湖南省张家界市2017-2018学年高一数学下学期期末联考试题(B)
2017-2018学年高二数学下学期期末考试试题理(2)
数学试卷(理数)时间:120分钟总分:150分一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知为实数,,则的值为A.1B.C.D.2.“”是“直线和直线平行”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件3.下列说法正确的是A.一个命题的逆命题为真,则它的逆否命题一定为真B.“”与“”不等价C.“若,则全为”的逆否命题是“若全不为0,则”D.一个命题的否命题为假,则它的逆命题一定为假4.若,,,,则与的大小关系为A. B. C. D.5.已知命题及其证明:(1)当时,左边,右边,所以等式成立;(2)假设时等式成立,即成立,则当时,,所以时等式也成立.由(1)(2)知,对任意的正整数等式都成立.经判断以上评述A.命题,推理都正确B.命题正确,推理不正确C.命题不正确,推理正确D.命题,推理都不正确6.椭圆的一个焦点是,那么等于A.B.C.D.7.设函数(其中为自然对数的底数),则的值为A. B. C. D.8.直线(为参数)被曲线截得的弦长是A. B. C. D.9.已知函数在上为减函数,则的取值范围是A. B. C. D.10.一机器狗每秒前进或后退一步,程序设计师让机器狗以前进步,然后再后退步的规律移动,如果将此机器狗放在数轴的原点,面向数轴的正方向,以步的距离为个单位长,令表示第秒时机器狗所在位置的坐标.且,那么下列结论中错误的是A. B.C. D.11.已知A、B、C、D四点分别是圆与坐标轴的四个交点,其相对位置如图所示.现将沿轴折起至的位置,使二面角为直二面角,则与所成角的余弦值为A.B.C.D.12.点在双曲线上,、是这条双曲线的两个焦点,,且的三条边长成等差数列,则此双曲线中等于A.3B.4C.5D.6二、填空题(每小5分,满分20分)13.若,则__________.14.在三角形ABC中,若三个顶点坐标分别为,则AB边上的中线CD的长是__________.15.已知F1、F2分别是椭圆的左右焦点,A为椭圆上一点,M为AF1中点,N为AF2中点,O为坐标原点,则的最大值为__________.16.已知函数,过点作函数图象的切线,则切线的方程为。
2017-2018学年高一下学期期末考试数学(A)试题含解析
2017-2018学年高一下学期期末考试数学(A)试题含解析张家界市2018年普通高中一年级第二学期期末联考数学试题卷(A)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的,请将所选答案填涂在答题卷中对应位置.1. 设集合则A. B. C. D.【答案】A【解析】∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3).故选A.点睛:1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2. 直线的倾斜角为C. D.【答案】C【解析】一般式化为斜截式:,故k=,故倾斜角为.故选C.3. 数列…的一个通项公式是A. B.C.D.【答案】C【解析】由已知a 1=1,可排除A 、B 、D ,故选C. 4. 直线与直线平行,则它们的距离为A. B. C. D.【答案】B【解析】直线3x+4y ﹣3=0 即6x+8y ﹣6=0,它直线6x+my+14=0平行,∴m=8,则它们之间的距离是 d==故答案为:2.学¥科¥网...5. 已知,则下列结论正确的是A. B.C.D.【答案】B 【解析】∵,∴.故选:B6. 在空间直角坐标系,给出以下结论:①点关于原点的对称点的坐标为;②点关于平面对称的点的坐标是;③已知点与点,则的中点坐标是;④两点间的距离为. 其中正确的是A. ①②B. ①③C. ②③D. ②④【答案】C 【解析】对于①点关于原点的对称点的坐标为,故①错误;对于②点关于平面对称的点的坐标是,故②正确;对于④两点间的距离为. 故④错误.故选C.7. 如图为一个几何体的三视图,正视图和侧视图均为矩形,俯视图为正三角形,尺寸如图,则该几何体的全面积为A. B.C. D.【答案】C【解析】由三视图可以知道:该几何体是一个正三棱柱,高为2,底面正三角形的一边上的高为.底面正三角形的边长为2.该几何体的全面积所以C选项是正确的.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.8. 已知等比数列满足,则等于A. 5B. 10C. 20D. 25【答案】D【解析】,故选D.9. 若等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为A. B. C. D.【答案】D【解析】设顶角为C,∵l=5c,∴a=b=2c,由余弦定理得:.学¥科¥网...故答案为:D.10. 已知数列中,,则能使的可以等于A. B. C. 2018 D.【答案】C【解析】,,,同理可得:,,,,,能使的n可以等于16.所以C选项是正确的.11. 在正四面体中,为的中点,则CE与所成角的余弦值为A. B. C. D.【答案】A【解析】如图,取AD中点F,连接EF,CF,∵E为AB的中点,∴EF∥DB,则∠CEF为异面直线BD与CE所成的角,∵ABCD为正四面体,E,F分别为AB,AD的中点,∴CE=CF.设正四面体的棱长为2a,则EF=a,CE=CF=.在△CEF中,由余弦定理得:=.故选:A.12. ,动直线过定点A,动直线过定点,若与交于点(异于点),则的最大值为A. B. C. D.【答案】B【解析】由题意可得:A(1,0),B(2,3),且两直线斜率之积等于﹣1,∴直线x+my﹣1=0和直线mx﹣y﹣2m+3=0垂直,则|PA|2+|PB|2=|AB|2=10≥.即.故选B.点睛:含参的动直线一般都隐含着过定点的条件,动直线,动直线l2分别过A(1,0),B(2,3),同时两条动直线保持垂直,从而易得|PA|2+|PB|2=|AB|2=10,然后借助重要不等式,得到结果.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卷中对应题号后的横线上.13. 在三角形中,内角所对的边分别为,若,且,则角_________.【答案】【解析】,,所以角为钝角,又,所以学¥科¥网...14. 圆的半径为,其圆心与点关于直线对称,则圆的方程为________.【答案】【解析】试题分析:∵圆心与点关于直线对称,∴圆心为,又∵圆的半径为,∴圆的标准方程为.考点:圆的标准方程.15. 已知球,过其球面上三点作截面,若点到该截面的距离是球半径的一半,且,则球的表面积为_________.【答案】【解析】如图,设球的半径为r,O′是△ABC的外心,外接圆半径为R,则OO′⊥面ABC.AB=BC=2,∠B=120°,在Rt△OO'B中,则sin∠OBO'=.在△ABC中,由正弦定理得=2R,R=2,即O′B=2.在Rt△OBO′中,由题意得r2﹣r2=4,得r2=.球的表面积S=4πr2=4π×=.16. 某企业生产甲,乙两种产品均需用两种原料,已知生产1吨每种产品需用原料及每天原料的可用限额如下表所示,如果生产1吨甲,乙产品可获利润分别为3万元、4万元,则该企业可获得最大利润为__________万元.【答案】18【解析】设每天生产甲乙两种产品分别为x,y吨,利润为z元,则,目标函数为 z=3x+4y.作出二元一次不等式组所表示的平面区域(阴影部分)即可行域.由z=3x+4y得y=﹣x+,平移直线y=﹣x+,由图象可知当直线经过点B时,截距最大,此时z最大,解方程组,解得,即B的坐标为x=2,y=3,=3x+4y=6+12=18.∴zmax即每天生产甲乙两种产品分别为2,3吨,能够产生最大的利润,最大的利润是18万元,故答案为:18.点睛:(1)利用线性规划求最值的步骤①在平面直角坐标系内作出可行域;②考虑目标函数的几何意义,将目标函数进行变形;③在可行域内平行移动目标函数变形后的直线,从而确定最优解;学¥科¥网...④将最优解代入目标函数即可求出最大值或最小值.求线性目标函数最值应注意的问题:①若,则截距取最大值时,也取最大值;截距取最小值时,也取最小值.②若,则截距取最大值时,取最小值;截距取最小值时,取最大值.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. 已知直线和点,设过点且与垂直的直线为.(1)求直线的方程;(2)求直线与坐标轴围成的三角形的面积.【答案】(1) ;(2) .【解析】试题分析:(1)利用垂直关系推得斜率为,故直线方程为;(2)由(1)知与坐标轴的交点分别为与,由此易得面积.试题解析:(1)由题可知:斜率为,且过,所以的方程为即(2)由(1)知与坐标轴的交点分别为与所以学¥科¥网...18. 中,三内角所对的边分别为,若. (1)求角的值;(2)若,三角形的面积,求的值.【答案】(1) ;(2) .【解析】试题分析:(1)由及内角和定理,易得,故;(2)由余弦定理及三角形面积公式,易得b、c的方程组,解之即可.试题解析:(1)由题意得:,即;(2)由已知得:①②解之得.19. 等差数列的前项和记为,已知.(1)求数列的通项公式;(2)求的最大值.【答案】(1) ;(2) .【解析】试题分析:(1)由题意布列首项与公差的方程组,从而易得数列通项公式;(2)根据,易得.试题解析:(1)由题意,故;(2)20. (1)若不等式的解集为. 求的值;(2)若不等式对任意实数都成立,求实数的取值范围.【答案】(1) ;(2) .【解析】试题分析:(1)利用三个二次关系建立a的方程,解之即可;(2)讨论二次项系数,抓住抛物线的开口及判别式,问题迎刃而解.试题解析:(1)由题可知,所以;(2)当时显然成立。
湖南省张家界市高二上学期化学期末考试试卷
湖南省张家界市高二上学期化学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分)关于物质分类正确的组合是()组合分类碱酸纯净物碱性氧化物酸性氧化物A烧碱H2SO4盐酸CaO SO3B纯碱HCl冰醋酸Na2O2CO2C NaOH CH3COOH冰水混合物Na2O SO2D KOH HNO3胆矾Al2O3COA . AB . BC . CD . D【考点】2. (2分) (2018高二下·黑龙江期末) 氯仿常因保存不慎而被氧化,产生剧毒物光气:,下列说法错误的有A . 分子为含极性键的非极性分子B . 分子中含有3个键、一个键,中心C原子采用杂化C . 分子中所有原子的最外层电子都满足8电子稳定结构D . 使用前可用硝酸银稀溶液检验氯仿是否变质【考点】3. (2分) (2016高二上·商州期中) 已知反应A+B=C+D的能量变化如图所示,下列说法正确的是()A . 该反应为放热反应B . 该反应为吸热反应C . 反应物的总能量高于生成物的总能量D . 该反应只有在加热条件下才能进行【考点】4. (2分) (2020高二上·大庆开学考) 下列物质中,不能使酸性KMnO4溶液褪色的是()①② ③ ④CH3CH2OH ⑤CH2=CH-COOHA . ①③B . ①②⑥C . ①③④D . ②③④⑤【考点】5. (2分)(2019·宝山模拟) 在测定硫酸铜晶体中结晶水含量的实验中,下列操作会导致结果偏大的是()A . 坩埚内壁附有不挥发性杂质B . 加热时晶体未完全变白就停止加热C . 加热过程中有晶体溅出D . 未做恒重操作【考点】6. (2分) (2020高一下·大庆期末) 下图是利用乙烯催化氧化制备乙醛同时能获得电能的一种装置,其电池总反应为:2CH2=CH2+O2→2CH3CHO。
2017-2018学年度第二学期期末考试初一数学试题及答案
2017—2018学年度第二学期期末考试初一数学试题一、填空题(每空1分,共22分)1、如果下降5米,记作-5米,那么上升4米记作()米;如果+2千克表示增加2千克,那么-3千克表示()。
2、从80减少到50,减少了()%;从50增加到80,增加了()%。
3、某班有60人,缺席6人,出勤率是()%。
4、如果3a=5b(a、b≠0),那么a:b=()。
5、一个圆锥的体积12dm3 ,高3dm,底面积是()。
6、甲、乙两数的比是5:8,甲数是150,乙数是()。
7、比较大小:-7○-5 1.5○5 20○-2.4 -3.1○3.18、某服装店一件休闲装现价200元,比原价降低了50元,相当于打()折。
照这样的折扣,原价800元的西装,现价()元。
9、一个圆柱和一个圆锥的体积相等,底面积也相等,圆柱的高是4米,圆锥的是高()米。
10、一桶油连桶称7.5千克,用去一半油后,连桶称还重4.5千克。
桶重()千克,油重()千克。
11、13只鸡放进4个鸡笼里,至少有()只鸡要放进同一个笼子里。
12、一个圆柱形的木料,底面半径是3厘米,高是8厘米,这个圆柱体的表面积是()平方厘米。
如果把它加工成一个最大的圆锥体,削去部分的体积是()立方厘米。
13、找出规律,填一填。
3,11,20,30,(),53,()。
二、判断题:对的在括号打√,错的打×。
(每小题1分共5分)1、0是负数。
()2、书店以50元卖出两套不同的书,一套赚10%,一套亏本10%,书店是不亏也不赚。
()3、时间一定,路程和速度成正比例。
()4、栽120棵树,都成活了,成活率是120%。
()5、圆柱的体积大于与它等底等高的圆锥的体积。
()三、选择题(每题3分,共15分)1、规定10吨记为0吨,11吨记为+1吨,则下列说法错误的是()A、9吨记为-9吨B、12吨记为+2吨C、6吨记为-4吨D、+3吨表示重量为13吨2、在a12=13中,a的值是()A、12B、4C、6D、83、把长1.2米的圆柱形钢材按2:3:7截成三段,表面积比原来增加56平方厘米,这三段圆钢中最长的一段比最短的一段体积多()A、700立方厘米B、800立方厘米C、840立方厘米D、980立方厘米4、小刚把1000元钱按年利率2.4%存入银行,存期为两年,那么计算到期时她可以从银行取回多少钱(不计利息税),列式正确的是()。
湖南省张家界市慈利县2017_2018学年七年级数学下学期期中教学质量检测试题新人教版2018052
湖南省张家界市慈利县2017-2018学年七年级数学下学期期中教学质量检测试题考生注意:本试卷共三道大题,满分100分,时量120分钟。
一、选择题(每小题3分,共8道小题,合计24分) 1.方程组13x y x y -=⎧⎨+=⎩的解是A .21x y =⎧⎨=⎩B .21x y =-⎧⎨=⎩C .21x y =⎧⎨=-⎩D .21x y =-⎧⎨=-⎩2.下列计算中,正确的是A .235a b ab ⨯=B .326(3)6a a =C .6212a a a ⨯=D .2326a a a -⨯=-3.下列多项式乘法中,能用平方差公式进行计算的是 A .()()x y x y +--B .()()a b a b ---C .(23)()x y x y +-D .()()m n n m --4.若22(3)16x k x +-+是完全平方式,则k 的值是 A .5-B .1-C .7或1-D .75.下列各式中,不可以用公式分解因式的是 A .22a b -+B .244x x -+C .22139a a -+ D .224x x ++6.若2(3)()15x x n x mx ++=+-,则m 的值为 A .5-B .5C .2-D .27.将一张面值100元的人民币,兑换成10元(张)或20元(张)的零钱,兑换方案有 A .6种 B .7种C .8种D .9种8.不论x ,y 为何有理数,2210845x y x y +-++的值一定为 A .零 B .正数 C .负数 D .非负数二、填空题(每小题2分,共8道小题,合计16分)9.已知方程组222x y kx y +=⎧⎨+=⎩的解满足2x y +=,则k = .10.若2(5)40a b ++-=,则2018()a b += .11.方程34x y -=中,有一组解x 与y 互为相反数,则3x y += .12.分解因式:221x x -+= . 13.分解因式:34x x -= . 14.计算:322(2)(3)x y x y -⋅= .15.清明节期间,七(1)班全体同学分成若干小组到革命传统教育基地缅怀先烈. 若每小组7人,则余下3人;若每小组8人,则少5人,由此可知该班共有 名同学.16.已知26a ab +=,23ab b +=,1a b -=,那么a b += .三、解答下列各题(60分)17.(6分)先化简,再求值22()()()()a b a b a b a b +--++-,其中2a =,12b =.18.(6分)已知一次式y kx b =+,当1,2x =时,y 的值分别为1,3,求k ,b 各等于多少?19.(6分)已知5a b +=,6ab =,求下列各式的值. (1)22a b +; (2)223a b ab +-;20.(6分)已知:2(1)(3)x x ax bx c -+=++,求代数式93a b c -+的值.21.(6分)探索规律:2(1)(1)1x x x -+=- 23(1)(1)1x x x x -++=-324(1)(1)1x x x x x -+++=-…… (1)试求432(1)(1)x x x x x -++++的值;(2)试求25+24+23+22+2+1的值;(3)试猜想22018+22017+22016+22015+…+22+2+1的值;22.(6分)把下列各式因式分解 (1)214m m ++ (2)22()()x a b y b a -+-23.(6分)甲、乙两人在相距50千米两地同时出发,若同向而行,乙10小时追上甲;若相向而行,2小时两人相遇.求甲、乙两人每小时各行多少千米?24.(8分)为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费),规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.以下是张磊家2014年3月和4月所交电费的收据,问该市规定的第一阶梯电价和第二阶梯电价分别为每度多少元?25.(10分)阅读材料题:在因式分解中,有一类形如2()x m n x mn +++的多项式,其常数项是两个因数的积,而它的一次项系数恰是这两个因数的和,则我们可以把它分解成2()()()+++=++.x m n x mn x m x n例如:22++=+++⨯=++.56(23)23(2)(3)x x x x x x运用上述方法分解因式:(1)268--;x xx x++;(2)26(3)22x xy y-+;56(4)请你结合上述的方法,对多项式32--进行分解因式.23x x x二○一八年春季期中教学质量检测七年级数学参考答案一、选择题(每小题3分,共8道小题,合计24分)题号 1 2 3 4 5 6 7 8 答案ADBCDCAB二、填空题(每小题2分,共8道小题,合计16分) 9、410、111、212、2(1)x -13、(2)(2)x x x +-14、536x y -15、5916、3三、解答下列各题(60分)17、22144a b ab --=-18、2,1k b ==- 19、(1)13 (2)5-20、021、(1)51x - (2)621-(3)201921-22、(1)21()2m + (2)()()()a b x y x y -+-23、解:设甲每小时行x 千米,乙每小时行y 千米, 则可列方程组为1010502250y x y x -=⎧⎨+=⎩,解得1015x y =⎧⎨=⎩,答:甲每小时行10千米,乙每小时行15千米.24、解:设第一阶梯电价每度x 元,第二阶梯电价每度y 元, 由题意可得,2002011220065139x y x y +=⎧⎨+=⎩,解得0.50.6x y =⎧⎨=⎩.答:第一阶梯电价每度0.5元,第二阶梯电价每度0.6元.25、(1)(2)(4)x x ++(2)(2)(3)x x +- (3)(2)(3)x y x y --(4)(3)(1)x x x -+附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。
2017-2018学年湖南省张家界市七年级(下)期中数学模拟试卷
2017-2018学年湖南省张家界市七年级(下)期中数学模拟试卷一.选择题(共8小题,满分24分,每小题3分)1.由方程组A.x+y=1可得出x与y的关系是()B.x+y=﹣1C.x+y=7D.x+y=﹣72.下列运算错误的是()A.(﹣a)(﹣a)2=﹣a3B.﹣2x2(﹣3x)=﹣6x4C.(﹣a)3(﹣a)2=﹣a5D.(﹣a)3(﹣a)3=a63.若(2a+3b)()=4a2﹣9b2,则括号内应填的代数式是()A.﹣2a﹣3b B.2a+3b C.2a﹣3b D.3b﹣2a4.已知x2﹣8x+a可以写成一个完全平方式,则a可为()A.4B.8C.16D.﹣165.将(x+3)2﹣(x﹣1)2分解因式的结果是()A.4(2x+2)B.8x+8C.8(x+1)D.4(x+1)6.使(x2+px+8)(x2﹣3x+q)乘积中不含x2与x3项的p、q的值是()A.p=0,q=0B.p=3,q=1C.p=﹣3,q=﹣9D.p=﹣3,q=17.王芳同学到文具店购买中性笔和笔记本,中性笔每支0.8元,笔记本每本1.2元,王芳同学花了10元钱,则可供她选择的购买方案的个数为(两样都买,余下的钱少于0.8元)()A.6B.7C.8D.98.如果实数x,y满足等式2x+x2+x2y2+2=﹣2xy,那么x+y的值是()A.1B.0C.1D.2二.填空题(共8小题,满分16分,每小题2分)9.已知方程组的解满足x+y=2,则k的值为.10.如果|x+1|+(y+1)2=0,那么代数式x2017﹣y2018的值是.11.若方程组(m为常数)的解满足5x+3=﹣y,则m=.12.因式分解:16x4﹣y4=.“13.分解因式:a 3﹣a =.14.计算:2x 2xy = .15.一次智力竞赛有 20 题选择题,每答对一道题得 5 分,答错一道题扣 2 分,不答题不给分也不扣,小亮答完全部测试题共得 65 分,那么他答错了道题.16.设 S =(1+2)(1+22)(1+24)(1+28)(1+216),则 S +1=.三.解答题(共 9 小题,满分 60 分)17.先化简,再求值:(x +2y )(x ﹣2y )+(20xy 3﹣8x 2y 2)÷4xy ,其中 x =2018,y =2019.18.解方程(1)(2)19.已知(a +b )2=19,ab =2,求:(1)a 2+b 2 的值;(2)(a ﹣b )2 的值.20.已知:a +b =4(1)求代数式(a +1)(b +1)﹣ab 值;(2)若代数式 a 2﹣2ab +b 2+2a +2b 的值等于 17,求 a ﹣b 的值.21.已知 12+22+32+…+n 2= n (n +1)( 2n +1)(n 为正整数).求 22+42+62+…+502 的值.22.分解因式:(1)5mx 2﹣10mxy +5my 2(2)4(a ﹣b )2﹣(a +b )2.23.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题: 今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”译文:“几个人一起去购买物品,如果每人出 8 钱,则多了 3 钱;如果每人出 7 钱,则少了 4 钱,求有多少人,物品的价格是多少”.24.某加工厂有工人60名,生产某种一个螺栓套两个螺母的配套产品,每人每天平均生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,能使生产出的螺栓和螺母刚好配套?25.因式分解:mn2+3mn+2m2017-2018学年湖南省张家界市慈利县七年级(下)期中数学模拟试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.由方程组A.x+y=1可得出x与y的关系是()B.x+y=﹣1C.x+y=7D.x+y=﹣7【分析】先把方程组化为【解答】解:原方程可化为的形式,再把两式相加即可得到关于x、y的关系式.,①+②得,x+y=7.故选:C.【点评】本题考查的是解二元一次方程组的加减消元法,比较简单.2.下列运算错误的是()A.(﹣a)(﹣a)2=﹣a3B.﹣2x2(﹣3x)=﹣6x4C.(﹣a)3(﹣a)2=﹣a5D.(﹣a)3(﹣a)3=a6【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=﹣a3,正确;B、原式=6x3,错误;C、原式=﹣a5,正确;D、原式=a3a3=a6,正确,故选:B.【点评】此题考查了单项式乘以单项式,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.若(2a+3b)()=4a2﹣9b2,则括号内应填的代数式是()A.﹣2a﹣3b B.2a+3b C.2a﹣3b D.3b﹣2a【分析】直接利用平方差公式计算得出答案.【解答】解:∵4a2﹣9b2=(2a+3b)(2a﹣3b),∴(2a+3b)(2a﹣3b)=4a2﹣9b2,故选:C.【点评】此题主要考查了平方差公式,正确应用公式是解题关键.4.已知x2﹣8x+a可以写成一个完全平方式,则a可为()A.4B.8C.16D.﹣16【分析】根据完全平方式的结构是:a2+2ab+b2和a2﹣2ab+b2两种,据此即可求解.【解答】解:∵x2﹣8x+a可以写成一个完全平方式,∴则a可为:16.故选:C.【点评】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.5.将(x+3)2﹣(x﹣1)2分解因式的结果是()A.4(2x+2)B.8x+8C.8(x+1)D.4(x+1)【分析】直接利用平方差公式分解因式即可.【解答】解:(x+3)2﹣(x﹣1)2=[(x+3)+(x﹣1)][(x+3)﹣(x﹣1)]=4(2x+2)=8(x+1).故选:C.【点评】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.6.使(x2+px+8)(x2﹣3x+q)乘积中不含x2与x3项的p、q的值是()A.p=0,q=0B.p=3,q=1C.p=﹣3,q=﹣9D.p=﹣3,q=1【分析】把式子展开,找到所有x2和x3项的系数,令它们的系数分别为0,列式求解即可.【解答】解:∵(x2+px+8)(x2﹣3x+q),=x4﹣3x3+qx2+px3﹣3px2+pqx+8x2﹣24x+8q,=x4+(p﹣3)x3+(q﹣3p+8)x2+(pq﹣24)x+8q.∵乘积中不含x2与x3项,∴p﹣3=0,q﹣3p+8=0,∴p=3,q=1.故选:B.【点评】灵活掌握多项式乘以多项式的法则,注意各项符号的处理.7.王芳同学到文具店购买中性笔和笔记本,中性笔每支0.8元,笔记本每本1.2元,王芳同学花了10元钱,则可供她选择的购买方案的个数为(两样都买,余下的钱少于0.8元)()A.6B.7C.8D.9【分析】设购买x支中性笔,y本笔记本,根据题意得出:9.2<0.8x+1.2y≤10,进而求出即可.【解答】解;设购买x支中性笔,y本笔记本,根据题意得出:9.2<0.8x+1.2y≤10,当x=2时,y=7,当x=3时,y=6,当x=5时,y=5,当x=6时,y=4,当x=8时,y=3,当x=9时,y=2,当x=11时,y=1,故一共有7种方案.故选:B.【点评】此题主要考查了二元一次方程的应用,得出不等关系是解题关键.8.如果实数x,y满足等式2x+x2+x2y2+2=﹣2xy,那么x+y的值是()A.1B.0C.1D.2【分析】等式2x+x2+x2y2+2=﹣2xy化简为(x+1)2+(xy+1)2=0.则x+1=0,xy+1=0.从而求得x,y的值.代入求出x+y的值.【解答】解:∵2x+x2+x2y2+2=﹣2xy,∴(x+1)2+(xy+1)2=0.∴x+1=0,xy+1=0.解之得x=﹣1,y=1.∴x+y=0.故选:B.【点评】本题考查了非负数的性质和完全平方公式:(a±b)2=a2±2ab+b2.二.填空题(共8小题,满分16分,每小题2分)9.已知方程组的解满足x+y=2,则k的值为2.【分析】方程组两方程相加表示出x+y,代入x+y=2中求出k的值即可.【解答】解:,①+②得:3(x+y)=k+4,即x+y=,代入x+y=2中得:k+4=6,解得:k=2,故答案为:2【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.10.如果|x+1|+(y+1)2=0,那么代数式x2017﹣y2018的值是﹣2.【分析】首先根据非负数的性质求出x、y的值,然后再代值求解.【解答】解:由题意,得:x+1=0,y+1=0,即x=﹣1,y=﹣1;所以x2017﹣y2018=﹣1﹣1=﹣2.故答案为:﹣2【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.11.若方程组(m为常数)的解满足5x+3=﹣y,则m=5.【分析】方程组两方程相加表示出5x+y,结合已知方程得出关于m的方程,计算即可求出m的值.【解答】解:将方程组两个方程相加可得10x+2y=﹣1﹣m,,两边都除以2,得:5x+y=∵5x+3=﹣y,∴5x+y=﹣3,∴=﹣3,解得:m=5,故答案为:5.【点评】此题考查了二元一次方程组的解,利用等式的性质得出2(5x+y)=2×是解题关键.12.因式分解:16x4﹣y4=(4x2+y2)(2x+y)(2x﹣y).【分析】直接利用平方差公式分解因式得出即可.【解答】解:16x4﹣y4=(4x2+y2)(4x2﹣y2)=(4x2+y2)(2x+y)(2x﹣y).故答案为:(4x2+y2)(2x+y)(2x﹣y).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.13.分解因式:a3﹣a=a(a+1)(a﹣1).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解彻底.14.计算:2x2xy=x3y.【分析】根据单项式乘法运算法则进行解答.【解答】解:原式=x3y.故答案是:x3y.【点评】考查了单项式乘单项式.单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了5道题.【分析】设答对x道题,答错了y道题,根据对1题给5分,错1题扣2分,不答题不给分也不扣分,总分为65分和有20题选择题可分别列等式求解.【解答】解:设答对x道题,答错了y道题,根据题意可得:,解得:,故他答错了5道题.故答案为:5.【点评】此题主要考查了二元一次方程组的应用,根据题意利用所得分数以及有20题选择题分别得出等式是解题关键.16.设S=(1+2)(1+22)(1+24)(1+28)(1+216),则S+1=232.【分析】直接利用平方差公式将原式变形进而计算得出答案.【解答】解:S=(1+2)(1+22)(1+24)(1+28)(1+216)=(2﹣1)×(2+1)×(1+22)×(1+24)×(1+28)×(1+216)=(22﹣1)×(1+22)×(1+24)×(1+28)×(1+216)=232﹣1,故S+1=232.故答案为:232.【点评】此题主要考查了平方差公式,正确应用公式是解题关键.三.解答题(共9小题,满分60分)17.先化简,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2018,y=2019.【分析】先根据整式的混合运算顺序和运算法则化简原式,再将x与y的值代入计算可得.【解答】解:原式=x2﹣4y2+5y2﹣2xy=x2﹣2xy+y2,=(x﹣y)2,当x=2018,y=2019时,原式=(2018﹣2019)2=(﹣1)2=1.【点评】本题主要考查整式的混合运算﹣化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则.18.解方程(1)(2)【分析】(1)方程组利用代入消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),把①代入②得:3x+10﹣4x=4,解得:x=6,把x=6代入①得:y=﹣7,则方程组的解为;(2)方程组整理得:,把②代入①得:3x+2x+6=11,解得:x=1,把x=1代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.已知(a+b)2=19,ab=2,求:(1)a2+b2的值;(2)(a﹣b)2的值.【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【解答】解:(1)∵(a+b)2=19,ab=2,∴a2+b2+2ab=19,∴a2+b2=19﹣4=15;(2)∵a2+b2=15,∴(a﹣b)2=a2+b2﹣2ab=11.【点评】此题主要考查了完全平方公式,正确将原式变形是解题关键.20.已知:a+b=4(1)求代数式(a+1)(b+1)﹣ab值;(2)若代数式a2﹣2ab+b2+2a+2b的值等于17,求a﹣b的值.【分析】(1)将原式展开、合并同类项化简得a+b+1,再代入计算可得;(2)由原式=(a﹣b)2+2(a+b)可得(a﹣b)2+2×4=17,据此进一步计算可得.【解答】解:(1)原式=ab+a+b+1﹣ab=a+b+1,当a+b=4时,原式=4+1=5;(2)∵a2﹣2ab+b2+2a+2b=(a﹣b)2+2(a+b),∴(a﹣b)2+2×4=17,∴(a﹣b)2=9,则a﹣b=3或﹣3.【点评】本题主要考查代数式的求值,解题的关键是掌握多项式乘多项式的运算法则、因式分解的能力及整体思想的运用.21.已知12+22+32+…+n2=n(n+1)(2n+1)(n为正整数).求22+42+62+…+502的值.【分析】先找出规律22=(2×1)2=22×12,42=(2×2)2=22×22,62=(2×3)2=22×32,…,502=(2×25)2=22×252,进而22+42+62+…+502=22×(12+22+32+…+252即可得出结论.【解答】解:∵22=(2×1)2=22×12,42=(2×2)2=22×22,62=(2×3)2=22×32,…,502=(2×25)2=22×252,∴22+42+62+…+502=22×12+22×22+22×32+…+22×252=22×(12+22+32+…+252)=4××25×26×51=22100.【点评】此题主要考查了数字的变化类,公式的应用,将22+42+62+…+502转化成22×(12+22+32+…+252是解本题的关键.22.分解因式:(1)5mx2﹣10mxy+5my2(2)4(a﹣b)2﹣(a+b)2.【分析】(1)首先提公因式5m,再利用完全平方公式进行分解即可;(2)直接利用平方差进行分解即可.【解答】解:(1)原式=5m(x2﹣2xy+y2)=5m(x﹣y)2.(2)原式=[2(a﹣b)]2﹣(a+b)2=[2(a﹣b)+(a+b)][2(a﹣b)﹣(a+b)]=(3a ﹣b)(a﹣3b).“ 【点评】此题主要考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.23.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题: 今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”译文:“几个人一起去购买物品,如果每人出 8 钱,则多了 3 钱;如果每人出 7 钱,则少了 4 钱,求有多少人,物品的价格是多少”.【分析】根据题意可以找出题目中的等量关系,列出相应的方程组,就可以解答本题.【解答】解:设有 x 人,物品价格为 y 钱,由题意可得,,解得:,答:有 7 人,物品的价格是 53 钱.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.24.某加工厂有工人 60 名,生产某种一个螺栓套两个螺母的配套产品,每人每天平均生产螺栓14 个或螺母 20 个,应分配多少人生产螺栓,多少人生产螺母,能使生产出的螺栓和螺母刚好配套?【分析】本题的等量关系为:生产螺栓的工人人数 +生产螺母的工人人数= 60;生产的螺栓的数量×2=生产的螺母的数量.由此可列出方程组求解.【解答】解:设应安排 x 人生产螺栓,有 y 人生产螺母.由题意,得解这个方程组得:, ,答:应安排 25 人生产螺栓,35 人生产螺母,才能使生产出的螺栓和螺母刚好配套.【点评】此题主要考查了二元一次方程组的应用,解题关键是弄清题意,合适的等量关系,列出方程组.25.因式分解:mn 2+3mn +2m【分析】先提公因式 m ,再利用十字相乘法分解即可得.【解答】解:原式=m (n 2+3n +2)=m (n +1)(n +2).【点评】此题考查了因式分解﹣十字相乘法,熟练掌握十字相乘法是解本题的关键.。
湖南省张家界市慈利县通津铺联校2022-2023学年高一数学理下学期期末试卷含解析
湖南省张家界市慈利县通津铺联校2022-2023学年高一数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知集合,,则( )A. B.C. D.参考答案:B2. 要得到的图像, 需将函数的图像( )A.向左平移个单位.B.向右平移个单位C.向左平移个单位 D.向右平移个单位参考答案:D略3. 设x,y满足约束条件,则目标函数的最大值是()A. 3B.C. 1D.参考答案:C【分析】作出不等式组对应的平面区域,结合图形找出最优解,从而求出目标函数的最大值.【详解】作出不等式组对应的平面区域,如阴影部分所示;平移直线,由图像可知当直线经过点时,最大.,解得,即,所以的最大值为1.故答案为选C【点睛】本题给出二元一次不等式组,求目标函数的最大值,着重考查二元一次不等式组表示的平面区域和简单的线性规划,也考查了数形结合的解题思想方法,属于基础题.4. 函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则关于f (x)的说法正确的是()A.对称轴方程是x=+2kπ(k∈Z)B.φ=﹣C.最小正周期为πD.在区间(,)上单调递减参考答案:【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由函数图象可得A,周期T=2[﹣(﹣)]=2π,可得C错误,利用周期公式可求ω,由点(,0)在函数图象上,结合范围|φ|<,可得φ=,可求B错误,可求函数解析式,令x+=kπ+,k∈Z,解得函数的对称轴方程可求A错误;令2kπ+≤x+≤2kπ+,k∈Z,解得函数的单调递减区间即可判定D正确,从而得解.【解答】解:由函数图象可得:A=1,周期T=2[﹣(﹣)]=2π,可得C错误,可得:ω===1,由点(,0)在函数图象上,可得:sin(+φ)=0,解得:φ=kπ﹣,k∈Z,又|φ|<,可得:φ=,故B错误,可得:f(x)=sin(x+).令x+=kπ+,k∈Z,解得函数的对称轴方程为:x=kπ+,k∈Z,故A错误;令2kπ+≤x+≤2kπ+,k∈Z,解得:2kπ+≤x≤2kπ+,k∈Z,可得函数的单调递减区间为:[2kπ+,2kπ+],k∈Z,由于(,)?[,],可得D正确.故选:D.【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了三角函数周期公式,正弦函数的图象和性质的综合应用,考查了数形结合思想和转化思想,属于中档题.5. 某公司现有普通职员人,中级管理人员人,高级管理人员人,要从公司抽取个人进行身体健康检查,如果采用分层抽样的方法,其中高级管理人员仅抽到1人,那么的值为()A.1 B.3 C.16D.20参考答案:D6. 函数y=f(x)在R上为减函数,且f(3a)<f(﹣2a+10),则实数a的取值范围是()A.(﹣∞,﹣2)B.(0,+∞)C.(2,+∞)D.(﹣∞,﹣2)∪(2,+∞)参考答案:C【考点】函数单调性的性质.【分析】直接利用函数的单调性列出不等式求解即可.【解答】解:函数y=f(x)在R上为减函数,且f(3a)<f(﹣2a+10),可得:3a>﹣2a+10,解得a>2.故选:C.7. 已知集合,,则与的关系正确的是()A. B. C. D.参考答案:A8. 已知二次函数,如果a>0,b<0,c<0,那么这个函数图像的顶点必在()A.第一象限 B.第二象限 C.第三象限 D.第四象限w c o m参考答案:D略9. 在中,分别为角的对边,,则的形状为( )A.正三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形参考答案:B略10. 已知等差数列项和为等于()A. B. C. D.参考答案:C 解析:二、填空题:本大题共7小题,每小题4分,共28分11. 若,则的最小值是。
2017-2018学年高一数学下学期期末模拟试卷及答案(三)
2017-2018学年高一数学下学期期末模拟试卷及答案(三)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.数据5,7,7,8,10,11的标准差是()A.8 B.4 C.2 D.1A.29 B.30 C.31 D.323.若a、b、c∈R,a>b,则下列不等式成立的是()A.B.a2>b2C.D.a|c|>b|c|4.在如图所示的“茎叶图”表示的数据中,众数和中位数分别是()A.23与26 B.31与26 C.24与30 D.26与305.函数f(x)=x2﹣x﹣2,x∈[﹣5,5],在定义域内任取一点x0,使f(x0)≤0的概率是()A.B.C.D.6.200辆汽车通过某一段公路时,时速的频率分布直方图如图所示,则时速在[50,70)的汽车大约有()A.60辆B.80辆C.70辆D.140辆7.已知等差数列{a n}的前n项和为S n,且满足﹣=1,则数列{a n}的公差是()A.B.1 C.2 D.38.同时掷3枚硬币,至少有1枚正面向上的概率是()A.B.C.D.9.已知a1,4,a2,1成等差数列,b1,4,b2,1,b3成等比数列,则b2(a2﹣a1)=()A.±6 B.﹣6 C.3 D.±310.如图给出的是计算的值的一个流程图,其中判断框内应填入的条件是()A.i≤21 B.i≤11 C.i≥21 D.i≥1111.正数x、y满足,若x+2y>m2+2m恒成立,则实数m的取值范围是()A.m≤﹣2或m≥4 B.m≤﹣4或m≥2 C.﹣2<m<4 D.﹣4<m<212.△ABC中,∠B=60°,b=2,则△ABC周长的最大值为()A.2 B.2C.3D.6二、填空题:本大题共4小题,每小题5分,共20分,把正确答案填在横线上. 13.某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样法抽取一个容量为45的样本,那么从高一、高二、高三各年级抽取人数分别为.14.从一批产品中取出三件,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论中正确的是;(1)A与C互斥(2)B与C互斥(3)任两个均互斥(4)任两个均不互斥.15.若不等式ax2+5x﹣2>0的解集是,则不等式ax2﹣5x+(a2﹣1)>0的解集是.16.对于数列{a n},定义数列{a n﹣a n}为数列{a n}的“差数列”,若a1=1,{a n}的“差+1数列”的通项公式为3n,则数列{a n}的通项公式a n=.三、解答题:本大题共6小题,共70分,请写出各题的解答过程或演算步骤. 17.一个包装箱内有6件产品,其中4件正品,2件次品,随机抽出两件产品(1)求恰好有一件次品的概率(2)求都是正品的概率.(2)用最小二乘法计算利润额y对销售额x的回归直线方程;(3)当销售额为8(千万元)时,估计利润额的大小.(附:b=)19.已知单调递增的等比数列{a n}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=a n log a n,求数列{b n}的前n项和S n.20.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinB(tanA+tanC)=tanAtanC.(Ⅰ)求证:a,b,c成等比数列;(Ⅱ)若a=1,c=2,求△ABC的面积S.21.如图,正方形OABC的边长为2.(1)在其四边或内部取点P(x,y),且x,y∈Z,求事件“|OP|>1”的概率;(2)在其内部取点P(x,y),且x,y∈R,求事件“△POA,△PAB,△PBC,△PCO的面积均大于”的概率是.22.设数列{a n}的前n项和为S n,其中a n≠0,a1为常数,且﹣2a1,S n,2a n成+1等差数列.(1)当a1=2时,求{a n}的通项公式;(2)当a1=2时,设b n=log2(a n2)﹣1,若对于n∈N*, +++…+<k恒成立,求实数k的取值范围;(3)设c n=S n+1,问:是否存在a1,使数列{c n}为等比数列?若存在,求出a1的值,若不存在,请说明理由.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.数据5,7,7,8,10,11的标准差是()A.8 B.4 C.2 D.1【考点】极差、方差与标准差.【专题】计算题.【分析】先算出平均数,再根据方差公式计算方差,求出其算术平方根即为标准差.【解答】解:这组数据的平均数=(5+7+7+8+10+11)÷6=8,方差= [(5﹣8)2+(7﹣8)2+(7﹣8)2+(8﹣8)2+(10﹣8)2+(11﹣8)2]=4,标准差=2.故选C.【点评】本题考查了标准差的求法,计算标准差需要先算出方差,计算方差的步骤是:(1)计算数据的平均数;(2)再根据公式求出数据的方差.标准差即方差的算术平方根,注意标差和方差一样都是非负数.A.29 B.30 C.31 D.32【考点】归纳推理.【专题】综合题;方程思想;综合法;推理和证明.【分析】由表格可知,年份构成首项为1896、公差为4的等差数列,根据等差数列的通项公式求出n的值.【解答】解:由表格可知,年份构成首项为1896、公差为4的等差数列,则2016=1896+4(n﹣1),解得n=31,所以n的值是31,故选:C.【点评】本题考查归纳推理,以及等差数列的通项公式的应用,属于基础题.3.若a、b、c∈R,a>b,则下列不等式成立的是()A.B.a2>b2C.D.a|c|>b|c|【考点】不等关系与不等式.【专题】计算题.【分析】本选择题利用取特殊值法解决,即取符合条件的特殊的a,b的值,可一一验证A,B,D不成立,而由不等式的基本性质知C成立,从而解决问题.【解答】解:对于A,取a=1,b=﹣1,即知不成立,故错;对于B,取a=1,b=﹣1,即知不成立,故错;对于D,取c=0,即知不成立,故错;对于C,由于c2+1>0,由不等式基本性质即知成立,故对;故选C.【点评】本小题主要考查不等关系与不等式、不等关系与不等式的应用、不等式的基本性质等基础知识,属于基础题.4.在如图所示的“茎叶图”表示的数据中,众数和中位数分别是()A.23与26 B.31与26 C.24与30 D.26与30【考点】众数、中位数、平均数;茎叶图.【专题】图表型.【分析】由茎叶图写出所有的数据从小到大排起,找出出现次数最多的数即为众数;找出中间的数即为中位数.【解答】解:由茎叶图得到所有的数据从小到大排为:12,14,20,23,25,26,30,31,31,41,42∴众数和中位数分别为31,26故选B【点评】解决茎叶图问题,关键是将图中的数列出;求数据的中位数时,中间若是两个数时,要求其平均数.5.函数f(x)=x2﹣x﹣2,x∈[﹣5,5],在定义域内任取一点x0,使f(x0)≤0的概率是()A.B.C.D.【考点】几何概型;一元二次不等式的解法.【专题】计算题.【分析】先解不等式f(x0)≤0,得能使事件f(x0)≤0发生的x0的取值长度为3,再由x0总的可能取值,长度为定义域长度10,得事件f(x0)≤0发生的概率是0.3【解答】解:∵f(x)≤0⇔x2﹣x﹣2≤0⇔﹣1≤x≤2,∴f(x0)≤0⇔﹣1≤x0≤2,即x0∈[﹣1,2],∵在定义域内任取一点x0,∴x0∈[﹣5,5],∴使f(x0)≤0的概率P==【点评】本题考查了几何概型的意义和求法,将此类概率转化为长度、面积、体积等之比,是解决问题的关键6.200辆汽车通过某一段公路时,时速的频率分布直方图如图所示,则时速在[50,70)的汽车大约有()A.60辆B.80辆C.70辆D.140辆【考点】频率分布直方图.【专题】计算题.【分析】根据已知中的频率分布直方图,我们可以计算出时速在[50,70)的数据对应的矩形高之和,进而得到时速在[50,70)的数据的频率,结合样本容量为200,即可得到时速在[50,70)的数据的频数,即时速在[50,70)的汽车的辆数.【解答】解:由于时速在[50,70)的数据对应的矩形高之和为0.03+0.04=0.07 由于数据的组距为10故时速在[50,70)的数据的频率为:0.07×10=0.7故时速在[50,70)的数据的频数为:0.7×200=140故选D【点评】本题考查的知识点是频率分布直方图,其中频率=矩形高×组距=是解答此类问题的关键.7.已知等差数列{a n}的前n项和为S n,且满足﹣=1,则数列{a n}的公差是()A.B.1 C.2 D.3【考点】等差数列的性质.【专题】计算题.【分析】先用等差数列的求和公式表示出S3和S2,进而根据﹣=,求得d.【解答】解:S3=a1+a2+a3=3a1+3d,S2=a1+a2=2a1+d,∴﹣==1∴d=2【点评】本题主要考查了等差数列的性质.属基础题.8.同时掷3枚硬币,至少有1枚正面向上的概率是()A.B.C.D.【考点】等可能事件的概率;互斥事件与对立事件.【专题】计算题.【分析】本题是一个等可能事件的概率,试验发生包含的事件是将一枚硬币连续抛掷三次,共有23=8种结果,满足条件的事件的对立事件是三枚硬币都是正面,有1种结果,根据对立事件的概率公式得到结果.【解答】解:由题意知本题是一个等可能事件的概率,试验发生包含的事件是将一枚硬币连续抛掷三次共有23=8种结果,满足条件的事件的对立事件是三枚硬币都是正面,有1种结果,∴至少一次正面向上的概率是1﹣=,故选A.【点评】本题考查等可能事件的概率,本题解题的关键是对于比较复杂的事件求概率时,可以先求对立事件的概率,这样使得运算简单.9.已知a1,4,a2,1成等差数列,b1,4,b2,1,b3成等比数列,则b2(a2﹣a1)=()A.±6 B.﹣6 C.3 D.±3【考点】等差数列与等比数列的综合.【专题】计算题;等差数列与等比数列.【分析】先由已知条件和等差数列以及等比数列的性质求得a2﹣a1=1﹣4=﹣3,b2=±2,再求b2(a2﹣a1).【解答】解:由题得,∵a1,4,a2,1成等差数列,∴a2﹣a1=1﹣4=﹣3,∵b1,4,b2,1,b3成等比数列,∴b22=4∴b2=±2,∴b2(a2﹣a1)=±6.故选:A.【点评】本题是对等差数列以及等比数列性质的综合考查.在做关于等差数列以及等比数列的题目时,其常用性质一定要熟练掌握.10.如图给出的是计算的值的一个流程图,其中判断框内应填入的条件是()A.i≤21 B.i≤11 C.i≥21 D.i≥11【考点】循环结构.【专题】图表型.【分析】由本程序的功能是计算的值,由S=S+,故我们知道最后一次进行循环时的条件为i=10,当i≥11应退出循环输出S的值,由此不难得到判断框中的条件.【解答】解:∵S=并由流程图中S=S+故循环的初值为1终值为10、步长为1故经过10次循环才能算出S=的值,故i≤10,应不满足条件,继续循环∴当i≥11,应满足条件,退出循环填入“i≥11”.故选D.【点评】本题考查解决程序框图中的循环结构时,常采用写出前几次循环的结果,从中找出规律.11.正数x、y满足,若x+2y>m2+2m恒成立,则实数m的取值范围是()A.m≤﹣2或m≥4 B.m≤﹣4或m≥2 C.﹣2<m<4 D.﹣4<m<2 【考点】基本不等式;函数恒成立问题.【专题】不等式的解法及应用.【分析】利用基本不等式的性质可得x+2y的最小值,由x+2y>m2+2m恒成立⇔m2+2m<(x+2y)min.【解答】解:∵正数x、y满足,∴x+2y=(x+2y)=4+=8,当且仅当,即x=2y=4时取等号.∵x+2y>m2+2m恒成立,∴m2+2m<8,解得﹣4<m<2.故实数m的取值范围是﹣4<m<2.故选D.【点评】熟练掌握基本不等式的性质和正确转化恒成立问题是解题的关键.12.△ABC中,∠B=60°,b=2,则△ABC周长的最大值为()A.2 B.2C.3D.6【考点】正弦定理.【专题】计算题;转化思想;综合法;解三角形.【分析】由已知可得A+C=120°,结合正弦定理可表示a,c,利用三角函数恒等变换的应用可得△ABC周长l=2+4sin(A+30°),结合A的范围,利用正弦函数的性质可求△ABC周长的最大值.【解答】解:△ABC中,∵B=60°,b=2,∴A+C=120°由正弦定理可得a===4sinA,c===4sinC,则△ABC周长l=a+b+c=4sinA+4sinC+2=2+4sinA+4sin=2+4(sinA+cosA)=2+4sin(A+30°),∵0<A<120°,∴30°<A+30°<150°,∴<sin(A+30°)≤1,可得:2+4sin(A+30°)∈(4,6],∴l的最大值为6.故选:D.【点评】本题主要考查了正弦定理在求解三角形中的应用,而辅助角公式及正弦函数的性质的灵活应用是求解问题的关键,属于中档题.二、填空题:本大题共4小题,每小题5分,共20分,把正确答案填在横线上. 13.某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样法抽取一个容量为45的样本,那么从高一、高二、高三各年级抽取人数分别为15,10,20.【考点】分层抽样方法.【专题】概率与统计.【分析】根据分层抽样的定义求出在各层中的抽样比,即样本容量比上总体容量,按此比例求出在各年级中抽取的人数.【解答】解:根据题意得,用分层抽样在各层中的抽样比为=,则在高一年级抽取的人数是300×=15人,高二年级抽取的人数是200×=10人,高三年级抽取的人数是400×=20人,故答案为:15,10,20.【点评】本题的考点是分层抽样方法,根据样本结构和总体结构保持一致,求出抽样比,再求出在各层中抽取的个体数目.14.从一批产品中取出三件,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论中正确的是(2);(1)A与C互斥(2)B与C互斥(3)任两个均互斥(4)任两个均不互斥.【考点】互斥事件与对立事件.【专题】计算题;转化思想;综合法;概率与统计.【分析】利用互斥事件、对立事件的定义直接求解.【解答】解:∵从一批产品中取出三件,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,∴事件A与事件C能同时发生,A与C不是互斥事件,∴(1)错误;(2)事件B与事件C不能同时发生,但能同时不发生,∴B与C是互斥事件,故(2)正确;(3)由A与C不是互斥事件,故(3)错误;(4)由B与C是互斥事件,知(4)错误.故答案为:(2).【点评】本考查命题真假的判断,是基础题,解题时要认真审题,注意互斥事件的概念的合理运用.15.若不等式ax2+5x﹣2>0的解集是,则不等式ax2﹣5x+(a2﹣1)>0的解集是.【考点】一元二次不等式的应用.【分析】先由二次不等式的解集形式,判断出,2是方程ax2+5x﹣2=0的两个根,利用韦达定理求出a的值,再代入不等式ax2﹣5x+a2﹣1>0易解出其解集.【解答】解:∵ax2+5x﹣2>0的解集是,∴a<0,且,2是方程ax2+5x﹣2=0的两根韦达定理×2=,解得a=﹣2;则不等式ax2﹣5x+a2﹣1>0即为﹣2x2﹣5x+3>0,解得故不等式ax2﹣5x+a2﹣1>0的解集.故答案为:【点评】本题考查的知识点是一元二次不等式的解法,及“三个二次”(三个二次指的是:二次函数,一元二次不等式,一元二次方程)之间的关系,“三个二次”之间的关系及应用是数形结合思想的典型代表.16.对于数列{a n},定义数列{a n+1﹣a n}为数列{a n}的“差数列”,若a1=1,{a n}的“差数列”的通项公式为3n,则数列{a n}的通项公式a n=.【考点】数列的函数特性;数列的概念及简单表示法.【专题】计算题;等差数列与等比数列.【分析】依题意,a1=1,a n+1﹣a n=3n,利用累加法与等比数列的求和公式即可求得答案.【解答】解:∵a1=1,a n+1﹣a n=3n,∴a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=3n﹣1+3n﹣2+…+31+1==.故答案为:.【点评】本题考查数列的求和,着重考查累加法与等比数列的求和公式,属于中档题.三、解答题:本大题共6小题,共70分,请写出各题的解答过程或演算步骤. 17.一个包装箱内有6件产品,其中4件正品,2件次品,随机抽出两件产品(1)求恰好有一件次品的概率(2)求都是正品的概率.【考点】古典概型及其概率计算公式.【专题】概率与统计.【分析】(1)所有的取法共有种,而恰好有一件次品的取法有2×4种,由此求得恰好有一件次品的概率.(2)所有的取法共有种,而取出的2件产品都是正品的取法有种,由此求得取出的2件产品都是正品的概率.【解答】解:(1)所有的取法共有=15种,而恰好有一件次品的取法有2×4=8种,故恰好有一件次品的概率为.(2)所有的取法共有=15种,而取出的2件产品都是正品的取法有=6种,故取出的2件产品都是正品的概率为.【点评】本题考查古典概型及其概率计算公式的应用,属于基础题.(2)用最小二乘法计算利润额y对销售额x的回归直线方程;(3)当销售额为8(千万元)时,估计利润额的大小.(附:b=)【考点】线性回归方程.【专题】函数思想;综合法;概率与统计.【分析】(1)画出散点图,两个变量具有线性相关关系;(2)由求出所给的这组数据的样本中心点,利用最小二乘法做出线性回归方程的系数,把所求的这些结果代入公式求出线性回归方程的系数,进而求出a的值,写出线性回归方程;(3)由利润额y对销售额x的回归直线方程,能求出当销售额为8(千万元)时的利润额.【解答】解:(1)画出散点图:∴两个变量具有线性相关关系.﹣﹣﹣﹣﹣(2)设线性回归方程为=x+,由=(3+5+6+7+9)=6,=(2+3+3+4+5)=3.4,∴===0.5,=﹣•=0.4,∴y对x的线性回归方程为y=0.5x+0.4﹣﹣﹣﹣﹣﹣﹣(3)当销售额为8(千万元)时,利润额约为y=0.5×8+0.4=4.4(百万元).﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查散点图的作法和相关关系的判断,考查回归直线方程的求法和应用,解题时要认真审题,仔细解答,注意最小二乘法的合理运用,属于中档题.19.已知单调递增的等比数列{a n}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=a n log a n,求数列{b n}的前n项和S n.【考点】等差数列与等比数列的综合;数列的求和.【专题】计算题.【分析】(I)根据a3+2是a2,a4的等差中项和a2+a3+a4=28,求出a3、a2+a4的值,进而得出首项和a1,即可求得通项公式;(II)先求出数列{b n}的通项公式,然后求出﹣S n﹣(﹣2S n),即可求得的前n 项和S n.【解答】解:(I)设等比数列{a n}的首项为a1,公比为q∵a3+2是a2,a4的等差中项∴2(a3+2)=a2+a4代入a2+a3+a4=28,得a3=8∴a2+a4=20∴∴或∵数列{a n}单调递增∴a n=2n(II)∵a n=2n∴b n==﹣n•2n∴﹣s n=1×2+2×22+…+n×2n①∴﹣2s n=1×22+2×23+…+(n﹣1)×2n+n2n+1②∴①﹣②得,s n=2+22+23+…+2n﹣n•2n+1=2n+1﹣n•2n+1﹣2【点评】本题考查了等比数列的通项公式以及数列的前n项和,对于等差数列与等比数列乘积形式的数列,求前n项和一般采取错位相减的办法.20.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinB(tanA+tanC)=tanAtanC.(Ⅰ)求证:a,b,c成等比数列;(Ⅱ)若a=1,c=2,求△ABC的面积S.【考点】等比数列的性质;三角函数中的恒等变换应用;解三角形.【专题】三角函数的求值;解三角形.【分析】(I)由已知,利用三角函数的切化弦的原则可得,sinB(sinAcosC+sinCcosA)=sinAsinC,利用两角和的正弦公式及三角形的内角和公式代入可得sin2B=sinAsinC,由正弦定理可证(II)由已知结合余弦定理可求cosB,利用同角平方关系可求sinB,代入三角形的面积公式S=可求.【解答】(I)证明:∵sinB(tanA+tanC)=tanAtanC∴sinB()=∴sinB•=∴sinB(sinAcosC+sinCcosA)=sinAsinc∴sinBsin(A+C)=sinAsinC,∵A+B+C=π∴sin(A+C)=sinB即sin2B=sinAsinC,由正弦定理可得:b2=ac,所以a,b,c成等比数列.(II)若a=1,c=2,则b2=ac=2,∴,∵0<B<π∴sinB=∴△ABC的面积.【点评】本题主要考查了三角形的切化弦及两角和的正弦公式、三角形的内角和定理的应用及余弦定理和三角形的面积公式的综合应用.21.如图,正方形OABC的边长为2.(1)在其四边或内部取点P(x,y),且x,y∈Z,求事件“|OP|>1”的概率;(2)在其内部取点P(x,y),且x,y∈R,求事件“△POA,△PAB,△PBC,△PCO的面积均大于”的概率是.【考点】几何概型;列举法计算基本事件数及事件发生的概率.【专题】概率与统计.【分析】(1)分析出正方形的四边和内部取点P(x,y),且x,y∈Z的全部基本事件个数,及满足“|OP|>1”的基本事件个数,代入古典概型公式可得事件“|OP|>1”的概率;(2)求出满足条件的所有基本事件对应的平面区域Ω的面积,及满足条件“△POA,△PAB,△PBC,△PCO的面积均大于的平面区域面积,代入几何概型公式,可得事件“△POA,△PAB,△PBC,△PCO的面积均大于”的概率【解答】解:(1)在正方形的四边和内部取点P(x,y),且x,y∈Z,所有可能的事件是(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),其中满足|OP|>1的事件是(0,2),(1,1),(1,2),(2,0),(2,1),(2,2),所以满足|OP|>1的概率为.(2)在正方形内部取点,其总的事件包含的区域面积为4,由于各边长为2,所以要使△POA,△PAB,△PBC,△PCO的面积均大于,应该三角形的高大于,所以这个区域为每个边长从两端各去掉后剩余的正方形,其面积为×=,所以满足条件的概率为.【点评】本题考查的知识点是几何概型,及古典概型,其中求出所有基本事件个数(对应区域面积)和满足条件的基本事件个数(对应区域面积)是解答的关键.22.设数列{a n}的前n项和为S n,其中a n≠0,a1为常数,且﹣2a1,S n,2a n+1成等差数列.(1)当a1=2时,求{a n}的通项公式;(2)当a1=2时,设b n=log2(a n2)﹣1,若对于n∈N*, +++…+<k恒成立,求实数k的取值范围;(3)设c n=S n+1,问:是否存在a1,使数列{c n}为等比数列?若存在,求出a1的值,若不存在,请说明理由.【考点】等差数列与等比数列的综合;数列的求和.【专题】等差数列与等比数列.【分析】(1)由已知中﹣2a1,S n,2a n+1成等差数列,可得S n=a n+1﹣a1,进而可得a n+1=2a n,结合a1=2时,可得{a n}的通项公式;(2)由(1)结合对数的运算性质,可得数列{b n}的通项公式,进而利用拆项法可求出+++…+的表达式,进而可得实数k的取值范围;(3)由c n=a1×2n﹣a1+1,结合等比数列的定义,可得当且仅当﹣a1+1=0时,数列{c n}为等比数列.【解答】解:(1)∵﹣2a1,S n,2a n+1成等差数列∴2S n=﹣2a1+2a n+1,∴S n=a n+1﹣a1,…①当n≥2时,S n﹣1=a n﹣a1,…②两式相减得:a n=a n+1﹣a n,即a n+1=2a n,﹣﹣﹣﹣﹣﹣当n=1时,S1=a2﹣a1,即a2=2a1,适合a n+1=2a n,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣所以数列{a n}是以a1=2为首项,以2为公比的等比数列,所以a n=2n﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)由(1)得a n=2n,所以b n=log2(a n2)﹣1=2n﹣1∴+++…+=+++…+=[(1﹣)+(﹣)+(﹣)+…+(﹣)]=(1﹣)∵n∈N*,∴(1﹣)<若对于n∈N*, +++…+<k恒成立,∴k≥﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3)由(1)得数列{a n}是以a1为首项,以2为公比的等比数列所以c n=S n+1==a1×2n﹣a1+1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣要使{c n}为等比数列,当且仅当﹣a1+1=0即a1=1所以存在a1=1,使{c n}为等比数列﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查的知识点是等差数列与等比数列的通项公式,数列求和,恒成立问题,是数列的综合应用,难度较大,属于难题.。
湖南省张家界市2017-2018学年高一语文下学期期末考试试题B卷
湖南省张家界市2017-2018学年高一语文下学期期末考试试题B卷张家界市2018年普通高中一年级第二学期期末联考语文试题卷(B)考生注意:本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分,共24道小题,共8页。
时量150分钟,满分150分。
考生必须在答题卡上答题,在草稿纸、试题卷上答题无效。
第Ⅰ卷 ( 阅读题共68分)一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1-3题。
①我国的家训文化最早产生于周代,之后陆续出现了班昭的《女诫》、颜之推的《家训》、司马光的《家范》等家训代表著作。
家训文化在团结族人、凝聚家庭氛围、形成良好家族风气等方面作用十分突出。
古人一方面强调自身道德品质的修养,向贤德之人学习;另一方面,也身体力行,将家风形成文字,使之能够代代相承。
②家训文化绵延至今,已成为中国优秀传统文化的重要组成部分。
家训家风曾经潜移默化地影响着人们的心灵。
当下,发掘家训文化的时代内涵、传承优秀家训的文化精神,对于我国社会主义文化建设有重要的借鉴价值和现实意义。
③中国传统家训包含立德、修身、齐家、处世等方面的内容,兼及传统文化和主流价值观。
传统家训文化的教育方式主要体现在以下三个方面。
④家风熏陶与个体自觉并举。
传统家训一般流传于家族内部,是特定历史时期,某个家族的全体成员需要共同遵守的价值准则。
家训代表着祖先对后人、族长对族人、长辈对幼辈在关于为人处世、待人接物等方面的重要教诲和训示。
全族成员都需要在学习和生活中自觉践行家训,维护良好家风。
⑤亲情感化与家规约束并用。
“三纲五常”是中国古代儒家伦理思想中的重要组成部分,通过强调君为臣纲、父为子纲、夫为妻纲,以及仁、义、礼、智、信等道德思想,来维护封建社会的伦理道德和社会秩序。
古代家训强调礼法并重,既有劝导性教育,更要加之以强制性的惩罚,以训诫没有遵循家规之人,从而维护家训的尊严。
⑥榜样示范与言传身教并重。
现代教育理念认为,家庭是子女的第一所学校。
湖南省张家界市2022-2023学年高一下学期期末联考试题数学
2023年普通高中一年级第二学期期末联考数学试题卷注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,考试内容为必修2,必修5全部内容,共4页.考试时量120分钟,满分150分.2.答题前,考生务必将自己地姓名. 准考证号填写在答题卡相应地位置.3.全部结果在答题卡上完成,答在试题卷,草稿纸上无效.第I 卷一,选择题:本大题共12小题,每小题5分,满分60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1. 5与11地等差中项是( )A . 7B . 8C . 9D . 102. 直线0133=-+y x 地倾斜角为( )A .6πB .3πC .32π D . 65π3. 设集合2{|60}A x x x =--<,{|230}B x x =->,则=B A ( )A . ⎪⎭⎫⎝⎛3,23 B . ⎪⎭⎫ ⎝⎛-23,3 C . ⎪⎭⎫ ⎝⎛23,1 D . ⎪⎭⎫ ⎝⎛-23,24. 直线0343=-+y x 与直线096=++my x 平行,则它们地距离为( )A . 56B . 23C . 512D . 25. 下面不等式一定成立地是( )A . x x lg )41lg(2>+ )0(>xB . 2sin 1sin ≥+xx ),(Z k k x ∈≠π C . x x 212≥+ )(R x ∈ D . 1112≥+x )(R x ∈6. 已知圆4)4()3(:22=++-y x M 与圆9:22=+y x N ,则两圆地位置关系为( ).A 内切 B . 外切 C . 相交 D . 外离7. 下面命题错误地是( ).A 平行于同一直线地两个平面平行 .B 平行于同一平面地两个平面平行.C 一个平面同时与两个平行平面相交,则它们地交线平行 .D 一款直线与两个平行平面中地一个相交,则它必与另一个相交8. 在空间直角坐标系xyz O -中,给出以下结论:①点)431(-,,A 有关x 轴地对称点地坐标为)431(,,--。
2017—2018学年度第二学期期末考试初二数学试题及答案
2017—2018学年度第二学期期末考试初二数学试题题目一二三总分评卷人得分一、选择题(每小题3分,共30分)1.下列调查中,适合用普查方式的是()A.调査绥化市市民的吸烟情况B.调查绥化市电视台某节目的收视率C.调查绥化市市民家庭日常生活支出情况D.调査绥化市某校某班学生对“文明佛山”的知晓率2.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三角形三个顶点的坐标分别是()A.(1,7)、(-2,2)、(3,4)B.(1,7)、(2,2)、(3,4)C.(1,7)、(2,-2)、(3,3)D.(1,7)、(2,2) 、( 3,4)3.已知直线a外有一点P,则点P到直线a的距离是()A.点P到直线的垂线的长度B.点P到直线的垂线段C.点P到直线的垂线段的长度D.点P到直线的垂线4.如图,已知直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COE,∠2:∠1=4:1,则∠AOF的度数是()A.130°B.125°C.140°D.135°5.已知关于x的不等式(1-a)x>3的解集为x<31a-,则a的取值范围是()A.a>0 B.a<0 C.a<1 D.a>16.如果点P(5,y)在第四象限,那么y的取值范围是()A.y>0 B.y<0 C.y≤0D.y=07.下列说法正确的是()A.2π是分数B.2π是无理数C.如果a为实数,那么2a为正数D.如果a为实数,那么-a为负数7.若点A(a,4)和点B(3,b)关于y轴对称,则a,b的值分别是()A.3,4 B.2,-4 C.-3,4 D.-3,-49.有40个数据,共分成6组,第1~4组的频数分别是10,5,7,6,第5组的频率为0.10,则第6组的频率为()A.0.20 B.0.30 C.0.25 D.0.1510.已知4520430X Y ZX Y Z-+=⎧⎨+-=⎩(xyx≠0),则x:y:x的值是()A.2:1:3 B.1:2:3 C.3:2:1 D.不能确定二、填空题: (每题3分,共33分)11.如果点P(a+6,a-3)在x轴上,那么其坐标是。
浙江地区高中数学专题03线性回归方程及其应用分项汇编含解析新人教A版必修
专题03 线性回归方程及其应用一、选择题1.【北京101中学2016-2017学年下学期高二年级期中考试】一位母亲记录了自己儿子3~9岁的身高数据(略),由此建立的身高与年龄的回归模型为y =7.19x +73.93,用这个模型预测这个孩子10岁时的身高,则正确的叙述是( )A . 身高一定是145.83cmB . 身高在145.83cm 以上C . 身高在145.83cm 左右D . 身高在145.83cm 以下【答案】C【解析】由回归模型可得y =7.1910x +73.93=145.83,所以预测这个孩子10岁时的身高在145.83cm 左右。
2.【吉林省辽源市田家炳高级中学2017-2018学年高二下学期3月月考】有位同学家开了个小卖部,他为了研究气温对热饮销售的影响,经过统计得到一天所卖的热饮杯数(y )与当天气温(x ℃)之间的线性关系,其回归方程为ˆy=-2.35x +147.77.如果某天气温为2℃,则该小卖部大约能卖出热饮的杯数是( ) A . 140 B . 143 C . 152 D . 156【答案】B点睛:本题主要考查的知识点是线性回归方程的应用,即根据所给的或者是做出的线性回归方程,预报y 的值,这是一些解答题目中经常会出现的一个问题,是一个基础题。
关键是根据所给的一个热饮杯数与当天气温之际的线性关系,做出其回归方程。
3.【四川省棠湖中学2018届高三3月月考】如表是降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程为0.70.5ˆ3yx =+,则表中m 的值为( )A. 3B. 3.5C. 4.5D. 2.5 【答案】A点睛:回归直线一定经过样本中心(),x y,是线性回归分析中的重要结论,利用此结论可求回归方程中的参数,也可求样本点中的参数.4.【河北省阜城中学 2017-2018学年高二上学期期末考试】对具有线性相关关系的变量x,y,测得一组数据如下根据上表,利用最小二乘法得它们的回归直线方程为=10.5x+,据此模型预测当x=10时,y的估计值为()A. 105.5B. 106C. 106.5D. 107【答案】C【解析】根据表中数据,计算,,代入回归直线方程=10.5x+中,计算,∴回归直线方程为=10.5x+;当x=10时,y的估计值为=10.5×10+1.5=106.5.故选:C.5.【黑龙江省哈尔滨市第六中学2017-2018学年高二3月月考】下表是降耗技术改造后生产甲产品过程中记录的产量 (吨)与相应的生产能耗(吨标准煤)的几组对应数据,根据表中提供的数据,求出关于的线性回归方程,那么表中的值为( )A. 4B. 3.15C. 4.5D. 3【答案】D6.【陕西省西北工业大学附属中学2017-2018学年高二上学期期中考试】假设关于某设备使用年限(年)和所支出的维修费用(万元)有如下统计资料:若对呈线性相关关系,则与的线性回归方程必过的点是()A . B. C. D.【答案】D【解析】∵,,∴这组数据的样本中心点是,∵线性回归方程过样本中心点,∴线性回归方程一定过点,故选D .7.【湖南省张家界市2017-2018年全市联考高二数学】为了研究某班学生的脚长(单位:厘米)和身高(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出与之间有线性相关关系,设其回归直线方程为. 已知,,. 若该班某学生的脚长为24,据此估计其身高为A . 160B . 163C . 166D . 170【答案】C8.【广西钦州市2017-2018学年高二上学期期末考试】设回归方程为73y x ∧=-,当变量x 增加两个单位时( )A . y 平均增加3个单位B . y 平均减少3个单位C . y 平均增加6个单位D . y 平均减少6个单位【答案】D【解析】回归直线方程为73y x ∧=-, ∴变量x 增加两个单位时,函数值要平均增加6-个单位,即减少6个单位,故选D .9.【广西钦州市2017-2018学年高二上学期期末考试】某钢铁研究所经研究得到结论,废品率%x 和每吨生铁成本y (元)之间的回归直线方程为2562y x ∧=+,这表明( )A . 废品率每吨增加1%,生铁成本增加258元B . 废品率每吨增加1%,生铁成本增加2元C . 废品率每吨增加1%,生铁成本每吨增加2元D . 废品率不变,生铁成本为256元【答案】C与每吨生铁成本y (元)之间的相关关系,故回归直线方程为2562y x ∧=+时,表明废品率每增加,生铁成本每吨平均增加2元,故选C .10.【湖北省孝感市八校2017-2018学年高二上学期期末考试】下列说法中错误的是( )A . 先把高二年级的2000名学生编号为1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为50m +, 100m +, 150m +的学生,这样的抽样方法是系统抽样法B . 线性回归直线y b x a ∧∧∧=+一定过样本中心点C . 若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1 D . 若一组数据1、a 、3的平均数是2【答案】C∴该组数据的方差是s 1﹣2)2+(2﹣2)2+(3﹣2)D 正确. 故选:C11.【湖南省长郡中学2017-2018学年高二上学期期末考试】下表是某小卖部统计出的五天中卖出热茶的杯数与当天气温的对比表:若卖出热茶的杯数y 与气温x 近似地满足线性关系,则其关系式最接近的是( )A . 6y x =+B . 42y x =-+C . 260y x =-+D . 378y x =-+【答案】C【解析】1813104024343951629,4255x y ++++++++====∴, 260y x =-+过点()9,42 ,选C .12.【四川省广安市2017-2018学年高二上学期期末考试】对变量,x y 有观测数据()(),1,2,,10i i x y i =⋯,得散点图(1);对变量,u v 有观测数据(()(),1,2,,10i i u v i =⋯,得散点图(2),由这两个散点图可以判断( )A . 变量x 与y 正相关, u 与v 正相关B . 变量x 与y 正相关, u 与v 负相关C . 变量x 与y 负相关, u 与v 正相关D . 变量x 与y 负相关, u 与v 负相关【答案】C二、填空题13.【四川省成都外国语学校2017-2018学年高二下学期入学考试】从某大学随机抽取的5名女大学生的身高x (厘米)和体重y (公斤)数据如下表;根据上表可得回归直线方程为0.9298ˆ 6.yx =-,则表格中空白处的值为________. 【答案】60,96.8=55,解得y =60,故答案为:60.14.【广东省中山一中、仲元中学等七校2017-2018学年高二3月联考】某农场农作物使用肥料量x 与产量y 的统计数据如下表:根据上表,可得回归方程y =bx +a 中的b 为9.4,据此模型,预报使用肥料量为6吨时产量为____吨. 【答案】65.5点睛:本题考查回归方程的求解及应用。
高一数学下册学期期末考试数学试卷湘教版必修2
高一数学摸底试卷一、选择题:(12小题,每小题4分,共48分。
在每题给出的四个选项中,只有一个选项符合题目要求)1.在单位圆中,面积为1的扇形所对的圆心角弧度数为: A .1 B .2 C .3 D .4 2.设角α的终边经过点P (-1,y ),且tan α=-12,则y =: A .2 B .-2 C .12 D .-123.若),1,3(),2,1(-==则=-b a 2:A .)3,5(B .)1,5(C .)3,1(-D .)3,5(--4.把函数742++=x x y 的图像按向量a 经过一次平移以后得到2x y =的图像,则a 是:A .)3,2(-B .)3,2(-C .)3,2(--D .)3,2(5.函数22sin lg sin x x y x x -=+是:A .奇函数但不是偶函数B .偶函数但不是奇函数C .即是奇函数又是偶函数D .即不是奇函数也不是偶函数6.点P 分向量21P P 所成的比为1,则1P分向量2PP 所成的比为: A .1 B .-1 C .21 D .21- 7.使“0a b >>”成立的充分不必要条件是: A.220a b >> B.ba 55>C.11->-b aD.b a 22log log >8.已知函数f (x)sin(x )cos(x )=+ϕ++ϕ为奇函数,则ϕ的一个取值为:A .0B .2π C .4π- D .π 9.已知非零实数,a b 满足关系式sincos855tan 15cos sin 55a b a b πππππ+=-,则b a 是的值是:B.D.10.在△ABC 中,∠A =60°,AC =1,△ABC 的面积为3,则C sin B sin A sin cb a ++++的值是:D.11.设02θπ≤<,已知两个向量OP =(cos θ,sin θ),OQ =(2+sin θ,2-cos θ),则向量|PQ |的最大值是:AB .C .D .12.函数2)3)(1()(+-+=x x x x f )2(->x 的最大值是:A .652-B .626-C .526-D .526+二、填空题(4个小题,每小题4分,共16分)13. 不等式2log 212<-x 的解集是14.已知113(,2sin ),(cos ,),//322a b a b αα==且则锐角α的值为 ; 15.求值sin 70cos50sin 20sin50︒︒︒︒+= 16.给出以下命题:①存在实数x ,使3sin cos 2x x +=;②若,αβ是第一象限的角,且αβ>,则cos cos αβ<;③函数27sin()32y x π=+是偶函数;④将函数sin 2y x =的图象向左平移4π个单位,得到的是函数sin(2)4y x π=+的图象;其中正确命题的序号是 .三、解答题(共5小题,17、18每题10分,19——21每题12分)的值试求已知αααααπαtan 112cos 2sin ,510sin cos ,20.17-+--=-<<18. 已知函数)sin(ϕω+=x A y (0>A , 0ω>,πϕ<||)的一段图象如图所示, (1)求函数的解析式;(2)求这个函数的单调递增区间。
湖南省张家界市高一数学上学期期末试卷(含解析)-人教版高一全册数学试题
2015-2016学年某某省某某市高一(上)期末数学试卷(A卷)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的,请将所选答案填涂在答题卷中对应位置.1.已知集合A={0,1,2},集合B={0,2,4},则A∩B=()A.{0,1,2} B.{0,2} C.{0,4} D.{0,2,4}2.对数型函数y=log a x+1(a>0,且a≠1)的图象过定点()A.(0,0)B.(0,1)C.(1,2)D.(1,1)3.设函数f(x)满足f(x+2π)=f(x),f(0)=0,则f(4π)=()A.0 B.πC.2πD.4π4.用二分法求方程x3﹣2x﹣5=0在区间[2,3]上的实根,取区间中点x0=2.5,则下一个有根区间是()A.[2,2.5] B.[2.5,3] C.D.以上都不对5.某种计算机病毒是通过电子进行传播的,表格是某公司前5天监测到的数据:第x天 1 2 3 4 5被感染的计算机数量y(台)12 24 49 95 190则下列函数模型中能较好地反映在第x天被感染的数量y与x之间的关系的是()A.y=12x B.y=6x2﹣6x+12 C.y=6•2x D.y=12log2x+126.的值是()A.2 B.1 C.﹣2 D.﹣17.已知=(1,2),=(﹣2,0),且k+与垂直,则k=()A.﹣1 B.C.D.8.将函数f(x)=sin(2x﹣)的图象左移,再将图象上各点横坐标压缩到原来的,则所得到的图象的解析式为()A.y=sinx B.y=sin(4x+)C.y=sin(4x﹣)D.y=sin(x+)9.已知幂函数y=f(x)的图象经过点,且f(a+1)<f(10﹣2a),则实数a的取值X围是()A.(﹣1,5)B.(﹣∞,3)C.(3,+∞)D.(3,5)10.设函数f(x)定义在R上,它的图象关于直线x=1对称,且当x≥1时,f(x)=3x﹣1,则有()A.B.C.D.11.设f(x)是定义在R上的奇函数,且f(x+3)•f(x)=﹣1,f(1)=﹣2,则f(2015)=()A.0 B.0.5 C.﹣2 D.212.△ABC中三个内角为A、B、C,若关于x的方程x2﹣xcosAcosB﹣cos2=0有一根为1,则△ABC一定是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卷中对应题号后的横线上.13.sin420°=.14.函数的单调递增区间是.15.设向量,定义两个向量之间的运算“⊗”为,若向量,则向量=.16.设函数f(x)=2cos(ωx+φ)对任意的x都有,若设函数g(x)=3sin(ωx+φ)﹣1,则的值是.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知全集为实数集,集合A={x|1<x<4},B={x|3x﹣1<x+5}.(1)求集合B及∁R A;(2)若C={x|x≤a},(∁R A)∩C=C,某某数a的取值X围.18.已知,.(1)求tanα的值;(2)求的值.19.已知函数f(x)=.(1)求f(1),f[f(﹣2)]的值;(2)若f(a)=10,某某数a的值.20.已知向量与的夹角为30°,且=, =1.(1)求;(2)求的值;(3)如图,设向量,求向量在方向上的投影.21.已知函数的部分图象如图所示.(1)求函数f(x)的解析式;(2)当,,若g(x)=1+2cos2x,求g(x0)的值;(3)若h(x)=1+2cos2x+a,且方程f(x)﹣h(x)=0在上有解,某某数a的取值X围.22.已知函数.(1)写出该函数的单调递减区间;(2)若函数g(x)=f(x)﹣m恰有1个零点,某某数m的取值X围;(3)若不等式f(x)≤n2﹣2bn+1对所有x∈[﹣1,1],b∈[﹣1,1]恒成立,某某数n的取值X围.2015-2016学年某某省某某市高一(上)期末数学试卷(A卷)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的,请将所选答案填涂在答题卷中对应位置.1.已知集合A={0,1,2},集合B={0,2,4},则A∩B=()A.{0,1,2} B.{0,2} C.{0,4} D.{0,2,4}【考点】交集及其运算.【专题】计算题;集合思想;定义法;集合.【分析】利用交集定义求解.【解答】解:∵集合集合A={0,1,2},集合B={0,2,4},∴A∩B={0,2}.故选:B.【点评】本题考查交集的求法,解题时要认真审题,是基础题.2.对数型函数y=log a x+1(a>0,且a≠1)的图象过定点()A.(0,0)B.(0,1)C.(1,2)D.(1,1)【考点】对数函数的图象与性质.【专题】转化思想;演绎法;函数的性质及应用.【分析】根据对数函数必要(1,0)点,结合函数图象的平移变换法则,可得答案.【解答】解:对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),函数y=log a x+1(a>0,且a≠1)的图象由对数函数y=log a x(a>0,且a≠1)的图象向上平移一个单位得到,故函数y=log a x+1(a>0,且a≠1)的图象过定点(1,1),故选:D.【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.3.设函数f(x)满足f(x+2π)=f(x),f(0)=0,则f(4π)=()A.0 B.πC.2πD.4π【考点】函数的值.【专题】计算题;转化思想;函数的性质及应用.【分析】由已知可得函数的周期为2π,进而可得f(4π)=f(2π)=f(0).【解答】解:∵函数f(x)满足f(x+2π)=f(x),∴f(4π)=f(2π)=f(0)=0,故选:A.【点评】本题考查的知识点是函数的周期性,函数求值,难度不大,属于基础题.4.用二分法求方程x3﹣2x﹣5=0在区间[2,3]上的实根,取区间中点x0=2.5,则下一个有根区间是()A.[2,2.5] B.[2.5,3] C.D.以上都不对【考点】二分法求方程的近似解.【专题】计算题.【分析】方程的实根就是对应函数f(x)的零点,由 f(2)<0,f(2.5)>0 知,f(x)零点所在的区间为[2,2.5].【解答】解:设f(x)=x3﹣2x﹣5,f(2)=﹣1<0,f(3)=16>0,f(2.5)=﹣10=>0,f(x)零点所在的区间为[2,2.5],方程x3﹣2x﹣5=0有根的区间是[2,2.5],故选A.【点评】本题考查用二分法求方程的根所在的区间的方法,方程的实根就是对应函数f(x)的零点,函数在区间上存在零点的条件是函数在区间的端点处的函数值异号.5.某种计算机病毒是通过电子进行传播的,表格是某公司前5天监测到的数据:第x天 1 2 3 4 5被感染的计算机数量y(台)12 24 49 95 190则下列函数模型中能较好地反映在第x天被感染的数量y与x之间的关系的是()A.y=12x B.y=6x2﹣6x+12 C.y=6•2x D.y=12log2x+12【考点】线性回归方程.【专题】函数思想;分析法;概率与统计.【分析】根据表格中y的增长速度进行判断.【解答】解:由表格可知,每一天的计算机被感染台数大约都是前一天的2倍,故增长速度符合指数型函数增长.故选:C.【点评】本题考查了不同函数模型的增长速度问题,属于基础题.6.的值是()A.2 B.1 C.﹣2 D.﹣1【考点】二倍角的正弦.【专题】计算题.【分析】原式先利用对数的运算法则计算,再利用二倍角的正弦函数公式及特殊角的三角函数值化简即可求出值.【解答】解:原式=log2sinπcosπ=log2sinπ=log22﹣2=﹣2.故选C【点评】此题考查了二倍角的正弦函数公式,以及对数的运算性质,熟练掌握公式是解本题的关键.7.已知=(1,2),=(﹣2,0),且k+与垂直,则k=()A.﹣1 B.C.D.【考点】平面向量数量积的运算.【专题】计算题;方程思想;向量法;平面向量及应用.【分析】由已知向量的坐标求出k+的坐标,再由数量积的坐标表示列式求得k值.【解答】解:∵=(1,2),=(﹣2,0),∴k+=k(1,2)+(﹣2,0)=(k﹣2,2k),由k+与垂直,得,即1×(k﹣2)+2×2k=0,解得:k=.故选:C.【点评】本题考查平面向量的数量积运算,考查了数量积的坐标表示,是基础题.8.将函数f(x)=sin(2x﹣)的图象左移,再将图象上各点横坐标压缩到原来的,则所得到的图象的解析式为()A.y=sinx B.y=sin(4x+)C.y=sin(4x﹣)D.y=sin(x+)【考点】正弦函数的图象.【专题】三角函数的图像与性质.【分析】先由“左加右减”的平移法则和再将图象上各点横坐标压缩到原来的,即可求出.【解答】解:将函数f(x)=sin(2x﹣)的图象左移可得y=sin2[(x+)﹣)]=sin (2x+),再将图象上各点横坐标压缩到原来的,可得y=sin(4x+),故选:B.【点评】本题主要考查三角函数的平移及周期变换.三角函数的平移原则为左加右减上加下减.周期变换的原则是y=sinx的图象伸长(0<ω<1)或缩短(ω>1)到原理的可得y=sinωx的图象.9.已知幂函数y=f(x)的图象经过点,且f(a+1)<f(10﹣2a),则实数a的取值X围是()A.(﹣1,5)B.(﹣∞,3)C.(3,+∞)D.(3,5)【考点】幂函数的概念、解析式、定义域、值域.【专题】转化思想;待定系数法;函数的性质及应用.【分析】利用待定系数法求出y=f(x)的解析式,再利用函数的单调性把不等式f(a+1)<f(10﹣2a)化为等价的不等式组,求出解集即可.【解答】解:幂函数y=f(x)=xα的图象经过点,∴4α=,解得α=﹣;∴f(x)=,x>0;又f(a+1)<f(10﹣2a),∴,解得3<a<5,∴实数a的取值X围是(3,5).故选:D.【点评】本题考查了用待定系数法求函数解析式以及利用函数的单调性求不等式的应用问题,是基础题目.10.设函数f(x)定义在R上,它的图象关于直线x=1对称,且当x≥1时,f(x)=3x﹣1,则有()A.B.C.D.【考点】指数函数单调性的应用;函数单调性的性质.【专题】证明题.【分析】先利用函数的对称性,得函数的单调性,再利用函数的对称性,将自变量的值化到同一单调区间上,利用单调性比较大小即可【解答】解:∵函数f(x)定义在R上,它的图象关于直线x=1对称,且x≥1时函数f(x)=3x﹣1为单调递增函数,∴x<1时函数f(x)为单调递减函数,且f()=f()∵<<<1∴,即故选B【点评】本题考查了函数的对称性及其应用,利用函数的单调性比较大小的方法11.设f(x)是定义在R上的奇函数,且f(x+3)•f(x)=﹣1,f(1)=﹣2,则f(2015)=()A.0 B.0.5 C.﹣2 D.2【考点】函数奇偶性的性质;函数的值.【专题】计算题;转化思想;函数的性质及应用.【分析】根据已知可得函数f(x)是周期为6的周期函数,结合函数奇偶性,可得答案.【解答】解:∵f(x+3)•f(x)=﹣1,∴f(x+3)•f(x+6)=﹣1,∴f(x+6)=f(x),即函数f(x)是周期为6的周期函数,又f(1)=﹣2,故f(2015)=f(﹣1)=﹣f(1)=2,故选:D.【点评】本题考查的知识点是函数奇偶性的性质,函数求值,函数的周期性,是函数图象和性质的综合应用,难度中档.12.△ABC中三个内角为A、B、C,若关于x的方程x2﹣xcosAcosB﹣cos2=0有一根为1,则△ABC一定是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形【考点】解三角形.【专题】计算题.【分析】先把1代入方程,然后利用余弦的二倍角化简整理,最后利用两角和公式求得cos (A﹣B)=1推断出A=B,则可知三角形的形状.【解答】解:依题意可知1﹣cosAcosB﹣cos2=0,∵cos2===∴1﹣cosAcosB﹣=0,整理得cos(A﹣B)=1∴A=B∴三角形为等腰三角形.故选B【点评】本题主要考查了解三角形和三角形的形状判断.解三角形常与三角函数的性质综合考查,应注意积累三角函数的基本公式.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卷中对应题号后的横线上.13.sin420°=.【考点】运用诱导公式化简求值.【专题】三角函数的求值.【分析】由诱导公式化简后根据特殊角的三角函数值即可求解.【解答】解:sin420°=sin(360°+60°)=sin60°=.故答案为:.【点评】本题主要考查了诱导公式的应用,属于基础题.14.函数的单调递增区间是[2,+∞).【考点】函数的单调性及单调区间.【专题】计算题;函数思想;综合法;函数的性质及应用;导数的综合应用.【分析】可求导数,根据导数符号即可判断f(x)在定义域上为增函数,从而便可得出f (x)的单调递增区间.【解答】解:;∴f(x)在定义域[2,+∞)上单调递增;即f(x)的单调递增区间是[2,+∞).故答案为:[2,+∞).【点评】考查根据导数符号判断函数单调性以及求函数单调区间的方法,清楚增函数的定义,注意正确求导.15.设向量,定义两个向量之间的运算“⊗”为,若向量,则向量= (﹣3,﹣2).【考点】平面向量的坐标运算.【专题】计算题;对应思想;定义法;平面向量及应用.【分析】直接利用新定义即可求出.【解答】解:向量,则向量=(x,y),∴(x,2y)=(﹣3,﹣4),∴x=﹣3,y=﹣2,∴向量=(﹣3,﹣2),故答案为:(﹣3,﹣2).【点评】本题考新定义的应用,以及向量的坐标运算,属于基础题.16.设函数f(x)=2cos(ωx+φ)对任意的x都有,若设函数g(x)=3sin(ωx+φ)﹣1,则的值是﹣1 .【考点】余弦函数的图象.【专题】转化思想;待定系数法;函数的性质及应用.【分析】根据,得出x=是函数f(x)的一条对称轴,从而求出φ的表达式,再函数g(x)的解析式以及的值.【解答】解:∵函数f(x)=2cos(ωx+φ)对任意的x都有,∴x=是函数f(x)的一条对称轴,∴cos(ω+φ)=±1,即ω+φ=kπ,k∈Z,∴φ=kπ﹣ω,k∈Z;∴函数g(x)=3sin(ωx+φ)﹣1=3sin(ωx+kπ﹣ω)﹣1,k∈Z;∴=3sin(ω+kπ﹣ω)=3sinkπ﹣1=﹣1.故答案为:﹣1.【点评】本题主要考查三角函数的对称轴的问题.注意正余弦函数在其对称轴上取最值,是基础题目.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知全集为实数集,集合A={x|1<x<4},B={x|3x﹣1<x+5}.(1)求集合B及∁R A;(2)若C={x|x≤a},(∁R A)∩C=C,某某数a的取值X围.【考点】交、并、补集的混合运算.【专题】对应思想;定义法;集合.【分析】(1)化简集合B,求出集合A在R中的补集即可;(2)根据交集的定义,计算得出C⊆∁R A,再求出a的取值X围即可.【解答】解:(1)∵B={x|3x﹣1<x+5},∴B={x|x<3},(2分)又∵A={x|1<x<4},∴∁R A={x|x≤1或x≥4};(5分)(2)∵(∁R A)∩C=C,∴C⊆∁R A={x|x≤1或x≥4},(7分)又C={x|x≤a},∴a≤1.(10分)【点评】本题考查了集合的定义与运算问题,是基础题目.18.已知,.(1)求tanα的值;(2)求的值.【考点】三角函数的化简求值.【专题】计算题;转化思想;分析法;三角函数的求值.【分析】(1)由角的X围及同角三角函数基本关系式的应用可求cosα的值,进而利用同角三角函数基本关系式可求tanα的值.(2)利用诱导公式,同角三角函数基本关系式化简所求,利用(1)的结论即可计算求值.【解答】(本题满分为12分)解:(1)∵,∴,…(3分)∴;…(6分)(2)原式==,…(9分)=…(12分)【点评】本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.19.已知函数f(x)=.(1)求f(1),f[f(﹣2)]的值;(2)若f(a)=10,某某数a的值.【考点】分段函数的应用;函数的值.【专题】分类讨论;分类法;函数的性质及应用.【分析】(1)由已知中函数f(x)=,将x=1,x=﹣2代入计算,可得答案;(2)根据函数f(x)=,分类讨论满足f(a)=10的a值,综合讨论结果,可得答案;【解答】解:(1)∵函数f(x)=∴(2分)f[f(﹣2)]=f(4)=10;(6分)(2).,(8分),不合题意,舍去;(10分)当a≥2时,10log4a=10,a=4合题意;.(11分)∴.(12分)【点评】本题考查的知识点是分段函数的应用,函数求值,分类讨论思想,难度中档.20.已知向量与的夹角为30°,且=, =1.(1)求;(2)求的值;(3)如图,设向量,求向量在方向上的投影.【考点】平面向量数量积的运算.【专题】计算题;转化思想;向量法;平面向量及应用.【分析】(1)直接由已知结合数量积公式求解;(2)利用,等式右边展开后代入数量积得答案;(3)由,代入投影公式化简即可.【解答】解:向量与的夹角为30°,且=, =1.(1);(2);(3)∵,∴.【点评】本题考查平面向量的数量积运算,考查向量模的求法,对于(3)的求解,需要掌握向量在向量方向上的投影的概念,是中档题.21.已知函数的部分图象如图所示.(1)求函数f(x)的解析式;(2)当,,若g(x)=1+2cos2x,求g(x0)的值;(3)若h(x)=1+2cos2x+a,且方程f(x)﹣h(x)=0在上有解,某某数a的取值X围.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【专题】计算题;转化思想;三角函数的图像与性质.【分析】(1)由图求出A,ω,φ的值,可得函数f(x)的解析式;(2)根据,,求出x0,代入g(x)=1+2cos2x,可求g(x0)的值;(3)(3),,进而得到答案.【解答】解:(1)由图知A=2,(解法只要合理,均可给分)(1分),(2分)∴f(x)=2sin(2x+φ),∴,∴,,(3分)∴;(4分)(2),(6分);(8分)(3),,(9分)=,(10分)∵,(11分)∴a∈[﹣2,1].(12分)【点评】本题考查的知识点是正弦型函数的图象和性质,熟练掌握正弦型函数的图象和性质,是解答的关键.22.已知函数.(1)写出该函数的单调递减区间;(2)若函数g(x)=f(x)﹣m恰有1个零点,某某数m的取值X围;(3)若不等式f(x)≤n2﹣2bn+1对所有x∈[﹣1,1],b∈[﹣1,1]恒成立,某某数n的取值X围.【考点】分段函数的应用;函数零点的判定定理.【专题】综合题;数形结合;转化思想;函数的性质及应用.【分析】(1)根据分段函数的表达式结合函数的单调性进行求解.(2)利用函数与方程之间的关系转化为函数f(x)与y=m的交点问题进行求解,(3)根据不等式恒成立,转化为为以B为变量的参数问题,结合一元一次函数的性质进行求解即可.【解答】解:(1)当x≤0时,函数f(x)为增函数,当x>0时,函数的对称轴为x=1,则函数的单调递减区间是(0,1);(2分)(2)函数g(x)=f(x)﹣m恰有1个零点等价于直线y=m与函数y=f(x)的图象恰有1个交点,,(4分)∴;(7分)(3)若要使f(x)≤n2﹣2bn+1对所有x∈[﹣1,1]恒成立,则需,而[f(x)]max=f(0)=1,(9分)即n2﹣2kn+1≥1,∴﹣2nb+n2≥0在b∈[﹣1,1]恒成立,,(10分)∴,(11分)∴n≤﹣2或n=0或n≥2.(12分)【点评】本题主要考查分段函数的应用以及不等式恒成立问题,利用数形结合是解决本题的关键.。
湖南省长沙市2023-2024学年高一下学期期末考试数学试卷含答案
长沙市2023~2024学年高一年级期末考试数学试卷(答案在最后)2024年7月时量:120分钟满分:150分命题:高一数学组审题:高一数学组一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数2i z =-,则zz z =-()A.1i 2-+ B.1i 2- C.1i 2+ D.1i 2--2.有一组互不相等的样本数据126,,,x x x ,平均数为x .若随机剔除其中一个数据,得到一组新数据,记为125,,,y y y ,平均数为y ,则下列说法错误的是()A.新数据的极差可能等于原数据的极差B.新数据的中位数不可能等于原数据的中位数C.若x y =,则新数据的方差一定大于原数据方差D.若x y =,则新数据的40%分位数一定大于原数据的40%分位数3.设ABC 的内角A B C 、、所对边分别为,,a b c ,若π3A =,且不等式(230x x -+<的解集为{}x b x a <<∣,则B =()A.π6B.5π6C.π6或5π6 D.2π34.在侧棱长为S ABC -中,40ASB BSC CSA ∠∠∠=== ,过A 作截面AEF ,则截面的最小周长为()A. B.4C.6D.105.设,a b 是非零向量,则“存在实数λ,使得b a λ= ”是“a b a b +=+ ”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件6.如图,在直三棱柱111ABC A B C -中,1,AC BC CC AC BC ==⊥,点D 是AB 的中点,则直线1B B 和平面1CDB 所成角的正切值为()A.22B.3222D.227.在正方体1111ABCD A B C D -中边长为2,点P 是上底面1111A B C D 内一动点,若三棱锥P ABC -的外接球表面积恰为41π4,则此时点P 构成的图形面积为()A.πB.25π16C.41π16D.2π8.已知平面向量12312312,,,1,,60e e e e e e e e ====.若对区间1,12⎡⎤⎢⎥⎣⎦内的三个任意的实数123,,λλλ,都有11223312312e e e e e e λλλ++≥++,则向量13,e e 夹角的最大值的余弦值为()A.366-B.356+-C.366-D.356-二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分.9.一个正八面体的八个面上分别标以数字1到8,将其随机抛掷两次,记与地面接触面上的数字依次为12,x x ,事件A =“13x =”,事件B =“26x =”,事件12“9C x x =+=”,则()()A.AB C ⊆B.AC B ⊆C.,B C 互斥D.,B C 独立10.已知函数()23sin 2sin (0)2xf x x ωωω=+>的图象在区间[]0,π上有且仅有三个对称中心,则()A.ω的取值范围是102,3⎡⎫⎪⎢⎣⎭B.()f x 的图象在区间[]0,π上有2条或3条对称轴C.()f x 在区间π0,4⎛⎫⎪⎝⎭上的最大值不可能为3D.()f x 在区间π0,6⎛⎫⎪⎝⎭上为增函数11.如图,已知正方体1111ABCD A B C D -的棱长为1,,,E F G 分别为棱11,,AA CC BC 上的点,()10,1A E CF CG λ===∈,则()A.EG GF⊥B.平面EFG 经过棱AB 的中点HC.平面EFG 截该正方体,截面面积的最大值为4D.点D 到平面EFG 距离的最大值为2三、填空题:本题共3小题,每小题5分,共15分.12.如图,函数()()2sin (0,0π)f x x ωϕωϕ=+><<的图象与坐标轴交于点,,A B C ,直线BC 交()f x 的图象于点,D O (坐标原点)为ABD 的重心(三条边中线的交点),其中()π,0A -,则ABD 的面积为__________.13.明德中学为提升学校食堂的服务水平,组织全校师生对学校食堂满意度进行评分,按照分层抽样方法,抽取200位师生的评分(满分100分)作为样本,在这200个样本中,所有学生评分样本的平均数为x ,方差为2x s ,所有教师评分样本的半均数为y ,方差为2y s ,总样本的平均数为z ,方差为2s ,若245x y x s y s s ==,抽取的学生样本多于教师样本,则总样本中学生样本的个数至少为__________.14.正四棱锥的外接球半径为R ,内切球半径为r ,则Rr的最小值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)在四棱锥P ABCD -中,平面PAB ⊥平面,2,22,,ABCD PA AB PB AD BC AB BC AD =====⊥∥,BC M 为棱AP 的中点.(1)求证:BM ∥平面PCD ;(2)求直线PC 与平面BCM 所成角的正弦值.16.(15分)在ABC 中,角,,A B C 的对边分别为,,a b c ,且满足cos sin 3a b C C =-.(1)求B 的大小;(2)若ABC 的面积为,且3BC BD =,当线段AD 的长最短时,求AC 的长.17.(15分)袋中装有除颜色外完全相同的黑球和白球共7个,其中白球3个,现有甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取,...,取后不放回,直到两人中有一人取到白球时终止.每个球在每一次被取出的机会是等可能的.(1)求取球2次即终止的概率:(2)求甲取到白球的概率.18.(17分)如图,已知四边形ABCD 为菱形,四边形ACEF 为平行四边形,且6AB =,60BAD BAF DAF ∠∠∠=== .(1)证明:直线BD ⊥平面ACEF ;(2)设平面BEF ⋂平面ABCD l =,且二面角E l D --的平面角为26,tan 3θθ=,设G 为线段AF 的中点,求DG 与平面ABCD 所成角的正弦值.19.(17分)点A 是直线PQ 外一点,点M 在直线PQ 上(点M 与,P Q 两点均不重合),我们称如下操作为“由A 点对PQ 施以视角运算”:若点M 在线段PQ 上,记()sin ,;sin AP PAM P Q M AQ MAQ∠∠=;若点M 在线段PQ 外,记()sin ,;sin AP PAM P Q M AQ MAQ∠∠=-.(1)若M 在正方体1111ABCD A B C D -的棱AB 的延长线上,且22AB BM ==,由1A 对AB 施以视角运算,求(),;A B M 的值:(2)若M 在正方体1111ABCD A B C D -的棱AB 上,且2AB =,由1A 对AB 施以机角运算,得到()1,;2A B M =,求AM MB的值;(3)若1231,,,,n M M M M - 是ABC 的边BC 的()2n n ≥等分点,由A 对BC 施以视角运算,证明:()()(),;,;11,2,3,,1k n k B C M B C M k n -⨯==- .长沙市2023~2024学年高一年级期末考试数学答案题号12345678答案ADACBDAA【解析】因为2i z =-,所以2i z =+,所以()()()2i i 2i 2i 12i 1i 2i 2i 2i 2i i 22z z z +⋅++-+=====-+---+--⋅.故选:A.2.【答案】D【解析】不妨设原数据126x x x <<< ,新数据.125y y y <<< .,A :例如原数据为1,2,3,4,5,6,新数据为,此时极差均为615-=,故A 正确;B :原数据中位数为342x x +,新数据中位数为3y ,可知33y x =或34y x =,若33y x =,可得34332x x x y +>=;若34y x =,可得34432x xx y +<=;综上所述:新数据的中位数不可能等于原数据的中位数,故B 正确;C :若x y =,可知去掉的数据为x ,则652211(()i i x x y y ==-=-∑∑,可得652211111,3,4,5,6()()65i i x x y y ==-<-∑∑,所以新数据的方差一定大于原数据方差,故C 正确;D:若x y =,可知去掉的数据为x ,因为640% 2.4⨯=,可知原数据的40%分位数为第3位数,540%2⨯=,可知新数据的40%分位数为第2位数与第3位数的平均数,例如原数据为2,2,3,4,5,6-,新数据为2,2,4,5,6-,此时新数据的40%分位数、原数据的40%分位数均为3,故D 错误;故选:ABC.3.【答案】A【解析】不等式(230x x -+<即()(30x x -<3x <<,所以,3,a b ==,由正弦定理可得sin sin b a B A=,所以,πsin 13sin 32b A B a ===,b a < ,所以B A <,可得B 是锐角,所以π6B =,故选A .4.【答案】C【解析】如图三棱锥以及侧面展开图,要求截面AEF 的周长最小,就是侧面展开图中AG 的距离,因为侧棱长为2的正三棱锥V ABC -的侧棱间的夹角为40,120AVG ∠=,所以由余弦定理可知22222cos12036,6AG VA VG VA VG AG =+-⋅==∴= ,故选C.5.【答案】B【解析】若“a b a b +=+,则平方得2222|2||2|a a b b a a b b +⋅+=+⋅+ ,即a b a b ⋅=⋅ ,即cos ,a b a b a b a b ⋅=⋅=⋅ ,则cos ,1a b = ,即,0a b = ,即,a b同向共线,则存在实数λ使得b a λ= ;反之当,πa b = 时,存在0λ<,满足b a λ= ,但“a b a b +=+ ”不成立,即“存在实数λ使得b a λ= ”是“a b a b +=+ ”的必要不充分条件.故选:B.6.【答案】D【解析】由题意,以C 为坐标原点,以1,,CA CB CC 为,,x y z 轴建立空间坐标系,如下图所示:令12AC BC CC ===,则()0,0,0C ,()()()()12,0,0,0,2,0,1,1,0,0,2,2A B D B 故()()()110,0,2,1,1,0,0,2,2B B CD CB =-==设(),,n x y z = 为平面1CDB 的一个法向量,则100CD n CB n ⎧⋅=⎪⎨⋅=⎪⎩ ,即0220x y y z +=⎧⎨+=⎩令1x =,则1,1y z =-=,从而()1,1,1n =-,设直线1B B 和平面1CDB 所成角为θ,则111sin cos ,3||n B B n B B n B Bθ⋅=<>==⋅,故cos 3θ=,从而tan 2θ=.故选:D.7.【答案】A【解析】如下图所示,设三棱锥P ABC -的外接球为球O ',分别取11AC A C 、的中点1O O 、,则点O '在线段1OO 上,由于正方体1111ABCD A B C D -的棱长为2,则ABC的外接圆的半径为OA =O 的半径为R ,则2414ππ4R =,解得4R =.所以,34OO ==',则1135244OO OO OO '=-=-=,易知,点P 在上底面1111A B C D 所形成的轨迹是以1O为圆心的圆,由于4O P R ==',所以,11O P ==,因此,点P 所构成的图形的面积为21ππO P ⨯=.故选:A.8.【答案】A【解析】设()cos ,sin C θθ,如图,不妨设()()12311,0,,,cos ,sin 22e OA e OB e CO θθ⎛⎫======-- ⎪ ⎪⎝⎭.设M 为AB 的中点,G 为OC 的中点,F 为BD 的中点,E 为AD 的中点.则()1233111,,cos ,sin ,44222M G e e e GO OM GM θθ⎛⎫⎛⎫++=+= ⎪ ⎪ ⎪⎝⎭⎝⎭,设112233e e e HO OP HP λλλ++=+=,点P 在平行四边形EDFM 内(含边界).由题知HP GM ≥恒成立.为了使13,e e最大,则思考13,e e为钝角,即思考C 点在第一或第四象限.思考临界值即P 与M 重合,G 与H 重合,且GM 不能充当直角三角形斜边,否则可以改变H 的位置,使得HM GM <,此时θ最小,所以GM OC ⊥ ,即()311cos ,sin cos ,sin 04242θθθθ⎛⎫--⋅= ⎪⎪⎝⎭,即22311cos cos sin 04242θθθθ-+-=.即331cos sin 1222θθ⎛⎫+= ⎪ ⎪⎝⎭,即π1cos 262θ⎛⎫-= ⎪⎝⎭.所以πcos 63θ⎛⎫-= ⎪⎝⎭.所以ππππππcos cos cos cos sin sin 666666θθθθ⎡⎤⎛⎫⎛⎫⎛⎫=-+=---⋅ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1332326+=⨯+=,其中向量1e 与3e 夹角为πθ-,故1e 与3e 夹角的最大值的余弦值为36+-.故选:A.9.【答案】ABD【解析】AB =“13x =且26x =",事件C 的基本事件有121212121,8;2,7;3,6;4,5x x x x x x x x ========;121212125,4;6,3;7,2;8,1x x x x x x x x ========共8个,所以AB C ⊆,故A 正确;AC ="13x =且129"x x +=="13x =且26"x =,所以AC B ⊆,故B 正确;对于C ,当13x =且26x =时,事件,B C 同时发生,所以,B C 不互斥,故C 错误;对于()()181D,,8888P B P C ===⨯,而BC =“13x =且26x =”,则()164P BC =,所以()()()P BC P B P C =,所以,B C 独立,故D 正确.故选:ABD.10.【答案】BD【解析】()1cos π2cos 12sin 126xf x x x x x ωωωωω-⎛⎫=+⨯=-+=-+ ⎪⎝⎭,令()ππ6x k k ω-=∈Z ,得()()61πππ66k k x k ωωω+=+=∈Z ,由()()61π0π6k k ω+≤≤∈Z 结合0ω>,得()1166k k ω-≤≤-∈Z ,依题意.k .有且只有三个整数值,所以1236ω≤-<,得131966ω≤<,故A 不正确;令()πππ62x k k ω-=+∈Z ,得()()32ππ2π33k k x k ωωω+=+=∈Z ,由()()32π0π3k k ω+≤≤∈Z 结合0ω>,得()2233k k ω-≤≤-∈Z ,当13863ω≤<时,32223ω≤-<,此时0k =或1k =,函数()f x 的图象在区间[]0,π上有2条对称轴,为2π5π,33x x ωω==,当81936ω≤<时,25232ω≤-<,此时0k =或1k =或2k =,函数()f x 的图象在区间[]0,π上有2条对称轴,为2π5π8π,,333x x x ωωω===,所以()f x 的图象在区间[]0,π上有2条或3条对称轴,故B 正确;当π0,4x ⎛⎫∈ ⎪⎝⎭时,ππππ,6646x ωω⎛⎫-∈-- ⎪⎝⎭,因为131966ω≤<,所以ππ3π5π,4688ω⎡⎫-∈⎪⎢⎣⎭,所以当ππ62x ω-=,即2π3x ω=时,()f x 取得最大值3,故C 不正确;由π0,6x ⎛⎫∈ ⎪⎝⎭,得ππππ,6666x ωω⎛⎫-∈-- ⎪⎝⎭,因为131966ω≤<,所以ππ7π13π,663636ω⎡⎫-∈⎪⎢⎣⎭,因为0ω>,所以()f x 在区间π0,6⎛⎫⎪⎝⎭上为增函数,故D 正确.故选:BD11.【答案】ABD【解析】记M 为11D C 的中点,棱AB 的中点H ,取线段11A D 上的点N 使得1A N λ=,正方体1111ABCD A B C D -的中心为O .则根据对称性,E 和,F G 和,N H 和M 分别关于点O 对称.从而O 在平面EFG 内,而FG ∥1BC ∥HM ,故FG ∥HO ,从而H 在平面EFG 内.由于前面的对称性,及,,,,E F G H O 在平面EFG 内,知平面EFG 截该正方体的截面就是中心为O 的六边形EHGFMN ,从而H 一定在平面EFG 内,至此我们得到选项B 正确.前面已经证明FG ∥MH ,同理有NE ∥MH ,故FG ∥MH ∥NE .由于11A N A E CF CG λ====,故111D N AE C F BG λ====-,同时显然有1112AH BH D M C M ====.从而EN FG λ===,MN MF EH GH =====由于,EN FG HM FG λ==<=∥MH ∥NE ,故四边形ENMH 和GFMH 都是等腰梯形,从而,OE ON OF OG ==.这表明线段EF 和GN 互相平分且长度相等,所以四边形是EGFN 矩形,故EG GF ⊥,至此我们得到选项A 正确.由于四边形ENMH 和GFMH λ,下底均为,.所以它们的面积都等于(11122λλ⋅+=+故截面EHGFMN 的面积(1S λ=+.当34λ=时,(7321411644S λ⋅=+=>,至此我们得到选项C 错误.由于1122DO DB ==,且O 在平面EFG 内,故点D 到平面EFG的距离不超过2.而当12λ=时,,,,,,E H G F M N分别是各自所在棱的中点,从而DE DF DG ===而2OE OF OG ===,这表明点D 和点O 到,,E F G 三点的距离两两相等.故点D 和点O 在平面EFG 的投影同样满足到,,E F G 三点的距离两两相等,从而点D 和点O 在平面EFG 的投影都是EFG 的外心,所以由点D 和点的投影是同一点,知DO 垂直于平面EFG .从而由O 在平面EFG 内,知点D 到平面EFG 的距离就是DO 的长,即32.所以,点D 到平面EFG 的距离的最大值是32,至此我们得到选项D 正确.故选:ABD.12.【答案】2【解析】因为O 为ABD 的重心,且()π,0A -,可得2π3OA AC ==,解得3π2AC =,所以π,02C ⎛⎫ ⎪⎝⎭,所以()1π3ππ222T =--=,所以3πT =,所以2π3πω=,解得23ω=,可得()22sin 3f x x ϕ⎛⎫=+ ⎪⎝⎭,由()π0f -=,即()2sin π03ϕ⎡⎤⋅-+=⎢⎥⎣⎦,可得()2π2π3k ϕ⨯-+=,解得2π2π,3k k ϕ=+∈Z ,又由0πϕ<<,所以2π3ϕ=,所以()22π2sin 33f x x ⎛⎫=+ ⎪⎝⎭,于是()22π02sin 033OB f ⎛⎫==⨯+= ⎪⎝⎭,故ABD的面积为13π2222S =⨯⨯.故答案为:2.13.【答案】160【解析】假设在样本中,学生、教师的人数分别为,(1200,,)m n n m m n ≤<<∈N ,记样本中所有学生的评分为(),1,2,3,,i x i m =⋯,所有教师的评分为(),1,2,3,,j y j n =⋯,由x y =得mx ny z x y m n +===+,所以()()222111200m n i j i j s x z y z ==⎡⎤=-+-⎢⎥⎣⎦∑∑()()()222211114,2002005m n i j x y x y i j x x y y ms ns s s ==⎡⎤=-+-=+=⎢⎥⎣⎦∑∑,所以22160x y x y ms ns s s +=,即160y x y xs s m n s s +=,令x ys t s =,则()21600,Δ2560042560042000mt t n mn m m -+==-=--≥,即220064000m m -+≥,解得40m ≤或160m ≥,因为1200n m ≤<<且200m n +=,得100m >,所以160m ≥.所以总样本中学生样本的个数至少为160.故答案为:160.14.1+【解析】设正四棱锥P ABCD -底面边长为a ,高为h ,底面ABCD 的中心为M ,连接,PM BM,则,2BM a PM h ==,所以PB ==,设外接球球心为1O ,内切球球心为2O ,则12,O O 在PM 上,因为11PO BO R ==,所以11O M PM PO h R =-=-,在1Rt O MB中,222()2h R a R ⎛⎫-+= ⎪ ⎪⎝⎭,化简得2224h a R h +=,因为22111143332P ABCDV a h a r -==+⨯⨯所以r =,所以()22222222244h a h a a a R h a a h ahr h ah ++++===2222224ha h +⋅=,令h k a =,则222221h R a r ⎛⎫+ ⎪=,令1)t t =>,则()2121R t r t +=-,令1(0)m tm =->,则222111122R m m m r m m ++==++≥+=+,当且仅当12m m =,即m =时取等号,所以R r1+.1+.15.【解析】(1)取PD 的中点N ,连接,MN CN ,则MN ∥AD 且12MN AD =,又BC ∥AD 且12BC AD =,所以MN ∥BC 且MN BC =,故四边形BCNM 为平行四边形,所以BM ∥CN ,又BM ⊄平面,PCD CN ⊂平面PCD ,所以BM ∥平面PCD(2)由2,2AB PA PB ===222AB PA PB +=,所以PA AB ⊥,又平面PAB ⊥平面ABCD ,平面PAB ⋂平面,ABCD AB PA =⊂平面PAB ,所以PA ⊥平面ABCD ,又AC ⊂平面ABCD ,所以PA AC ⊥.由2,1,AB BC AB BC ==⊥,得225AC AB BC =+=,所以223PC AC PA =+=,22226,5CM AM AC BM AM AB =+==+=,得222CM BM BC =+,则BC BM ⊥,所以1522MBC S BM BC =⋅= .又()()111121213323P MBC P ABC M ABC ABC V V V S PA MA ---=-=-=⋅⋅⋅⋅-= ,设P 到平面MBC 的距离为h ,直线PC 与平面MBC 的所成角为θ,则1536P MBC MBC V hS -== ,所以1536h =,解得55h =,所以5255sin 315h PC θ===,即直线PC 与平面MBC 的所成角的正弦值为515.16.【解析】(1)因为3cos sin 3a b C C =-,由正弦定理可得3sin sin cos sin 3A B C B C =-,又()()sin sin πsin sin cos cos sin A B C B C B C B C ⎡⎤=-+=+=+⎣⎦,所以sin cos cos sin sin cos sin sin 3B C B C B C B C +=-,所以cos sin sin 3B C B C =-,又()0,πC ∈,所以sin 0C >,所以cos sin 3B B =-,即tan B =,又()0,πB ∈,所以2π3B =;(2)因为ABC 的面积为,即1sin 2ac B =,即12πsin 23ac =11222ac ac ⨯==,因为3BC BD = ,所以13BD BC = ,在ABD 中2222cos AD BA BD BA BD B =+-⋅,即2221121123333AD c a ac ca ac ac ⎛⎫=++≥+== ⎪⎝⎭,当且仅当13c a =,即6,2a c ==时取等号,所以AD ≥AD 的最小值为6,2a c ==,则2222212cos 62262522b a c ac B ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以b =,即AC =17.【解析】(1)设事件A 为“取球2次即终止”.即甲第一次取到的是黑球而乙取到的是白球,借助树状图求出相应事件的样本点数:因此,()432767P A ⨯==⨯.(2)设事件B 为“甲取到白球”,“第i 次取到白球”为事件1,2,3,4,5i =,因为甲先取,所以甲只可能在第1次,第3次和第5次取到白球.借助树状图求出相应事件的样本点数:所以()()()()135135()P B P A A A P A P A P A =⋃⋃=++343343213361227765765437353535⨯⨯⨯⨯⨯⨯=++=++=⨯⨯⨯⨯⨯⨯18.【解析】(1)设AC BD O ⋂=,连接,DF OF ,四边形ABCD 为菱形,则,,AB AD AC BD BO OD =⊥=,又60BAF DAF ∠∠== ,易得BAF DAF ≅ ,所以BF DF =,则BD OF ⊥,又,,AC OF O AC OF ⋂=⊂平面ACEF ,所以直线BD ⊥平面ACEF(2)过F 点作FH AC ⊥于H 点,过H 点作HM l ⊥于M 点,连接FM ,过H 点作HN AD ⊥于N 点,连接FN ,由(1)易证,,FM l FN AD ⊥⊥,则FMH ∠为二面角E l D --的平面角,在直角FHM 中,6tan 3FH HM θ==,又3HM BO ==,可得6FH =,设2AF a =,则,33AN a NH FN a ===,直角FHN 中,222(26)3)3a +=,可得6AF =,G 为线段AF 的中点,则G 到平面ABCD 的距离6d =,又33DG =,设直线DG 与平面ABCD所成角为,sin 3d DG αα==,直线DG 与平面ABCD所成角的正弦值为3.19.【解析】(1)如图1,因为22AB BM ==,所以113,AM A B A M ===.由正方体的定义可知1AA AB ⊥,则190A AB ∠= ,故11sin 22AA B AA B ∠∠==,11sin 1313AA M AA M ∠∠==.因为111BA M AA M AA B ∠∠∠=-,所以11111sin sin cos cos sin 26BA M AA M AA B AA M AA B ∠∠∠∠∠=-=,则()11112sin 13,;3sin A A AA M A B M A B MA B ∠∠⨯=-=--.(2)如图2,设()02AM a a =≤≤,则1122sin ,cos 44AA M AA M a a ∠∠==++.因为111BA M AA B AA M ∠∠∠=-,所以()()()()()()22111sin sin 224/24BA M AA B AA M a a a ∠∠∠=-=-++,则()211112sin 14,;sin 22A A AA M a a A B M A B MA B a ∠∠⨯===-,解得23a =,故122AM a MB a ==-.(3)证明:如图3,因为1231,,,,n M M M M - 是BC 的n 等分点,所以k n k BM CM -=,n k k k n k BC BM CM BC n n --===.在k ABM 中,由正弦定理可得sin sin k k k BM AB BAM AM B ∠∠=,则sin sin k k k AB BAM BM AM B ∠∠=.在k ACM 中,同理可得sin sin k k k AC CAM CM AM C ∠∠=.因为πk k AM B AM C ∠∠+=,所以sin sin k k AM B AM C ∠∠=,则()sin sin ,;sin sin k k k k k k k k k AB BAM BM AM B BM k B C M AC CAM CM AM C CM n k∠∠∠∠====-.同理可得(),;n k n k n k BM n k B C M CM k ----==.。
【全国校级联考】湖南省张家界市慈利县2017-2018学年七年级下学期期末考试数学试题(解析版)
湖南省张家界市慈利县2017-2018学年七年级下学期期末考试数学试题满分100分,时量120分钟。
一、选择题(每小题3分,共8道小题,合计24分)1. 下列图形中,是轴对称图形的是()A. B. C. D.【答案】B【解析】分析:根据轴对称图形的概念求解即可.详解:A、不是轴对称图形,本选项错误;B、是轴对称图形,本选项正确;C、不是轴对称图形,本选项错误;D、不是轴对称图形,本选项错误.故选:B.点睛:本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2. 二元一次方程组的解是()A. B. C. D.【答案】D【解析】分析:考查了二元一次方程组的求解.方程组可用代入消元法或加减消元法求解.详解:,把①代入②得,3y-y=4,即y=2.再把y=2代入x=3y得,x=6.∴原方程组的解为.故选:D.点睛:解题关键是掌握方程组的两种解法,即代入法和加减消元法.3. 下列计算中,正确的是()A. B.C. D.【答案】D【解析】分析:运用合并同类项法则,积的乘方以及平方差公式分别求出每个式子的值,再判断即可.详解:A、2a和3b不能合并,故本选项错误;B、结果是9a6,故本选项错误;C、a6和a2不能合并,故本选项错误;D、,故本选项正确.故选:D.点睛:本题考查了合并同类项,积的乘方以及平方差公式的应用,能正确运用法则进行计算是解此题的关键,难度不是很大.4. 把分解因式正确的是()A. B.C. D.【答案】C【解析】分析:首先提取公因式y,再利用完全平方公式进行二次分解即可.详解:x2y-2y2x+y3=y(x2-2yx+y2)=y(x-y)2.故选:C.点睛:本题主要考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.5. 若是关于的完全平方式,则是()A. 7或B.C. 7D. 5或1【答案】A【解析】分析:这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍.详解:∵多项式x2-2(m-3)x+16是完全平方式,∴x2-2(m-3)x+16=(x±4)2,∴m-3=±4,则m的值为:-1或7.故选:A.点睛:此题主要查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.6. 将一张长方形纸片折叠成如图所示的形状,则的度数是()A. 146°B. 78°C. 73°D. 107°【答案】C【解析】分析:根据折叠的性质可得∠ABC=(180°-34°)=73°,再根据平行线的性质即可得出∠BAE的度数.详解:由折叠可得,∠ABC=∠ABF=(180°-34°)=73°,又∵AE∥BF,∴∠BAE=∠ABF=73°,故选:C....... ........................7. 某中学随机调查了15名学生,了解他们一周在校参加体育锻炼时间,列表如下:则这15名同学一周在校参加体育锻炼时间的中位数和众数分别是()A. 6,7B. 7,7C. 7,6D. 6,6【答案】D【解析】试题分析:根据中位数的定义可得这组数据共有15个数,最中间的数是6,所以这15名同学一周在校参加体育锻炼时间的中位数是6;根据众数的定义可得这组数据中6出现的次数最多,出现了6次,所以6是众数,故答案选D.考点:中位数;众数.视频8. 若n满足,则()A. B. 0 C. D. 1【答案】B【解析】分析:运用完全平方公式进行变形即可求解.详解:∵∴∴∴0.故选:B.点睛:本题主要考查了运用完全平方公式变形求解问题.通过把完全平方公式(a±b)2=a2±2ab+b2进行适当变形能加快解题速度,提高解题的准确性.二、填空题。
湖南省张家界市2020学年高一英语下学期期末联考试题(B卷,无答案)
湖南省张家界市2020学年高一英语下学期期末联考试题本试卷分听力、阅读理解、英语知识运用和写作四部分。
共10页。
考试结束,将本试卷和答题卡一并交回。
注意:1. 答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2. 选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在本试卷上,否则无效。
第一部分: 听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将答案转涂到答题卡上。
第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例:How much is the shirt?A. £19.15.B. £9.18.C. £9.15.答案是C。
1. What is the man going to do next week?A. Have an interview.B. Buy a new suit.C.Make a speech.2. What are the speakers talking about?A. The weather.B. A plan for tomorrow.C. The traffic.3. Where does the conversation probably take place?A. At a crossroad.B. At a bus-stop.C. At a theater.4. What does the woman ask the man to do?A. Look out of the window.B. Take a shower first.C. Change shoes first.5. What is the man doing?A. Asking for help.B. Ordering dishes.C. Making complaints.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
2017年湖南省张家界市中考数学试题(解析版)
2017年湖南省张家界市中考数学试卷一、选择题(本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(3分)﹣2017的相反数是()A.﹣2017 B.2017 C.﹣D.2.(3分)正在修建的黔张常铁路,横跨渝、鄂、湘三省,起于重庆市黔江区黔江站,止于常德市武陵区常德站.铁路规划线路总长340公里,工程估算金额37500000000元.将数据37500000000用科学记数法表示为()A.0.375×1011B.3.75×1011C.3.75×1010D.375×1083.(3分)如图,在⊙O中,AB是直径,AC是弦,连接OC,若∠ACO=30°,则∠BOC的度数是()A.30°B.45°C.55°D.60°4.(3分)下列运算正确的有()A.5ab﹣ab=4 B.(a2)3=a6C.(a﹣b)2=a2﹣b2 D.=±35.(3分)如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC的周长是()A.6 B.12 C.18 D.246.(3分)如图是一个正方体的表面展开图,则原正方体中与“美”字所在面相对的面上标的字是()A.丽B.张C.家D.界7.(3分)某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的机会是()A.B.C.D.8.(3分)在同一平面直角坐标系中,函数y=mx+m(m≠0)与y=(m≠0)的图象可能是()A.B.C.D.二、填空题(共6个小题,每小题3分,满分18分,将答案填在答题纸上)9.(3分)不等式组的解集是.10.(3分)因式分解:x3﹣x=.11.(3分)如图,a∥b,PA⊥PB,∠1=35°,则∠2的度数是.12.(3分)已知一元二次方程x2﹣3x﹣4=0的两根是m,n,则m2+n2=.13.(3分)某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:那么这50名学生平均每人植树棵.14.(3分)如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为.三、解答题(本大题共9个小题,满分58分.解答应写出文字说明、证明过程或演算步骤.)15.(5分)计算:()﹣1+2cos30°﹣|﹣1|+(﹣1)2017.16.(5分)先化简(1﹣)÷,再从不等式2x﹣1<6的正整数解中选一个适当的数代入求值.17.(5分)如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.18.(6分)某校组织“大手拉小手,义卖献爱心”活动,购买了黑白两种颜色的文化衫共140件,进行手绘设计后了出售,所获利润全部捐给山区困难孩子.每件文化衫的批发价和零售价如下表:假设文化衫全部售出,共获利1860元,求黑白两种文化衫各多少件?19.(6分)位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD两部分组成.如图,在Rt△ABC中,∠ABC=70.5°,在Rt △DBC中,∠DBC=45°,且CD=2.3米,求像体AD的高度(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)20.(6分)阅读理解题:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减,乘法运算与整式的加、减、乘法运算类似.例如计算:(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i;(1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i;根据以上信息,完成下列问题:(1)填空:i3=,i4=;(2)计算:(1+i)×(3﹣4i);(3)计算:i+i2+i3+ (i2017)21.(7分)在等腰△ABC中,AC=BC,以BC为直径的⊙O分别与AB,AC相交于点D,E,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)分别延长CB,FD,相交于点G,∠A=60°,⊙O的半径为6,求阴影部分的面积.22.(8分)为了丰富同学们的课余生活,某学校计划举行“亲近大自然”户外活动,现随机抽取了部分学生进行主题为“你最想去的景点是?”的问卷调查,要求学生必须从“A(洪家关),B(天门山),C(大峡谷),D(黄龙洞)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.请你根据图中所提供的信息,完成下列问题:(1)本次调查的学生人数为;(2)在扇形统计图中,“天门山”部分所占圆心角的度数为;(3)请将两个统计图补充完整;(4)若该校共有2000名学生,估计该校最想去大峡谷的学生人数为.23.(10分)已知抛物线c1的顶点为A(﹣1,4),与y轴的交点为D(0,3).(1)求c1的解析式;(2)若直线l1:y=x+m与c1仅有唯一的交点,求m的值;(3)若抛物线c1关于y轴对称的抛物线记作c2,平行于x轴的直线记作l2:y=n.试结合图形回答:当n为何值时,l2与c1和c2共有:①两个交点;②三个交点;③四个交点;(4)若c2与x轴正半轴交点记作B,试在x轴上求点P,使△PAB为等腰三角形.2017年湖南省张家界市中考数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(3分)(2017•黔西南州)﹣2017的相反数是()A.﹣2017 B.2017 C.﹣D.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2017的相反数是2017,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2017•张家界)正在修建的黔张常铁路,横跨渝、鄂、湘三省,起于重庆市黔江区黔江站,止于常德市武陵区常德站.铁路规划线路总长340公里,工程估算金额37500000000元.将数据37500000000用科学记数法表示为()A.0.375×1011B.3.75×1011C.3.75×1010D.375×108【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:37500000000=3.75×1010.故选:C.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.(3分)(2017•张家界)如图,在⊙O中,AB是直径,AC是弦,连接OC,若∠ACO=30°,则∠BOC的度数是()A.30°B.45°C.55°D.60°【分析】由等腰三角形的性质得出∠A=∠ACO=30°,再由圆周角定理即可得出答案.【解答】解:∵OA=OC,∴∠A=∠ACO=30°,∵AB是⊙O的直径,∴∠BOC=2∠A=2×30°=60°.故选D.【点评】此题考查了圆周角定理、等腰三角形的性质.熟练掌握圆周角定理是解决问题的关键.4.(3分)(2017•张家界)下列运算正确的有()A.5ab﹣ab=4 B.(a2)3=a6C.(a﹣b)2=a2﹣b2 D.=±3【分析】根据合并同类项、幂的乘方、完全平方公式以及算术平平方根的定义和计算公式分别进行计算,即可得出答案.【解答】解:A、5ab﹣ab=4ab,故本选项错误;B、(a2)3=a6,故本选项正确;C、(a﹣b)2=a2﹣2ab﹣b2,故本选项错误;D、=3,故本选项错误;故选B.【点评】此题考查了合并同类项、幂的乘方、完全平方公式以及算术平平方根,熟记公式和定义是解题的关键,是一道基础题.5.(3分)(2017•张家界)如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC的周长是()A.6 B.12 C.18 D.24【分析】根据线段中点的性质求出AD=AB、AE=AC的长,根据三角形中位线定理求出DE=AB,根据三角形周长公式计算即可.【解答】解:∵D、E分别是AB、AC的中点,∴AD=AB,AE=AC,DE=BC,∴△ABC的周长=AB+AC+BC=2AD+2AE+2DE=2(AD+AE+DE)=2×6=12.故选B.【点评】本题考查的是三角形的中点的性质和三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.6.(3分)(2017•张家界)如图是一个正方体的表面展开图,则原正方体中与“美”字所在面相对的面上标的字是()A.丽B.张C.家D.界【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“张”与“丽”是相对面,“美”与“家”是相对面,“的”与“界”是相对面,故选:C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.(3分)(2017•张家界)某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的机会是()A.B.C.D.【分析】画出树状图,根据概率公式求解即可.【解答】解:如图,,共有16种结果,小明和小红分在同一个班的结果有4种,故小明和小红分在同一个班的机会==.故选A.【点评】本题考查的是列表法和树状法,熟记概率公式是解答此题的关键.8.(3分)(2017•张家界)在同一平面直角坐标系中,函数y=mx+m(m≠0)与y=(m≠0)的图象可能是()A.B.C.D.【分析】在各选项中,先利用反比例函数图象确定m的符号,再利用m的符号对一次函数图象的位置进行判断,从而判断该选项是否正确.【解答】解:A、由反比例函数图象得m<0,则一次函数图象经过第二、三、四象限,所以A选项错误;B、由反比例函数图象得m>0,则一次函数图象经过第一、二、三象限,所以B选项错误;C、由反比例函数图象得m<0,则一次函数图象经过第二、三、四象限,所以C 选项错误;D、由反比例函数图象得m<0,则一次函数图象经过第一、二、三象限,所以D 选项正确.故选D.【点评】本题考查了反比例函数图象:反比例函数y=为双曲线,当k>0时,图象分布在第一、三象限;当k<0时,图象分布在第二、四象限.也考查了一次函数的性质.二、填空题(共6个小题,每小题3分,满分18分,将答案填在答题纸上)9.(3分)(2017•张家界)不等式组的解集是x≥1.【分析】直接利用不等式组的解集确定方法得出答案.【解答】解:不等式组的解集是:x≥1.故答案为:x≥1.【点评】此题主要考查了不等式的解集,正确把握不等式组解集确定方法是解题关键.10.(3分)(2017•张家界)因式分解:x3﹣x=x(x+1)(x﹣1).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(x2﹣1)=x(x+1)(x﹣1),故答案为:x(x+1)(x﹣1)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.(3分)(2017•张家界)如图,a∥b,PA⊥PB,∠1=35°,则∠2的度数是55°.【分析】先延长AP交直线b于C,再根据平行线的性质以及三角形的外角性质进行计算即可.【解答】解:如图所示,延长AP交直线b于C,∵a∥b,∴∠C=∠1=35°,∵∠APB是△BCP的外角,PA⊥PB,∴∠2=∠APB﹣∠C=90°﹣35°=55°,故答案为:55°.【点评】本题主要考查了平行线的性质以及垂线的定义的运用,解题时注意:两直线平行,内错角相等.12.(3分)(2017•张家界)已知一元二次方程x2﹣3x﹣4=0的两根是m,n,则m2+n2=17.【分析】由m与n为已知方程的解,利用根与系数的关系,求出m+n与mn的值,将所求式子利用完全平方公式变形后,代入计算即可求出值.【解答】解:∵m,n是一元二次方程x2﹣3x﹣4=0的两个根,∴m+n=3,mn=﹣4,则m2+n2=(m+n)2﹣2mn=9+8=17.故答案为:17.【点评】此题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解本题的关键.13.(3分)(2017•张家界)某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:那么这50名学生平均每人植树4棵.【分析】利用加权平均数的计算公式进行计算即可.【解答】解:平均每人植树(3×20+4×15+5×10+6×5)÷50=4棵,故答案为:4.【点评】本题考查了加权平均数的计算,解题的关键是牢记加权平均数的计算公式,难度不大.14.(3分)(2017•张家界)如图,在正方形ABCD中,AD=2,把边BC绕点B 逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为9﹣5.【分析】根据旋转的想知道的PB=BC=AB,∠PBC=30°,推出△ABP是等边三角形,得到∠BAP=60°,AP=AB=2,解直角三角形得到CE=2﹣2,PE=4﹣2,过P 作PF⊥CD于F,于是得到结论.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形,∴∠BAP=60°,AP=AB=2,∵AD=2,∴AE=4,DE=2,∴CE=2﹣2,PE=4﹣2,过P作PF⊥CD于F,∴PF=PE=2﹣3,∴三角形PCE的面积=CE•PF=×(2﹣2)×(2﹣3)=9﹣5,故答案为:9﹣5.【点评】本题考查了旋转的性质,正方形的性质,等边三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.三、解答题(本大题共9个小题,满分58分.解答应写出文字说明、证明过程或演算步骤.)15.(5分)(2017•张家界)计算:()﹣1+2cos30°﹣|﹣1|+(﹣1)2017.【分析】先计算负整数指数幂、代入特殊锐角三角函数值、根据绝对值性质去绝对值符号、计算乘方,再计算乘法、去括号,最后计算加减法可得.【解答】解:原式=2+2×﹣(﹣1)﹣1=2+﹣+1﹣1=2.【点评】本题主要考查实数的混合运算,熟练掌握负整数指数幂、特殊锐角三角函数值、绝对值性质及乘方的运算法则是解题的关键.16.(5分)(2017•张家界)先化简(1﹣)÷,再从不等式2x﹣1<6的正整数解中选一个适当的数代入求值.【分析】先把括号里的式子进行通分,再把后面的式子根据完全平方公式、平方差公式进行因式分解,然后约分,再求出不等式的解集,最后代入一个合适的数据代入即可.【解答】解:(1﹣)÷=×=,∵2x﹣1<6,∴2x<7,∴x<,把x=3代入上式得:原式==4.【点评】此题考查了分式的化简求值以及一元一次不等式的解法,用到的知识点是通分、完全平方公式、平方差公式以及一元一次不等式的解法,熟练掌握公式与解法是解题的关键.17.(5分)(2017•张家界)如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.【分析】(1)由平行四边形的性质得出AD∥BC,得出∠AEG=∠BFG,由AAS证明△AGE≌△BGF即可;(2)由全等三角形的性质得出AE=BF,由AD∥BC,证出四边形AFBE是平行四边形,再根据EF⊥AB,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGE和△BGF中,,∴△AGE≌△BGF(AAS);(2)解:四边形AFBE是菱形,理由如下:∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四边形AFBE是平行四边形,又∵EF⊥AB,∴四边形AFBE是菱形.【点评】本题考查了平行四边形的性质、菱形的判定方法、全等三角形的判定与性质、线段垂直平分线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.18.(6分)(2017•张家界)某校组织“大手拉小手,义卖献爱心”活动,购买了黑白两种颜色的文化衫共140件,进行手绘设计后了出售,所获利润全部捐给山区困难孩子.每件文化衫的批发价和零售价如下表:假设文化衫全部售出,共获利1860元,求黑白两种文化衫各多少件?【分析】设黑色文化衫x件,白色文化衫y件,依据黑白两种颜色的文化衫共140件,文化衫全部售出共获利1860元,列二元一次方程组进行求解.【解答】解:设黑色文化衫x件,白色文化衫y件,依题意得,解得,答:黑色文化衫60件,白色文化衫80件.【点评】本题主要考查了二元一次方程组的应用,当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.19.(6分)(2017•张家界)位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD两部分组成.如图,在Rt△ABC中,∠ABC=70.5°,在Rt△DBC中,∠DBC=45°,且CD=2.3米,求像体AD的高度(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)【分析】根据等腰直角三角形的性质得出BC的长,再利用tan70.5°=求出答案.【解答】解:∵在Rt△DBC中,∠DBC=45°,且CD=2.3米,∴BC=2.3m,∵在Rt△ABC中,∠ABC=70.5°,∴tan70.5°==≈2.824,解得:AD≈4.2,答:像体AD的高度约为4.2m.【点评】此题主要考查了解直角三角形的应用,正确掌握锐角三角函数关系是解题关键.20.(6分)(2017•张家界)阅读理解题:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减,乘法运算与整式的加、减、乘法运算类似.例如计算:(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i;(1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i;根据以上信息,完成下列问题:(1)填空:i3=﹣i,i4=1;(2)计算:(1+i)×(3﹣4i);(3)计算:i+i2+i3+ (i2017)【分析】(1)把i2=﹣1代入求出即可;(2)根据多项式乘以多项式的计算法则进行计算,再把i2=﹣1代入求出即可;(3)先根据复数的定义计算,再合并即可求解.【解答】解:(1)i3=i2•i=﹣i,i4=(i2)2=(﹣1)2=1.故答案为:﹣i,1;(2)(1+i)×(3﹣4i)=3﹣4i+3i﹣4i2=3﹣i+4=7﹣i;(3)i+i2+i3+…+i2017=i﹣1﹣i+1+…+i=i.【点评】本题考查了整式的混合运算,复数的定义,能读懂题意是解此题的关键,主要考查了学生的理解能力和计算能力,难度适中.21.(7分)(2017•张家界)在等腰△ABC中,AC=BC,以BC为直径的⊙O分别与AB,AC相交于点D,E,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)分别延长CB,FD,相交于点G,∠A=60°,⊙O的半径为6,求阴影部分的面积.【分析】(1)连接OD,由等腰三角形的性质证出∠A=∠ODB,得出OD∥AC,证出DF⊥OD,即可得出结论;(2)证明△OBD是等边三角形,由等边三角形的性质得出∠BOD=60°,求出∠G=30°,由直角三角形的性质得出OG=2OD=2×6=12,由勾股定理得出DG=6,阴影部分的面积=△ODG的面积﹣扇形OBD的面积,即可得出答案.【解答】(1)证明:连接OD,如图所示:∵AC=BC,OB=OD,∴∠ABC=∠A,∠ABC=∠ODB,∴∠A=∠ODB,∴OD∥AC,∵DF⊥AC,∴DF⊥OD,∵OD是⊙O的半径,∴DF是⊙O的切线;(2)解:∵AC=BC,∠A=60°,∴△ABC是等边三角形,∴ABC=60°,∵OD=OB,∴△OBD是等边三角形,∴∠BOD=60°,∵DF⊥OD,∴∠ODG=90°,∴∠G=30°,∴OG=2OD=2×6=12,∴DG=OD=6,∴阴影部分的面积=△ODG的面积﹣扇形OBD的面积=×6×6﹣=18﹣6π.【点评】本题考查了等腰三角形的性质,平行线的判定和性质,切线的判定,勾股定理、直角三角形的性质、等边三角形的判定与性质,是一道综合题,难度中等.22.(8分)(2017•张家界)为了丰富同学们的课余生活,某学校计划举行“亲近大自然”户外活动,现随机抽取了部分学生进行主题为“你最想去的景点是?”的问卷调查,要求学生必须从“A(洪家关),B(天门山),C(大峡谷),D(黄龙洞)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.请你根据图中所提供的信息,完成下列问题:(1)本次调查的学生人数为120人;(2)在扇形统计图中,“天门山”部分所占圆心角的度数为198°;(3)请将两个统计图补充完整;(4)若该校共有2000名学生,估计该校最想去大峡谷的学生人数为500人.【分析】(1)由B的人数除以其人数占被调查人数的百分比即可求解;(2)用360°×“天门山”部分所占的百分比即可求解;(3)用调查的学生总人数乘以C所占百分比得出C的人数,补全条形图;用1减去B、C、D所占的百分比得出A所占的百分比,补全扇形图;(4)用样本中最想去大峡谷的学生所占的百分比乘总人数即可.【解答】解:(1)本次调查的学生人数为66÷55%=120.故答案为120人;(2)在扇形统计图中,“天门山”部分所占圆心角的度数为360°×55%=198°.故答案为198°;(3)选择C的人数为:120×25%=30(人),A所占的百分比为:1﹣55%﹣25%﹣5%=15%.补全统计图如图:(4)25%×2000=500(人).答:若该校共有2000名学生,估计该校最想去大峡谷的学生人数为500人.故答案为:500人.【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.23.(10分)(2017•张家界)已知抛物线c1的顶点为A(﹣1,4),与y轴的交点为D(0,3).(1)求c1的解析式;(2)若直线l1:y=x+m与c1仅有唯一的交点,求m的值;(3)若抛物线c1关于y轴对称的抛物线记作c2,平行于x轴的直线记作l2:y=n.试结合图形回答:当n为何值时,l2与c1和c2共有:①两个交点;②三个交点;③四个交点;(4)若c2与x轴正半轴交点记作B,试在x轴上求点P,使△PAB为等腰三角形.【分析】(1)设抛物线c1的解析式为y=a(x+1)2+4,把D(0,3)代入y=a(x+1)2+4即可得到结论;(2)解方程组得到x2+3x+m﹣3=0,由于直线l1:y=x+m与c1仅有唯一的交点,于是得到△=9﹣4m+12=0,即可得到结论;(3)根据轴对称的性质得到抛物线c2的解析式为:y=﹣x2+2x+3,根据图象即可刚刚结论;(4)求得B(3,0),得到OB=3,根据勾股定理得到AB==4,①当AP=AB,②当AB=BP=4时,③当AP=PB时,点P在AB的垂直平分线上,于是得到结论.【解答】解:(1)∵抛物线c1的顶点为A(﹣1,4),∴设抛物线c1的解析式为y=a(x+1)2+4,把D(0,3)代入y=a(x+1)2+4得3=a+4,∴a=﹣1,∴抛物线c1的解析式为:y=﹣(x+1)2+4,即y=﹣x2﹣2x+3;(2)解得x2+3x+m﹣3=0,∵直线l1:y=x+m与c1仅有唯一的交点,∴△=9﹣4m+12=0,∴m=;(3)∵抛物线c1关于y轴对称的抛物线记作c2,∴抛物线c2的顶点坐标为(1,4),与y轴的交点为(0,3),∴抛物线c2的解析式为:y=﹣x2+2x+3,∴①当直线l2过抛物线c1的顶点(﹣1,4)和抛物线记作c2的顶点(1,4)时,即n=4时,l2与c1和c2共有两个交点;②当直线l2过D(0,3)时,即n=3时,l2与c1和c2共有三个交点;③当3<n<4或n<3时,l2与c1和c2共有四个交点;(4)如图,∵若c2与x轴正半轴交于B,∴B(3,0),∴OB=3,∴AB==4,①当AP=AB=4时,PB=8,∴P1(﹣5,0),②当AB=BP=4时,P2(3﹣4,0)或P3(3+4,0),③当AP=PB时,点P在AB的垂直平分线上,∴PA=PB=4,∴P4(﹣1,0),综上所述,点P的坐标为(﹣5,0)或(3﹣4,0)或(3+4,0)或(﹣1,0)时,△PAB为等腰三角形.【点评】本题考查了待定系数法求二次函数的解析式,轴对称的性质,等腰三角形的判定和性质,函数的交点问题,解决本题关键是进行分类讨论.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
张家界市2017-2018学年普通高中一年级第二学期期末联考数学试题卷(B )注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。
考试时量120分钟,满分150分。
2.答题前,考生务必将自己的姓名、准考证号填写在答题卡相应的位置。
3.全部答案在答题卡上完成,答在试题卷、草稿纸上无效。
第I 卷一、选择题:本大题共12小题,每小题5分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.坐标原点O 到直线3450x y ++=的距离为 A .5 B .4 C .3D .12.已知0a b >>,那么下列不等式中成立的是 A .a b ->-B .a m b m +<+C .22a b >D .11a b> 3.点(2,)M b -在不等式2350x y -+<表示的平面区域内, 则b 的取值范围是A .13b >B .9b >-C .1b <D .13b ≤4.直线0x y +=被圆122=+y x 截得的弦长为A B .1C .4D .25.若三个正数a ,b ,c 成等比数列,其中5a =+5c =-b =A .12B .1C .5D .6.已知直线l 10y -+=,则直线l 的倾斜角是A .23π B .56π C .3π D .6π 7.在ABC △中,,,a b c 分别为角,,A B C 的对边,1a =,2c =,60B =︒,则ABC △的面积S =A B C D .28.下列命题中正确的是A .垂直于同一个平面的两条直线平行B .平行于同一个平面的两条直线平行C .垂直于同一直线的两条直线平行D .垂直于同一个平面的两个平面平行 9.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为A B C D10.已知一个球的体积为43π,则该球的表面积为A .πB .2πC .3πD .4π11.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”. 则该人最后一天走的路程为 A .24里B .12里C .6里D .3里12.定义在0-∞∞ (,)(0,+)上的函数()f x ,如果对于任意给定的等比数列{}n a ,{}()n f a 仍是等比数列,则称()f x 为“保等比数列函数”. 现有定义在0-∞∞ (,)(0,+)上的如下函数: ①2()f x x = ②()2x f x =③()f x =④()ln f x x =.则其中是“保等比数列函数”的()f x 的序号为 A .①② B .③④ C .①③ D .②④第Ⅱ卷二、填空题:本大题共4小题,每小题5分,满分20分.13.在空间直角坐标系中,已知()2,1,5A ,(3,1,4)B ,则AB = . 14.不等式2340x x +-<的解集为 .(用区间表示) 15.在正方体1111ABCD A B C D -中,异面直线11B D 与AC 所成角大小是_______.16.在ABC △中,,,a b c 分别为角,,A B C 的对边,,,a b c 成等比数列,则角B 的取值范围是 .三、解答题:本大题共6小题,满分70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知变量x ,y 满足约束条件20200x y x y y +-⎧⎪-+⎨⎪⎩≤≥≥.(1)求上述不等式组表示的平面区域的面积; (2)求2z x y =+的最大值和最小值.18.(本小题满分12分)在ABC △中,,,a b c 分别为角,,A B C 的对边,32,1,cos 4b a C ===. (1)求c 的值; (2)求sin A 的值.19.(本小题满分12分)在等差数列{}n a 中,已知24a =,4715a a +=. (1)求数列{}n a 的通项公式;(2)设22n a n b -=,求123n b b b b +++⋅⋅⋅+的值.20.(本小题满分12分)已知直线l 的方程为34120x y +-=.(1)直线1l 经过点(1,0)P ,且满足1l ∥l ,求直线1l 的方程;(2)设直线l 与两坐标轴交于A 、B 两点,O 为原点,求OAB △外接圆的方程.21.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,PD ⊥底面ABCD ,PD DC a ==,E 是PC 的中点.(1)求四棱锥P ABCD-的体积;(2)求直线PB与平面ABCD所成角的正切值;(3)证明://PA平面EDB.22.(本小题满分12分)已知圆22-+-=,直线l过点(1,0):(3)(4)4C x yA.(1)求圆C的圆心坐标和半径;(2)若直线l与圆C相切,求直线l的方程;(3)若直线l与圆C相交于P,Q两点,求三角形CPQ的面积的最大值,并求此时直线l的方程.张家界市2016年普通高中一年级第二学期期末联考数学参考答案(B )选13.()4,1-15.90°16.(0,]3p三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.解:(1)如图,作出可行域,易知不等式组20200x y x y y +-⎧⎪-+⎨⎪⎩≤≥≥表示的平面区域是一个三角形,容易求三角形的三个顶点坐标为(0,2)A , (2,0)B ,(2,0)C -,三角形面积11||||42422S BC AO =⋅=⨯⨯=;…………………………… 5分 (2)可求得2z x y =+的最大值为4,最小值为4-.………………………10分18.解:(1)在ABC △中,由余弦定理得2222cos 2c a b ab C =+-=,c ∴ 6分(2)C 为三角形的内角,sin C ∴==,…………………8分 在ABC △中,由正弦定理可知 sin sin a cA C=,……………………… 10分 sin sin a C A c ∴==.……………………………………………………12分 19.解:(1)设等差数列{}n a 的公差为d ,由已知得()()11143615a d a d a d +=⎧⎪⎨+++=⎪⎩,解得13a =,1d =,所以()112n a a n d n =+-=+;…………………………………………6分 (2)由(1)可得2n n b =, ………………………………………………8分则123n b b b b +++⋅⋅⋅+ 232222n =+++⋅⋅⋅+O()21212n -=-122n +=-. ……………………………………………………………12分20.解:(1)设所求直线1l 方程为340x y m ++=,由已知310m ⨯+=,3m =-,则直线1l 的方程为3430x y +-=;…………………………………… 6分 (2)令0y =,得4x =,令0x =,得3y =,则(4,0)A ,(0,3)B , …… 8分OAB △外接圆即以AB 为直径的圆,圆心为3(2,)2C ,半径为1522r AB ===, 则OAB △外接圆的方程为22235(2)()()22x y -+-=.…………………12分21.解:(1)由PD ⊥底面ABCD ,底面ABCD 是正方形,PD DC a ==,则3111333P ABCD ABCD V S PD a a a a -=⋅=⨯⨯⨯=;……………………4分(2)由PD ⊥底面ABCD ,知直线PB 与平面ABCD 所成角为PBD ∠,……6分易知BD ,tanPBD ∠==;………………………8分 (3)证明:连结AC 交BD 于O ,连结EO ,∵ 底面ABCD 是正方形,∴ 点O 是AC 的中点, 在PAC △中,EO 是中位线,∴//PA EO , 而EO ⊂平面EBD ,且PA ⊄平面EBD ,所以//PA 平面EDB ;…………………………………………………12分22.解:(1)圆心的圆心坐轴为(3,4),半径为2;…………………………………3分(2)①若直线l 的斜率不存在,则直线l :1x =,符合题意;……………5分②若直线l 斜率存在,设直线l 的方程为(1)y k x =-,即0kx y k --=, 由题意知,圆心(3,4)到已知直线l 的距离等于半径2,2=,解得34k =, 所求直线l 的方程是1x =或3430x y --=;…………………………7分(3)方法1:直线与圆相交,斜率必定存在,且不为0,设直线l 方程为0kx y k --=,则圆心到直l 的距离d =又∵三角形CPQ 面积12S d =⨯⨯=22(4)22d d +-=≤,当且仅当224d d =-,即d =CPQ 的面积的最大值为2,由=1k =,或7k =,此时直线l 方程为10x y --=,或770x y --=.……………12分方法2:1sin 2CPQ S CP CQ PCQ =⋅⋅⋅∠△14sin 2PCQ =⨯⨯∠2sin PCQ =∠,当90PCQ ∠=︒时,CPQ S △取最大值2, ………………………9分此时点C 到l 设l :0kx y k --=,=,解得1k =或7k =,故所求直线l 的方程为10x y --=或770x y --=.…………12分。