∴a 2=-1.又∵a n +2-a n =4,∴数列的奇数项与偶数项分别成等差数列,公差均为4, ∴a 2n -1=4n -2,a 2n =4n -5,S 2n +1=(a 1+a 3+…+a 2n +1)+(a 2+a 4+…+a 2n )=(n +1)×2+(n +1)n 2×4+n ×(-1)+n (n -1)2×4 =4n 2+n +2.1.已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由.解:(1)证明:∵a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1. ∴n ≥2时,b n -b n -1=1a n -1-1a n -1-1=1⎝ ⎛⎭⎪⎫2-1a n -1-1-1a n -1-1 =a n -1a n -1-1-1a n -1-1=1. 又b 1=1a 1-1=-52. ∴数列{b n }是以-52为首项,1为公差的等差数列. (2)由(1)知,b n =n -72, 则a n =1+1b n =1+22n -7, 设函数f (x )=1+22x -7, 易知f (x )在区间⎝⎛⎭⎫-∞,72和⎝⎛⎭⎫72,+∞内为减函数. 故当n =3时,a n 取得最小值-1;当n =4时,a n 取得最大值3.2.已知等差数列{a n }的前n 项和为S n ,且满足:a 2+a 4=14,S 7=70.(1)求数列{a n }的通项公式;(2)设b n =2S n +48n,数列{b n }的最小项是第几项,并求出该项的值. 解:(1)设等差数列{a n }的公差为d ,则有⎩⎪⎨⎪⎧ 2a 1+4d =14,7a 1+21d =70, 即⎩⎪⎨⎪⎧ a 1+2d =7,a 1+3d =10,解得⎩⎪⎨⎪⎧ a 1=1,d =3.所以a n =3n -2.(2)因为S n =n 2[1+(3n -2)]=3n 2-n 2, 所以b n =3n 2-n +48n =3n +48n-1≥2 3n ·48n-1=23, 当且仅当3n =48n,即n =4时取等号, 故数列{b n }的最小项是第4项,该项的值为23.3.已知数列{a n },对于任意n ≥2,在a n -1与a n 之间插入n 个数,构成的新数列{b n }成等差数列,并记在a n -1与a n 之间插入的这n 个数均值为C n -1.(1)若a n =n 2+3n -82,求C 1,C 2,C 3; (2)在(1)的条件下是否存在常数λ,使{C n +1-λC n }是等差数列?如果存在,求出满足条件的λ,如果不存在,请说明理由.解:(1)由题意a 1=-2,a 2=1,a 3=5,a 4=10,∴在a 1与a 2之间插入-1,0,C 1=-12. 在a 2与a 3之间插入2,3,4,C 2=3.在a 3与a 4之间插入6,7,8,9,C 3=152. (2)在a n -1与a n 之间插入n 个数构成等差数列,d =a n -a n -1n +1=1, ∴C n -1=n (a n -1+a n )2n =a n -1+a n 2=n 2+2n -92. 假设存在λ使得{C n +1-λC n }是等差数列. ∴(C n +1-λC n )-(C n -λC n -1)=C n +1-C n -λ(C n -C n -1)=2n +52-λ·2n +32=(1-λ)n +52-32λ=常数,∴λ=1. 即λ=1时,{C n +1-λC n }是等差数列.。
《三维设计》2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)导数的应用(一)(含解析)
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校第十二节导数的应用(一)[知识能否忆起]1.函数的单调性在(a,b)内可导函数f(x),f′(x)在(a,b)任意子区间内都不恒等于0.f′(x)≥0⇔f(x)在(a,b)上为增函数.f′(x)≤0⇔f(x)在(a,b)上为减函数.2.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其它点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点,极大值点统称为极值点,极大值和极小值统称为极值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.[小题能否全取]1.(教材习题改编)若函数f(x)=x3+ax2+3x-9在x=-3时取得极值,则a等于() A.2B.3C.4 D.5解析:选D∵f′(x)=3x2+2ax+3,f′(-3)=0,∴a=5.2.(2012·辽宁高考)函数y=12x2-ln x的单调递减区间为()A.(-1,1] B.(0,1]C .[1,+∞)D .(0,+∞)解析:选B 函数y =12x 2-ln x 的定义域为(0,+∞),y ′=x -1x =(x -1)(x +1)x ,令y ′≤0,则可得0<x ≤1.3.(2012·陕西高考)设函数f (x )=x e x ,则( ) A .x =1为f (x )的极大值点 B .x =1为f (x )的极小值点 C .x =-1为f (x )的极大值点 D .x =-1为f (x )的极小值点解析:选D 求导得f ′(x )=e x +x e x =e x (x +1),令f ′(x )=e x (x +1)=0,解得x =-1,易知x =-1是函数f (x )的极小值点.4.函数f (x )=x 33+x 2-3x -4在[0,2]上的最小值是________.解析:f ′(x )=x 2+2x -3,f ′(x )=0,x ∈[0,2], 得x =1.比较f (0)=-4,f (1)=-173,f (2)=-103.可知最小值为-173.答案:-1735.已知a >0,函数f (x )=x 3-ax 在[1,+∞)上是单调增函数,则a 的最大值是________. 解析:f ′(x )=3x 2-a 在x ∈[1,+∞)上f ′(x )≥0, 则f ′(1)≥0⇒a ≤3. 答案:31.f ′(x )>0与f (x )为增函数的关系:f ′(x )>0能推出f (x )为增函数,但反之不一定.如函数f (x )=x 3在(-∞,+∞)上单调递增,但f ′(x )≥0,所以f ′(x )>0是f (x )为增函数的充分 不必要条件.2.可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f ′(x 0)=0是可导函数f (x )在x =x 0处取得极值的必要不充分条件.例如函数y =x 3在x =0处有y ′|x =0=0,但x =0不是极值点.此外,函数不可导的点也可能是函数的极值点.3.可导函数的极值表示函数在一点附近的情况,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.运用导数解决函数的单调性问题典题导入[例1] (2012·山东高考改编)已知函数f (x )=ln x +ke x(k 为常数,e =2.718 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值; (2)求f (x )的单调区间.[自主解答] (1)由f (x )=ln x +ke x,得f ′(x )=1-kx -x ln xx e x,x ∈(0,+∞),由于曲线y =f (x )在(1,f (1))处的切线与x 轴平行,所以f ′(1)=0,因此k =1. (2)由(1)得f ′(x )=1x e x (1-x -x ln x ),x ∈(0,+∞),令h (x )=1-x -x ln x ,x ∈(0,+∞),当x ∈(0,1)时,h (x )>0;当x ∈(1,+∞)时,h (x )<0. 又e x >0,所以x ∈(0,1)时,f ′(x )>0; x ∈(1,+∞)时,f ′(x )<0.因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).由题悟法求可导函数单调区间的一般步骤和方法 (1)确定函数f (x )的定义域;(2)求f ′(x ),令f ′(x )=0,求出它在定义域内的一切实数根;(3)把函数f (x )的间断点(即f (x )的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f (x )的定义区间分成若干个小区间;(4)确定f ′(x )在各个开区间内的符号,根据f ′(x )的符号判定函数f (x )在每个相应小开区间内的增减性.以题试法1.已知a∈R,函数f(x)=(-x2+ax)e x(x∈R,e为自然对数的底数).(1)当a=2时,求函数f(x)的单调递增区间;(2)是否存在a使函数f(x)为R上的单调递减函数,若存在,求出a的取值范围;若不存在,请说明理由.解:(1)当a=2时,f(x)=(-x2+2x)e x,∴f′(x)=(-2x+2)e x+(-x2+2x)e x=(-x2+2)e x.令f′(x)>0,即(-x2+2)e x>0,∵e x>0,∴-x2+2>0,解得-2<x< 2.∴函数f(x)的单调递增区间是(-2,2).(2)若函数f(x)在R上单调递减,则f′(x)≤0对x∈R都成立,即[-x2+(a-2)x+a]e x≤0对x∈R都成立.∵e x>0,∴x2-(a-2)x-a≥0对x∈R都成立.∴Δ=(a-2)2+4a≤0,即a2+4≤0,这是不可能的.故不存在a使函数f(x)在R上单调递减.运用导数解决函数的极值问题典题导入[例2](2012·江苏高考)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点.[自主解答](1)由题设知f′(x)=3x2+2ax+b,且f′(-1)=3-2a+b=0,f′(1)=3+2a+b=0,解得a=0,b=-3.(2)由(1)知f(x)=x3-3x.因为f(x)+2=(x-1)2(x+2),所以g′(x)=0的根为x1=x2=1,x3=-2,于是函数g(x)的极值点只可能是1或-2.当x<-2时,g′(x)<0;当-2<x<1时,g′(x)>0,故-2是g(x)的极值点.当-2<x<1或x>1时,g′(x)>0,故1不是g(x)的极值点.所以g (x )的极值点为-2.由题悟法求函数极值的步骤 (1)确定函数的定义域; (2)求方程f ′(x )=0的根;(3)用方程f ′(x )=0的根顺次将函数的定义域分成若干个小开区间,并形成表格; (4)由f ′(x )=0根的两侧导数的符号来判断f ′(x )在这个根处取极值的情况.以题试法2.设f (x )=2x 3+ax 2+bx +1的导数为f ′(x ),若函数y =f ′(x )的图象关于直线x =-12对称,且f ′(1)=0.(1)求实数a ,b 的值; (2)求函数f (x )的极值.解:(1)因为f (x )=2x 3+ax 2+bx +1, 故f ′(x )=6x 2+2ax +b , 从而f ′(x )=6⎝⎛⎭⎫x +a 62+b -a 26, 即y =f ′(x )关于直线x =-a6对称.从而由题设条件知-a 6=-12,即a =3.又由于f ′(1)=0,即6+2a +b =0, 得b =-12.(2)由(1)知f (x )=2x 3+3x 2-12x +1, 所以f ′(x )=6x 2+6x -12=6(x -1)(x +2), 令f ′(x )=0, 即6(x -1)(x +2)=0, 解得x =-2或x =1,当x ∈(-∞,-2)时,f ′(x )>0, 即f (x )在(-∞,-2)上单调递增; 当x ∈(-2,1)时,f ′(x )<0,即f(x)在(-2,1)上单调递减;当x∈(1,+∞)时,f′(x)>0,即f(x)在(1,+∞)上单调递增.从而函数f(x)在x=-2处取得极大值f(-2)=21,在x=1处取得极小值f(1)=-6.运用导数解决函数的最值问题典题导入[例3]已知函数f(x)=(x-k)e x.(1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最小值.[自主解答](1)f′(x)=(x-k+1)e x.令f′(x)=0,得x=k-1.f(x)与f′(x)的情况如下:x (-∞,k-1)k-1(k-1,+∞)f′(x)-0+f(x)-e k-1所以,f(x)的单调递减区间是(-∞,k-1);单调递增区间是(k-1,+∞).(2)当k-1≤0,即k≤1时,函数f(x)在[0,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(0)=-k;当0<k-1<1,即1<k<2时,由(1)知f(x)在[0,k-1)上单调递减,在(k-1,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(k-1)=-e k-1;当k-1≥1时,即k≥2时,函数f(x)在[0,1]上单调递减,所以f(x)在区间[0,1]上的最小值为f(1)=(1-k)e.本题条件不变,求f (x )在区间[0,1]上的最大值.解:当k -1≤0,即k ≤1时,函数f (x )在[0,1]上单调递增. 所以f (x )在[0,1]上的最大值为f (1)=(1-k )e. 当0<k -1<1,即1<k <2时,由(1)知f (x )在[0,k -1)上单调递减,在(k -1,1]上单调递增,所以f (x )在区间[0,1]上的最大值为f (0)和f (1)较大者.若f (0)=f (1),所以-k =(1-k )e ,即k =ee -1.当1<k <e e -1时函数f (x )的最大值为f (1)=(1-k )e ,当ee -1≤k <2时,函数f (x )的最大值为f (0)=-k ,当k -1≥1时,即k ≥2时,函数f (x )在[0,1]上单调递减. 所以f (x )在[0,1]上的最大值为f (0)=-k .综上所述,当k <ee -1时,f (x )的最大值为f (1)=(1-k )e.当k ≥ee -1时,f (x )的最大值为f (0)=-k .由题悟法求函数f (x )在[a ,b ]上的最大值和最小值的步骤 (1)求函数在(a ,b )内的极值;(2)求函数在区间端点的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.以题试法3. (2012·重庆高考)已知函数f (x )=ax 3+bx +c 在点x =2处取得极值c -16. (1)求a ,b 的值;(2)若f (x )有极大值28,求f (x )在[-3,3]上的最小值. 解:(1)因f (x )=ax 3+bx +c ,故f ′(x )=3ax 2+b , 由于f (x )在点x =2处取得极值c -16,故有⎩⎪⎨⎪⎧f ′(2)=0,f (2)=c -16,即⎩⎪⎨⎪⎧ 12a +b =0,8a +2b +c =c -16,化简得⎩⎪⎨⎪⎧12a +b =0,4a +b =-8,解得a =1,b =-12. (2)由(1)知f (x )=x 3-12x +c ; f ′(x )=3x 2-12=3(x -2)(x +2). 令f ′(x )=0,得x 1=-2,x 2=2.当x ∈(-∞,-2)时,f ′(x )>0,故f (x )在(-∞,-2)上为增函数; 当x ∈(-2,2)时,f ′(x )<0,故f (x )在(-2,2)上为减函数; 当x ∈(2,+∞)时,f ′(x )>0,故f (x )在(2,+∞)上为增函数.由此可知f (x )在x 1=-2处取得极大值f (-2)=16+c ,f (x )在x 1=2处取得极小值f (2)=c -16.由题设条件知16+c =28,得c =12. 此时f (-3)=9+c =21,f (3)=-9+c =3, f (2)=-16+c =-4,因此f (x )在[-3,3]上的最小值为f (2)=-4.1.函数f (x )=x +eln x 的单调递增区间为( ) A .(0,+∞) B .(-∞,0) C .(-∞,0)和(0,+∞)D .R解析:选A 函数定义域为(0,+∞),f ′(x )=1+ex >0,故单调增区间是(0,+∞).2.(2012·“江南十校”联考)已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d )解析:选C 依题意得,当x ∈(-∞,c )时,f ′(x )>0;当x ∈(c ,e )时,f ′(x )<0;当x ∈(e ,+∞)时,f ′(x )>0.因此,函数f (x )在(-∞,c )上是增函数,在(c ,e )上是减函数,在(e ,+∞)上是增函数,又a <b <c ,所以f (c )>f (b )>f (a ).3.(2012·陕西高考)设函数f (x )=2x +ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点解析:选D 函数f (x )的定义域为(0,+∞),f ′(x )=-2x 2+1x =x -2x 2,当x =2时,f ′(x )=0;当x >2时,f ′(x )>0,函数f (x )为增函数;当0<x <2时,f ′(x )<0,函数f (x )为减函数,所以x =2为函数f (x )的极小值点.4.(2012·大纲全国卷)已知函数y =x 3-3x +c 的图象与x 轴恰有两个公共点,则c =( ) A .-2或2 B .-9或3 C .-1或1D .-3或1解析:选A 设f (x )=x 3-3x +c ,对f (x )求导可得,f ′(x )=3x 2-3,令f ′(x )=0,可得x =±1,易知f (x )在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减.若f (1)=1-3+c =0,可得c =2;若f (-1)=-1+3+c =0,可得c =-2.5.若f (x )=ln xx ,e<a <b ,则( )A .f (a )>f (b )B .f (a )=f (b )C .f (a )<f (b )D .f (a )f (b )>1解析:选A f ′(x )=1-ln xx 2,当x >e 时,f ′(x )<0,则f (x )在(e ,+∞)上为减函数,f (a )>f (b ).6.函数f (x )=x 3-3x -1,若对于区间[-3,2]上的任意x 1,x 2,都有|f (x 1)-f (x 2)|≤t ,则实数t 的最小值是( )A .20B .18C .3D .0解析:选A 因为f ′(x )=3x 2-3=3(x -1)(x +1),令f ′(x )=0,得x =±1,所以-1,1为函数的极值点.又f (-3)=-19,f (-1)=1,f (1)=-3,f (2)=1,所以在区间[-3,2]上f (x )max =1,f (x )min =-19.又由题设知在区间[-3,2]上f (x )max -f (x )min ≤t ,从而t ≥20,所以t 的最小值是20.7.已知函数f (x )=x 3+mx 2+(m +6)x +1既存在极大值又存在极小值,则实数m 的取值范围是________.解析:f ′(x )=3x 2+2mx +m +6=0有两个不等实根,即Δ=4m 2-12×(m +6)>0.所以m >6或m <-3.答案:(-∞,-3)∪(6,+∞)8.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ∈[-1,1],则f (m )的最小值为________.解析:求导得f ′(x )=-3x 2+2ax ,由f (x )在x =2处取得极值知f ′(2)=0,即-3×4+2a ×2=0,故a =3.由此可得f (x )=-x 3+3x 2-4,f ′(x )=-3x 2+6x .由此可得f (x )在(-1,0)上单调递减,在(0,1)上单调递增,所以对m ∈[-1,1]时,f (m )min =f (0)=-4.答案:-49.已知函数y =f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )极大值与极小值之差为________.解析:∵y ′=3x 2+6ax +3b ,⎩⎪⎨⎪⎧ 3×22+6a ×2+3b =03×12+6a +3b =-3⇒⎩⎪⎨⎪⎧a =-1,b =0. ∴y ′=3x 2-6x ,令3x 2-6x =0,则x =0或x =2.∴f (x )极大值-f (x )极小值=f (0)-f (2)=4.答案:410.已知函数f (x )=ax 2+b ln x 在x =1处有极值12. (1)求a ,b 的值;(2)判断函数y =f (x )的单调性并求出单调区间.解:(1)∵f ′(x )=2ax +b x. 又f (x )在x =1处有极值12.∴⎩⎪⎨⎪⎧ f (1)=12,f ′(1)=0,即⎩⎪⎨⎪⎧a =12,2a +b =0.解得a =12,b =-1. (2)由(1)可知f (x )=12x 2-ln x ,其定义域是(0,+∞), 且f ′(x )=x -1x =(x +1)(x -1)x. 由f ′(x )<0,得0<x <1;由f ′(x )>0,得x >1.所以函数y =f (x )的单调减区间是(0,1),单调增区间是(1,+∞).11.(2012·重庆高考)设f (x )=a ln x +12x +32x +1,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴.(1)求a 的值;(2)求函数f (x )的极值.解:(1)因f (x )=a ln x +12x +32x +1, 故f ′(x )=a x -12x 2+32. 由于曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴,故该切线斜率为0,即f ′(1)=0,从而a -12+32=0, 解得a =-1.(2)由(1)知f (x )=-ln x +12x +32x +1(x >0), f ′(x )=-1x -12x 2+32=3x 2-2x -12x 2=(3x +1)(x -1)2x 2.令f ′(x )=0,解得x 1=1,x 2=-13⎝⎛ 因x 2=-13不在定 义域内,舍去.当x ∈(0,1)时,f ′(x )<0,故f (x )在(0,1)上为减函数;当x ∈(1,+∞)时,f ′(x )>0,故f (x )在(1,+∞)上为增函数.故f (x )在x =1处取得极小值f (1)=3.12.已知函数f (x )=x 3-ax 2+3x .(1)若f (x )在x ∈[1,+∞)上是增函数,求实数a 的取值范围;(2)若x =3是f (x )的极值点,求f (x )在x ∈[1,a ]上的最大值和最小值.解:(1)∵f ′(x )=3x 2-2ax +3≥0在[1,+∞)上恒成立,∴a ≤⎣⎡⎦⎤32⎝⎛⎭⎫x +1x min =3(当x =1时取最小值). ∴a 的取值范围为(-∞,3].(2)∵f ′(3)=0,即27-6a +3=0,∴a =5,f (x )=x 3-5x 2+3x ,x ∈[1,5],f ′(x )=3x 2-10x +3.令f ′(x )=0,得x 1=3,x 2=13(舍去). 当1<x <3时,f ′(x )<0,当3<x <5时,f ′(x )>0,即当x =3时,f (x )取极小值f (3)=-9.又f (1)=-1,f (5)=15,∴f (x )在[1,5]上的最小值是f (3)=-9,最大值是f (5)=15.1.设函数f (x )=ax 2+bx +c (a ,b ,c ∈R).若x =-1为函数f (x )e x 的一个极值点,则下列图象不可能为y =f (x )的图象是( )解析:选D 因为[f (x )e x ]′=f ′(x )e x +f (x )(e x )′=[f (x )+f ′(x )]e x ,且x =-1为函数f (x )e x 的一个极值点,所以f (1)+f ′(1)=0;选项D 中,f (1)>0,f ′(1)>0,不满足f ′(1)+f (1)=0.2.(2012·沈阳实验中学检测)已知定义在R 上的奇函数f (x ),设其导函数为f ′(x ),当x ∈(-∞,0]时,恒有xf ′(x )<f (-x ),令F (x )=xf (x ),则满足F (3)>F (2x -1)的实数x 的取值范围是( )A .(-1,2)B.⎝⎛⎭⎫-1,12C.⎝⎛⎭⎫12,2 D .(-2,1)解析:选A 由F (x )=xf (x ),得F ′(x )=f (x )+xf ′(x )=xf ′(x )-f (-x )<0,所以F (x )在(-∞,0)上单调递减,又可证F (x )为偶函数,从而F (x )在[0,+∞)上单调递增,故原不等式可化为-3<2x -1<3,解得-1<x <2.3. (2012·湖北高考)设函数f (x )=ax n (1-x )+b (x >0),n 为正整数,a ,b 为常数.曲线y =f (x )在(1,f (1))处的切线方程为x +y =1.(1)求a ,b 的值;(2)求函数f (x )的最大值.解:(1)因为f (1)=b ,由点(1,b )在x +y =1上,可得1+b =1,即b =0.因为f ′(x )=anx n -1-a (n +1)x n ,所以f ′(1)=-a .又因为切线x +y =1的斜率为-1,所以-a =-1,即a =1.故a =1,b =0.(2)由(1)知,f (x )=x n (1-x )=x n -x n +1,f ′(x )=(n +1)x n -1⎝ ⎛⎭⎪⎫n n +1-x . 令f ′(x )=0,解得x =n n +1, 即f ′(x )在(0,+∞)上有唯一零点x 0=n n +1. 在⎝ ⎛⎭⎪⎫0,n n +1上,f ′(x )>0,故f (x )单调递增; 而在⎝ ⎛⎭⎪⎫n n +1,+∞上,f ′(x )<0,f ′(x )单调递减. 故f (x )在(0,+∞)上的最大值为f ⎝ ⎛⎭⎪⎫n n +1=⎝ ⎛⎭⎪⎫n n +1n ⎝ ⎛⎭⎪⎫1-n n +1=n n(n +1)n +1.1.(2012·重庆高考)设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)解析:选D 由图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数在x =-2处取得极大值,在x =2处取得极小值.2.(2012·山西联考)已知函数f (x )=(2-a )ln x +1x+2ax (a ∈R). (1)当a =0时,求f (x )的极值;(2)求f (x )的单调区间.解:(1)∵当a =0时,f (x )=2ln x +1x, f ′(x )=2x -1x 2=2x -1x2(x >0), ∴f (x )在⎝⎛⎭⎫0,12上是减函数,在⎝⎛⎭⎫12,+∞上是增函数. ∴f (x )的极小值为f ⎝⎛⎭⎫12=2-2ln 2,无极大值.(2)f ′(x )=2-a x -1x 2+2a =(2x -1)(ax +1)x 2(x >0). ①当a ≥0时,f (x )在⎝⎛⎭⎫0,12上是减函数,在⎝⎛⎭⎫12,+∞上是增函数; ②当-2<a <0时,f (x )在⎝⎛⎭⎫0,12和⎝⎛⎭⎫-1a ,+∞上是减函数,在⎝⎛⎭⎫12,-1a 上是增函数; ③当a =-2时,f (x )在(0,+∞)上是减函数;④当a <-2时,f (x )在⎝⎛⎭⎫12,+∞和⎝⎛⎭⎫0,-1a 上是减函数,在⎝⎛⎭⎫-1a ,12上是增函数.。
《三维设计》2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)直线、平面垂直的判定与性质
直线、平面垂直的判定与性质[知识能否忆起]一、直线与平面垂直1.直线和平面垂直的定义直线l与平面α内的任意一条直线都垂直,就说直线l与平面α互相垂直.2.直线与平面垂直的判定定理及推论3.直线与平面垂直的性质定理二、平面与平面垂直1.平面与平面垂直的判定定理2.平面与平面垂直的性质定理[小题能否全取]1.(教材习题改编)已知平面α,β,直线l,若α⊥β,α∩β=l,则()A.垂直于平面β的平面一定平行于平面αB.垂直于直线l的直线一定垂直于平面αC.垂直于平面β的平面一定平行于直线lD.垂直于直线l的平面一定与平面α、β都垂直2.(2012·厦门模拟)如图,O为正方体ABCD-A1B1C1D1的底面ABCD的中心,则下列直线中与B1O 垂直的是()A.A1D B.AA1C.A1D1D.A1C13.已知α,β是两个不同的平面,m,n是两条不重合的直线,则下列命题中正确的是() A.若m∥α,α∩β=n,则m∥nB.若m⊥α,m⊥n,则n∥αC.若m⊥α,n⊥β,α⊥β,则m⊥nD.若α⊥β,α∩β=n,m⊥n,则m⊥β.4.如图,已知P A⊥平面ABC,BC⊥AC,则图中直角三角形的个数为________.5.(教材习题改编)如图,已知六棱锥P -ABCDEF的底面是正六边形,PA⊥平面ABC,P A =2AB.则下列命题正确的有________.①P A⊥AD;②平面ABC⊥平面PBC;③直线BC∥平面P AE;④直线PD与平面ABC所成角为30°.1.在证明线面垂直、面面垂直时,一定要注意判定定理成立的条件.同时抓住线线、线面、面面垂直的转化关系,即:2.在证明两平面垂直时,一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决,如有平面垂直时,一般要用性质定理.3.几个常用的结论:(1)过空间任一点有且只有一条直线与已知平面垂直.(2)过空间任一点有且只有一个平面与已知直线垂直.典题导入[例1](2012·襄州模拟)若m,n为两条不重合的直线,α,β为两个不重合的平面,给出下列命题:①若m,n都平行于平面α,则m,n一定不是相交直线;②若m 、n 都垂直于平面α,则m ,n 一定是平行直线;③已知α,β互相垂直,m ,n 互相垂直,若m ⊥α,则n ⊥β;④m ,n 在平面α内的射影互相垂直,则m ,n 互相垂直.其中的假命题的序号是________.由题悟法解决此类问题常用的方法有:①依据定理条件才能得出结论的,可结合符合题意的图形作出判断;②否定命题时只需举一个反例.③寻找恰当的特殊模型(如构造长方体)进行筛选.典题导入[例2] (2012·广东高考)如图所示,在四棱锥P -ABCD 中,AB ⊥平面P AD ,AB ∥CD ,PD =AD ,E 是PB 的中点,F 是DC 上的点且DF =12AB ,PH为△P AD 中AD 边上的高.(1)证明:PH ⊥平面ABCD ; (3)证明:EF ⊥平面PAB .由题悟法证明直线和平面垂直的常用方法有: (1)利用判定定理.(2)利用判定定理的推论(a ∥b ,a ⊥α⇒b ⊥α). (3)利用面面平行的性质(a⊥α,α∥β⇒a ⊥β).(4)利用面面垂直的性质.当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.以题试法2.(2012·启东模拟)如图所示,已知P A ⊥矩形ABCD 所在平面,M ,N 分别是AB ,PC 的中点. (1)求证:MN ⊥CD ;(2)若∠PDA =45°,求证:MN⊥平面PCD .典题导入[例3] (2012·江苏高考)如图,在直三棱柱ABC -A 1B 1C 1中,A 1B 1=A 1C 1,D ,E 分别是棱BC ,CC 1上的点(点D 不同于点C ),且AD ⊥DE ,F 为B 1C 1的中点.求证:(1)平面ADE ⊥平面BCC 1B 1; (2)直线A 1F ∥平面ADE ..由题悟法1.判定面面垂直的方法: (1)面面垂直的定义.(2)面面垂直的判定定理(a ⊥β,a ⊂α⇒α⊥β). 2.在已知平面垂直时,一般要用性质定理进行转化,转化为线面垂直或线线垂直.转化方法:在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.以题试法3.(2012·泸州一模)如图,在四棱锥P -ABCD 中,底面ABCD 为菱形,∠BAD =60°,Q 为AD 的中点.(1)若P A =PD ,求证:平面PQB ⊥平面P AD ; (2)若点M 在线段PC 上,且PM =tPC (t >0),试确定实数t 的值,使得P A ∥平面MQB .1.(2012·杭州模拟)设a ,b ,c 是三条不同的直线,α,β是两个不同的平面,则a⊥b的一个充分条件是()A.a⊥c,b⊥c B.α⊥β,a⊂α,b⊂βC.a⊥α,b∥αD.a⊥α,b⊥α.2.设α,β,γ是三个不重合的平面,l是直线,给出下列命题①若α⊥β,β⊥γ,则α⊥γ;②若l上两点到α的距离相等,则l∥α;③若l⊥α,l∥β,则α⊥β;④若α∥β,l⊄β,且l∥α,则l∥β.其中正确的命题是()A.①②B.②③C.②④D.③④3.给出命题:(1)在空间里,垂直于同一平面的两个平面平行;(2)设l,m是不同的直线,α是一个平面,若l ⊥α,l∥m,则m⊥α;(3)已知α,β表示两个不同平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的充要条件;(4)a,b是两条异面直线,P为空间一点,过P 总可以作一个平面与a,b之一垂直,与另一个平行.其中正确命题个数是()A.0 B.1C.2 D.34.(2013·济南模拟)如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部.5.(2012·曲阜师大附中质检)如图所示,直线P A 垂直于⊙O所在的平面,△ABC内接于⊙O,且AB 为⊙O的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面P AC 的距离等于线段BC的长.其中正确的是()A.①②B.①②③C.①D.②③6.(2012·济南名校模拟)如图,在四边形ABCD 中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下面命题正确的是()A.平面ABD⊥平面ABC B.平面ADC⊥平面BDC C.平面ABC⊥平面BDC D.平面ADC⊥平面ABC 7.如图所示,在四棱锥P-ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)8.(2012·忻州一中月考)正四棱锥S-ABCD的底面边长为2,高为2,E是BC的中点,动点P在四棱锥的表面上运动,并且总保持PE⊥AC,则动点P的轨迹的长为________.10. 如图所示,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.(1)求证:DM∥平面APC;(2)求证:平面ABC⊥平面APC.11.(2012·北京海淀二模)如图所示,P A⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,P A=AB=2,点E为线段PB的中点,点M在AB上,且OM∥AC. (1)求证:平面MOE∥平面P AC;(2)求证:平面P AC⊥平面PCB.。
【三维设计】(新课标)高考数学大一轮复习精品讲义 第四章 平面向量、数系的扩充与复数的引入(含解
第四章平面向量、数系的扩充与复数的引入第一节平面向量的概念及其线性运算对应学生用书P62基础盘查一向量的有关概念(一)循纲忆知1.了解向量的实际背景;2.理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示.(二)小题查验1.判断正误(1)向量AB与向量BA是相等向量( )(2)向量不能比较大小,但向量的模可以比较大小( )(3)向量与有向线段是一样的,因此可以用有向线段来表示向量( )(4)|a|与|b|是否相等与a,b的方向无关( )答案:(1)×(2)√(3)×(4)√2.(人教A版教材例题改编)如图,设O是正六边形ABCDEF的中心,分别写出图中与OA,OB,OC相等的向量.解:OA=CB=DO;OB=DC=EO;OC=AB=ED=FO.基础盘查二向量的线性运算(一)循纲忆知1.掌握向量加法、减法的运算,并理解其几何意义;2.掌握向量数乘的运算及其几何意义;3.了解向量线性运算的性质及其几何意义.(二)小题查验1.判断正误(1)两个向量的差仍是一个向量( )(2)BA=OA-OB ( )(3)向量a-b与b-a是相反向量( )(4)两个向量相加就是两个向量的模相加( )答案:(1)√(2)√(3)√(4)×2.(人教A版教材习题改编)化简:(1)(AB +MB )+BO +OM =________. (2)NQ +QP +MN -MP =________. 答案:(1)AB (2)0 基础盘查三 共线向量定理 (一)循纲忆知理解两个向量共线的含义,掌握向量的共线定理及应用. (二)小题查验 1.判断正误(1)若向量a ,b 共线,则向量a ,b 的方向相同( ) (2)若a ∥b ,b ∥c ,则a ∥c ( )(3)向量AB 与向量CD 是共线向量,则A ,B ,C ,D 四点在一条直线上( ) (4)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立( ) 答案:(1)× (2)× (3)× (4)√2.已知a 与b 是两个不共线的向量,且向量a +λb 与-(b -3a )共线,则λ=________. 答案:-13对应学生用书P62考点一 向量的有关概念(基础送分型考点——自主练透)[必备知识](1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模. (2)零向量:长度为0的向量,其方向是任意的. (3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线. (5)相等向量:长度相等且方向相同的向量. (6)相反向量:长度相等且方向相反的向量.[题组练透]1.给出下列命题: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB =DC 是四边形ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ;④a=b的充要条件是|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c.其中正确命题的序号是( )A.②③B.①②C.③④ D.④⑤解析:选A ①不正确.两个向量的长度相等,但它们的方向不一定相同.②正确.∵AB=DC,∴|AB|=|DC|且AB∥DC,又A,B,C,D是不共线的四点,∴四边形ABCD为平行四边形;反之,若四边形ABCD为平行四边形,则AB∥DC且|AB|=|DC|,因此,AB=DC.③正确.∵a=b,∴a,b的长度相等且方向相同,又b=c,∴b,c的长度相等且方向相同,∴a,c的长度相等且方向相同,故a=c.④不正确.当a∥b且方向相反时,既使|a|=|b|,也不能得到a=b,故|a|=|b|且a ∥b不是a=b的充要条件,而是必要不充分条件.⑤不正确.考虑b=0这种特殊情况.综上所述,正确命题的序号是②③.故选A.2.设a0为单位向量,下述命题中:①若a为平面内的某个向量,则a=|a|·a0;②若a 与a0平行,则a=|a|a0;③若a与a0平行且|a|=1,则a=a0.假命题的个数是( ) A.0 B.1C.2 D.3解析:选D 向量是既有大小又有方向的量,a与|a|a0的模相同,但方向不一定相同,故①是假命题;若a与a0平行,则a与a0的方向有两种情况:一是同向,二是反向,反向时a=-|a|a0,故②③也是假命题.综上所述,假命题的个数是3.[类题通法]平面向量有关概念的核心(1)向量定义的核心是方向和长度.(2)非零共线向量的核心是方向相同或相反,长度没有限制.(3)相等向量的核心是方向相同且长度相等.(4)单位向量的核心是方向没有限制,但长度都是一个单位长度.(5)零向量的核心是方向没有限制,长度是0,规定零向量与任何向量共线.考点二向量的线性运算(重点保分型考点——师生共研)[必备知识]1.向量的加法定义:求两个向量和的运算.运算法则(几何意义):如图运算律:(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c).2.向量的减法定义:向量a加上向量b的相反向量,叫做a与b的差,即a+(-b)=a-b.求两个向量差的运算叫做向量的减法.运算法则(几何意义):如图3.向量的数乘定义:实数λ与向量a的积运算,即λa.运算法则(几何意义):如图,λa的长度与方向规定如下:(1)|λa|=|λ|·|a|.(2)当λ>0时,λa与a的方向相同;当λ<0时,λa与a的方向相反;当λ=0时,λa=0.运算律:λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb.[提醒] (1)实数和向量可以求积,但不能求和或求差;(2)λ=0或a=0⇔λa=0.[典题例析]1.(2014·新课标全国卷Ⅰ)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则EB +FC=( )A .AD B.12AD C .BCD.12BC 解析:选A EB +FC =12(AB +CB )+12(AC +BC )=12(AB +AC )=AD ,故选A. 2.(2013·江苏高考)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE=λ1AB +λ2AC (λ1,λ2为实数),则λ1+λ2的值为________.解析:DE =DB +BE =12AB +23BC =12AB +23(BA +AC )=-16AB +23AC ,所以λ1=-16,λ2=23,即λ1+λ2=12.答案:12[类题通法]1.向量线性运算的解题策略(1)常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行四边形法则,求差用三角形法则,求首尾相连向量的和用三角形法则.(2)找出图形中的相等向量、共线向量,将所求向量与已知向量转化到同一个平行四边形或三角形中求解.2.两个结论(1)P 为线段AB 的中点⇔OP =12(OA +OB );(2)G 为△ABC 的重心⇔GA +GB +GC =0.[演练冲关]1.(2015·聊城二模)在△ABC 中,AB =c ,AC =b .若点D 满足BD =2DC ,则AD =( )A.23b +13c B.53c -23b C.23b -13c D.13b +23c解析:选A 如图,可知AD =AB +BD =AB +23(AC -AB )=c +23(b -c )=23b +13c .故选A.2.若典例2条件变为:若AD =2DB ,CD =13CA +λCB ,则λ=________.解析:∵CD =CA +AD ,CD =CB +BD , ∴2CD =CA +CB +AD +BD . 又∵AD =2DB , ∴2CD =CA +CB +13AB=CA +CB +13(CB -CA )=23CA +43CB . ∴CD =13CA +23CB ,即λ=23.答案:23考点三 共线向量定理的应用(题点多变型考点——全面发掘)[必备知识]共线向量定理向量a (a ≠0)与b 共线,当且仅当有唯一的一个实数λ,使得b =λa . [提醒] 限定a ≠0的目的是保证实数λ的存在性和唯一性.[一题多变][典型母题]设两个非零向量e 1和e 2不共线.如果AB =e 1+e 2,BC =2e 1-3e 2,AF =3e 1-k e 2,且A ,C ,F 三点共线,求k 的值.[解] ∵AB =e 1+e 2,BC =2e 1-3e 2, ∴AC =AB +BC =3e 1-2e 2. ∵A ,C ,F 三点共线,∴AC ∥AF ,从而存在实数λ,使得AC =λAF . ∴3e 1-2e 2=3λe 1-λk e 2, 又e 1,e 2是不共线的非零向量,∴⎩⎪⎨⎪⎧3=3λ,-2=-λk ,因此k =2.∴实数k 的值为2.[题点发散1] 在本例条件下,试确定实数k ,使k e 1+e 2与e 1+k e 2共线. 解:∵k e 1+e 2与e 1+k e 2共线,∴存在实数λ,使k e 1+e 2=λ(e 1+k e 2), 即k e 1+e 2=λe 1+λk e 2,∴⎩⎪⎨⎪⎧k =λ,1=λk ,解得k =±1.[题点发散2] 在本例条件下,如果AB =e 1-e 2,BC =3e 1+2e 2,CD =-8e 1-2e 2,求证:A ,C ,D 三点共线.证明:∵AB =e 1-e 2,BC =3e 1+2e 2,∴AC =AB +BC =4e 1+e 2,又CD =-8e 1-2e 2, ∴CD =-2AC ,∴AC 与CD 共线.又∵AC 与CD 有公共点C ,∴A ,C ,D 三点共线.[类题通法]1.共线向量定理及其应用(1)可以利用共线向量定理证明向量共线,也可以由向量共线求参数的值.(2)若a ,b 不共线,则λa +μb =0的充要条件是λ=μ=0,这一结论结合待定系数法应用非常广泛.2.证明三点共线的方法若AB =λAC ,则A ,B ,C 三点共线.对应A本课时跟踪检测二十五一、选择题1.给出下列命题:①两个具有公共终点的向量,一定是共线向量.②两个向量不能比较大小,但它们的模能比较大小.③λa=0(λ为实数),则λ必为零.④λ,μ为实数,若λa=μb,则a与b共线.其中错误的命题的个数为( )A.1 B.2C.3 D.4解析:选C ①错误,两向量共线要看其方向而不是起点或终点.②正确,因为向量既有大小,又有方向,故它们不能比较大小,但它们的模均为实数,故可以比较大小.③错误,当a=0时,不论λ为何值,λa=0.④错误,当λ=μ=0时,λa=μb=0,此时,a与b可以是任意向量.故选C.2.已知向量a,b,c中任意两个都不共线,但a+b与c共线,且b+c与a共线,则向量a+b+c=( )A.a B.bC.c D.0解析:选D 依题意,设a+b=m c,b+c=n a,则有(a+b)-(b+c)=m c-n a,即a-c =m c-n a.又a与c不共线,于是有m=-1,n=-1,a+b=-c,a+b+c=0,选D.3.(2015·福建四地六校联考)已知点O,A,B不在同一条直线上,点P为该平面上一点,且2OP=2OA+BA,则( )A.点P在线段AB上B.点P在线段AB的反向延长线上C.点P在线段AB的延长线上D.点P不在直线AB上解析:选B 因为2OP=2OA+BA,所以2AP=BA,所以点P在线段AB的反向延长线上,故选B.4.设D,E,F分别是△ABC的三边BC,CA,AB上的点,且DC=2BD,CE=2EA,AF=2FB,则AD+BE+CF与BC ( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直解析:选A 由题意得AD =AB +BD =AB +13BC ,BE =BA +AE =BA +13AC , CF =CB +BF =CB +13BA ,因此AD +BE +CF =CB +13(BC +AC -AB )=CB +23BC =-13BC ,故AD +BE +CF 与BC 反向平行.5.在平行四边形ABCD 中,点E 是AD 的中点,BE 与AC 相交于点F ,若EF =m AB +n AD (m ,n ∈R ),则m n的值为( )A .-2B .-12C .2D.12解析:选A 设AB =a ,AD =b ,则EF =m a +n b ,BE =AE -AB =12b -a ,由向量EF 与BE 共线可知存在实数λ,使得EF =λBE ,即m a +n b =12λb -λa ,又a 与b不共线,则⎩⎪⎨⎪⎧m =-λ,n =12λ,所以mn=-2.6.设O 在△ABC 的内部,D 为AB 的中点,且OA +OB +2OC =0,则△ABC 的面积与△AOC 的面积的比值为( )A .3B .4C .5D .6解析:选B ∵D 为AB 的中点,则OD =12(OA +OB ),又OA +OB +2OC =0,∴OD =-OC ,∴O 为CD 的中点,又∵D 为AB 中点, ∴S △AOC =12S △ADC =14S △ABC ,则S △ABCS △AOC=4. 二、填空题7.设点M 是线段BC 的中点,点A 在直线BC 外,BC 2=16,|AB +AC |=|AB -AC |,则|AM |=________.解析:由|AB +AC |=|AB -AC |可知,AB ⊥AC , 则AM 为Rt △ABC 斜边BC 上的中线, 因此,|AM |=12|BC |=2.答案:28.(2015·江门模拟)已知D 为三角形ABC 边BC 的中点,点P 满足PA +BP +CP =0,AP =λPD ,则实数λ的值为________.解析:如图所示,由AP =λPD 且PA +BP +CP =0,则P 为以AB ,AC 为邻边的平行四边形的第四个顶点,因此AP =-2PD ,则λ=-2.答案:-29.已知O 为四边形ABCD 所在平面内一点,且向量OA ,OB ,OC ,OD 满足等式OA +OC =OB +OD ,则四边形ABCD 的形状为________.解析:∵OA +OC =OB +OD ,∴OA -OB =OD -OC , ∴BA =CD ,BA 綊CD ,∴四边形ABCD 为平行四边形. 答案:平行四边形10.已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC =a ,CA =b ,给出下列命题:①AD =12a -b ;②BE =a +12b ;③CF =-12a +12b ;④AD +BE +CF =0.其中正确命题的个数为________.解析:BC =a ,CA =b ,AD =12CB +AC =-12a -b ,故①错;BE =BC +12CA =a +12b ,故②正确;CF =12(CB +CA )=12(-a +b )=-12a +12b ,故③正确;∴AD +BE +CF =-b -12a +a +12b +12b -12a =0.∴正确命题为②③④. 答案:3 三、解答题11.已知a ,b 不共线,OA =a ,OB =b ,OC =c ,OD =d ,OE =e ,设t ∈R ,如果3a =c,2b =d ,e =t (a +b ),是否存在实数t 使C ,D ,E 三点在一条直线上?若存在,求出实数t 的值,若不存在,请说明理由.解:由题设知,CD =d -c =2b -3a ,CE =e -c =(t -3)a +t b ,C ,D ,E 三点在一条直线上的充要条件是存在实数k ,使得CE =k CD ,即(t -3)a +t b =-3k a +2k b ,整理得(t -3+3k )a =(2k -t )b .因为a ,b 不共线,所以有⎩⎪⎨⎪⎧t -3+3k =0,t -2k =0,解之得t =65.故存在实数t =65使C ,D ,E 三点在一条直线上.12.如图所示,在△ABC 中,D ,F 分别是BC ,AC 的中点,AE =23AD ,AB =a ,AC =b .(1)用a ,b 表示向量AD ,AE ,AF ,BE ,BF ; (2)求证:B ,E ,F 三点共线. 解:(1)延长AD 到G ,使AD =12AG ,连接BG ,CG ,得到平行四边形ABGC , 所以AG =a +b ,AD =12AG =12(a +b ), AE =23AD =13(a +b ),AF =12AC =12b ,BE =AE -AB =13(a +b )-a =13(b -2a ),BF =AF -AB =12b -a =12(b -2a ).(2)证明:由(1)可知BE =23BF ,又因为BE ,BF 有公共点B , 所以B ,E ,F 三点共线.第二节平面向量的基本定理及坐标表示对应学生用书P64基础盘查一 平面向量基本定理 (一)循纲忆知了解平面向量的基本定理及其意义. (二)小题查验 1.判断正误(1)平面内的任何两个向量都可以作为一组基底( ) (2)在△ABC 中,向量AB ,BC 的夹角为∠ABC ( ) (3)同一向量在不同基底下的表示是相同的( )(4)设a ,b 是平面内的一组基底,若实数λ1,μ1,λ2,μ2满足λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2( )答案:(1)× (2)× (3)× (4)√2.(人教A 版教材复习题改编)设M 是▱ABCD 的对角线的交点,O 为任意一点,则OA +OB +OC +OD =________OM .答案:4基础盘查二 平面向量的坐标运算 (一)循纲忆知1.掌握平面向量的正交分解及其坐标表示; 2.会用坐标表示平面向量的加法、减法与数乘运算. (二)小题查验 1.判断正误(1)两个向量的终点不同,则这两个向量的坐标一定不同( ) (2)当向量的始点在坐标原点时,向量的坐标就是向量终点的坐标( ) (3)已知点A (2,1),B (-1,3),则AB =(-3,2)( ) 答案:(1)× (2)√ (3)√2.(人教A 版教材例题改编)已知a =(2,1),b =(-3,4),则3a +4b =________. 答案:(-6,19)基础盘查三 平面向量共线的坐标表示 (一)循纲忆知理解用坐标表示的平面向量共线的条件. (二)小题查验 1.判断正误(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2( ) (2)已知向量a =(4,x ),b =(-4,4),若a ∥b ,则x 的值为-4( ) 答案:(1)× (2)√2.O 是坐标原点,OA =(k,12),OB =(4,5),OC =(10,k ),当k =________时,A ,B ,C 三点共线?答案:-2或11对应学生用书P65考点一 平面向量基本定理及其应用(基础送分型考点——自主练透)[必备知识]平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底.[题组练透]1.如果e 1,e 2是平面α内一组不共线的向量,那么下列四组向量中,不能作为平面内所有向量的一组基底的是( )A .e 1与e 1+e 2B .e 1-2e 2与e 1+2e 2C .e 1+e 2与e 1-e 2D .e 1+3e 2与6e 2+2e 1解析:选D 选项A 中,设e 1+e 2=λe 1,则⎩⎪⎨⎪⎧1=λ,1=0,无解;选项B 中,设e 1-2e 2=λ(e 1+2e 2),则⎩⎪⎨⎪⎧λ=1,-2=2λ,无解;选项C 中,设e 1+e 2=λ(e 1-e 2),则⎩⎪⎨⎪⎧λ=1,1=-λ,无解;选项D 中,e 1+3e 2=12(6e 2+2e 1),所以两向量是共线向量.2.如图,在梯形ABCD 中,AD ∥BC ,且AD =13BC ,E ,F 分别为线段AD 与BC 的中点.设BA=a ,BC =b ,试用a ,b 为基底表示向量EF ,DF ,CD .解:EF =EA +AB +BF =-16b -a +12b =13b -a ,DF =DE +EF =-16b +⎝ ⎛⎭⎪⎫13b -a =16b -a , CD =CF +FD =-12b -⎝ ⎛⎭⎪⎫16b -a =a -23b . [类题通法](1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.考点二 平面向量的坐标运算(基础送分型考点——自主练透)[必备知识](1)若a =(x 1,y 1),b =(x 2,y 2),则a ±b =(x 1±x 2,y 1±y 2); (2)若A (x 1,y 1),B (x 2,y 2),则AB =(x 2-x 1,y 2-y 1); (3)若a =(x ,y ),则λa =(λx ,λy );|a |=x 2+y 2.[题组练透]1.已知平面向量a =(1,1),b =(1,-1),则向量12a -32b =( )A .(-2,-1)B .(-2,1)C .(-1,0)D .(-1,2)解析:选D 12a =⎝ ⎛⎭⎪⎫12,12,32b =⎝ ⎛⎭⎪⎫32,-32,故12a -32b =(-1,2). 2.(2015·昆明一中摸底)已知点M (5,-6)和向量a =(1,-2),若MN =-3a ,则点N 的坐标为( )A .(2,0)B .(-3,6)C .(6,2)D .(-2,0)解析:选A MN =-3a =-3(1,-2)=(-3,6), 设N (x ,y ),则MN =(x -5,y +6)=(-3,6), 所以⎩⎪⎨⎪⎧x -5=-3,y +6=6,即⎩⎪⎨⎪⎧x =2,y =0,选A.3.已知A (-2,4),B (3,-1),C (-3,-4).设AB =a ,BC =b ,CA =c ,且CM =3c ,CN =-2b ,(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ; (3)求M ,N 的坐标及向量MN 的坐标.解:由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.(3)设O 为坐标原点,∵CM =OM -OC =3c , ∴OM =3c +OC =(3,24)+(-3,-4)=(0,20). ∴M (0,20).又∵CN =ON -OC =-2b ,∴ON =-2b +OC =(12,6)+(-3,-4)=(9,2), ∴N (9,2),∴MN =(9,-18).[类题通法]平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解. 考点三 平面向量共线的坐标表示(题点多变型考点——全面发掘)[必备知识]设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.则a ∥b ⇔x 1y 2-x 2y 1=0.[一题多变][典型母题][题点发散1] 在本例条件下,若d 满足(d -c )∥(a +b ),且|d -c |=5,求d . 解:设d =(x ,y ),d -c =(x -4,y -1),a +b =(2,4),由题意得⎩⎪⎨⎪⎧x --y -=0,x -2+y -2=5,得⎩⎪⎨⎪⎧x =3,y =-1或⎩⎪⎨⎪⎧x =5,y =3.∴d =(3,-1)或d =(5,3).[题点发散2] 在本例条件下,若m a +n b 与a -2b 共线,求mn的值. 解:m a +n b =(3m -n,2m +2n ),a -2b =(5,-2), 由题意得-2(3m -n )-5(2m +2n )=0.∴m n =-12. [题点发散3] 若本例条件变为:已知A (3,2),B (-1,2),C (4,1),判断A ,B ,C 三点能否共线.解:AB =(-4,0),AC =(1,-1), ∵-4×(-1)-0×1≠0,∴AB ,AC 不共线. ∴A ,B ,C 三点不共线.[类题通法]1.向量共线的两种表示形式设a =(x 1,y 1),b =(x 2,y 2):①a ∥b ⇒a =λb (b ≠0);②a ∥b ⇔x 1y 2-x 2y 1=0.至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.2.两向量共线的充要条件的作用判断两向量是否共线(平行),可解决三点共线的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值.对应B 本课时跟踪检测二十六一、选择题1.如图,在平行四边形ABCD 中,E 为DC 边的中点,且AB =a ,AD=b ,则BE =( )A .b -12aB .b +12aC .a +12bD .a -12b解析:选A BE =BA +AD +DE =-a +b +12a =b -12a .2.已知平行四边形ABCD 中,AD =(3,7),AB =(-2,3),对角线AC 与BD 交于点O ,则CO 的坐标为( )A.⎝ ⎛⎭⎪⎫-12,5B.⎝ ⎛⎭⎪⎫12,5C.⎝ ⎛⎭⎪⎫12,-5 D.⎝ ⎛⎭⎪⎫-12,-5 解析:选D AC =AB +AD =(-2,3)+(3,7)=(1,10). ∴OC =12AC =⎝ ⎛⎭⎪⎫12,5.∴CO =⎝ ⎛⎭⎪⎫-12,-5.故选D. 3.在平面直角坐标系xOy 中,四边形ABCD 的边AB ∥DC ,AD ∥BC .已知A (-2,0),B (6,8),C (8,6),则D 点的坐标为( )A .(0,-2)B .(-4,2)C .(16,14)D .(0,2)解析:选A 设D (x ,y ),由题意知BD =BA +BC , 即(x -6,y -8)=(-8,-8)+(2,-2)=(-6,-10),∴⎩⎪⎨⎪⎧x -6=-6,y -8=-10,∴⎩⎪⎨⎪⎧x =0,y =-2.故选A.4.设向量a =(1,-3),b =(-2,4),c =(-1,-2),若表示向量4a,4b -2c,2(a -c ),d 的有向线段首尾相连能构成四边形,则向量d =( )A .(2,6)B .(-2,6)C .(2,-6)D .(-2,-6)解析:选D 设d =(x ,y ),由题意知4a =(4,-12),4b -2c =(-6,20),2(a -c )=(4,-2),又4a +4b -2c +2(a -c )+d =0,所以(4,-12)+(-6,20)+(4,-2)+(x ,y )=(0,0),解得x =-2,y =-6,所以d =(-2,-6).5.已知向量OA =(1,-3),OB =(2,-1),OC =(k +1,k -2),若A ,B ,C 三点不能构成三角形,则实数k 应满足的条件是( )A .k =-2B .k =12C .k =1D .k =-1解析:选C 若点A ,B ,C 不能构成三角形, 则向量AB ,AC 共线,∵AB =OB -OA =(2,-1)-(1,-3)=(1,2),AC =OC -OA =(k +1,k -2)-(1,-3)=(k ,k +1),∴1×(k +1)-2k =0,解得k =1.6.(2015·山西四校联考)在△ABC 中,点D 在线段BC 的延长线上,且BC =3CD ,点O 在线段CD 上(与点C ,D 不重合),若AO =x AB +(1-x )AC ,则x 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫0,13C.⎝ ⎛⎭⎪⎫-12,0 D.⎝ ⎛⎭⎪⎫-13,0解析:选D 依题意,设BO =λBC ,其中1<λ<43,则有AO =AB +BO =AB +λBC =AB +λ(AC -AB )=(1-λ)AB +λAC .又AO =x AB +(1-x )AC ,且AB ,AC 不共线,于是有x =1-λ∈⎝ ⎛⎭⎪⎫-13,0,即x 的取值范围是⎝ ⎛⎭⎪⎫-13,0. 二、填空题7.设e 1,e 2是平面内一组基向量,且a =e 1+2e 2,b =-e 1+e 2,则向量e 1+e 2可以表示为另一组基向量a ,b 的线性组合,即e 1+e 2=________a +________b .解析:由题意,设e 1+e 2=m a +n b . 因为a =e 1+2e 2,b =-e 1+e 2,所以e 1+e 2=m (e 1+2e 2)+n (-e 1+e 2)=(m -n )e 1+(2m +n )e 2.由平面向量基本定理,得⎩⎪⎨⎪⎧m -n =1,2m +n =1,所以⎩⎪⎨⎪⎧m =23,n =-13.答案:23 -138.已知两点A (1,0),B (1,1),O 为坐标原点,点C 在第二象限,且∠AOC =135°,设OC =-OA +λOB (λ∈R ),则λ的值为________.解析:由∠AOC =135°知,点C 在射线y =-x (x <0)上,设点C 的坐标为(a ,-a ),a <0,则有(a ,-a )=(-1+λ,λ),得a =-1+λ,-a =λ,消掉a 得λ=12.答案:129.在△ABC 中,点P 在BC 上,且BP =2PC ,点Q 是AC 的中点,若PA =(4,3),PQ =(1,5),则BC =________.解析:AQ =PQ -PA =(-3,2), ∴AC =2AQ =(-6,4).PC =PA +AC =(-2,7),∴BC =3PC =(-6,21).答案:(-6,21)10.(2015·九江模拟)P ={a |a =(-1,1)+m (1,2),m ∈R },Q ={b |b =(1,-2)+n (2,3),n ∈R }是两个向量集合,则P ∩Q 等于________.解析:P 中,a =(-1+m,1+2m ),Q 中,b =(1+2n ,-2+3n ).则⎩⎪⎨⎪⎧-1+m =1+2n ,1+2m =-2+3n .得⎩⎪⎨⎪⎧m =-12,n =-7.此时a =b =(-13,-23). 答案:{}-13,-三、解答题11.已知a =(1,0),b =(2,1).求: (1)|a +3b |;(2)当k 为何实数时,k a -b 与a +3b 平行,平行时它们是同向还是反向? 解:(1)因为a =(1,0),b =(2,1),所以a +3b =(7,3), 故|a +3b |=72+32=58.(2)k a -b =(k -2,-1),a +3b =(7,3), 因为k a -b 与a +3b 平行, 所以3(k -2)+7=0,即k =-13.此时k a -b =(k -2,-1)=⎝ ⎛⎭⎪⎫-73,-1, a +3b =(7,3),则a +3b =-3(k a -b ),即此时向量a +3b 与k a -b 方向相反.12.已知点O 为坐标原点,A (0,2),B (4,6),OM =t 1OA +t 2AB . (1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点共线.解:(1)OM =t 1OA +t 2AB =t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2).当点M 在第二或第三象限时,有⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0,故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明:当t 1=1时,由(1)知OM =(4t 2,4t 2+2). ∵AB =OB -OA =(4,4),AM =OM -OA =(4t 2,4t 2)=t 2(4,4)=t 2AB ,∴A ,B ,M 三点共线.第三节平面向量的数量积与平面向量应用举例对应学生用书P66基础盘查一 平面向量的数量积 (一)循纲忆知1.理解平面向量数量积的含义及其物理意义; 2.了解平面向量的数量积与向量投影的关系. (二)小题查验 1.判断正误(1)向量在另一个向量方向上的投影为数量,而不是向量( )(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量( )(3)两个向量的夹角的范围是⎣⎢⎡⎦⎥⎤0,π2( )答案:(1)√ (2)√ (3)×2.(人教A 版教材例题改编)已知|a |=5,|b |=4,a 与b 的夹角θ=120°,则a ·b =________答案:-10基础盘查二 平面向量数量积的性质及其坐标表示 (一)循纲忆知1.掌握数量积的性质及坐标表达式,会进行平面向量数量积的运算;2.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系. (二)小题查验 1.判断正误(1)由a ·b =0,可得a =0或b =0( )(2)两向量a ⊥b 的充要条件:a ·b =0⇔x 1x 2+y 1y 2=0( )(3)若a ·b >0,则a 和b 的夹角为锐角;若a ·b <0,则a 和b 的夹角为钝角( ) 答案:(1)× (2)× (3)×2.(人教A版教材复习题改编)已知|a|=3,|b|=2,a与b的夹角为30°,则|a-b|=________.答案:13.已知向量a=(1,2),向量b=(x,-2),且a⊥(a-b),则实数x等于________.答案:9基础盘查三平面向量数量积的运算律(一)循纲忆知掌握向量数量积的运算律,并能进行相关计算.(二)小题查验1.判断正误(1)(a·b)·c=a·(b·c)( )(2)a·b=a·c(a≠0),则b=c( )答案:(1)×(2)×2.(人教A版教材习题改编)已知单位向量e1,e2的夹角为60°,则向量a=2e1+e2与b =2e2-3e1的夹角为______.答案:150°对应学生用书P67考点一平面向量的数量积的运算(基础送分型考点——自主练透)[必备知识]1.平面向量数量积的定义已知两个非零向量a和b,它们的夹角为θ,把数量|a||b|cos θ叫做a和b的数量积(或内积),记作a·b.即a·b=|a||b|cos θ,规定0·a=0.2.向量数量积的运算律(1)a·b=b·a.(2)(λa)·b=λ(a·b)=a·(λb).(3)(a+b)·c=a·c+b·c.3.平面向量数量积的几何意义数量积a·b等于a的模|a|与b在a的方向上的投影|b|cos θ的乘积.[提醒] 投影和两向量的数量积都是数量,不是向量.[题组练透]1.(2015·云南统一检测)设向量a=(-1,2),b=(m,1),如果向量a+2b与2a-b平行,那么a与b的数量积等于( )A .-72B .-12C.32D.52解析:选D a +2b =(-1+2m,4),2a -b =(-2-m,3),由题意得3(-1+2m )-4(-2-m )=0,则m =-12,所以a ·b =-1×⎝ ⎛⎭⎪⎫-12+2×1=52. 2.(2013·湖北高考)已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB 在CD 方向上的投影为( )A.322B.3152C .-322D .-3152解析:选A AB =(2,1),CD =(5,5),由定义知AB 在CD 方向上的投影为AB ·CD|CD |=1552=322.3.(2014·重庆高考)已知向量a 与b 的夹角为60°,且a =(-2,-6),|b |=10,则a ·b =________.解析:因为a =(-2,-6), 所以|a |=-2+-2=210,又|b|=10,向量a 与b 的夹角为60°,所以a ·b =|a|·|b|·cos 60°=210×10×12=10.答案:104.(2015·东北三校联考)已知正方形ABCD 的边长为2,DE =2EC ,DF =12(DC +DB ),则BE ·DF =________.解析:如图,以B 为原点,BC 所在直线为x 轴,AB 所在直线为y轴建立平面直角坐标系.则B (0,0),E ⎝ ⎛⎭⎪⎫2,23,D (2,2).由DF =12(DC +DB )知F 为BC 的中点,故BE =⎝ ⎛⎭⎪⎫2,23,DF =(-1,-2),∴BE ·DF =-2-43=-103.答案:-103[类题通法]向量数量积的两种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a ·b =|a ||ba ,b .(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.[提醒] (1)在向量数量积的运算中,若a ·b =a ·c (a ≠0),则不一定得到b =c . (2)实数运算满足乘法结合律,但平面向量数量积的运算不满足乘法结合律,即(a ·b )·c 不一定等于a ·(b ·c ).考点二 平面向量数量积的性质(常考常新型考点——多角探明)[必备知识]已知非零向量a =(x 1,y 1),b =(x 2,y 2):[多角探明]平面向量的夹角与模的问题是高考中的常考内容,题型多为选择题、填空题,难度适中,属中档题.归纳起来常见的命题角度有:(1)平面向量的模; (2)平面向量的夹角; (3)平面向量的垂直. 角度一:平面向量的模1.已知平面向量a ,b 的夹角为π6,且|a |=3,|b |=2,在△ABC 中,AB =2a +2b ,AC =2a -6b ,D 为BC 中点,则|AD |等于( )A .2B .4C .6D .8解析:选A 因为AD =12(AB +AC )=12(2a +2b +2a -6b )=2a -2b ,所以|AD |2=4(a -b )2=4(a 2-2b ·a +b 2)=4×⎝ ⎛⎭⎪⎫3-2×2×3×cos π6+4=4,则|AD |=2.2.(2014·北京高考)已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________.解析:∵|a |=1,∴可令a =(cos θ,sin θ), ∵ λa +b =0.∴⎩⎪⎨⎪⎧λcos θ+2=0,λsin θ+1=0,即⎩⎪⎨⎪⎧cos θ=-2λ,sin θ=-1λ.由sin 2θ+cos 2θ=1得λ2=5,得|λ|= 5. 答案: 5角度二:平面向量的夹角3.向量a ,b 均为非零向量,(a -2b )⊥a ,(b -2a )⊥b ,则a ,b 的夹角为( ) A.π6 B.π3 C.2π3D.5π6解析:选B (a -2b )·a =|a |2-2a ·b =0,(b -2a )·b =|b |2-2a ·b =0,所以|a |2=|b |2,即|a |=|b |,故|a |2-2a ·b =|a |2-2|a |2cos 〈a ,b 〉=0,可得cos 〈a ,b 〉=12,又因为0≤〈a ,b 〉≤π,所以〈a ,b 〉=π3.4.(2014·江西高考)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.解析:因为a 2=(3e 1-2e 2)2=9-2×3×2×cos α+4=9,所以|a |=3,b 2=(3e 1-e 2)2=9-2×3×1×cos α+1=8,所以|b |=22,a ·b =(3e 1-2e 2)·(3e 1-e 2)=9e 21-9e 1·e 2+2e 22=9-9×1×1×13+2=8,所以cos β=a ·b |a |·|b |=83×22=223.答案:223角度三:平面向量的垂直5.(2014·重庆高考)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( )A .-92B .0C .3D.152解析:选C 因为2a -3b =(2k -3,-6),(2a -3b )⊥c ,所以(2a -3b )·c =2(2k -3)-6=0,解得k =3,选C.6.在直角三角形ABC 中,已知AB =(2,3),AC =(1,k ),则k 的值为________________.解析:①当A =90°时,∵AB ⊥AC ,∴AB ·AC =0. ∴2×1+3k =0,解得k =-23.②当B =90°时,∵AB ⊥BC ,又BC =AC -AB =(1,k )-(2,3)=(-1,k -3), ∴AB ·BC =2×(-1)+3×(k -3)=0, 解得k =113.③当C =90°时,∵AC ⊥BC ,∴1×(-1)+k (k -3)=0, 即k 2-3k -1=0.∴k =3±132.答案:-23或113或3±132.[类题通法]平面向量数量积求解问题的策略(1)求两向量的夹角:cos θ=a ·b|a |·|b |,要注意θ∈[0,π].(2)两向量垂直的应用:两非零向量垂直的充要条件是:a ⊥b ⇔a ·b =0⇔|a -b |=|a +b |.(3)求向量的模:利用数量积求解长度问题的处理方法有: ①a 2=a ·a =|a |2或|a |=a ·a . ②|a ±b |=a ±b2=a 2±2a ·b +b 2.③若a =(x ,y ),则|a |=x 2+y 2.考点三 平面向量与三角函数的综合(重点保分型考点——师生共研)[典题例析](2013·江苏高考)已知向量a =(cos α,sin α),b =(cos β,sin β),0<β<α<π. (1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值. 解:(1)证明:由题意得|a -b |2=2, 即(a -b )2=a 2-2a ·b +b 2=2. 又因为a 2=b 2=|a |2=|b |2=1,所以2-2a ·b =2,即a ·b =0,故a ⊥b .(2)因为a +b =(cos α+cos β,sin α+sin β)=(0,1),所以⎩⎪⎨⎪⎧cos α+cos β=0,sin α+sin β=1.由此得,cos α=cos (π-β), 由0<β<π,得0<π-β<π.又0<α<π,故α=π-β.代入sin α+sin β=1, 得sin α=sin β=12,而α>β,所以α=5π6,β=π6.[类题通法]平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.[演练冲关]已知向量a =⎝ ⎛⎭⎪⎫cos 3x 2,sin 3x 2,b =⎝ ⎛⎭⎪⎫cos x 2,sin x 2,c =(3,-1),其中x ∈R ,(1)当a ·b =12时,求x 的取值集合;(2)设函数f (x )=(a -c )2,求f (x )的最小正周期及其单调递增区间.解:(1)∵a ·b =cos 3x 2cos x 2+sin 3x 2sin x 2=cos x =12,∴x =2k π±π3(k ∈Z ).∴所求x 的取值集合为xx =2k π±π3,k ∈Z .(2)∵a -c =⎝ ⎛⎭⎪⎫cos 3x 2-3,sin 3x 2+1,∴f (x )=(a -c )2=⎝ ⎛⎭⎪⎫cos 3x 2-32+⎝ ⎛⎭⎪⎫sin 3x 2+12=5-23cos 3x 2+2sin 3x 2=5+4⎝ ⎛⎭⎪⎫12sin 3x 2-32cos 3x 2=5+4sin ⎝ ⎛⎭⎪⎫3x 2-π3. ∴最小正周期为T =2π32=4π3.由2k π-π2≤3x 2-π3≤2k π+π2(k ∈Z ),得4k π3-π9≤x ≤4k π3+5π9(k ∈Z ). ∴单调递增区间是⎣⎢⎡⎦⎥⎤4k π3-π9,4k π3+5π9(k ∈Z ).对应A 本课时跟踪检测二十七一、选择题1.(2015·惠州调研)已知向量p =(2,-3),q =(x,6),且p ∥q ,则|p +q |的值为( ) A. 5 B.13 C .5D .13解析:选 B 由题意得2×6+3x =0⇒x =-4⇒|p +q |=|(2,-3)+(-4,6)|=|(-2,3)|=13.2.(2015·长春调研)已知向量a =(1,2),b =(1,0),c =(3,4),若λ为实数,(b +λa )⊥c ,则λ的值为( )A .-311B .-113C.12D.35解析:选A b +λa =(1,0)+λ(1,2)=(1+λ,2λ),c =(3,4),又(b +λa )⊥c ,∴(b +λa )·c =0,即(1+λ,2λ)·(3,4)=3+3λ+8λ=0,解得λ=-311,故选A.3.已知向量a ,b 满足(a +2b )·(5a -4b )=0,且|a |=|b |=1,则a 与b 的夹角θ为( )A.3π4B.π4C.π3D.2π3解析:选C 因为(a +2b )·(5a -4b )=0,|a |=|b |=1, 所以6a ·b -8+5=0,即a ·b =12.又a ·b =|a ||b |cos θ=cos θ,所以cos θ=12,因为θ∈[0,π],所以θ=π3.4.在△ABC 中,(BC +BA )·AC =|AC |2,则△ABC 的形状一定是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形解析:选 C 由(BC +BA )·AC =|AC |2,得AC ·(BC +BA -AC )=0,即AC ·(BC +BA +CA )=0,2AC ·BA =0,∴AC ⊥BA ,∴A =90°.又根据已知条件不能得到|AB |=|AC |,故△ABC 一定是直角三角形.5.(2015·东北三校联考)已知△ABC 中,|BC |=10,AB ·AC =-16,D 为边BC 的中点,则|AD |等于( )A .6B .5C .4D .3解析:选 D 由题知AD =12(AB +AC ),AB ·AC =-16,∴|AB |·|AC |cos∠BAC =-16.在△ABC 中由余弦定理得,|BC |2=|AB |2+|AC |2-2|AB ||AC |cos ∠BAC ,∴102=|AB |2+|AC |2+32,|AB |2+|AC |2=68,∴|AD |2=14(AB 2+AC 2+2AB ·AC )=14(68-32)=9,∴|AD |=3,故选D.6.在边长为1的正方形ABCD 中,M 为BC 的中点,点E 在线段AB 上运动,则EC ·EM 的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,2B.⎣⎢⎡⎦⎥⎤0,32 C.⎣⎢⎡⎦⎥⎤12,32 D.[]0,1解析:选 C 将正方形放入如图所示的平面直角坐标系中,设E (x,0),0≤x ≤1.又M ⎝⎛⎭⎪⎫1,12,C (1,1),所以EM =⎝⎛⎭⎪⎫1-x ,12,EC =(1-x,1),所以EM ·EC =⎝⎛⎭⎪⎫1-x ,12·(1-x,1)=(1-x )2+12.因为0≤x ≤1,所以12≤(1-x )2+12≤32,即EM ·EC 的取值范围是⎣⎢⎡⎦⎥⎤12,32.二、填空题7.(2015·北京东城质量检测)已知平面向量a =(2,4),b =(1,-2),若c =a -(a ·b )b ,则|c |=________.解析:由题意可得a ·b =2×1+4×(-2)=-6,∴c =a -(a ·b )b =a +6b =(2,4)+6(1,-2)=(8,-8), ∴|c |=82+-2=8 2.答案:8 28.(2015·山西四校联考)圆O 为△ABC 的外接圆,半径为2,若AB +AC =2AO ,且|OA |=|AC |,则向量BA 在向量BC 方向上的投影为________.解析:∵AB +AC =2AO ,∴O 是BC 的中点,故△ABC 为直角三角形.在△AOC 中,有|OA |=|AC |,∴∠B =30°.由定义,向量BA 在向量BC 方向上的投影为|BA |cos ∠B =23×32=3. 答案:39.单位圆上三点A ,B ,C 满足OA +OB +OC =0,则向量OA ,OB 的夹角为________.解析:∵A ,B ,C 为单位圆上三点, ∴|OA |=|OB |=|OC |=1, 又OA +OB +OC =0, ∴-OC =OB +OA ,∴OC 2=(OB +OA )2=OB 2+OA 2+2OB ·OA ,可得cos 〈OA ,OB 〉=-12,∴向量OA ,OB 的夹角为120°. 答案:120°10.(2014·江苏高考)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP =3PD ,AP ·BP =2,则AB ·AD 的值是________.解析:因为AP =AD +DP =AD +14AB ,BP =BC +CP =AD -34AB ,所以AP ·BP =⎝ ⎛⎭⎪⎫AD +14 AB ·⎝ ⎛⎭⎪⎫AD -34 AB =|AD |2-316|AB |2-12AD ·AB =2,将AB =8,AD =5代入解得AB ·AD =22. 答案:22 三、解答题11.已知|a |=4,|b |=8,a 与b 的夹角是120°. (1)计算:①|a +b |,②|4a -2b |; (2)当k 为何值时,(a +2b )⊥(k a -b ).解:由已知得,a ·b =4×8×⎝ ⎛⎭⎪⎫-12=-16. (1)①∵|a +b |2=a 2+2a ·b +b 2=16+2×(-16)+64=48,∴|a +b |=4 3. ②∵|4a -2b |2=16a 2-16a ·b +4b 2=16×16-16×(-16)+4×64=768, ∴|4a -2b |=16 3.(2)∵(a +2b )⊥(k a -b ),∴(a +2b )·(k a -b )=0, ∴k a 2+(2k -1)a ·b -2b 2=0,即16k -16(2k -1)-2×64=0.∴k =-7. 即k =-7时,a +2b 与k a -b 垂直.12.在平面直角坐标系中,O 为坐标原点,已知向量a =(-1,2),又点A (8,0),B (n ,t ),C (k sin θ,t )⎝ ⎛⎭⎪⎫0≤θ≤π2.(1)若AB ⊥a ,且|AB |=5|OA |,求向量OB ;(2)若向量AC 与向量a 共线,当k >4,且t sin θ取最大值4时,求OA ·OC . 解:(1)由题设知AB =(n -8,t ), ∵AB ⊥a ,∴8-n +2t =0. 又∵5|OA |=|AB |,∴5×64=(n -8)2+t 2=5t 2,得t =±8.当t =8时,n =24;t =-8时,n =-8, ∴OB =(24,8)或OB =(-8,-8). (2)由题设知AC =(k sin θ-8,t ), ∵AC 与a 共线,∴t =-2k sin θ+16,t sin θ=(-2k sin θ+16)sin θ=-2k ⎝ ⎛⎭⎪⎫sin θ-4k2+32k. ∵k >4,∴0<4k<1,∴当sin θ=4k 时,t sin θ取得最大值32k.由32k=4,得k =8,此时θ=π6,OC =(4,8).∴OA ·OC =(8,0)·(4,8)=32.第四节数系的扩充与复数的引入对应学生用书P69基础盘查一 复数的有关概念 (一)循纲忆知1.理解复数的基本概念; 2.理解复数相等的充要条件. (二)小题查验 1.判断正误(1)已知z =a +b i(a ,b ∈R ),当a =0时复数z 为纯虚数( ) (2)复数z =a +b i(a ,b ∈R )中,虚部为b i( )(3)复数中有相等复数的概念,因此复数可以比较大小( ) 答案:(1)× (2)× (3)×2.(人教A 版教材例题改编)如果(x +y )+(y -1)i =(2x +3y )+(2y +1)i ,则x =________,y =________.答案:4 -2基础盘查二 复数的几何意义 (一)循纲忆知了解复数的代数表示法及其几何意义. (二)小题查验 1.判断正误(1)原点是实轴与虚轴的交点( )(2)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模( )答案:(1)√ (2)√2.(人教A 版教材习题改编)ABCD 是复平面内的平行四边形,A ,B ,C 三点对应的复数分别是1+3i ,-i,2+i ,则点D 对应的复数为________.答案:3+5i基础盘查三 复数的运算 (一)循纲忆知1.会进行复数代数形式的四则运算;2.了解复数代数形式的加、减运算的几何意义. (二)小题查验 1.判断正误(1)若复数z 1,z 2满足z 1-z 2>0,则z 1>z 2( )(2)复数的减法不满足结合律,即(z 1-z 2)-z 3=z 1-(z 2+z 3)可能不成立( ) (3)两个复数的积与商一定是虚数( )(4)复数加减乘除的混合运算法则是先乘除,后加减( ) 答案:(1)× (2)× (3)× (4)√ 2.(人教A 版教材习题改编)计算: (1)2i 2-i=________,(2)+2+=________.答案:(1)-25+45i (2)1-38i对应学生用书P69考点一 复数的有关概念(基础送分型考点——自主练透)[必备知识]1.复数的概念形如a +b i(a ,b ∈R )的数叫复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +。
《三维设计》2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)函数y=sin(ωx+φ)的图象及三
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校第四节函数y=sin(ωx+φ)的图象及三角函数模型的简单应用[知识能否忆起]一、y=A sin(ωx+φ)的有关概念二、用五点法画y=A sin(ωx+φ)一个周期内的简图用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个关键点,如下表所示:ωx+φ 0 π2 π 3π2 2π y =A sin(ωx +φ) 0A-A三、函数y =sin x 的图象变换得到y =A sin(ωx +φ)的图象的步骤[小题能否全取]1.函数y =sin x2的图象的一条对称轴的方程是( )A .x =0B .x =π2C .x =πD .x =2π解析:选C 由x 2=π2+k π得x =π+2k π(k ∈Z ).故x =π是函数y =sin x2的一条对称轴.2.(教材习题改编)已知简谐运动f (x )=2sin ⎝⎛⎭⎫π3x +φ⎝⎛⎭⎫|φ|<π2的图象经过点(0,1),则该简谐运动的最小正周期T 和初相φ分别为( )A .T =6,φ=π6B .T =6,φ=π3C .T =6π,φ=π6D .T =6π,φ=π3解析:选A 最小正周期为T =2ππ3=6;由2sin φ=1,得sin φ=12,φ=π6.3.(2012·安徽高考)要得到函数y =cos(2x +1)的图象,只要将函数y =cos 2x 的图象( ) A .向左平移1个单位 B .向右平移1个单位 C .向左平移12个单位D .向右平移12个单位解析:选C ∵y =cos(2x +1)=cos 2⎝⎛⎭⎫x +12, ∴只要将函数y =cos 2x 的图象向左平移12个单位即可.4.用五点法作函数y =sin ⎝⎛⎭⎫x -π6在一个周期内的图象时,主要确定的五个点是________、________、________、________、________.答案:⎝⎛⎭⎫π6,0 ⎝⎛⎭⎫2π3,1 ⎝⎛⎭⎫7π6,0 ⎝⎛⎭⎫5π3,-1 ⎝⎛⎭⎫13π6,0 5.函数y =A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)在闭区间[-π,0]上的图象如图所示,则ω=________.解析:观察函数图象可得周期T =2π3,则T =2π3=2πω,所以ω=3.答案:31.确定y =A sin(ωx +φ)+k (A >0,ω>0,|φ|<π)中的参数的方法:在由图象求解析式时,若最大值为M ,最小值为m ,则A =M -m 2,k =M +m2,ω由周期T 确定,即由2πω=T 求出,φ由特殊点确定.2.由y =sin x 的图象变换到y =A sin(ωx +φ)的图象,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位.原因在于相位变换和周期变换都是针对x 而言,即x 本身加减多少值,而不是于ωx 加减多少值.典题导入[例1] 已知函数f (x )=3sin ⎝⎛⎭⎫12x -π4,x ∈R .(1)画出函数f (x )在长度为一个周期的闭区间上的简图; (2)将函数y =sin x 的图象作怎样的变换可得到f (x )的图象? [自主解答] (1)列表取值:描出五个关键点并用光滑曲线连接,得到一个周期的简图.(2)先把y =sin x 的图象向右平移π4个单位,然后把所有点的横坐标扩大为原来的2倍,再把所有点的纵坐标扩大为原来的3倍,得到f (x )的图象.由题悟法函数y =A sin(ωx +φ)(A >0,ω>0)的图象的作法(1)五点法:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换法:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.以题试法1.(2012·江西省重点中学联考)把函数y =sin ⎝⎛⎭⎫x +π6图象上各点的横坐标缩短为原来的12倍(纵坐标不变),再将图象向右平移π3个单位,那么所得图象的一条对称轴方程为( )A .x =-π2B .x =-π4C .x =π8D .x =π4解析:选A 依题意得,经过图象变换后得到的图象相应的解析式是y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π3+π6=sin ⎝⎛⎭⎫2x -π2=-cos 2x ,注意到当x =-π2时,y =-cos(-π)=1,此时y =-cos 2x 取得最大值,因此直线x =-π2是该图象的一条对称轴.典题导入[例2] (2011·江苏高考)函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)的部分图象如图所示,则f (0)的值是________.[自主解答] 由图可知:A =2,T 4=7π12-π3=π4,所以T =π,ω=2πT =2,又函数图象经过点⎝⎛⎭⎫π3,0,所以2×π3+φ=π,则φ=π3,故函数的解析式为f (x )=2sin ⎝⎛⎭⎫2x +π3, 所以f (0)=2sin π3=62.[答案]62若本例函数的部分图象变为如图所示,试求f (0).解:由图知A =5,由T 2=5π2-π=3π2,得T =3π, ∴ω=2πT =23.此时y =5sin ⎝⎛⎭⎫23x +φ. 将最高点坐标⎝⎛⎭⎫π4,5代入y =5sin ⎝⎛⎭⎫23x +φ, 得5sin ⎝⎛⎭⎫π6+φ=5,∴π6+φ=2k π+π2,∴φ=2k π+π3(k ∈Z ). ∴f (x )=5sin ⎝⎛⎭⎫23x +π3,f (0)=5sin π3=532.由题悟法确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法(1)求A ,b ,确定函数的最大值M 和最小值m ,则A =M -m 2,b =M +m2.(2)求ω,确定函数的周期T ,则可得ω=2πT .(3)求φ,常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定φ值时,往往以寻找“五点法”中的某一个点为突破口.具体如下: “第一点”(即图象上升时与x 轴的交点)时ωx +φ=0;“第二点”(即图象的“峰点”)时ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)时ωx +φ=π;“第四点”(即图象的“谷点”)时ωx +φ=3π2;“第五点”时ωx +φ=2π(如例2).以题试法2.(1) (2012·浙江金华模拟)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的图象与y 轴交于点(0,3),在y 轴右边到y 轴最近的最高点坐标为⎝⎛⎭⎫π12,2,则不等式f (x )>1的解集是( )A.⎝⎛⎭⎫k π-π6,k π+56π,k ∈Z B.⎝⎛⎭⎫k π-π12,k π+56π,k ∈Z C.⎝⎛⎭⎫k π-π16,k π+π4,k ∈Z D.⎝⎛⎭⎫k π-π12,k π+π4,k ∈Z 解析:选D 依题意A =2,2sin φ=3且|φ|<π2,则φ=π3,由2sin ⎝⎛⎭⎫πω12+π3=2得πω12+π3=π2,则ω=2, 由f (x )=2sin ⎝⎛⎭⎫2x +π3>1,得2k π+π6<2x +π3<2k π+5π6(k ∈Z ),所以k π-π12<x <k π+π4(k ∈Z ).(2)(2012·长春调研)函数y =cos(ωx +φ)(ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,A 、B 分别为最高点、最低点,且AB =22,则该函数图象的一条对称轴为( )A .x =2πB .x =π2C .x =2D .x =1解析:选D 由y =cos(ωx +φ)为奇函数知φ=k π+π2,其中k ∈Z .又0<φ<π,所以φ=π2,则y =cos ⎝⎛⎭⎫ωx +π2=-sin ωx .由AB =22知 ⎝⎛⎭⎫T 22+22=22,所以T =4=2πω,得ω=π2,y =-sinπx 2.结合选项知当x =1时,y =-sin π×12=-1,此时函数y =-sin πx2取得最小值,因此该函数图象的一条对称轴为x =1.典题导入[例3] 已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的图象与y 轴的交点为(0,1),它在y 轴右侧的第一个最高点和第一个最低点的坐标分别为(x 0,2)和(x 0+2π,-2).(1)求f (x )的解析式及x 0的值; (2)求f (x )的增区间;(3)若x ∈[-π,π],求f (x )的值域.[自主解答] (1)由图象知A =2,由T 2=2π得T =4π,所以ω=12.∴f (x )=2sin ⎝⎛⎭⎫12x +φ, ∴f (0)=2sin φ=1,又∵|φ|<π2,∴φ=π6,∴f (x )=2sin ⎝⎛⎭⎫12x +π6, 由f (x 0)=2sin ⎝⎛⎭⎫12x 0+π6=2, ∴12x 0+π6=π2+2k π, x 0=4k π+2π3,k ∈Z ,又(x 0,2)是y 轴右侧的第一个最高点, ∴x 0=2π3.(2)由-π2+2k π≤12x +π6≤π2+2k π,k ∈Z 得-4π3+4k π≤x ≤2π3+4k π,所以f (x )的增区间为⎣⎡⎦⎤-4π3+4k π,2π3+4k π,k ∈Z . (3)∵-π≤x ≤π, ∴-π3≤12x +π6≤2π3,∴-32≤sin ⎝⎛⎭⎫12x +π6≤1, ∴-3≤f (x )≤2,所以f (x )的值域为[-3,2].由题悟法利用三角函数图象与x 轴的相邻两个交点之间的距离为三角函数的12个最小正周期,可求解参数ω的值,利用图象的最高点、低点为三角函数最值点,可求解参数A 的值.在求函数值域时,由定义域转化成ωx +φ的范围,即把ωx +φ看作一个整体,再结合三角函数的图象求解.以题试法3.函数f (x )=A sin ⎝⎛⎭⎫ωx -π6+1(A >0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为π2.(1)求函数f (x )的解析式;(2)设α∈⎝⎛⎭⎫0,π2,则f ⎝⎛⎭⎫α2=2,求α的值. 解:(1)因为A +1=3,所以A =2.又因为函数图象相邻对称轴之间的距离为半个周期,所以T 2=π2,得T =π,所以ω=2πT =2,所以f (x )=2sin ⎝⎛⎭⎫2x -π6+1. (2)因为f ⎝⎛⎭⎫α2=2sin ⎝⎛⎭⎫α-π6+1=2, 所以sin ⎝⎛⎭⎫α-π6=12. 因为0<α<π2,所以-π6<α-π6<π3,所以α-π6=π6,所以α=π3.1.函数y =cos x (x ∈R )的图象向左平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式应为( )A .-sin xB .sin xC .-cos xD .cos x解析:选A 由图象的平移得g (x )=cos ⎝⎛⎭⎫x +π2=-sin x . 2.(2012·潍坊模拟)将函数y =cos 2x 的图象向右平移π4个单位长度,得到函数y =f (x )·sinx 的图象,则f (x )的表达式可以是( )A .f (x )=-2cos xB .f (x )=2cos xC .f (x )=22sin 2xD .f (x )=22(sin 2x +cos 2x ) 解析:选B 平移后的函数解析式是y =cos 2⎝⎛⎭⎫x -π4=sin 2x =2sin x cos x ,故函数f (x )的表达式可以是f (x )=2cos x .3.(2012·天津高考)将函数f (x )=sin ωx (其中ω>0)的图象向右平移π4个单位长度,所得图象经过点⎝⎛⎭⎫3π4,0,则ω的最小值是( )A.13 B .1 C.53D .2解析:选D 将函数f (x )=sin ωx 的图象向右平移π4个单位长度,得到的图象对应的函数解析式为f (x )=sin ω⎝⎛⎭⎫x -π4=sin ⎝⎛⎭⎫ωx -ωπ4.又因为函数图象过点⎝⎛⎭⎫3π4,0,所以sin ⎝⎛⎭⎫3ωπ4-ωπ4=sin ωπ2=0,所以ωπ2=k π,即ω=2k (k ∈Z ),因为ω>0,所以ω的最小值为 2.4.(2012·海淀区期末练习)函数f (x )=A sin(2x +φ)(A >0,φ∈R )的部分图象如图所示,那么f (0)=( )A .-12B .-32C .-1D .- 3解析:选C 由图可知,A =2,f ⎝⎛⎭⎫π3=2, ∴2sin ⎝⎛⎭⎫2π3+φ=2,sin ⎝⎛⎭⎫2π3+φ=1,∴2π3+φ=π2+2k π(k ∈Z ),φ=-π6+2k π(k ∈Z ), ∴f (0)=2sin φ=2sin ⎝⎛⎭⎫-π6+2k π=2×⎝⎛⎭⎫-12=-1. 5.(2013·福州质检)已知函数f (x )=2sin(ωx +φ)(ω>0)的部分图象如图所示,则函数f (x )的一个单调递增区间是( )A.⎣⎡⎦⎤-7π12,5π12 B.⎣⎡⎦⎤-7π12,-π12 C.⎣⎡⎦⎤-π12,7π12D.⎣⎡⎦⎤-π12,5π12 解析:选D 由函数的图象可得14T =2π3-5π12,∴T =π,则ω=2,又图象过点⎝⎛⎭⎫5π12,2,∴2sin ⎝⎛⎭⎫2×5π12+φ=2, ∴φ=-π3+2k π,k ∈Z ,∴f (x )=2sin ⎝⎛⎭⎫2x -π3,其单调递增区间为⎣⎡⎦⎤k π-π12,k π+5π12,k ∈Z ,取k =0,即得选项D.6.(2012·潍坊模拟)如图,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针尖位置P (x ,y ).若初始位置为P 0⎝⎛⎭⎫32,12,当秒针从P 0(注:此时t =0)正常开始走时,那么点P 的纵坐标y 与时间t 的函数关系为( )A .y =sin ⎝⎛⎭⎫π30t +π6B .y =sin ⎝⎛⎭⎫-π60t -π6C .y =sin ⎝⎛⎭⎫-π30t +π6D .y =sin ⎝⎛⎭⎫-π30t -π3 解析:选C 由题意可得,函数的初相位是π6,排除B 、D.又函数周期是60(秒)且秒针按顺时针旋转,即T =2π|ω|=60,所以|ω|=π30,即ω=-π30.7.(2012·南京模拟)已知函数f (x )=A tan(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2,y =f (x )的部分图象如图,则f ⎝⎛⎭⎫π24=________.解析:由题中图象可知,此正切函数的半周期等于3π8-π8=2π8=π4,即周期为π2,所以,ω=2.由题意可知,图象过定点⎝⎛⎭⎫3π8,0,所以0=A tan ⎝⎛⎭⎫2×3π8+φ,即3π4+φ=k π(k ∈Z ),所以,φ=k π-3π4(k ∈Z ),又|φ|<π2,所以,φ=π4.再由图象过定点(0,1),得A =1.综上可知,f (x )=tan ⎝⎛⎭⎫2x +π4.故有f ⎝⎛⎭⎫π24=tan ⎝⎛⎭⎫2×π24+π4=tan π3=3.答案: 38.(2012·成都模拟)如图,单摆从某点开始来回摆动,离开平衡位置O 的距离s (cm)和时间t (s)的关系式为s =6sin ⎝⎛⎭⎫2πt +π6,那么单摆来回摆动一次所需的时间为________s.解析:单摆来回摆动一次所需的时间即为一个周期T =2π2π=1.答案:19.给出下列六种图象变换方法:(1)图象上所有点的纵坐标不变,横坐标缩短到原来的12;(2)图象上所有点的纵坐标不变,横坐标伸长到原来的2倍; (3)图象向右平移π3个单位;(4)图象向左平移π3个单位;(5)图象向右平移2π3个单位;(6)图象向左平移2π3个单位.请用上述变换中的两种变换,将函数y =sin x 的图象变换到函数y =sin ⎝⎛⎭⎫x 2+π3的图象,那么这两种变换正确的标号是________(要求按变换先后顺序填上一种你认为正确的标号即可).解析:y =sin x ――→(4) y =sin ⎝⎛⎭⎫x +π3――→(2)y =sin ⎝⎛⎭⎫x 2+π3,或y =sin x ――→(2)y =sin 12x ――→(6) y =sin 12⎝⎛⎭⎫x +2π3=sin ⎝⎛⎭⎫x 2+π3. 答案:(4)(2)(或((2)(6)))10.(2012·苏州模拟)已知函数y =A sin(ωx +φ)+n 的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,若A >0,ω>0,0<φ<π2,求函数的解析式.解:由题意可得⎩⎪⎨⎪⎧ A +n =4,-A +n =0,解得⎩⎪⎨⎪⎧A =2,n =2.又因为函数的最小正周期为π2,所以ω=2ππ2=4.由直线x =π3是一条对称轴可得4×π3+φ=k π+π2(k ∈Z ),故φ=k π-5π6(k ∈Z ),又0<φ<π2,所以φ=π6.综上可得y =2sin ⎝⎛⎭⎫4x +π6+2. 11.设函数f (x )=cos(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝⎛⎭⎫π4=32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图象. 解:(1)周期T =2πω=π,∴ω=2,∵f ⎝⎛⎭⎫π4=cos ⎝⎛⎭⎫2×π4+φ=cos ⎝⎛⎭⎫π2+φ=-sin φ=32,∵-π2<φ<0,∴φ=-π3. (2)∵f (x )=cos ⎝⎛⎭⎫2x -π3,列表如下:12.已知函数f (x )=23sin ⎝⎛⎭⎫x 2+π4cos ⎝⎛⎭⎫x 2+π4-sin (x +π). (1)求f (x )的最小正周期;(2)若将f (x )的图象向右平移π6个单位,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.解:(1)因为f (x )=3sin ⎝⎛⎭⎫x +π2+sin x =3cos x +sin x =2⎝⎛⎭⎫32cos x +12sin x =2sin ⎝⎛⎭⎫x +π3, 所以f (x )的最小正周期为2π.(2)∵将f (x )的图象向右平移π6个单位,得到函数g (x )的图象,∴g (x )=f ⎝⎛⎭⎫x -π6=2sin ⎣⎡⎦⎤⎝⎛⎭⎫x -π6+π3=2sin ⎝⎛⎭⎫x +π6. ∵x ∈[0,π],∴x +π6∈⎣⎡⎦⎤π6,7π6, ∴当x +π6=π2,即x =π3时,sin ⎝⎛⎭⎫x +π6=1,g (x )取得最大值2. 当x +π6=7π6,即x =π时,sin ⎝⎛⎭⎫x +π6=-12,g (x )取得最小值-1.1.(2012·江西九校联考)已知A ,B ,C ,D 是函数y =sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2一个周期内的图象上的四个点,如图所示,A ⎝⎛⎭⎫-π6,0,B 为y 轴上的点,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD u u u r 在x 轴上的投影为π12,则ω,φ的值为( )A .ω=2,φ=π3B .ω=2,φ=π6C .ω=12,φ=π3D .ω=12,φ=π6解析:选A 由CD u u u r 在x 轴上的投影为π12,知OF =π12,又A ⎝⎛⎭⎫-π6,0,所以AF =T 4=π2ω=π4,所以ω=2. 同时函数图象可以看做是由y =sin x 的图象向左平移而来,故可知φω=φ2=π6,即φ=π3.2.已知f (x )=sin ⎝⎛⎭⎫x +π2,g (x )=cos ⎝⎛⎭⎫x -π2,则下列结论中正确的是( ) A .函数y =f (x )·g (x )的周期为2 B .函数y =f (x )·g (x )的最大值为1C .将f (x )的图象向左平移π2个单位后得到g (x )的图象D .将f (x )的图象向右平移π2个单位后得到g (x )的图象解析:选D ∵f (x )=sin ⎝⎛⎭⎫x +π2=cos x ,g (x )=cos ⎝⎛⎭⎫x -π2=cos ⎝⎛⎭⎫π2-x =sin x , ∴y =f (x )·g (x )=cos x ·sin x =12sin 2x .T =2π2=π,最大值为12,∴选项A 、B 错误.又∵f (x )=cos x 2π−−−−−−→向右平移位个单 g (x )=cos ⎝⎛⎭⎫x -π2 ∴选项C 错误,D 正确.3.为迎接夏季旅游旺季的到来,少林寺单独设置了一个专门安排游客住宿的客栈,寺庙的工作人员发现为游客准备的一些食物有些月份剩余不少,浪费很严重,为了控制经营成本,减少浪费,就想适时调整投入.为此他们统计每个月入住的游客人数,发现每年各个月份来客栈入住的游客人数会发生周期性的变化,并且有以下规律:①每年相同的月份,入住客栈的游客人数基本相同;②入住客栈的游客人数在2月份最少,在8月份最多,相差约400人; ③2月份入住客栈的游客约为100人,随后逐月递增直到8月份达到最多. (1)试用一个正弦型三角函数描述一年中入住客栈的游客人数与月份之间的关系; (2)请问哪几个月份要准备400份以上的食物?解:(1)设该函数为f (x )=A sin(ωx +φ)+B (A >0,ω>0,0<|φ|<π),根据条件①,可知这个函数的周期是12;由②可知,f (2)最小,f (8)最大,且f (8)-f (2)=400,故该函数的振幅为200;由③可知,f (x )在[2,8]上单调递增,且f (2)=100,所以f (8)=500.根据上述分析可得,2πω=12,故ω=π6,且⎩⎪⎨⎪⎧ -A +B =100,A +B =500,解得⎩⎪⎨⎪⎧A =200,B =300.根据分析可知,当x =2时f (x )最小,当x =8时f (x )最大, 故sin ⎝⎛⎭⎫2×π6+φ=-1,且sin ⎝⎛⎭⎫8×π6+φ=1. 又因为0<|φ|<π,故φ=-5π6.所以入住客栈的游客人数与月份之间的关系式为 f (x )=200sin ⎝⎛⎭⎫π6x -5π6+300.(2)由条件可知,200sin ⎝⎛⎭⎫π6x -5π6+300≥400,化简,得 sin ⎝⎛⎭⎫π6x -5π6≥12⇒2k π+π6≤π6x -5π6≤2k π+5π6,k ∈Z , 解得12k +6≤x ≤12k +10,k ∈Z .因为x ∈N *,且1≤x ≤12,故x =6,7,8,9,10.即只有6,7,8,9,10五个月份要准备400份以上的食物.1.定义行列式运算⎪⎪⎪⎪⎪⎪a 1 a 2a 3 a 4=a 1a 4-a 2a 3.将函数f (x )=⎪⎪⎪⎪⎪⎪3 sin x 1 cos x 的图象向左平移n (n >0)个单位,所得图象对应的函数为偶函数,则n 的最小值为( )A.π6 B.π3 C.5π6D.2π3解析:选C 依题意可得f (x )=⎪⎪⎪⎪⎪⎪3 sin x 1 cos x =3cos x -sin x =2 cos ⎝⎛⎭⎫x +π6,图象向左平移n (n >0)个单位得f (x +n )=2cos ⎝⎛⎭⎫x +n +π6,要使平移后的函数为偶函数,则n 的最小值为5π6. 2.已知函数f (x )=A sin(3x +φ)(A >0,0<φ<π)在x =π12时取得最大值4.(1)求f (x )的最小正周期; (2)求f (x )的解析式. 解:(1)∵f (x )=A sin(3x +φ), ∴T =2π3,即f (x )的最小正周期为2π3.(2)∵当x =π12时,f (x )有最大值4,∴A =4.∴4=4sin ⎝⎛⎭⎫3×π12+φ,∴sin ⎝⎛⎭⎫π4+φ=1. 即π4+φ=2k π+π2,得φ=2k π+π4()k ∈Z . ∵0<φ<π,∴φ=π4.∴f (x )=4sin ⎝⎛⎭⎫3x +π4. 3.(2012·北京模拟)设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8. (1)求φ;(2)求函数y =f (x )的单调递增区间; (3)画出函数y =f (x )在区间[0,π]上的图象. 解:(1)∵x =π8是函数y =f (x )的图象的对称轴,∴sin ⎝⎛⎭⎫2×π8+φ=±1, ∴π4+φ=k π+π2,k ∈Z , ∵-π<φ<0,∴φ=-3π4.(2)由(1)知φ=-3π4,因此y =sin ⎝⎛⎭⎫2x -3π4. 由题意得2k π-π2≤2x -3π4≤2k π+π2,k ∈Z .解得k π+π8≤x ≤k π+5π8,k ∈Z .所以函数y =sin ⎝⎛⎭⎫2x -3π4的单调递增区间为⎣⎡⎦⎤k π+π8,k π+5π8,k ∈Z . (3)由y =sin ⎝⎛⎭⎫2x -3π4列表如下:故函数y =f (x )在区间[0,π]上的图象为:。
【三维设计】2014届高考数学一轮复习 (基础知识+高频考点+解题训练)抛物线教学案
抛_物_线[知识能否忆起]1.抛物线定义平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.2.抛物线的标准方程与几何性质标准方程y 2=2px (p >0) y 2=-2px (p >0)图形范围 x ≥0,y ∈Rx ≤0,y ∈R对称轴 x 轴顶点坐标 原点O (0,0)焦点坐标⎝ ⎛⎭⎪⎫p 2,0 ⎝ ⎛⎭⎪⎫-p 2,0 准线方程 x =-p 2x =p 2离心率e =1标准方程x 2=2py (p >0) x 2=-2py (p >0)图形范围 y ≥0,x ∈Ry ≤0,x ∈R对称轴 y 轴顶点坐标原点O (0,0)[小题能否全取]1.(教材习题改编)已知抛物线的焦点坐标是(0,-3),则抛物线的标准方程是( ) A .x 2=-12y B .x 2=12y C .y 2=-12xD .y 2=12x解析:选A ∵p2=3,∴p =6,∴x 2=-12y .2.(教材习题改编)抛物线y =ax 2的准线方程是y =2,则a 的值是( ) A.18 B .-18C .8D .-8解析:选B 抛物线的标准方程为x 2=1ay .则a <0且2=-14a ,得a =-18.3.已知倾斜角为60°的直线l 通过抛物线x 2=4y 的焦点,且与抛物线相交于A ,B 两点,则弦AB 的长为( )A .4B .6C .10D .16解析:选D 设点A (x 1,y 1),B (x 2,y 2),则依题意得焦点F (0,1),准线方程是y =-1,直线l :y =3x +1,由⎩⎨⎧y =3x +1,x 2=4y ,消去x 得y 2-14y +1=0,y 1+y 2=14,|AB |=|AF |+|BF |=(y 1+1)+(y 2+1)=(y 1+y 2)+2=16.4.(2012·郑州模拟)已知斜率为2的直线l 过抛物线y 2=ax (a >0)的焦点F ,且与y 轴相交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为________.解析:依题意得,|OF |=a 4,又直线l 的斜率为2,可知|AO |=2|OF |=a2,△AOF 的面积等于12·|AO |·|OF |=a 216=4,则a 2=64.又a >0,所以a =8,该抛物线的方程是y 2=8x .答案:y 2=8x5.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是________.解析:其准线方程为x =-2,又由点P 到y 轴的距离为4,则P 点横坐标x P =4,由定义知|PF |=x P +p2=6.答案:61.抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,p2等于焦点到抛物线顶点的距离,记牢对解题非常有帮助.2.用抛物线定义解决问题,体现了等价转换思想的应用.3.由y 2=mx (m ≠0)或x 2=my (m ≠0)求焦点坐标时,只需将x 或y 的系数除以4,再确定焦点位置即可.抛物线的定义及应用典题导入[例1] (1)(2011·辽宁高考)已知F 是拋物线y 2=x 的焦点,A ,B 是该拋物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A.34 B .1 C.54D.74(2)(2012·曲阜师大附中质检)在抛物线C :y =2x 2上有一点P ,若它到点A (1,3)的距离与它到抛物线C 的焦点的距离之和最小,则点P 的坐标是( )A .(-2,1)B .(1,2)C .(2,1)D .(-1,2)[自主解答] (1)如图,由抛物线的定义知,|AM |+|BN |=|AF |+|BF |=3,|CD |=32,所以中点C 的横坐标为32-14=54.(2)由题知点A 在抛物线内部,根据抛物线定义,问题等价于求抛物线上一点P ,使得该点到点A 与到抛物线的准线的距离之和最小,显然点P 是直线x =1与抛物线的交点,故所求P 点的坐标是(1,2).[答案] (1)C (2)B由题悟法涉及抛物线上的点到焦点(准线)的距离问题,可优先考虑利用抛物线的定义转化为点到准线(焦点)的距离问题求解.以题试法1.(2012·安徽高考)过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点.若|AF |=3,则|BF |=________.解析:由题意知,抛物线的焦点F 的坐标为(1,0),又∵|AF |=3,由抛物线定义知,点A 到准线x =-1的距离为3,∴点A 的横坐标为2.将x =2代入y 2=4x 得y 2=8,由图知,y =22, ∴A (2,22),∴直线AF 的方程为y =22(x -1).又⎩⎨⎧y =22x -1,y 2=4x ,解得⎩⎪⎨⎪⎧x =12,y =-2,或⎩⎨⎧x =2,y =2 2.由图知,点B 的坐标为⎝ ⎛⎭⎪⎫12,-2, ∴|BF |=12-(-1)=32.答案:32抛物线的标准方程及几何性质典题导入[例2] (1)(2012·山东高考)已知双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( )A .x 2=833yB .x 2=1633yC .x 2=8yD .x 2=16y(2)(2012·四川高考)已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0).若点M 到该抛物线焦点的距离为3,则|OM |=( )A .2 2B .2 3C .4D .2 5[自主解答] (1)∵双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,∴c a =a 2+b 2a=2,∴b =3a ,∴双曲线的渐近线方程为3x ±y =0,∴抛物线C 2:x 2=2py (p >0)的焦点⎝ ⎛⎭⎪⎫0,p 2到双曲线的渐近线的距离为⎪⎪⎪⎪⎪⎪3×0±p 22=2,∴p =8.∴所求的抛物线方程为x 2=16y .(2)依题意,设抛物线方程是y 2=2px (p >0),则有2+p2=3,得p =2,故抛物线方程是y 2=4x ,点M 的坐标是(2,±22),|OM |=22+8=2 3.[答案] (1)D (2)B由题悟法1.求抛物线的方程一般是利用待定系数法,即求p 但要注意判断标准方程的形式. 2.研究抛物线的几何性质时,一是注意定义转化应用;二是要结合图形分析,同时注意平面几何性质的应用.以题试法2.(2012·南京模拟)已知抛物线x 2=4y 的焦点为F ,准线与y 轴的交点为M ,N 为抛物线上的一点,且|NF |=32|MN |,则∠NMF =________.( ) 解析:过N 作准线的垂线,垂足为H ,则|NF |=|NH |=32|MN |,如图.∴cos ∠MNH =32, ∴∠MNH =π6,∴∠NMF =π6.答案:π6直线与抛物线的位置关系典题导入[例3] (2012·福建高考)如图,等边三角形OAB 的边长为83,且其三个顶点均在抛物线E :x 2=2py (p >0)上.(1)求抛物线E 的方程;(2)设动直线l 与抛物线E 相切于点P ,与直线y =-1相交于点Q .证明以PQ 为直径的圆恒过y 轴上某定点.[自主解答] (1)依题意,|OB |=83,∠BOy =30°.设B (x ,y ),则x =|OB |sin 30°=43,y =|OB |cos 30°=12. 因为点B (43,12)在x 2=2py 上,所以(43)2=2p ×12,解得p =2. 故抛物线E 的方程为x 2=4y . (2)证明:由(1)知y =14x 2,y ′=12x .设P (x 0,y 0),则x 0≠0,y 0=14x 20,且l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20.由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =-1,得⎩⎪⎨⎪⎧x =x 20-42x 0,y =-1.所以Q 为⎝ ⎛⎭⎪⎫x 20-42x 0,-1.设M (0,y 1),令MP ·MQ =0对满足y 0=14x 20(x 0≠0)的x 0,y 0恒成立.由于MP =(x 0,y 0-y 1),MQ =⎝ ⎛⎭⎪⎫x 20-42x 0,-1-y 1,由MP ·MQ =0,得x 20-42-y 0-y 0y 1+y 1+y 21=0,即(y 21+y 1-2)+(1-y 1)y 0=0.(*)由于(*)式对满足y 0=14x 20(x 0≠0)的y 0恒成立,所以⎩⎪⎨⎪⎧1-y 1=0,y 21+y 1-2=0,解得y 1=1.故以PQ 为直径的圆恒过y 轴上的定点M (0,1).由题悟法1.设抛物线方程为y 2=2px (p >0),直线Ax +By +C =0,将直线方程与抛物线方程联立,消去x 得到关于y 的方程my 2+ny +q =0.(1)若m ≠0,当Δ>0时,直线与抛物线有两个公共点; 当Δ=0时,直线与抛物线只有一个公共点; 当Δ<0时,直线与抛物线没有公共点.(2)若m =0,直线与抛物线只有一个公共点,此时直线与抛物线的对称轴平行. 2.与焦点弦有关的常用结论.(以右图为依据) (1)y 1y 2=-p 2,x 1x 2=p 24.(2)|AB |=x 1+x 2+p =2psin 2θ(θ为AB 的倾斜角).(3)S △AOB =p 22sin θ(θ为AB 的倾斜角).(4)1|AF |+1|BF |为定值2p. (5)以AB 为直径的圆与准线相切. (6)以AF 或BF 为直径的圆与y 轴相切. (7)∠CFD =90°.以题试法3.(2012·泉州模拟)如图,点O 为坐标原点,直线l 经过抛物线C :y 2=4x 的焦点F . (1)若点O 到直线l 的距离为12,求直线l 的方程;(2)设点A 是直线l 与抛物线C 在第一象限的交点.点B 是以点F 为圆心,|FA |为半径的圆与x 轴的交点,试判断AB 与抛物线C 的位置关系,并给出证明.解:(1)抛物线的焦点F (1,0),当直线l 的斜率不存在时,即x =1不符合题意.当直线l 的斜率存在时,设直线l 的方程为:y =k (x -1),即kx -y -k =0. 所以,|-k |1+k 2=12,解得k =±33. 故直线l 的方程为:y =±33(x -1),即x ±3y -1=0. (2)直线AB 与抛物线相切,证明如下: 设A (x 0,y 0),则y 20=4x 0.因为|BF |=|AF |=x 0+1,所以B (-x 0,0). 所以直线AB 的方程为:y =y 02x 0(x +x 0), 整理得:x =2x 0yy 0-x 0①把方程①代入y 2=4x 得:y 0y 2-8x 0y +4x 0y 0=0,Δ=64x 20-16x 0y 20=64x 20-64x 20=0,所以直线AB 与抛物线相切.1.(2012·济南模拟)抛物线的焦点为椭圆x 24+y 29=1的下焦点,顶点在椭圆中心,则抛物线方程为( )A .x 2=-45y B .y 2=-45x C .x 2=-413yD .y 2=-413x解析:选A 由椭圆方程知,a 2=9,b 2=4,焦点在y 轴上,下焦点坐标为(0,-c ),其中c =a 2-b 2= 5.∴抛物线焦点坐标为(0,-5),∴抛物线方程为x 2=-45y .2.(2012·东北三校联考)若抛物线y 2=2px (p >0)上一点P 到焦点和抛物线的对称轴的距离分别为10和6,则p 的值为( )A .2B .18C .2或18D .4或16解析:选C 设P (x 0,y 0),则⎩⎪⎨⎪⎧x 0+p2=10,|y 0|=6,y 2=2px 0,∴36=2p ⎝⎛⎭⎪⎫10-p 2,即p 2-20p +36=0,解得p =2或18.3.(2013·大同模拟)已知抛物线y 2=2px (p >0)的准线与曲线x 2+y 2-6x -7=0相切,则p 的值为( )A .2B .1 C.12D.14解析:选A 注意到抛物线y 2=2px 的准线方程是x =-p2,曲线x 2+y 2-6x -7=0,即(x -3)2+y 2=16是圆心为(3,0),半径为4的圆.于是依题意有⎪⎪⎪⎪⎪⎪p2+3=4.又p >0,因此有p2+3=4,解得p =2. 4.(2012·郑州模拟)已知过抛物线y 2=6x 焦点的弦长为12,则此弦所在直线的倾斜角是( )A.π6或5π6B.π4或3π4 C.π3或2π3D.π2解析:选B 由焦点弦长公式|AB |=2p sin 2θ得6sin 2θ=12,所以sin θ=22,所以θ=π4或3π4. 5.(2012·唐山模拟)抛物线y 2=2px 的焦点为F ,点A 、B 、C 在此抛物线上,点A 坐标为(1,2).若点F 恰为△ABC 的重心,则直线BC 的方程为( )A .x +y =0B .x -y =0C .2x +y -1=0D .2x -y -1=0解析:选C ∵点A 在抛物线上,∴4=2p ,p =2,抛物线方程为y 2=4x ,焦点F (1,0) 设点B (x 1,y 1),点C (x 2,y 2),则有y 21=4x 1,①y 22=4x 2,②由①-②得(y 1-y 2)(y 1+y 2)=4(x 1-x 2) 得k BC =y 1-y 2x 1-x 2=4y 1+y 2. 又∵y 1+y 2+23=0,∴y 1+y 2=-2,∴k BC =-2. 又∵x 1+x 2+13=1,∴x 1+x 2=2,∴BC 中点为(1,-1),则BC 所在直线方程为y +1=-2(x -1),即2x +y -1=0.6.(2013·湖北模拟)已知直线y =k (x -m )与抛物线y 2=2px (p >0)交于A 、B 两点,且OA ⊥OB ,OD ⊥AB 于D .若动点D 的坐标满足方程x 2+y 2-4x =0,则m =( )A .1B .2C .3D .4解析:选D 设点D (a ,b ),则由OD ⊥AB 于D ,得⎩⎪⎨⎪⎧b a =-1k ,b =k a -m ,则b =-km1+k2,a =-bk ;又动点D 的坐标满足方程x 2+y 2-4x =0,即a 2+b 2-4a =0,将a =-bk 代入上式,得b 2k 2+b 2+4bk =0,即bk 2+b +4k =0,-k 3m 1+k 2-km 1+k2+4k =0,又k ≠0,则(1+k 2)(4-m )=0,因此m =4.7.(2012·乌鲁木齐模拟)过抛物线y 2=4x 的焦点F 的直线交y 轴于点A ,抛物线上有一点B 满足OB ,=OA ,+OF , (O 为坐标原点),则△BOF 的面积是________.解析:由题可知F (1,0),可设过焦点F 的直线方程为y =k (x -1)(可知k 存在),则A (0,-k ),∴B (1,-k ),由点B 在抛物线上,得k 2=4,k =±2,即B (1,±2),S △BOF =12·|OF |·|y B |=12×1×2=1.答案:18.(2012·渭南模拟)已知抛物线C :y =14x 2,则过抛物线焦点F 且斜率为12的直线l 被抛物线截得的线段长为________.解析:由题意得l 的方程为y =12x +1,即x =2(y -1).代入抛物线方程得y =(y -1)2,即y 2-3y +1=0.设线段端点坐标为(x 1,y 1),(x 2,y 2),则线段长度为y 1+y 2+p =5.答案:59.(2012·广州模拟)已知直线y =k (x -2)(k >0)与抛物线y 2=8x 相交于A ,B 两点,F 为抛物线的焦点,若|FA |=2|FB |,则k 的值为________.解析:直线y =k (x -2)恰好经过抛物线y 2=8x 的焦点F (2,0),由⎩⎪⎨⎪⎧y 2=8x ,y =k x -2可得ky 2-8y -16k =0,因为|FA |=2|FB |,所以y A =-2y B ,则y A +y B =-2y B +y B =8k,所以y B=-8k,y A ·y B =-16,所以-2y 2B =-16,即y B =±22,又k >0,故k =2 2.答案:2 210.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 1)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC =OA +λOB ,求λ的值.解:(1)直线AB 的方程是y =22⎝ ⎛⎭⎪⎫x -p 2,与y 2=2px 联立, 从而有4x 2-5px +p 2=0,所以x 1+x 2=5p 4.由抛物线定义得|AB |=x 1+x 2+p =9, 所以p =4,从而抛物线方程是y 2=8x .(2)由p =4,4x 2-5px +p 2=0可简化为x 2-5x +4=0,从而x 1=1,x 2=4,y 1=-22,y 2=42,从而A (1,-22),B (4,42).设OC =(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22), 又y 23=8x 3,即[22(2λ-1)]2=8(4λ+1), 即(2λ-1)2=4λ+1, 解得λ=0或λ=2.11.如图,过抛物线y 2=4px (p >0)上一定点M (x 0,y 0)(y 0>0)作两条直线,分别交抛物线于A (x 1,y 1),B (x 2,y 2).(1)求该抛物线上纵坐标为4p 的点到点(p,0)的距离;(2)当MA 与MB 的斜率都存在,且y 1+y 2y 0=-2时,求MA 与MB 的斜率之和; (3)证明:直线AB 不可能平行于x 轴.解:(1)当y =4p 时,x =4p ,抛物线的准线方程为x =-p ,焦点为(p,0),抛物线上纵坐标为4p 的点到点(p,0)的距离,就是该点到焦点的距离,由抛物线的定义得,所求距离为4p -(-p )=5p .(2)设直线MA 的斜率为k MA ,MB 的斜率为k MB , 由y 21=4px 1,y 20=4px 0,得k MA =y 1-y 0x 1-x 0=4py 1+y 0, 同理k MB =4py 2+y 0, 又y 1+y 2y 0=-2,所以y 1+y 2=-2y 0,因为k MA +k MB =4p y 1+y 0+4p y 2+y 0=4p y 1+y 2+2y 0y 1+y 0y 2+y 0=0,所以k MA +k MB =0,故MA 与MB 的斜率之和为0.(3)证明:设直线AB 的斜率为k AB ,则k AB =y 2-y 1x 2-x 1=y 2-y 1y 224p -y 214p=4py 1+y 2,由(2)知y 1+y 2=-2y 0,所以k AB =-2p y 0,由于M (x 0,y 0)为定点,所以-2p y 0为定值且-2py 0≠0,故直线AB 不可能平行于x 轴.12.(2012·安徽模拟)已知椭圆C 1:x 24+y 2b 2=1(0<b <2)的离心率为32,抛物线C 2:x2=2py (p >0)的焦点是椭圆的顶点.(1)求抛物线C 2的方程;(2)过点M (-1,0)的直线l 与抛物线C 2交于E ,F 两点,过E ,F 作抛物线C 2的切线l 1,l 2,当l 1⊥l 2时,求直线l 的方程.解:(1)∵椭圆C 1的长半轴长a =2,半焦距c =4-b 2.由e =c a =4-b 22=32得b 2=1,∴椭圆C 1的上顶点为(0,1),即抛物线C 2的焦点为(0,1), 故抛物线C 2的方程为x 2=4y .(2)由已知可得直线l 的斜率必存在,设直线l 的方程为y =k (x +1),E (x 1,y 1),F (x 2,y 2).由x 2=4y 得y =14x 2,∴y ′=12x .∴切线l 1,l 2的斜率分别为12x 1,12x 2.当l 1⊥l 2时,12x 1·12x 2=-1,即x 1x 2=-4.由⎩⎪⎨⎪⎧y =k x +1x 2=4y 得x 2-4kx -4k =0,∴Δ=(4k )2-4×(-4k )>0,解得k <-1或k >0.①且x 1x 2=-4k =-4,即k =1,满足①式,∴直线l 的方程为x -y +1=0.1.(2013·郑州模拟)如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A 、B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为( )A .y 2=9x B .y 2=6x C .y 2=3xD .y 2=3x解析:选C 过点B 作准线的垂线,垂足为B 1,记准线与x 轴的交点为F 1,则依题意得|BB 1||FF 1|=|BC ||CF |=23,所以|BB 1|=23|FF 1|=2p3,由抛物线的定义得|BF |=|BB 1|=2p3.过A ,B 作x 轴的垂线,垂足分别为D ,E ,由△BEF ∽△ADF 得23p 3=p -2p 33-p ,解得p =32.所以此抛物线的方程是y 2=3x .2.(2012·安徽高考)过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF |=3,则△AOB 的面积为( )A.22B. 2C.322D .2 2解析:选C 由题意,抛物线y 2=4x 的焦点为F (1,0),准线方程为l :x =-1,可得A 点的横坐标为2,代入y 2=4x 得y 2=8,不妨设A (2,22),则直线AB 的方程为y =22(x-1),与y 2=4x 联立得2x 2-5x +2=0,可得B ⎝ ⎛⎭⎪⎫12,-2,所以S △AOB =S △AOF +S △BOF =12×1×|y A-y B |=322.3.(2012·浙江高考)如图,在直角坐标系xOy 中,点P ⎝ ⎛⎭⎪⎫1,12到抛物线C :y 2=2px (p >0)的准线的距离为54.点M (t,1)是C 上的定点,A ,B 是C上的两动点,且线段AB 被直线OM 平分.(1)求p ,t 的值;(2)求△ABP 面积的最大值. 解:(1)由题意知⎩⎪⎨⎪⎧2pt =1,1+p 2=54,得⎩⎪⎨⎪⎧p =12,t =1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为Q (m ,m ), 设直线AB 的斜率为k (k ≠0).由⎩⎪⎨⎪⎧y 21=x 1,y 22=x 2,得(y 1-y 2)(y 1+y 2)=x 1-x 2, 故k ·2m =1,所以直线AB 的方程为y -m =12m (x -m ),即x -2my +2m 2-m =0.由⎩⎪⎨⎪⎧x -2my +2m 2-m =0,y 2=x ,消去x ,整理得y 2-2my +2m 2-m =0,所以Δ=4m -4m 2>0,y 1+y 2=2m ,y 1·y 2=2m 2-m .从而|AB |= 1+1k2·|y 1-y 2|=1+4m 2·4m -4m 2.设点P 到直线AB 的距离为d ,则d =|1-2m +2m 2|1+4m 2,设△ABP 的面积为S , 则S =12|AB |·d =|1-2(m -m 2)|·m -m 2.由Δ=4m -4m 2>0,得0<m <1.令u =m -m 2,0<u ≤12,则S =u -2u 3,S ′(u )=1-6u 2.由S ′(u )=0,得u =66∈⎝ ⎛⎦⎥⎤0,12, 所以S (u )max =S ⎝⎛⎭⎪⎫66=69. 故△ABP 面积的最大值为69.1.(2012·北京高考)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点,其中点A 在x 轴上方.若直线l 的倾斜角为60°,则△OAF 的面积为________.解析:直线l 的方程为y =3(x -1),即x =33y +1,代入抛物线方程得y 2-433y -4=0,解得y A =433+ 163+162=23(y B <0,舍去),故△OAF 的面积为12×1×23= 3.答案: 32.(2012·东城模拟)已知顶点在坐标原点,焦点在x 轴正半轴的抛物线上有一点A ⎝⎛⎭⎪⎫12,m ,A 点到抛物线焦点的距离为1.(1)求该抛物线的方程;(2)设M (x 0,y 0)为抛物线上的一个定点,过M 作抛物线的两条相互垂直的弦MP ,MQ ,求证:PQ 恒过定点(x 0+2,-y 0);(3)直线x +my +1=0与抛物线交于E ,F 两点,问在抛物线上是否存在点N ,使得△NEF 为以EF 为斜边的直角三角形?若有,求出该点存在时需满足的条件;若无,请说明理由.解:(1)由题意可设抛物线的方程为y 2=2px (p >0),则由抛物线的定义可得p 2+12=1,即p =1,所以该抛物线的方程为y 2=2x .(2)由题意知直线PQ 与x 轴不平行,设直线PQ 的方程为x =my +n ,代入y 2=2x 得y2-2my -2n =0.所以y 1+y 2=2m ,y 1y 2=-2n ,其中y 1,y 2分别是P ,Q 的纵坐标,x 1,x 2分别是P ,Q 的横坐标.因为MP ⊥MQ ,所以k MP ·k MQ =-1. 即y 1-y 0x 1-x 0·y 2-y 0x 2-x 0=-1, 又由x 1=y 212,x 2=y 222,x 0=y 202,代入上式得2y 1+y 0·2y 2+y 0=-1,所以(y 1+y 0)(y 2+y 0)=-4. 即y 1y 2+(y 1+y 2)y 0+y 20+4=0,所以(-2n )+2my 0+2x 0+4=0,即n =my 0+x 0+2. 所以直线PQ 的方程为x =my +my 0+x 0+2, 所以直线PQ 恒过定点(x 0+2,-y 0).(3)假设存在点N (x 0,y 0),设E (x 1,y 1),F (x 2,y 2).由⎩⎪⎨⎪⎧y 2=2x ,x +my +1=0,消去x 得y2+2my +2=0,则y 1+y 2=-2m ,y 1y 2=2,且(2m )2-8>0,即m 2>2.由于NE ⊥NF ,所以y 1-y 0x 1-x 0·y 2-y 0x 2-x 0=-1,又点E ,F ,N 在抛物线上,所以x 1=y 212,x 2=y 222,x 0=y 202,代入y 1-y 0x 1-x 0·y 2-y 0x 2-x 0=-1,得2y 1+y 0·2y 2+y 0=-1,即(y 1+y 0)(y 2+y 0)=-4,即y 1y 2+y 0(y 1+y 2)+y 20+4=0,将y 1+y 2=-2m ,y 1y 2=2代入并整理得y 20-2my 0+6=0,只要4m2-24>0,即m 2>6,该方程即有实数解.所以只要m 2>6就存在满足条件的点N ,当m 2≤6时不存在满足条件的点N .。
【三维设计】高考数学一轮复习 (基础知识+高频考点+解题训练)平面向量的基本定理及坐标表示教学案
平面向量的基本定理及坐标表示[知识能否忆起]一、平面向量基本定理及坐标表示1.平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.2.平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.3.平面向量的坐标表示(1)在平面直角坐标系中,分别取与x轴,y轴方向相同的两个单位向量i,j作为基底.对于平面内的一个向量a,有且只有一对实数x,y,使a=x i+y j,把有序数对(x,y)叫做向量a的坐标,记作a=(x,y),其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标.(2)设OA=x i+y j,则向量OA的坐标(x,y)就是终点A的坐标,即若OA=(x,y),则A点坐标为(x,y),反之亦成立.(O是坐标原点)二、平面向量坐标运算1.向量加法、减法、数乘向量及向量的模设a=(x1,y1),b=(x2,y2),则a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa =(λx1,λy1).2.向量坐标的求法(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标.(2)设A(x1,y1),B(x2,y2),则AB=(x2-x1,y2-y1),|AB|=x 2-x12+y2-y12.三、平面向量共线的坐标表示设a=(x1,y1),b=(x2,y2),其中b≠0.若a∥b⇔x1y2-x2y1=0.[小题能否全取]1.(2012·广东高考)若向量AB=(1,2),BC=(3,4),则AC=( )A.(4,6) B.(-4,-6)C.(-2,-2) D.(2,2)解析:选A ∵AC =AB +BC ,∴AC =(1,2)+(3,4)=(4,6). 2.已知向量a =(2,1),b =(x ,-2),若a ∥b ,则a +b 等于( ) A .(-2,-1) B .(2,1) C .(3,-1)D .(-3,1)解析:选A 由a ∥b 可得2×(-2)-1×x =0,故x =-4,所以a +b =(-2,-1). 3.(教材习题改编)已知两点A (4,1),B (7,-3),则与AB 同向的单位向量是( ) A.⎝ ⎛⎭⎪⎫35,-45B.⎝ ⎛⎭⎪⎫-35,45C.⎝ ⎛⎭⎪⎫-45,35D.⎝ ⎛⎭⎪⎫45,-35解析:选A ∵A (4,1),B (7,-3),∴AB =(3,-4), ∴与AB 同向的单位向量为AB |AB |=⎝ ⎛⎭⎪⎫35,-45.4.在平行四边形ABCD 中,若AB =(1,3),AC =(2,5),则AD =________,BD =________.解析:AD =BC =AC -AB =(2,5)-(1,3)=(1,2),BD =AD -AB =(1,2)-(1,3)=(0,-1).答案:(1,2) (0,-1)5.梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别是CD ,AB 的中点,设AB =a ,AD =b .若MN =m a +n b ,则nm=________.解析:∵MN =MD +DA +AN =-14a -b +12a =14a -b ,∴m =14,n =-1.∴nm =-4.答案:-41.基底的不唯一性只要两个向量不共线,就可以作为平面的一组基底,对基底的选取不唯一,平面内任意向量a 都可被这个平面的一组基底e 1,e 2线性表示,且在基底确定后,这样的表示是唯 一的.2.向量坐标与点的坐标的区别要区分点的坐标与向量坐标的不同,尽管在形式上它们完全一样,但意义完全不同,向量坐标中既有方向的信息也有大小的信息.典题导入[例1] (2012·苏北四市联考)如图,在四边形ABCD 中,AC 和BD 相交于点O ,设AD =a ,AB =b ,若AB =2DC ,则AO =________(用向量a 和b 表示).[自主解答] ∵AB =2DC ,∴△DOC ∽△BOA ,且OC OA =12,∴AO =23AC =23(AD +DC )=23⎝ ⎛⎭⎪⎫a +12b =23a +13b . [答案] 23a +13b由题悟法用向量基本定理解决问题的一般思路是:先选择一组基底,再用该基底表示向量,也就是利用已知向量表示未知向量,其实质就是利用平行四边形法则或三角形法则进行向量的加减运算和数乘运算.以题试法1.(2012·南宁模拟)在△ABC 中,M 为边BC 上任意一点,N 为AM 中点,AN =λAB +μAC ,则λ+μ的值为( )A.12B.13 C.14D .1解析:选A 设CM =m CB =m (AB -AC )(0≤m ≤1),则AM =AC +CM =(1-m ) AC +m AB ,AN =12AM =m 2AB +1-m 2AC ,所以λ+μ=m 2+1-m 2=12.典题导入[例2] (1)(2012·西城期末)已知向量a =(3,1),b =(0,-2).若实数k 与向量c 满足a +2b =k c ,则c 可以是( )A .(3,-1)B .(-1,-3)C .(-3,-1)D .(-1, 3)(2)已知A (-2,4),B (3,-1),C (-3,-4).设AB =a ,BC =b ,CA =c . ①求3a +b -3c ;②求满足a =m b +n c 的实数m ,n .[自主解答] (1)∵a =(3,1),b =(0,-2), ∴a +2b =(3,-3)=-3(-1,3).(2)由已知得a =(5,-5),b =(-6,-3),c =(1,8). ①3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24) =(6,-42).②∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.[答案] (1)D本例中第(2)题增加条件CM =3c ,ON =2b ,求M ,N 的坐标及向量MN 的坐标. 解:∵CM =OM -OC =3c ,∴OM =3c +OC =(3,24)+(-3,-4)=(0,20). ∴M (0,20).又∵CN =ON -OC =-2b , ∴ON =-2b +OC =(12,6)+(-3,-4)=(9,2), ∴N (9,2).∴MN =(9,-18).由题悟法1.向量的坐标运算实现了向量运算代数化,将数与形结合起来,从而可使几何问题转化为数量运算.2.两个向量相等当且仅当它们的坐标对应相同.此时注意方程(组)思想的应用. [注意] 向量的坐标与点的坐标不同:向量平移后,其起点和终点的坐标都发生变化,但向量的坐标不变.以题试法2.(2012·淮安模拟)已知向量a =(6,4),b =(0,2),OC =a +λb ,O 为坐标原点,若点C 在函数y =sin ⎝ ⎛⎭⎪⎫π12x 的图象上,则实数λ的值为________. 解析:由题意得OC =(6,4)+λ(0,2)=(6,4+2λ), 故点C 的坐标为(6,4+2λ),根据条件得4+2λ=sin 6π12=1,解得λ=-32.答案:-32典题导入[例3] (2011·广东高考)已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=( )A.14B.12 C .1D .2[自主解答] 可得a +λb =(1+λ,2),由(a +λb )∥c 得(1+λ)×4-3×2=0,所以λ=12.[答案] B在本例条件下,问是否存在非零常数λ,使a +λb 和a -λc 平行?若平行, 是同向还是反向?解:∵a +λb =(1+λ,2),a -λc =(1-3λ,2-4λ), 若(a +λb )∥(a -λc ),∴(1+λ)(2-4λ)-2(1-3λ)=0. ∴λ=1.∴a +λb =(2,2)与a -λc =(-2,-2)反向. 即存在λ=1使a +λb 与a -λc 平行且反向.由题悟法a ∥b 的充要条件有两种表达方式(1)a ∥b (b ≠0)⇔a =λb (λ∈R );(2)设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0.两种充要条件的表达形式不同.第(1)种是用线性关系的形式表示的,而且有前提条件b ≠0,而第(2)种无b ≠0限制.以题试法3.(1)(2012·北京东城区综合练习)已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则m n=( )A .-2B .2C .-12D.12解析:选C 由向量a =(2,3),b =(-1,2)得m a +n b =(2m -n,3m +2n ),a -2b =(4,-1),因为m a +n b 与a -2b 共线,所以(2m -n )×(-1)-(3m +2n )×4=0,整理得m n =-12.(2)(2012·嘉兴模拟)已知a ,b 是不共线的向量,AB =λa +b ,AC =a +μb ,λ,μ∈R ,那么A ,B ,C 三点共线的充要条件为( )A .λ+μ=2B .λ-μ=1C .λμ=-1D .λμ=1解析:选D ∵A ,B ,C 三点共线,∴存在实数t ,满足AB =t AC ,即λa +b =t a +μt b ,又a ,b 是不共线的向量,∴⎩⎪⎨⎪⎧λ=t ,1=μt ,即λμ=1.1.在△ABC 中,点P 在BC 上,且BP =2PC ,点Q 是AC 的中点,若PA =(4,3),PQ =(1,5),则BC 等于( )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21)解析:选 B BC =3PC =3(2PQ -PA )=6PQ -3PA =(6,30)-(12,9)=(-6,21).2.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =( ) A .(-2,-4) B .(-3,-6) C .(-4,-8)D .(-5,-10)解析:选C 由a =(1,2),b =(-2,m ),且a ∥b ,得1×m =2×(-2)⇒m =-4,从而b =(-2,-4),那么2a +3b =2(1,2)+3(-2,-4)=(-4,-8).3.(2013·昆明模拟)如图所示,向量OA =a ,OB =b ,OC =c ,A ,B ,C 在一条直线上,且AC =-3CB ,则( )A .c =-12a +32bB .c =32a -12bC .c =-a +2bD .c =a +2b解析:选A ∵AC =-3CB ,∴OC -OA =-3(OB -OC ). ∴OC =-12OA +32OB ,即c =-12a +32b .4.已知点A (2,1),B (0,2),C (-2,1),O (0,0).给出下面的结论:①直线OC 与直线BA 平行;②AB +BC =CA ;③OA +OC =OB ;④AC =OB -2OA .其中正确的结论的个数是( )A .1B .2C .3D .4解析:选C ∵OC =(-2,1),BA =(2,-1),∴OC ∥BA ,又A ,B ,C ,O 不共线,∴OC ∥AB .①正确;∵AB +BC =AC ,∴②错误; ∵OA +OC =(0,2)=OB ,∴③正确;∵OB -2OA =(-4,0),AC =(-4,0),∴④正确.5.(2012·郑州模拟)已知平面直角坐标系内的两个向量a =(1,2),b =(m,3m -2),且平面内的任一向量c 都可以唯一的表示成c =λa +μb (λ、μ为实数),则m 的取值范围是( )A .(-∞,2)B .(2,+∞)C .(-∞,+∞)D .(-∞,2)∪(2,+∞)解析:选D 由题意知向量a ,b 不共线,故m ≠3m -22,解得m ≠2.6.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =( )A.14a +12b B.23a +13b C.12a +14bD.13a +23b解析:选B 由已知得DE =13EB ,又∵△DEF ∽△BEA , ∴DF =13AB .即DF =13DC .∴CF =23CD .∴CF =23CD =23(OD -OC )=23⎝ ⎛⎭⎪⎫12b -12a =13b -13a .∴AF =AC +CF =a +13b -13a =23a +13b .7.(2012·洛阳质检)已知向量a =⎝ ⎛⎭⎪⎫8,x 2,b =(x,1),其中x >0,若(a -2b )∥(2a +b ),则x =________.解析:a -2b =⎝⎛⎭⎪⎫8-2x ,x2-2,2a +b =(16+x ,x +1),由题意得(8-2x )·(x +1)=⎝ ⎛⎭⎪⎫x2-2·(16+x ),整理得x 2=16,又x >0,所以x =4.答案:48.(2013·九江模拟)P ={a |a =(-1,1)+m (1,2),m ∈R },Q ={b |b =(1,-2)+n (2,3),n ∈R }是两个向量集合,则P ∩Q 等于________.解析:P 中,a =(-1+m,1+2m ),Q 中,b =(1+2n ,-2+3n ).则⎩⎪⎨⎪⎧-1+m =1+2n ,1+2m =-2+3n .得⎩⎪⎨⎪⎧m =-12,n =-7.此时a =b =(-13,-23). 答案:{}-13,-9.已知向量OA =(1,-3),OB =(2,-1),OC =(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.解析:若点A ,B ,C 能构成三角形, 则向量AB ,AC 不共线.∵AB =OB -OA =(2,-1)-(1,-3)=(1,2),AC =OC -OA =(k +1,k -2)-(1,-3)=(k ,k +1),∴1×(k +1)-2k ≠0,解得k ≠1. 答案:k ≠110.已知A (1,1),B (3,-1),C (a ,b ). (1)若A ,B ,C 三点共线,求a ,b 的关系式; (2)若AC =2AB ,求点C 的坐标.解:(1)由已知得AB =(2,-2),AC =(a -1,b -1), ∵A ,B ,C 三点共线,∴AB ∥AC . ∴2(b -1)+2(a -1)=0,即a +b =2. (2)∵AC =2AB ,∴(a -1,b -1)=2(2,-2).∴⎩⎪⎨⎪⎧a -1=4,b -1=-4,解得⎩⎪⎨⎪⎧a =5,b =-3.∴点C 的坐标为(5,-3).11.已知a =(1,0),b =(2,1).求: (1)|a +3b |;(2)当k 为何实数时,k a -b 与a +3b 平行,平行时它们是同向还是反向? 解:(1)因为a =(1,0),b =(2,1),所以a +3b =(7,3), 故|a +3b |=72+32=58.(2)k a -b =(k -2,-1),a +3b =(7,3), 因为k a -b 与a +3b 平行, 所以3(k -2)+7=0,即k =-13.此时k a -b =(k -2,-1)=⎝ ⎛⎭⎪⎫-73,-1, a +3b =(7,3),则a +3b =-3(k a -b ),即此时向量a +3b 与k a -b 方向相反.12.已知O 为坐标原点,A (0,2),B (4,6),OM =t 1OA +t 2AB . (1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点都共线. 解:(1) OM =t 1OA +t 2AB =t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2).当点M 在第二或第三象限时,有⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0,故所求的充要条件为t 2<0且t 1+2t 2≠0. (2)当t 1=1时,由(1)知OM =(4t 2,4t 2+2). ∵AB =OB -OA =(4,4),AM =OM -OA =(4t 2,4t 2)=t 2(4,4)=t 2AB ,∴不论t 2为何实数,A ,B ,M 三点共线.1.如图,在平行四边形ABCD 中,O 是对角线AC ,BD 的交点,N是线段OD 的中点,AN 的延长线与CD 交于点E ,则下列说法错误..的是( )A .AC =AB +AD B .BD =AD -ABC .AO =12AB +12ADD .AE =53AB +AD解析:选D 由向量减法的三角形法则知,BD =AD -AB ,排除B ;由向量加法的平行四边形法则知,AC =AB +AD ,AO =12AC =12AB +12AD ,排除A 、C.2.(2012·山西四校联考)在△ABC 中,点D 在线段BC 的延长线上,且BC =3CD ,点O 在线段CD 上(与点C 、D 不重合),若AO =x AB +(1-x ) AC ,则x 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫0,13C.⎝ ⎛⎭⎪⎫-12,0D.⎝ ⎛⎭⎪⎫-13,0 解析:选D 依题意,设BO =λBC ,其中1<λ<43,则有AO =AB +BO =AB +λBC =AB +λ(AC -AB )=(1-λ) AB +λAC .又AO =x AB +(1-x ) AC ,且AB ,AC 不共线,于是有x =1-λ∈⎝ ⎛⎭⎪⎫-13,0,即x 的取值范围是⎝ ⎛⎭⎪⎫-13,0. 3.(2012·东营模拟)已知P 为△ABC 内一点,且3AP +4BP +5CP =0.延长AP 交BC 于点D ,若AB =a ,AC =b ,用a ,b 表示向量AP ,AD .解:∵BP =AP -AB =AP -a ,CP =AP -AC =AP -b , 又3AP +4BP +5CP =0,∴3AP +4(AP -a )+5(AP -b )=0, 化简,得AP =13a +512b .设AD =t AP (t ∈R ),则AD =13t a +512t b .① 又设BD =k BC (k ∈R ),由BC =AC -AB =b -a ,得 BD =k (b -a ).而AD =AB +BD =a +BD ,∴AD =a +k (b -a )=(1-k )a +k b .②由①②,得⎩⎪⎨⎪⎧ 13t =1-k ,512t =k ,解得t =43. 代入①,有AD =49a +59b .1.已知向量a =(3,1),b =(sin α-m ,cos α),且a ∥b ,则实数m 的最小值为( )A .-2B .-1C .- 2D .-3 解析:选A ∵a ∥b ,∴3cos α-sin α+m =0.∴m =sin α-3cos α=2sin ⎝⎛⎭⎪⎫α-π3≥-2. 2.若α,β是一组基底,向量γ=x α+y β(x ,y ∈R ),则称(x ,y )为向量γ在基底α,β下的坐标,现已知向量a 在基底p =(1,-1),q =(2,1)下的坐标为(-2,2),则a 在另一组基底m =(-1,1),n =(1,2)下的坐标为( )A .(2,0)B .(0,-2)C .(-2,0)D .(0,2)解析:选D ∵a 在基底p ,q 下的坐标为(-2,2),即a =-2p +2q =(2,4).令a =x m +y n =(-x +y ,x +2y ),故⎩⎪⎨⎪⎧ -x +y =2,x +2y =4,即⎩⎪⎨⎪⎧ x =0,y =2.3.如图,已知平行四边形ABCD 的顶点A (0,0),B (4,1),C (6,8).(1)求顶点D 的坐标;(2)若DE =2EC ,F 为AD 的中点,求AE 与BF 的交点I 的坐标.解:(1)设点D (x ,y ),因为AD =BC ,所以(x ,y )=(6,8)-(4,1)=(2,7),所以顶点D 的坐标为(2,7).(2)设点I (x ,y ),则有F 点坐标为⎝ ⎛⎭⎪⎫1,72,由于 DE =2EC ,故(x E -2,y E -7)=2(6-x E,8-y E )⇒E ⎝ ⎛⎭⎪⎫143,233, 由于BF =⎝⎛⎭⎪⎫-3,52, BI =(x -4,y -1),BF ∥BI ⇒52(x -4)=-3(y -1),又AE ∥AI ⇒233x =143y ,联立方程组可得x =74,y =238, 则点I 的坐标为⎝ ⎛⎭⎪⎫74,238.。
《三维设计》2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)不等关系与不等式(含解析)
第一节不等关系与不等式[知识能否忆起]1.实数大小顺序与运算性质之间的关系a -b >0⇔a >b ;a -b =0⇔a =b ;a -b <0⇔a <b . 2.不等式的基本性质[小题能否全取]1.(教材习题改编)下列命题正确的是( ) A .若ac >bc ⇒a >b B .若a 2>b 2⇒a >b C .若1a >1b ⇒a <bD .若a <b ⇒a <b答案:D2.若x +y >0,a <0,ay >0,则x -y 的值( ) A .大于0 B .等于0 C .小于0D .不确定解析:选A 由a <0,ay >0知y <0,又x +y >0,所以x >0.故x -y >0.3.已知a ,b ,c ,d 均为实数,且c >d ,则“a >b ”是“a -c >b -d ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 若a -c >b -d ,c >d , 则a >b .但c >d ,a >b ⇒/ a -c >b -d .如a =2,b =1,c =-1,d =-3时,a -c <b -d . 4.12-1________3+1(填“>”或“<”). 解析:12-1=2+1<3+1. 答案:<5.已知a ,b ,c ∈R ,有以下命题:①若a >b ,则ac 2>bc 2;②若ac 2>bc 2,则a >b ; ③若a >b ,则a ·2c >b ·2c .其中正确的是____________(请把正确命题的序号都填上). 解析:①若c =0则命题不成立.②正确.③中由2c >0知成立. 答案:②③1.使用不等式性质时应注意的问题:在使用不等式时,一定要搞清它们成立的前提条件.不可强化或弱化成立的条件.如“同向不等式”才可相加,“同向且两边同正的不等式”才可相乘;可乘性中“c 的符号”等也需要注意.2.作差法是比较两数(式)大小的常用方法,也是证明不等式的基本方法.要注意强化化归意识,同时注意函数性质在比较大小中的作用.典题导入[例1] 已知等比数列{a n }中,a 1>0,q >0,前n 项和为S n ,试比较S 3a 3与S 5a 5的大小.[自主解答] 当q =1时,S 3a 3=3,S 5a 5=5,所以S 3a 3<S 5a 5;当q >0且q ≠1时,S 3a 3-S 5a 5=a 1(1-q 3)a 1q 2(1-q )-a 1(1-q 5)a 1q 4(1-q )=q 2(1-q 3)-(1-q 5)q 4(1-q )=-q -1q 4<0,所以S 3a 3<S 5a 5. 综上可知S 3a 3<S 5a 5.若本例中“q >0”改为“q <0”,试比较它们的大小. 解:由例题解法知当 q ≠1时,S 3a 3-S 5a 5=-q -1q 4.当-1<q <0时,S 3a 3-S 5a 5<0,即S 3a 3<S 5a 5;当q =-1时,S 3a 3-S 5a 5=0, 即S 3a 3=S 5a 5;当q <-1时,S 3a 3-S 5a 5>0,即S 3a 3>S 5a 5.由题悟法比较大小的常用方法 (1)作差法:一般步骤是:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.(2)作商法:一般步骤是:①作商;②变形;③判断商与1的大小;④结论. (3)特值法:若是选择题、填空题可以用特值法比较大小;若是解答题,可先用特值探究思路,再用作差或作商法判断.[注意] 用作商法时要注意商式中分母的正负,否则极易得出相反的结论.以题试法1.(2012·吉林联考)已知实数a 、b 、c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a 、b 、c 的大小关系是( )A .c ≥b >aB .a >c ≥bC .c >b >aD .a >c >b解析:选A c -b =4-4a +a 2=(2-a )2≥0, ∴c ≥b .将题中两式作差得2b =2+2a 2,即b =1+a 2.∵1+a 2-a =⎝⎛⎭⎫a -122+34>0,∴1+a 2>a . ∴b =1+a 2>a .∴c ≥b >a .典题导入[例2] (1)(2011·大纲全国卷)下面四个条件中,使a >b 成立的充分而不必要的条件是( )A .a >b +1B .a >b -1C .a 2>b 2D .a 3>b 3(2)(2012·包头模拟)若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +bc <0;③a -c >b -d ;④a ·(d -c )>b (d -c )中成立的个数是( )A .1B .2C .3D .4[自主解答] (1)由a >b +1得a >b +1>b ,即a >b ;且由a >b 不能得出a >b +1.因此,使a >b 成立的充分不必要条件是a >b +1.(2)∵a >0>b ,c <d <0,∴ad <0,bc >0, ∴ad <bc ,故①错误.∵a >0>b >-a ,∴a >-b >0, ∵c <d <0,∴-c >-d >0, ∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bdcd <0,故②正确.∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ), a -c >b -d ,故③正确.∵a >b ,d -c >0,∴a (d -c )>b (d -c ), 故④正确,故选C. [答案] (1)A (2)C由题悟法1.判断一个关于不等式的命题的真假时,先把要判断的命题与不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题的真假,当然判断的同时可能还要用到其他知识,比如对数函数、指数函数的性质.2.特殊值法是判断命题真假时常用到的一个方法,在命题真假未定时,先用特殊值试试,可以得到一些对命题的感性认识,如正好找到一组特殊值使命题不成立,则该命题为假命题.以题试法2.若a 、b 、c 为实数,则下列命题正确的是( ) A .若a >b ,c >d ,则ac >bd B .若a <b <0,则a 2>ab >b 2 C .若a <b <0,则1a <1bD .若a <b <0,则b a >ab解析:选B A 中,只有a >b >0,c >d >0时,才成立;B 中,由a <b <0,得a 2>ab >b 2成立;C ,D 通过取a =-2,b =-1验证均不正确.典题导入[例3] 已知函数f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4.求f (-2)的取值范围. [自主解答] f (-1)=a -b ,f (1)=a +b . f (-2)=4a -2b .设m (a +b )+n (a -b )=4a -2b .则⎩⎪⎨⎪⎧ m +n =4,m -n =-2,解得⎩⎪⎨⎪⎧m =1,n =3.∴f (-2)=(a +b )+3(a -b )=f (1)+3f (-1). ∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤f (-2)≤10.即f (-2)的取值范围为[5,10].由题悟法利用不等式性质可以求某些代数式的取值范围,但应注意两点:一是必须严格运用不等式的性质;二是在多次运用不等式的性质时有可能扩大了变量的取值范围.解决的途径是先建立所求范围的整体与已知范围的整体的等量关系,最后通过“一次性”不等关系的运算求解范围.以题试法3.若α,β满足⎩⎪⎨⎪⎧-1≤α+β ≤1,1≤α+2β ≤3,试求α+3β的取值范围.解:设α+3β=x (α+β)+y (α+2β)=(x +y )α+(x +2y )β.则⎩⎪⎨⎪⎧ x +y =1,x +2y =3,解得⎩⎪⎨⎪⎧x =-1,y =2.∵-1≤-(α+β)≤1,2≤2(α+2β)≤6, 两式相加,得1≤α+3β≤7. ∴α+3β的取值范围为[1,7].1.已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .不确定解析:选B 由题意得M -N =a 1a 2-a 1-a 2+1=(a 1-1)·(a 2-1)>0,故M >N . 2.若m <0,n >0且m +n <0,则下列不等式中成立的是( ) A .-n <m <n <-m B .-n <m <-m <n C .m <-n <-m <nD .m <-n <n <-m解析:选D 法一:(取特殊值法)令m =-3,n =2分别代入各选项检验即可. 法二:m +n <0⇒m <-n ⇒n <-m ,又由于m <0<n ,故m <-n <n <-m 成立. 3.“1≤x ≤4”是“1≤x 2≤16”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 由1≤x ≤4可得1≤x 2≤16,但由1≤x 2≤16可得1≤x ≤4或-4≤x ≤-1,所以“1≤x ≤4”是“1≤x 2≤16”的充分不必要条件.4.已知0<a <1b ,且M =11+a +11+b ,N =a 1+a +b 1+b ,则M 、N 的大小关系是( )A .M >NB .M <NC .M =ND .不能确定解析:选A ∵0<a <1b ,∴1+a >0,1+b >0,1-ab >0,∴M -N =1-a 1+a +1-b 1+b =2-2ab(1+a )(1+b )>0.5.若1a <1b <0,则下列结论不.正确的是( ) A .a 2<b 2 B .ab <b 2 C .a +b <0D .|a |+|b |>|a +b |解析:选D ∵1a <1b <0,∴0>a >b .∴a 2<b 2,ab <b 2,a +b <0,|a |+|b |=|a +b |.6.设a ,b 是非零实数,若a <b ,则下列不等式成立的是( ) A .a 2<b 2 B .ab 2<a 2b C.1ab 2<1a 2bD.b a <a b解析:选C 当a <0时,a 2<b 2不一定成立,故A 错. 因为ab 2-a 2b =ab (b -a ),b -a >0,ab 符号不确定, 所以ab 2与a 2b 的大小不能确定,故B 错. 因为1ab 2-1a 2b =a -b a 2b 2<0,所以1ab 2<1a 2b ,故C 正确.D 项中b a 与ab的大小不能确定.7.若1<α<3,-4<β <2,则α-|β|的取值范围是________. 解析:∵-4<β <2,∴0≤|β|<4. ∴-4<-|β|≤0.∴-3<α-|β|<3. 答案:(-3,3)8.(2012·深圳模拟)定义a *b =⎩⎪⎨⎪⎧a ,a <b ,b ,a ≥b . 已知a =30.3,b =0.33,c =log 30.3,则(a *b )*c=________.(结果用a ,b ,c 表示)解析:∵log 30.3<0<0.33<1<30.3,∴c <b <a , ∴(a *b )*c =b *c =c . 答案:c9.已知a +b >0,则a b 2+b a 2与1a +1b 的大小关系是________.解析:a b 2+ba 2-⎝⎛⎭⎫1a +1b =a -b b 2+b -a a 2 =(a -b )⎝⎛⎭⎫1b 2-1a 2 =(a +b )(a -b )2a 2b 2.∵a +b >0,(a -b )2≥0,∴(a +b )(a -b )2a 2b 2≥0.∴a b 2+b a 2≥1a +1b . 答案:a b 2+b a 2≥1a +1b10.若a >b >0,c <d <0,e <0.求证:e (a -c )2>e(b -d )2. 证明:∵c <d <0,∴-c >-d >0. 又∵a >b >0,∴a -c >b -d >0. ∴(a -c )2>(b -d )2>0. ∴0<1(a -c )2<1(b -d )2. 又∵e <0,∴e (a -c )2>e (b -d )2. 11.已知b >a >0,x >y >0,求证:x x +a >y y +b .证明:x x +a -yy +b =x (y +b )-y (x +a )(x +a )(y +b )=bx -ay(x +a )(y +b ).∵b >a >0,x >y >0, ∴bx >ay ,x +a >0,y +b >0, ∴bx -ay(x +a )(y +b )>0,∴x x +a >y y +b. 12.已知函数f (x )=ax 2+bx +c 满足f (1)=0,且a >b >c ,求ca 的取值范围.解:∵f (1)=0,∴a +b +c =0, ∴b =-(a +c ).又a >b >c , ∴a >-(a +c )>c ,且a >0,c <0, ∴1>-a +c a >c a ,即1>-1-c a >ca.∴⎩⎨⎧2ca <-1,ca >-2,解得-2<c a <-12.1.已知a 、b 为实数,则“a >b >1”是“1a -1<1b -1”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A 由a >b >1⇒a -1>b -1>0⇒1a -1<1b -1,当a =0,b =2时,1a -1<1b -1,∴1a -1<1b -1⇒/ a >b >1,故选A. 2.(2012·洛阳模拟)若-1<a <b <1,-2<c <3则(a -b )·c 的取值范围是________. 解析:∵-1<a <b <1,∴-2<a -b <0,∴2>-(a -b )>0. 当-2<c <0时,2>-c >0, ∴4>(-c )[-(a -b )]>0, 即4>c ·(a -b )>0; 当c =0时,(a -b )·c =0;当0<c <3时,0<c ·[-(a -b )]<6, ∴-6<(a -b )·c <0.综上得,当-2<c <3时,-6<(a -b )·c <4. 答案:(-6,4)3.某企业去年年底给全部的800名员工共发放2 000万元年终奖,该企业计划从今年起,10年内每年发放的年终奖都比上一年增加60万元,企业员工每年净增a 人.(1)若a =10,在计划时间内,该企业的人均年终奖是否会超过3万元? (2)为使人均年终奖年年有增长,该企业每年员工的净增量不能超过多少人? 解:(1)设从今年起的第x 年(今年为第1年)该企业人均发放年终奖为y 万元. 则y =2 000+60x 800+ax (a ∈N *,1≤x ≤10).假设会超过3万元,则2 000+60x800+10x >3,解得x >403>10.所以,10年内该企业的人均年终奖不会超过3万元. (2)设1≤x 1<x 2≤10, 则f (x 2)-f (x 1) =2 000+60x 2800+ax 2-2 000+60x 1800+ax 1=(60×800-2 000a )(x 2-x 1)(800+ax 2)(800+ax 1)>0,所以60×800-2 000a >0,得a <24.所以,为使人均年终奖年年有增长,该企业每年员工的净增量不能超过23人.1.已知0<a <b ,且a +b =1,下列不等式成立的是( ) A .log 2a >0 B .2a -b >1C .2ab >2D .log 2(ab )<-2解析:选D 由已知,0<a <1,0<b <1,a -b <0,0<ab <14,log 2(ab )<-2.2.若a >b >0,则下列不等式中一定成立的是( ) A .a +1b >b +1aB.b a >b +1a +1 C .a -1b >b -1aD.2a +b a +2b >a b解析:选A 取a =2,b =1,排除B 与D ;另外,函数f (x )=x -1x 是(0,+∞)上的增函数,但函数g (x )=x +1x 在(0,1]上递减,在[1,+∞)上递增,所以,当a >b >0时,f (a )>f (b )必定成立,但g (a )>g (b )未必成立,可得,a -1a >b -1b ⇒a +1b >b +1a.3.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,则 ( )A .甲先到教室B .乙先到教室C .两人同时到教室D .谁先到教室不确定解析:选B 设甲用时间为T ,乙用时间为2t ,步行速度为a ,跑步速度为b ,距离为s ,则T =s 2a +s2b =s 2a +s 2b =s (a +b )2ab ,ta +tb =s ⇒2t =2s a +b,T -2t =s (a +b )2ab -2s a +b =s ×(a +b )2-4ab 2ab (a +b )=s (a -b )22ab (a +b )>0,即乙先到教室.4.若x >y, a >b ,则在①a -x >b -y ,②a +x >b +y ,③ax >by ,④x -b >y -a ,⑤ay >bx这五个式子中,恒成立的所有不等式的序号是________. 解析:令x =-2,y =-3,a =3,b =2, 符合题设条件x >y ,a >b ,∵a -x =3-(-2)=5,b -y =2-(-3)=5, ∴a -x =b -y ,因此 ①不成立.又∵ax =-6,by =-6,∴ax =by ,因此③也不正确.又∵a y =3-3=-1,b x =2-2=-1, ∴a y =b x,因此⑤不正确. 由不等式的性质可推出 ②④成立.答案:②④。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Go the distance
准确理解向量的基本概念是解决该类问题的关键, 特别是对相等向量、 零向量等概念的 理解要到位,充分利用反例进行否定也是行之有效的方法. 2.几个重要结论 (1)向量相等具有传递性,非零向量的平行具有传递性; (2)向量可以平移,平移后的向量与原向量是相等向量; (3)向量平行与起点的位置无关. 以题试法 1.设 a0 为单位向量,①若 a 为平面内的某个向量,则 a=|a|a0;②若 a 与 a0 平行,则 a=|a|a0;③若 a 与 a0 平行且|a|=1,则 a=a0.上述命题中,假命题的个数是( A.0 C.2 B.1 D.3 )
[自主解答] ①不正确.当起点不在同一直线上时,虽然终点相同,但向量不共线. ②正确.∵ AB = DC ,∴| AB |=| DC |且 AB ∥ DC . 又∵A,B,C,D 是不共线的四点, ∴四边形 ABCD 是平行四边形. 反之,若四边形 ABCD 是平行四边形,则 AB 綊 DC 且 AB 与 DC 方向相同,因此 AB = DC . ③不正确.两向量不能比较大小. ④不正确. 当 λ=μ=0 时, a 与 b 可以为任意向量, 满足 λa=μb, 但 a 与 b 不一定共线. [答案] C 由题悟法 1.平面向量的概念辨析题的解题方法
向量的有关概念 典题导入 [例 1] 给出下列命题: ①两个具有共同终点的向量,一定是共线向量; ②若 A,B,C,D 是不共线的四点,则 AB = DC 是四边形 ABCD 为平行四边形的充 要条件; ③若 a 与 b 同向,且|a|>|b|,则 a>b; ④λ,μ 为实数,若 λa=μb,则 a 与 b 共线. 其中假命题的个数为( A.1 C.3 ) B.2 D.4
Go the distance
出实数 t 的值,若不存在,请说明理由. 解:由题设知, CD =d-c=2b-3a, CE =e-c=(t-3)a+tb,C,D,E 三点在一条 直线上的充要条件是存在实数 k,使得 CE =k CD ,即(t-3)a+tb=-3ka+2kb, 整理得(t-3+3k)a=(2k-t)b.
2.(2012· 福州模拟)若 a+b+c=0,则 a,b,c( A.都是非零向量时也可能无法构成一个三角形 B.一定不可能构成三角形 C.都是非零向量时能构成三角形 D.一定可构成三角形
解析:选 A 当 a,b,c 为非零向量且不共线时可构成三角形,而当 a,b,c 为非零向 量共线时不能构成三角形. | BC | 3. (2012· 威海质检)已知平面上不共线的四点 O, A, B, C.若 OA +2 OC =3 OB , 则 | AB | 的值为( 1 A. 2 1 C. 4 ) 1 B. 3 1 D. 6
解析:选 C 由题图可得 a-b= BA =e1-3e2. 3.(教材习题改编)设 a,b 为不共线向量, AB =a+2b, BC =-4a-b, CD =-5a-3b,则下列关系式中正确的是( A. AD = BC C. AD =- BC 解析:选 B 2(-4a-b)=2 BC . 4.若菱形 ABCD 的边长为 2,则| AB - CB + CD |=________. 解析:| AB - CB + CD |=| AB + BC + CD |=| AD |=2. 答案:2 5.已知 a 与 b 是两个不共线向量,且向量 a+λb 与-(b-3a)共线,则 λ=________. 解析:由题意知 a+λb=k[-(b-3a)],
A.不平行的向量一定不相等 B.平面内的单位向量有且仅有一个 C.a 与 b 是共线向量,b 与 c 是平行向量,则 a 与 c 是方向相同的向量 D.若 a 与 b 平行,则 b 与 a 方向相同或相反 解析:选 A 对于 B,单位向量不是仅有一个,故 B 错;对于 C,a 与 c 的方向也可能 相反,故 C 错;对于 D,若 b=0,则 b 的方向是任意的,故 D 错,综上可知选 A. 2.如右图所示,向量 a-b 等于( A.-4e1-2e2 C.e1-3e2 ) B.-2e1-4e2 D.3e1-e2
t-3+3k=0, 因为 a,b 不共线,所以有 t-2k=0,
6 解之得 t= . 5 6 故存在实数 t= 使 C,D,E 三点在一条直线上. 5
1.下列等式:①0-a=-a;②-(-a)=a;③a+(-a)=0;④a+0=a;⑤a-b=a +(-b).正确的个数是( A.2 C.4 解析:选 C ) B.3 D.5 a+(-a)=0,故③错. )
由题悟法 1.当两向量共线时,只有非零向量才能表示与之共线的其他向量,解决向量共线问题 要注意待定系数法和方程思想的运用. 2.证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与 联系. 以题试法 3.已知 a,b 不共线, OA =a, OB =b, OC =c, OD =d, OB =e,设 t∈R,如 果 3a=c,2b=d,e=t(a+b),是否存在实数 t 使 C,D,E 三点在一条直线上?若存在,求
共 线 向 量
典题导入 [例 3] 设两个非零向量 a 与 b 不共线. (1)若 AB =a+b, BC =2a+8b, CD =3(a-b).求证:A,B,D 三点共线; (2)试确定实数 k,使 ka+b 和 a+kb 共线. [自主解答] (1)证明:∵ AB =a+b, BC =2a+8b,
解析:选 D 向量是既有大小又有方向的量,a 与|a|a0 的模相同,但方向不一定相同, 故①是假命题;若 a 与 a0 平行,则 a 与 a0 的方向有两种情况:一是同向,二是反向,反向 时 a=-|a|a0,故②③也是假命题.综上所述,假命题的个数是 3.
向量的线性运算
典题导入
[例 2] (1)(2011· 四川高考)如图, 正六边形 ABCDEF 中, BA + CD +Leabharlann Go the distance
2.运算律:设 λ,μ 是两个实数,则: ①λ(μa)=(λμ)a;②(λ+μ)a=λ a+μ a;③λ(a+b)=λa+λb. 四、共线向量定理 向量 a(a≠0)与 b 共线,当且仅当有唯一一个实数 λ,使得 b=λa. [小题能否全取] 1.下列命题正确的是( )
CD =3(a-b),
∴ BD = BC + CD =2a+8b+3(a-b) =2a+8b+3a-3b =5(a+b)=5 AB . ∴ AB , BD 共线, 又∵它们有公共点 B,∴A,B,D 三点共线. (2)∵ka+b 与 a+kb 共线, BC ∴存在实数 λ,使 ka+b=λ(a+kb), 即 ka+b=λa+λkb. ∴(k-λ)a=(λk-1)b. ∵a,b 是不共线的两个非零向量, ∴k-λ=λk-1=0,即 k2-1=0. ∴k=± 1.
(1)交换律:a+b=b+ 加法 求两个向量和的运算 三角形法则 a; (2)结合律:(a+b)+c =a+(b+c) 平行四边形法则 求 a 与 b 的相反向量 减法 -b 的和的运算叫做 a 与 b 的差 三、向量的数乘运算及其几何意义 1.定义:实数 λ 与向量 a 的积是一个向量,这种运算叫向量的数乘,记作 λa,它的长 度与方向规定如下: ①|λa|=|λ||a|; ②当 λ>0 时,λa 的方向与 a 的方向相同;当 λ<0 时,λa 的方向与 a 的方向相反;当 λ =0 时,λa=0. 三角形法则
EF =(
A.0
) B. BE D. CF
C. AD
1 (2)在△ABC 中,已知 D 是 AB 边上一点,若 AD =2 DB , CD = CA +λ CB ,则 λ 3 等于( 2 A. 3 1 C.- 3 ) 1 B. 3 2 D.- 3
[自主解答] (1)如图, ∵在正六边形 ABCDEF 中,CD = AF ,BF =
解析:选 A 由 OA +2 OC =3 OB ,得 OA - OB =2 OB -2 OC ,即 BA =2 CB ,
Go the distance
| BC | 1 所以 = . | AB | 2 4.(2012· 海淀期末)如图,正方形 ABCD 中,点 E 是 DC 的中点,点 F 是 BC 的一个三等分点(靠近 B),那么 EF =( 1 1 A. AB - AD 2 3 1 1 C. AB + DA 3 2 )
由题悟法 在进行向量的线性运算时要尽可能转化到平行四边形或三角形中,运用平行四边形法 则、三角形法则求解,并注意利用平面几何的性质,如三角形中位线、相似三角形等知识.
以题试法 2.(2012· 汉阳调研)若 A,B,C,D 是平面内任意四点,给出下列式子: ① AB + CD = BC + DA ;② AC + BD = BC + AD ; ③ AC - BD = DC + AB .其中正确的有( A.0 个 C.2 个 B.1 个 D.3 个 )
若(2)中的条件作如下改变:若点 D 是 AB 边延长线上一点且| BD |=| BA |,若 CD = λ CB +μ CA ,则 λ-μ 的值为________. 解析:∵ CD = CA + AD = CA +2 AB = CA +2( CB - CA )=2 CB - CA =λ CB +μ CA . ∴λ=2,μ=-1.∴λ-μ=3. 答案:3
1 1 B. AB + AD 4 2 1 2 D. AB - AD 2 3
解析: 选 D 在△CEF 中, 有 EF = EC + CF , 因为点 E 为 DC 的中点, 所以 EC = 1 2 1 2 1 DC .因为点 F 为 BC 的一个三等分点, 所以 CF = CB .所以 EF = DC + CB = AB 2 3 2 3 2 2 1 2 + DA = AB - AD . 3 2 3 5.(2013· 揭阳模拟)已知点 O 为△ABC 外接圆的圆心,且 OA + OB + CO =0,则△ ABC 的内角 A 等于( A.30° C.90° ) B.60° D.120°