2018-2019学年最新人教版九年级数学上册期中考试综合模拟试卷3及答案-精品试卷

合集下载

人教版2018-2019学年度九年级中考数学试卷含答案

人教版2018-2019学年度九年级中考数学试卷含答案

人教版2018-2019学年度九年级中考数学模拟试卷含答案一.选择题(共10小题,满分40分,每小题4分)1.﹣2017的倒数是()A.B.﹣C.2017 D.﹣20172.已知25x=2000,80y=2000,则等于()A.2 B.1 C.D.3.光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013 km B.9.5×1012 km C.95×1011 km D.9.5×1011 km4.下面图中所示几何体的左视图是()A.B. C. D.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人7.我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8% B.9% C.10% D.11%8.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A.5 B.6 C.7 D.89.如图①,在正方形ABCD中,点P从点D出发,沿着D→A方向匀速运动,到达点A后停止运动.点Q从点D出发,沿着D→C→B→A的方向匀速运动,到达点A后停止运动.已知点P的运动速度为a,图②表示P、Q两点同时出发x秒后,△APQ的面积y与x的函数关系,则点Q的运动速度可能是()A. a B. a C.2a D.3a10.如图,AB为⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是()A.2B.3 C.3D.3二.填空题(共4小题,满分20分,每小题5分)11.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值=.12.已知关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,则m的取值范围是.13.有一个三角形纸片ABC,∠C=36°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得的两纸片均为等腰三角形,则∠A的度数可以是.14.如图,在直角坐标系中,点A(2,0),点B(0,1),过点A的直线l垂直于线段AB,点P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折180°,使点C落在点D处.若以A,D,P为顶点的三角形与△ABP相似,则所有满足此条件的点P的坐标为.三.解答题(共2小题,满分16分,每小题8分)15.(8分)化简:(1﹣)÷16.(8分)有一石拱桥的桥拱是圆弧形,如下图所示,正常水位下水面宽AB=60m,水面到拱项距离CD=18m,当洪水泛滥时,水面宽MN=32m时,高度为5m的船是否能通过该桥?请说明理由.四.解答题(共2小题,满分16分,每小题8分)17.(8分)在如图所示的网格中,每个小方格的边长都是1.(1)分别作出四边形ABCD关于y轴、原点的对称图形;(2)以原点O为中心,将△ABD顺时针旋转90°,试画出旋转后的图形,并求旋转过程中△ABD扫过图形的面积.18.(8分)学之道在于悟.希望同学们在问题(1)解决过程中有所悟,再继续探索研究问题(2).(1)如图①,∠B=∠C,BD=CE,AB=DC.①求证:△ADE为等腰三角形.②若∠B=60°,求证:△ADE为等边三角形.(2)如图②,射线AM与BN,MA⊥AB,NB⊥AB,点P是AB上一点,在射线AM 与BN上分别作点C、点 D 满足:△CPD为等腰直角三角形.(要求:利用直尺与圆规,不写作法,保留作图痕迹)五.解答题(共2小题,满分20分,每小题10分)19.(10分)随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME 与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF 的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).20.(10分)如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.21.(12分)向阳中学为了解全校学生利用课外时间阅读的情况,调查者随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表(图).根据图表信息,解答下列问题:频率分布表(1)填空:a=,b=,m=,n=;(2)将频数分布直方图补充完整;(3)阅读时间不低于5小时的6人中,有2名男生、4名女生.现从这6名学生中选取两名同学进行读书宣讲,求选取的两名学生恰好是两名女生的概率.七.解答题(共1小题,满分12分,每小题12分)22.(12分)已知抛物线的顶点为(1,﹣4),且经过点B(3,0).(Ⅰ)求该抛物线的解析式及抛物线与x轴的另一个交点A的坐标;(Ⅱ)点P(m,1)为抛物线上的一个动点,点P关于原点的对称点为P′.①当点P′落在该抛物线上时,求m的值;②当P′落在第二象限内,P′A取得最大值时,求m的值.23.(14分)阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含m,n,b的式子表示).参考答案与试题解析1.解:﹣2017的倒数是﹣.故选:B.2.解:∵25x=2000,80y=2000,∴25x=25×80,80y=25×80,∴25x﹣1=80,80y﹣1=25,∴(80y﹣1)x﹣1=80,∴(y﹣1)(x﹣1)=1,∴xy﹣x﹣y+1=1,∴xy=x+y,∵xy≠0,∴=1,∴+=1.故选:B.方法二:25x=2000∴25xy=2000y=(25×80)y=25y•80y=25y•25x=25x+y,∴xy=x+y,∴+=1,故选:B.3.解:9500 000 000 000km用科学记数法表示是9.5×1012 km,故选:B.4.解:图中所示几何体的左视图是.故选:B.5.解:∵解不等式①得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x≤2,在数轴上表示为:,故选:A.6.解:A、本次抽样调查的样本容量是=5000,正确;B、扇形图中的m为10%,正确;C、样本中选择公共交通出行的有5000×50%=2500人,正确;D、若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有50×40%=20万人,错误;故选:D.7.解:设平均每次下调的百分率为x,由题意,得6000(1﹣x)2=4860,解得:x1=0.1,x2=1.9(舍去).答:平均每次下调的百分率为10%.故选:C.8.解:∵l1∥l2∥l3,AB=5,AC=8,DF=12,∴,即,可得;DE=6,故选:B.9.解:本题采用筛选法.首先观察图象,可以发现图象由三个阶段构成,即△APQ的顶点Q所在边应有三种可能.当Q的速度低于点P时,当点P到达A时,点Q还在DC 上运动,之后,因A、P重合,△APQ的面积为零,画出图象只能有一个阶段构成,故A、B错误;当Q的速度是点P速度的2倍,当点P到点A时,点Q到点B.之后,点A、P重合,△APQ的面积为0.期间△APQ面积的变化可以看成两个阶段,与图象不符,C错误.故选:D.10.解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC是直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3,故选:C.11.解:∵①=1;②=3=1+2;③=6=1+2+3;④=10=1+2+3+4,∴=1+2+3+4+…+28=406.12.解:整理方程得:x2﹣2x﹣m=0∴a=1,b=﹣2,c=﹣m,方程有两个不相等的实数根,∴△=b2﹣4ac=4+4m>0,∴m>﹣1.13.解:由题意知△ABD与△DBC均为等腰三角形,①BC=CD,此时∠CDB=∠DBC=(180°﹣∠C)÷2=72°,∴∠BDA=180°﹣∠CDB=180°﹣72°=108°,AB=AD时,∠ABD=108°(舍去);或AB=BD,∠A=108°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=36°;②BC=BD,此时∠CDB=∠C=36°,∴∠BDA=180°﹣∠CDB=180°﹣36°=144°,AB=AD时,∠ABD=144°(舍去);或AB=BD,∠A=144°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=18°;③CD=BD,此时∠CDB=180°﹣2∠C=108°,∴∠BDA=180°﹣∠CDB=180°﹣108°=72°,AB=AD时,∠A=180°﹣2∠ADB=36°;或AB=BD,∠A=72°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=54°.综上所述,∠A的度数可以是18°或36°或54°或72°.故答案为:18°或36°或54°或72°.14.解:∵点A(2,0),点B(0,1),∴直线AB的解析式为y=﹣x+1∵直线l过点A(4,0),且l⊥AB,∴直线L的解析式为;y=2x﹣4,∠BAO+∠PAC=90°,∵PC⊥x轴,∴∠PAC+∠APC=90°,∴∠BAO=∠APC,∵∠AOB=∠ACP,∴△AOB∽△PCA,∴=,∴==,设AC=m,则PC=2m,∵△PCA≌△PDA,∴AC=AD,PC=PD,∴==,如图1:当△PAD∽△PBA时,则=,则==,∵AB==,∴AP=2,∴m2+(2m)2=(2)2,∴m=±2,当m=2时,PC=4,OC=4,P点的坐标为(4,4),当m=﹣2时,如图2,PC=4,OC=0,P点的坐标为(0,﹣4),如图3,若△PAD∽△BPA,则==,PA=AB=,则m2+(2m)2=()2,∴m=±,当m=时,PC=1,OC=,P点的坐标为(,1),当m=﹣时,如图4,PC=1,OC=,P点的坐标为(,﹣1);故答案为:P(4,4),p(0,﹣4),P(,﹣1),P(,1).15.解:原式=•=•=﹣.16.解:不能通过.设OA=R,在Rt△AOC中,AC=30,CD=18,R2=302+(R﹣18)2,R2=900+R2﹣36R+324解得R=34m连接OM,在Rt△MOE中,ME=16,OE2=OM2﹣ME2即OE2=342﹣162=900,∴OE=30,∴DE=34﹣30=4,∴不能通过.(12分)17.解:(1)所画图形如下图所示,(2)如上图所示,△A′B′D′即为△ABD顺时针旋转90°后得到的图形,在旋转过程中可知:△ABD扫过图形的面积即是线段AB所扫过的扇环面积(S1)与△ABD的面积(S2)之和(S),则有:S=S1+S2=[π×OA2﹣π×OB2]+×AD×1=[π×(22+42)﹣π×(12+12)]+×2×1=+1.18.解:(1)①证明:∵∠B=∠C,BD=CE,AB=DC,∴△ABD≌DCE,∴AB=DC,∴△ADE为等腰三角形;②∵△ABD≌△DCE,∴∠BAD=∠CDE,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=∠ADE+∠EDC,又∵∠BAD=∠CDE.∴∠ADE=∠B=60°,∴等腰△ADE为等边三角形.(2)有三种结果,如图所示:19.解:∵AC∥ME,∴∠CAB=∠AEM,在Rt△ABC中,∠CAB=28°,AC=9m,∴BC=ACtan28°≈9×0.53=4.77(m),∴BD=BC﹣CD=4.77﹣0.5=4.27(m),在Rt△BDF中,∠BDF+∠FBD=90°,在Rt△ABC中,∠CAB+∠FBC=90°,∴∠BDF=∠CAB=28°,∴DF=BDcos28°≈4.27×0.88=3.7576≈3.8 (m),答:坡道口的限高DF的长是3.8m.20.解:(1)设反比例函数解析式为y=,把B(﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6,∴反比例函数解析式为y=;把A(3,m)代入y=,可得3m=6,即m=2,∴A(3,2),设直线AB 的解析式为y=ax+b,把A(3,2),B(﹣2,﹣3)代入,可得,解得,∴直线AB 的解析式为y=x﹣1;(2)由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方;(3)存在点C.如图所示,延长AO交双曲线于点C1,∵点A与点C1关于原点对称,∴AO=C1O,∴△OBC1的面积等于△OAB的面积,此时,点C1的坐标为(﹣3,﹣2);如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于△OBC1的面积,∴△OBC2的面积等于△OAB的面积,由B(﹣2,﹣3)可得OB的解析式为y=x,可设直线C1C2的解析式为y=x+b',把C1(﹣3,﹣2)代入,可得﹣2=×(﹣3)+b',解得b'=,∴直线C1C2的解析式为y=x+,解方程组,可得C2(,);如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,设直线AC3的解析式为y=x+b“,把A(3,2)代入,可得2=×3+b“,解得b“=﹣,∴直线AC3的解析式为y=x﹣,解方程组,可得C3(﹣,﹣);综上所述,点C的坐标为(﹣3,﹣2),(,),(﹣,﹣).21.解:(1)∵本次调查的总人数b=9÷0.15=60,∴a=60﹣(9+18+12+6)=15,则m==0.25、n==0.2,故答案为:15、60、0.25、0.2;(2)补全频数分布直方图如下:(3)用X、Y表示男生、A、B、C、D表示女生,画树状图如下:由树状图知共有30种等可能结果,其中选取的两名学生恰好是两名女生的结果数为12,所以选取的两名学生恰好是两名女生的概率为=.22.解:(Ⅰ)∵抛物线的顶点为(1,﹣4),∴可设抛物线解析式为y=a(x﹣1)2﹣4,∵经过点B(3,0),∴0=a(3﹣1)2﹣4,解得a=1,∴抛物线解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3,令y=0可得x2﹣2x﹣3=0,解得x=3或x=﹣1,∴点A的坐标为(﹣1,0);(Ⅱ)①由点P(m,1)在抛物线y=x2﹣2x﹣3上,有l=m2﹣2m﹣3.又点P关于原点的对称点为P′,∴P′(﹣m,﹣1).∵点P′落在抛物线y=x2﹣2x﹣3上,∴﹣l=(﹣m)2﹣2(﹣m)﹣3,即l=﹣m2﹣2m+3,∴m2﹣2m﹣3=﹣m2﹣2m+3,解得m1=,m2=﹣;②∵P′落在第二象限内,∴点P(m,1)在第四象限,即m>0,l<0.23.解:(1)∵点H是AD的中点,∴AH=AD,∵正方形AEOH∽正方形ABCD,∴相似比为:==;故答案为:;(2)在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:=,故答案为:;(3)A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即a:b=b:a,∴a=b;故答案为:②每个小矩形都是全等的,则其边长为b和a,则b:a=a:b,∴a=b;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:b或b.。

山西省太原市2018-2019学年九年级上学期数学期中考试试卷及参考答案

山西省太原市2018-2019学年九年级上学期数学期中考试试卷及参考答案

山西省太原市2018-2019学年九年级上学期数学期中考试试卷一、选择题 1. 若= =2(b+d≠0),则的值为( )A . 1B . 2C .D . 42. 将方程(x+1)(2x-3)=1化成“ax +bx+c=0”的形式,当a=2时,则b ,c 的值分别为( )A ., B ., C ., D . ,3. 矩形、菱形、正方形都具有的性质是( )A . 对角线相等B . 对角线互相平分C . 对角线互相垂直D . 对角线平分对角4. 如图,一组互相平行的直线a ,b ,c 分别与直线l , 1交于点A ,B ,C ,D ,E ,F ,直线1 , l 交于点O ,则下列各式不正确的是( )A .B .C .D .5. 一元二次方程x +6x+9=0的根的情况是( )A . 有两个相等的实数根B . 有两个不相等的实数偎C .只有一个实数根 D . 没有实数根6. 小明要用如图的两个转盘做“配紫色”游戏,每个转盘均被等分成若干个扇形,他同时转动两个转盘,停止时指针所指的颜色恰好配成紫色的概率为( )A .B .C .D . 7. 用配方法解方程x -8x+5=0,将其化为(x+a )=b 的形式,正确的是( )A .B .C .D .8. 如图,△ABC 中,点P 是AB 边上的一点,过点P 作PD ∥BC ,PE ∥AC ,分别交AC ,BC于点D ,E ,连按CP .若四边形CDPE 是菱形,则线段CP 应满足的条件是( ) A . CP 平分 B . C . CP 是AB 边上的中线 D .9. 为宣传“扫黑除恶”专项行动,社区准备制作一幅宣传版面,喷绘时为了美观,要在矩形图案四周外围增加一圈等宽的白边,已知图案的长为2米,宽为1米,图案面积占整幅宣传版面面积的90%,若设白边的宽为x 米,则根据题意可列出方程( )A .B .C .D . 2121222210. 如图,在矩形ABCD 内有一点F ,FB 与FC 分别平分∠ABC 和∠BCD ,点E 为矩形ABCD 外一点,连接BE ,CE .现添加下列条件:①EB ∥CF ,CE ∥BF ;②BE=CE ,BE=BF ;③BE ∥CF ,CE ⊥BE ;④BE=CE ,CE ∥BF ,其中能判定四边形BECF 是正方形的共有( )A . 1个B . 2个C . 3个D . 4个二、填空题11. 一元二次方程x +3x=0的解是________.12. 经过某十字路口的行人,可能直行,也可能左拐或右拐.假设这三种可能性相同,现有两人经过该路口,则恰好有一人直行,另一人左拐的概率为________.13. 如图,正方形ABCD 中,点E 是对角线BD 上的一点,BE=BC ,过点E 作EF ⊥AB ,EG ⊥BC ,垂足分别为点F ,G ,则正方形FBGE 与正方形ABCD 的相似比为________.14. 如图,正方形ABCD 中,AB=2,对角线AC ,BD 相交于点O ,将△OBC 绕点B 逆时针旋转得到△O′BC′,当射线O′C′经过点D 时,线段DC′的长为________.15. 如图,在菱形ABCD 中,AB=4,AE ⊥BC 于点E ,点F ,G 分别是AB ,AD 的中点,连接EF ,FG ,若∠EFG=90°,则FG 的长为________.三、计算题16. 解下列方程:(1) x -6x+3=0;(2) 3x (x-2)=2(x-2).17. 如图,矩形ABCD 中,AB=4,点E ,F 分别在AD ,BC 边上,且EF ⊥BC ,若矩形ABFE ∽矩形DEFC,且相似比为1:2,求AD 的长.22景点介绍,求甲、乙两人中恰好有一人介绍,到2018年“早黑宝”的种植面积达到EFB的边长.22. 已知:如图,菱形ABCD8 .2. 3. 4. 5. 6. 7. 8. 9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.。

青岛市2018-2019学年九年级数学上学期期中模拟试卷(含解析)

青岛市2018-2019学年九年级数学上学期期中模拟试卷(含解析)

山东省青岛市2018-2019学年九年级数学上学期期中模拟试卷一.选择题(共15小题,满分30分,每小题2分)1.方程x2﹣2x=0的解是( )A.0 B.2 C.0或﹣2 D.0或2【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣2x=0,x(x﹣2)=0,x=0,x﹣2=0,x1=0,x2=2,故选:D.【点评】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.2.关于x的一元二次方程kx2+2x﹣1=0有两个不相等实数根,则k 的取值范围是( )A.k>﹣1 B.k≥﹣1 C.k≠0 D.k>﹣1且k≠0【分析】根据一元二次方程的定义和判别式的意义得到k≠0且△=22﹣4k×(﹣1)>0,然后解两个不等式求出它们的公共部分即可.【解答】解:根据题意得k≠0且△=22﹣4k×(﹣1)>0,所以k>﹣1且k≠0.故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.3.下列说法正确的是()A.邻边相等的平行四边形是矩形B.一组邻边相等的矩形是正方形C.一组邻边互相垂直的四边形是菱形D.一组对边平行且另一组对边相等的四边形是平行四边形【分析】A、由邻边相等的平行四边形是菱形,可得出结论A不正确;B、由一组邻边相等的矩形是正方形,可得出结论B正确;C、由选项C的论述结合菱形的判定定理,可得出结论C不正确;D、由一组对边平行且相等的四边形是平行四边形,可得出结论D不正确.此题得解.【解答】解:A、∵邻边相等的平行四边形是菱形,∴结论A不正确;B、∵一组邻边相等的矩形是正方形,∴结论B正确;C、∵由一组邻边互相垂直,无法证出该四边形为菱形,∴结论C不正确;D、∵一组对边平行且相等的四边形是平行四边形,∴结论D不正确.故选:B.【点评】本题考查了菱形的判定、矩形的判定、正方形的判定以及平行四边形的判定,牢记平行四边形、菱形、矩形及正方形的各判定定理是解题的关键.4.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是( )A.6 B.16 C.18 D.24【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数,即可求出答案.【解答】解:∵摸到红色球、黑色球的频率稳定在15%和45%,∴摸到白球的频率为1﹣15%﹣45%=40%,故口袋中白色球的个数可能是40×40%=16个.故选:B.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.5.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE ∥AC,若AC=4,则四边形OCED的周长为( )A.4 B.8 C.10 D.12【分析】由四边形ABCD为矩形,得到对角线互相平分且相等,得到OD=OC,再利用两对边平行的四边形为平行四边形得到四边形DECO为平行四边形,利用邻边相等的平行四边形为菱形得到四边形DECO为菱形,根据AC的长求出OC的长,即可确定出其周长.【解答】解:∵四边形ABCD为矩形,∴OA=OC,OB=OD,且AC=BD,∴OA=OB=OC=OD=2,∵CE∥BD,DE∥AC,∴四边形DECO为平行四边形,∵OD=OC,∴四边形DECO为菱形,∴OD=DE=EC=OC=2,则四边形OCED的周长为2+2+2+2=8,故选:B.【点评】此题考查了矩形的性质,以及菱形的判定与性质,熟练掌握判定与性质是解本题的关键.6.已知a是一元二次方程x2﹣3x﹣5=0的较小的根,则下面对a的估计正确的是( )A.﹣2<a<﹣1 B.2<a<3 C.﹣3<a<﹣4 D.4<a <5【分析】利用公式法表示出方程的根,估算即可.【解答】解:一元二次方程x2﹣3x﹣5=0,∵a=1,b=﹣3,c=﹣5,∴△=9+20=29,∴x=,则较小的根a=,即﹣2<a<﹣1,故选:A.【点评】此题考查了解一元二次方程﹣公式法,以及估算,熟练掌握运算法则是解本题的关键.7.方程(x+1)(x﹣3)=0的根是()A.x=﹣1 B.x=3 C.x1=1,x2=3 D.x1=﹣1,x2=3【分析】根据已知得出两个一元一次方程,求出方程的解即可.【解答】解:(x+1)(x﹣3)=0,x+1=0,x﹣3=0,x1=﹣1,x2=3,故选:D.【点评】本题考查了解一元二次方程﹣因式分解法,能把一元二次方程转化成一元一次方程是解此题的关键.8.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人【分析】设参加酒会的人数为x人,根据每两人都只碰一次杯且一共碰杯55次,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设参加酒会的人数为x人,根据题意得:x(x﹣1)=55,整理,得:x2﹣x﹣110=0,解得:x1=11,x2=﹣10(不合题意,舍去).答:参加酒会的人数为11人.故选:C.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.9.如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=20,CE=15,CF=7,AF=24,则BE的长为()A.10 B.C.15 D.【分析】先证明△AEB∽△AFD,根据相似三角形的性质可得==,设BE=5x,得到DF=6x,AB=7+6x,在Rt△ABE中,根据勾股定理即可求解.【解答】解:∵四边形ABCD是平行四边形,∴∠B=∠D,∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°,∴△AEB∽△AFD,∴==,设BE=5x,则DF=6x,AB=7+6x,在△ABE中,(7+6x)2=(5x)2+202,11x2+84x﹣351=0,解得x1=3,x2=﹣(舍去),∴BE=5x=15.故选:C.【点评】考查了平行四边形的性质,勾股定理,关键是得到BC:CD=6:5,设出未知数列出方程求解即可.10.用配方法方程x2+6x﹣5=0时,变形正确的方程为() A.(x+3)2=14 B.(x﹣3)2=14 C.(x+6)2=4 D.(x ﹣6)2=4【分析】方程常数项移到右边,两边加上9,利用完全平方公式化简得到结果,即可作出判断.【解答】解:方程移项得:x2+6x=5,配方得:x2+6x+9=14,即(x+3)2=14,故选:A.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.11.某种童鞋原价为100元,由于店面转让要清仓,经过连续两次降价处理,现以64元销售,已知两次降价的百分率相同,则每次降价的百分率为()A.19% B.20%C.21%D.22%【分析】此题可设每次降价的百分率为x,第一次降价后价格变为100(1﹣x),第二次在第一次降价后的基础上再降,变为100(x ﹣1)(x﹣1),即100(x﹣1)2元,从而列出方程,求出答案.【解答】解:设每次降价的百分率为x,第二次降价后价格变为100(x ﹣1)2元,根据题意,得100(x﹣1)2=64即(x﹣1)2=0。

青岛版2018-2019学年度九年级数学上册期中测试卷及答案

青岛版2018-2019学年度九年级数学上册期中测试卷及答案

2018-2019学年度上学期期中考试九年级数学试题一、选择题(本大题共12小题,共48.0分)1.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则在网格图1中的三角形与△ABC相似的是()A. B. C. D.2.在Rt△ABC中,∠C=90°,sin A=,BC=6,则AB=()A. 4B. 6C. 8D. 103.如图2,在△ABC中,点D,E分别在边AB,AC上,下列条件中不能判断△ABC∽△AED的是()A. B. C. ∠ ∠ D. ∠ ∠图1 图2 图34.下列语句正确的个数是()①过平面上三点可以作一个圆;②平分弦的直径垂直于弦;③在同圆或等圆中,相等的弦所对的圆周角相等;④三角形的内心到三角形各边的距离相等.A. 1个B. 2个C. 3个D. 4个5.如图3,在△ABC中,中线BE,CD相交于点O,连线DE,下列结论:①;△△ ;③;④△△其中正确的个数有()A. 1个B. 2个C. 3个D. 4个6.已知在△ABC中,∠A、∠B都是锐角,,则∠C的度数是()A. B. C. D.7.如图4,水库大坝截面的迎水坡AD的坡比为4:3,背水坡BC的坡比为1:2,大坝高DE=20m,坝顶宽CD=10m,则下底AB的长为()A. 55mB. 60mC. 65mD. 70m8.在RT△ABC中,∠C=90°,BC=3cm,AC=4cm,以点C为圆心,以2.5cm为半径画圆,则⊙C与直线AB的位置关系是()A. 相交B. 相切C. 相离D. 不能确定9.如图5,在等腰Rt△ABC中,AC=BC=2,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A. B. C. D. 2图4 图5 图610.已知:如图6,在⊙O中,OA⊥BC,∠AOB=70°,则∠ADC的度数为()A. B. C. D.11.如图7,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O交斜边BC于D,则阴影部分面积为(结果保留π)()A. 16B.C.D.12.如图8,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A. B. C. D.图7 图8 图9二、填空题(本大题共8小题,共32.0分)13.如图9,已知△ABC中,D为边AC上一点,P为边AB上一点,AB=12,AC=8,AD=6,当AP的长度为______时,△ADP和△ABC相似.14.如图10,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD=9,则S四边形ABEF等于_____.15.已知在平面直角坐标系中,点A(-3,-1)、B(-2,-4)、C(-6,-5),以原点为位似中心将△ABC缩小,位似比为1:2,则点B的对应点的坐标为______.16.某兴趣小组借助无人飞机航拍,如图11,无人飞机从A处飞行至B处需12秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为3米/秒,则这架无人飞机的飞行高度为(结果保留根号)______ 米.图10 图11 图1217.如图12,点E(0,3),O(0,0),C(4,0)在⊙A上,BE是⊙A上的一条弦.则cos∠OBE=______.18.如图13,在⊙O中,弦AB=8,M是弦AB上的动点,且OM的最小值为3.则⊙O的半径为______.19.半径为2的圆内接正三角形,正四边形,正六边形的边心距之比为______.20.如图14,在矩形ABCD中,AB=3,BC=4,O为矩形ABCD的中心,以D为圆心1为半径作⊙D,P为⊙D上的一个动点,连接AP、OP,则△AOP面积的最大值为________图13 图14三、解答题(本大题共6小题,共70.0分)21.(10分)某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米),tan48°≈,sin64°≈,tan64°≈2)(参考数据:sin48°≈22.(12分)在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,E,F分别是AC,BC边上一点.(1)求证:=;(2)若CE=AC,BF=BC,求∠EDF的度数.23.(12分)如图,在△BCE中,点A是边BE上一点,以AB为直径的⊙O与CE相切于点D,AD∥OC,点F为OC与⊙O的交点,连接AF.(1)求证:CB是⊙O的切线;(2)若∠ECB=60°,AB=6,求图中阴影部分的面积.24.(12分)如图,正方形ABCD、等腰Rt△BPQ的顶点P在对角线AC上(点P与A、C不重合),QP与BC交于E,QP延长线与AD交于点F,连接CQ.(1)①求证:AP=CQ;②求证:PA2=AF•AD;(2)若AP:PC=1:3,求tan∠CBQ.25.(12分)如图,在⊙O中,直径CD垂直于不过圆心O的弦AB,垂足为点N,连接AC,点E在AB上,且AE=CE(1)求证:AC2=AE•AB;(2)过点B作⊙O的切线交EC的延长线于点P,试判断PB与PE是否相等,并说明理由;(3)设⊙O半径为4,点N为OC中点,点Q在⊙O上,求线段PQ的最小值.答案和解析1.【答案】B【解析】解:根据勾股定理,,BC=,所以,夹直角的两边的比为,观各选项,只有B选项三角形符合,与所给图形的三角形相似.故选:B.可利用正方形的边把对应的线段表示出来,利用三边对应成比例两个三角形相似,分别计算各边的长度即可解题.此题考查了勾股定理在直角三角形中的运用,三角形对应边比值相等判定三角形相似的方法,本题中根据勾股定理计算三角形的三边长是解题的关键.2.【答案】D【解析】解:在Rt△ABC中,∠C=90°,sinA==,BC=6,∴AB===10,故选:D.在直角三角形ABC中,利用锐角三角函数定义表示出sinA,将sinA的值与BC的长代入求出AB的长即可.此题考查了解直角三角形,熟练掌握锐角三角函数定义是解本题的关键.3.【答案】A【解析】解:∵∠DAE=∠CAB,∴当∠AED=∠B或∠ADE=∠C时,△ABC∽△AED;当=即=时,△ABC∽△AED.故选:A.根据相似三角形的判定定理进行判定即可.本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.4.【答案】A【解析】解:过平面上不在同一直线上的三点可以作一个圆,错误;平分弦(不是直径)的直径垂直于弦,故错误;在同圆或等圆中,相等的弦所对的圆周角相等,错误;三角形的内心到三角形各边的距离相等,正确,正确的有1个,故选A.利用确定圆的条件、垂径定理、圆周角定理及三角形的内心的性质分别判断后即可确定正确的选项;本题考查了确定圆的条件、垂径定理、圆周角定理及三角形的内心的性质等知识,解题的关键是能够了解有关的定义及定理,难度不大.5.【答案】B【解析】解:∵BE、CD是△ABC的中线,∴DE是△ABC的中位线,∴,正确;=,错误;∵D是AB的中点,∴=,由题意得,点O是△ABC的重心,∴=,∴,正确;=,错误,故选:B.根据三角形的重心的概念和性质、相似三角形的性质计算即可.本题考查的是三角形的重心的概念和性质、相似三角形的性质,掌握三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.6.【答案】C【解析】解:∵,∴sinA=,cosB=,∴∠A=60°,∠B=60°,故可得∠C=180°-∠A-∠B=60°.故选C.根据绝对值及完全平方的非负性可得出sinA及cosB的值,继而可得出∠A及∠B的度数,利用三角形的内角和定理求解即可.此题考查了特殊角的三角函数值、非负数的性质,属于基础题,解答本题的关键是根据特殊角的三角函数值得出∠A及∠B的度数.7.【答案】C【解析】解:∵DE=20m,DE:AE=4:3,∴AE=15m,∵CF=DE=20m,CF:BF=1:2,∴BF=40m,∴AB=AE+EF+BF=15+10+40=65m.故选C.利用坡比的比值关系,求出AE与BF的长度即可得出下底的长.本题考查了坡度和坡角的知识,解答本题的关键是根据坡比和已知条件求出三角形的边长.8.【答案】A【解析】解:过C作CD⊥AB于D,如图所示:∵在Rt△ABC中,∠C=90,AC=4,BC=3,∴AB==5,∵△ABC的面积=AC×BC=AB×CD,∴3×4=5CD,∴CD=2.4<2.5,即d<r,∴以2.5为半径的⊙C与直线AB的关系是相交;故选A.过C作CD⊥AB于D,根据勾股定理求出AB,根据三角形的面积公式求出CD,得出d<r,根据直线和圆的位置关系即可得出结论.本题考查了直线和圆的位置关系,用到的知识点是勾股定理,三角形的面积公式;解此题的关键是能正确作出辅助线,并进一步求出CD的长,注意:直线和圆的位置关系有:相离,相切,相交.9.【答案】B【解析】解:取AB的中点O、AE的中点E、BC的中点F,连结OC、OP、OM、OE、OF、EF,如图,∵在等腰Rt△ABC中,AC=BC=2,∴AB=BC=4,∴OC=AB=2,OP=AB=2,∵M为PC的中点,∴OM⊥PC,∴∠CMO=90°,∴点M在以OC为直径的圆上,当P点在A点时,M点在E点;当P点在B点时,M点在F点,易得四边形CEOF为正方形,EF=OC=2,∴M点的路径为以2为直径的半圆,∴点M运动的路径长=•π•2=π.故选B.取AB的中点O、AE的中点E、BC的中点F,连结OC、OP、OM、OE、OF、EF,如图,利用等腰直角三角形的性质得到AB=BC=4,则OC=AB=2,OP=AB=2,再根据等腰三角形的性质得OM⊥PC,则∠CMO=90°,于是根据圆周角定理得到点M在以OC为直径的圆上,由于点P点在A点时,M点在E点,点P点在B点时,M点在F点,则利用四边形CEOF为正方得到EF=OC=2,所以M点的路径为以2为直径的半圆,然后根据圆的周长公式计算点M运动的路径长.本题考查了轨迹:点按一定规律运动所形成的图形为点运动的轨迹.解决此题的关键是利用等腰三角形的性质和圆周角定理确定M 点的轨迹为以2为直径的半圆. 10.【答案】B 【解析】解:∵OA ⊥BC ,∠AOB=70°, ∴=,∴∠ADC=∠AOB=35°. 故选:B .先根据垂径定理得出=,再由圆周角定理即可得出结论.本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键. 11.【答案】B 【解析】解:连接AD ,OD , ∵等腰直角△ABC 中,∴∠ABD=45°. ∵AB 是圆的直径,∴∠ADB=90°, ∴△ABD 也是等腰直角三角形,∴=.∵AB=8,∴AD=BD=4, ∴S 阴影=S △ABC -S △ABD -S 弓形AD=S △ABC -S △ABD -(S 扇形AOD -S △ABD )=×8×8-×4×4-+××4×4=16-4π+8=24-4π. 故选B .连接AD ,因为△ABC 是等腰直角三角形,故∠ABD=45°,再由AB 是圆的直径得出∠ADB=90°,故△ABD 也是等腰直角三角形,所以=,S 阴影=S △ABC -S △ABD -S 弓形AD 由此可得出结论.本题考查的是扇形面积的计算,根据题意作出辅助线,构造出三角形及扇形是解答此题的关键.12.【答案】C【解析】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH•PC,故正确;故选C.由正方形的性质和相似三角形的判定与性质,即可得出结论.本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.13.【答案】4或9【解析】【分析】此题主要考查了相似三角形的判定与性质,利用倒推法以及分类讨论得出是解题关键.分别根据当△ADP∽△ACB时,当△ADP∽△ABC时,求出AP的长即可.【解答】解:当△ADP∽△ACB时,∴=,∴=,解得:AP=9,当△ADP∽△ABC时,∴=,∴=,解得:AP=4,∴当AP的长度为4或9时,△ADP和△ABC相似.故答案为4或9.14.【答案】11【解析】【分析】此题主要考查了相似三角形的判定与性质,解题首先利用平行四边形的构造相似三角形的相似条件,然后利用其性质即可求解.由于四边形ABCD是平行四边形,所以得到BC∥AD、BC=AD,而CE=2EB,由此即可得到△AFD∽△CFE,它们的相似比为3:2,最后利用相似三角形的性质即可求解.【解答】解:∵四边形ABCD是平行四边形,∴BC∥AD、BC=AD,而CE=2EB,∴△AFD∽△CFE,且它们的相似比为3:2,∴S△AFD:S△EFC=()2,而S△AFD=9,∴S△EFC=4,∴S△DFC=9×=6,∴S△ADC=15,S=15-4=11.四边形ABEF故答案为11.15.【答案】(1,2)或(-1,-2)【解析】解:∵点B的坐标为(-2,-4),以原点为位似中心将△ABC缩小,位似比为1:2,∴点B的对应点的坐标为(1,2)或(-1,-2),故答案为:(1,2)或(-1,-2).根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k解答.本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.16.【答案】9+9【解析】解:如图,作AD⊥BC,BH⊥水平线,由题意得:∠ACH=75°,∠BCH=30°,AB∥CH,∴∠ABC=30°,∠ACB=45°,∵AB=3×12=36m,∴AD=CD=18m,BD=AB•cos30°=18m,∴BC=CD+BD=(18+18)m,∴BH=BC•sin30°=(9+9)m.故答案为:9+9.作AD⊥BC,BH⊥水平线,根据题意确定出∠ABC与∠ACB的度数,利用锐角三角函数定义求出AD与BD的长,由CD+BD求出BC的长,即可求出BH的长.此题考查了解直角三角形的应用-仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.17.【答案】【解析】解:连接EC,由∠EOC=90°得到BC为圆A的直径,∴EC过点A,又OE=3,OC=4,根据勾股定理得:EC=5,∵∠OBE和∠OCE为所对的圆周角,∴∠OBE=∠OCE,则cos∠OBE=cos∠OCE==.故答案为:连接EC,由90°的圆周角所对的弦为直径,根据∠EOC=90°得到EC为圆A的直径,所以点A在EC上且为EC中点,在直角三角形EOC中,由OE和OC的长,利用勾股定理求出EC的长,根据同弧所对的圆周角都相等得到∠EBO与∠ECO相等,而∠ECO在直角三角形EOC中,根据余弦函数定义即可求出cos∠ECO的值,进而得到cos∠EBO.此题考查学生掌握90°的圆周角所对的弦为直径以及同弧所对的圆周角相等,考查了数形结合以及转化的数学思想,是一道中档题.连接EC且得到EC为圆A的直径是解本题的突破点.18.【答案】5【解析】解:根据垂线段最短知,当OM⊥AB时,OM有最小值,此时,由垂径定理知,点M是AB的中点,连接OA,AM=AB=4,由勾股定理知,OA2=OM2+AM2.即OA2=42+32,解得OA=5.所以⊙O的半径为5;故答案为5.根据垂线段最短知,当OM⊥AB时,OM有最小值.根据垂径定理和勾股定理求解.本题考查了垂径定理和勾股定理,根据垂线段最短知,当OM⊥AB时,OM有最小值是解题的关键.19.【答案】1::【解析】解:由题意可得,正三角形的边心距是:2×sin30°=2×=1,正四边形的边心距是:2×sin45°=2×,正六边形的边心距是:2×sin60°=2×,∴半径为2的圆内接正三角形,正四边形,正六边形的边心距之比为:1::,故答案为:1::.根据题意可以求得半径为2的圆内接正三角形,正四边形,正六边形的边心距,从而可以求得它们的比值.本题考查正多边形和圆,解答本题的关键是明确题意,求出相应的图形的边心距.20.【答案】.【解析】【分析】本题考查了圆的切线的性质,矩形的性质,平行线的性质,勾股定理的应用以及三角形相似的判定和性质,本题的关键是判断出P处于什么位置时面积最大.当P点移动到平行于OA且与⊙D相切时,△AOP面积的最大,由于P为切点,得出MP垂直与切线,进而得出PM⊥AC,根据勾股定理先求得AC的长,进而求得OA的长,根据△ADM∽△ACD,求得DM的长,从而求得PM的长,最后根据三角形的面积公式即可求得.【解答】解:当P点移动到平行于OA且与⊙D相切时,△AOP面积的最大,如图,菁优网∵P是⊙D的切线,∴DP垂直与切线,延长PD交AC于M,则DM⊥AC,∵在矩形ABCD中,AB=3,BC=4,∴.∴.∵∠AMD=∠ADC=90°,∠DAM=∠CAD,∴△ADM∽△ACD,∴,∵AD=4,CD=3,AC=5,∴DM=,∴,∴△AOP的最大面积=.故答案为.21.【答案】解:根据题意,得∠ADB=64°,∠ACB=48°在Rt△ADB中,tan64°=,则BD=≈AB,在Rt△ACB中,tan48°=,则CB=≈AB,∴CD=BC-BD即6=AB-AB解得:AB=≈14.7(米),∴建筑物的高度约为14.7米.【解析】Rt△ADB中用AB表示出BD、Rt△ACB中用AB表示出BC,根据CD=BC-BD可得关于AB 的方程,解方程可得.本题考查解直角三角形的应用-仰角俯角问题,解题的关键是利用数形结合的思想找出各边之间的关系,然后找出所求问题需要的条件.22.【答案】解:(1)∵CD⊥AB,∴∠A+∠ACD=90°又∵∠A+∠B=90°∴∠B=∠ACD∴Rt△ADC∽Rt△CDB∴=;(2)∵==,又∵∠ACD=∠B,∴△CED∽△BFD;∴∠CDE=∠BDF;∴∠EDF=∠EDC+∠CDF=∠BDF+∠CDF=∠CDB=90°.【解析】(1)证相关线段所在的三角形相似即可,即证Rt△ADC∽Rt△CDB;(2)易证得CE:BF=AC:BC,联立(1)的结论,即可得出CE:BF=CD:BD,由此易证得△CED∽△BFD,即可得出∠CDE=∠BDF,由于∠BDF和∠CDF互余,则∠EDC和∠CDF也互余,由此可求得∠EDF的度数.此题考查的是相似三角形的判定和性质;识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的比.23.【答案】(1)证明:连接OD,与AF相交于点G,∵CE与⊙O相切于点D,∴OD⊥CE,∴∠CDO=90°,∵AD∥OC,∴∠ADO=∠DOC,∠DAO=∠BOC,∵OA=OD,∴∠ADO=∠DAO,∴∠DOC=∠BOC,在△CDO和△CBO中,\∠ ∠ ,∴△CDO≌△CBO,∴∠CBO=∠CDO=90°,∴CB是⊙O的切线.(2)由(1)可知∠DOA=∠BOC,∠DOC=∠BOC,∵∠ECB=60°,∴∠DCO=∠BCO=∠ECB=30°,∴∠DOC=∠BOC=60°,∴∠DOA=60°,∵OA=OD,∴△OAD是等边三角形,∴AD=OD=OF,∵∠GOF=∠ADO,在△ADG和△FOG中,∠ ∠∠ ∠ ,∴△ADG≌△FOG,∴S△ADG=S△FOG,∵AB=6,∴⊙O的半径r=3,∴S阴=S扇形ODF==π.【解析】(1)欲证明CB是⊙O的切线,只要证明BC⊥OB,可以证明△CDO≌△CBO解决问题.(2)首先证明S阴=S扇形ODF,然后利用扇形面积公式计算即可.本题考查切线的性质和判定、扇形的面积公式,记住切线的判定方法和性质是解决问题的关键,学会把求不规则图形面积转化为求规则图形面积,属于中考常考题型.24.【答案】解:(1)①∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∴∠ABP+∠PBC=90°,∵△BPQ是等腰直角三角形,∴BP=BQ,∠PBQ=90°,∴∠PBC+∠CBQ=90°∴∠ABP=∠CBQ,∴△ABP≌△CBQ,∴AP=CQ;②∵四边形ABCD是正方形,∴∠DAC=∠BAC=∠ACB=45°,∵∠PQB=45°,∠CEP=∠QEB,∴∠CBQ=∠CPQ,由①得△ABP≌△CBQ,∠ABP=∠CBQ∵∠CPQ=∠APF,∴∠APF=∠ABP,∴△APF∽△ABP,∴,∴AP2=AF•AB=AF•AD;(本题也可以连接PD,证△APF∽△ADP)(2)由①得△ABP≌△CBQ,∴∠BCQ=∠BAC=45°,∵∠ACB=45°,∠PCQ=45°+45°=90°,∴tan∠CPQ=,由①得AP=CQ,又∵AP:PC=1:3,∴tan∠CPQ=,由②得∠CBQ=∠CPQ,∴tan∠CBQ=tan∠CPQ=.【解析】(1)证出∠ABP=∠CBQ,由SAS证明△ABP≌△CBQ可得结论;根据正方形的性质和全等三角形的性质得到∠DAC=∠BAC,∠APF=∠ABP,根据AA 证明△APF∽△ABP,再根据相似三角形的性质即可求解;(2)根据全等三角形的性质得到∠BCQ=∠BAC=45°,可得∠PCQ=90°,根据三角函数和已知条件得到tan∠CPQ=,由中∠CBQ=∠CPQ即可求解.本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质等知识;本题综合性强,有一定难度.25.【答案】证明:(1)如图1,连接BC,∵CD为⊙O的直径,AB⊥CD,∴=,∴∠A=∠ABC,∵EC=AE,∴∠A=∠ACE,∴∠ABC=∠ACE,∵∠A=∠A,∴△AEC∽△ACB,∴,∴AC2=AE•AB;(2)PB=PE,理由是:如图2,连接OB,∵PB为⊙O的切线,∴OB⊥PB,∴∠OBP=90°,∴∠PBN+∠OBN=90°,∵∠OBN+∠COB=90°,∴∠PBN=∠COB,∵∠PEB=∠A+∠ACE=2∠A,∠COB=2∠A,∴∠PEB=∠COB,∴∠PEB=∠PBN,∴PB=PE;(3)如图3,∵N为OC的中点,∴ON=OC=OB,Rt△OBN中,∠OBN=30°,∴∠COB=60°,∵OC=OB,∴△OCB为等边三角形,∵Q为⊙O任意一点,连接PQ、OQ,因为OQ为半径,是定值4,则PQ+OQ的值最小时,PQ最小,当P、Q、O三点共线时,PQ最小,∴Q为OP与⊙O的交点时,PQ最小,∠A=∠COB=30°,∴∠PEB=2∠A=60°,∠ABP=90°-30°=60°,∴△PBE是等边三角形,Rt△OBN中,BN==2,∴AB=2BN=4,设AE=x,则CE=x,EN=2-x,Rt△CNE中,x2=22+(2-x)2,x=,∴BE=PB=4-=,Rt△OPB中,OP===,∴PQ=-4=.则线段PQ的最小值是.【解析】(1)证明△AEC∽△ACB,列比例式可得结论;(2)如图2,证明∠PEB=∠COB=∠PBN,根据等角对等边可得:PB=PE;(3)如图3,先确定线段PQ的最小值时Q的位置:因为OQ为半径,是定值4,则PQ+OQ 的值最小时,PQ最小,当P、Q、O三点共线时,PQ最小,先求AE的长,从而得PB的长,最后利用勾股定理求OP的长,与半径的差就是PQ的最小值.本题是圆的综合题,考查了三角形相似的性质和判定、等腰三角形、等边三角形的性质和判定、垂径定理、切线的性质、勾股定理等知识,第三问有难度,确定PQ最小值时Q的位置是关键,根据两点之间线段最短,与勾股定理、方程相结合,解决问题.。

福建省福州市鼓楼区屏东中学2018-2019学年九年级(上)期中数学试卷(含答案)

福建省福州市鼓楼区屏东中学2018-2019学年九年级(上)期中数学试卷(含答案)

2018-2019学年福建省福州市鼓楼区屏东中学九年级(上)期中数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(4分)若两个相似三角形的面积比为2:3,那么这两个三角形的周长的比为()A.4:9B.2:3C.:D.3:23.(4分)已知﹣1是关于x的方程x2+4x﹣m=0的一个根,则这个方程的另一个根是()A.﹣3B.﹣2C.﹣1D.34.(4分)事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A.事件①是必然事件,事件②是随机事件B.事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件D.事件①和②都是必然事件5.(4分)如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD6.(4分)如图,一次函数y=ax+b的图象与反比例函数y=的图象相交于A(﹣2,y1).B (1,y2)两点,则不等式ax+b﹣<0的解集为()A.x<﹣2B.x<﹣2或0<x<1C.0<x<1D.﹣2<x<0或x>17.(4分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:则当y≥5时,x的取值范围是()A.x≤0B.0≤x≤4C.x≥4D.x≤0或x≥4 8.(4分)如图,⊙O是△ABP的外接圆,半径r=2,∠APB=45°,则弦AB的长为()A.B.2C.2D.49.(4分)如图,以BC为直径的⊙O与△ABC的另两边分别相交于D、E.若∠A=60°,BC=6,则图中阴影部分的面积为()A.πB.πC.πD.3π10.(4分)如图,正方形ABCO的边长为4,点E在线段AB上运动,AE=BF,且AF与OE相交于点P,直线y=x﹣3与x轴,y轴交于M、N两点,连接PN,PM,则△PMN 面积的最大值()A.10.5B.12C.12.5D.15二、填空题:本题共6小题,每小题4分,共40分.11.(4分)抛物线y=﹣(x﹣2)2+3的顶点坐标是.12.(4分)若关于x的一元二次方程x2﹣2x+m=0有实数根,则m的取值范围是.13.(4分)已知点A(1,y1),B(﹣,y2),C(﹣2,y3)在y=2(x+1)2﹣0.5的函数图象上,请用“<“号比较y1,y2,y3的大小关系.14.(4分)如图,已知△ABC和△ADE均为等边三角形,点D在BC边上,DE与AC相交于点F,如果AB=9,BD=3,那么CF的长度为.15.(4分)如图,网络格上正方形小格的边长为1,图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A′B′和点P′,则在1区~4区中,点P′所在的单位正方形区域是(选填区域名称)16.(4分)如图,菱形ABCD的两个顶点B,D在反比例函数y=的图象上,对角线AC 与BD的交点恰好是坐标原点O,已知点A(2,2),∠BAC=60°,则k的值是.三、解答题(共9小题,共86分)17.(10分)解方程:(1)x2+2x﹣1=0(2)x(x﹣3)=x﹣3.18.(8分)在边长为1的正方形网格中,△AOB的位置如图所示.(1)将△OAB绕着点O逆时针旋转90°,画出旋转后得到的△OCD;(2)直接写出旋转过程中,点A所经过路径的长为.19.(8分)小芳从家骑自行车去学校,所需时间y(min)与骑车速度x(m/min)之间的反比例函数关系如图.(1)写出y与x的函数表达式;(2)学校要求学生每天7点20分前到校,而小芳的骑车速度最快不超过300m/min,为了安全起见,她每天至少要几点出发?20.(8分)已知:△ABC中,∠A=36°,AB=AC,用尺规求作一条过点B的直线,使得截出的一个三角形与△ABC相似.(保留作图痕迹,不写作法)21.(10分)在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小明从布袋里随机取出一个小球,记下数字为x,小红从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)以坐标原点为圆心,4为半径作圆,求出点(x,y)在圆内的概率.22.(8分)如图,Rt△ABC中,∠ACB=90°,AB=8,CE为△ABC外接圆的切线,AE⊥CE于点E.(1)求证:∠ACE=∠B.(2)若AE=2,求CE的长.23.(10分)一种进价为每件40元的T恤,若销售单价为60元,则每周可卖出300件.为提高利润,欲对该T恤进行涨价销售.经过调查发现:每涨价1元,每周要少卖出5件.(1)请确定该T恤涨价后每周的销售利润y(元)与销售单价x(元)之间的函数关系式,并求销售单价定为多少元时,每周的销售利润最大?(2)若要使每周的销售利润不低于7680元,请确定销售单价x的取值范围.24.(12分)已知锐角△ABC内接于O,AD⊥BC.垂足为D.(1)如图1,若=,BD=DC,求∠B的度数.(2)如图2,BE⊥AC,垂足为E,BE交AD于点F,过点B作BG∥AD交⊙O于点G,在AB边上取一点H,使得AH=BG;①连接CG,试探究∠ABC,∠ACG的数量关系,并给予证明.②求证:△AFH是等腰三角形.25.(14分)已知:二次函数y=﹣x2+bx+c(a≠0)的图象与x轴交于点A(﹣3,0)、B (1,0),顶点为C.(1)求该二次函数的解析式和顶点C的坐标;(2)如图,过B、C两点作直线,并将线段BC沿该直线向下平移,点B、C分别平移到点D、E处.若点F在这个二次函数的图象上,且△DEF是以EF为斜边的等腰直角三角形,求点F的坐标;(3)试确定实数p,q的值,使得当p≤x≤q时,P≤y≤.2018-2019学年福建省福州市鼓楼区屏东中学九年级(上)期中数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,是中心对称图形;C、是轴对称图形,不是中心对称图形;D、是轴对称图形,不是中心对称图形;故选:B.2.【解答】解:∵两个相似三角形的面积比为2:3,∴这两个三角形的相似比为:,∴这两个三角形的周长的比为:,故选:C.3.【解答】解:设方程x2+4x﹣m=0的另一个根为:x1,由根与系数的关系得:﹣1+x1=﹣4,解得:x1=﹣3,故选:A.4.【解答】解:射击运动员射击一次,命中靶心是随机事件;购买一张彩票,没中奖是随机事件,故选:C.5.【解答】解:连接BC,如图所示:∵AB是⊙O的直径,∴∠ACB=∠ACD+∠BCD=90°,∵∠BCD=∠BAD,∴∠ACD+∠BAD=90°,故选:D.6.【解答】解:观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,∴不等式ax+b﹣<0的解集是﹣2<x<0或x>1.故选:D.7.【解答】解:由表可知,二次函数的对称轴为直线x=2,并且x=2时函数有最小值1,因为x=0时,y=5,所以,x=4时,y=5,所以,y≥5时,x的取值范围为x≤0或x≥4.故选:D.8.【解答】解:连接OA、OB,如图所示:则∠AOB=2∠APB=90°,∵OA=OB=r=2,∴AB===2;故选:C.9.【解答】解:∵△ABC中,∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∵△OBD、△OCE是等腰三角形,∴∠BDO+∠CEO=∠ABC+∠ACB=120°,∴∠BOD+∠COE=360°﹣(∠BDO+∠CEO)﹣(∠ABC+∠ACB)=360°﹣120°﹣120°=120°,∵BC=6,∴OB=OC=3,∴S阴影==3π,故选:D.10.【解答】解:由题意易得△AEO≌△AFB(SAS)∴∠BAF=∠EOA∵四边形ABCO是正方形∴∠BAF+∠P AO=90∴∠EOA+∠P A0=90∴∠APO=90点P在以AO为直径的圆上要使得△PMN的面积最大,点P到直线y=x﹣3的距离最大,即平移直线MN使其与圆相切于点P,使距离最大,则过点P做直线MN的垂线与MN交于点H,此时PH一定过圆心G,如图所示当y=0时,0=x﹣3得x=4,M(4,0)当x=0时,y=x﹣3得y=﹣3,∴N(0,﹣3)∴MN=5,GN=5,sin∠OMN==在R△GNH中,有sin∠GNH==,∴GH=4,∴PH=6,△PMN的最大面积=×PH×MN=×6×5=15故选:D.二、填空题:本题共6小题,每小题4分,共40分.11.【解答】解:抛物线y=﹣(x﹣2)2+3的顶点坐标是(2,3).故答案为:(2,3).12.【解答】解:由题意知,△=4﹣4m≥0,∴m≤1答:m的取值范围是m≤1.13.【解答】解:∵抛物线y=2(x+1)2﹣0.5的开口向上,对称轴为直线x=﹣1,而A(1,y1)点离直线x=﹣1的距离最远,B(﹣,y2)点离直线x=﹣1最近,∴y2<y3<y1.故答案为y2<y3<y1.14.【解答】解:如图,∵△ABC和△ADE均为等边三角形,∴∠B=∠BAC=60°,∠E=∠EAD=60°,∴∠B=∠E,∠BAD=∠EAF,∴△ABD∽△AEF,∴AB:BD=AE:EF.同理:△CDF∽△EAF,∴CD:CF=AE:EF,∴AB:BD=CD:CF,即9:3=(9﹣3):CF,∴CF=2.故答案为:2.15.【解答】解:如图,连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点即为旋转中心,由图可知,线段AB和点P绕着同一个该点逆时针旋转90°,∴点P逆时针旋转90°后所得对应点P′落在4区,故答案为:4区.16.【解答】解:∵四边形ABCD是菱形,∴BA=BC,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∵点A(2,2),∴OA=2,∴BO===2,∵直线AC的解析式为y=x,∴直线BD的解析式为y=﹣x,∵OB=2,∴点B的坐标为(﹣2,2),∵点B在反比例函数y=的图象上,∴k=﹣2×2=﹣12,故答案为:﹣12.三、解答题(共9小题,共86分)17.【解答】解:(1)x2+2x﹣1=0,x2+2x=1,x2+2x+1=1+1,(x+1)2=2,x+1=,x1=﹣1+,x2=﹣1﹣;(2)x(x﹣3)=x﹣3,x(x﹣3)﹣(x﹣3)=0,(x﹣3)(x﹣1)=0,x﹣3=0或x﹣1=0,x1=3,x2=1.18.【解答】解:(1)△OCD如图所示.(2)旋转过程中,点A所经过路径的长==π故答案为π.19.【解答】解:(1)设y=,当x=240时,y=10,解得:k=2400,故y与x的函数表达式为:y=;(2)当x=300时y=8,∵k>0,∴在第一象限内y随x的增大而减小,20﹣8=12∴她每天至少要7:12出发.20.【解答】解:如图,直线BD即为所求.21.【解答】解:(1)画树状图得:∴共有12种等可能的结果数,即点P所有可能的坐标为(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3);(2)其中事件点(x,y)在圆内的点有:(1,2),(1,3)(2,1)(2,3)(3,1)(3,2)∴在圆内的概率.P==.22.【解答】(1)证明:取AB的中点O,连接OC,∵CE为△ABC外接圆的切线,∴∠OCE=90°,∵∠ACB=90°,∴∠OCE﹣∠ACO=∠ACB﹣∠ACO,即∠ACE=∠OCB,∵∠ACB=90°,∴AB为直径,∴OC=OB,∴∠OCB=∠B,∴∠ACE=∠B;(2)解:∵AE⊥CE,∴∠AEC=90°,∴∠AEC=∠ACB,∵∠ACE=∠B,∴△ACE∽△ABC,∴=,∵AE=2,AB=8,∴AC2=2×8=16,∴AC=4,Rt△ACE中,CE==2.23.【解答】解:(1)根据题意得y=(x﹣40)[300﹣5(x﹣60)]=﹣5(x2﹣160x+4800)=﹣5(x﹣80)2+8000,∵a<0,∴当x=80时,y的值最大=8000,即销售单价定为80元时,每周的销售利润最大;(2)当y=7680时,﹣5(x﹣80)2+8000=7680,整理得:(x﹣80)2=64,∴x﹣80=±8,∴x1=88,x2=72,∴72≤x≤88.24.【解答】解:(1)∵=,∴AB=BC.∵AD⊥BC,BD=DC,∴AD是线段BC的垂直平分线,∴AB=AC,∴△ABC是等边三角形,∴∠B=60°;(2)①连接GC,GA,∵BG⊥BC,∴GC是⊙O的直径,∴∠GAC=90°,∵∠ABC=∠AGC,∴∠ABC+∠ACG=90°;②∵BE⊥AC,∴∠BEC=∠GAC=90°,∴AG∥BE.∵AD⊥BC,∴∠ADC=∠GBC=90°,∴BG∥AD,∴四边形GBF A是平行四边形,∴BG=AF.∵BG=AH,∴AH=AF,∴△AFH是等腰三角形.25.【解答】解:(1)∵二次函数y=﹣x2+bx+c(a≠0)的图象与x轴交于点A(﹣3,0)、B(1,0),∴,解得:,∴二次函数的解析式为y=﹣x2﹣x+,∴顶点C的坐标为(﹣1,2);(2)如图,过C作CH⊥x轴于H,∵C(﹣1,2),∴CH=2,OH=1,∵BO=1,∴BH=CH=2,∴△BCH是等腰直角三角形,∴∠1=45°,∴BC==2,在Rt△DEF中,DE=DF=BC=2,∠FDE=90°,∴∠2=45°,EF==4,∴∠1=∠2=45°,∴EF∥CH∥y轴,∵B(1,0),C(﹣1,2),∴直线BC的解析式为y=﹣x+1,设F(m,﹣m2﹣m+)(m>1),则点E(m,﹣m+1),∴EF=(﹣m+1)﹣(﹣m2﹣m+)=m2﹣=4,解得:m1=3,m2=﹣3(不合题意,舍去),∴点F的坐标(3,﹣6);(3)当y=时,﹣x2﹣x+=,解得:x1=﹣2,x2=0,∵y=﹣x2﹣x+=﹣(x+1)2+2,当x<﹣1时,y随x的增大二增大,当x>﹣1时,y随x的增大二减小,当x=1时,y由最大值2;∵当p≤x≤q时,P≤y≤,∴可分三种情况:①当P≤Q≤﹣1时,由增减性得,当x=q=﹣2时,y最小=,当x=p时,y=p代入y=﹣(x+1)2+2,解得:p1=﹣2+,p2=﹣2﹣<﹣1(不合题意,舍去),∴p=﹣2+,q=﹣2;②当p<﹣1≤q时,当x=﹣1时,y最大=2>(舍去),③当﹣1≤p<q时,由增减性得,(Ⅰ)当x=p=0时,y最大=,把x=p=0,y=代入y=﹣(x+1)2+2得,p=﹣(p+1)2+2,解得:p1=0,p2=﹣1(不合题意,舍去),∴p=0,(Ⅱ)当x=q时,y最小=p=0,把x=q,y=p=0代入y=﹣(x+1)2+2,得﹣(p+1)2+2=0,解得:q1=1,q2=﹣3<﹣1(不合题意,舍去),∴p=0,q=1,综上所述,满足条件的实数p,q的值为:p=﹣2+,q=﹣2或p=0,q=1.。

2018-2019学年九年级上第3章圆的基本性质综合测评卷(含答案)

2018-2019学年九年级上第3章圆的基本性质综合测评卷(含答案)

第3章综合测评卷一、选择题(每题3分,共30分)1.在Rt△ABC 中,∠C=90°,AC=4cm ,BC=3cm ,D 是AB 边的中点,以点C 为圆心、2.4cm 为半径作圆,则点D 与⊙C 的位置关系是(B ).A.点D 在⊙C 上B.点D 在⊙C 外C.点D 在⊙C 内D.不能确定2.如图所示,点A ,B ,C 在⊙O 上,∠A=50°,则∠BOC 的度数为(D ).A.40°B.50°C.80°D.100°(第2题) (第3题)(第4题)(第5题)3.如图所示,四边形ABCD 内接于⊙O ,AB 经过圆心,∠B=3∠BAC,则∠ADC 等于(B ).A.100°B.112.5°C.120°D.135°4.运用图形变化的方法研究下列问题:如图所示,AB 是⊙O 的直径,CD ,EF 是⊙O 的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8,则图中阴影部分的面积是(A ).A. 225π B.10π C.24+4π D.24+5π 5.如图所示,在⊙O 中,半径OC 垂直弦AB ,垂足为点D ,且AB=8,OC=5,则CD 的长是(C ).A.3B.2.5C.2D.16.观察下列图片及相应推理,其中正确的是(B ).A. B.C. D.7.如图所示,四边形OABC 是菱形,点B ,C 在以点O 为圆心的上,且∠1=∠2,若扇形EOF 的面积为3π,则菱形OABC 的边长为(C ).A. 23 B.2 C.3 D.4 (第7题)(第8题)(第9题)8.如图所示,正六边形硬纸片ABCDEF 在桌面上由图1的起始位置沿直线不滑行地翻滚一周后到图2位置,若正六边形的边长为2cm ,则正六边形的中心O 运动的路程为(D ).A.πcmB.2πcmC.3πcmD.4πcm9.如图所示,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN=30°,B 是的中点.P是直径MN 上一动点,则PA+PB 的最小值为(A ).A. 2B.1C.2D.2210.如图1所示为一张圆形纸片,小芳对其进行了如下连续操作:将纸片左右对折,折痕为AB ,如图2所示;将纸片上下折叠,使A ,B 两点重合,折痕CD 与AB 相交于点M ,如图3所示;将纸片沿EF 折叠,使B ,M 两点重合,折痕EF 与AB 相交于点N ,如图4所示; 连结AE ,AF ,如图5所示.经过以上操作,小芳得到了以下结论:①CD∥EF;②四边形MEBF 是菱形;③△AEF 是等边三角形;④S △AEF ∶S 圆32∶4π.以上结论正确的有(D ).A.1个B.2个C.3个D.4个(第10题)二、填空题(每题4分,共24分)11.一条弦分圆周为5∶7,这条弦所对的圆周角为 75°或105° .12.如图所示,正五边形ABCDE 内接于⊙O,P ,Q 分别是边AB ,BC 上的点,且BP=CQ ,则∠POQ= 72° .(第12题) (第13题)(第15题)13.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图所示,则这个小圆孔的宽口AB 的长度为 8 mm .14.在平面直角坐标系xOy 中,以原点O 为圆心的圆过点A(13,0),直线y=kx -3k+4与⊙O 交于B ,C 两点,则弦BC 的长的最小值为 24 .15.如图所示,在扇形AOB 中,∠AOB=90°,C 是上的一个动点(不与点A ,B 重合),OD⊥BC,OE⊥AC,垂足分别为点D ,E.若DE=1,则扇形AOB 的面积为 2 . 16.正方形和圆都是人们比较喜欢的图形,给人以美的感受.某校数学兴趣小组在学习中发现:(第16题)(1)如图1所示,研究在以AB 为直径的半圆中,裁剪出面积最大的正方形CDEF 时惊喜地发现,点C 和点F 其实分别是线段AF 和BC 的黄金分割点.如果设圆的半径为r ,此时正方形的边长a 1= 552r .(2)如图2所示,如果在半径为r 的半圆中裁剪出两个同样大小且分别面积最大的正方形的边长a 2= 22r .如图3所示,并列n 个正方形时的边长an= 2r n 241+ . (3)如图4所示,当n=9时,我们还可以在第一层的上面再裁剪出同样大小的正方形,也可以再在第二层的上面再裁剪出第三层同样大小的正方形,则最多可以裁剪到第 5 层.三、解答题(共66分)17.(6分)如图所示,在扇形AOB 中,∠AOB=90°,正方形CDEF 的顶点C 是的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为22 时,求阴影部分的面积. (第17题) (第17题答图)【答案】如答图所示,连结OC.∵在扇形AOB 中,∠AOB=90°,正方形CDEF 的顶点C 是的中点,∴∠COD=45°.∴OD=CD =22.∴OC=()()222222+=4.∴S 阴影=S 扇形BOC -S △ODC =36045×π×42-21×(22)2=2π-4. (第18题)18.(8分)如图所示,在平面直角坐标系中,直线l 经过原点O ,且与x 轴正半轴的夹角为30°,点M 在x 轴上,⊙M 半径为2,⊙M 与直线l 相交于A ,B 两点,若△ABM 为等腰直角三角形,求点M 的坐标.【答案】(第18题答图)如答图所示,过点M 作MC⊥l 于点C.∵△MAB 是等腰直角三角形,∴MA=MB.∴∠BAM=∠ABM=45°.∵MC⊥直线l ,∴∠BAM=∠CMA=45°.∴AC=CM.在Rt△ACM 中,∵AC 2+CM 2=AM 2,∴2CM 2=4,即CM =2.在Rt△OCM 中,∠COM=30°,∴OM=2CM =22.∴M(22,0). 根据对称性,在负半轴的点M(-22,0)也满足条件.∴点M 的坐标为(22,0)或(-22,0).19.(8分)赵州桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙.若桥跨度AB 约为40m ,主拱高CD 约10m.(1)如图1所示,请通过尺规作图找到桥弧所在圆的圆心O(保留作图痕迹).(2)如图2所示,求桥弧AB 所在圆的半径R.图1图2(第19题) 图1图2(第19题答图)【答案】(1)如答图1所示.(2)如答图2所示,连结OA.由(1)中的作图可知:△AOD 为直角三角形,D 是AB 的中点.∴AD=21 AB=20(m ).∵CD=10m,∴OD=(R -10)m.在Rt△AOD 中,由勾股定理得OA 2=AD 2+OD 2,即R 2=202+(R-10)2,解得R=25.∴桥弧AB 所在圆的半径R 为25m. (第20题)20.(10分)如图所示,△ABC 是⊙O 的内接三角形,C 是上一点(不与点A ,B 重合),设∠OAB=α,∠C=β.(1)当α=35°时,求β的度数.(2)猜想α与β之间的关系,并给予证明.【答案】 (第20题答图)(1)如答图所示,连结OB ,则OA=OB ,∴∠OBA=∠OAB=35°.∴∠AOB=110°.∴β=21∠AOB=55°. (2)α+β=90°.证明:∵OA=OB,∴∠OBA=∠OAB=α.∴∠AOB=180°-2α. ∴β=21∠AOB=90°-α.∴α+β=90°. 21.(10分)如图所示,正方形ABCD 内接于⊙O ,E 为上任意一点,连结DE ,AE. (1)求∠AED 的度数.(2)如图2所示,过点B 作BF∥DE 交⊙O 于点F ,连结AF ,AF=1,AE=4,求DE 的长.图1图2(第21题) 图1图2(第21题答图)【答案】(1)如答图1所示,连结OA ,OD.∵四边形ABCD 是正方形,∴∠AOD=90°.∴∠AED=21 ∠AOD=45°.(2)如答图2所示,连结CF ,CE ,CA ,BD ,过点D 作DH⊥AE 于点H.∵BF∥DE,∴∠FBD=∠EDB. ∵四边形ABCD 是正方形,∴AB∥CD.∴∠ABD=∠CDB.∴∠ABF=∠CDE.∵∠CFA=∠AEC=90°,∴∠DEC=∠AFB=135°.∵CD=AB ,∴△CDE ≌△ABF.∴CE=AF=1.∴AC=22CE AE =17.∴AD=22AC= 234.∵∠DHE=90°,∴∠HDE=∠HED=45°.∴DH=HE.设DH=EH=x.在Rt△ADH 中,∵AD 2=AH 2+DH 2,∴(234)2=(4-x)2+x 2,解得x=23或25.∴DE=2DH=223或225. 22.(12分)已知⊙O 中,AB=AC ,P 是∠BAC 所对弧上一动点,连结PB ,PA .(1)如图1所示,把△ABP 绕点A 逆时针旋转到△ACQ ,求证:P ,C ,Q 三点在同一条直线上.(2)如图2所示,连结PC ,若∠BAC=60°,试探究PA ,PB ,PC 之间的关系,并说明理由.(3)若∠BAC=120°,(2)中的结论是否成立?若成立,请证明;若不成立,请直接写出它们之间的数量关系,不需证明.(第22题) 图1图2(第22题答图)【答案】(1)如答图1所示,连结PC.∵把△ABP 绕点A 逆时针旋转到△ACQ,∴∠ABP=∠ACQ. ∵四边形ABPC 为⊙O 的内接四边形,∴∠ABP+∠ACP=180°.∴∠ACQ+∠ACP=180°.∴P,C ,Q 三点在同一条直线上.(2)PA=PB+PC.理由如下:如答图2所示,把△ABP 绕点A 逆时针旋转到△ACQ.∴P,C ,Q 三点在同一条直线上,∠BAP=∠CAQ,AP=AQ ,PB=CQ.∵∠BAC=60°,即∠BAP+∠PAC=60°,∴∠PAC+∠CAQ=60°,即∠PAQ=60°.∴△APQ 为等边三角形.∴PQ=PA.∴PA=PC+CQ=PC+PB.(3)(2)中的结论不成立.3PA=PB+PC.23.(12分)某班学习小组对无盖的纸杯进行制作与探究,所要制作的纸杯如图1所示,规格要求:杯口直径AB=6cm ,杯底直径CD=4cm ,杯壁母线AC=BD=6cm.请你和他们一起解决下列问题:(1)小顾同学先画出了纸杯的侧面展开示意图(如图2所示,忽略拼接部分),得到图形是圆环的一部分.①图2中的长为 6πcm ,的长为 4πcm ,ME=NF= 6cm .②要想准确画出纸杯侧面的设计图,需要确定MN 所在圆的圆心O ,如图3所示.小顾同学发现之间存在以下关系:,请你帮她证明这一结论.③根据②中的结论,求所在圆的半径r 及它所对的圆心角的度数n°.(2)小顾同学计划利用矩形、正方形纸各一张,分别按如图4、图5所示的方式剪出这个纸杯的侧面,求矩形纸片的长和宽以及正方形纸片的边长.(第23题)【答案】(1)6πcm 4πcm 6cm②设MN 所在圆的半径为r ,所对的圆心角度数为n°,则, ∴.③∵,解得r=12.∵=180r n π,∴180r n π=4π, 解得n=60.∴所在圆的半径r 为12cm ,它所对的圆心角的度数为60°.(2)如答图所示,连结EF ,延长EM ,FN 交于点O ,(第23题答图)设RS 与交于点P ,OP 交ZX 于点Q.∵∠MON=60°,∴△MON 和△EOF 是等边三角形,∴EF=12+6=18,∵OQ⊥MN,MQ=QN ,∴∠QON=30°.∴OQ=63.∴长方形的宽为(18-63)cm. 设正方形边长为x (cm ).∵EF=18,∴BE=BF=92.在Rt△AOE 中,AO 2+AE 2=OE 2,即x 2+(x-92)2=182,解得x=29 (2±6),∴正方形边长为29 (2+6)cm.。

2018-2019学年山东省青岛市市南区九年级(上)期中数学试卷 (含答案解析)

2018-2019学年山东省青岛市市南区九年级(上)期中数学试卷 (含答案解析)

2018-2019学年山东省青岛市市南区九年级(上)期中数学试卷一、选择题(本大题共8小题,共24.0分)1.一元二次方程x2−2x−3=0的两个根为()A. x=−3,x=1B. x=3,x=−1C. x=−3,x=−1D. x=3,x=12.下列命题是真命题的是()A. 菱形的对角线互相垂直且相等B. 两点之间,线段最短C. 任意多边形的内角和为360°D. 对角线相等的四边形是矩形3.在①正三角形,②正方形,③正五边形,④正六边形,⑤圆,这五种几何图形中,既是轴对称,又是中心对称图形的是()A. ①②④⑤B. ②③④⑤C. ②④⑤D. ①③⑤4.如图,在△ABC中,点D,E分别在AB,AC边上,DE//BC,∠ACD=∠B,若AD=2BD,BC=6,则线段CD的长为()A. 2√3B. 3√2C. 2√6D. 55.我们将宽与长的比是黄金比的矩形称为黄金矩形.已知矩形ABCD是黄金矩形且长AB=10,则宽BC为()A. 2√5−2B. 5√5−5C. 15−5√5D. 0.6186.若方程x2+px+q=0的两个根是−2和3,则p、q的值分别为()A. p=1,q=6B. p=−1,q=6C. p=1,q=−6D. p=−1,q=−67.在数字1001000100010000中,0出现的频率是()A. 0.75B. 0.8C. 0.5D. 128.如图,在正方形ABCD中,边长为4的等边三角形AEF的顶点E、F分别在BC和CD上.则正方形ABCD的面积为()A. 6+4√3B. 8+4√3C. 6+4√5D. 6+4√5二、填空题(本大题共6小题,共18.0分)9.在一个不透明的袋子中,装有大小,形状,质地都相同,但颜色不同的红球3个,黄球2个,,则袋子中白色小球有______个;白球若干个,从袋子中随机摸出一个小球是黄球的概率是1410.已知关于x的一元二次方程x2+2x+m=0有实数根,则m的取值范围是______ .11.15.如图,为估算某河的宽度,在河边岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,EC=10m,CD=20m,则河的宽度AB=________m.12.某公司2月份的利润为160万元,4月份的利润250万元,若设平均每月的增长率x,则根据题意可得方程为______.13.在矩形ABCD中,AB=2,BC=3,若点E为边CD的中点,连接AE,过点B作BF⊥AE于点F,则BF长为___________.14.在矩形ABCD中,AD=4,AB=3,点E为线段CD一个动点,把△ADE沿AE折叠,使点D落在点F处,当△CEF为直角三角形时,DE的长为________.三、解答题(本大题共10小题,共76.0分)15.用圆规、直尺作图,不写作法,但要保郎画图痕迹.已知:线段a,∠a求作:菱形ABCD,使BD=a,∠ABC=∠α.16.(1)x2−2x−1=0(2)3x(x−1)=2(x−1)17.在一个不透明的口袋中,装有3个红球和2个白球,这些球除颜色外完全相同,摇匀后,摸出一个球,记下颜色后放回口袋中,摇匀后再从口袋中摸出一球,两次颜色相同的概率是多少?(借助图表说明)18.如图,在平行四边形ABCD中,连接对角线AC,延长AB至点E,使BE=AB,连接DE,分别交BC,AC交于点F,G.(1)求证:BF=CF;(2)若BC=6,DG=4,求FG的长.19.如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已.求配色条纹的宽度.知配色条纹的宽度相同,所占面积是整个地毯面积的178020.如图,某数学兴趣小组的同学利用标杆测量旗杆(AB)的高度:将一根5米高的标杆(CD)竖在某一位置,有一名同学站在一处与标杆、旗杆成一条直线,此时他看到标杆顶端与旗杆顶端重合,另外一名同学测得站立的同学离标杆3米,离旗杆30米.如果站立的同学的眼睛距地面(EF)1.6米,求旗杆的高度.21.如图,在四边形ABCD中,AB//DC,点E是CD的中点,AE=BE.求证:∠D=∠C.22.为了响应全民健身号召,某商场在健身器材销售活动中,对团体购买健身器材实行优惠,决定在原定单价基础上每套降价80元,这样按原定售价需花费6000元购买的健身器材套数,现在只花费了4800元.(1)求每套健身器材的原定价格;(2)根据实际情况,该商场决定对于个人购买健身器材也采取优惠政策,原定单价经过连续两次降价后降为324元,求平均每次降价的百分率.23.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)试探究t为何值时,△BPQ是等腰三角形;(3)试探究t为何值时,CP=CQ;(4)连接AQ,CP,若AQ⊥CP,求t的值.24.如图1,四边形ABCD是菱形,CD=5,过点D作DH⊥AB,垂足为H,交对角线AC于M,且AH=3.(1)求DH的长;(2)如图2,连接BM,求DM的长;(3)如图2,动点P从点A出发,沿A→B→C方向以2个单位/秒的速度向终点C匀速运动.当点P在边AB上运动时,是否存在这样的t值,使∠MPB与∠BCD互为余角?若存在,求出t值;若不存在,请说明理由.-------- 答案与解析 --------1.答案:B解析:解:将原方程变形为(x+1)(x−3)=0,∴x+1=0或x−3=0,解得x=−1或x=3,故选:B.由一元二次方程−因式分解法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用解法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.2.答案:B解析:解:A、菱形的对角线互相垂直但不一定相等,原命题错误,是假命题;B、两点之间,线段最短,正确,是真命题;C、任意多边形的内角和为(n−2)×180°,故原命题错误,是假命题;D、对角线相等的平行四边形是矩形,故原命题错误,是假命题,故选:B.利用菱形的性质、多边形的内角和及矩形的判定分别判断后即可确定正确的选项.考查了命题与定理的知识,解题的关键是了解菱形的性质、多边形的内角和及矩形的判定,难度不大.3.答案:C解析:【分析】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.根据轴对称图形与中心对称图形的概念求解.【解答】解:正方形、正六边形、圆既是轴对称,又是中心对称图形.故选C.4.答案:C解析:解:设AD=2x,BD=x,∴AB=3x,∵DE//BC,∴△ADE∽△ABC,∴DEBC =ADAB=AEAC,∴DE6=2x3x,∴DE=4,AEAC =23,∵∠ACD=∠B,∠ADE=∠B,∴∠ADE=∠ACD,∵∠A=∠A,∴△ADE∽△ACD,∴ADAC =AEAD=DECD,设AE=2y,AC=3y,∴AD3y =2yAD,∴AD=√6y,∴√6y =4CD,∴CD=2√6,故选:C.设AD=2x,BD=x,所以AB=3x,易证△ADE∽△ABC,利用相似三角形的性质可求出DE的长度,以及AEAC =23,再证明△ADE∽△ACD,利用相似三角形的性质即可求出得出ADAC=AEAD=DECD,从而可求出CD的长度.本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.5.答案:B解析:【分析】本题考查黄金分割的概念,根据黄金比值是√5−12列出算式,计算即可得到结果.【解答】解:由题意得BCAB =√5−12,又∵AB=10,∴BC=5√5−5.故选B.6.答案:D解析:【分析】本题考查了一元二次方程根与系数的关系,掌握和灵活运用一元二次方程根与系数的关系是解决此类题的关键.由题意可得−2+3=−p,(−2)×3=q,解即可求得.【解答】解:∵方程x2+px+q=0的两个根是−2和3,∴−2+3=−p,(−2)×3=q,解得p=−1,q=−6.故选D.7.答案:A解析:解:数字的总数是16,有12个0,=0.75,因而0出现的频率是:1216故选:A.计算数字的总数,以及0出现的频数,根据频率公式:频率=频数计算即可.总数本题考查的是频数与频率,掌握频率是指每个对象出现的次数与总次数的比值是解题的关键.8.答案:B解析:【分析】本题考查正方形的性质,全等三角形的判定与性质,等边三角形的性质.根据正方形可知AB=AD,由等边三角形可知AE=AF,于是可以证明出△ABE≌△ADF,即可得出CE=CF,由三角形AEF是等边三角形,三角形ECF是等腰直角三角形,CE=2√2,设BE=x,利用勾股定理求出x,即可求出BC的上,进而求出正方形的面积.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,∵,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF.又BC=DC,∴BC−BE=DC−DF,即EC=FC∴CE=CF,∵EF=4,∴CE=CF=2√2,设BE=x,则AB=x+2√2,在Rt△ABE中,AB2+BE2=AE2,即(x+2√2)2+x2=16,解得x=√6−√2,∴AB=√6+√2,∴S正方形ABCD=AB2=8+4√3.故选B.9.答案:3解析:【解答】解:设白球x个,由题意可得,23+2+x =14,解得:x=3.故答案为:3.【分析】直接利用概率求法得出等式求出答案.此题主要考查了概率的意义,正确把握概率的意义是解题关键.10.答案:m≤1解析:解:由一元二次方程x2+2x+m=0可知a=1,b=2,c=m,∵方程有实数根,∴△=22−4m≥0,解得m≤1.故答案为:m≤1.先根据一元二次方程x2+2x+m=0得出a、b、c的值,再根据方程有实数根列出关于m的不等式,求出m的取值范围即可.本题考查的是一元二次方程根的判别式,根据题意列出关于m的不等式是解答此题的关键.11.答案:40解析:【分析】由两角对应相等可得△BAE∽△CDE,利用对应边成比例可得两岸间的大致距离AB.【详解】∵AB⊥BC,CD⊥BC,∴△BAE∽△CDE,∴ABCD =BECE,∵BE=20m,CE=10m,CD=20m,∴AB20=2010,解得:AB=40,故答案为:40.【点睛】此题主要考查了相似三角形的应用;用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.12.答案:160(1+x)2=250解析:【分析】根据2月份的利润为160万元,4月份的利润250万元,每月的平均增加率相等,可以列出相应的方程,本题得以解决.本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,列出相应的方程.【解答】解:由题意可得,160(1+x)2=250,故答案为:160(1+x)2=250.13.答案:35√10解析:【分析】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,先求出AE,再根据S△ABE=12S矩形ABCD=3=12⋅AE⋅BF,求出BF即可.【解答】解:如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,∵点E为边CD的中点,∴DE=1,在Rt △ADE 中,AE =√AD 2+DE 2=√32+12=√10,∵S △ABE =12S 矩形ABCD =3=12⋅AE ⋅BF , ∴BF =35√10. 故答案为35√10.14.答案:43或16−4√73解析:【分析】本题考查翻折变换,矩形的性质,勾股定理,利用分类讨论思想解决问题是本题的关键.当△CEF 为直角三角形时,分∠CFE =90°和∠ECF =90°两种情况进行讨论,利用勾股定理可求出两种情况DE 的长即可.【解答】解:∵四边形ABCD 是矩形,∴∠D =∠B =90°,CD =AB =3,∴AC =√AD 2+CD 2=√42+32=5,AD >CD ,作图观察知,∠AED >45°,则∠DEF >90°,∴当△CEF 为直角三角形时,只有两种情况:∠CFE =90°或∠ECF =90°,①当∠CFE =90°时,F 落在AC 上,如下图所示.由折叠的性质得:EF =DE ,AF =AD =4,设DE =x ,则EF =x ,∴CE =3−x ,在Rt △CEF 中,由勾股定理得:∵EF 2+CF 2=CE 2,∴x 2+12=(3−x)2,解得x =43,∴DE =43; ②当∠ECF =90°时,点F 落在BC 边上,如下图所示,易知AD =AF =4,DE =EF在Rt △ABF 中,BF =√AF 2−AB 2=√7,∴CF =BC −BF =4−√7,设DE =x ,则EF =x ,CE =3−x ,∵EF 2=CE 2+CF 2,∴x 2=(3−x)2+(4−√7)2,解得x =16−4√73, ∴DE =16−4√73, 综上所述,DE 的长为43或16−4√73. 故答案为43或16−4√73. 15.答案:解:①作∠MBN =∠α②作∠MAN 的平分线BE ,在射线BE 上截取BD =a .③作线段BD 的垂直平分线交BM 于点A ,交BN 于点C ,连接AD ,CD .菱形ABCD 即为所求.解析:①作∠MBN =∠α.②作∠MAN 的平分线BE ,在射线BE上截取BD =a.③作线段BD 的垂直平分线交BM 于点A ,交BN 于点C ,连接AD ,CD ,菱形ABCD 即为所求.本题考查作图−复杂作图,菱形的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.16.答案:解:(1)原方程可变形为:x 2−2x =1,x 2−2x +1=1+1,(x −1)2=2.整理得:x −1=√2或x −1=−√2,∴x 1=√2+1,x 2=−√2+1;(2)移项得:3x(x −1)−(x −1)=0,提公因式得:(x −1)(3x −1)=0,x−1=0或3x−1=0,∴x1=1,x2=13.解析:(1)用配方法解方程即可,(2)用因式分解法−提公因式法进行解方程即可.本题考查了一元二次方程,正确掌握解一元二次方程的解法是解决问题的关键.17.答案:解:如下表,∵所有等可能情况一共有25种,其中两次摸出颜色相同的小球有13种,∴P(两次摸出颜色相同的小球)=1325.解析:本题考查了概率公式的应用,考查了运用列表法及树状图求概率,首先根据题意列出表格,然后由表格求得所有等可能的结果与两次摸出的小球恰好颜色不同的情况,再利用概率公式求解即可求得答案.18.答案:(1)证明:∵四边形ABCD是平行四边形,∴AD//BC,AD=BC,∴△EBF∽△EAD,∴BFAD =EBEA=12,∴BF=12AD=12BC,∴BF=CF;(2)解:∵四边形ABCD是平行四边形,∴AD//BC,∴△FGC∽△DGA,∴FGDG =FCAD,即FG4=12,解得,FG=2.解析:(1)根据平行四边形的性质得到AD//CD ,AD =BC ,得到△EBF∽△EAD ,根据相似三角形的性质证明即可;(2)根据相似三角形的性质列式计算即可.本题考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.19.答案:解:设条纹的宽度为x 米.依题意得2x ×5+2x ×4−4x 2=1780×5×4,解得:x 1=174(不符合,舍去),x 2=14答:配色条纹宽度为14米.解析:此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.注意判断所求的解是否符合题意,舍去不合题意的解,设条纹的宽度为x 米.根据所占面积是整个地毯面积的1780构建方程即可解决问题; 20.答案:解:过点E 作EH ⊥AB 于点H ,交CD 于点G .由题意可得四边形EFDG 、GDBH 都是矩形,AB//CD//EF .∴△ECG∽△EAH .∴AHCG =EHEG . 由题意可得EG =FD =3,EH =BF =30,CG =CD −GD =CD −EF =5−1.6=3.4.∴AH 3.4=303.∴AH =34米.∴AB =AH +HB =34+1.6=35.6米.答:旗杆高AB 为35.6米.解析:此题主要考查了相似三角形的应用,根据相似三角形判定得出△ECG∽△EAH 是解题关键. 过点E 作EH ⊥AH 于点H ,交CD 于点G 得出△EGC∽△EHA ,进而求出AH 的长,进而求出AB 的长.21.答案:证明:∵AE =BE ,∴∠EAB =∠EBA ,∵AB//DC ,∴∠DEA =∠EAB ,∠CEB =∠EBA ,∴∠DEA =∠CEB ,∵点E 是CD 的中点,∴DE =CE ,在△ADE 和△BCE 中,{DE =CE ∠DEA =∠CEB AE =BE,∴△ADE≌△BCE(SAS),∴∠D=∠C.解析:本题考查了全等三角形的判定与性质、等腰三角形的性质、平行线的性质;熟练掌握等腰三角形的性质,证明三角形全等是解题的关键.由等腰三角形的性质和平行线的性质证出∠DEA=∠CEB,由SAS证明△ADE≌△BCE,即可得出结论.22.答案:解:(1)设每套健身器材的原定价格为x元,则团购时每套为(x−80)元,根据题意得:6000 x =4800x−80,解得x=400,经检验,x=400是原方程的根.答:健身器材的原定价格为400元/套;(2)设平均每次降价的百分率为y,根据题意得:400(1−y)2=324,解得:y1=0.1,y2=1.9(不合题意,舍去).答:平均每次降价10%.解析:本题考查了分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键,注意分式方程一定要检验.(1)设每套健身器材的原定价格为x元,则团购时每套为(x−80)元,根据需花费6000元购买的健身器材套数,现在只花费了4800元,列出方程,求解即可;(2)设平均每次降价的百分率为y,根据原定单价经过连续两次降价后降为324元,列出方程,求解即可.23.答案:解:(1)∵∠ACB=90°,AC=6cm,BC=8cm,∴AB=√AC2+BC2=10cm;分两种情况讨论:①当△BPQ∽△BAC时,BPBA =BQBC,∵BP=5t,QC=4t,AB=10,BC=8,∴5t10=8−4t8,解得,t=1,②当△BPQ∽△BCA时,BPBC =BQBA,∴5t8=8−4t10,解得,t=3241;∴t=1或3241时,△BPQ∽△BCA;(2)分三种情况:①当PB=PQ时,如图1,过P作PH⊥BQ,则BH=12BQ=4−2t,PB=5t,∴PH//AC,∴PB AB =BH BC ,即5t 10=4−2t 8解得:t =23, ②当PB =BQ 时,即5t =8−4t , 解得:t =89,③当BQ =PQ 时,如图2,过Q 作QG ⊥AB 于G ,则BG =12PB =52t ,BQ =8−4t ,∵△BGQ∽△ACB ,∴BGBC =BQ AB 即52t 8=8−4t 10, 解得:t =6457.综上所述:△BPQ 是等腰三角形时t 的值为:23或89或6457.(3)过P 作PM ⊥BC 于点M ,AQ ,CP 交于点N ,如图3所示:则PB =5t ,∵AC ⊥BC∴△PMB∽△ACB ,∴PB AB =PM AC =BM BC∴PM =3t ,MC =8−4t ,CQ =4t ,根据勾股定理得,CP 2=PM 2+MC 2=25t 2−64t +64,∵CP =CQ∴25t 2−64t +64=16t 2, ∴t =32+8√79(舍),或t =32−8√79∴CP =CQ 时,t =32−8√79. (4)过P 作PM ⊥BC 于点M ,AQ ,CP 交于点N ,如图3所示则PB =5t ,PM =3t ,MC =8−4t ,∵∠NAC +∠NCA =90°,∠PCM +∠NCA =90°,∴∠NAC =∠PCM ,∵∠ACQ =∠PMC ,∴△ACQ∽△CMP ,∴AC CM =CQMP ,∴68−4t =4t 3t ,解得t =78.解析:(1)根据勾股定理即可得到结论;分两种情况:①当△BPQ∽△BAC 时,BP :BA =BQ :BC ;当△BPQ∽△BCA 时,BP :BC =BQ :BA ,再根据BP =5t ,QC =4t ,AB =10cm ,BC =8cm ,代入计算即可;(2)分三种情况:①当PB =PQ 时,如图1,过P 作PH ⊥BQ ,则BH =12BQ =4−2t ,PB =5t ,根据平行线分线段成比例定理得到PB AB =BH BC ,即:5t 10=4−2t 8解得t =23,②当PB =BQ 时,即5t =8−4t ,解得t =89,③当BQ =PQ 时,如图2,过Q 作QG ⊥AB 于G ,则BG =12PB =52t ,BQ =8−4t ,通过△BGQ∽△ACB ,得到比例式BG BC =BQ AB ,解得:t =6457.(3)先利用勾股定理表示出CP 2,建立方程求解即可求出时间t ;(4)过P 作PM ⊥BC 于点M ,AQ ,CP 交于点N ,则有PB =5t ,PM =3t ,MC =8−4t ,根据△ACQ∽△CMP ,得出AC :CM =CQ :MP ,代入计算即可.此题是相似形综合题,主要考查了相似三角形的判定与性质,勾股定理,直角三角形的性质,等腰三角形的性质,由三角形相似得出对应边成比例是解题的关键.24.答案:解:(1)∵DH ⊥AB ,∴∠AHD =90°,∵四边形ABCD 是菱形,∴AD =CD =AB =BC =5,在Rt △ADH 中,AD =5,AH =3,∴DH =√52−32=4,(2)∵四边形ABCD 是菱形,∴AB//DC ,∴∠BAC =∠DCA ,∵DH ⊥AB ,∴∠AHD =∠CDH ,∴△AMH∽△CDM ,∴HM DM =AH CD =35, ∴DH DM =85, ∵DH =4,∴DM =52;(3)存在,如图2中,∵∠ADM +∠BAD =90°,∠BCD =∠BAD ,∴∠ADM +∠BCD =90°,∵∠MPB +∠BCD =90°,∴∠MPB =∠ADM ,∵四边形ABCD 是菱形,∴∠DAM =∠BAM ,∵AM =AM ,∴△ADM≌△ABM ,∴∠ADM =∠ABM ,∴∠MPB =∠ABM ,∵MH ⊥AB ,∴PH =BH =2,∴BP=2BH=4,∵AB=5,∴AP=1,∴t=AP2=12.解析:(1)在Rt△ADH中,利用勾股定理即可解决问题.(2)证明△AMH∽△CDM,可得HMDM =AHCD=35,由此即可解决问题.(3)由菱形的性质判断出△ADM≌△ABM,再判断出△BMP是等腰三角形,即可.此题是四边形综合题,主要考查了菱形的性质,和三角形全等的判定和性质,勾股定理得应用,∠MPB=∠ABM的判断是解本题的关键.。

最新人教版2018-2019学年九年级数学上册期中考试模拟试卷及答案-精品试卷

最新人教版2018-2019学年九年级数学上册期中考试模拟试卷及答案-精品试卷

第一学期期中检测试卷九年级数学(满分:130分)一、选择题(每小题3分,共30分)1、下列四边形中,对角线一定不相等的是( )A.正方形B.矩形C.等腰梯形D.直角梯形 2、关于x 的一元二次方程012=-++a x x 的一个根是0,则a 值为 ( ) A 、1 B 、1- C 、1或1- D 、123、已知y x =23,那么下列各式不一定成立的是( )A 2x=3y B32=x y C 32yx = D 25=+y y x 4、两个边数相同的多边形相似应具备的条件是( )A. 各角对应相等B. 各边对应成比例C. 各角对应相等,各边对应相等D. 各角对应相等,各边对应成比例 5、方程4)2(2=+x 的根是( )A. 41=x ,42-=xB. 01=x ,42-=xC. 01=x ,22=xD. 01=x ,42=x6、如图,菱形ABCD 中,AB=5,∠BCD=120°,则AC 等于( ) A.20 B.15 C.10 D.57、学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率为( ) A .21 B . 31 C . 41 D . 328、如果一元二次方程3x 2-2x=0的两根为x 1,x 2,则x 1·x 2的值等于( )A. 2B. 0C. 32D. 32-9、正方形具有而矩形不一定具有的性质是 ( ) A. 四个角都是直角 B. 对角线相等 C. 四条边相等 D. 对角线互相平行10.若关于x 的一元二次方程(k ﹣1)x 2+2x ﹣2=0有不相等实数根,则k 的取值范围是( ) A .k >12 B .k ≥12 C .k >12且k≠1 D .k ≥12且k≠1 二、填空题(每小题3分,共30分)11、方程0)14(=-x x 的解是 。

12、方程03272=++x x 的根的情况是 .13、在四边形ABCD 中,(1)AB∥CD,(2)AD∥BC,(3)AB=CD ,(4)AD=BC ,在这四个条件中任选两个作为已知条件,能判定四边形ABCD 是平行四边形的概率是 .14、小华做小孔成像实验(如图),已知蜡烛与成像 板之间的距离为15cm ,则蜡烛与成像板之间的小孔纸板应放在离蜡烛__________cm 的地方时,蜡烛焰AB 是像''B A 的一半。

2018-2019学年山东省青岛市李沧区九年级(上)期中数学试卷(解析版)

2018-2019学年山东省青岛市李沧区九年级(上)期中数学试卷(解析版)

2018-2019学年山东省青岛市李沧区九年级(上)期中数学试卷一、选择题(共8小题,每小题3分,满分24分)1.一元二次方程x2﹣x=0的根为()A.x=1B.x=0C.x1=0,x2=1D.x1=1,x2=﹣12.下列命题,其中是真命题的为()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形3.已知x=2是一元二次方程x2﹣mx﹣10=0的一个根,则m等于()A.﹣5B.5C.﹣3D.34.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为()A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm5.用图中两个可自由转动的转盘做“配紫色”游戏;分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是()A.B.C.D.6.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.100×80﹣100x﹣80x=7644B.(100﹣x)(80﹣x)+x2=7644C.(100﹣x)(80﹣x)=7644D.100x+80x=3567.如图,在菱形ABCD中,AE⊥BC与E,将△ABE沿AE所在直线翻折得△AEF,若AB=2,∠B=45°,则△AEF与菱形ABCD重叠部分(阴影部分)的面积为()A.2B.2﹣C.4﹣2D.2﹣28.如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD,下列结论:①EG⊥FH;②四边形EFGH是菱形;③HF平分∠EHG;④EG=(BC﹣AD),其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题(本题满分21分,共有7道小题,每小题3分)9.已知3x=5y,则=.10.已知一个菱形的周长是20,两条对角线的长的比是4:3,则这个菱形的面积是.11.现有50张大小、质地及背面图案均相同的《三国演义》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后,原样放回,洗匀后再抽,通过多次试验后,发现抽到绘有“诸葛亮”这个人物卡片的频率约为0.3,估计这些卡片中绘有“诸葛亮”这个人物的卡片张数约为张.12.一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的根,则三角形的周长为.13.如图,把一个长方形纸片对折两次,然后剪下一个角,为了得到一个正方形,剪刀与折痕所成的角为度.14.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为.15.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示放置,点A1,A2,A3和C1,C2,C3,…分别在直线y=x+1和x轴上,则点B2018的纵坐标是.三、作图题(本题满分4分用圆规、直尺作图、不写作法、但要保留作图痕迹)16.(4分)已知:线段a,b,求作一菱形,使其两对角线长分别等于a,b.四、解答题(本题满分71分,共有8道小题)17.(16分)(1)x2﹣2x﹣2=0(用配方法解)(2)3x2+1=4x(3)2(x﹣3)2=x2﹣9(4)关于x的一元二次方程2x2+3x﹣m=0有实数根,求m的取值范围.18.(5分)振华贸易公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是324万元,假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本是多少?19.(6分)2018年9月,第24届山东省运动会在青岛举行,有20名志愿者参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工程只在甲、乙两人选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取1张,不放回,再取1张,若牌面数字之和为偶数,则甲参加;否则乙参加,试问这个游戏公平吗?请用树状图或列表法说明理由.20.(6分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,△ABO是等边三角形,AB=6,求BC的长.21.(8分)利客来超市销售某种商品,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价毎降低2元,平均每天可多售出4件.(1)若降价6元,则平均每天销售数量为件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?22.(8分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN与E,垂足为F,连接CD,BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形CDBE是什么特殊四边形?说明理由;(3)在满足(2)的条件下,当△ABC满足什么条件时,四边形CDBE是正方形?请说明你的理由.23.(10分)几何模型:条件:如图1,A、B是直线l同旁的两个顶点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明)模型应用:(1)如图2,已知平面直角坐标系中两定点A(0,﹣1)和B(2,﹣1),P为x轴上一动点,则当PA+PB的值最小时,点P的横坐标是,此时PA+PB=.(2)如图3,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点,连接BD,由正方形对称性可知,B与D关于直线AC对称,则PB+PE的最小值是.(3)如图4,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一动点P,则PD+PE的最小值为.(4)如图5,在菱形ABCD中,AB=8,∠B=60°,点G是边CD边的中点,点E、F分别是AG、AD上的两个动点,则EF+ED的最小值是.24.(12分)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个动点到达终点时,另一个动点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15),过点D作DF⊥BC于点F,连接DE,EF.(1)当t为何值,DF=DA?(2)当t为何值时,△ADE为直角三角形?请说明理由.(3)是否存在某一时刻t,使点F在线段AC的中垂线上,若存在,请求出t值,若不存在,请说明理由.(4)请用含有t式子表示△DEF的面积,并判断是否存在某一时刻t,使△DEF的面积是△ABC面积的,若存在,请求出t值,若不存在,请说明理由.2018-2019学年山东省青岛市李沧区九年级(上)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.一元二次方程x2﹣x=0的根为()A.x=1B.x=0C.x1=0,x2=1D.x1=1,x2=﹣1【分析】方程左边含有公因式x,可先提取公因式,然后再分解因式求解.【解答】解:原方程可化为:x(x﹣1)=0,x=0或x﹣1=0;解得x1=0,x2=1;故选C.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.2.下列命题,其中是真命题的为()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、例如等腰梯形,故本选项错误;B、根据菱形的判定,应是对角线互相垂直的平行四边形,故本选项错误;C、对角线相等且互相平分的平行四边形是矩形,故本选项错误;D、一组邻边相等的矩形是正方形,故本选项正确.故选:D.【点评】本题主要考查平行四边形的判定与命题的真假区别.正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理,难度适中.3.已知x=2是一元二次方程x2﹣mx﹣10=0的一个根,则m等于()A.﹣5B.5C.﹣3D.3【分析】根据一元二次方程的解的定义即可求出答案.【解答】解:将x=2代入x2﹣mx﹣10=0,∴4﹣2m﹣10=0∴m=﹣3故选:C.【点评】本题考查一元二次方程的解定义,解题的关键是熟练运用一元二次方程的解的定义,本题属于基础题型.4.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为()A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm【分析】首先根据题意利用两组对边的比相等且夹角相等的三角形是相似三角形判定相似,然后利用相似三角形的性质求解.【解答】解:∵OA=3OC,OB=3OD,∴OA:OC=OB:OD=3:1,∠AOB=∠DOC,∴△AOB∽△COD,∴==,∴AB=3CD=3×1.8=5.4(cm).故选:B.【点评】本题考查的是相似三角形的应用,利用相似三角形的相似比,列出方程,通过解方程求解即可,体现了数形转化思想的应用.5.用图中两个可自由转动的转盘做“配紫色”游戏;分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是()A .B .C .D .【分析】根据题意,用列表法将所有可能出现的结果,分析可能得到紫色的概率,得到结论.【解答】解:用列表法将所有可能出现的结果表示如下:所有可能出现的结果共有12种.上面等可能出现的12种结果中,有5种情况可以得到紫色,所以可配成紫色的概率是,故选:B .【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.6.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为( )A .100×80﹣100x ﹣80x=7644B .(100﹣x )(80﹣x )+x 2=7644C.(100﹣x)(80﹣x)=7644D.100x+80x=356【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.【解答】解:设道路的宽应为x米,由题意有(100﹣x)(80﹣x)=7644,故选:C.【点评】此题主要考查了由实际问题抽象出一元二次方程,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.7.如图,在菱形ABCD中,AE⊥BC与E,将△ABE沿AE所在直线翻折得△AEF,若AB=2,∠B=45°,则△AEF与菱形ABCD重叠部分(阴影部分)的面积为()A.2B.2﹣C.4﹣2D.2﹣2【分析】在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,可求得AE的长,求得△ABF、△AEF、△CGF的面积,计算即可.【解答】解:∵在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,∴AE=,由折叠的性质可知,△ABF为等腰直角三角形,=AB•AF=2,S△ABE=1,∴S△ABF∴CF=BF﹣BC=2﹣2,∵AB∥CD,∴∠GCF=∠B=45°,又由折叠的性质知,∠F=∠B=45°,∴CG=GF=2﹣.=GC•GF=3﹣2,∴S△CGF∴重叠部分的面积为:2﹣1﹣(3﹣2)=2﹣2,故选:D.【点评】本题考查的是翻转变换的性质、菱形的性质以及等腰直角三角形的性质,掌握翻转变换的性质、灵活运用数形结合思想是解题的关键.8.如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD,下列结论:①EG⊥FH;②四边形EFGH是菱形;③HF平分∠EHG;④EG=(BC﹣AD),其中正确的个数是()A.1个B.2个C.3个D.4个【分析】根据三角形的中位线平行于第三边并且等于第三边的一半与AB=CD可得四边形EFGH是菱形,然后根据菱形的对角线互相垂直平分,并且平分每一组对角的性质对各小题进行判断.【解答】解:∵E、F、G、H分别是BD、BC、AC、AD的中点,∴EF=CD,FG=AB,GH=CD,HE=AB,∵AB=CD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,∴①EG⊥FH,正确;②四边形EFGH是菱形,正确;③HF平分∠EHG,正确;④当AD∥BC,如图所示:E,G分别为BD,AC中点,∴连接CD,延长EG到CD上一点N,∴EN=BC,GN=AD,∴EG=(BC﹣AD),只有AD∥BC时才可以成立,而本题AD与BC很显然不平行,故本小题错误.综上所述,①②③共3个正确.故选:C.【点评】本题考查了三角形中位线定理与菱形的判定与菱形的性质,根据三角形的中位线定理与AB=CD判定四边形EFGH是菱形是解答本题的关键.二、填空题(本题满分21分,共有7道小题,每小题3分)9.已知3x=5y,则=.【分析】根据两外项的积等于两内项的积,可得答案.【解答】解:∵3x=5y,∴=,故答案为:.【点评】本题考查了比例的性质,利用了比例的性质:外项的积等于内项的积.10.已知一个菱形的周长是20,两条对角线的长的比是4:3,则这个菱形的面积是24.【分析】由菱形ABCD的周长是20,AC:BD=4:3,即可得AD=5,AC⊥BD,AC=2OA,BD=2OD,则可得OA:OD=4:3,然后设OA=4x,OD=3x,由勾股定理即可求得AD 的长,继而求得两条对角线的长,由菱形的面积等于其对角线积的一半,即可求得答案.【解答】解:如图,菱形ABCD的周长是20,AC:BD=4:3,∵四边形ABCD是菱形,∴AB=BC=CD=AD=5,AC⊥BD,AC=2OA,BD=2OD,∴OA:OD=4:3,设OA=4x,OD=3x,在Rt△AOD中,AD==5x=5,∴x=1,∴OA=4,OD=3,∴AC=8,BD=6,=AC•BD=×8×6=24.∴∴S菱形ABCD故答案为:24.【点评】此题考查了菱形的性质与勾股定理.此题难度不大,注意掌握数形结合思想与方程思想的应用.11.现有50张大小、质地及背面图案均相同的《三国演义》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后,原样放回,洗匀后再抽,通过多次试验后,发现抽到绘有“诸葛亮”这个人物卡片的频率约为0.3,估计这些卡片中绘有“诸葛亮”这个人物的卡片张数约为15张.【分析】利用频率估计概率得到抽到绘有诸葛亮这个人物卡片的概率为0.3,则根据概率公式可计算出这些卡片中绘有诸葛亮这个人物的卡片张数,于是可估计出这些卡片中绘有诸葛亮这个人物的卡片张数.【解答】解:因为通过多次试验后,发现抽到绘有诸葛亮这个人物卡片的频率约为0.3,所以估计抽到绘有诸葛亮这个人物卡片的概率为0.3,则这些卡片中绘有诸葛亮这个人物的卡片张数=0.3×50=15(张).所以估计这些卡片中绘有诸葛亮这个人物的卡片张数约为15张.故答案为:15.【点评】本题考查了用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.12.一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的根,则三角形的周长为16.【分析】首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长.【解答】解:解方程x2﹣10x+21=0得x1=3、x2=7,∵3<第三边的边长<9,∴第三边的边长为7.∴这个三角形的周长是3+6+7=16.故答案为:16.【点评】本题考查了解一元二次方程和三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.13.如图,把一个长方形纸片对折两次,然后剪下一个角,为了得到一个正方形,剪刀与折痕所成的角为45度.【分析】根据翻折变换的性质及正方形的判定进行分析从而得到最后答案.【解答】解:一张长方形纸片对折两次后,剪下一个角,是菱形,而出现的四边形的两条对角线分别是两组对角的平分线,所以当剪口线与折痕成45°角,菱形就变成了正方形.故答案为:45.【点评】本题考查了剪纸的问题,同时考查了菱形和正方形的判定及性质,以及学生的动手操作能力.14.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为x(x﹣1)=21.【分析】赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数为x(x﹣1),即可列方程.【解答】解:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:x(x﹣1)=21,故答案为:x(x﹣1)=21.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是读懂题意,得到总场数的等量关系.15.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示放置,点A1,A2,A3和C1,C2,C3,…分别在直线y=x+1和x轴上,则点B2018的纵坐标是22017.【分析】根据一次函数图象上点的坐标特征结合正方形的性质即可得出点B1、B2、B3、…的坐标,根据点坐标的变化找出点B n的坐标,依此即可得出结论.【解答】解:当x=0时,y=x+1=1,∴点A1的坐标为(0,1).∵A1B1C1O为正方形,∴点C1的坐标为(1,0),点B1的坐标为(1,1).同理,可得:B2(3,2),B3(7,4),B4(15,8),∴点B n的坐标为(2n﹣1,2n﹣1),∴点B2018的坐标为(22018﹣1,22017).故答案为:22017.【点评】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型中点的坐标,根据点坐标的变化找出变化规律“点B n的坐标为(2n﹣1,2n﹣1)”是解题的关键.三、作图题(本题满分4分用圆规、直尺作图、不写作法、但要保留作图痕迹)16.(4分)已知:线段a,b,求作一菱形,使其两对角线长分别等于a,b.【分析】根据菱形的对角线相互垂直平分,先画两条垂直平分的线段,得到菱形的4个顶点,再顺次连接即可.【解答】解:如图,(1)先画线段AC=a,(2)作AC的中垂线,与AC的交点为O,以交点O为圆心,b为半径画弧交B、D 的两点.(3)顺次连接ABCD,就是所求作的菱形.【点评】本题主要考查作图﹣复杂作图,解题的关键是利用菱形的对角线相互垂直平分进行尺规作图.四、解答题(本题满分71分,共有8道小题)17.(16分)(1)x2﹣2x﹣2=0(用配方法解)(2)3x2+1=4x(3)2(x﹣3)2=x2﹣9(4)关于x的一元二次方程2x2+3x﹣m=0有实数根,求m的取值范围.【分析】(1)运用配方法,首先移常数项,再方程两边加一次项系数一半的平方,配方即可,再开平方求出方程的解.(2)移项后利用十字相乘法求解可得;(3)利用因式分解法求解可得;(4)根据方程有实数根,得到根的判别式大于或等于0,求出m的范围即可.【解答】解:(1)∵x2﹣2x﹣2=0,∴x2﹣2x=2,∴x2﹣2x+1=2+1,即(x﹣1)2=3,则x﹣1=±,∴x=1±,即x1=1+,x2=1﹣;(2)∵3x2+1=4x,∴3x2﹣4x+1=0,则(3x﹣1)(x﹣1)=0,∴3x﹣1=0或x﹣1=0,解得:x1=,x2=1;(3)∵2(x﹣3)2=(x+3)(x﹣3),∴2(x﹣3)2﹣(x+3)(x﹣3)=0,则(x﹣3)(x﹣9)=0,∴x﹣3=0或x﹣9=0,解得:x1=3,x2=9;(4)∵关于x的一元二次方程2x2+3x﹣m=0有实数根,∴△=9﹣4×2×(﹣m)≥0,解得:m≥﹣.【点评】此题主要考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法熟练掌握一元二次方程的几种解法是解决问题的关键.18.(5分)振华贸易公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是324万元,假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本是多少?【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【解答】解:(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=324,解得:x1=0.01=1%,x2=1.90(不合题意,舍去).答:每个月生产成本的下降率为1%.(2)324×(1﹣1%)=320.76(万元).答:预测4月份该公司的生产成本为320.76万元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.19.(6分)2018年9月,第24届山东省运动会在青岛举行,有20名志愿者参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工程只在甲、乙两人选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取1张,不放回,再取1张,若牌面数字之和为偶数,则甲参加;否则乙参加,试问这个游戏公平吗?请用树状图或列表法说明理由.【分析】(1)直接利用概率公式求出即可;(2)利用树状图表示出所有可能,进而利用概率公式求出即可.【解答】解:(1)∵共20名志愿者,女生12人,∴选到女生的概率是:=;(2)不公平,根据题意画图如下:∵共有12种情况,和为偶数的情况有4种,∴牌面数字之和为偶数的概率是=,∴甲参加的概率是,乙参加的概率是,∴这个游戏不公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个人的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.20.(6分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,△ABO是等边三角形,AB=6,求BC的长.【分析】根据等边三角形性质求出OA=OB=AB=6,根据平行四边形的性质求出OA=OC,OB=OD,得出AC=BD=12,证出四边形ABCD是矩形,得出∠ABC=90°,由勾股定理求出BC即可.【解答】解:∵△ABO是等边三角形,∴OA=OB=AB=6,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴OA=OC=OB=OD,∴AC=BD=12,∴四边形ABCD是矩形,∴∠ABC=90°,由勾股定理得:BC=.【点评】本题考查了等边三角形的性质、平行四边形的性质,勾股定理,矩形的判定与性质;熟练掌握平行四边形和等边三角形的性质,证明四边形是矩形是解决问题的关键.21.(8分)利客来超市销售某种商品,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价毎降低2元,平均每天可多售出4件.(1)若降价6元,则平均每天销售数量为32件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?【分析】(1)根据销售单价每降低1元,平均每天可多售出2件,可得若降价3元,则平均每天可多售出2×3=6件,即平均每天销售数量为20+6=26件;(2)利用商品平均每天售出的件数×每件盈利=每天销售这种商品利润列出方程解答即可.【解答】解:(1)若降价6元,则平均每天销售数量为20+4×3=32件.故答案为:32;(2)设每件商品应降价x元时,该商店每天销售利润为1200元.根据题意,得(40﹣x)(20+2x)=1200,整理,得x2﹣30x+200=0,解得:x1=10,x2=20.∵要求每件盈利不少于25元,∴x2=20应舍去,解得:x=10.答:每件商品应降价10元时,该商店每天销售利润为1200元.【点评】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.22.(8分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN与E,垂足为F,连接CD,BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形CDBE是什么特殊四边形?说明理由;(3)在满足(2)的条件下,当△ABC满足什么条件时,四边形CDBE是正方形?请说明你的理由.【分析】(1)证出AC∥DE,得出四边形ADEC是平行四边形,即可得出结论;(2)先证出BD=CE,得出四边形BECD是平行四边形,再由直角三角形斜边上的中线性质得出CD=AB=BD,即可得出四边形BECD是菱形;(3)当△ABC是等腰直角三角形,由等腰三角形的性质得出CD⊥AB,即可得出四边形BECD是正方形.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)四边形BECD是菱形,理由如下:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=AB=BD,∴四边形BECD是菱形;(3)当△ABC是等腰直角三角形时,四边形BECD是正方形;理由如下:∵∠ACB=90°,当△ABC是等腰直角三角形,∵D为AB的中点,∴CD⊥AB,∴∠CDB=90°,∴四边形BECD是正方形;【点评】本题考查了平行四边形的判定与性质、正方形的判定、菱形的判定、直角三角形斜边上的中线性质;熟练掌握平行四边形的判定与性质,并能进行推理论证是解决问题的关键.23.(10分)几何模型:条件:如图1,A、B是直线l同旁的两个顶点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明)模型应用:(1)如图2,已知平面直角坐标系中两定点A(0,﹣1)和B(2,﹣1),P为x轴上一动点,则当PA+PB的值最小时,点P的横坐标是1,此时PA+PB=2.(2)如图3,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点,连接BD,由正方形对称性可知,B与D关于直线AC对称,则PB+PE的最小值是.(3)如图4,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一动点P,则PD+PE的最小值为2.(4)如图5,在菱形ABCD中,AB=8,∠B=60°,点G是边CD边的中点,点E、F分别是AG、AD上的两个动点,则EF+ED的最小值是4.【分析】(1)取点A关于x轴对称的点A′,连接A′B,交x轴于P,作BH⊥x轴于H,求出OP,得到点P的横坐标,根据勾股定理求出A′B,得到答案;(2)根据正方形的性质求出AE,根据勾股定理计算即可;(3)由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PD+PE=BE 最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.(4)作DH⊥AC垂足为H与AG交于点E,根据菱形的性质、勾股定理计算.。

2018-2019学年九年级上学期期中考试数学试题(含答案)

2018-2019学年九年级上学期期中考试数学试题(含答案)

2018~2019学年度第一学期期中质量调研九年级数学一、选择题(每小题3分,共30分)1.一元二次方程x 2-2x -1=0的根的情况为( )A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根2.一个长方形的面积为210 cm 2,宽比长少7 cm.设它的宽为x cm ,则可得方程( )A .2(x +7)+2x =210B .x +(x +7)=210C .x (x -7)=210D .x (x +7)=2103.有两个一元二次方程:①02=++c bx ax ,②02=++a bx cx ,其中a +c =0, 以下四个结论中,错误的是( ) A .如果方程①有两个相等的实数根,那么方程②也有两个相等的实数根; B .如果方程①和方程②有一个相同的实数根,那么这个根必定是x=1;C .如果4是方程①的一个根,那么14是方程②的一个根;D .方程①的两个根的符号相异,方程②的两个根的符号也相异;4.若二次函数c bx ax y ++=2的x 与y 的部分对应值如下表: x-7 -6 -5 -4 -3 -2 y-27-13-3353则当0=x 时,y 的值为( )A .5B .-3C .-13D .-275.二次函数c bx ax y ++=2的图象如图所示,反比例函数x ay =与正比例函数x c b y )(+=在同一坐标系中的大致图象可能是A B C D 6.如果将抛物线2y x =向左平移4个单位,再向下平移2个单位后,那么此时抛物线的表达式是( ). A .2(4)2y x =--B .2(4)2y x =-+C .2(4)2y x =+-D .2(4)2y x =++xxxxxyyyyy2018.107.若1(4,)A y -,1(3,)B y -,1(1,)C y 为二次函数242y x x =+-的图象上的三点,则1y ,2y ,3y 的大小关系是( ).A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<8.如图,Rt OAB △的顶点(2,4)A -在抛物线2y ax =上,将Rt OAB △绕点O 顺时针旋转90︒,得到OCD △,边CD 与该抛物线交于点P ,则点P 的坐标为( ). A .(2,2)B .(2,2)C .(2,2)D .(2,2)(第8题) (第9题) (第10题)9.如图,在Rt ABC △中,90C =︒∠,6cm AC =,2cm BC =,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动,若点P ,Q 均以1cm/s 的速度同时出发,且当一点移动终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是( ). A .20cmB .18cmC .25cmD .32cm10.如图,正方形OABC 的边长为2,OA 与x 轴负半轴的夹角为15︒,点B 在抛物线2(0)y ax a =<的图象上,则a 的值为( ). A .12-B .26-C .2-D .23-二、填空题(每小题3分,共24分)11.将一元二次方程(2)(1)3x x -+=化成一般形式,且使得二次项系数为正数,则化成一般形式后的一元二次方程是 .12.已知关于x 的方程x 2+3x +a =0的一个根为-4,则另一个根为 .13.某药品原价每盒64元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒36元,则该药品平均每次降价的百分率是 . 14.若抛物线y =x 2-k x +k -1的顶点在x 轴上,则k = .15.若抛物线2(2)3y x m x =-+-+的顶点在y 轴上,则m =__________.16.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为________.17.二次函数22y x ax a =-+在 03x ≤≤的最小值是-2,则a =__________18.如图,在平面直角坐标系中,抛物线y =x 2+mx 交x 轴的负半轴于点A .点B 是y 轴正半轴上一点,点A 关于点B 的对称点A ′恰好落在抛物线上.过点A ′作x 轴的平行线交抛物线于另一点C .若点A ′的横坐标为1,则A ′C 的长为 .三、解答题(共76分)19.⑴ 2(3)5x -= ⑵ 01422=+-x x⑶ 03322=--x x⑷03)32=+--x x ( 20.(6分)已知关于x 的方程x 2+8x +12-a =0有两个不相等的实数根.⑴ 求a 的取值范围;⑵ 当a 取满足条件的最小整数时,求出方程的解.21.(6分)如图,△ABC 中,∠C =90°,BC =6,AC =4.点P 、Q 分别从点A 、出发,点P 沿A →C 的方向以每秒1个单位长的速度向点C 运动,点Q 沿B →向以每秒2个单位长的速度向点C 运动.当其中一个点先到达点C 时,点P 、运动.当四边形ABQP 的面积是△ABC 面积的一半时,求点P 运动的时间.Q BP22.(8分)某工厂设计了一款工艺品,每件成本40元,为了合理定价,现投放市场进行试销.据市场调查,销售单价是80元时,每天的销售量是50件,若销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于65元.如果降价后销售这款工艺品每天能盈利3000元,那么此时销售单价为多少元?我市某汽车零部件生产企业的利润逐年提高.据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率.(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?24.(本题满分10分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y (单位:个)与销售单价x (单位:元)有如下关系:60(3060)y x x =-+≤≤.设这种双肩包每天的销售利润为w 元. (1)求w 与x 之间的函数解析式.(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?25.(本题满分10分)如图1,在平面直角坐标系中,二次函数2(0)y ax bx c a =++>的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3,0),OB OC =,13OA OC =. (1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)如图2,若点(2,)G y 是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,APG △的面积最大?求出此时P 点的坐标和APG △的最大面积.26.已知关于x 的一元二次方程x2﹣(m+1)x+(m2+1)=0有实数根. (1)求m 的值;(2)先作y=x2﹣(m+1)x+(m2+1)的图象关于x 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n (n≥m )与变化后的图象有公共点时,求n2﹣4n 的最大值和最小值.27.(本题满分10分)已知二次函数22y ax bx =+-的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 的坐标为(4,0),且当2x =-和5x =时二次函数的函数值y 相等. (1)求实数a 、b 的值.(2)如图1,动点E 、F 同时从A 点出发,其中点E 以每秒2个单位长度的速度沿AB 边向终点B 运动,点F 以每秒5个单位长度的速度沿射线AC 方向运动,当点E 停止运动时,点F 随之停止运动.设运动时间为t 秒.连接EF ,将AEF △沿EF 翻折,使点A 落在点D处,得到DEF △.①是否存在某一时刻t ,使得DCF △为直角三角形?若存在,求出t 的值;若不存在,请说明理由.②设DEF △与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式.参考答案及评分意见一、选择题 1-5 BDBCB ;6.【答案】C ;【解析】22242(4)(4)2y x y x y x =−−−−→=+−−−−→=+-向左平移向下平移个单位个单位. 故选C . 7.【答案】B ;【解析】二次函数2242(2)6y x x x =+-=+-,∴对称轴2x =-, ∴当14x =-,23x =-,31x =时,213y y y <<.故选B .8.【答案】C ;【解析】将(2,4)A -代入2y ax =中得:1a =,∴2y x =, 由题意知,2OB =,4BA =,∴2OD =,将2y =代入2y x =得,2x =±, ∴(2,2)P .故选C .9.【答案】C ;【解析】由题意知,AP t =,CQ t =,6CP t =-,222222(6)21236PQ PC CQ t t t t =+=-+=-+22(3)18t =-+,又∵02t ≤≤,故2t =时,220PQ =最小, 此时25PQ =.故选C .10.【答案】B ;【解析】∵正方形OABC 的边长为2,∴22OB =,由题意知,15AOB =︒∠,∴30COB =︒∠,∴2BC =,6OC =,故(6,2)B --, 代入2y ax =中得:26a -=,26a =-.故选B .二、填空题11.012=+-x x ; 12.1; 13.25%; 14.K=2;15.【答案】2;【解析】由题意知:对称轴202m x -==,解得2m =. 16.【答案】2(2)9y x =--+;【解析】∵抛物线在x 轴上截得的线段长为6,且对称轴为2x =, ∴抛物线与x 轴的两交点为(1,0)-,(5,0),设2(2)9y a x =-+,将(5,0)代入得:1a =-, ∴2(2)9y x =--+.分分分分 分20. ⑴ 根据题意得:0)12482>--a (解得:4->a⑵ ∵ 4->a ∴ 最小的整数为﹣3 ------------------------------------------------------------ ∴ x 2+8x +12﹣(﹣3)=0 即:x 2+8x +15=0解得:x 1=-3,x 2=-521.设点P 运动了x 秒,则AP =x ,BQ =2x由AC =4,BC =6得:PC =4-x ,QC =6-2xP根据题意得:ABC ABQP S S △四边形21= ∴ ABC PQC S S △△21= ∵ ∠C =90 ∴642121)26)4(21⨯⨯⨯=⋅-⋅x x -( 解得:11=x ,62=x 经检验,x =6舍去答:点P 运动的时间是1秒.22.解:设降价x 元后销售这款工艺品每天能盈利3000元. 根据题意可得:3000)550)(4080(=+--x x解这个方程得:201021==x x ,(不合题意,舍去) 当x =10时,80-x =70>65;当x =20时,80-x =60<65(不符合题意,舍去)答:此时销售单价应定为75元.23.【解析】(1)设这两年该企业年利润平均增长率为x ,则:22(1) 2.88x +=, 解得10.220%x ==,2 2.2x =-(不合题意,舍去) 故这两年该企业年利润平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业的年利润为 2.88(120%) 3.456+=,3.456 3.4>,故该企业2017年的利润能超过3.4亿元. 24.【解析】(1)(30)w x y =-⋅(60)(30)x x =-+-2901800x x =-+-,w 与x 之间的函数解析式:2901800w x x =-+-.(2)根据题意得:22901800(45)225w x x x =-+-=--+, ∵10-<,当45x =时,w 有最大值,最大值是225.(3)当200w =时,2901800200x x -+-=,解得140x =,250x =, ∵5048<,250x =不符题意,舍去,故销售单价应定为40元. 25.【解析】(1)由已知得:(0,3)C -,(1,0)A -,将A ,B ,C 三点的坐标代入,得09303a b c a b c C -+=⎧⎪++=⎨⎪=-⎩,∴223y x x =--.(2)存在.∵(1,4)D -,∴直线CD 的解析式为:3y x =--,∴E 点的坐标为(3,0)-, 由A 、C 、E 、F 四点的坐标得:2AE CF ==,AE CF ∥,∴以A 、C 、E 、F 为顶点,的四边形为平移四边形,∴存在点F ,坐标为(2,3)-. (3)过点P 作y 轴的平行线与AG 交于点Q ,易得(2,3)G -,直线AG 为1y x =--, 设2(,23)P x x x --,则(,1)Q x x -,22PQ x x =-++,21(22)32APG APQ GPQ S S S x x =+=-++⨯△△△,当12x=时,APGS△最大,此时115,24P⎛⎫-⎪⎝⎭,APGS△最大为278.26.解:(1)对于一元二次方程x2﹣(m+1)x+(m2+1)=0,△=(m+1)2﹣2(m2+1)=﹣m2+2m﹣1=﹣(m﹣1)2,∵方程有实数根,∴﹣(m﹣1)2≥0,∴m=1.(2)由(1)可知y=x2﹣2x+1=(x﹣1)2,图象如图所示:平移后的解析式为y=﹣(x+2)2+2=﹣x2﹣4x﹣2.(3)由消去y得到x2+6x+n+2=0,由题意△≥0,∴36﹣4n﹣8≥0,∴n≤7,∵n ≤m ,m =1, ∴1≤n ≤7,令y ′=n 2﹣4n =(n ﹣2)2﹣4,∴n =2时,y ′的值最小,最小值为﹣4, n =7时,y ′的值最大,最大值为21, ∴n 2﹣4n 的最大值为21,最小值为﹣4.27.【解析】(1)由题意得:164204222552a b a b a b +-=⎧⎨--=+-⎩,解得:12a =,32b =-.(2)①由(1)知213222y x x =--,∵(4,0)A ,∴(1,0)B -,(0,2)C ,∴4OA =,1OB =,2OC =,∴5AB =,25AC =,5BC =, ∴22225AC BC AB +==,∴ABC △为Rt △,且90ACB =︒∠,∵2AE t =,5AF t =,52AF AB AE AC ==,又∵EAF CAB =∠∠,∴AEF ACB △∽△, ∴90AEF ACB ==︒∠∠,∴翻折后,A 落在D 处,∴DE AE =,∴24AD AE t ==,12EF AE t ==, 若DCF △为Rt △,点F 在AC 上时,i )∴若C 为直角顶点,则D 与B 重合,∴1522AE AB ==,55224t =÷=,如图2 ii )若D 为直角顶点,∵90CDF =︒∠,∴90ODC EDF +=︒∠∠,∵EDF EAF =∠∠,∴90OBC EAF +=︒∠∠,∴ODC OBC =∠∠,∴BC DC =, ∵OC BD ⊥,∴1OD OB ==,∴3AD =,∴34AE =,∴34t =,如图3 当点F 在AC 延长线上时,90DFC >︒∠,DCF △为钝角三角形,综上所述,34t =或54.②i )当504t <≤时,重叠部分为DEF △,∴2122S t t t =⨯⨯=.ii )当524t <≤时,设DF 与BC 相交于点G ,则重叠部分为四边形BEFG ,如图4,过点G 作GH BE ⊥于H ,设GH x =,则2x BH =,2DH x =,∴32xDB =,∵45DB AD AB t =-=-,∴3452x t =-,∴2(45)3x t =-,∴1122(45)(45)223DEF DBG S S S t t t t ===⨯⨯--⨯-△△2134025533t t =-+-.iii )当522t <≤时,重叠部分为BEG △,如图5,∵2(45)52BE DE DB t t t =-=--=-,22(52)GE BE t ==-,∴21(52)2(52)420252S t t t t =⨯-⨯-=-+.。

2018-2019学年最新人教版九年级数学上册期中考试模拟试卷3及答案-精品试卷

2018-2019学年最新人教版九年级数学上册期中考试模拟试卷3及答案-精品试卷

上学期期中阶段性抽测试题九年级数学(满分:120 时间:90分)一、选择题(每题3分,共30分,把正确选项涂在答题卡上)1、在下列四个图案中,既是轴对称图形,又是中心对称图形的是2、方程x²-2(3x-2)+(x+1)=0的一般形式是A.x²-5x+5=0B.x²+5x+5=0C.x²+5x-5=0D.x²+5=03、一元二次方程x²-2x-m=0,用配方法解该方程,配方后的方程为A.(x-1)²=m2+1B.(x-1)²=m-1C.(x-1)²=1-mD.(x-1)²=m+14、某经济开发区今年一月份工业产值达50亿元,第一季度总产值175亿元,问二、三月份平均每月增长率是多少?设平均每月增长率为百分之x,则A.50(1+x)²=175B.50+50(1+x)²=175C.50(1+x)+50(1+x)²=175D.50+50(1+x)+50(1+x)²=1755、把抛物线y=x²+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是y=x²-3x+5,则有A.b=3,c=7 B.b=-9,c=-15 C.b=3,c=3 D.b=-9,c=216、已知函数2y ax bx c=++的图象如图所示,那么关于x的方程220ax bx c+++=的根的情况是A.无实数根B.有两个相等实数根C.有两个异号实数D.有两个同号不等实数根7、如图,A、B、C、D是⊙O上的三点,∠BAC=30°,则∠BOC的大小是A.60°B.45°C.30°D.15°8、如图,O 内切于ABC △,切点分别为 D 、E 、F .已知50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,那么EDF ∠等于A.40°B.55°C.65°D.70°9、已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a -b+c<0;③b+2a<0;④abc>0,其中所有正确结论的序号是A .③④B .②③C .①④D .①②③10、在△ABC 中,BC =4,以点A 为圆心、2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交 AC于F ,点P 是⊙A 上的一点,且∠EPF =40°,则图中阴影部分的面积是 A .4-94π B .4-98π C .8-94π D .8-98π二、填空题(每小题3分,共24分) 11、关于x 的方程(a+1)x122--a a +x -5=0是一元二次方程,则a=_________.6题xy0 3-7题DOA FCBE8题9题10题12、如图,若将△ABC 绕点O 顺时针旋转180°后得到△A'B'C',则A 点的对应点A'点的坐标是___.13、已知x 2+4x-2=0,那么3x 2+12x+2000的值为 ____________ 方程2630x x ++=的两实数根,则2112x x x x +的值为14、已知1x ,2x 是______ 15、如图,一宽为2cm 的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm ),则该圆的半径为_____________cm .16、已知,如图:AB 为⊙O 的直径,AB =AC ,BC 交⊙O 于点D ,AC 交⊙O 于点E ,∠BAC =450。

最新2018-2019学年人教版九年级数学上册期中考试综合模拟测试及答案-精编试题

最新2018-2019学年人教版九年级数学上册期中考试综合模拟测试及答案-精编试题

九年级数学上学期期中模拟试题一、选择题:每小题3分,共18分1.用配方法解方程x2﹣2x﹣6=0时,原方程应变形为()A.(x+1)2=7 B.(x﹣1)2=7 C.(x+2)2=10 D.(x﹣2)2=102.方程2x2﹣kx﹣1=0的根的情况是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.方程没有实数根D.方程的根的情况与k的取值有关3.某旅游景点三月份共接待游客25万人次,五月份共接待游客64万人次,设每月的平均增长率为x,则可列方程为()A.25(1+x)2=64 B.25+25(1+x)2=64 C.25(1+2x)=64 D.64(1﹣x2)=254.一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A.45 B.48 C.50 D.555.如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC与△DEF的面积之比为()A.1:2 B.1:4 C.1:5 D.1:66.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(6,0)B.(6,3)C.(6,5)D.(4,2)二、填空题:每小题3分,共18分7.方程x(x+3)=0的解是.8.已知≠0,则的值为.9.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是.10.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,若第三枚棋子随机放在其它格点上,则以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率是.11.如图,身高为1.6米的学生想测量学校旗杆的高度,当他站在C处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是米.12.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是(把你认为正确的都填上).三、解答题:每小题6分,共30分13.解方程:①4x(2x+1)=3(2x+1)②(x+3)(x﹣1)=5.14.已知,如图,以矩形ABCD的一边CD为边向外作等边△PCD,请你用无刻度的直尺作出线段AB的垂直平分线(保留作图痕迹)15.已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣的两个实数根.(1)当m为何值时,▱ABCD是菱形?(2)若AB的长为2,那么▱ABCD的周长是多少?16.如图,M是矩形ABCD的边AD的中点,P为BC上一点,PE⊥MC,PF⊥MB,垂足分别为E,F,当AB,BC满足什么条件时,四边形PEMF为矩形?试加以证明.17.在正方形ABCD中,P是BC上一点,且BP=3PC,Q是CD得中点.(1)证明△ADQ∽△QCP;(2)求证:AQ⊥QP.四、每小题8分,共32分18.甲、乙、丙三人之间相互传球,球从一个人手中随机传到另外一个人手中,共传球三次.(1)若开始时球在甲手中,求经过三次传球后,球传回到甲手中的概率是多少?(2)若乙想使球经过三次传递后,球落在自己手中的概率最大,乙会让球开始时在谁手中?请说明理由.19.某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金﹣各种费用)为275万元?20.如图,在矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD,BC于点E,F,垂足为点O.(1)连接AF,CE,求证:四边形AFCE为菱形;(2)求AF的长.21.将一副三角尺如图①摆放(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°).点D为AB的中点,DE交AC于点P,DF经过点C.(1)求∠ADE的度数;(2)如图②,在图①的基础上将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,求证: =.五、本大题共10分22.如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE= 度.六、本大题共12分23.如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△AOB相似?(3)当t为何值时,△APQ的面积为个平方单位?参考答案与试题解析一、选择题:每小题3分,共18分1.用配方法解方程x2﹣2x﹣6=0时,原方程应变形为()A.(x+1)2=7 B.(x﹣1)2=7 C.(x+2)2=10 D.(x﹣2)2=10【考点】解一元二次方程﹣配方法.【分析】在本题中,把常数项﹣6移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【解答】解:把方程x2﹣2x﹣6=0的常数项移到等号的右边,得到x2﹣2x=6,方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=6+1,配方得(x﹣1)2=7.故选B.2.方程2x2﹣kx﹣1=0的根的情况是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.方程没有实数根D.方程的根的情况与k的取值有关【考点】根的判别式.【分析】首先可得根的判别式△=b2﹣4ac=k2+4>0,即可判定根的情况.【解答】解:∵a=2,b=﹣k,c=﹣1,∴△=b2﹣4ac=(﹣k)2﹣4×2×(﹣1)=k2+4>0,∴方程有两个不相等的实数根.故选B.3.某旅游景点三月份共接待游客25万人次,五月份共接待游客64万人次,设每月的平均增长率为x,则可列方程为()A.25(1+x)2=64 B.25+25(1+x)2=64 C.25(1+2x)=64 D.64(1﹣x2)=25【考点】由实际问题抽象出一元二次方程.【分析】本题依题意可知四月份的人数=25(1+x),则五月份的人数为:25(1+x)(1+x),列方程25(1+x)(1+x)=64即可得出答案.【解答】解:设每月的平均增长率为x,依题意得:25(1+x)2=64.故选A.4.一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A.45 B.48 C.50 D.55【考点】用样本估计总体.【分析】小亮共摸了100次,其中10次摸到白球,则有90次摸到红球;摸到白球与摸到红球的次数之比为1:9,由此可估计口袋中白球和红球个数之比为1:9;即可计算出红球数.【解答】解:∵小亮共摸了100次,其中10次摸到白球,则有90次摸到红球,∴白球与红球的数量之比为1:9,∵白球有5个,∴红球有9×5=45(个),故选:A.5.如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC与△DEF的面积之比为()A.1:2 B.1:4 C.1:5 D.1:6【考点】位似变换.【分析】利用位似图形的性质首先得出位似比,进而得出面积比.【解答】解:∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.故选:B.6.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(6,0)B.(6,3)C.(6,5)D.(4,2)【考点】相似三角形的判定;坐标与图形性质.【分析】根据相似三角形的判定:两边对应成比例且夹角相等的两三角形相似即可判断.【解答】解:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.A、当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;B、当点E的坐标为(6,3)时,∠CDE=90°,CD=2,DE=2,则AB:BC≠CD:DE,△CDE与△ABC 不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,△EDC∽△ABC,故本选项不符合题意;D、当点E的坐标为(4,2)时,∠ECD=90°,CD=2,CE=1,则AB:BC=CD:CE,△DCE∽△ABC,故本选项不符合题意;故选:B.二、填空题:每小题3分,共18分7.方程x(x+3)=0的解是0或﹣3 .【考点】解一元二次方程﹣因式分解法;等式的性质;解一元一次方程.【分析】推出方程x=0,x+3=0,求出方程的解即可.【解答】解:x(x+3)=0,∴x=0,x+3=0,∴方程的解是x1=0,x2=﹣3.故答案为:0或﹣3.8.已知≠0,则的值为.【考点】比例的性质.【分析】根据比例的性质,可用a表示b、c,根据分式的性质,可得答案.【解答】解:由比例的性质,得c=a,b=a.===.故答案为:.9.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是8 .【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理即可求解.【解答】解:∵DE∥BC,∴=,即=,解得:EC=8.故答案是:8.10.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,若第三枚棋子随机放在其它格点上,则以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率是.【考点】概率公式.【分析】首先根据题意可得第三枚棋子有A,B,C,D共4个位置可以选择,而以这三枚棋子所在的格点为顶点的三角形是直角三角形的位置是B,C,D,然后利用概率公式求解即可求得答案.【解答】解:如图,第三枚棋子有A,B,C,D共4个位置可以选择,而以这三枚棋子所在的格点为顶点的三角形是直角三角形的位置是B,C,D,故以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率是:.故答案为:.11.如图,身高为1.6米的学生想测量学校旗杆的高度,当他站在C处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是8 米.【考点】相似三角形的应用.【分析】因为人和旗杆均垂直于地面,所以构成相似三角形,利用相似比解题即可.【解答】解:设旗杆高度为h,由题意得=,解得:h=8米.故答案为:8.12.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是①②④(把你认为正确的都填上).【考点】正方形的性质;全等三角形的判定与性质;等边三角形的性质.【分析】根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,利用解三角形求正方形的面积等知识可以判断④的正误.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC﹣BE=CD﹣DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,AD2+DF2=AF2,即a2+(a﹣)2=4,解得a=,则a2=2+,S正方形ABCD=2+,④说法正确,故答案为:①②④.三、解答题:每小题6分,共30分13.解方程:①4x(2x+1)=3(2x+1)②(x+3)(x﹣1)=5.【考点】解一元二次方程﹣因式分解法.【分析】①先移项得到4x(2x+1)﹣3(2x+1)=0,然后利用因式分解法解方程;②先把方程化为一般式,然后利用因式分解法解方程.【解答】解:①4x(2x+1)﹣3(2x+1)=0,(2x+1)(4x﹣3)=0,2x+1=0或4x﹣3=0,所以x1=﹣,x2=;②x2+2x﹣8=0,(x﹣2)(x+4)=0,x﹣2=0或x+4=0,所以x1=2,x2=﹣4.14.已知,如图,以矩形ABCD的一边CD为边向外作等边△PCD,请你用无刻度的直尺作出线段AB的垂直平分线(保留作图痕迹)【考点】作图—复杂作图;线段垂直平分线的性质;等边三角形的性质;矩形的性质.【分析】连接矩形ABCD的对角线AC、BD,相交于点O,过O,P作直线,则直线OP就是线段AB的垂直平分线.【解答】解:如图所示,直线OP即为所求.15.已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣的两个实数根.(1)当m为何值时,▱ABCD是菱形?(2)若AB的长为2,那么▱ABCD的周长是多少?【考点】菱形的判定;平行四边形的性质.【分析】(1)直接利用菱形性质结合根的判别式求出m的值;(2)利用AB=2,代入方程求出m的值,进而解方程得出x的值,再利用平行四边形的性质得出答案.【解答】解:(1)∵▱ABCD是菱形,∴AB=AD,∴△=b2﹣4ac=(﹣m)2﹣4×1×(﹣)=m2﹣2m+1=(m﹣1)2=0,解得:m=1,即m为1时,▱ABCD是菱形;(2)把AB=2代入方程得:4﹣2m+﹣=0,解得:m=,则x2﹣x+1=0,解得:x1=,x2=2,则AD=,故▱ABCD的周长是:2×(2+)=5.16.如图,M是矩形ABCD的边AD的中点,P为BC上一点,PE⊥MC,PF⊥MB,垂足分别为E,F,当AB,BC满足什么条件时,四边形PEMF为矩形?试加以证明.【考点】矩形的判定与性质.【分析】根据已知条件、矩形的性质和判定,欲证明四边形PEMF为矩形,只需证明∠BMC=90°,易得AB=BC时能满足∠BMC=90°的条件.【解答】解:AB=BC时,四边形PEMF是矩形.理由如下:∵在矩形ABCD中,M为AD边的中点,AB=BC,∴AB=DC=AM=MD,∠A=∠D=90°,∴∠ABM=∠MCD=45°,∴∠BMC=90°,又∵PE⊥MC,PF⊥MB,∴∠PFM=∠PEM=90°,∴四边形PEMF是矩形.17.在正方形ABCD中,P是BC上一点,且BP=3PC,Q是CD得中点.(1)证明△ADQ∽△QCP;(2)求证:AQ⊥QP.【考点】相似三角形的判定与性质;正方形的性质.【分析】(1)根据BP=3PC和Q是CD的中点,可以求得=,即可求证△ADQ∽△QCP;(2)根据△ADQ∽△QCP可以求得∠PQC+∠DQA=90°,即可解题.【解答】解:(1)∵BP=3PC,Q是CD的中点∴==,又∵∠ADQ=∠QCP=90°,∴△ADQ∽△QCP;(2)∵△ADQ∽△QCP,∴∠AQD=∠QPC,∠DAQ=∠PQC,∴∠PQC+∠DQA=∠DAQ+∠AQD=90°,∴AQ⊥QP.四、每小题8分,共32分18.甲、乙、丙三人之间相互传球,球从一个人手中随机传到另外一个人手中,共传球三次.(1)若开始时球在甲手中,求经过三次传球后,球传回到甲手中的概率是多少?(2)若乙想使球经过三次传递后,球落在自己手中的概率最大,乙会让球开始时在谁手中?请说明理由.【考点】列表法与树状图法.【分析】(1)画出树状图,然后根据概率公式列式进行计算即可得解;(2)根据(1)中的概率解答.【解答】解:(1)根据题意画出树状图如下:一共有8种情况,最后球传回到甲手中的情况有2种,所以,P(球传回到甲手中)==;(2)根据(1)最后球在丙、乙手中的概率都是,所以,乙想使球经过三次传递后,球落在自己手中的概率最大,乙会让球开始时在甲或丙的手中.19.某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金﹣各种费用)为275万元?【考点】一元二次方程的应用.【分析】(1)直接根据题意先求出增加的租金是6个5000,从而计算出租出多少间;(2)设每间商铺的年租金增加x万元,直接根据收益=租金﹣各种费用=275万元作为等量关系列方程求解即可.【解答】解:(1)∵÷5000=6,∴能租出30﹣6=24(间).(2)设每间商铺的年租金增加x万元,则每间的租金是(10+x)万元,5000元=0.5万元,有间商铺没有出租,出租的商铺有(30﹣)间,出租的商铺需要交(30﹣)×1万元费用,没有出租的需要交×0.5万元的费用,则(30﹣)×(10+x)﹣(30﹣)×1﹣×0.5=2752x2﹣11x+5=0解得:x1=5,x2=0.55+10=15万元; 0.5+10=10.5万元∴每间商铺的年租金定为10.5万元或15万元.20.如图,在矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD,BC于点E,F,垂足为点O.(1)连接AF,CE,求证:四边形AFCE为菱形;(2)求AF的长.【考点】矩形的性质;线段垂直平分线的性质;菱形的判定与性质.【分析】(1)根据矩形的性质得出AD∥BC,求出∠AEO=∠CFO,根据全等三角形的判定得出△AEO≌△CFO,根据全等三角形的性质得出OE=OF,根据菱形的判定推出即可;(2)设AF=acm,根据菱形的性质得出AF=CF=acm,在Rt△ABF中,由勾股定理得出42+(8﹣a)2=a2,求出a即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠AEO=∠CFO,∵AC的垂直平分线EF,∴AO=OC,AC⊥EF,在△AEO和△CFO中∵∴△AEO≌△CFO(AAS),∴OE=OF,∵O A=OC,∴四边形AECF是平行四边形,∵AC⊥EF,∴平行四边形AECF是菱形;(2)解:设AF=acm,∵四边形AECF是菱形,∴AF=CF=acm,∵BC=8cm,∴BF=(8﹣a)cm,在Rt△ABF中,由勾股定理得:42+(8﹣a)2=a2,解得:a=5,即AF=5cm.21.将一副三角尺如图①摆放(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°).点D为AB的中点,DE交AC于点P,DF经过点C.(1)求∠ADE的度数;(2)如图②,在图①的基础上将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,求证: =.【考点】相似三角形的判定与性质.【分析】(1)首先证明∠ACD=∠A,再求出∠ADC=120°,再根据∠ADE=∠ADC﹣∠EDF计算即可得解;(2)只要证明△DPM和△DCN相似,再根据相似三角形对应边成比例即可证明.【解答】解:(1)∵∠ACB=90°,点D为AB的中点,∴CD=AD=BD=AB,∴∠ACD=∠A=30°,∴∠ADC=180°﹣30°×2=120°,∴∠ADE=∠ADC﹣∠EDF=120°﹣90°=30°;(2)∵∠EDF=90°,∴∠PDM+∠E′DF=∠CDN+∠E′DF=90°,∴∠PDM=∠CDN,∵∠B=60°,BD=CD,∴△BCD是等边三角形,∴∠BCD=60°,∵∠CPD=∠A+∠ADE=30°+30°=60°,∴∠CPD=∠BCD,在△DPM和△DCN中,,∴△DPM∽△DCN,∴=.五、本大题共10分22.如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE= 58 度.【考点】正方形的性质;全等三角形的判定与性质;菱形的性质.【分析】(1)根据正方形的四条边都相等可得BC=DC,对角线平分一组对角可得∠BCP=∠DCP,然后利用“边角边”证明即可;(2)根据全等三角形对应角相等可得∠CBP=∠CDP,根据等边对等角可得∠CBP=∠E,然后求出∠DPE=∠DCE,再根据两直线平行,同位角相等可得∠DCE=∠ABC,从而得证;(3)根据(2)的结论解答.【解答】(1)证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,∵在△BCP和△DCP中,,∴△BCP≌△DCP(SAS);(2)证明:由(1)知,△BCP≌△DCP,∴∠CBP=∠CDP,∵PE=PB,∴∠CBP=∠E,∵∠1=∠2(对顶角相等),∴180°﹣∠1﹣∠CDP=180°﹣∠2﹣∠E,即∠DPE=∠DCE,∵AB∥CD,∴∠DCE=∠ABC,∴∠DPE=∠ABC;(3)解:与(2)同理可得:∠DPE=∠ABC,∵∠ABC=58°,∴∠DPE=58°.故答案为:58.六、本大题共12分23.如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△AOB相似?(3)当t为何值时,△APQ的面积为个平方单位?【考点】相似三角形的判定与性质;待定系数法求一次函数解析式;解直角三角形.【分析】(1)设直线AB的解析式为y=kx+b,解得k,b即可;(2)由AO=6,BO=8得AB=10,①当∠APQ=∠AOB时,△APQ∽△AOB利用其对应边成比例解t.②当∠AQP=∠AOB时,△AQP∽△AOB利用其对应边成比例解得t.(3)过点Q作QE垂直AO于点E.在Rt△AEQ中,QE=AQ…sin∠BAO=(10﹣2t)…=8﹣t,再利用三角形面积解得t即可.【解答】解:(1)设直线AB的解析式为y=kx+b,由题意,得,解得,所以,直线AB的解析式为y=﹣x+6;(2)由AO=6,BO=8得AB=10,所以AP=t,AQ=10﹣2t,①当∠APQ=∠AOB时,△APQ∽△AOB.所以=,解得t=(秒),②当∠AQP=∠AOB时,△AQP∽△AOB.所以=,解得t=(秒);∴当t为秒或秒时,△APQ与△AOB相似;(3)过点Q作QE垂直AO于点E.在Rt△AOB中,sin∠BAO==,在Rt△AEQ中,QE=AQ…sin∠BAO=(10﹣2t)…=8﹣t,S△APQ=AP…QE=t…(8﹣t),=﹣t2+4t=,解得t=2(秒)或t=3(秒).∴当t为2秒或3秒时,△APQ的面积为个平方单位2017年3月4日。

上海市杨浦区2018-2019学年九年级(上)期中数学试卷含答案

上海市杨浦区2018-2019学年九年级(上)期中数学试卷含答案

上海市杨浦区2018-2019学年九年级(上)期中数学试卷一、选择题(本大题共6小题,共18.0分)1.如果,那么下列结论正确的是A. x::5B. x::6C. ,D. ,2.下列说法正确的是A. 菱形都相似B. 正六边形都相似C. 矩形都相似D. 一个内角为的等腰三角形都相似3.如图,点B在线段AC上,且,设,则AB的长为A. B. C. D.4.在中, ,于点D,下列式子表示B错误的是A. B. C. D.5.已知和,下列条件中一定能推得与相似的是A. B.C. 且D. 且6.如果一个直角三角形的两条边分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x,那么x的值A. 只有一个B. 可以有2个C. 可以有3个D. 无数个二、填空题(本大题共12小题,共36.0分)7.已知A、B两地的实际距离为100千米,地图上的比例尺为1:2000000,则A、B两地在地图上的距离是______cm.8.已知线段b是线段a、c的比例中项,如果,,那么______.9.在中,若 ,,,则______10.如图,AD、BC相交于点O,点E、F分别在BC、AD上,,如果,,,那么______.11.已知点D、E分别在的边AB、AC上,如果,,那么BC的长为______.12.如图,在中,点E、D在边AC上,点F、M在边AB上,且,,如果FD的延长线交BC的延长线于N,那么的值为______.13.如图,线段AE、BD交于点C,如果,,,,那么______.14.如果为非零向量方向上的单位向量,那么______.15.如图,在矩形ABCD中,,,点P是边AB上一点,若与相似,则满足条件的点P有______个16.如图,将 放置在的正方形网格中,如果顶点A、B、C均在格点上,那么 的正切值为______.17.如图,BD是四边形ABCD的对角线,, ,点、分别是和的重心,则点、间的距离为______.18.矩形ABCD中,E是AB的中点如图,将沿CE翻折,点B落在点F处,联结AF,如果,那么的比值为______.三、解答题(本大题共7小题,共46.0分)19.计算:20.在中,点D、E分别在边AB、AC上,,AD::2,点M为EC的中点,,.填空:______;______;结果用、表示在图中分别作出向量在向量、向量方向上的分向量不要求写作法,但要指出所作图中表示结论的向量21.如图,在中,,的高AM交DE于点N,,,,求MN的长.22.如图,在中, ,的周长为24,,点D为边BC的中点.求BC的长.求 的余切值.23.如图,在正方形ABCD中,E为对角线AC上一点,,连接EB、ED,延长BE交AD于点求证:.24.已知:点E在线段AB上,.如图1,AB是的边,作交边AC于点F,连接求的值.如图2,AB是梯形ABCD的一腰,,且,作交边DC于点F,连接求的值.梯形25.在中, ,,点C在直线m上,, ,其中点D、E分别在直线AC、m上,将 绕点B旋转点D、E都不与点C重合.当点D在边AC上时如图,设,,求y关于x的函数解析式,并写出定义域;当为等腰三角形时,求CD的长.上海市杨浦区2018-2019学年九年级(上)期中数学试卷解析一、选择题(本大题共6小题,共18.0分)26.如果,那么下列结论正确的是A. x::5B. x::6C. ,D. ,【答案】A【解析】解:,,故选项A正确.故选:A.直接利用比例的性质将原式变形进而得出答案.此题主要考查了比例的性质,正确将比例式变形是解题关键.27.下列说法正确的是A. 菱形都相似B. 正六边形都相似C. 矩形都相似D. 一个内角为的等腰三角形都相似【答案】B【解析】解:A、所有的菱形,边长相等,所以对应边成比例,角不一定对应相等,所以不一定都相似,故本选项错误;B、所有的正六边形,边长相等,所以对应边成比例,角都是,相等,所以都相似,故本选项正确;C、所有的矩形,对应角的度数一定相同,但对应边的比值不一定相等,故本选项错误;D、一个内角为的等腰三角形可能是顶角也可能是底角是,无法判断,此选项错误;故选:B.根据相似图形的定义,对选项进行一一分析,排除错误答案.本题考查的是相似形的识别,相似图形的形状相同,但大小不一定相同.28.如图,点B在线段AC上,且,设,则AB的长为A. B. C. D.【答案】C【解析】解:,,,解得,,舍去,故选:C.根据题意列出一元二次方程,解方程即可.本题考查的是黄金分割的概念以及黄金比值,掌握一元二次方程得到解法、理解黄金分割的概念是解题的关键.29.在中, ,于点D,下列式子表示B错误的是A. B. C. D.【答案】D【解析】解:在中,于点D,,故选:D.根据三角函数的定义解答即可.此题考查锐角三角函数的定义,关键是根据正弦函数是对边与斜边的比进行解答.30.已知和,下列条件中一定能推得与相似的是A. B.C. 且D. 且【答案】B【解析】解:A、与的三组边不是对应成比例,所以不能判定与相似故本选项错误;B、与的三组边对应成比例,所以能判定与相似故本选项正确;C、与的两组不是对应边的比相等且夹角对应相等,所以不能判定与相似故本选项错误;D、与的两组不是对应边成比例,所以不能判定与相似故本选项错误;故选:B.根据三角形相似的判定方法 三边对应成比例的两个三角形相似可以判断出A、B的正误; 两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似判断C,进行判断.此题主要考查了相似三角形的判定,关键是掌握三角形相似的判定方法:平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;三边法:三组对应边的比相等的两个三角形相似;两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;两角法:有两组角对应相等的两个三角形相似.31.如果一个直角三角形的两条边分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x,那么x的值A. 只有一个B. 可以有2个C. 可以有3个D. 无数个【答案】B【解析】解:一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形的边长分别是3和4及x,可能是斜边或4是斜边,或.的值可以有2个.故选:B.由一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形的边长分别是3和4及x,可得x可能是斜边或4是斜边,继而求得答案.此题考查了相似三角形的性质与勾股定理,注意掌握相似三角形的对应边成比例定理的应用.二、填空题(本大题共12小题,共36.0分)32.已知A、B两地的实际距离为100千米,地图上的比例尺为1:2000000,则A、B两地在地图上的距离是______cm.【答案】5【解析】解:根据比例尺图上距离:实际距离.100千米厘米得:A,B两地的图上距离为,故答案为:5.根据比例尺图上距离:实际距离依题意由实际距离乘以比例尺即可得出图上距离.此题考查比例线段问题,能够根据比例尺正确进行计算,注意单位的统一.33.已知线段b是线段a、c的比例中项,如果,,那么______.【答案】【解析】解:线段b是线段a、c的比例中项,,,,故答案为:.根据比例中项的定义,若b是a,c的比例中项,即即可求解.本题主要考查了线段的比例中项的定义,注意线段不能为负.34.在中,若 ,,,则______【答案】4【解析】解:,,,故答案为:4.根据锐角三角函数的定义得出,代入求出即可.本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键.35.如图,AD、BC相交于点O,点E、F分别在BC、AD上,,如果,,,那么______.【答案】【解析】解:,,,,,,,.故答案为.利用平行线分线段成比例定理即可解决问题;本题考查平行线分线段成比例定理,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.36.已知点D、E分别在的边AB、AC上,如果,,那么BC的长为______.【答案】【解析】解:如图,,,,∽ ,,,,故答案为:.根据已知条件得到,推出 ∽ ,根据相似三角形的性质即可得到结论.本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.37.如图,在中,点E、D在边AC上,点F、M在边AB上,且,,如果FD的延长线交BC的延长线于N,那么的值为______.【答案】【解析】解:,,,, ,,≌ ,,::3,::4,,故答案为.首先证明EF::3,再利用全等三角形的性质证明即可解决问题.本题考查平行线分线段成比例定理,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.38.如图,线段AE、BD交于点C,如果,,,,那么______.【答案】【解析】解:,,,,,∽ ,,,故答案为:根据相似三角形的性质与判定即可求出答案.本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.39.如果为非零向量方向上的单位向量,那么______.【答案】【解析】解:为非零向量方向上的单位向量,.故答案是:.根据向量的几何意义填空即可.考查了平面向量,两个方向相同或相反的非零向量叫做平行向量或共线向量.40.如图,在矩形ABCD中,,,点P是边AB上一点,若与相似,则满足条件的点P有______个【答案】3【解析】解:设AP为x,,,和PB是对应边时,与相似,,即,整理得,,解得,,和BC是对应边时,与相似,,即,解得,所以,当、4、时,与相似,满足条件的点P有3个.故答案为:3.设AP为x,表示出,然后分AD和PB是对应边,AD和BC是对应边两种情况,利用相似三角形对应边成比例列式求解即可.本题考查了相似三角形的判定,主要利用了相似三角形对应边成比例,难点在于要分情况讨论.41.如图,将 放置在的正方形网格中,如果顶点A、B、C均在格点上,那么 的正切值为______.【答案】1【解析】解:如图所示,连接BC,则,,,是等腰直角三角形,且 ,,则,故答案为:1.连接BC,先利用勾股定理逆定理证是等腰直角三角形,再根据正切函数的定义可得.本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及其逆定理和三角函数的定义.42.如图,BD是四边形ABCD的对角线,,,点、分别是和的重心,则点、间的距离为______.【答案】2【解析】解:取BD的中点G,连接AG,CG,AC,点、分别是和的重心,在AG上,在CG上,,,∽ ,,, ,是等边三角形,,,故答案为:2.取BD的中点G,连接AG,CG,AC,根据点、分别是和的重心,得到在AG上,在CG上,求得,根据相似三角形的性质得到,根据已知条件得到是等边三角形,求得,于是得到结论.本题考查了三角形的重心,相似三角形的判定和性质,等边三角形的性质,正确的作出辅助线是解题的关键.43.矩形ABCD中,E是AB的中点如图,将沿CE翻折,点B落在点F处,联结AF,如果,那么的比值为______.【答案】【解析】解:如图,,,,可设,,由勾股定理可得,由轴对称的性质,可得CE垂直平分BF,,,是AB的中点,,, ,又,,中,,,故答案为:.设,,由勾股定理可得,再根据CE垂直平分BF,可得,,再根据勾股定理可得,即可得出的比值.本题考查的是翻折变换的性质、勾股定理和锐角三角函数的定义,翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题(本大题共7小题,共46.0分)44.计算:【答案】解:原式.【解析】直接利用特殊角的三角函数值分别代入求出答案.此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.45.在中,点D、E分别在边AB、AC上,,AD::2,点M为EC的中点,,.填空:______;______;结果用、表示在图中分别作出向量在向量、向量方向上的分向量不要求写作法,但要指出所作图中表示结论的向量【答案】【解析】解:::2,::3,,∽ ,,,;点M为EC的中点,,,;故答案为:,;如图,向量在向量、向量方向上的分向量分别是和.根据已知条件得到AD::3,根据相似三角形的性质得到,由,得到;根据三角形法则得到;利用平行四边形法则,即可求得答案.此题考查了平面向量的知识以及平行四边形的性质注意掌握平行四边形法则与三角形法则的应用是解此题的关键.46.如图,在中,,的高AM交DE于点N,,,,求MN的长.【答案】解:设,则,,,即,即MN的长为6.【解析】设,则,由平行线分线段成比例定理得出比例式,即可得出MN的长.本题主要考查了平行线分线段成比例的性质;熟练掌握平行线分线段成比例定理是解决问题的关键.47.如图,在中, ,的周长为24,,点D为边BC的中点.求BC的长.求 的余切值.【答案】解:,,设,,则,的周长为24,,,,,,;过点D作,垂足为E,为中线,,,,在中,,,,.【解析】根据三角函数的定义设,,则,再由三角形的周长得出k的值,即可得出三角形的三边;过点D作,垂足为E,根据,再由余弦函数的定义得出答案即可.本题考查了解直角三角形,掌握勾股定理以及三角函数的定义是解题的关键.48.如图,在正方形ABCD中,E为对角线AC上一点,,连接EB、ED,延长BE交AD于点求证:.【答案】证明:连接BD.四边形ABCD是正方形,,且 ,又是公共边,≌ ,.,., ,.,.四边形ABCD是正方形,,,..又是公共角,∽ ,,即.【解析】想办法证明 ∽ 即可解决问题;本题考查了相似三角形的判定与性质,和正方形的性质,正确理解正方形的性质是关键.49.已知:点E在线段AB上,.如图1,AB是的边,作交边AC于点F,连接求的值.如图2,AB是梯形ABCD的一腰,,且,作交边DC于点F,连接求的值.梯形【答案】解:如图1,,,,∽ ,,,设,则,,四边形,,,;如图2,设,则,连接AC,交EF于G,连接AF,,∽ ,,,,,,同理可得,,,,,设,则,,,,,,.梯形【解析】证明 ∽ ,得,根据相似三角形的性质得两三角形面积的关系,设,则,根据,得,所以,可得结论;设,则,证明 ∽ ,得,则,设,则,根据同高三角形面积的比等于对应底边的比,可得:,,代入可得结论.本题考查了相似三角形的性质和判定、平行线分线段成比例定理,熟练掌握相似三角形的性质:相似三角形面积比等于相似比的平方是关键,并运用了类比的思想解决问题,本题有难度.50.在中, ,,点C在直线m上,, ,其中点D、E分别在直线AC、m上,将 绕点B旋转点D、E都不与点C重合.当点D在边AC上时如图,设,,求y关于x的函数解析式,并写出定义域;当为等腰三角形时,求CD的长.【答案】解:,..,,.∽ .,即.;当时,C、D重合,不符合题意,舍去; 当时,如图1,,,.则..,是等腰直角三角形.,;当时,Ⅰ如图2,,...,.;Ⅱ如图3,则 ,.,,...所以当为等腰三角形时,CD的长为2或或.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学期中测试考生须知1.本试卷共6页,共三道大题,29道小题,满分120分。

考试时间120分钟。

2.在试卷和答题卡上认真填写班级、姓名和准考证号。

3.试题答案一律填涂或书写在答题纸上,在试卷上作答无效。

4.在答题纸上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,请将答题纸和草稿纸一并交回。

一、选择题(每小题3分,共30分)下面各题均有四个选项,其中只有一个是符合题意的.1.若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与⊙O 的位置关系是( )A .点A 在圆外B .点A 在圆上C .点A 在圆内D .不能确定 2.将抛物线24x y =向右平移1个单位,再向上平移3个单位,得到的抛物线是( ) A .()3142++=x y B .()3142+-=x yC .()3142-+=x y D .()3142--=x y3.在Rt △ABC 中,∠C =90°,若BC =1,AC =2,则sinA 的值为( ) A .55B .255C .12D .24.如图,电线杆上的路灯P 距离地面8米,身高1.6米的小明 站在距离电线杆的底部O 点20米的A 处,则小 明的影子AM 长为( ) A .4米 B .5米C .6米D .8米5.如图,A 、B 两地被池塘隔开, 小明通过下列方法测出了A 、B 间的距离: 先在AB 外选一点C ,然后测出AC 、BC 的中点M 、N ,并测量出MN 的长为12m ,由此他就知道了A 、B 间的距离.有关他这次探究活动的描述错误的是( )MCBANPA .MN ∥ABB .AB=24mC .△CMN ∽△CABD .CM :MA = 1 : 26.如图,在平行四边形ABCD 中,E 为CD 上一点,连结AE ,BD ,且AE ,BD 交于点F ,S △DEF ∶S △ABF = 4∶25,求DE ∶DC 的值为().A .4∶25B .2∶5C .2∶7D .4∶297.如图,⊙O 的半径为5,AB 为弦,AB OC ⊥,垂足为E ,如果2=CE ,那么AB 的长是()A .4B .6C . 8D . 108.如图,△ABC 中,∠BAC=90°,AD ⊥BC 于D ,若AB=2,BC=3,则CD 的长是() A .53 B .23 C .43 D .839.已知抛物线和直线l 在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P 1(x 1,y 1),P 2(x 2,y 2)是抛物线上的点,P 3(x 3,y 3)是直线l 上的点,且-1<x 1<x 2,x 3<-1,则y 1,y 2,y 3的大小关系是( )A . y 1<y 2<y 3B . y 2<y 3<y 1C . y 3<y 1<y 2D . y 2<y 1<y 3 10.如图,正方形ABCD 中,AB =8cm ,对角线AC ,BD相交于点O ,点E ,F 分别从B ,C 两点同时出发,以1cm/s 的速度沿BC ,CD 运动,到点C ,D 时停止运动.设运动时间为t(s),△OEF 的面积为S(cm 2),则S(cm 2)与t(s)的函数关系可用图象表示为()AB C DEOF E C BAOA B CD二、填空题(每小题3分,共18分)11.如图,在平面直角坐标系中,P 是1∠的边OA 上一点, 点P 的坐标为(3,4),则tan 1∠的值为______12.如图,BD 平分∠ABC ,且AB=4,BC=6,则当BD=______时,△ABD ∽△DBC .13.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,AB 、CD 的延长线交于点E .若AB=2DE ,∠E=18°,则∠C 的度数为________. 14.将抛物线224=+y x 沿x 轴翻折后的抛物线的解析式为______. 15.如图,二次函数)0(2≠++=a c bx ax y 的图象经过点1,02⎛⎫⎪⎝⎭,对称轴为直线1x =-,下列5个结论:①0>abc ;②240a b c ++=;③20a b ->;④320b c +>;⑤()b am m b a -≥-,其中正确的结论为.(注:只填写正确结论的序号) 16.如图,点A 1、A 2、A 3、…,点B 1、B 2、B 3、…,分别在射线OM 、ON 上,A 1B 1∥A 2B 2∥A 3B 3∥A 4B 4∥….如果A 1B 1=2,A 1A 2=2OA 1,A 2A 3=3OA 1,A 3A 4=4OA 1,….那么A 2B 2= ,A n B n = .(n 为正整数)三、解答题(共72分,17—26题每小题5分,27题7分,28题7分,29题8分) 17.计算:2sin 603tan 302tan 60cos 45︒+︒-︒⋅︒.B 4NMO A 1A 2A 3A 4B 3B 2B 1A B O CDEA CBD18.已知:二次函数1322-+-=a x ax y 的图象开口向上,并且经过原点O (0,0).(1)求a 的值;(2)用配方法求出这个二次函数图象的顶点坐标. 19.如图,在平面直角坐标系中,A (-1,1),B (-2,-1).(1)以原点O 为位似中心,把线段AB 放大到原来的2倍,请在图中画出放大后的线段CD ;(2)在(1)的条件下,写出点A 的对应点C 的坐标为,点B 的对应点D 的坐标为.20.如图,在AB C ∆中,090=∠C ,52tan =A ,D 为AC 上一点,060=∠BDC ,32=DC ,求AD 的长.21.已知:如图,AB ∥CD ,AD 、BC 交于点E ,F 为BC 上一点,且∠EAF=∠C .(1)求证:△AEF ∽△BAF (2)若EF=2,BE=4,求AF .22.如图,在四边形ABCD 中,∠C =60º,∠B =∠D =90º,AD =2AB ,CD =3,求BC 的长.23.某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的销售和生产进行了调研,结果如下:一件商品的售价M (元)与时间t (月)的关系可用一条线段上的点来表示(如图1);一件商品的成本Q (元)与时间t (月)的关系可用一条抛物线上的点来表示,其中6月份成本最高(如图2). (1)一件商品在3月份出售时的利润是多少元?(利润=售价-成本)(2)求图2中表示一件商品的成本Q (元)与时间t (月)之间的函数关系式; (3)你能求出3月份至7月份一件商品的利润W (元)与时间t (月)之间的函数关系式吗?若该公司能在一个月内售出此种商品30 000件,请你计算一下该公司在一个月内最少获利多少元?D CBAE BADCF24.阅读理解:如图1,若在四边形ABCD 的边AB 上任取一点E (点E 与点A ,B 不重合),分别连结ED ,EC ,可以把四边形ABCD 分成三个三角形,如果其中有两个三角形相似,我们就把E 叫做四边形ABCD 的边AB 上的相似点;如果这三个三角形都相似,我们就把E 叫做四边形ABCD 的边AB 上的强相似点.解决问题:(1)如图1,若∠A=∠B=∠DEC=55°,试判断点E 是否是四边形ABCD 的边AB 上的相似点,并说明理由;(2)如图2,在矩形ABCD 中,AB=5,BC=2,且A ,B ,C ,D 四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD 的边AB 上的一个强相似点E ;拓展探究:(3)如图3,将矩形ABCD 沿CM 折叠,使点D 落在AB 边上的点E 处.若点E 恰好是四边形ABCM 的边AB 上的一个强相似点,请直接写出BC AB的值.图1 图2DCBA 图1 图2图325.已知:如图,瞭望台AB 高20米,瞭望台底部B 测得对面塔顶C 的仰角为60°,从瞭望台顶A 测得C 的仰角为45°,已知瞭望台与塔CD 地势高低相同,求塔CD 的高.26.已知二次函数y = x 2 – kx+ k – 1(k >2).(1)求证:抛物线y = x 2 – kx+ k - 1(k >2)与x 轴必有两个交点; (2)抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,若tan 3OAC ∠=,求抛物线的表达式;27.已知二次函数y=ax 2+bx+3(a≠0)图象的对称轴是直线x=2,且经过点B (3,0).(1)求这个二次函数的解析式; (2)若y >0,请直接写出x 的取值范围;(3)若抛物线y=ax 2+bx+3-t (a≠0,t 为实数)在1032x <<的范围内与x 轴有公共点,求出t 的取值范围.28.类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.原题:如图1,在ABCD 中,点E 是BC 边上的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G ,若4=EFAF,求CD CG 的值.(1)尝试探究在图1中,过点E 作EH AB ∥交BG 于点H ,则AB 和EH 的数量关系是,CG 和EH 的数量关系是,CDCG的值是. (2)类比延伸如图2,在原题的条件下,若a =EFAF(a >0),求CD CG 的值(用含a 的代数式表示).(3)拓展迁移如图3,梯形ABCD 中,DC ∥AB ,点E 是BC 延长线上一点,AE 和BD 相交于点F ,若0)n 0,m (n BEBC,m CD B>>==A ,则AF EF 的值是(用含m ,n 的代数式表示).29.在平面直角坐标系xOy 中,抛物线2(2)2y mx m x =+++过点(2,4),且与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C .点D 的坐标为(2,0),连接CA ,CB ,CD .(1)求证:ACO BCD ∠=∠; (2)P 是第一象限内抛物线上的一个动点,连接DP 交BC 于点E .①当△BDE 是等腰三角形时,直接写出点E 的坐标;②连接CP ,当△CDP 的面积最大时,求点E 的坐标.AD BC九年级数学期中测试答案一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 78 9 10 答案CBABDBCADB二、填空题(每小题3分,共18分) 11.4312. 2613. 36° 14.224=--y x15.②④(注:答案为②和④,得3分;答案为②或④,得2分;含正确答案且含错误答案,不得分)16.(1)11A B = 6 ,(2)n n A B =(1)n n +三、解答题(共72分,17—26题每小题5分,27题7分,28题7分,29题8分) 17.解:2sin 603tan 302tan 60cos 45︒+︒-︒⋅︒.3322323232=⨯+⨯-⨯⨯ ...................................................................... 4分 236=-. ............................................................................................. 5分18.解:(1)a=1;…………………………………2分(2)x x y 32-=494932-+-=x x ………3分 49232--=)(x ……4分∴抛物线顶点坐标为)49,23(-…5分19..解:(1)如图所示,画图正确. ……………… 1分(2)C(-2,2) 或(2,-2),D(-4,-2)或(4,2).………5分20. 解:在BDC ∆中,090=∠C ,060=∠BDC ,32=DC∴tan60°=DCBC=3 ∴BC=6 …………………………………2分在ABC ∆中,52tan =A ,∴52AC BC =,……3分 ∴AC=15……………………………………4分 ∴AD=AC-CD=15-23……………………………5分21.证明:(1)∵AB ∥CD ∴∠B=∠C … 1分∵∠EAF=∠C ∴∠EAF=∠B …… 2分 又∵∠EFA=∠EFA ∴△AEF ∽△BAF …… 3分 (2)由(1)得AF EFBF AF=………… 4分 ∴AF 2=FE·FB=12 ∴AF 2 =235分22.解:延长DA 、CB 交于点E ………………………1分在Rt △CDE 中,tanC=23=CD DE , 21cos ==EC CD C ∴33=DE ,6=EC ………………………2分 AD=2AB ∴设k AB =,则k AD 2=∠C =60º,∠B =∠D =90º∴∠E =30º在Rt △ABE 中,21sin ==AE AB E ,33tan ==EB AB E ∴k AB AE 22==,k AB EB 33== ∴334==k DE 解得:433=k ………………………4分 ∴49=EB ∴415496=-=BC ………………………5分 23.解:(1)由图象知:3月份每件商品售价6元,成本1元,故可得,一件商品在3月份出售时的利润为5元.…………1分EACBDEBA DCF(2)由图知,抛物线的顶点为(6,4),故可设抛物线的解析式为Q=a (t-6)2+4. ∵抛物线过(3,1)点,∴a (3-6)2+4=1.解得a=-31故抛物线的解析式为Q=- 31 (x-6)2+4,即Q=- 31t 2+4t-8,其中t=3,4,5,6,7.…3分(3)设每件商品的售价M (元)与时间t (月)之间的函数关系式为M=kt+b . ∵线段经过(3,6)、(6,8)两点, ∴ 3k+b=66k+b=8.解得 k= 32,b=4.∴M=32t+4,其中t=3,4,5,6,7.一件商品的利润W (元)与时间t (月)的函数关系式为:W=M-Q=31 (t-5)2)+311其中t=3,4,5,6,7.当t=5时,W 有最小值为311元, 即30000件商品一个月内售完至少获利30000×311=110000(元). 答:该公司一个月内至少获利110000元.…………5分 24.解:(1)点E 是四边形ABCD 的边AB 上的相似点.理由:∵∠A = 55°, ∴∠ADE +∠DEA = 125°.∵∠DEC = 55°,∴∠BEC +∠DEA=125°. ∴∠ADE =∠BEC .∵∠A =∠B , ∴△ADE ∽△BEC .∴点E 是四边形ABCD 的AB 边上的相似点. ………………..2分(2)作图如下:……..4分 (3)32BCAB =………….. 5分 25.解:设塔高CD 为x ,则BD=x 33…………1分 由BD tan60°-BD tan45°=AB,得x-x 33=20,…………3分 解得:x=30+103答:塔高(30+103)米…………5分26.(1)证明:∵()()2411k k ∆=--⨯⨯-()22k =-,……………… 1分又∵2k >,∴20k ->.∴2(2)0k ->即0∆>.∴抛物线y = x 2 – kx+ k - 1与x 轴必有两个交点. ………… 2分(2) 解:∵抛物线y = x 2 – kx+ k - 1与x 轴交于A 、B 两点,∴令0y =,有210x kx k -+-=.解得:11x k x =-=或. ………3分∵2k >,点A 在点B 的左侧,∴()()1,0,1,0A B k -.∵抛物线与y 轴交于点C,∴()0,1C k -. …………… 4分 ∵在Rt AOC ∆中, tan 3OAC ∠=,∴tan 311OAC OC k OA ∠=-==, 解得4k =. ∴抛物线的表达式为243y x x =-+. ……………… 5分27.解:(1) 对称轴x=2,由二次函数的对称性,该二次函数一定点(1,0)9a+3b+3=0且a+b+3=0解得a=1,b=-2DCB A∴y=x 2 - 4x + 3 ………………………3分(2) x 的取值范围是_ x<1或x>3___;………………………5分(3) 方法一:由(1)ax 2 + bx + c = x 2 - 4x + 3∴y = x 2 - 4x + 3 – t①当△=0时,该函数图像与x 轴只有一个交点此时,△=(-4)2 -4(3-t)=0即4+4t=0∴t=-1②当该函数图像过(0,0)时,将(0,0)代入y = x 2 - 4x + 3 - t0=3 - t∴t=3此时与x 轴只有一个交点,而x>0,舍掉.综上,-1≤t<3………………………7分方法二: ①△=(-4)2 -4(3-t)≥0,解得t≥-1②x=0时,y≥0,或者x=213时,y≥0当x=0时,y=3-t≥0,∴t≤3而x>0,舍掉t=3.当x=213时,y=t -+⨯-⎪⎭⎫ ⎝⎛321342132≥0 即t -+-314449≥0,得到45≤t ∴t<3综合①②,-1≤t<3.…………………7分28.解:(1)AB=4EH ,CG=2EH ,2 ………3分 (2)2a ………4分 作EH ∥AB 交BG 于点H ,则△EHF ∽△ABF ∴,AB AF m AB mEH EH EF === ∵AB=CD ,∴CD mEH =EH ∥AB ∥CD ,∴△BEH ∽△BCG∴2CG BC EH BE==,∴CG=2EH ∴.22CD mEH m CG EH ==……6分 (3)mn …7分29.解:(1)∵抛物线y = mx 2+(m+2)x+2过点(2,4),∴13m =-. ∴抛物线表达式为215233y x x =-++. ………………………1分 ∴A(-1,0),B(6,0),C(0,2) .作BM ⊥CD ,交CD 延长线于点M ,在Rt △DOC 中,∵OC=OD=2,∴∠CDO =∠BDM =45o ,CD=22.在Rt △BMD 中,∵BD=4,aa a a a∴DM=BM=22.在Rt △CMB 中,221tan 242BM BCM CM ∠===. 在Rt △AOC 中,1tan 2OA ACO OC ∠==. ∴tan ∠BCM =tan ∠ACO .∴∠BCD =∠ACO . ………………………………………………2分(2)①12(4,)3E ,262(610,10)55E -. …………………………4分 ②设215(,2)33P x x x -++, 过点P 作x 轴的垂线,垂足为点F ,交CD 延长线于点Q ,直线CD 的解析式为y =-x +2.∴Q(x ,-x +2).CDP CPQ DPQ S S S ∆∆∆=-1122PQ OF PQ DF =⋅-⋅12PQ OD =⋅. ∴21833CDP S x x ∆=-+(0<x <6).………5分 当x =4时,CDP S ∆最大,此时10(4,)3P . ……………6分 直线PD 的解析式为51033y x =-. 直线CB 的解析式为123y x =-+. PD 与CB 的交点为810(,)39E . ………………………7分 ∴当△CDP 的面积最大时,点E 坐标为810(,)39.。

相关文档
最新文档