高中数学竞赛训练题目二
2013全国中学生高中数学竞赛二试模拟训练题(2)
加试模拟训练题(2)1、 设(1,2,3,4)i x i =为正实数,满足11212312341,5,14,30,x x x x x x x x x x ≤+≤++≤+++≤ 求1234111234U x x x x =+++的最大值.2、设 ,,,,21a a a k为两两各不相同的正整数,求证: 对任何正整数n,均有∑∑==≥nk n K k k k a 11213、 一个俱乐部中有3n +1个人,每两个人可以玩网球、象棋或乒乓球,如果每个人都有n 个人与他打网球,n 个人与他下棋,n 个人与他打乒乓球,证明俱乐部中有3个人,他们之间玩的游戏是三种俱全.4.证明:若正整数b a ,满足b b a a +=+2232,则b a -和122++b a 都是完全平方数。
加试模拟训练题(2)1、 设(1,2,3,4)i x i =为正实数,满足11212312341,5,14,30,x x x x x x x x x x ≤+≤++≤+++≤ 求1234111234U x x x x =+++的最大值. 解:令112123123412341,5,14,30,y x y x x y x x x y x x x x =-⎧⎪=+-⎪⎨=++-⎪⎪=+++-⎩ 则 0(1,2,3,4)i y i ≤=,112123234341,4,9,16,x y x y y x y y x y y =+⎧⎪=-++⎪⎨=-++⎪⎪=-++⎩ 于是 ()()()()112223411114916234U y y y y y y y =++-+++-+++-++ 123411*********10.y y y y =++++≤ 当 1121231234123410,50,140,300,y x y x x y x x x y x x x x =-=⎧⎪=+-=⎪⎨=++-=⎪⎪=+++-=⎩即12341,4,9,16x x x x ====时,max 10.U = 2、设 ,,,,21a a a k为两两各不相同的正整数,求证: 对任何正整数n,均有∑∑==≥nk n K k k k a 1121 证明: 设a a ab b b n n ,,,,,,2121 是的从小到大的有序排列,即 b b b n ≤≤21,因为b i是互不相同的正整数.则n b b b n ≥≥≥,,2,121又因为n 222111132>>>>所以由排序不等式得:n a a a n 22212+++ (乱序) n bb b n22212+++≥ (倒序) n 1211+++≥即 ∑∑==≥n k n k k k k a 1121 成立. 3、 一个俱乐部中有3n +1个人,每两个人可以玩网球、象棋或乒乓球,如果每个人都有n 个人与他打网球,n 个人与他下棋,n 个人与他打乒乓球,证明俱乐部中有3个人,他们之间玩的游戏是三种俱全.【证】 将人看作平面上的点,得到一个有3n +1个点的图(假定任意三点都不在一直线上),当两个人玩网球或象棋或乒乓球时,我们就在相应的两点之间连一条红线或黄线或蓝线,需要证明的是,一定存在一个三条边的颜色互不相同的三角形.自一点引出的3n 条线段中,如果某两条线段的颜色不同,就称它们构成一个“异色角”.考虑异色角的个数.由于自每一点引出n 条红线,角形中有3个异色角.这个三角形的三条边颜色互不相同,即相应的三个人之间玩的游戏是三种俱全.4.证明:若正整数b a ,满足b b a a +=+2232,则b a -和122++b a 都是完全平方数。
高中数学竞赛模拟试题二
高中数学竞赛模拟试题二一、选择题:1.设a 、b 、c 为实数,0,024<++>+-c b a c b a ,则下列四个结论中正确的是 ( D ) (A )ac b ≤2(B )ac b >2(C )ac b >2且0>a (D )ac b >2且0<a提示:若0=a ,则0≠b ,则02=>ac b .若0≠a ,则对于二次函数c bx ax x f +-=2)(,由0)1(,0)2(<->f f 可得结论.2.在△ABC 中,若a BC AB A ===∠,2,450,则2=a 是△ABC 只有一解的 ( A )(A )充分不必要条件(B )必要不充分条件(C )充要条件(D )既不充分又不必要条件3.已知向量)1,sin 42cos 3(),1sin 22cos ,(-+-=-+=x x x x m ,定义函数x f ⋅=)(.若对任意的]2,0[π∈x ,不等式0)(>x f 恒成立,则m 的取值范围是 ( A ) (A )),81(+∞(B ))81,0[(C ))2,81((D )),2(+∞4.设E 、F 、G 分别是正四面体ABCD 的棱AB 、BC 、CD 的中点,则二面角C —FG —E 的大小是 ( D ) (A )36arcsin (B )33arccos 2+π(C )2arctan 2-π(D )22cot arc -π5.把数列}12{+n 依次按一项、二项、三项、四项循环分为(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27,),(29,31,33),(35,37,39,41),…,在第100个括号内各数之和为 ( A ) (A )1992 (B )1990 (C )1873 (D )18916.设n i n x i ,,2,1},,,2,1{ =∈,满足2)1(1+=∑=n n x ni i ,!21n x x x n =⋅⋅⋅ ,使1x ,2x ,…,n x 一定是n ,,2,1 的一个排列的最大数n 是 ( C )(A )4 (B )6 (C )8 (D )9二、填空题:7. 若实数x 、y 满足条件122=-y x ,则x yx 212+的取值范围是___________________. 【答案】)2,2(-.提示:令ααtan ,sec ==y x .8. 对于给定的正整数4≥n ,等式423n m C C =成立,则所有的m 一定形如_____________.(用n 的组合数表示)【答案】21-=n C m (4≥n ).提示:由423n m C C =得222)13()12(+-=-n n m ,从而21-=n C m (4≥n ).9. 一个盒中有9个正品和3个废品,每次取一个产品,取出后不在放回,在取得正品前已取出的废品数ξ的数学期望ξE =_________________.【答案】3.0 提示: ξ取值为0,1,2,3,且有43)0(11219===C C P ξ,4492)1(2121913===C C C P ξ,22092)2(3121923===C C C P ξ,22012)3(4121933===C C C P ξ. 3.022013220924491430=⨯+⨯+⨯+⨯=∴ξE . 10. 设点F 1、F 2分别为椭圆E 的左、右焦点,抛物线C 以F 1为顶点、以F 2为焦点。
普特南高中数学竞赛试题
普特南高中数学竞赛试题一、选择题(每题5分,共30分)1. 若\( a \)和\( b \)是正整数,且\( a^3 + b^3 = 27 \),求\( a + b \)的值。
A. 1B. 2C. 3D. 4E. 52. 在直角三角形中,若两直角边长度分别为3和4,求斜边的长度。
A. 5B. 6C. 7D. 8E. 93. 一个圆的半径是5,求其面积。
A. 25B. 50C. 75D. 100E. 1254. 一个数列的前三项为1, 1, 2,从第四项开始,每一项是前三项的和。
求第10项的值。
A. 143B. 144C. 145D. 146E. 1475. 若\( x \)满足方程\( x^2 - 5x + 6 = 0 \),求\( x \)的值。
A. 2, 3B. 1, 4C. 2, 4D. 3, 4E. 4, 66. 一个正六边形的内角和是多少?A. 180°B. 360°C. 540°D. 720°E. 900°二、填空题(每题5分,共20分)7. 一个数的平方根是4,这个数是_________。
8. 将\( \frac{1}{2} \)和\( \frac{1}{3} \)相加,结果是_________。
9. 一个等差数列的首项是2,公差是3,第5项是_________。
10. 一个正方体的体积是27立方单位,其表面积是_________平方单位。
三、解答题(每题15分,共50分)11. 证明:对于任意正整数\( n \),\( n^3 - n \)总是3的倍数。
12. 解不等式:\( |x - 2| + |x + 3| > 8 \)。
13. 一个圆的直径是10,求其内接正方形的面积。
结束语本试题旨在考察学生的数学基础知识和解题能力。
希望同学们能够通过解答这些题目,提高自己的数学素养和解决问题的能力。
祝大家取得好成绩!请注意,以上内容是虚构的,仅作为示例。
高中数学竞赛模拟试卷二 试题
2021年HY 高级中学高中数学竞赛模拟试卷二一、制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日二、选择题:a 、b 、c 为实数,0,024<++>+-c b a c b a ,那么以下四个结论中正确的选项是 〔 〕〔A 〕ac b ≤2〔B 〕ac b >2〔C 〕ac b >2且0>a 〔D 〕ac b >2且0<a △ABC 中,假设a BC AB A ===∠,2,450,那么2=a 是△ABC 只有一解的〔 〕〔A 〕充分不必要条件〔B 〕必要不充分条件〔C 〕充要条件〔D 〕既不充分又不必要条件)1,sin 42cos 3(),1sin 22cos ,(-+-=-+=x x b x x m a ,定义函数b a x f ⋅=)(.假设对任意的]2,0[π∈x ,不等式0)(>x f 恒成立,那么m 的取值范围是 〔 〕〔A 〕),81(+∞〔B 〕)81,0[〔C 〕)2,81(〔D 〕),2(+∞4.设E 、F 、G 分别是正四面体ABCD 的棱AB 、BC 、CD 的中点,那么二面角C —FG —E的大小是〔 〕〔A 〕36arcsin〔B 〕33arccos 2+π〔C 〕2arctan 2-π〔D 〕22cot arc -π}12{+n 依次按一项、二项、三项、四项循环分为〔3〕,〔5,7〕,〔9,11,13〕,〔15,17,19,21〕,〔23〕,〔25,27,〕,〔29,31,33〕,〔35,37,39,41〕,…,在第100个括号内各数之和为〔 〕〔A 〕1992 〔B 〕1990 〔C 〕1873 〔D 〕1891n i n x i ,,2,1},,,2,1{ =∈,满足2)1(1+=∑=n n x ni i ,!21n x x x n =⋅⋅⋅ ,使1x ,2x ,…,n x 一定是n ,,2,1 的一个排列的最大数n 是 〔 〕〔A 〕4 〔B 〕6 〔C 〕8 〔D 〕9三、填空题:7. 假设实数x 、y 满足条件122=-y x ,那么x yx212+的取值范围是___________________.8. 对于给定的正整数4≥n ,等式423n m C C =成立,那么所有的m 一定形如_____________.〔用n 的组合数表示〕9. 一个盒中有9个正品和3个废品,每次取一个产品,取出后不在放回,在获得正品前已取出的废品数ξ的数学期望ξE =_________________.10. 设点F 1、F 2分别为椭圆E 的左、右焦点,抛物线C 以F 1为顶点、以F 2为焦点。
高中数学竞赛二试题
高中数学竞赛二试题一、选择题(每题3分,共15分)1. 下列哪个选项不是有理数?A. √2B. πC. -1/3D. 02. 如果一个函数f(x)在x=a处可导,那么下列哪个选项是正确的?A. f(x)在x=a处一定连续B. f(x)在x=a处不一定连续C. f(x)在x=a处一定不连续D. 以上都不对3. 已知数列{an}的通项公式为an = 2n - 1,那么该数列的第10项是:A. 17B. 19C. 21D. 234. 在一个平面直角坐标系中,点A(1,2)和点B(4,6),直线AB的斜率是:A. 1B. 2C. 3D. 45. 一个圆的半径为5,圆心到直线的距离为3,那么这个直线与圆的位置关系是:A. 相切B. 相交C. 相离D. 无法确定二、填空题(每题4分,共20分)6. 已知等差数列的首项为3,公差为2,该数列的第5项是________。
7. 函数f(x) = x^3 - 3x^2 + 2的极值点是________。
8. 一个直角三角形的两条直角边分别为3和4,其外接圆的半径是________。
9. 已知直线l的方程为2x - 3y + 6 = 0,求直线l与x轴的交点坐标________。
10. 将圆x^2 + y^2 = 25沿着x轴正方向平移3个单位后,新的圆的方程是________。
三、解答题(每题10分,共30分)11. 证明:对于任意正整数n,n^5 - n 总是能被30整除。
12. 解不等式:|x - 2| + |x + 3| ≥ 5。
13. 已知椭圆的两个焦点分别为F1(-3,0)和F2(3,0),且椭圆上任意一点P到两个焦点的距离之和等于10。
求椭圆的方程。
四、证明题(每题15分,共30分)14. 证明:对于任意实数x和y,不等式(x + y)^2 ≤ 2(x^2 + y^2)总是成立。
15. 证明:如果一个三角形的三边长分别为a, b, c,且满足a^2 + b^2 = c^2,那么这个三角形是直角三角形。
高中数学竞赛模拟试题及参考答案(可编辑)
数学奥林匹克高中训练题第一试一、填空题(每小题8份,共64分)1.函数3()2731xx f x +=-+在区间[0,3]上的最小值为_____.2.在数列{}n a 中,113a =,且12[]n n n a a a +=-,则20092010a a +=_____. 3.若集合{|61,}A x x n n N ==-∈,{|83,}B x x n n N ==+∈,则A B 中小于2010的元素个数为_____. 4.若方程sin (1)cos 2n x n x n ++=+在π<<x 0上有两个不等实根,则正整数n 的最小值为_____. 5.若c b a >>,0=++c b a ,且21,x x 为02=++c bx ax 的两实根,则||2221x x -的取值范围为_____.6.在四面体-O ABC 中,若点O 处的三条棱两两垂直,,则在该四面体的表面上与点A 距离为2的点形成的曲线长度之和为_____.7.有n 个中心在坐标原点,以坐标轴为对称轴的椭圆的准线都是1x =.若第k (1,2,,)k n = 个椭圆的离心率2kk e -=,则这n 个椭圆的长轴之和为_____.8.某校进行投篮比赛,共有64人参加.已知每个参赛者每次投篮的命中率均为34,规定只有连续命中两次才能被录取,一旦录取就停止投篮,否则一直投满4次.设ξ表示录取人数,则E ξ=_____.二、解答题(共56分)9.(16分)设抛物线22y px =(0)p >的焦点为F ,点A 在x 轴上点F 的右侧,以FA 为直径的圆与抛物线在x 轴上方交于不同的两点,M N ,求证:FM FN FA +=.10.(20分)是否存在(0,)2πθ∈,使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列?并说明理由.11.(20分)设函数32()f x ax bx cx d =+++的图像Γ上有两个极值点,P Q ,其中P 为坐标原点, (1)当点Q 的坐标为(1,2)时,求()f x 的解析式;(2)当点Q 在圆22(2)(3)1x y -+-=上时,求曲线Γ的切线斜率的最大值.加试一、(40分)设圆的内接四边形ABCD 的顶点D 在直线,,AB BC CA 上的射影分别为,,P Q R ,且ABC∠与ADC ∠的平分线交于点E ,求证:点E 在AC 上的充要条件是PR QR =.二、(40分)已知周长为1的i i i A B C ∆(1,2)i =的三条边的长分别为,,i i i a b c .设2224i i i i i i i p a b c a b c =+++(1,2)i =,求证:121||54p p -<.三、(50分)是否存在互不相同的素数,,,p q r s ,使得它们的和为640,且2p qs +和2p qr +都是完全平方数?若存在,求,,,p q r s 的值;若不存在,说明理由.四、(50分)对n 个互不相等的正整数,其中任意六个数中都至少存在两个数,使得其中一个能整除另一个.求n 的最小值,使得在这n 个数中一定存在六个数,其中一个能被另外五个整除.参 考 答 案 第一试一、1.53-.令3xt =,[0,3]x ∈,则有3()()271f x g t t t ==-+,[1,27]t ∈,而2'()3273(3)(3)g t t t t =-=-+.故当[1,3]t ∈时,'()0g t <,()g t 单调递减,当[3,27]t ∈时,'()0g t >,()g t 单调递增.所以当3t =,()g t 取得最小值min ()(3)53g t g ==-,即当1x =时,()f x 取得最小值53-.2.2009. 由已知可得113a =,223a =,343a =.下面用数学归纳法证明:21n n a a +-=,1n n a a n ++=.显然,当1n =时,结论成立.假设当n k =时,结论成立,即是有21k k a a +-=,1k k a a k ++=.则当1n k =+时,3122222[](2[])2()([][])2[1][])1k k k k k k k k k k k k a a a a a a a a a a a a ++++++-=---=---=-+-=(. 121(1)1k k k k a a a a k ++++=++=+. 即,当1n k =+时,结论也成立.综上所述,21n n a a +-=,1n n a a n ++=总成立.故200920102009a a +=.3.84.由题意若x A ∈,则5(mod 6)x ≡ ,若x B ∈,则3(mod 8)x ≡ ,故若x A B ∈ ,则11(mod 24)x ≡ ,即若x A B ∈ ,则2411x k =+,于是可得满足题意的元素共有84个.4.4. 由已知得11sin 12cos x n x --=---,而1sin 2cos xx---表示上半个单位圆(不包括端点)上的动点(cos ,sin )P x x 与定点(2,1)Q -的斜率k ,要满足题意就要直线PQ 与上半个单位圆(不包括端点)有两个不同的交点,此时4(,1)3k ∈--,从而可得11(0,)3n ∈,故3n >,即正整数n 的最小值为4. 5.[0,3).由0=++c b a 知方程02=++c bx ax 有一个实数根为1,不妨设11x =,则由韦达定理可知2cx a=.而c b a >>,0=++c b a ,故0,0a c ><,且a a c c >-->,则122c a -<<-,故2221()44c x a<=<,从而可得2212||[0,3)x x -∈.6.32π. 如图,点,M N 分别在棱,AB AC 上,且2AM AN ==,点,E F 分别在棱,OB OC 上,且1OE OF ==,则2AE AF ==,因此,符合题意的点形成的曲线有:①在面OBC 内,以O 为圆心,1为半径的弧EF ,其长度为2π;②在面AOB 内,以A 为圆心,2为半径的弧EM ,其长度为6π;③在面AOC 内,以A 为圆心,2为半径的弧FN ,其长度为6π;④在面ABC 内,以A 为圆心,2为半径的弧MN ,其长度为23π.所以,所求的曲线长度之和为2326632πππππ+++=. 7.122n --.设第k 个椭圆的长半轴为k a ,焦半径为k c ,则由题意有21k k a c =,2k k k kce a -==,故可得2k k a -=,于是可得121222212n nn a a a ----+++=+++=- ,故这n 个椭圆的长轴之和为12(12)22n n---=-.8.1894. 由于每位参赛者被录取的概率均为331331133189444444444256p =⨯+⨯⨯+⨯⨯⨯=,故录取人数ξ服从二项分布,即189(64,)256B ξ~,所以189189642564E ξ=⨯=.二、9.由已知得(,0)2p F ,设点(,0)A a ,则12FA a p =-,故以FA 为直径的圆为22222()()44a p a p x y +--+=.令1122(,),(,)M x y N x y ,则可知12,x x 是方程2222()2()44a p a p x px +--+=的两个实数根,将该方程化简得:22(23)0x a p x ap --+=,由韦达定理得1223322a p x x a p -+==-.故121131()()()2222FM FN x p x p a p p a p FA +=+++=-+=-=,即FM FN FA +=.10.当(0,)2πθ∈时,函数sin y x =与cos y x =的图像关于直线4x π=对称,函数tan y x =与cot y x =的图像也关于直线4x π=对称,且当4πθ=时,sin ,cos ,tan ,cot θθθθ的任一排列均不可能成等差数列.故只需考虑是否存在(0,)4πθ∈使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列即可.假设存在(0,)4πθ∈符合题意,则由sin cos tan cot θθθθ<<<可知cot tan cos sin θθθθ-=-,从而有sin cos sin cos θθθθ+=⋅,故2(sin cos )12sin cos 1sin 2θθθθθ⋅=+⋅=+.而2(sin cos )1θθ⋅<,且1sin 21θ+>,故假设不成立.即,不存在这样的θ,使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列.11.因为32()f x ax bx cx d =+++,所以'2()32f x ax bx c =++.因为图像Γ上有一个极值点P 为坐标原点,所以'(0)0f =,且(0)0f =.故0c d ==.(1)当点Q 的坐标为(1,2)时,由'(1)0f =与(1)2f =可得:320a b +=,且2a b +=.解之,得:4,6a b =-=.此时,32()46f x x x =-+.(2)∵'2()32f x ax bx =+,且由题意点Q 在圆22(2)(3)1x y -+-=上知0a <,∴曲线Γ的切线斜率k 的最大值为'()f x 的最大值2max3b k a=-.设点Q 的坐标为(,)m n ,则有'()0f m =,且()f m n =,∴2320am bm +=,且32am bm n +=.∴32b m a =-,23nb m=. ∴2max 332b n k a m =-=⋅. ∵n m表示过原点且与圆22(2)(3)1x y -+-=有公共点的直线的斜率,而过原点且与圆22(2)(3)1x y -+-=有公共点的直线斜率的最大值为2∴2max33(23322b n k a m =-=⋅≤=+∴曲线Γ的切线斜率的最大值为3加 试一、由西姆松定理知,,P Q R 三点共线.由题意易知,,,C Q D R 四点共圆,则有DCA DQR DQP ∠=∠=∠,同样有,,,A P R D 四点共圆,则有D A C D P R D P ∠=∠=∠.故DAC ∆∽DPQ ∆,同理,可得:DAB ∆∽DRQ ∆,DBC ∆∽DPR ∆,因此有:PR DB DA DP PR BA BC QR DC DQ QR BCDB BA⋅===⋅⋅. 从而PR QR =的充要条件是DA BADC BC=.又由三角形的角平分线的性质定理可得,ABC ADC ∠∠的平分线分AC 的比分别为,BA DABC DC.故命题成立. 二、由题意知1i i i a b c ++=,且不妨设i i i a b c ≤≤,则由于三角形的三边关系可得102i i i a b c <≤≤<,于是不难得312121210(12)(12)(12)()327i i i i i i a b c a b c -+-+-<---≤=. 2222222(12)(12)(12)12()4()814()812[()()]812(4)12i i i i i i i i i i i i i i ii i i i i i i i i i i i i i i i i i i i i i i i ia b c a b c a b b c c a a b c a b b c c a a b c a b c a b c a b c a b c a b c p ---=-+++++-=-+++-=-+++-++-=-+++=- 从而可得131272i p ≤<,所以121||54p p -<. 三、由640p q r s +++=,且,,,p q r s 是互不相同的素数知,,,p q r s 都是奇数.设2222p qs m p qr n ⎧+=⎪⎨+= ⎪⎩ ①②, 并不妨设s r <,则m n <.由①,②可得()()()()m p m p qsn p n p qr-+=⎧⎨-+=⎩.若1m p ->,则由m p n p n p -<-<+可得m p q n p +==-,故2q m n =+,,s m p r n p =-=+,从而2s r m n q +=+=,故23640p q r s p q q p q +++=++=+=.又由于23s m p q p =-=-≥,故可得90p ≤,逐一令p 为不大于90的素数加以验证便知此时无解.若1m p -=,则21qs m p p =+=+,故12qs p -=.而q m p n p <+<+,故,2q n p r n p p q =-=+=+. 故3(1)3226402qs p q r s p q s q s -+++=++=++=,即是有(32)(34)385771929q s ++==⨯⨯,于是得3419,32729s q +=+=⨯,故5,67s q ==,从而167,401p r ==.综上可得167,67,401,5p q r s ====或167,67,5,401p q r s ====.四、所求的最小正整数26n =.我们分两步来证明,第一步说明25n ≤不行,第二步说明26n =是可以的.首先说明当25n ≤时是不行的.我们构造如下的25个正整数:543215432154321543215432122222;33333;55555;7,7777;1111111111,,,,,,,,,,,,,,,,,,,①②③④⑤.如上,我们把这25个正整数分成5组,则任意选取六个数都一定会有两个数在同一组,显然在同一组中的这两个数中的一个能整除另一个;另一方面,由于每一组数只有5个,因此所选的六个数必然至少选自两组数,即是说在所选的六个数中不存在其中一个能被另五个整除的数.所以,当25n =时是不行的.对于25n <,也可类似地证明.其次说明当26n =时是可以的.我们首先定义“好数组”.如果一数组中的数都在所给定的26个正整数中,其中最大的一个记为a ,除a 外的25个数中没有a 的倍数,且这25个数中所有a 的约数都在这组数中,那么我们称这个数组为“好数组”.(一个“好数组”中的数可以只有一个).现证这样的“好数组”至多有五个.否则,必存在六个“好数组”,我们考虑这六个“好数组”中的最大数,分别记为,,,,,a b c d e f ,由题知六个数,,,,,a b c d e f 中必然存在一个能整除另一个,不妨记为|b a ,即是说a 的约数b 不在a 所在的“好数组”中,这与“好数组”的定义不符,故“好数组”至多有五个.由于“好数组”至多有五个,而所给的正整数有26个,因此至少存在一个“好数组”中有六个数,考虑这个“好数组”中的最大数,由“好数组”的定义知这个数组中至少另有五个数都能整除该数.综上可得,所求的最小正整数26n =.陕西师范大学附中 王全 710061 wangquan1978@。
上海高二数学竞赛试题
上海高二数学竞赛试题上海高二数学竞赛是一项旨在提高学生数学素养和解决问题能力的重要赛事。
本次竞赛试题涵盖了高中数学的多个领域,包括代数、几何、概率统计等,题目设计旨在考察学生的逻辑推理、抽象思维和创新能力。
一、选择题(每题3分,共15分)1. 若\( a \), \( b \)为正整数,且\( a^2 + b^2 = 100 \),求\( a + b \)的可能值。
A. 10B. 12C. 14D. 162. 已知函数\( f(x) = 2x^3 - 3x^2 + x - 5 \),求\( f(-1) \)的值。
A. -8B. -7C. -6D. -53. 某班有30名学生,其中男生和女生的比例为3:2。
若随机抽取一名学生,求抽到女生的概率。
A. 0.4B. 0.5C. 0.6D. 0.74. 已知圆的方程为\( (x-2)^2 + (y-3)^2 = 25 \),求圆心到直线\( 2x + 3y - 7 = 0 \)的距离。
A. 2B. 3C. 4D. 55. 若\( \sin\theta + \cos\theta = \sqrt{2} \),求\( \sin\theta \cdot \cos\theta \)的值。
A. \( \frac{\sqrt{2}}{2} \)B. 1C. \( \frac{1}{2} \)D. 0二、填空题(每题4分,共20分)6. 计算定积分 \(\int_{0}^{1} x^2 dx\) 的值。
7. 已知等差数列的首项为2,公差为3,求第10项的值。
8. 求椭圆 \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)(其中\(a > b > 0\))与直线 \(y = mx + c\) 相切的条件。
9. 若复数 \(z = 1 - i\),求 \(|z|^2\) 的值。
10. 已知向量 \(\vec{a} = (2, -1)\) 和 \(\vec{b} = (-3, 4)\),求向量 \(\vec{a} \times \vec{b}\) 的值。
高中的数学竞赛试题及答案
高中的数学竞赛试题及答案高中数学竞赛试题一、选择题(每题5分,共20分)1. 下列哪个数不是有理数?A. πB. √2C. 0.333...(无限循环)D. 1/32. 如果函数f(x) = 2x^2 - 5x + 3在x = 2时取得最小值,那么f(2)的值是多少?A. -1B. 1C. 3D. 53. 已知等差数列的前三项分别为3, 8, 13,求第10项的值。
A. 43B. 48C. 53D. 584. 若sinx = 1/2,求cosx的值(假设x在第一象限)。
A. √3/2B. -√3/2C. 1/2D. -1/2二、填空题(每题4分,共12分)5. 计算(2x^3 - 3x^2 + 4x - 5) / (x - 1)的商式和余数。
商式为:________余数为:______6. 已知复数z = 3 + 4i,求其共轭复数。
共轭复数为:______7. 一个圆的半径为5,求其内接正六边形的边长。
边长为:______三、解答题(每题18分,共54分)8. 证明:对于任意正整数n,n^5 - n 总是能被30整除。
9. 已知函数g(x) = x^3 - 6x^2 + 11x - 6,求其导数g'(x),并找出g(x)的极值点。
10. 解不等式:|x + 2| + |x - 3| > 4。
四、证明题(每题10分,共10分)11. 证明:对于任意实数a和b,(a^2 + b^2)(1/a^2 + 1/b^2) ≥ 2。
五、附加题(每题15分,共15分)12. 一个圆的半径为r,圆内接正n边形的边长为s。
证明:s =2r*sin(π/n)。
高中数学竞赛试题答案一、选择题1. A(π是无理数)2. B(f(2) = 4 - 10 + 3 = -3,但题目要求最小值,故应为B)3. C(公差d = 13 - 8 = 5,第10项a_10 = 3 + 9*5 = 53)4. A(根据勾股定理,cosx = √3/2)二、填空题5. 商式为:2x^2 - x - 5,余数为:-36. 共轭复数为:3 - 4i7. 边长为:10三、解答题8. 证明略。
数学竞赛试题及答案高中生
数学竞赛试题及答案高中生试题一:代数问题题目:已知\( a, b \) 是方程 \( x^2 + 5x + 6 = 0 \) 的两个实根,求 \( a^2 + 5a + 6 \) 的值。
解答:根据韦达定理,对于方程 \( x^2 + bx + c = 0 \),其根\( a \) 和 \( b \) 满足 \( a + b = -b \) 和 \( ab = c \)。
因此,对于给定的方程 \( x^2 + 5x + 6 = 0 \),我们有 \( a + b =-5 \) 和 \( ab = 6 \)。
由于 \( a \) 是方程的一个根,我们可以将 \( a \) 代入方程得到 \( a^2 + 5a + 6 = 0 \)。
所以 \( a^2 + 5a + 6 = 0 \)。
试题二:几何问题题目:在一个直角三角形中,已知直角边长分别为 3 厘米和 4 厘米,求斜边的长度。
解答:根据勾股定理,直角三角形的斜边长度 \( c \) 可以通过直角边 \( a \) 和 \( b \) 计算得出,公式为 \( c = \sqrt{a^2 + b^2} \)。
将给定的边长代入公式,我们得到 \( c = \sqrt{3^2 + 4^2} =\sqrt{9 + 16} = \sqrt{25} = 5 \) 厘米。
试题三:数列问题题目:一个等差数列的首项 \( a_1 = 3 \),公差 \( d = 2 \),求第 10 项 \( a_{10} \) 的值。
解答:等差数列的通项公式为 \( a_n = a_1 + (n - 1)d \),其中\( n \) 是项数。
将给定的值代入公式,我们得到 \( a_{10} = 3 + (10 - 1) \times 2 = 3 + 9 \times 2 = 3 + 18 = 21 \)。
试题四:组合问题题目:从 10 个不同的球中选取 5 个球,求不同的选取方式有多少种。
高中数学竞赛模拟题(十六套)
高中数学竞赛模拟题(十六套)高中数学竞赛模拟题(十六套)第一套:代数高中数学竞赛中,代数是一个重要的考察内容。
在这个模拟题的第一套中,我们将考察代数的基本概念和运算技巧。
请同学们认真阅读并解答以下题目。
1. 已知函数 $f(x) = ax^2 + 3x + b$,且函数 $f(x)$ 的图像经过点 $(-2, -1)$ 和 $(1, 4)$。
求常数 $a$ 和 $b$ 的值。
2. 某数列的前3项依次为 $a_1 = 2$,$a_2 = 5$,$a_3 = 9$。
已知数列满足递推式 $a_{n+1} = 2a_n - a_{n-1} + 1$,其中 $n \geq 2$。
求数列的第 $n$ 项 $a_n$ 的表达式。
3. 解方程组:$\begin{cases}2x - 3y = 5 \\4x + 2y = 10\end{cases}$第二套:几何几何在高中数学竞赛中也占据重要的位置。
在这个模拟题的第二套中,我们将考察几何的基本概念和解题技巧。
请认真阅读并解答以下题目。
1. 在平面直角坐标系中,直线 $l$ 过点 $A(3, 2)$,且与直线 $x - 3y - 1 = 0$ 平行。
求直线 $l$ 方程。
2. 在三角形 $ABC$ 中,已知 $\angle BAC = 30^\circ$,点 $D$ 在边$AC$ 上,且 $\angle BDC = 90^\circ$。
若 $BD = 2$,$DC = 4$,求三角形 $ABC$ 的面积。
3. 已知四边形 $ABCD$ 中,$AB = AD$,$BC = CD$,$AC$ 为对角线,且 $\angle ACB = 70^\circ$。
求 $\angle BAC$ 的度数。
第三套:数列与数表数列与数表也是高中数学竞赛的考察内容之一。
在这个模拟题的第三套中,我们将考察数列与数表的基本性质和求解能力。
请认真阅读并解答以下题目。
1. 求限制条件为 $a_n < 100$ 的等差数列 $\{a_n\}$ 的第 $n$ 项的表达式,已知数列的公差为 5。
上海高一高中数学竞赛题目
上海高一高中数学竞赛题目近年来,数学竞赛在中国的中小学生中越来越受欢迎。
数学竞赛不仅能够提高学生的数学水平,还能培养他们的逻辑思维和解决问题的能力。
上海作为中国数学教育的重要城市,每年都会举办高一高中数学竞赛,吸引了众多学生的参与。
下面是一些上海高一高中数学竞赛的题目,让我们一起来挑战一下吧!题目一:已知函数f(x) = x^2 + 2x + 1,求f(3)的值。
解析:将x=3代入函数f(x)中,得到f(3) = 3^2 + 2×3 + 1 = 9 + 6 + 1 = 16。
题目二:已知等差数列的前n项和为Sn = 3n^2 + 2n,求该等差数列的第n项。
解析:设等差数列的首项为a,公差为d,第n项为an。
根据等差数列的性质,有Sn = n/2 × (2a + (n-1)d)。
将Sn = 3n^2 + 2n代入,得到3n^2 + 2n = n/2 × (2a + (n-1)d)。
整理得到3n^2 + 2n = an^2 + (a-d)n + ad。
由此可得an = 3n^2 + 2n - an^2 - (a-d)n - ad。
整理得到an = 2n^2 + (2d-a)n + ad。
因此,该等差数列的第n项为an = 2n^2 + (2d-a)n + ad。
题目三:已知函数f(x) = 2x^3 - 3x^2 + 4x - 1,求f'(x)的值。
解析:函数f(x)的导数f'(x)表示函数f(x)的斜率。
对于多项式函数,求导的方法是将每一项的指数乘以系数,并降低指数1。
根据这个规则,对于函数f(x) = 2x^3 - 3x^2 + 4x - 1,求导得到f'(x) = 6x^2 - 6x + 4。
题目四:已知函数f(x) = x^3 - 3x^2 + 2x,求f(-1)的值。
解析:将x=-1代入函数f(x)中,得到f(-1) = (-1)^3 - 3(-1)^2 + 2(-1)= -1 - 3 + (-2) = -6。
高中数学竞赛训练题(含答案)
例1、求点集中的元素的个数.分析及答案思路分析:应首先去对数将之化为代数方程来解之.解:由所设知x>0,y>0及由平均值不等式,有当且仅当即(虚根舍去)时,等号成立.故所给点集仅有一个元素.评述:此题解方程中,应用了不等式取等号的充要条件,是一种重要解题方法,应注意掌握之.例2、已知集合A={(x,y)}||x|+|y|=a,a>0|,B={(x,y)||xy|+1=|x|+|y|}.若A∩B是平面上正八边形的顶点所构成的集合,则a的值为____________.分析及答案思路分析:可作图,以数形结合法来解之.略解:点集A是顶点为(a,0),(0,a),(-a,0),(0,-a)的正方形的四条边构成(如图所示).将|xy|+1=|x|+|y|,变形为(|x|-1)(|y|-1)=0,所以,集合B由四条直线x=±1,y=±1构成.欲使A∩B为正八边形的顶点所构成,只有a>2或1<a<2这两种情况.(1)当a>2时,由于正八边形的边长只能为2,显然有,故(2)当1<a<2时,设正八边形边长为l,则,这时,综上所述,a的值为时,如图所示中.例3、设集合则在下列关系中,成立的是()A.A B C D B.A∩B=φ,C∩D=φC.A=B∪C,C D D.A∪B=B,C∩D=φ分析及答案思路分析:应注意数的特征,.解法1:∵∴A=B∪C,C D.故应选C.解法2:如果把A、B、C、D与角的集合相对应,令.结论仍然不变,显然,A′为终边在坐标轴上的角的集合,B′为终边在x轴上的角的集合,C′为终边在y轴上的角的集合,D′为终边在y轴上及在直线上的角的集合,故应选C.评述:解法1是直接法,解法2运用转化思想把已知的四个集合的元素转化为我们熟悉的角的集合,研究角的终边,思路清晰易懂,实属巧思妙解.例4、设有集合A={x|x2-[x]=2}和B={x||x|<2},求A∩B和A∪B(其中[x]表示不超过实数x之值的最大整数).分析及答案思路分析:应首先确定集合A与B.从而-1≤x≤2.显然,2∈A.∴A∪B={x|-2<x≤2}.若x∈A∩B,则x2=[x]+2,[x]∈{1,0,-1,-2},从而得出或x=-1([x]=-1).于是A∩B={-1,}.评述:此题中集合B中元素x满足“|x|<3”时,会出现什么样的结果,读者试解之.例5、已知M={(x,y)|y≥x2},N={(x,y)|x2+(y-a)2≤1}.求M∩N=N成立时a需满足的充要条件.分析及答案思路分析:由M∩N=N,可知N M.略解:.由x2+(y-a)2≤1得x2≤y-y2+(2a-1)y+(1-a2) .于是,若-y2+(2a-1)y+(1-a2)≤0,①必有y≥x2,即N M.而①成立的条件是,即解得.评述:此类求参数范围的问题,应注意利用集合的关系,将问题转化为不等式问题来求解.。
高中数学竞赛试题
高中数学竞赛试题以下是一系列高中数学竞赛试题。
请根据每题的要求,计算并填写答案。
试题不分难易程度,请根据自己的实际水平进行解答。
第一题:已知函数 f(x) = x^2 - 2x + 3,求 f(2) 的值。
第二题:某竞赛共有100个参赛选手,分别记录了他们的年龄。
其中,年龄为偶数的选手人数占总人数的40%。
求年龄为奇数的选手人数。
第三题:给定集合 A = {1, 2, 3, 4, 5, 6, 7},集合 B = {2, 4, 6, 8, 10},求两个集合的并集和交集。
第四题:某人将一张直径为8厘米的圆形纸板剪成相等的两半,然后将其中一半折成一个正n边形(n≥3),求折叠后的正多边形的边数。
第五题:已知数列 {an} 满足 a1 = 1,a2 = 2,an = 2an-1 - an-2 (n>2)。
求数列的第6项的值。
第六题:某城市有100所高中,其中有80%的高中开设有数学竞赛课程,每所开设数学竞赛课程的高中平均拥有5名教师。
求该城市数学竞赛课程的教师总数。
第七题:已知函数 f(x) = 3x + 4,g(x) = 2x - 1,求 f(g(2)) 的值。
第八题:某汽车从 A 地出发,前往 B 地,全程120公里。
第一小时,汽车以60公里/小时的速度行驶;第二小时,汽车以40公里/小时的速度行驶。
求从 A 地出发到达 B 地的总耗时。
第九题:已知正方形 ABCD 的边长为4单位长度,点 O 为正方形中心。
过点 O 作边 AD 的垂直平分线和边 AB 的平行线,交边 BC 的延长线于点 E。
求线段 DE 的长度。
第十题:已知集合 A = {x | -1 ≤ x ≤ 3},集合B = {x | 1 ≤ x ≤ 5}。
求两个集合的差集。
请认真审题,仔细计算,以给出准确的答案。
祝你顺利完成高中数学竞赛试题!。
高中数学竞赛试题及答案
高中数学竞赛试题及答案一、选择题(本题共10小题,每小题3分,共30分)1. 下列哪个数不是无理数?A. πB. √2C. √3D. 0.33333(无限循环)答案:D2. 已知函数f(x) = x^2 - 4x + 4,求f(2x)的值。
A. 4x^2 - 16x + 16B. 4x^2 - 12x + 12C. 4x^2 - 8x + 4D. 4x^2 - 4x + 4答案:C3. 若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定答案:B4. 一个圆的半径为3,求其内接正六边形的边长。
A. 3√3B. 6C. 2√3D. 3答案:A5. 已知等差数列的首项a1=2,公差d=3,求第10项a10的值。
A. 29B. 32C. 35D. 38答案:A6. 根据题目所给的函数f(x) = 2x - 1,求f(x+1)的值。
A. 2x + 1B. 2x + 3C. 2x - 1D. 2x - 3答案:A7. 若x^2 - 5x + 6 = 0,求x的值。
A. 2, 3B. -2, -3C. 2, -3D. -2, 3答案:A8. 已知一个等比数列的首项a1=3,公比q=2,求第5项a5的值。
A. 48B. 96C. 192D. 384答案:A9. 一个圆的直径为10,求其面积。
A. 25πB. 50πC. 100πD. 200π答案:B10. 已知一个二次方程x^2 + 8x + 16 = 0,求其根的判别式Δ。
A. 0B. 64C. -64D. 16答案:A二、填空题(本题共5小题,每小题4分,共20分)11. 若一个数列{an}是等差数列,且a3 = 7,a5 = 13,求a7的值。
答案:1912. 已知一个函数y = x^3 - 3x^2 + 2x,求其一阶导数dy/dx。
答案:3x^2 - 6x + 213. 一个长方体的长、宽、高分别是2,3,4,求其表面积。
高中数学竞赛典型题目(二)
数学竞赛典型题目(二)1.(1994年伊朗数学奥林匹克) 设a、b、c、S分别为锐角三角形ABC的三边的边长及它的面积。
证明在三角形ABC内存在一点P,由P到顶点A、B、C的距离为x、y、z的充份和必要条件是存在三个三角形:第一个的边长分别是a、y、z及其面积为S1,第二个的边长分别是b、z、x及其面积为S2,第三个的边长分别是c、x、y及其面积为S3及S=S1+S2+S3。
2 .(1995年伊朗数学奥林匹克) 假设ABCD为一正方形及K、N分别在线段AB和AD的点使得AK x AN = 2 BK x DN.设L和M分别为对角线BD与CK及CN的交点。
证明K、L、M、N和A五点共圆。
(1995年伊朗数学奥林匹克)A,B,C三点在圆O上,线CO交AB于D且BO交AC 于E,如果角度都是,求.(1995年伊朗数学奥林匹克)内切圆和边AB,AC及BC交于M,N,P,证明:垂心, 外心和内心三点共线.3.(1996年伊朗数学奥林匹克)中,,O、H、I、分别为外心、垂心、内心和关于A的旁心. 和分别在AC和AB上,且证明:(1)八点B、C、H、O、I、、、共圆;(2)若OH交AB、AC分别于E、F,则周长等于(3)4.(1996年伊朗数学奥林匹克)为不等边三角形,从A、B、C出发的中线交外接圆于另一点L、M、N.若证明:5.(1996年伊朗数学奥林匹克)中,D在AB上,E在AC上,且DE//BC.P为内任一点,PB和PC交DE分别于F、G.若为外心,为外心,证明:6.(1997年伊朗数学奥林匹克)边BC的中点是N,以AB和AC为直角边向外构造等腰直角,证明:也是等腰直角三角形.7.(1997年伊朗数学奥林匹克)圆心为O,直径为AB的圆上有两点C,D,直线CD交AB于M,且MB<MA,MD<MC,K是和外接圆的交点(不是O),证明:即有向角8.(1997年伊朗数学奥林匹克)锐角外心为O,垂心为H,且BC>CA,F为高CH的垂足,过F作OF的垂线交AC于P,证明:有向角9.(1997年伊朗数学奥林匹克) 外接圆弧AB上有一个动点(不包含A),分别为的内心,证明:(1)的外接圆是否过定点?(2)以为直径的圆过定点.(3) 中点在定圆上.10. (1998年伊朗数学奥林匹克)KL和KN是圆C的切线,切点是L,N,M为KN延长线上一点,的外接圆交圆C的另一交点为P,点Q是N向ML所引垂线的垂足,证明:11. (1998年伊朗数学奥林匹克)锐角的高是AD,角B和C的内角平分线交AD于点E,F;若BE=CF,证明:是等腰三角形。
全国高中生数学竞赛试题
全国高中生数学竞赛试题一、选择题1. 若一个等差数列的前三项分别是2x-1、3x+1和7x-5,那么x的值为:A. 1B. 2C. 3D. 42. 已知函数f(x) = ax^2 + bx + c在点x=1取得极小值,且有a>0,b>0,c>0,那么a+b+c的值是:A. 0B. 1C. 2D. 33. 一个圆的半径是5cm,圆心位于坐标系的原点,那么圆上一点(3,4)到圆心的距离是:A. 5cmB. 5√2cmC. 2√5cmD. 10cm4. 以下哪个三角形的内角和不是180°?A. 直角三角形B. 等腰三角形C. 钝角三角形D. 等边三角形5. 若a、b、c是等比数列,且abc=8,a+b+c=6,那么b的值是:A. 2B. 3C. 4D. 6二、填空题6. 一个等差数列的前四项之和为26,首项为2,公差为3,求该等差数列的第四项。
7. 已知一个圆的周长为4πcm,求该圆的面积(π取3.14)。
8. 若函数g(x) = x^3 - 6x^2 + 11x - 6有唯一的零点,求该零点的值。
9. 一个直角三角形的斜边长为10cm,一条直角边长为6cm,求另一条直角边的长度。
10. 一个等比数列的前三项分别是2,6和18,求该数列的公比。
三、解答题11. 已知一个等差数列的前五项和为35,且第五项是首项的三倍。
求该等差数列的首项和公差。
12. 一个圆与直线y=2x+3相交于点A,且圆心到直线的距离为2√2cm。
若圆的半径为5cm,求圆心的坐标。
13. 证明:若n是正整数,且n^2 + 3n + 2是一个完全平方数,则n 也是正整数。
14. 一个等腰三角形的底边长为10cm,腰长为x,且周长为30cm。
求x的值。
15. 一个等比数列的前五项之和为31,首项为2,求该等比数列的公比和最后一项的值。
请注意,以上题目仅供参考,实际的全国高中生数学竞赛试题可能会有所不同。
在解答时,考生需要仔细审题,合理运用数学知识和解题技巧,力求准确、高效地完成题目。
高中数学奥林匹克竞赛训练题
数学奥林匹克高中训练题第一试一、选择题(本题满分36分,每小题6分) 1.(训练题(D).(A)cos1997sin1997- (B)cos1997sin1997-- (C)cos1997sin1997-+ (D)cos1997sin1997+2.(训练题29)复数z 满足1z R z+∈且2z -=(D).(A) 1个 (B) 2个 (C) 3个 (D) 4个3.(训练题29)已知,a b 都是正实数.则x y a b +>+且xy ab >是x a >且y b >的(B).(A)充分不必要条件 (B)必要不充分件 (C)充要件 (D)既不充分也不必要条件4.(训练题29),a b 是两个正整数,最小公倍数为465696.则这样的有序正整数对(,)a b 共有(D) 个.(A)144 (B)724 (C)1008 (D)11555.(训练题29)方程220x px q ++=的根是sin α和cos α.则在poq 坐标平面上,6.(训练题29) 对一个棱长为1的正方体木块1111ABCD A B C D -,在过顶点1A 的三条棱上分别取点,,P Q R ,使111A P A Q A R ==.削掉四面体1A PQR -后,以截面PQR ∆为底面,在立方体中打一个三棱柱形的洞,使棱柱侧面都平行于体对角线1A C .当洞打穿后,顶点C 处被削掉,出口是一个空间多边形.则这个空间多边形共有(B) 条边.(A)3 (B)6 (C)8 (D) 9二、填空题(本题满分54分,每小题9分) 1.(训练题29)1999111111n =个,2000()90201997f n n n =++.则()f n 被3除的余数是 1 .2.(训练题29)函数(),()f x g x 是R 上定义的函数,且()0f x ≥的解集为{|12},()0x x g x ≤<≥的解集是空集,则不等式()()0f x g x >的解集是 {|12}x x x <≥或 .3.(训练题29)棱锥S ABC -的底面是正三角形ABC ,侧面SAC 垂直于底面,另两个侧面同底面所成的二面角都是45o ,则二面角A SC B --的值是 用反三角函数表示).4.(训练题29)若21x y +≥,则函数2224u y y x x =-++的最小值等于95- .5.(训练题29)六个正方形,,,,,A B C D E F 放置如图所示,若,,A B C 三个正方形面积之和为1,,,S D E F 三个正方形面积之和为2S ,则12SS = 3 .6.(训练题29)已知,,a b c 是一个直角三角形三边之长,且对大于2的自然数n ,成立2222()2()n n n n n n a b c a b c ++=++.则n = 4 .三、(训练题29)(本题满分20分)棱锥S ABC -中,4,7,9,5,6,8SA SB SC AB BC AC =≥≥=≤≤.试求棱锥S ABC -体积的最大值.四、(训练题29)(本题满分20分)数列{}n a ,适合条件1234561,2,3,4,5,119a a a a a a ======,当5n ≥时,1121n n a a a a +=-,证明22212701270a a a a a a +++=.五、(训练题29)(本题满分20分)已知(),()f x g x 和()h x 都是关于x 的二次三项式,证明:方程((()))0f g h x =不能有根1,2,3,4,5,6,7,8.第二试一、(训练题29)(本题满分50分)有限数集S 的全部元素的乘积,称为数集S 的“积数”.今给出数集11111{,,,,,}23499100M =,试确定M 的所有偶数个(2个,4个,…,98个)元素子集的“积数”之和的值.24.255 二、(训练题29)(本题满分50分)凸四边形ABCD 的对角线交点为O .证明:ABCD 是圆外切四边形的充分必要条件是AOB ∆、BOC ∆、COD ∆、ABC DF EDOA ∆的内切圆半径1234,,,r r r r 满足关系式42311111r r r r +=+. 三、(训练题29)(本题满分50分) 1211,,,a a a ;1211,,,b b b 是1,2,3,4,5,6,7,8,9,10,11的两种不同的排列.证明:11221111,,,a b a b a b 中至少有两个被11除所得的余数相同.。
高中数学奥林匹克竞赛试题
高中数学奥林匹克竞赛试题高中数学奥林匹克竞赛试题一、选择题(共20小题,每小题2分,共40分。
从每题四个选项中选择一个正确答案,将其标号填入题前括号内)1. 已知函数f(x) = 2x^2 + bx + c, f(1) = 5, f(2) = 15,则b + c的值是:A. 4B. 6C. 8D. 122. 设等差数列{an}的公差为d,已知a₁ + a₃ + a₅ = 9d,a₂ + a₄ + a₆= 15d,则a₇的值为:A. 8dB. 9dC. 10dD. 11d3. 若复数z = a + bi满足|z - 1| = |z + 1|,则a的值为:A. -1B. 0C. 1D. 24. 若直线y = kx + m与椭圆(x + 2)²/9 + y²/16 = 1相交于点P,请问此时P点的横坐标x的取值范围是:A. [0, -4/3]B. [0, -2]C. (-∞, -2]D. (-∞, 0]5. 已知正整数a、b满足a + b = 10,ab = 15,则a/b的值是:A. 1/2B. 2/3C. 3/2D. 3/5二、填空题(共10小题,每小题4分,共40分)6. 若正整数x满足5x ≡ 15 (mod 17),则x的最小正整数解为_______。
7. 在平面直角坐标系中,一次函数y = kx + c经过点(1, 2),且该直线与x轴交于点(3, 0),则k的值为_______。
8. 设二次函数y = ax² + bx + c的图象与x轴交于A、B两点,若A、B两点间的距离为10,且判别式Δ = b² - 4ac > 0,则a/b的值为_______。
9. 设U为自然数集合,函数f: U → U满足f(f(f(x)))) = 1 + x,则f(2019)的值为_______。
10. 若平面上直线y = kx + 1与曲线y = x² + 2x相切于点P,请问k的取值范围是_______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学竞赛训练题二
姓名:________________ (训练时间80分钟) 得分:___________________
一、填空题(本题满分64分,每小题8分。
)
1.已知复数m 满足11=+
m m ,则=+200920081m m .
2.设2cos sin 23cos 21)(2++=x x x x f ,]4
,6[ππ-∈x ,则)(x f 的值域为____________________.
3.设等差数列{}n a 的前n 项和为n S ,若0,01615<>S S ,则
15152211,,,a S a S a S Λ中最大的是______________________.
4.已知O 是锐角△ABC 的外心,10,6==AC AB ,若y x +=,且5102=+y x ,则=∠BAC cos _____________________.
5.已知正方体1111D C B A ABCD -的棱长为1,O 为底面ABCD 的中心,M ,N 分别是棱A 1D 1和CC 1的中点.则四面体1MNB O -的体积为_________________________.
6.设}6,5,4,3,2,1{=C B A Y Y ,且}2,1{=B A I ,C B Y ⊆}4,3,2,1{,则符合条件的
),,(C B A 共有 组.
(注:C B A ,,顺序不同视为不同组.)
7.设x x x x x x y csc sec cot tan cos sin +++++=,则||y 的最小值为________________________--.
8.设p 是给定的正偶数,集合},3,22|{1N ∈=<<=+m m x x x A p p p 的所有元素的和是______________________.
二、解答题(本题满分56分,第9题16分,第10题20分,第11题20分)
9.设数列)0}({≥n a n 满足21=a ,)(2
122n m n m n m a a n m a a +=+-+-+,其中n m n m ≥∈,,N .
(1)证明:对一切N ∈n ,有2212+-=++n n n a a a ;
(2)证明:11112009
21<+++a a a Λ.
10.已知抛物线C :
221x y =与直线l :1-=kx y 没有公共点,设点P 为直线l 上的动点,
过P 作抛物线C 的两条切线,A ,B 为切点.
(1)证明:直线AB 恒过定点Q ;
(2)若点P 与(1)中的定点Q 的连线交抛物线C 于M ,N 两点,证明:QN
QM PN PM =.
11.设d c b a ,,,为正实数,且4=+++d c b a .证明:
22
2
2
2
)(4b a a d d c c b b a -+≥+++.
答案:(09湖北)
1.0; 2. 3[2,2]4
3. 88S a
4. 13
5. 748
6. 1600
71-.8. 21122p p ---
9证明 (1)在已知关系式)(2122n m n m n m a a n m a a +=
+-+-+中,令n m =,可得00=a ; 令0=n ,可得m a a m m 242-= ①
令2+=n m ,可得)(2
12242222n n n a a a a +=
-+++ ② 由①得)1(24122+-=++n a a n n , 62412=-=a a ,)2(24242+-=++n a a n n ,n a a n n 242-=,代入②,化简得2212+-=++n n n a a a . ------------7分
(2)由2212+-=++n n n a a a ,得2)()(112+-=-+++n n n n a a a a ,故数列}{1n n a a -+是首项为201=-a a ,公差为2的等差数列,因此221+=-+n a a n n .
于是∑∑==-+=+=+-=n
k n k k k n n n k a a a
a 1101)1(0)2()(. 因为)1(1
11)1(11≥+-=+=n n n n n a n ,所以 12010
11)2010120091()3121()211(111200921<-=-++-+-=+++ΛΛa a a --14分 10证明 (1)设11(,)A x y ,则21121x y =.由22
1x y =得x y =',所以11|x y x x ='=. 于是抛物线C 在A 点处的切线方程为)(111x x x y y -=-,即11y x x y -=. 设)1,(00-kx x P ,则有11001y x x kx -=-.设22(,)B x y ,同理有22001y x x kx -=-. 所以AB 的方程为y x x kx -=-001,即0)1()(0=---y k x x ,所以直线AB 恒过定点)1,(k Q . ----------------------7分
(2)PQ 的方程为002()1kx y x k x k -=-+-,与抛物线方程22
1x y =联立,消去y ,得
02)22(4
2002002=---+---k
x k
x k x k x kx x .设),(33y x M ,),(44y x N ,则
k
x k
x k x x k x kx x x ---=--=+0024300432)22(,42 ① 要证QN QM PN PM =,只需证明k
x x k
x x x x
--=--430403,
即02))((2043043=+++-kx x x x k x x ②
由①知,
②式左边=000000224
2)(4)22(2kx k
x kx x k k x k
x k +--+----
0)
(2)42)((4)22(20000002=--+-+---=k
x k x kx kx x k k x k .
故②式成立,从而结论成立. -----------15分
11证明 因为4=+++d c b a ,要证原不等式成立,等价于证明
d c b a b a d c b a a d d c c b b a +++-++++≥+++2
2222)(4 ① ----------------5分 事实上,)(2
2
22d c b a a d d c c b b a +++-+++
)2()2()2()2(2
222d a a d c d d c b c c b a b b a -++-++-++-+=
2222)(1
)(1)(1)(1
a d a d c d c
b
c b a b -+-+-+-= ②---10分
由柯西不等式知
2222
()()()()[]()a b b c c d d a a b c d b c d a ----++++++
2|)||||||(|a d d c c b b a -+-+-+-≥ ③----------15分
又由||||||||a b a d d c c b -≥-+-+-知
22)(4|)||||||(|b a a d d c c b b a -≥-+-+-+- ④
由②,③,④,
可知①式成立,从而原不等式成立. -------------20分
14(2010广东理数)20.(本小题满分为14分)一条双曲线2
212
x y -=的左、右顶点分别为A 1,A 2,点11(,)P x y ,11(,)Q x y -是双曲线上不同的两个动点。
1)求直线A 1P 与A 2Q 交点的轨迹E 的方程式;(2)若过点H(0, h)(h>1)的两条直线l 1和l 2与轨迹E 都只有一个交点,且12l l ⊥ ,求h 的值。
10.求不定方程21533654321=+++++x x x x x x 的正整数解的组数.
10解 令x x x x =++321,y x x =+54,z x =6,则1,2,3≥≥≥z y x .
先考虑不定方程2153=++z y x 满足1,2,3≥≥≥z y x 的正整数解.
1,2,3≥≥≥z y x Θ,123215≤--=∴y x z ,21≤≤∴z .
----------------------------------5分
当1=z 时,有163=+y x ,此方程满足2,3≥≥y x 的正整数解为)4,4(),3,7(),2,10(),(=y x .
当2=z 时,有113=+y x ,此方程满足2,3≥≥y x 的正整数解为)2,5(),(=y x . 所以不定方程2153=++z y x 满足1,2,3≥≥≥z y x 的正整数解为
)2,2,5(),1,4,4(),1,3,7(),1,2,10(),,(=z y x . ------------------------------------------10分
又方程)3,(321≥∈=++x N x x x x x 的正整数解的组数为2
1x C -,方程y x x =+54)2,(≥∈x N y 的正整数解的组数为1
1C -y ,故由分步计数原理知,原不定方程
的正整数解的组数为
81693036C C C C C C C C 1124132312261129=+++=+++. ------------------------------------------15分。