八年级数学一次函数的图象和性质

合集下载

一次函数的图象及性质

一次函数的图象及性质
极小值点
在某个点处,函数的导数为0,并且在该点左侧导数小 于0,右侧导数大于0,那么这个点就是极小值点。
一次函数的凹凸性
凹函数
如果在某个区间内,函数的二阶导数大于 0,那么这个函数在这个区间内是凹函数 。
VS
凸函数
如果在某个区间内,函数的二阶导数小于 0,那么这个函数在这个区间内是凸函数 。
04
一次函数与数列的关系
数列是一次函数图象上多个点的集合,表示在多个自变 量下函数的值的变化规律。通过对数列的研究,我们可 以找到一次函数图象上对应的多个点。
一次函数与数列的关系还表现在解决实际问题中,如等 差数列和等比数列的问题,通过建立一次函数模型可以 解决实际问题的最优解。
06
一次函数的扩展知识
一次函数与方程的关系还表现在求解未知数 的运算过程中,通过对方程的求解可以得到
一次函数的解析式。
一次函数与不等式的关系
不等式可以看作一次函数图象上某一段的横坐标,表 示在这一段上函数的值大于或小于零。通过对不等式 的求解,我们可以找到一次函数图象上对应的区间。
一次函数与不等式的关系还表现在解决实际问题中, 如时间、速度、价格等问题,通过建立一次函数不等 式模型可以解决实际问题的最优解。
为截距。
当自变量取值为`x`时,函数值 计算公式为`y = kx + b`。
绘制点
根据计算出的函数值和自变量的取值,绘制散点图。
对于每个自变量值,计算其对应的函数值,并在坐标系中绘制一个点。
连接点
使用线段或曲线连接散点图中的点。
对于一次函数,通常使用直线连接点,因为一次函数的图像是一条直线。
03
一次函数的应用
一次函数在代数中的应用
求解方程

八年级数学下册 第二十一章 一次函数 21.2 一次函数的图像和性质 第2课时 一次函数的性质课件

八年级数学下册 第二十一章 一次函数 21.2 一次函数的图像和性质 第2课时 一次函数的性质课件
第21章 一次函数
21.2 一次函数的图像(tú 和性质 xiànɡ)
第一页,共二十四页。
第21章 一次函数
第2课时(kèshí) 一次函数的性质
知识目标 目标突破 总结反思
第二页,共二十四页。
21.2 一次函数的图象(tú 和性质 xiànɡ)
知识(zhī shi)目标
1.经历(jīnglì)观察图像探索一次函数的增减性的过程,会应用一次函 数的增减性解决字母参数问题. 2.经历探索一次函数的图像和k,b的关系的过程,会运用一次函数的 图像和比例系数的关系求解字母参数.
D.k<0,b<0
[解析] ∵一次函数y=kx+b的图像(tú xiànɡ)经过一、三象限,∴k>0.又∵ 该图像与y轴交于正半轴,∴b>0.综上所述,k>0,b>0.故选A.
第八页,共二十四页。
21.2 一次函数的图象(tú 和性质 xiànɡ)
(2)2017·广安当k<0时,一次函数y=kx-k的图像不经过( )
第十六页,共二十四页。
21.2 一次函数的图象(tú 和性质 xiànɡ)
【归纳总结】一次函数的其他性质:
(1)一次函数 y=kx+b(k≠0,k,b 为常数)与 x 轴的交点坐
b 标为(-k,0),与
y
轴的交点坐标为(0,b);
(2)一次函数与不等式的关系:可以根据函数关系式将一个变
量满足的不等关系,转变为另一个变量满足的不等关系,从而确
第二十一页,共二十四页。
21.2 一次函数的图象(tú 和性质 xiànɡ) 2.已知直线y=2x+m不经过第二象限,求m的取值范围.
解:∵k=2>0,
∴直线经过第一、三象限. ∵直线不经过第二象限,
∴直线经过第一、三、四象限,故m<0.

沪科版数学八年级上册《一次函数的图象与性质》教学设计5

沪科版数学八年级上册《一次函数的图象与性质》教学设计5

沪科版数学八年级上册《一次函数的图象与性质》教学设计5一. 教材分析《一次函数的图象与性质》是沪科版数学八年级上册的一章内容。

本章主要让学生掌握一次函数的图象与性质,包括一次函数的图象、斜率、截距等概念,以及一次函数的单调性、奇偶性等性质。

本节课的教学设计共分为5个部分,分别是教材分析、学情分析、教学目标、教学重难点和教学方法。

二. 学情分析在八年级上册的学生已经学习了函数的基本概念和一次函数的定义,对函数有一定的认识。

但学生在函数图象和性质方面的理解还不够深入,需要通过本节课的教学来进一步巩固和拓展。

三. 教学目标1.让学生掌握一次函数的图象与性质,能够识别和分析一次函数的图象特征。

2.培养学生运用一次函数的性质解决实际问题的能力。

3.提高学生的数学思维能力和逻辑推理能力。

四. 教学重难点1.一次函数的图象特征和性质的理解。

2.如何运用一次函数的性质解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,通过引导学生思考和探索,激发学生的学习兴趣和主动性。

2.利用多媒体教学辅助工具,展示一次函数的图象和性质,帮助学生直观地理解和掌握。

3.结合具体例子,让学生通过实际操作和练习,巩固一次函数的图象与性质。

六. 教学准备1.多媒体教学辅助工具,如PPT、教学课件等。

2.相关的练习题和案例,用于巩固和拓展学生的知识。

七. 教学过程1. 导入(5分钟)教师通过一个实际问题引入一次函数的图象与性质的概念,激发学生的兴趣和好奇心。

例如,可以提出一个问题:如何在平面直角坐标系中表示两个人从不同地点出发,相向而行的运动情况?2. 呈现(15分钟)教师通过多媒体教学辅助工具,呈现一次函数的图象和性质,包括斜率、截距等概念,以及一次函数的单调性、奇偶性等性质。

同时,教师可以通过具体的例子,让学生观察和分析一次函数的图象特征。

3. 操练(10分钟)教师给出一些练习题,让学生运用一次函数的性质解决问题。

教师可以引导学生分组讨论和合作,共同解决问题。

八年级-人教版-数学-下册-[课件]第4课时 一次函数的图象与性质

八年级-人教版-数学-下册-[课件]第4课时  一次函数的图象与性质
当 k>0 时,y 随 x 的增大而增大; 当 k<0 时,y 随 x 的增大而减小.
直线 y=kx+b 的变化趋势和倾斜程度,都只由 k 决定.
思考
直线 y=2x+3 与直线 y=-x+3 有什
y
么共同点?一般地,你能从函数 y=kx+b
5
的图象上直接看出 b 的数值吗? y=-x+3 4
两条直线与 y 轴相交于同一
y=2x-1
(1,1) (1,0.5)
1
x
先画直线 y=2x 与 y=-0.5x,再分别平移它们,也能得到直
线 y=2x-1与 y=-0.5x+1.
y y=2x
y=-0.5x+1
y=2x-1
y=-0.5x
1
O1
x
-1
一次函数图象的两种画法
(1)两点法:当b≠0时,一般先选取(0,b)和
b k

y=kx+b (k≠0) b>0
k>0 b=0
b<0
b>0
k<0 b=0
b<0
图象
y Ox
y Ox
y Ox
y Ox
y Ox
y Ox
经过象限
第一、 二、三 象限
第一、 三象限
第一、 三、四 象限
第一、 第二、
二、四 四象限
象限
第二、 三、四 象限
例1 下列函数中,y 的值随 x 值的增大而增大的函数是( C ).
3
点(0,3).
y=-x
2
直线 y=kx+b与 y 轴交点的坐
1
标就是(0,b),一般能从函数
y=
-4-3-2-1O -1
kx+b的图象上直接看出 b 的数值.
-2

冀教版数学八年级下册21.2《一次函数的图象和性质》教学设计2

冀教版数学八年级下册21.2《一次函数的图象和性质》教学设计2

冀教版数学八年级下册21.2《一次函数的图象和性质》教学设计2一. 教材分析冀教版数学八年级下册21.2《一次函数的图象和性质》是本节课的教学内容。

一次函数是数学中的基础概念,对于学生来说,掌握一次函数的图象和性质对于进一步学习数学和其他学科具有重要意义。

本节课的内容包括一次函数的图象特点、斜率和截距的概念、以及一次函数的性质。

通过本节课的学习,学生将能够理解一次函数的图象和性质,并能够运用一次函数解决实际问题。

二. 学情分析学生在八年级上册已经学习了函数的基础知识,对于函数的概念和图像有一定的了解。

但是,对于一次函数的图象和性质的理解还需要进一步的加强。

学生对于图像的观察和分析能力有待提高,对于斜率和截距的概念也需要进一步的解释和理解。

此外,学生对于将数学知识应用于实际问题解决的能力也需要加强。

三. 教学目标1.了解一次函数的图象特点,能够描述一次函数的图象。

2.理解斜率和截距的概念,能够计算斜率和截距。

3.掌握一次函数的性质,能够运用一次函数解决实际问题。

4.培养学生的观察能力、分析能力和解决问题的能力。

四. 教学重难点1.一次函数的图象特点和性质的理解。

2.斜率和截距的计算和应用。

3.将一次函数应用于实际问题的解决。

五. 教学方法1.讲授法:通过讲解一次函数的图象和性质,斜率和截距的概念,以及一次函数的性质,使学生掌握相关知识。

2.案例分析法:通过分析实际问题,引导学生运用一次函数解决实际问题。

3.小组讨论法:通过小组讨论,培养学生的合作能力和解决问题的能力。

六. 教学准备1.PPT课件:制作一次函数的图象和性质的相关PPT课件,以便进行讲解和展示。

2.实际问题案例:准备一些实际问题,以便引导学生运用一次函数解决实际问题。

3.练习题:准备一些练习题,以便进行课堂练习和巩固知识。

七. 教学过程1.导入(5分钟)通过复习上节课的内容,引导学生回顾函数图像的特点,为新课的学习做好铺垫。

2.呈现(15分钟)讲解一次函数的图象特点,包括直线、斜率和截距的概念。

初中数学一次函数的图象和性质

初中数学一次函数的图象和性质

一次函数的图象和性质一、知识要点:1、一次函数:若两个变量x,y存在关系为y=kx+b (k≠0, k,b为常数)的形式,则称y是x的函数。

注意:(1)k≠0,否则自变量x的最高次项的系数不为1;(2)当b=0时,y=kx,y叫x的正比例函数。

2、图象:一次函数的图象是一条直线(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(- ,0)。

(2)正比例函数y=kx(k≠0)的图象是经过(0,0)和(1,k)的一条直线;一次函数y=kx+b(k≠0)的图象是经过(- ,0)和(0,b)的一条直线。

(3)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。

3、一次函数图象的性质:(1)图象在平面直角坐标系中的位置:(2)增减性:k>0时,y随x增大而增大;k<0时,y随x增大而减小。

4、求一次函数解析式的方法求函数解析式的方法主要有三种:一是由已知函数推导,如例题1;二是由实际问题列出两个未知数的方程,再转化为函数解析式,如例题4的第一问。

三是用待定系数法求函数解析式,如例2的第二小题、例7。

其步骤是:①根据题给条件写出含有待定系数的解析式;②将x、y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程,得到待定系数的具体数值;④将求出的待定系数代入要求的函数解析式中。

二、例题举例:例1、已知变量y与y1的关系为y=2y1,变量y1与x的关系为y1=3x+2,求变量y与x的函数关系。

分析:已知两组函数关系,其中共同的变量是y1,所以通过y1可以找到y与x 的关系。

解:∵y=2y1y1=3x+2,∴y=2(3x+2)=6x+4,即变量y与x的关系为:y=6x+4。

例2、解答下列题目(1)(甘肃省中考题)已知直线与y轴交于点A,那么点A的坐标是()。

(A)(0,–3)(B)(C)(D)(0,3)(2)(杭州市中考题)已知正比例函数,当x=–3时,y=6.那么该正比例函数应为()。

初二数学一次函数图象及性质(含答案)

初二数学一次函数图象及性质(含答案)

一次函数图象及性质中考要求例题精讲一、一次函数的概念一般地,形如y kx b =+(k ,b 是常数,0k ≠)的函数,叫做一次函数,当0b =时,即y kx =,这时即是前一节所学过的正比例函数.⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.二、一次函数的图象⑴一次函数y kx b =+(0k ≠,k ,b 为常数)的图象是一条直线.⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可. ①如果这个函数是正比例函数,通常取()00,,()1k ,两点; ②如果这个函数是一般的一次函数(0b ≠),通常取()0b ,,0b k ⎛⎫- ⎪⎝⎭,,即直线与两坐标轴的交点.⑶由函数图象的意义知,满足函数关系式y kx b =+的点()x y ,在其对应的图象上,这个图象就是一条直线l ,反之,直线l 上的点的坐标()x y ,满足y kx b =+,也就是说,直线l 与y kx b =+是一一对应的,所以通常把一次函数y kx b =+的图象叫做直线l :y kx b =+,有时直接称为直线y kx b =+.三、一次函数的性质1.一次函数图象的位置在一次函数y kx b =+中:⑴当0k >时,其图象一定经过一、三象限;当0k <时,其图象一定经过二、四象限.⑵当0b >时,图象与y 轴交点在x 轴上方,所以其图象一定经过一、二象限;当0b <时,图象与y 轴 交点在x 轴下方,所以其图象一定经过三、四象限.反之,由一次函数y kx b =+的图象的位置也可以确定其系数k 、b 的符号. 2.一次函数图象的增减性 在一次函数y kx b =+中:⑴当0k >时,一次函数y kx b =+的图象从左到右上升,y 随x 的增大而增大;⑵当0k <时,一次函数y kx b =+的图象从左到右下降,y 随x 的增大而减小.一、正比例函数的概念【例1】 下列函数中,哪些是一次函数?哪些是正比例函数?(1)15x y +=-(2)5xy =- (3)21y x =-- (4)35xy =--(5)()()212y x x x =--- (6)21x y -= 【答案】(2)是正比例函数,(1)(2)(4)是一次函数【例2】 已知3a y ax -=,若y 是x 的正比例函数,则a 的值是 . 【解析】 正比例函数的比例系数0a ≠且31a -= 【答案】4【例3】 已知y m +与x n +(m ,n 为常数)成比例,试判断y 与x 成什么函数关系? 【解析】 依题意,设y m k x n +=+()整理得:y kx kn m =+-【答案】y 是x 一次函数【巩固】 已知2y -与x 成正比例,当3x =时,1y =,求y 与x 之间的函数关系式,并判断它是不是正比例函数。

人教版八年级数学下册教案:19.2一次函数的图象与性质(教案)

人教版八年级数学下册教案:19.2一次函数的图象与性质(教案)
-从实际问题中抽象出一次函数关系,建立数学模型。
-利用一次函数图象解决实际问题时,如何正确识别自变量和因变量,以及如何确定函数的定义域和值域。
-理解并应用一次函数图象的平移变换,如何根据给定的k、b值ቤተ መጻሕፍቲ ባይዱ出相应的图象。
举例:对于单调性的难点,可以通过绘制不同斜率k的一次函数图象,让学生观察并总结斜率k的正负与图象走势的关系。对于建立数学模型,可以设置实际问题,如“某商品的价格与数量成线性关系,已知购买1个商品的价格,如何求购买n个商品的总价格?”通过问题引导学生思考如何建立一次函数模型。
五、教学反思
在本次教学过程中,我注意到学生们对一次函数的概念和图象性质的理解存在一些差异。有的学生能够迅速掌握斜率和截距的几何意义,但也有一些学生对如何将实际问题转化为一次函数模型感到困惑。这让我意识到,在今后的教学中,我需要更加关注学生的个体差异,提供更多的个性化指导。
在讲授新课的过程中,我发现通过引入日常生活中的例子来解释一次函数的概念,学生们更容易产生共鸣,这有助于他们更好地理解抽象的数学知识。然而,我也观察到在案例分析环节,部分学生在将问题抽象为数学模型时遇到了难题。这可能是因为他们缺乏将现实问题转化为数学语言的实践经验。因此,我计划在接下来的课程中,增加一些实际应用的练习,让学生有更多的机会去实践和锻炼。
-掌握一次函数图象的单调性,理解斜率k的正负与y随x变化的规律。
举例:讲解一次函数标准形式时,强调k、b的物理意义,k代表图象的斜率,b代表图象与y轴的交点。通过具体例题演示如何利用斜率k和截距b分析图象,如:给定k>0,b>0时,图象在第一象限的特征。
2.教学难点
-理解一次函数图象的单调性,如何判断y随x增大而增大或减小。
四、教学流程

《一次函数的图象和性质》教学设计优秀5篇

《一次函数的图象和性质》教学设计优秀5篇

《一次函数的图象和性质》教学设计优秀5篇一次函数的图象教案篇一一、学生起点分析八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系。

二、教学任务分析《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节。

本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。

第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质。

本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识。

为此本节课的教学目标是:1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象。

2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线。

3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力。

4.理解一次函数的代数表达式与图象之间的一一对应关系。

教学重点是:初步了解作函数图象的一般步骤:列表、描点、连线。

教学难点是:理解一次函数的代数表达式与图象之间的一一对应关系。

三、教学过程设计本节课设计了七个教学环节:第一环节:创设情境引入课题;第二环节:画一次函数的图象;第三环节:动手操作,深化探索;第四环节:巩固练习,深化理解;第五环节:课时小结;第六环节:拓展探究;第七环节:作业布置。

第一环节:创设情境引入课题内容:一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗?S=80t(t≥0)下面的图象能表示上面问题中的S与t的关系吗?我们说,上面的图象是函数S=80t(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。

5.4 一次函数的图象与性质八年级上册数学浙教版

5.4 一次函数的图象与性质八年级上册数学浙教版

解答题
考点1 ቤተ መጻሕፍቲ ባይዱ次函数图象的识别
典例5 [杭州中考] 在平面直角坐标系中,已知函数 的图象过点 ,则该函数的图象可能是( )
A. B. C. D.
C
[解析] ∵直线 和直线 分别交 轴于点 和点 , , .
选项
与 轴的交点坐标
交点是否在线段 上
A

B

C

D

链接教材 本题取材于教材第157页作业题第3题,考查了求一次函数图象与坐标轴的交点坐标.教材习题考查得较直接、简单,中考真题考查了多个一次函数图象与 <m></m> 轴的交点问题,是教材习题的变式.
②设A为 包,则B为 (包). 的数量不低于B的数量, , .设总利润为 元.根据题意,得 . , 随 的增大而减小,∴当 时, 取得最大值,最大值为2 800.∴当A为400包时,每日所获总利润最大,最大总利润为2 800元.
一次函数
性质
的值随着 值的增大而增大
的值随着 值的增大而减小
与 轴交点的位置
正半轴
负半轴
原点
正半轴
负半轴
原点
经过的象限
第一、二、三象限
第一、三、四象限
第一、三象限
第一、二、四象限
第二、三、四象限
第5章 一次函数
5.4 一次函数的图象与性质
学习目标
1.了解一次函数图象的意义.
2.会画一次函数的图象,利用函数图象了解一次函数的性质.
3.会求一次函数的图象与坐标轴的交点坐标.
4.会根据自变量的取值范围求一次函数的取值范围.
5.会利用一次函数的图象和性质解决简单的实际问题.
知识点1 函数的图象及其画法 重点

八年级数学下册一次函数的图象和性质知识点和典型例题讲解(含答案)

八年级数学下册一次函数的图象和性质知识点和典型例题讲解(含答案)

一次函数的图象和性质一、知识要点:1、一次函数:形如y=kx+b (k≠0, k, b为常数)的函数。

注意:(1)k≠0,否则自变量x的最高次项的系数不为1;(2)当b=0时,y=kx,y叫x的正比例函数。

2、图象:一次函数的图象是一条直线,(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(-,0)(2)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。

3、性质:(1)图象的位置:(2)增减性k>0时,y随x增大而增大k<0时,y随x增大而减小4.求一次函数解析式的方法求函数解析式的方法主要有三种(1)由已知函数推导或推证(2)由实际问题列出二元方程,再转化为函数解析式,此类题一般在没有写出函数解析式前无法(或不易)判断两个变量之间具有什么样的函数关系。

(3)用待定系数法求函数解析式。

“待定系数法”的基本思想就是方程思想,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程(组)来解决,题目的已知恒等式中含有几个等待确定的系数,一般就需列出几个含有待定系数的方程,本单元构造方程一般有下列几种情况:①利用一次函数的定义构造方程组。

②利用一次函数y=kx+b中常数项b恰为函数图象与y轴交点的纵坐标,即由b来定点;直线y=kx+b平行于y=kx,即由k来定方向。

③利用函数图象上的点的横、纵坐标满足此函数解析式构造方程。

④利用题目已知条件直接构造方程。

二、例题举例:例1.已知y=,其中=(k≠0的常数),与成正比例,求证y与x也成正比例。

证明:∵与成正比例,设=a(a≠0的常数),∵y=,=(k≠0的常数),∴y=·a=akx,其中ak≠0的常数,∴y与x也成正比例。

例2.已知一次函数=(n-2)x+-n-3的图象与y轴交点的纵坐标为-1,判断=(3-)是什么函数,写出两个函数的解析式,并指出两个函数在直角坐标系中的位置及增减性。

第11讲 一次函数的图象和性质

第11讲 一次函数的图象和性质

5.(2016·温州)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段 AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周 长为10,则该直线的函数表达式是( C) A.y=x+5 B.y=x+10
C.y=-x+5
D.y=-x+10
D 【例1】 (1)(2016·玉林)关于直线l:y=kx+k(k≠0),下列说法不正确的是( ) A.点(0,k)在l上 B.l经过定点(-1,0) C.当k>0时,y随x的增大而增大 D.l经过第一、二、三象限 (2)(2016·贵阳)已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点 ,则a与b的大小关系是____. a>b 【点评】 一次函数y=kx+b(k,b为常数,k≠0)是一条直线,当k>0时,图象 经过第一、三象限,y随x的增大而增大;当k<0时,图象经过第二、四象限,y随x 的增大而减小;图象与y轴的交点坐标为(0,b).
解:①对于直线 y= 3x+ 3,令 x=0,则 y= 3,令 y=0, 则 x=-1, 故点 A 的坐标为(0, 3), 点 B 的坐标为(-1, 0), 则 AO= 3, AO BO=1,在 Rt△ABO 中,∵tan∠ABO=BO = 3,∴∠ABO=60°; ②在△ABC 中,∵AB=AC,AO⊥BC,∴AO 为 BC 的中垂线, 即 BO=CO,则 C 点的坐标为(1,0),设直线 l 的解析式为 y=kx+b(k, k=- 3, 3=b, b 为常数),则 解得 即函数解析式为 y=- 3x+ 3. 0=k+b, b= 3,
(2)在平面直角坐标系中,已知点 A(27 ,3),B(4,7),直线 y=kx-k(k≠0) ≤k≤3 与线段 AB 有交点,则 k 的取值范围为 3 .

八年级数学一次函数的图象和性质

八年级数学一次函数的图象和性质

描点作图
将计算出的点在坐标轴上 标出,并使用平滑的曲线 连接这些点。
一次函数图象的特点
线性关系
一次函数图象是一条直线,函数 值随自变量的变化而均匀变化。
斜率
一次函数的斜率表示函数值随自 变量变化的速率,斜率k>0时, 函数值随自变量增大而增大;斜 率k<0时,函数值随自变量增大
而减小。
y轴上的截距
05 练习与巩固
基础练习题
2、已知一次函数$y = kx + b(k neq 0)$的图象经过第一、三、四 象限,则$k$的取值范围是( )
3、已知一次函数$y = kx + b(k neq 0)$的图象经过第一、三、四 象限,则$k$的取值范围是____.
1、已知函数$y = (2m + 1)x + m - 3$,若这个函数的图象不经过第 二象限,则$m$的取值范围是 ____.
一次函数的表示方法
一次函数可以用解析式表示为 $y=kx+b$,其中$k$是斜率,$b$是 截距。
也可以通过表格或图象来表示一次函 数的关系。
一次函数的基本性质
斜率
斜率$k$决定了函数的增减性,当$k>0$时,函数随$x$ 的增大而增大;当$k<0$时,函数随$x$的增大而减小。
单调性
一次函数的单调性由斜率决定,斜率$k>0$时,函数为增 函数;斜率$k<0$时,函数为减函数。
一次函数与坐标轴的关系
一次函数与x轴的交点
当y=0时,x的值即为与x轴的交点。
一次函数与坐标轴围成的三角形面积
可以通过截距和与x轴交点来计算三角形面积。
04 一次函数的应用
一次函数在实际问题中的应用

人教版数学八年级下册课件 19.2一次函数的图像和性质 (共28张PPT)

人教版数学八年级下册课件 19.2一次函数的图像和性质 (共28张PPT)
(3)若直线y=(3-k)x-k经过 第二、三、四象限,求k的取值 范围:__________(4分)
课堂小结
说一说你在这节课上都收 获到了什么知识?
时间是一个常数,但对勤 奋者来说,是一个“变数”.
你在学业上的收获与你 平时的付出是成正比的
求出y=kx+b(k,b为常数,k≠0) 的图像与x轴、y轴的交点,你发现 了什么规律?
结论:
函数y=kx+b(k,b为
常数,k≠0)的图像
与x轴交于(-
b k
,0)
与y轴交于(0,b)
用你认为最简单的方法画出函 数y=2x-1与y=-2x+l的图象.
思考:一次函数解析式y=kx+b (k, b是常数,k≠0)中,k的正负对 函数图象有什么影响?(3分钟)
即它可以看作由直线
y=x向_上___平移 2 个
1 2 3 x 单位长度而得到.
函数y=x-2的图象与y轴 交于点(0,-2),即它可以看
作由直线y=x向下 平移_2_
个单位长度而得到.
一次函数y=3x-4的图象是 什么形状?它与直线y=3x有什 么关系?
函数y=-2x+3的图像是由 哪个正比例函数的图像平移 得到的? 需要平移几个单位 长度?
y=-2x+1
y
o·· x
y=-2x-1
k的取值范围 b的取值范围
的象限
一、三、二
k>0
b<0
一、三、四
k<0
b>0
二、四、一
k<0
b<0
二、四、三
比一比看谁记得快,你发现 什么规律了么?
直线y=2x-3与x轴交点坐标为_(_23__,0_)_, 与y轴交点坐标为_(__0_,_-_3_)__ 图象经过第__一_、__三_、__四__象限, y随x增大而__增__大_______.

八年级数学一次函数的图象与性质优秀课件

八年级数学一次函数的图象与性质优秀课件

考点聚焦
归类探究
┃ 一次函数的图象与性质
解 析 将直线 y=2x-1 向上平移 2 个单位长度得到的 表达式为 y=2x-1+2,即 y=2x+1;再向右平移 1 个单 位长度得到的表达式为 y=2(x-1)+1,即 y=2x-1.
失分盲点
一次函数图象的平移方向易弄反 直线y=kx+b(k≠0)在平移过程中k值不变.平移的规
m>nx+4n>0的整数解为
( D)
A.-1
B.-5
图10-3 C.-4
考点聚焦
归类探究
D.-3
┃ 一次函数的图象与性质
解 析 满足不等式-x+m>nx+4n>0就是直线y=- x+m位于直线y=nx+4n的上方且位于x轴的上方的图象, 据此求得自变量的取值范围即可.
∵直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标 为-2,
由题意可得12×-2k×2=2,则k=±1. 所以一次函数的解析式为y=x+2或y=-x+2.
考点聚焦
归类探究
┃ 一次函数的图象与性质
考点5 由待定系数法求一次函数的表达式
因为在一次函数y=kx+b(k≠0)中有两个未知系数k和b,所 以要确定其表达式,一般需要两个条件,常见的是已知两点
P1(a1,b1),P2(a2,b2),将其坐标代入得
y=kx + k>0,b=0
b(k≠0) k>0,b<0
第_一__、__二__、__三__象_ 限
第_一__、__三__象__限___
y随x增 大而增大
第一__、___三__、__四__象_ 限
考点聚焦
归类探究
┃ 一次函数的图象与性质
函数 字母取值
y=kx +
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数 名称
函数解析式 和自变量的 取值范围
图象
性质
y 一 次 函 数 y=kx+b (k≠0) x取 一切实数 k<0 o k>0 o
当k>0时, y 随x 的增大 x 而增大
y
当k<0时, y 随x 的增大 x 而减小
1. 下列函数中,y随x的增大而增大的是( C ) A. y=–3x C. y=√3 x– 4 B. y= –0.5x+1 D. y= –2x-7
解:在一次函数y=-3x+3920 中,K<0 所以y随着 x的增大而减小 因为0≤x≤70 ,所以当 x = 70 时,y的值最小 当x = 70 时,y = -3 x +3920 = -3×70+3920=3710(元)
当甲仓库向A工地运送70吨水泥,则他向B工地运送 30吨水泥;乙仓库不向A工地运送水泥,而只向B工地运送 80吨时,总运费最省
解:设P表示今后10年平均每年造林的公顷数,则 6100≤P≤6200。 设6年后该地区的造林面积为S公顷,则 S=6P+120000 ∴K=6>0 ,s随着p的增大而增大 ∵p=6100时, s= 6×6100+120000=156600 p=6200时, s=6×6200+120000=157200 即:156600≤s≤157200
y1>y2>y3 . 连接y1, y2, y3为_________
今天我们学会了…
一次函数的性质 对于一次函数y=kx+b(k,b为常数,且 k≠0),当k﹥0时,y随x的增大而增大; 当k﹤0时,y随x的增大而减小。 会根据自变量的取值范围,求一次 函数的取值范围
基本方法:(1)几何图象法;
(2)代数解析法:
(1)设甲仓库运往A地水泥x吨,求总运费y关于x 的函数解析式,并画出图象
解:由题意可得 y = 1.2×20 x + 1×25×(100 - x)+1.2×15×(70-x) +0.8×20[110-(100-x)] = -3x+3920 (0≤x≤70)
问题(2):当甲、乙仓库各运往A、B两工地多少吨水泥时, 总运费最省?
2. 一次函数y=(a+1)x+5中,y的值随x的值增大而
a< –1 . 减小,则a满足________
3. 设下列函数中,当x=x1时,y=y1,当x=x2时,
y=y2,用“<”,“>”填空:
> y1 对于函数y=5x,若x2>x1,则y2 ___ > 1,则y2 < y1 对于函数y=-3x+5,若x2 __x 4. 对于一次函数y= x+3,y=-x+3, 当1≤x≤4时, y的取值范围 4≤y≤2 7 -1 ; 当x>4时, 是___________. < -1 当x____ < 1 时, y>2. y____;
答: 6年后该地区的造林面积达到15.66~15.72万公顷
1. 已知A(-1, y1), B(3, y2), C(-5, y3)是一次函数
y=-2x+b图象上的三点,用“<”连接y1, y2, y3
y2 <y1< y3 . 为_________ 2. 已知A(x1, y1), B(x2, y2), C(x3, y3)是一次函数 y=-2x+b图象上的三点,当x1<x2<x3时,用“<”
例3:要从甲乙两个仓库向AB两工地运送水泥,已知 甲仓库可运出100吨水泥,乙仓库可运出80吨水泥;A 工地需70吨水泥,B工地需110吨水泥。两仓库到A,B 两工地的路程和每吨每千米的运费如下表:
路程(千米) 甲仓库 乙仓库 A工 地 B工 地 20 25 15 20 运费(元/吨· 千米) 甲仓库 乙仓库 1.2 1 1.2 0.8
你发现这三个 函数图象有什 么相同点吗?
y = -2x +3
y =- 2x
y = -2x -3
y=-2x y=-2x-3 你发现这三个 函数图象有什 么相同点吗?
2
.
· . . · .-. . . . . . . . 0· ·
1 2 1 2
. . . . . . . . . . . . . . .
S=6P+12000 (6100≤ P≤6200) 本例所求的y值是一个确定的值还是一个范围?
当P≥6100时,S如何变化? 当P≤6200时,S如何变化?
例2 我国某地区现有人工造林面积12万公顷,规划 今后10年平均每年新增造林6100~6200公顷,请 估算6年后该地区的造林总面积达到多少万公顷?
4.一次函数
1 坐标(0,1),且平行于直线 y x ,求这 2
个一次函数的解析式. 解:∵
y kx b 的图象与 y 轴的交点
k
又∵
1 y kx b 平行于直线 y x 2 1
2
图象与 y 轴的交点坐标(0,1)
b 1
1 y x 1 2
y = 2x -3
y=2x+3
y=2x+3
. . . . . . . . . . . . . . .
3
2
·
y
y=2x
·
y=2x-3
y=2x
1
. . . . . . . . . . . . . . . - 2 -1 0 2来自1· · ·-1
-2
-3
x
y=2x-3
平行的直线 从左向右“上升”的直 线
·
函数:
y= -3x+3920 (0≤x≤70) 的图象如右图 所示:
y
3920 3900
(元)
3800
3710
说明:右图的 纵轴中3700 以下的刻度省 略.
3700
40 60
80
(吨)
x
问题(2):当甲、乙仓库各运往A、B两工地多少吨 水泥时,总运费最省?
; / 第一商务模特网
及利用图象和性质解决简单的问题
减少 。 1、 对于函数y=5x+6,y的值随x的值减小而______
2、一次函数y=kx+2的图象经过点(1,1),那么这个 一次函数( B )
A. y随x的增大而增大。 C. 图象经过原点 B.y随x的增大而减小 D.图象不经过第二象限
3、点A(-3,y1)、点B(2,y2)都在直线y=–4x+3上, D 则y1与y2的关系是( ) A y1 ≤ y 2 B y1 = y 2 C y 1< y 2 D y 1 > y 2
-3 -2 -1
y
7 6 5 4 3 2 1
y=x+3
o
-1 -2 -3
1
2
3
4
5
6
x
y=-x+3
例2 我国某地区现有人工造林面积12万公顷,规划 今后10年平均每年新增造林6100~6200公顷,请 估算6年后该地区的造林总面积达到多少万公顷? 分析: 问题中的变量是什么?
新增造林面积P(6100≤ P≤6200) 造林总面积S 二者有怎样的关系?(用怎样的函数解析式来表示)
3
·
. . . x
y
-1
-2
平行的直线 从左向右“下降”的直 线
-3
·
·
y=-2x+3
y
Y=2x+3 3
Y=-2x+3
y
-1.5
· ·
0
·
3
x
0
·
1.5
x
观察以上两个函数图像,函数值y随自变量 x的变化有什么变化规律?
k 0时, y 随x的增大而增大 k 0时, y 随x的增大而减小

魔吗?想要做壹次好人都抪可得? 马开深吸咯壹口气/摇咯摇头/也罢/既然你们执意要我做魔/我又何必心生善意/" 马开也抪说话/壹步步走向这些修行者/它依旧没有主动出手/因为它说过/这些人抪出手就能走/ 这些人着马开走向它们/有修行者情抪自禁の后退/但很快就稳定咯 身影/暴动出自己最强の力量/都锁定到马开身上/ "趁着它重伤/杀咯它/得到圣夜宝物/足以让我们实力暴涨咯/特别确定圣液/能改变我们天赋/说抪定将来の强者路上/也能有我们の机会/" 很多人被诱惑到咯/有人终于忍抪住/冲击出壹股强大の力量/这股力量直接卷出去/攻向马 开胸口/准备要马开伤上加伤/ 但很快/它们就为自己の举动后悔咯/ 为咯(正文第壹二六七部分后悔) 第壹二六八部分杀 马开剑芒暴动/身影快如闪电/杀意凛然/剑芒粗大直冲云霄/卷杀而去/没有修行者能避开/壹佫佫被马开の剑芒贯穿身体/血雨纷飞/更新最快最稳定) "它没 受伤/" 这些修行者惊恐咯/做梦也没有想到马开到壹佫六尘境修行者自爆下未曾受伤/ 未曾受伤の马开绝对抪确定它们能匹敌の/壹佫佫身影跃动/想要逃离这里/可马开没有给它们机会/剑芒四射/笼罩这壹片虚空/壹佫佫修行者被马开贯穿/它们根本非马开の对手/ 有修行者拼命 /冲到马开面前自爆/但六尘境都未曾重创马开/这些人の自爆又有什么用/ 马开の剑芒暴动/抪管挡到它面前の确定器物还确定什么/都被马开の剑芒贯穿/剑芒带着の意太过轻视咯/摧毁壹切/没有什么能抵挡马开/ 壹佫佫修行者倒到血泊中/马开屠戮间/血雨纷飞/活着の修行者都 骇破咯胆囊/着马开胸口の血迹/觉得这确定马开故作の疑症/就确定为咯要诱杀它们/ 但它们也抪想想/以它们の实力和身份/有什么值得马开诱杀の/ "放过我/求求放过我/" 有修行者承受抪住这血腥味/它噗咚跪倒到地上/磕头读)袅说xs哀求马开放过它/ 回答对方の确定壹道剑 芒/剑芒贯穿它の胸口/它直直の倒到地上/眼睛瞪の巨大/惊恐压制抪住/ "拼咯/" 这些人见求饶无用/真の拼命咯/抪
相关文档
最新文档