2012年苏州市中考数学试卷结构及考试题型分析(1)

合集下载

2012年苏州中考数学分析

2012年苏州中考数学分析

2012年苏州中考数学试卷分析一、试卷的基本结构整个试卷分三部分,共29个题目,130分。

第一部分为选择题,共10个题目,30分。

第二部分为填空题,共8个题目,24分,第三部分为解答题(包括计算题,证明题、应用题和综合题)共11个题目,76分。

二、考查的内容及分布从试卷考查的内容来看,几乎覆盖了数学《课程标准》所列的主要知识点,并且对初中数学的主要内容:函数、方程与不等式、三角形、四边形、圆、统计概率。

对数形结合、动手操作以及空间想象能力、知识迁移能力都作了重点考查。

2011年考查知识点在各年级所占的比例2012年考查知识点在各年级所占的比例分析今年试卷中各题在三个年级段所占比例来讲,三个年级的比例相差不大,八年级的知识相对多了一点点。

七、八年级所学的知识在基础题和中等难度题目中出现比较多,而九年级的知识点相对来讲偏难一点,比如二次函数。

与去年相比,差别不大。

三、试题分析总结近5年苏州的中考题,第1题不外乎倒数、相反数、绝对值等实数的运算。

第2题或第3题考的幂的运算、自变量取值范围,数轴等,其中有三年都是科学计数法。

同时基础概率,统计初步,因式分解,也是每年必考内容。

还有二次根式取值范围、圆的基本性质、基本计算、全等三角形证明等,都是每年中考的必考题目。

学生动手很容易,只要认真对待,这些都是基础的容易得分的题。

同时试题的设置又具较明显的梯度,综合题有一定难度。

选择题、填空题、解答题三种题型中的大部分题目都立足于考核初中数学的核心基础知识、基本技能及隐含于其中的基本数学思想方法。

一、选择题:1.(2012江苏苏州,1,3分)2的相反数是()A. -2B. 2C.D.考点:实数的相反数分析:符号不同,绝对值相同的数叫做相反数。

求相反数,只要在加一个负号就可以了。

点评:回头看苏州近5年的中考的第1题,07~11年的第一题分别考的是绝对值、相反数、相反数、倒数、正负数乘法。

本题属于基础题,主要考查学生对概念的掌握是否全面,考查知识点单一。

2012年江苏省苏州市中考数学-答案

2012年江苏省苏州市中考数学-答案
25.【答案】(1)
(2)
【解析】(1)根据从 、 、 、 四个点中任意取一点,一共有4种可能,只有选取 点时,所画三角形是等腰三角形,故 (所画三角形是等腰三角形) ;
(2)用“树状图”或利用表格列出所有可能的结果:
以点 、 、 、 为顶点及以 、 、 、 为顶点所画的四边形是平行四边形, 所画的四边形是平行四边形的概率 .
【考点】二次函数
【考点】列表法与树状图法,等腰三角形的判定,平行四边形的判定
26.【答案】(1) 修建的斜坡 的坡角(即 )不大于 , 最大为 ,当 时, 最短,此时 最长, , , , ,故 (米),若修建的斜坡 的坡角(即 )不大于 ,则平台 的长最多为 .
(2)过点 作 ,垂足为 .
在 中, , ,在矩形 中, , ,在 中, ,
【考点】用样本估计总体,条形统计图,加权平均数
16.【答案】
【解析】 , 二次函数的图象开口向上,由二次函数 可知,其对称轴为 , , 两点均在对称轴的右侧, 此函数图象开口向上, 在对称轴的右侧 随 的增大而增大, , .故答案为 .
【提示】先根据二次函数的解析式得出函数图象的对称轴,再判断出两点的位置及函数的增减性,进而可得出结论。
【考点】正方形的性质,一元二次方程的应用,等腰直角三角形,矩形的性质,解直角三角形
29.【答案】(1)令 ,即 ,解得或 ,
是实数且 ,点 位于点 的左侧,
点 的坐标为 ,
令 ,解得 ,
点 的坐标为 .
(2)存在,假设存在这样的点,使得四边形 的面积等于 ,且 是以点 为直角顶点的等腰直角三角形,设点 的坐标为 ,连接 ,
【考点】旋转的性质
10.【答案】D
【解析】过小正方形的一个顶点 作 轴于点 ,过点 于点 , 正方形 的边长为1, , , , ,

江苏省苏州市中考真题

江苏省苏州市中考真题

2012年苏州市初中毕业暨升学考试试卷数 学(考试时间:120分钟,满分130分)注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相对应的位置上,并认真核对条形码上的准考号、姓名是否与本人的相符合;2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应的位置上.......... 1.2的相反数是( )(A )-2 (B )2 (C )12-(D )122x 的取值范围是( )(A )2x < (B )x ≤2 (C )2x > (D )x ≥23.一组数据2,4,5,5,6的众数是( ) (A )2 (B )4 (C )5 (D )64.如图,一个正六边形转盘被分成6个全等的正三角形,任意转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是( ) (A )12 (B )13 (C )14 (D )165.如图,已知BD 是O ⊙直径,点A 、C 在O ⊙上, AB BC =,60AOB =∠,则B D C∠的度数是( )(A ) 20(B )25(C )30(D )406.如图,矩形ABCD 的对角线AC 、BD 相交于点,,.O CE BD DE AC ∥∥若4AC =,则四边形CODE 的周长是( )(A )4 (B )6 (C )8 (D )107.若点(,)m n 在函数21y x =+的图象上,则2m n -的值是( )(A )2 (B )2- (C )1 (D )1- 8.若2139273mm⨯⨯=,则m 的值是( ) (A )3 (B )4 (C )5 (D )69.如图,将AOB △绕点O 按逆时针方向旋转45后得到A OB ''△,若15AOB =∠,则AOB '∠的度数是( )(A )25(B )30(C )35(D )4010.已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点1B 在y 轴上,点1C 、1E 、2E 、2C 、3E 、4E 、3C 在x 轴上。

2012年中考数学卷精析版苏州卷

2012年中考数学卷精析版苏州卷

2012年中考数学卷精析版——苏州卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出地四个选项中,只有一项是符合题目要求地,请将选择题地答案用2B铅笔涂在答题卡相对应地位置上.1. (2012江苏苏州3分)2地相反数是【】A. -2B. 2C.D.【答案】A.【考点】相反数.【分析】相反数地定义是:如果两个数只有符号不同,我们称其中一个数为另一个数地相反数,特别地,0地相反数还是0.因此2地相反数是-2.故选A.2. (2012江苏苏州3分)若式子在实数范围内有意义,则取值范围是【】A. B. C. D.【答案】D.3. (2012江苏苏州3分)一组数据2,4,5,5,6地众数是【】A. 2B. 4C. 5D. 6【答案】C.【考点】众数.【分析】众数是在一组数据中,出现次数最多地数据,这组数据中,出现次数最多地是5,故这组数据地众数为5.故选C.4. (2012江苏苏州3分)如图,一个正六边形转盘被分成6个全等三角形,任意转动这个转盘1次,当转盘停止时,指针指向阴影区域地概率是【】A. B. C. D.【答案】B.【考点】几何概率.【分析】确定阴影部分地面积在整个转盘中占地比例,根据这个比例即可求出转盘停止转动时指针指向阴影部分地概率:转动转盘被均匀分成6部分,阴影部分占2份,转盘停止转动时指针指向阴影部分地概率是.故选B.5. (2012江苏苏州3分)如图,已知BD是⊙O直径,点A、C在⊙O上,,∠AOB=60°,则∠BDC地度数是【】A.20°B.25°C.30°D. 40°【答案】C.6. (2012江苏苏州3分)如图,矩形ABCD地对角线AC、BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE地周长是【】A.4B.6C.8D. 10【答案】C.【考点】矩形地性质,菱形地判定和性质.7. (2012江苏苏州3分)若点(m,n)在函数y=2x+1地图象上,则2m-n地值是【】A.2B.-2C.1D. -1【答案】D.【考点】直线上点地坐标与方程地关系.【分析】根据点在直线上,点地坐标满足方程地关系,将点(m,n)代入函数y=2x+1,得到m和n地关系式:n=2m+1,即2m-n=-1.故选D.8. (2012江苏苏州3分)若,则m地值为【】A.3B.4C.5D. 6【答案】A.【考点】幂地乘方,同底数幂地乘法.【分析】∵,∴,即,即.∴1+5m=11,解得m=2.故选A.9. (2012江苏苏州3分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A'OB',若∠AOB=15°,则∠AOB'地度数是【】A.25°B.30°C.35°D. 40°【答案】B.【考点】旋转地性质.【分析】根据旋转地性质,旋转前后图形全等以及对应边地夹角等于旋转角,从而得出答案:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA-∠A′OB=45°-15°=30°.故选B.10. (2012江苏苏州3分)已知在平面直角坐标系中放置了5个如图所示地正方形(用阴影表示),点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上.若正方形A1B1C1D1地边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,则点A3到x轴地距离是【】A. B.C. D.【答案】D.【考点】正方形地性质,平行地性质,三角形内角和定理,解直角三角形,锐角三角函数定义,特殊角地三角函数值.【分析】过小正方形地一个顶点W作FQ⊥x轴于点Q,过点A3F⊥FQ于点F,∵正方形A1B1C1D1地边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,∴∠B3C3 E4=60°,∠D1C1E1=30°,∠E2B2C2=30°.∴D1E1=D1C1=.∴D1E1=B2E2=.∴.解得:B2C2=.∴B3E4=.∴,解得:B3C3=.∴WC3=.根据题意得出:∠WC3 Q=30°,∠C3 WQ=60°,∠A3 WF=30°,∴WQ=,FW=WA3•cos30°=.∴点A3到x轴地距离为:FW+WQ=.故选D.二、填空题:本大题共8个小题,每小题3分,共24分.把答案直接填在答题卡相对应地位置上.11. (2012江苏苏州3分)计算:23= ▲ .12. (2012江苏苏州3分)若a=2,a+b=3,则a2+ab= ▲ .【答案】6.【考点】求代数式地值,因式分解地应用.【分析】利用提公因式法进行因式分解,然后把a=2,a+b=3代入即可:∵a=2,a+b=3,∴a2+ab=a(a+b)=2×3=6.13. (2012江苏苏州3分)已知太阳地半径约为696 000 000m,696 000 000这个数用科学记数法可表示为▲ .【答案】6.96×108.【考点】科学记数法.14. (2012江苏苏州3分)已知扇形地圆心角为45°,弧长等于,则该扇形地半径是▲ .【答案】2.【考点】弧长地计算.【分析】根据弧长地公式,得,即该扇形地半径为2.15. (2012江苏苏州3分)某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人,对其到校方式进行调查,并将调查结果制成了如图所示地条形统计图,由此可以估计全校坐公交车到校地学生有▲ 人.【答案】216【考点】条形统计图,频数、频率和总量地关系,用样本估计总体.【分析】根据频数、频率和总量地关系,求出50个人里面坐公交车地人数所占地比例:15÷50 =30%,然后根据用样本估计总体地方法即可估算出全校坐公交车到校地学生:720×30%=216(人).16. (2012江苏苏州3分)已知点A(x1,y1)、B(x2,y2)在二次函数y=(x-1)2+1地图象上,若x1>x2>1,则y1 ▲ y2.【答案】>.【考点】二次函数图象上点地坐标特征,二次函数地性质.17. (2012江苏苏州3分)如图,已知第一象限内地图象是反比例函数图象地一个分支,第二象限内地图象是反比例函数图象地一个分支,在轴上方有一条平行于轴地直线与它们分别交于点A、B,过点A、B作轴地垂线,垂足分别为C、D.若四边形ACDB地周长为8且AB<AC,则点A地坐标是▲ .【答案】(,3).【考点】反比例函数综合题,曲线上点地坐标与方程地关系,矩形地性质,解分式方程.【分析】∵点A在反比例函数图象上,∴可设A点坐标为().∵AB平行于x轴,∴点B地纵坐标为.∵点B在反比例函数图象上,∴B点地横坐标,即B点坐标为().∴AB=a-(-2a)=3a,AC=.∵四边形ABCD地周长为8,而四边形ABCD为矩形,∴AB+AC=4,即3a+=4,整理得,3a2-4a+1=0,即(3a-1)(a-1)=0.∴a1=,a2=1.∵AB<AC,∴a=.∴A点坐标为(,3).18. (2012江苏苏州3分)如图①,在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/s地速度沿着A→B→C→D地方向不停移动,直到点P到达点D后才停止.已知△PAD地面积S (单位:)与点P移动地时间t(单位:s)地函数关系式如图②所示,则点P从开始移动到停止移动一共用了▲ 秒(结果保留根号).【答案】4+.【考点】动点问题地函数图象,矩形地判定和性质,锐角三角函数定义,特殊角地三角函数值,勾股定理.【分析】由图②可知,t在2到4秒时,△PAD地面积不发生变化,∴在AB上运动地时间是2秒,在BC上运动地时间是4-2=2秒.∵动点P地运动速度是1cm/s,∴AB=2,BC=2.过点B作BE⊥AD于点E,过点C作CF⊥AD于点F,则四边形BCFE是矩形.∴BE=CF,BC=EF=2.∵∠A=60°,∴,.∵由图②可△ABD地面积为,∴,即,解得AD=6.∴DF=AD-AE-EF=6-1-2=3.三、解答题:本大题共11小题,共76分.把解答过程写在答题卡相对应地位置上,解答时应写必要地计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.[19. (2012江苏苏州5分)计算:.【答案】解:原式=1+2-2=1.20. (2012江苏苏州5分)解不等式组:.【答案】解:由不等式①得,x<2,由不等式②得,x≥-2,∴不等式组地解集为-2≤x<2.21. (2012江苏苏州5分)先化简,再求值:,其中.【答案】解:原式=.当时,原式= .【考点】分式地化简求值,二次根式代简.【分析】将原式第二项第一个因式地分子利用完全公式分解因式,分母利用平方差公式分解因式,约分后再利用同分母分式地加法法则计算,得到最简结果.然后将a地值代入化简后地式子中计算,即可得到原式地值.22. (2012江苏苏州6分)解分式方程:【答案】解:去分母得:3x+x+2=4,解得:x=.经检验,x=是原方程地解.∴原方程地解为,x=.23. (2012江苏苏州6分)如图,在梯形ABCD中,已知AD∥BC,AB=CD,延长线段CB到E,使BE=AD,连接AE、AC.⑴求证:△ABE≌△CDA;⑵若∠DAC=40°,求∠EAC地度数.【答案】⑴证明:在梯形ABCD中,∵AD∥BC,AB=CD,∴∠ABE=∠BAD,∠BAD=∠CDA.∴∠ABE=∠CDA.在△ABE和△CDA中,AB=CD,∠ABE=∠CDA, BE=AD,∴△ABE≌△CDA(SAS).⑵解:由⑴得:∠AEB=∠CAD,AE=AC.∴∠AEB=∠ACE.∵∠DAC=40°,∴∠AEB=∠ACE=40°.∴∠EAC=180°-40°-40°=100°.24. (2012江苏苏州6分)我国是一个淡水资源严重缺乏地国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量地,中、美两国人均淡水资源占有量之和为13800m3,问中、美两国人均淡水资源占有量各为多少(单位:m3)?【答案】解:设中国人均淡水资源占有量为xm3,则美国人均淡水资源占有量为5xm3.根据题意得: x +5x =13800,解得,x=2300 ,5 x =11500.答:中、美两国人均淡水资源占有量各为2300m3,11500m3.【考点】一元一次方程地应用.【分析】方程地应用解题关键是找出等量关系,列出方程求解.本题等量关系为:中、美两国人均淡水资源占有量之和为13800m3x +5x = 13800.25. (2012江苏苏州8分)在3×3地方格纸中,点A、B、C、D、E、F分别位于如图所示地小正方形地顶点上.⑴从A、D、E、F四点中任意取一点,以所取地这一点及B、C为顶点三角形,则所画三角形是等腰三角形地概率是▲ ;⑵从A、D、E、F四点中先后任意取两个不同地点,以所取地这两点及B、C为顶点画四边形,求所画四边形是平行四边形地概率(用树状图或列表求解).【答案】解:(1).(2)画树状图如下:FDAFEAD E F开始∵从A、D、E、F四点中先后任意取两个不同地点,以所取地这两点及B、C为顶点画四边形共有12种等可能结果,以点A、E、B、C为顶点及以D、F、B、C为顶点所画地四边形是平行四边形,有4种结果,∴所画地四边形是平行四边形地概率P=.【考点】列表法或树状图法,概率,等腰三角形地判定,平行四边形地判定.26. (2012江苏苏州8分)如图,已知斜坡AB长60M,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA地平台DE和一条新地斜坡BE.(请将下面2小题地结果都精确到0.1M ,参考数据).⑴若修建地斜坡BE地坡角(即∠BAC)不大于45°,则平台DE地长最多为▲ M;⑵一座建筑物GH距离坡脚A点27M远(即AG=27M),小明在D点测得建筑物顶部H地仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面上,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少M?【答案】解:(1)11.0.(2)过点D作DP⊥AC,垂足为P.在Rt△DPA中,DP=AD=×30=15,PA=A D•cos30°= 30×.在矩形DPGM中,MG=DP=15,DM=PG=PA+AG=+27.在Rt△DMH中,HM=DM•tan30°=(+27)×,∴GH=HM+MG=15+≈45.6.答:建筑物GH高为45.6M.当∠BEF=45°时,EF最短,此时ED最长.∵∠DAC=∠BDF=30°,AD=BD=30,∴BF=EF=BD=15,DF=.∴DE=DF-EF=15(-1)≈11.0.(2)利用在Rt△DPA中,DP=AD,以及PA=AD•cos30°,从而得出DM地长,利用HM=DM•tan30°得出即可.27. (2012江苏苏州8分)如图,已知半径为2地⊙O与直线l相切于点A,点P是直径AB左侧半圆上地动点,过点P作直线l地垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC地长为.⑴当时,求弦PA、PB地长度;⑵当x为何值时,地值最大?最大值是多少?【答案】解:(1)∵⊙O与直线l相切于点A,AB为⊙O地直径,∴AB⊥l.又∵PC⊥l,∴AB∥PC. ∴∠CPA=∠PAB.∵AB为⊙O地直径,∴∠APB=90°.∴∠PCA=∠APB.∴△PCA∽△APB.∴,即PA2=PC·PD.∵PC=,AB=4,∴.∴在Rt△APB中,由勾股定理得:.(2)过O作OE⊥PD,垂足为E.∵PD是⊙O地弦,OF⊥PD,∴PF=FD.在矩形OECA中,CE=OA=2,∴PE=ED=x-2.∴CD=PC-PD= x-2(x-2)=4-x .∴.∵∴当时,有最大值,最大值是2.【考点】切线地性质,平行地判定和性质,相似三角形地判定和性质,勾股定理,垂径定理,矩形地判定和性质,二次函数地最值.【分析】(1)由直线l与圆相切于点A,且AB为圆地直径,根据切线地性质得到AB垂直于直线l,又PC垂直于直线l,根据垂直于同一条直线地两直线平行,得到AB与PC平行,根据两直线平行内错角相等得到一对内错角相等,再由一对直角相等,利用两对对应角相等地两三角形相似可得出△PCA与△PAB相似,由相似得比例,将PC及直径AB地长代入求出PA地长,在Rt△APB中,由AB及PA地长,利用勾股定理即可求出PB地长.(2)过O作OE垂直于PD,与PD交于点E,由垂径定理得到E为PD地中点,再由三个角为直角地四边形为矩形得到OACE为矩形,根据矩形地对边相等,可得出EC=OA=2,用PC-EC地长表示出PE,根据PD=2PE表示出PD,再由PC-PD表示出CD,代入所求地式子中,整理后得到关于x地二次函数,配方后根据自变量x地范围,利用二次函数地性质即可求出所求式子地最大值及此时x地取值. 28. (2012江苏苏州9分)如图,正方形ABCD地边AD与矩形EFGH地边FG重合,将正方形ABCD以1cm/s地速度沿FG方向移动,移动开始前点A与点F重合.在移动过程中,边AD始终与边FG重合,连接CG,过点A作CG地平行线交线段GH于点P,连接PD.已知正方形ABCD地边长为1cm,矩形EFGH地边FG、GH地长分别为4cm、3cm.设正方形移动时间为x(s),线段GP地长为y(cm),其中0≤x≤2.5.⑴试求出y关于x地函数关系式,并求出y =3时相应x地值;⑵记△DGP地面积为S1,△CDG地面积为S2.试说明S1-S2是常数;⑶当线段PD所在直线与正方形ABCD地对角线AC垂直时,求线段PD地长.【答案】解:(1)∵CG∥AP,∴∠CGD=∠PAG,则.∴.∵GF=4,CD=DA=1,AF=x,∴GD=3-x,AG=4-x.∴,即.∴y关于x地函数关系式为.当y =3时,,解得:x=2.5.(2)∵,∴为常数.(3)延长PD交AC于点Q.∵正方形ABCD中,AC为对角线,∴∠CAD=45°.∵PQ⊥AC,∴∠ADQ=45°.∴∠GDP=∠ADQ=45°.∴△DGP是等腰直角三角形,则GD=GP.∴,化简得:,解得:.∵0≤x≤2.5,∴.在Rt△DGP中,.【考点】正方形地性质,一元二次方程地应用,等腰直角三角形地性质,矩形地性质,解直角三角形,锐角三角函数定义,特殊角地三角函数值.29. (2012江苏苏州10分)如图,已知抛物线(b是实数且b>2)与x轴地正半轴分别交于点A、B(点A位于点B地左侧),与y轴地正半轴交于点C.⑴点B地坐标为▲ ,点C地坐标为▲ (用含b地代数式表示);⑵请你探索在第一象限内是否存在点P,使得四边形PCOB地面积等于2b,且△PBC是以点P为直角顶点地等腰直角三角形?如果存在,求出点P地坐标;如果不存在,请说明理由;⑶请你进一步探索在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中地任意两个三角形均相似(全等可看作相似地特殊情况)?如果存在,求出点Q地坐标;如果不存在,请说明理由.【答案】解:(1)B(b,0),C(0,).(2)假设存在这样地点P,使得四边形PCOB地面积等于2b,且△PBC是以点P为直角顶点地等腰直角三角形.设点P坐标(x,y),连接OP,则∴.过P作PD⊥x轴,PE⊥y轴,垂足分别为D、E,∴∠PEO=∠EOD=∠ODP=90°.∴四边形PEOD是矩形.∴∠EPD=90°.∵△PBC是等腰直角三角形,∴PC=PB,∠BPC=90°.∴∠EPC=∠BPD.∴△PEC≌△PDB(AAS).∴PE=PD,即x=y.由解得,.由△PEC≌△PDB得EC=DB,即,解得符合题意.∴点P坐标为(,).(Ⅰ)当∠OCQ=90°时,△QOA≌△OQC,∴AQ=CO=.由得:,解得:.∵b>2,∴.∴点Q坐标为(1,).(Ⅱ)当∠OQC=90°时,△QOA∽△OCQ,∴,即.又,∴,即,解得:AQ=4此时b=17>2符合题意.∴点Q坐标为(1,4).综上可知:存在点Q(1,)或(1,4),使得△QCO、△QOA和△QAB中地任意两个三角形均相似.【分析】(1)令y=0,即,解关于x地一元二次方程即可求出A,B横坐标,令x=0,求出y地值即C地纵坐标.(2)存在,先假设存在这样地点P,使得四边形PCOB地面积等于2b,且△PBC是以点P为直角顶点地等腰直角三角形.设点P地坐标为(x,y),连接OP,过P作PD⊥x轴,PE⊥y轴,垂足分别为D、E,利用已知条件证明△PEC≌△PDB,进而求出x和y地值,从而求出P地坐标.(3)存在,假设存在这样地点Q,使得△QCO,△QOA和△QAB中地任意两个三角形均相似,由条件可知:要使△QOA与△QAB相似,只能∠QAO=∠BAQ=90°,即QA⊥x轴;要使△QOA与△OQC相似,只能∠QCO=90°或∠OQC=90°.再分别讨论求出满足题意Q地坐标即可.。

2012年江苏省苏州市中考数学试题及答案

2012年江苏省苏州市中考数学试题及答案

2012年江苏省苏州市中考数学试卷一、选择题(本题共10个小题,每小题3分,共30分)1.(3分)2的相反数是()A.﹣2 B.2 C.﹣ D.2.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x<2 B.x>2 C.x≤2 D.x≥23.(3分)一组数据2,4,5,5,6的众数是()A.2 B.4 C.5 D.64.(3分)如图,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是()A.B.C.D.5.(3分)如图,已知BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,则∠BDC的度数是()A.20°B.25°C.30°D.40°6.(3分)如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长()A.4 B.6 C.8 D.107.(3分)若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是()A.2 B.﹣2 C.1 D.﹣18.(3分)若3×9m×27m=321,则m的值为()A.3 B.4 C.5 D.69.(3分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°10.(3分)已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上.若正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,则点A3到x轴的距离是()A.B.C.D.二、填空题(本题共8个小题,每小题3分,共24分)11.(3分)化简:=.12.(3分)若a=2,a+b=3,则a2+ab=.13.(3分)已知太阳的半径约为696000000m,696000000这个数用科学记数法表示为.14.(3分)已知扇形的圆心角为45°,弧长等于,则该扇形的半径为.15.(3分)某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人,对其到校方式进行调查,并将调查的结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有人.16.(3分)已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1y2(填“>”、“<”或“=”).17.(3分)如图,已知第一象限内的图象是反比例函数y=图象的一个分支,第二象限内的图象是反比例函数y=﹣图象的一个分支,在x轴的上方有一条平行于x轴的直线l与它们分别交于点A、B,过点A、B作x轴的垂线,垂足分别为C、D.若四边形ABCD的周长为8且AB<AC,则点A的坐标为.18.(3分)如图①,在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/s的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S(单位:cm2)与点P移动的时间(单位:s)的函数如图②所示,则点P从开始移动到停止移动一共用了秒(结果保留根号).三、解答题(本大题共11小题,共76分)19.(5分)计算:(﹣1)0+|﹣2|﹣.20.(5分)解不等式组.21.(5分)先化简,再求值:,其中,a=+1.22.(6分)解分式方程:.23.(6分)如图,在梯形ABCD中,已知AD∥BC,AB=CD,延长线段CB到E,使BE=AD,连接AE、AC.(1)求证:△ABE≌△CDA;(2)若∠DAC=40°,求∠EAC的度数.24.(6分)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的,中、美两国人均淡水资源占有量之和为13800m3,问中、美两国人均淡水资源占有量各为多少(单位:m3)?25.(8分)在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是;(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率是(用树状图或列表法求解).26.(8分)如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(请将下面2小题的结果都精确到0.1米,参考数据:≈1.732).(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为米;(2)一座建筑物GH距离坡角A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?27.(8分)如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC的长为x(2<x<4).(1)当x=时,求弦PA、PB的长度;(2)当x为何值时,PD•CD的值最大?最大值是多少?28.(9分)如图,正方形ABCD的边AD与矩形EFGH的边FG重合,将正方形ABCD以1cm/s的速度沿FG方向移动,移动开始前点A与点F重合,在移动过程中,边AD始终与边FG重合,连接CG,过点A作CG的平行线交线段GH于点P,连接PD.已知正方形ABCD的边长为1cm,矩形EFGH的边FG,GH的长分别为4cm,3cm,设正方形移动时间为x(s),线段GP的长为y(cm),其中0≤x≤2.5.(1)试求出y关于x的函数关系式,并求当y=3时相应x的值;(2)记△DGP的面积为S1,△CDG的面积为S2.试说明S1﹣S2是常数;(3)当线段PD所在直线与正方形ABCD的对角线AC垂直时,求线段PD的长.29.(10分)如图,已知抛物线y=x2﹣(b+1)x+(b是实数且b>2)与x 轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.(1)点B的坐标为,点C的坐标为(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO,△QOA和△QAB 中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.2012年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分)1.(3分)(2016•钦州)2的相反数是()A.﹣2 B.2 C.﹣ D.【分析】根据相反数的定义即可求解.【解答】解:2的相反数等于﹣2.故选A.【点评】本题考查了相反数的知识,属于基础题,注意熟练掌握相反数的概念是关键.2.(3分)(2014•淮安)若式子在实数范围内有意义,则x的取值范围是()A.x<2 B.x>2 C.x≤2 D.x≥2【分析】根据二次根式中的被开方数必须是非负数,即可求解.【解答】解:根据题意得:x﹣2≥0,解得:x≥2.故选:D.【点评】本题考查的知识点为:二次根式的被开方数是非负数.3.(3分)(2013•鞍山)一组数据2,4,5,5,6的众数是()A.2 B.4 C.5 D.6【分析】根据众数的定义解答即可.【解答】解:在2,4,5,5,6中,5出现了两次,次数最多,故众数为5.故选C.【点评】此题考查了众数的概念﹣﹣﹣﹣一组数据中,出现次数最多的数位众数,众数可以有多个.4.(3分)(2012•苏州)如图,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是()A.B.C.D.【分析】确定阴影部分的面积在整个转盘中占的比例,根据这个比例即可求出转盘停止转动时指针指向阴影部分的概率.【解答】解:如图:转动转盘被均匀分成6部分,阴影部分占2份,转盘停止转动时指针指向阴影部分的概率是=;故选B.【点评】本题考查了几何概率.用到的知识点为:概率=相应的面积与总面积之比.5.(3分)(2012•苏州)如图,已知BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,则∠BDC的度数是()A.20°B.25°C.30°D.40°【分析】由BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,利用在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BDC的度数.【解答】解:∵=,∠AOB=60°,∴∠BDC=∠AOB=30°.故选C.【点评】此题考查了圆周角定理.此题比较简单,注意数形结合思想的应用,注意在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.6.(3分)(2012•苏州)如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长()A.4 B.6 C.8 D.10【分析】首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.【解答】解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×2=8.故选C.【点评】此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE是菱形是解此题的关键.7.(3分)(2012•苏州)若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是()A.2 B.﹣2 C.1 D.﹣1【分析】将点(m,n)代入函数y=2x+1,得到m和n的关系式,再代入2m﹣n即可解答.【解答】解:将点(m,n)代入函数y=2x+1得,n=2m+1,整理得,2m﹣n=﹣1.故选:D.【点评】本题考查了一次函数图象上点的坐标特征,要明确,一次函数图象上的点的坐标符合函数解析式.8.(3分)(2012•苏州)若3×9m×27m=321,则m的值为()A.3 B.4 C.5 D.6【分析】先逆用幂的乘方的性质转化为以3为底数的幂相乘,再利用同底数幂的乘法的性质计算后根据指数相等列出方程求解即可.【解答】解:3•9m•27m=3•32m•33m=31+2m+3m=321,∴1+2m+3m=21,解得m=4.故选B.【点评】本题考查了幂的乘方的性质的逆用,同底数幂的乘法,转化为同底数幂的乘法,理清指数的变化是解题的关键.9.(3分)(2012•苏州)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°【分析】根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.【解答】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA﹣∠A′OB′=45°﹣15°=30°,故选:B.【点评】此题主要考查了旋转的性质,根据旋转的性质得出∠A′OA=45°,∠AOB=∠A′OB′=15°是解题关键.10.(3分)(2012•苏州)已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上.若正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,则点A3到x轴的距离是()A.B.C.D.【分析】利用正方形的性质以及平行线的性质分别得出D1E1=B2E2=,B2C2=,进而得出B3C3=,求出WQ=×=,FW=WA3•cos30°=×=,即可得出答案.【解答】解:过小正方形的一个顶点W作FQ⊥x轴于点Q,过点A3F⊥FQ于点F,∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,∴∠B3C3 E4=60°,∠D1C1E1=30°,∠E2B2C2=30°,∴D1E1=D1C1=,∴D1E1=B2E2=,∴cos30°==,解得:B2C2=,∴B3E4=,cos30°=,解得:B3C3=,则WC3=,根据题意得出:∠WC3 Q=30°,∠C3 WQ=60°,∠A3 WF=30°,∴WQ=×=,FW=WA3•cos30°=×=,则点A3到x轴的距离是:FW+WQ=+=,故选:D.【点评】此题主要考查了正方形的性质以及锐角三角函数的应用等知识,根据已知得出B3C3的长是解题关键.二、填空题(本题共8个小题,每小题3分,共24分)11.(3分)(2012•苏州)化简:=.【分析】根据最简二次根式的方法求解即可.【解答】解:==,故填.【点评】本题主要考查了二次根式的化简方法.12.(3分)(2012•苏州)若a=2,a+b=3,则a2+ab=6.【分析】利用提公因式法进行因式分解,然后把a=2,a+b=3代入即可.【解答】解:∵a=2,a+b=3,∴a2+ab=a(a+b)=2×3=6.故答案为:6.【点评】本题考查了因式分解的应用,利用提公因式法把a2+ab进行因式分解是解题的关键.13.(3分)(2012•苏州)已知太阳的半径约为696000000m,696000000这个数用科学记数法表示为 6.96×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:696000000=6.96×108,故答案为:6.96×108.【点评】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(3分)(2012•苏州)已知扇形的圆心角为45°,弧长等于,则该扇形的半径为2.【分析】根据弧长公式l=可以求得该扇形的半径的长度.【解答】解:根据弧长的公式l=,知r===2,即该扇形的半径为2.故答案是:2.【点评】本题考查了弧长的计算.解题时,主要是根据弧长公式列出关于半径r 的方程,通过解方程即可求得r的值.15.(3分)(2012•苏州)某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人,对其到校方式进行调查,并将调查的结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有216人.【分析】先求出50个人里面坐公交车的人数所占的比例,然后即可估算出全校坐公交车到校的学生.【解答】解:由题意得,50个人里面坐公交车的人数所占的比例为:=30%,故全校坐公交车到校的学生有:720×30%=216人.即全校坐公交车到校的学生有216人.故答案为:216.【点评】此题考查了用样本估计总体的知识,解答本题的关键是根据所求项占样本的比例,属于基础题,难度一般.16.(3分)(2012•苏州)已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x>x2>1,则y1>y2(填“>”、“<”或“=”).1【分析】先根据二次函数的解析式得出函数图象的对称轴,再判断出两点的位置及函数的增减性,进而可得出结论.【解答】解:∵a=1>0,∴二次函数的图象开口向上,由二次函数y=(x﹣1)2+1可知,其对称轴为x=1,∵x1>x2>1,∴两点均在对称轴的右侧,∵此函数图象开口向上,∴在对称轴的右侧y随x的增大而增大,∵x1>x2>1,∴y1>y2.故答案为:>.【点评】本题考查的是二次函数图象上点的坐标特点,根据题意判断出A、B两点的位置是解答此题的关键.17.(3分)(2012•苏州)如图,已知第一象限内的图象是反比例函数y=图象的一个分支,第二象限内的图象是反比例函数y=﹣图象的一个分支,在x轴的上方有一条平行于x轴的直线l与它们分别交于点A、B,过点A、B作x轴的垂线,垂足分别为C、D.若四边形ABCD的周长为8且AB<AC,则点A的坐标为(,3).【分析】设A点坐标为(a,),利用AB平行于x轴,点B的纵坐标为,而点B在反比例函数y=﹣图象上,易得B点坐标为(﹣2a,),则AB=a﹣(﹣2a)=3a,AC=,然后根据矩形的性质得到AB+AC=4,即3a+=4,则3a2﹣4a+1=0,用因式分解法解得a1=,a2=1,而AB <AC,则a=,即可写出A点坐标.【解答】解:点A在反比例函数y=图象上,设A点坐标为(a,),∵AB平行于x轴,∴点B的纵坐标为,而点B在反比例函数y=﹣图象上,∴B点的横坐标=﹣2×a=﹣2a,即B点坐标为(﹣2a,),∴AB=a﹣(﹣2a)=3a,AC=,∵四边形ABCD的周长为8,而四边形ABCD为矩形,∴AB+AC=4,即3a+=4,整理得,3a2﹣4a+1=0,(3a﹣1)(a﹣1)=0,∴a1=,a2=1,而AB<AC,∴a=,∴A点坐标为(,3).故答案为:(,3).【点评】本题考查了反比例函数综合题:点在反比例函数图象上,点的横纵坐标满足其解析式;利用矩形对边相等的性质建立方程以及用因式分解法解一元二次方程.18.(3分)(2012•苏州)如图①,在梯形ABCD中,AD∥BC,∠A=60°,动点P 从A点出发,以1cm/s的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S(单位:cm2)与点P移动的时间(单位:s)的函数如图②所示,则点P从开始移动到停止移动一共用了(4+2)秒(结果保留根号).【分析】根据图②判断出AB、BC的长度,过点B作BE⊥AD于点E,然后求出梯形ABCD的高BE,再根据t=2时△PAD的面积求出AD的长度,过点C作CF⊥AD于点F,然后求出DF的长度,利用勾股定理列式求出CD的长度,然后求出AB、BC、CD的和,再根据时间=路程÷速度计算即可得解.【解答】解:由图②可知,t在2到4秒时,△PAD的面积不发生变化,∴在AB上运动的时间是2秒,在BC上运动的时间是4﹣2=2秒,∵动点P的运动速度是1cm/s,∴AB=2cm,BC=2cm,过点B作BE⊥AD于点E,过点C作CF⊥AD于点F,则四边形BCFE是矩形,∴BE=CF,BC=EF=2cm,∵∠A=60°,∴BE=ABsin60°=2×=,AE=ABcos60°=2×=1,∴×AD×BE=3,即×AD×=3,解得AD=6cm,∴DF=AD﹣AE﹣EF=6﹣1﹣2=3,在Rt△CDF中,CD===2,所以,动点P运动的总路程为AB+BC+CD=2+2+2=4+2,∵动点P的运动速度是1cm/s,∴点P从开始移动到停止移动一共用了(4+2)÷1=4+2(秒).故答案为:(4+2).【点评】本题考查了动点问题的函数图象,根据图②的三角形的面积的变化情况判断出AB、BC的长度是解题的关键,根据梯形的问题中,经常作过梯形的上底边的两个顶点的高线作出辅助线也很关键.三、解答题(本大题共11小题,共76分)19.(5分)(2012•苏州)计算:(﹣1)0+|﹣2|﹣.【分析】分别计算零指数幂、绝对值及二次根式的化简,然后合并即可得出答案.【解答】解:原式=1+2﹣2=1.【点评】此题考查了实数的运算及零指数幂的知识,属于基础运算题,解答此题的关键是熟练掌握各部分的运算法则.20.(5分)(2012•苏州)解不等式组.【分析】首先分别解出两个不等式,再根据求不等式组的解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到,确定解集即可.【解答】解:,由不等式①得,x<2,由不等式②得,x≥﹣2,∴不等式组的解集为﹣2≤x<2.【点评】此题主要考查了解一元一次不等式组,关键是正确求出两个不等式的解集.21.(5分)(2012•苏州)先化简,再求值:,其中,a=+1.【分析】将原式第二项第一个因式的分子利用完全公式分解因式,分母利用平方差公式分解因式,约分后再利用同分母分式的加法法则计算,得到最简结果,然后将a的值代入化简后的式子中计算,即可得到原式的值.【解答】解:+•=+•=+=,当a=+1时,原式==.【点评】此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母出现多项式,应先将多项式分解因式后再约分,此外化简求值题要先将原式化为最简时再代值.22.(6分)(2012•苏州)解分式方程:.【分析】两边同乘分式方程的最简公分母,将分式方程转化为整式方程,再解答,然后检验.【解答】解:去分母得:3x+x+2=4,解得:x=,经检验,x=是原方程的解.【点评】本题考查了解分式方程,找到最简公分母将分式方程转化为整式方程是解题的关键.23.(6分)(2012•苏州)如图,在梯形ABCD中,已知AD∥BC,AB=CD,延长线段CB到E,使BE=AD,连接AE、AC.(1)求证:△ABE≌△CDA;(2)若∠DAC=40°,求∠EAC的度数.【分析】(1)先根据题意得出∠ABE=∠CDA,然后结合题意条件利用SAS可判断三角形的全等;(2)根据题意可分别求出∠AEC及∠ACE的度数,在△AEC中利用三角形的内角和定理即可得出答案.【解答】(1)证明:在梯形ABCD中,∵AD∥BC,AB=CD,∴∠ABE=∠BAD,∠BAD=∠CDA,∴∠ABE=∠CDA在△ABE和△CDA中,,∴△ABE≌△CDA(SAS).(2)解:由(1)得:∠AEB=∠CAD,AE=AC,∴∠AEB=∠ACE,∵∠DAC=40°,∴∠AEB=∠ACE=40°,∴∠EAC=180°﹣40°﹣40°=100°.【点评】此题考查了梯形、全等三角形的判定及性质,解答本题的关键是根据梯形及题意条件得出一些线段之间的关系,注意所学知识的融会贯通.24.(6分)(2012•苏州)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的,中、美两国人均淡水资源占有量之和为13800m3,问中、美两国人均淡水资源占有量各为多少(单位:m3)?【分析】设中国人均淡水资源占有量为xm3,美国人均淡水资源占有量为ym3,根据题意所述等量关系得出方程组,解出即可得出答案.【解答】解:设中国人均淡水资源占有量为xm3,美国人均淡水资源占有量为ym3.根据题意得:,解得:.答:中、美两国人均淡水资源占有量各为2300m3,11500m3.【点评】此题考查了二元一次方程组的应用,解答本题的关键是设出未知数,根据题意所述等量关系得出方程组,难度一般.25.(8分)(2012•苏州)在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是;(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率是(用树状图或列表法求解).【分析】(1)根据从A、D、E、F四个点中任意取一点,一共有4种可能,只有选取D点时,所画三角形是等腰三角形,即可得出答案;(2)利用树状图得出从A、D、E、F四个点中先后任意取两个不同的点,一共有12种可能,进而得出以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,即可求出概率.【解答】解:(1)根据从A、D、E、F四个点中任意取一点,一共有4种可能,只有选取D点时,所画三角形是等腰三角形,故P(所画三角形是等腰三角形)=;(2)用“树状图”或利用表格列出所有可能的结果:∵以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,∴所画的四边形是平行四边形的概率P==.故答案为:(1),(2).【点评】此题主要考查了利用树状图求概率,根据已知正确列举出所有结果,进而得出概率是解题关键.26.(8分)(2012•苏州)如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(请将下面2小题的结果都精确到0.1米,参考数据:≈1.732).(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为米;(2)一座建筑物GH距离坡角A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?【分析】(1)根据题意得出,∠BEF最大为45°,当∠BEF=45°时,EF最短,此时ED最长,进而得出EF的长,即可得出答案;(2)利用在Rt△DPA中,DP=AD,以及PA=AD•cos30°进而得出DM的长,利用HM=DM•tan30°得出即可.【解答】解:(1)∵修建的斜坡BE的坡角(即∠BEF)不大于45°,∴∠BEF最大为45°,当∠BEF=45°时,EF最短,此时ED最长,∵∠DAC=∠BDF=30°,AD=BD=30,∴BF=EF=BD=15,DF=15,故:DE=DF﹣EF=15(﹣1)=11.0(米);若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为11.0m;(2)过点D作DP⊥AC,垂足为P.在Rt△DPA中,DP=AD=×30=15,PA=AD•cos30°=×30=15.在矩形DPGM中,MG=DP=15,DM=PG=15+27,在Rt△DMH中,HM=DM•tan30°=×(15+27)=15+9.GH=HM+MG=15+15+9≈45.6.答:建筑物GH高约为45.6米.【点评】此题主要考查了解直角三角形中坡角问题,根据图象构建直角三角形,进而利用锐角三角函数得出是解题关键.27.(8分)(2012•苏州)如图,已知半径为2的⊙O与直线l相切于点A,点P 是直径AB左侧半圆上的动点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC的长为x(2<x<4).(1)当x=时,求弦PA、PB的长度;(2)当x为何值时,PD•CD的值最大?最大值是多少?【分析】(1)由直线l与圆相切于点A,且AB为圆的直径,根据切线的性质得到AB垂直于直线l,又PC垂直于直线l,根据垂直于同一条直线的两直线平行,得到AB与PC平行,根据两直线平行内错角相等得到一对内错角相等,再由一对直角相等,利用两对对应角相等的两三角形相似可得出△PCA与△PAB相似,由相似得比例,将PC及直径AB的长代入求出PA的长,在直角三角形PAB中,由AB及PA的长,利用勾股定理即可求出PB的长;(2)过O作OE垂直于PD,与PD交于点E,由垂径定理得到E为PD的中点,再由三个角为直角的四边形为矩形得到OACE为矩形,根据矩形的对边相等,可得出EC=OA=2,用PC﹣EC的长表示出PE,根据PD=2PE表示出PD,再由PC﹣PD表示出CD,代入所求的式子中,整理后得到关于x的二次函数,配方后根据自变量x的范围,利用二次函数的性质即可求出所求式子的最大值及此时x的取值.【解答】解:(1)∵⊙O与直线l相切于点A,且AB为⊙O的直径,∴AB⊥l,又∵PC⊥l,∴AB∥PC,∴∠CPA=∠PAB,∵AB是⊙O的直径,∴∠APB=90°,又PC⊥l,∴∠PCA=∠APB=90°,∴△PCA∽△APB,∴=,即PA2=PC•AB,∵PC=,AB=4,∴PA==,∴Rt△APB中,AB=4,PA=,由勾股定理得:PB==;(2)过O作OE⊥PD,垂足为E,∵PD是⊙O的弦,OE⊥PD,∴PE=ED,又∵∠CEO=∠ECA=∠OAC=90°,∴四边形OACE为矩形,∴CE=OA=2,又PC=x,∴PE=ED=PC﹣CE=x﹣2,∴PD=2(x﹣2),∴CD=PC﹣PD=x﹣2(x﹣2)=x﹣2x+4=4﹣x,∴PD•CD=2(x﹣2)•(4﹣x)=﹣2x2+12x﹣16=﹣2(x﹣3)2+2,∵2<x<4,∴当x=3时,PD•CD的值最大,最大值是2.【点评】此题考查了切线的性质,平行线的性质,矩形的判定与性质,垂径定理,勾股定理,相似三角形的判定与性质,以及二次函数的性质,熟练掌握性质及定理是解本题的关键.28.(9分)(2012•苏州)如图,正方形ABCD的边AD与矩形EFGH的边FG重合,将正方形ABCD以1cm/s的速度沿FG方向移动,移动开始前点A与点F重合,在移动过程中,边AD始终与边FG重合,连接CG,过点A作CG的平行线交线段GH于点P,连接PD.已知正方形ABCD的边长为1cm,矩形EFGH的边FG,GH的长分别为4cm,3cm,设正方形移动时间为x(s),线段GP的长为y(cm),其中0≤x≤2.5.(1)试求出y关于x的函数关系式,并求当y=3时相应x的值;(2)记△DGP的面积为S1,△CDG的面积为S2.试说明S1﹣S2是常数;(3)当线段PD所在直线与正方形ABCD的对角线AC垂直时,求线段PD的长.【分析】(1)根据题意表示出AG、GD的长度,再由△GCD∽△APG,利用对应边成比例可解出x的值.(2)利用(1)得出的y与x的关系式表示出S1、S2,然后作差即可.(3)延长PD交AC于点Q,然后判断△DGP是等腰直角三角形,从而结合x的范围得出x的值,在Rt△DGP中,解直角三角形可得出PD的长度.【解答】解:(1)∵CG∥AP,∴∠CGD=∠GAP,又∵∠CDG=∠AGP,∴△GCD∽△APG,∴=,∵GF=4,CD=DA=1,AF=x,∴GD=3﹣x,AG=4﹣x,∴=,即y=,∴y关于x的函数关系式为y=,当y=3时,=3,解得x=2.5,经检验的x=2.5是分式方程的根.故x的值为2.5;(2)∵S1=GP•GD=••(3﹣x)=(cm2),S2=GD•CD=(3﹣x)×1=(cm2),∴S1﹣S2=﹣=(cm2),即为常数;(3)延长PD交AC于点Q.∵正方形ABCD中,AC为对角线,∴∠CAD=45°,∵PQ⊥AC,∴∠ADQ=45°,∴∠GDP=∠ADQ=45°.∴△DGP是等腰直角三角形,则GD=GP,∴3﹣x=,化简得:x2﹣5x+5=0.解得:x=,∵0≤x≤2.5,∴x=,在Rt△DGP中,PD==(3﹣x)=(cm).【点评】此题考查了正方形的性质、等腰三角形的性质及解直角三角形的知识,解答本题的关键是用移动的时间表示出有关线段的长度,然后运用所学知识进行求解.29.(10分)(2012•苏州)如图,已知抛物线y=x2﹣(b+1)x+(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.(1)点B的坐标为(b,0),点C的坐标为(0,)(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO,△QOA和△QAB 中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.。

2012年苏州中考数学考试说明

2012年苏州中考数学考试说明

2012年苏州中考数学考试说明一、评价的指导思想全面贯彻党的教育方针,坚持公正、全面、科学的原则,充分发挥考试和评价在促进学生发展方面的作用,积极推进素质教育.依据《全日制义务教育数学课程标准(实验稿)》(以下简称<标准》),努力克服过分注重知识掌握的偏向,促进学生形成终身学习所必需的数学基础知识、基本技能、基本思想方法和综合运用能力,关注学生学习和成长的整个过程,关注学生情感、态度和价值观的和谐发展,鼓励学生的创新和实践,引导学生的个性成长.结合我市初中数学课程改革实际,正确地反映和评价我市初中数学教学水平,全面促进初中数学教学质量的提高,便于高一级学校选拔人才,二、评价的基本原则1.导向性原则评价要有利于引导和促进数学教学全面落实《标准》所设立的课程目标,有利于改善学生的数学学习方式、提高学生数学学习的效率.2.科学性原则评价以《标准》为依据,遵循科学、公平、准确、规范的评价原则.3.全面性原则重视对学生学习数学知识与技能的结果和过程的评价,醺视对学生在数学思考能力和解决问题能力等方面发展状况的评价.4.适应性原则体现义务教育性质.面向全体学生,关注每一个学生的发展,以学生的年龄特征、思维特点、数学背景和生活烃验为根据,使具有不同的数学认知特点、不同的数学发展程度的学生都能表现自己的数学学习状况,力求公正、客观、全面、准确地评价学生通过义务教育阶段的数学学习所获得的相应发展.三、评价的基本要求1.考查内容要依据《标准》,体现基础性、全面性和发展性突出对学生基本数学素养的评价.关注《标准》中最基础、最核心的内容,即所有学生在学习数学和应用数学解决问题过程中最为重要的、必须掌握的核心观念、思想方法、基本知识和常用的技能.内容涵盖<标准》涉及的所有知识领域;所涉及的知识与技能以《标准》为依据.主要的考查方面包括:基础知识与基本技能;数学活动过程;数学思考;解决问题能力等.(1)基础知识与基本技能(见附表)根据《标准》中第三学段的具体目标,在“数与代数…‘空间与图形”“统计与概率”“课题学习”四个学习领域中,前三个领域将考试要求由低到高分为四个层次,依次是了解、理解、掌握、灵活运用,表中分别用字母A、B、C、D表示,这里高一级的层次要求包含低一级层次的要求.其具体含义是:了解:能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象.理解:能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系,掌握:能在理解的基础上,把对象运用到新的情境中.灵活运用:能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务.(2)数学活动过程包括数学活动过程中所表现出来的思维方式、思维水平,对活动对象、相关知识与方法的理解深度;从事探究、证明等活动的意识、能力和信心等,能否通过观察、实验、归纳、类比等活动获得数学猜想,并寻求证明猜想的合理性;能否使用恰当的数学语言有条理地表达自己的数学思考过程.(3)数学思考包括学生在数感与符号感、空间观念、统计意识、推理能力、应用数学解决问题的意识和方法等方面的发展情况,其内容主要包括:能够用数来表达和交流信息;能够使用符号表达数量关系,并借助符号转换活动获得对事物的理解;能够观寨到现实生活中的基本几何现象;能够运用图形形象地表达问题、借助直观图形进行思考与推理;能意识到做一个合理的决策需要借助统计活动去收集信息;面对数据时能对它的来源、处理方法和由此而得到的推测性结论做合理的质疑;能够正确地认识生活中的一些不确定现象.(4)解决问题能力包括能从数学的角度提出问题、理解问题,并综合运用数学知识解决问题;具有一定的解决问题的基本策略;能合乎逻辑地与他人交流;具有初步的反思意识等等.2.试题素材、求解方式等要体现公平性不同的学生在数学认知风格、数学思维特征、数学表示的偏好等方面存在着差异,这些差异通常不能够简单地视为“好与差”“强与弱”,因此,内容、素材和试卷形式在总体上对每一位学生而言力求公平.3.试题背景要符合学生的现实数学中的问题解决是基于解题者对问题的理解基础之上而进行的.评价中问题的背景力求来自于学生所能理解的生活现实或其他学科现实——与生活或社会相关的题材应当具有鲜明的时代特征.四、试卷结构1.题量㈠总题量为28题左右,每题中的小题量也有控制,小题的总题量不超过40小题.全卷满分130分,考试时间为120分钟.2.题型:试题分选择题、填空题、解答题,客规题的分值占总分的比约为40%.3.内容分布:数与代数、空间与图形、统计与概率三部分所占分值的比约为45%,40%,15%,课题学习融入这三部分之中,这样与实际课时数基本相当.4.难度:试卷的全卷难度控制在0.7左右,试卷中容易题(难度在0.7以上),中等难度题(难度在0.4~0.7),较难题(难度在0.4以下),的比例控制在7:2:1 附表基础知识与基本技能的考试要求(一)数与代数(三)统计与概率(四)课题学习让学生探讨一些具有一定挑战性的研究课题,进一步加深对相关数学知识的理解,体验数学知识之间的内在联系,经历“问题情境—建立模型—求解—解释与应用”的基本过程,初步形成对数学的整体性的认识,考查一些基本的研究问题的方法,应用数学知识解决简单实际问题的意识和能力、思维能力以及对相关的数学知识的理解程度。

2012年初中毕业与升学统一考试数学试卷(江苏苏州市)(详细解析)

2012年初中毕业与升学统一考试数学试卷(江苏苏州市)(详细解析)

2012年初中毕业与升学统一考试数学试卷(江苏苏州市)详细解析一、选择题(本题共10个小题,每小题3分,共30分)1.2的相反数是()A.﹣2 B.2C.D.﹣考点:相反数。

专题:常规题型。

分析:根据相反数的定义即可求解.解答:解:2的相反数等于﹣2.故选A.点评:本题考查了相反数的知识,属于基础题,注意熟练掌握相反数的概念是关键.2.若式子在实数范围内有意义,则x的取值范围是()A.x<2 B.x≤2 C.x>2 D.x≥2考点:二次根式有意义的条件。

分析:根据二次根式中的被开方数必须是非负数,即可求解.解答:解:根据题意得:x﹣2≥0,解得:x≥2.故选D.点评:本题考查的知识点为:二次根式的被开方数是非负数.3.一组数据2,4,5,5,6的众数是()A.2B.4C.5D.6考点:众数。

分析:根据众数的定义解答即可.解答:解:在2,4,5,5,6中,5出现了两次,次数最多,故众数为5.故选C.点评:此题考查了众数的概念﹣﹣﹣﹣一组数据中,出现次数最多的数位众数,众数可以有多个.4.如图,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是()A.B.C.D.考点:几何概率。

分析:确定阴影部分的面积在整个转盘中占的比例,根据这个比例即可求出转盘停止转动时指针指向阴影部分的概率.解答:解:如图:转动转盘被均匀分成6部分,阴影部分占2份,转盘停止转动时指针指向阴影部分的概率是=;故选B.点评:本题考查了几何概率.用到的知识点为:概率=相应的面积与总面积之比.5.如图,已知BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,则∠BDC的度数是()A.20°B.25°C.30°D.40°考点:圆周角定理;圆心角、弧、弦的关系。

分析:由BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,利用在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BDC的度数.解答:解:∵=,∠AOB=60°,∴∠BDC=∠AOB=30°.故选C.点评:此题考查了圆周角定理.此题比较简单,注意数形结合思想的应用,注意在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.6.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长()A.4B.6C.8D.10考点:菱形的判定与性质;矩形的性质。

2012年苏州中考数学试卷答案

2012年苏州中考数学试卷答案
D
B.
C.
D.
E D
C B
O A
C O
A
(第 6 题)
B
(第,5,3 分)如图,已知 BD 是⊙O 直径,点 A、C 在⊙O 上,AB °,则∠BDC 的度数是 A.20° B.25° 【答案】C C.30° D. 40°
⌒ =BC ,∠AOB=60
6.(2012 江苏苏州,6,3 分)如图,矩形 ABCD 的对角线 AC、BD 相交于点 O,CE∥BD,DE∥AC.若 AC=4,则四边形 CODE 的周长是 A.4 B.6 C.8 D. 10
1
PS:双击获取文档,ctrl+A,ctrl+C,然后粘贴到word即可。 未能直接提供word版本,抱歉。
2012 年苏州市初中毕业暨升学考试试卷
数学
一、选择题:本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只有一项是符 合题目要求的,请将选择题的答案用 2B 铅笔涂在答题卡相对应的位置上. .......... 1.(2012 江苏苏州,1,3 分)2 的相反数是( A. -2 【答案】A B. 2 C. ) D.
2.(2011 江苏苏州,2,3 分)若式子 A. 【答案】D B.
在实数范围内有意义,则 取值范围是 C. D.
3.(2012 江苏苏州,3,3 分)一组数据 2,4,5,5,6 的众数是 A. 2 B. 4 C. 5 【答案】C
D. 6
4.(2012 江苏苏州,4,3 分)如图,一个正六边形转盘被分成 6 个全等三角形,任意转动这个转盘 1 次,当转盘停止时,指针指向阴影区域的概率是 A. 【答案】B

2012年苏州市中考数学试卷及答案

2012年苏州市中考数学试卷及答案

化学试卷第1页(共8页)2012年苏州市初中毕业暨升学考试试卷数 学注意事项:本试卷由选择题、填空题和解答题三大题组成,共29小题,满分130分,考试时间120分钟. 注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相对应的位置上,并认真核对条形码上的准考号、姓名是否与本人的相符合;2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是 符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相对应的位置上. 1.2的相反数是A .-2B .2C .-12D .122.若式子2x -在实数范围内有意义,则x 的取值范围是A .x<2B .x ≤2C .x>2D .x ≥2 3.一组数据2,4,5,5,6的众数是A .2B .4C .5D .64.如图,一个正六边形转盘被分成6个全等的正三角形,任意转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是 A .12B .13C .14D .16(第4题) (第5题) (第6题)5.如图,已知BD 是⊙O 直径,点A 、C 在⊙O 上, AB BC =,∠AOB=60°,则∠BDC 的度数是 A .20° B .25°C .30°D .40°6.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC = 4,则四边形CODE的周长是 A .4 B .6 C .8 D .10 7.若点(m ,n)在函数y =2x +1的图象上,则2m -n 的值是A .2B .-2C .1D .-18.若3927m m ⨯⨯=321,则m 的值是 A . 3 B .4 C .5 D .69.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A’OB’,若∠AOB=15°,则∠AOB’的度数是A.25°B.30°C.35°D.40°(第9题)10.已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上.若正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,则点A3到x轴的距离是A .3318+B.3118+C.336+D.316+化学试卷第2页(共8页)二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相对应的位置上. 11.计算:23= ▲ .12.若a =2,a +b =3,则 a 2+ab = ▲ .13.已知太阳的半径约为696 000 000m ,696 000 000这个数用科学记数法可表示为 ▲ .14.已知扇形的圆心角为45°,弧长等于2π,则该扇形的半径是 ▲ .15.某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人对其到校方式进行调查,并将调查结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有 ▲ 人.(第15题)16.已知点A(x 1,y 1 )、B (x 2,y 2 )在二次函数()211y x =-+的图象上,若x 1>x 2>1,则 y 1▲ y 2(填“>”、“ = ”或 “<”).17.如图,已知第一象限内的图象是反比例函数1y x=图象的一个分支,第二象限内的图象是反比例函数2y x=-图象的一个分支,在x 轴上方有一条平行于x 轴的直线l 与它们分别交于点A 、B ,过点A 、B作x 轴的垂线,垂足分别为C 、D .若四边形ACDB 的周长为8且 AB<AC ,则点A 的坐标是 ▲ .(第17题)18.如图①,在梯形ABCD 中,AD ∥BC ,∠A =60°,动点P 从A 点出发,以1cm/s 的速度沿着A →B →C →D 的方向不停移动,直到点P 到达点D 后才停止.已知△PAD 的面积S (单位:cm 2)与点P 移动的时间t(单位:s)的函数关系如图②所示,则点P 从开始移动到停止移动一共用了 ▲ 秒(结果保留根号).三、解答题:本大题共11小题,共76分.把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔. 19.(本题满分5分)计算:()3124-+--20.(本题满分5分)解不等式组:()3228131x x x x -<+⎧⎪⎨-≥--⎪⎩21.(本题满分5分)先化简,再求值:2224411a a a a -++--·12a a +-,其中21a =+.22.(本题满分6分)解分式方程:231422x x x x+=++.23.(本题满分6分)如图,在梯形ABCD 中,已知AD ∥BC ,AB =CD ,延长线段CB 到E ,使BE =AD ,连接AE 、AC .(1)求证:△ABE ≌CDA ;(2)若∠DAC =40°,求∠EAC 的度数.(第23题)24.(本题满分6分)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为13800m3,问中、美两国人均淡水资源占有量各为多少(单位:m3)?25.(本题满分8分)在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.(1)从A、D、E、F四点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是▲;(2)从A、D、E、F四点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率(用树状图或列表法求解).(第25题)26.(本题满分8分)如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC.现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(请将下面2小题的结果都精确到0.1米,参考数据:3≈1. 732).(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为▲米;(2)—座建筑物GH距离坡脚A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面上,点C、A、G在同一条直线上,且HG丄CG,问建筑物GH高为多少米?(第26题)27.(本题满分8分)如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC的长为x(2<x<4).⑴当x=52时,求弦PA、PB的长度;(2)当x为何值时PD·CD的值最大?最大值是多少?(第27题)化学试卷第6页(共8页)数学试卷第7页(共8页)28.(本题满分9分)如图,正方形ABCD 的边AD 与矩形EFGH 的边FG 重合,将正方形ABCD 以lcm/s的速度沿FG 方向移动,移动开始前点A 与点F 重合.在移动过程中,边 AD 始终与边FG 重合,连接CG ,过点A 作CG 的平行线交线段GH 于点P ,连接PD .已知正方形ABCD 的边长为lcm ,矩形EFGH 的边FG 、GH 的长分别为4cm 、3cm .设正方形移动时间为x(s),线段GP 的长为y (cm),其中0≤x ≤2. 5.(1)试求出y 关于x 的函数关系式,并求当y =3时相应x 的值;(2)记△DGP 的面积为S 1,ACDG 的面积为S 2,试说明S 1-S 2是常数;(3)当线段PD 所在直线与正方形ABCD 的对角线AC 垂直时,求线段PD 的长.(第28题)29.(本题满分10分)如图,已知抛物线()2111444by x b x =-++(b 是实数且b>2)与x 轴的正半轴分别交于点A 、B(点A 位于点B 的左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为 ▲ ,点C 的坐标为 ▲ (用含b 的代数式表示);(2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是 以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)如果存在,求出点Q 的坐标;如果不存在,请说明理由.(第29题)数学试卷第8页(共8页)数学试卷第9页(共8页)数学试卷第10页(共8页)数学试卷第11页(共8页)。

2012年江苏省苏州市中考数学-答案

2012年江苏省苏州市中考数学-答案

或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得 BDC 的度数。 【考点】圆周角定理,圆心角、弧、弦的关系
6.【答案】C 【解析】 CE∥BD ,DE∥AC ,四边形 CODE 是平行四边形, 四边形 ABCD 是矩形, AC BD 4 ,
OA OC , OB OD , OD OC 1 AC 2 , 四 边 形 是 菱 形 , 四 边 形 C O D E的 周 长 为 2
【考点】二次根式有意义的条件
3.【答案】C
【解析】在 2,4,5,5,6 中,5 出现了两次,次数最多,故众数为 5.故选 C.
【提示】根据众数的定义解答即可。
【考点】众数
4.【答案】B 【解析】转动转盘被均匀分成 6 部分,阴影部分占 2 份,转盘停止转动时指针指向阴影部分的概率是 2 1 .
江苏省苏州市 2012 年中考数学试卷
数学答案解析
一、选择题
1.【答案】A
【解析】 2 的相反数等于 2 .故选 A.
【提示】根据相反数的定义即可求解。
【考点】相反数
2.【答案】D
【解析】根据题意得: x 2 0 ,解得: x 2 .故选 D.
【提示】根据二次根式中的被开方数必须是非负数,即可求解。
BE CF , BC EF 2cm ,
A 60 ,
BE ABsin 60 2 3 3 , AE AB cos60 2 1 1 ,
2
2
,即 1 AD 3 3 3 ,解得 AD 6cm , 2
DF AD AE EF 6 1 2 3 ,
1 / 12
4OC 4 2 8 .故选 C. 【提示】首先由 CE∥BD , DE∥AC ,可证得四边形 CODE 是平行四边形,又由四边形 ABCD 是矩形, 根据矩形的性质,易得 OC OD 2 ,即可判定四边形 CODE 是菱形,继而求得答案。

2012年江苏省苏州市初中毕业暨升学考试数学试卷

2012年江苏省苏州市初中毕业暨升学考试数学试卷

2012年苏州市初中毕业暨升学考试试卷数学注意事项:本试卷由选择题、填空题和解答题三大题组成,共29小题,满分130分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相对应的位置上,并认真核对条形码上的准考号、姓名是否与本人的相符合;2.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相对应的位置上.1.2的相反数是A.-2 B.2 C.-12D.122x的取值范围是A.x<2 B.x≤2 C.x>2 D.x≥23.一组数据2,4,5,5,6的众数是A.2 B.4 C.5 D.64.如图,一个正六边形转盘被分成6个全等的正三角形,任意转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是A.12B.13C.14D.16(第4题) (第5题) (第6题)5.如图,已知BD 是⊙O 直径,点A 、C 在⊙O 上,AB BC =,∠AOB=60°,则∠BDC 的度数是A .20°B .25°C .30°D .40°6.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC = 4,则四边形CODE 的周长是A .4B .6C .8D .107.若点(m ,n)在函数y =2x +1的图象上,则2m -n 的值是A .2B .-2C .1D .-1 8.若3927m m ⨯⨯=321,则m 的值是A . 3B .4C .5D .6(第9题)10.已知在平面直角坐标系中放置了 5个如图所示的正方形(用阴影表示),点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3在x 轴上.若正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3,则点A 3到x 轴的距离是A B .C . D .二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相对应的位置上.11.计算:23= ▲ .12.若a =2,a +b =3,则 a 2+ab = ▲ .13.已知太阳的半径约为696 000 000m ,696 000 000这个数用科学记数法可表示为▲ .14.已知扇形的圆心角为45°,弧长等于2π,则该扇形的半径是 ▲ . 15.某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人对其到校方式 进行调查,并将调查结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校 的学生有 ▲ 人.(第15题)16.巳知点A(x 1,y 1 )、B (x 2,y 2 )在二次函数()211y x =-+的图象上,若x 1>x 2>1,则 y 1▲ y 2(填“>”、“ = ”或 “<”).17.如图,已知第一象限内的图象是反比例函数1y x=图象的一个分支,第二象限内的图象是反比例函数2y x=-图象的一个分支,在x 轴上方有一条平行于x 轴的直线l 与它们分别交于点A 、B ,过点A 、B 作x 轴的垂线,垂足分别为C 、D .若四边形ACDB 的周长为8且 AB<AC ,则点A 的坐标是 ▲ .(第17题18.如图①,在梯形ABCD 中,AD ∥BC ,∠A =60°,动点P 从A 点出发,以1cm/s 的速度沿着A→B →C →D 的方向不停移动,直到点P 到达点D 后才停止.已知△PAD 的面积S (单位:cm 2)与点P 移动的时间t(单位:s)的函数关系如图②所示,则点P 从开始移动到停 止移动一共用了 ▲ 秒(结果保留根号).三、解答题:本大题共11小题,共76分.把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.(本题满分5分)计算:)012+-20.(本题满分5分) 解不等式组:()3228131x x x x -<+⎧⎪⎨-≥--⎪⎩21.(本题满分5分)先化简,再求值:2224411a a a a -++--·12a a +-,其中1a =.22.(本题满分6分) 解分式方程:231422x x x x+=++.23.(本题满分6分)如图,在梯形ABCD 中,已知AD ∥BC ,AB =CD ,延长线段CB 到E ,使BE =AD ,连接AE 、AC .(1)求证:△ABE≌CDA;(2)若∠DAC=40°,求∠EAC的度数.(第23题)24.(本题满分6分)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为 13800m3,问中、美两国人均淡水资源占有量各为多少(单位:m3)?25.(本题满分8分)在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.(1)从A、D、E、F四点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是▲;(2)从A、D、E、F四点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率(用树状图或列表法求解).(第25题26.(本题满分8分)如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC.现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(请将下面2小题的结果都精确到0.1 1. 732).(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为▲ 米;(2)—座建筑物GH距离坡脚A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HD M)为30°.点B、C、A、G、H在同一个平面上,点C、A、G在同一条直线上,且HG丄CG,问建筑物GH 高为多少米?(第26题)27.(本题满分8分)如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC的长为x(2<x<4).⑴当x52时,求弦PA、PB的长度;(2)当x为何值时PD·CD的值最大?最大值是多少?(第27题)28.(本题满分9分)如图,正方形ABCD 的边AD 与矩形EFGH 的边FG 重合,将正方形ABCD 以lcm/s 的速度沿FG 方向移动,移动开始前点A 与点F 重合.在移动过程中,边 AD 始终与边FG 重合,连接CG ,过点A 作CG 的平行线交线段GH 于点P ,连接PD .已 知正方形ABCD 的边长为lcm ,矩形EFGH 的边FG 、GH 的长分别为4cm 、3cm .设正方形移动时间为x(s),线段GP 的长为y (cm),其中0<x<2. 5.(1)试求出y 关于x 的函数关系式,并求当y =3时相应x 的值;(2)记△DGP 的面积为S 1,ACDG 的面积为S 2,试说明S 1-S 2是常数;(3)当线段PD 所在直线与正方形ABCD 的对角线AC 垂直时,求线段PD 的长.(第28题)29.(本题满分10分)如图,已知抛物线()2111444b y x b x =-++(b 是实数且b>2)与x 轴的正半轴分别交于点A 、B(点A 位于点B 的左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为 ▲ ,点C 的坐标为 ▲ (用含b 的代数式表示);(2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是 以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说 明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)如果存在,求出点Q的坐标;如果不存在,请说明理由.(第29题)。

江苏省苏州市2012-中考数学试题分类解析汇编专题1:代数问题

江苏省苏州市2012-中考数学试题分类解析汇编专题1:代数问题

苏州市2012-2014年中考数学试题分类解析汇编专题1:代数问题一、选择题1.(3分)(2014•苏州)(﹣3)×3的结果是()A.﹣9 B.0C.9D.﹣6考点:有理数的乘法.分析:根据两数相乘,异号得负,可得答案.解答:解:原式=﹣3×3=﹣9,故选:A.点评:本题考查了有理数的乘法,先确定积的符号,再进行绝对值得运算.2.(3分)(2014•苏州)若式子在实数范围内有意义,则x的取值范围是()A.x≤﹣4 B.x≥﹣4 C.x≤4 D.x≥4考点:二次根式有意义的条件.分析:二次根式有意义,被开方数是非负数.解答:解:依题意知,x﹣4≥0,解得x≥4.故选:D.点评:考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3.(3分)(2014•苏州)下列关于x的方程有实数根的是()A.x2﹣x+1=0 B.x2+x+1=0 C.(x﹣1)(x+2)=0 D.(x﹣1)2+1=0考点:根的判别式.专题:计算题.分析:分别计算A、B中的判别式的值;根据判别式的意义进行判断;利用因式分解法对C 进行判断;根据非负数的性质对D进行判断.解答:解:A、△=(﹣1)2﹣4×1×1=﹣3<0,方程没有实数根,所以A选项错误;B、△=12﹣4×1×1=﹣3<0,方程没有实数根,所以B选项错误;C、x﹣1=0或x+2=0,则x1=1,x2=﹣2,所以C选项正确;D、(x﹣1)2=﹣1,方程左边为非负数,方程右边为0,所以方程没有实数根,所以D选项错误.故选C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.(3分)(2013•苏州)|﹣2|等于()A.2B.﹣2 C.D.考点:绝对值.分析:根据绝对值的性质可直接求出答案.解答:解:根据绝对值的性质可知:|﹣2|=2.故选A.点评:此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.5.(3分)(2013•苏州)计算﹣2x2+3x2的结果为()A.﹣5x2B.5x2C.﹣x2D.x2考点:合并同类项.分析:根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变即可求解.解答:解:原式=(﹣2+3)x2=x2,故选D.点评:本题主要考查合并同类项得法则.即系数相加作为系数,字母和字母的指数不变.6.(3分)(2013•苏州)若式子在实数范围内有意义,则x的取值范围是()A.x>1 B.x<1 C.x≥1 D.x≤1考点:二次根式有意义的条件.分析:根据二次根式有意义的条件可得x﹣1≥0,再解不等式即可.解答:解:由题意得:x﹣1≥0,解得:x≥1,故选:C.点评:此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.7.(3分)(2013•苏州)世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为()A.5B.6C.7D.8考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将6700000用科学记数法表示为6.7×106,故n=6.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)(2013•苏州)已知x﹣=3,则4﹣x2+x的值为()A.1B.C.D.考点:代数式求值;分式的混合运算.专题:计算题.分析:所求式子后两项提取公因式变形后,将已知等式去分母变形后代入计算即可求出值.解答:解:∵x﹣=3,即x2﹣3x=1,∴原式=4﹣(x2﹣3x)=4﹣=.故选D.点评:此题考查了代数式求值,将已知与所求式子进行适当的变形是解本题的关键.9.(3分)(2012•苏州)2的相反数是()A.﹣2 B.2C.﹣D.考点:相反数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏州市中考数学试卷结构及考试题型分析苏州市中考数学分为三种题型,选择题,填空题,解答题。

选择与填空共计18题,分值54分。

主要考查基础知识,在选择或填空的最后一题可能会有点难度。

解答题为11题,共计76分。

分为基础题、中档题、较难题(特难题)三种。

选择填空题:复习重点及策略在中考选择、填空题中,都有三至四道题目有一定的难度,这部分的题型多样,每个题目涉及的知识点较多,都带有一定的综合性,解决的策略:(1)掌握解决填空、选择题的基本方法.(2)善于分解问题、分析问题、转化问题,综合运用数学思想、方法解决问题,解题规律:要想迅速、正确地解选择题、填空题,除了具有准确计算能力、严密的推理能力外,还要有解选择题、填空题的方法与技巧.常用方法有以下几种:(1)直接推演法:直接从命题给出的条件出发,运用概念,公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法.(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代人条件中去验证,找出正确答案.此法称为验证法(也称代入法).当遇到定量命题时,常用此法.(3)特值法:用合适的特殊元素(如数或图形)代人题设条件或结论中去,从而获得解答.这种方法叫特殊元素法.(4)排除、筛选法;对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法.(5)图解法:借助于符合题设条件的图形或图像的性质、特点来判断,作出正确的选择称为图解法.图解法是解选择题常用方法之一.(6)分析法:直接通过对选择题的条件和结论,作详尽地分析、归纳和判断,从而选出正确的结果,称为分析法.(7)整体代入法:把某一代数式进行化简,然后并不求出某个字母的取值,而是直接把化简的结果作为一个整体代入。

(详见复习资料)1.(2011,呼和浩特)如图所示,在梯形ABCD中,AD∥BC,CE是∠BCD的平分线,且CE⊥AB,E为垂足,BE=2AE,若四边形AECD的面积为1,则梯形ABCD的面积为_______.第1题第2题第3题2.(2011,宁波)如图,在△ABC中,AB=AC,D,E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,则BC=_______cm.3.(2011,安徽芜湖)如图,在平面直角坐标系中有一正方形AOBC ,反比例函数y =k x经过正方形AOBC 对角线的交点,半径为(4-的圆内切于△ABC ,则k 的值为____. 4.(2011,南京)设函数y =2x与y =x -1的图象的交点坐标为(a ,b ),则11ab-的值为_______.5. (2011,宁波)如图,正方形A 1B 2P 1P 2的顶点P 1,P 2在反比例函数y =2x(x >0)的图象上,顶点A 1,B 1分别在x 轴、y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数y =2x (x >0)的图象上,顶点A 2在x 轴的正半轴上,则点P 3的坐标为_______.第5题 第7题 第8题6. (2011,重庆)有四张正面分别标有数字-3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使关于x 的分式方程11222ax x x-+=--有正整数解的概率为_______.7.(2010,呼和浩特)如图,AB 是⊙O 1的直径,AO 1是⊙O 2的直径,弦MN ∥AB ,且MN与⊙O 2相切于C 点,若⊙O 1的半径为2,则O 1B , BN ,NC 与 1C O 所围成的阴影部分的面积是_______.8.(2010,天津)如图,等边三角形ABC 中,D ,E 分别为AB ,BC 边上的点,AD =BE ,AE 与CD 交于点F ,AG ⊥CD 于点G ,则A G A F的值为_______.9.(2010,南京)如下左图,点C 在⊙O 上,将圆心角∠AOB 绕点O 按逆时针方向旋转到∠A'OB',旋转角为a (0°<a <180°).若∠AOB =30°,∠BCA'=40°,则∠a =_______°.10. (2010,武汉)如上右图,直线y 3+b 与y 轴交于点A ,与双曲线y =k x在第一象限交于B ,C 两点,且AB ·AC =4,则k =_______. 11.(2010,上海)已知正方形ABCD 中,点E 在边DC 上,DE =2,EC =1(如下左图所示).把线段AE 绕点A 旋转,使点E 落在直线BC 上的点F 处,则F ,C 两点的距离为_______.12.(2010,长春)如上右图,抛物线y =ax 2+c(a <0)交x 轴于点G ,F ,交y 轴于点D ,在x 轴上方的抛物线上有两点B ,E ,它们关于y 轴对称,点G ,B 在y 轴左侧.BA ⊥OG 于点A ,BC ⊥OD 于点C .四边形OABC 与四边形ODEF 的面积分别为6和10,则△ABG 与△BCD 的面积之和为_______.13.(2010,河北)已知x =1是一元二次方程x 2+m x +n =0的一个根,则m 2+2m x +n 2的值为_______.14. (2010,南通)如下左图,正方形ABCD 的边长为4,点M 在边DC 上,M ,N 两点关于对角线AC 对称,若DM =1,则t a n ∠ADN =_______.15.(2010,苏州)如上右图,已知A ,B 两点的坐标分别为,0),(0,2),P 是△AOB 外接圆上的一点,且∠AOP =45°,则点P 的坐标为_______.16.(2009,北京)如图,正方形纸片ABCD 的边长为1,M ,N 分别是AD ,BC 边上的点,将纸片的一角沿过点B 的直线折叠,使点A 落在MN 上,落点记为A',折痕交AD 于点E .若M ,N 分别是AD ,BC 边的中点,则A'N =_______;若M ,N 分别是AD ,BC 边上距DC 最近的n 等分点(n ≥2,且n 为整数),则A'N =_______(用含有n 的式子表示).1.1572.8 3.4 4.12-5+11) 6.147.1122π++或+12π 8.29.110 11.1或5 12.4 13.114.4315.1+1) 16.n 2n 2n≥,(,且为整数)解答题:(一)、基础题:19--22题为代数计算。

主要是实数运算;分式运算;解方程(组)或不等式(组)。

(考试时题目顺序有所变化)19.计算题:零指数公式:0a =1(a ≠0)负整指数公式: 1(0,)ppaa p a-=≠是正整数计算:()()12116122200131201-+-++-⨯⎪⎭⎫ ⎝⎛-20.解方程:重点一元二次方程和分式方程。

一元二次方程的一般形式:)0(02≠=++a c bx ax。

解法:⑴配方法(注意步骤和推导求根公式)(2)公式法:)04(24222,1≥--±-=ac b aac b b x (3)因式分解法(特征:左边=0)说明:用配方法和公式法,都要先将方程化为标准形式才行。

对于不规则的方程首先要化成一元二次方程的标准形式。

分式方程:⑴定义:分母中含未知数的方程,叫分式方程。

如:121232xx +=+⑵基本思想:如何将分式方程化为整式方程?答:去分母→去括号→移项→合并同类项→降幂排列.⑶基本解法:①去分母法②换元法(如,7222163=-+++-x x x x )⑷验根:将求出的未知数的值代入公分母,若分母不为0则是原方程的根,否则,是原方程的增根。

(5)解分式方程的步骤:去分母→去括号→移项→合并同类项→降幂排列→求出未知数的值→检验21.化简求值:化简求值的题型要注意解题格式,要先化简,再代人字母的值求值.主要是分式与二次根式的性质。

分式取值时分母不能为零。

练习:1.先化简,再求值:)121()144(4222aaa a -÷-+∙-,其中21=a22.解不等式(组)例题:(10年苏州考题) 解不等式组:()20213 1.x x x ->⎧⎪⎨+≥-⎪⎩,去分母 分式方程 整式方程(二)、中档题:23--26题为几何证明(三角形的概念、全等三角形、等腰三角形、直角三角形、平行四边形、矩形、菱形、正方形、等腰梯形、中位线)、统计与概率、函数(一次及反比例函数)、解直角三角形。

(考试时题目顺序有所变化)23.统计与概率题(2010苏州,24,6分)(本题满分6分)学生小明、小华到某电脑销售公司参加社会实践活动,了解到2010年该公司经销的甲、己两种品牌电脑在第一季度三个月(即一、二、三月份)的销售数量情况.小明用直方图表示甲品牌电脑在第一季度每个月的销售量的分布情况,见图①;小华用扇形统计图表示乙品牌电脑每个月的销售量与该品牌电脑在第一季度的销售总量的比例分布情况,见图②.根据上述信息,回答下列问题:(1)这三个月中,甲品牌电脑在哪个月的销售量最大? ▲月份;(2)已知该公司这三个月中销售乙品牌电脑的总数量比销售甲品牌电脑的总数量多50台,求乙品牌电脑在二月份共销售了多少台?【点评】本题通过统计图给出了题目的绝大部分信息,而学生要正确解答题目所设计的问题,需要具有良好的统计意识和对统计图表信息数据的正确处理能力.24.直线型几何证明与计算2010苏州,23,6分)(本题满分6分)如图,C是线段A B的中点,CD平分ACE∠,C E 平分BCD∠,CD CE=.(1)求证:ACD∆≌BCE∆;(2)若D∠的度数.∠=50°,求B【点评】本题考查三角形的全等知识及三角形的内和定理, 并从边和角两方面考查三角形全等的条件.25.函数题(一次及反比例函数)(2010苏州,26,8分)(本题满分8分)如图,四边形OABC 是面积为4的正方形,函数k y x=(0x >)的图象经过点B .(1)求k 的值;(2)将正方形OABC 分别沿直线A B 、BC 翻折,得到正方形MABC '、MA BC '.设线段MC '、N A '分别与函数k y x=(0x >)的图象交于点E 、F ,求线段EF 所在直线的解析式.26.解直角三角形题28.(2010苏州,28,9分)(本题满分9分)刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,90B ∠=︒,30A ∠=︒,6BC cm =;图②中,90D ∠=︒,45E ∠=︒,4DE cm =.图③是刘卫同学所做的一个实验:他将D E F ∆的直角边D E 与ABC ∆的斜边AC 重合在一起,并将D E F ∆沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合).(1)在D E F ∆沿AC 方向移动的过程中,刘卫同学发现:F 、C 两点间的距离逐渐 ▲ .(填“不变”、“变大”或“变小”)(2)刘卫同学经过进一步地研究,编制了如下问题:问题①:当D E F ∆移动至什么位置,即A D 的长为多少时,F 、C 的连线与A B 平行? 问题②:当D E F ∆移动至什么位置,即A D 的长为多少时,以线段A D 、FC 、BC 的长度为三边长的三角形是直角三角形?问题③:在D E F ∆的移动过程中,是否存在某个位置,使得15FCD ∠=︒?如果存在, 求出A D 的长度;如果不存在,请说明理由. 请你分别完成上述三个问题的解答过程.【分析】“ F 、C 两点间的距离”可利用勾股定理求得;动态几何问题是近几年中考考试是热点,着重考查学生的分析能力. 以线段A D 、FC 、BC 的长度为三边长的三角形是否是直角三角形,只需对三边是否能组成直角三角形进行行为,要对三边哪边是斜边进行讨论.【涉及知识点】勾股定理及一元二次方程的解法.【点评】是否存在性问题属于中考题常设置的一种题型.此类问题常先假设结论存在,利用已知条件进行推理,若推情合理,则存在;否则,则不存在.(三)、较难题(特难题):27--29题为应用题(方程或不等式、函数等)、几何综合(相似与圆)、函数综合题(分类讨论思想、一元二次方程根的判别式、根与系数关系、函数待定系数法求解析式、函数性质与图象、涉及动点问题等)。

相关文档
最新文档