高考理科数学第1讲 等差数列、等比数列(小题速做)
等差数列与等比数列专题辅导(小编推荐)
等差数列与等比数列专题辅导(小编推荐)第一篇:等差数列与等比数列专题辅导(小编推荐)等差数列与等比数列专题辅导(1)在等差数列{an}中, a7=9, a13=-2, 则a25=()A-22B-24C60D64(2)在等比数列{an}中, 存在正整数m, 有am=3,am+5=24, 则am+15=()A864B1176C1440D1536(3)已知等差数列{an}的公差为2,若a1,a3,a4成等比数列, 则a2=()A–4B–6C–8D–10(4)设数列{an}是等差数列,且a2=-6,a8=6,Sn是数列{an}的前n 项和,则()AS4>S3BS4=S2CS6(5)已知由正数组成的等比数列{an}中,公比q=2, a1·a2·a3·…·a30=245, 则a1·a4·a7·…·a28=5101520A 2B2C2D2(6)若{an}是等差数列,首项a1>0,a2003+a2004>0,a2003.a2004<0,则使前n项和Sn>0成立的最大自然数n是:()A.4005B.4006C.4007D.4008(7)在等比数列{an}中, a1<0, 若对正整数n都有anAq>1B0a1(3n-1)(8)设数列{an}的前n项和为Sn,Sn=(对于所有n≥1),且a4=54,则a1=__________.2(9)等差数列{an}的前m项和为30, 前2m项和为100, 则它的前3m项和为_________.(10)定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列, 且a1=2, 公和为5,那么a18的值为_______,这个数列的前21项和S21的值为.(11)已知等差数列{an}共2n+1项, 其中奇数项之和为290, 偶数项之和为261,求第n+1项及项数2n+1的值.(12)设{an}是一个公差为d(d≠0)的等差数列,它的前10项和S10=110且a1,a2,a4成等比数列.(Ⅰ)证明a1=d;(Ⅱ)求公差d的值和数列{an}的通项公式.(13)已知等比数列{an}的各项都是正数, Sn=80, S2n=6560, 且在前n项中, 最大的项为54, 求n的值.(14)ΔOBC的三个顶点坐标分别为(0,0)、(1,0)、(0,2), 设P1为线段BC的中点,P2为线段CO的中点,P3为线段OP1的中点,对于每一个正整数n, Pn+3为线段PnPn+1的中点,令Pn的坐标为(xn,yn), an=(Ⅰ)求a1,a2,a3及an;(Ⅱ)证明yn+4=1-(Ⅲ)若记bn=y4n+41yn+yn+1+yn+2.2yn,n∈N*;4-y4n,n∈N*,证明{bn}是等比数列.答案:1-7 BDBDA BB8.29.21010.3, 5211.29, 1912.(2)d=2 an=2n13.n=414.(1)an=2(2)(3)证明略第二篇:等差数列与等比数列等差数列与等比数列⎧>0,递增数列⎪一、等差数列的定义:an+1-an=d(d:公差)(常数)⎨=0,常数列,⎪<0,递减数列⎩1.证明数列{an}为等差数列:(1)定义:an+1-an=d(常数)(2)等差中项:2an+1=an+an+2注:(1)不可用a2-a1=a3-a2=a4-a3=Λ=“常数”证(2)a1=⎨例1.(1)已知数列{an}为等差数列,求证:数列{an+an+1}为等差数列;变式:①已知数列{an}为等差数列,求证:数列{an+t}(t为常数)为等差数列;②已知数列{an}为等差数列,求证:数列{tan}(t为常数)为等差数列;③已知数列{an}、{bn}均为等差数列,求证:数列{an+bn}为等差数列(2)已知数列{an}的前n项和为Sn,且Sn=n2,求证:数列{an}为等差数列;变式:①已知数列{an}的前n项和为Sn,且Sn=n2+1,求:an②已知数列{an}的前n项和为Sn,且Sn=an2+bn,求:an ③已知数列{an}的前n项和为Sn,且Sn=an2+bn+c,求:an(3)已知数列{an}满足:a1=1,an+1=数列;(4)已知数列{an},a1=1,an+1=为等差数列(5)设数列{an}的前n项和为Sn,求证:数列{an}为等差数列的充要条件是{an}为等差数列⎧S1,n=1⎩Sn-Sn-1,n≥2an1,且bn=,求证:数列{bn}为等差an+1ann1an+,且bn=nan,求证:数列{bn}n+1n+1Sn=n(a1+an)22.证明数列{an}为单调数列:an+1-an=f(n)⎨⎧>0,递增数列递减数列⎩<0,注:(1)求数列{an}中an的极值也可采用此方法(2)已知数列{an}为等差数列ⅰ.若a1<0,d>0,则Sn有最小值;解法:①令an≤0{bn}②Snⅱ.若a1>0,d<0,则Sn有最大值;解法:①令an≥0②Sn例2.已知an=(11-2n)2n,求数列{an}的最大项例3.(1)已知等差数列{an}的前n项和为Sn,且an=10-2n,求Sn的最大值;(2)已知等差数列{an}的前n项和为Sn,且an=2n-13,求Sn的最小值;3.叠加法:已知a1=a,an+1-an=f(n),求an例4.(1)已知数列{an}为等差数列,首项为a1,公差为d,求an;(2)已知数列{an},a1=1,an+1=4.通项公式:an=a1+(n-1)d(1)an=am+(n-m)d(2)an是关于n的一次函数,且n的系数为公差d.例5.已知数列{an}为等差数列,a5=-3,a9=13,求an5.等差中项:若a、b、c成等差数列,则b=(1)若数列{an}为等差数列,则2an+1n+11an+,求an nna+c称为a、c的等差中项2=an+an+2;(2)若已知三个数成等差数列,且其和为定值,则可设这三个数为a-d、a、a+d;(3)若数列{an}为等差数列,且公差d≠0,则am+an=ap+aq⇔m+n=p+q(4)在有穷等差数列{an}中,与首尾两项距离相等的两项的和等于首尾两项的和.即:a1+an=a2+an-1=a3+an-2=Λ=ak+an-k+1例6.(1)已知:等差数列中连续三项的和为21,平方和为179,求这三项(2)在3与19之间插入3个数后成等差数列,求这三个数(3)已知:a、b、c成等差数列求证:①b+c、a+c、a+b成等差数列;②a(b+c)、b(a+c)、c(a+b)成等差数列;③a-bc、b-ac、c-ab 成等差数列(4)已知:a、b、c成等差数列,求证:2222111成等差数列 b+ca+ca+blg(a-c)、lg(a+c-2b)成等差(5)已知:成等差数列,求证:lg(a+c)、数列(6)若方程a(b-c)xb(c-a)x+c(a-b)=0有相等实根,求证:成等差111abc111abc数列例7.在等差数列{an}中,(1)若a5+a10=12,求S14;(2)若a8=m,求S15;(3)若a4+a6+a15+a17=50,求S20;(4)若a2+a4=18,a3+a5=32,求S6;(5)若a2+a5+a12+a15=36,求S16;(6)若a3+a4+a5+a6+a7=450,求a2+a8(7)若等差数列{an}的各项都是负数,且a32+a82+2a3⋅a8=9,则其前10项和S10= ____________(8)在等差数列{an}中,若a3+a15=a5+an,则n=_______6.数列{an}的前n项和Sn=注:(1)倒序法求和;(2)等差数列{an}的前n项和Sn是关于自然数n的二次函数,且n的系数为n(a1+an)n(n-1)n(n-1)=na1+d=nan-d 222d,2常数项为零,即:Sn=An2+Bn(当A=0时数列{an}为常数列);(3)①S2n-1=(2n-1)an(可以将项与和之间进行相互转化)。
2020年高考数学(理)总复习:等差数列与等比数列(原卷版)
2020年高考数学(理)总复习:等差数列与等比数列题型一 等差、等比数列的基本运算 【题型要点】方程思想在等差(比)数列的基本运算中的运用等差(比)数列的通项公式、求和公式中一共包含a 1、d (或q )、n 、a n 与S n 这五个量,如果已知其中的三个,就可以求其余的两个.其中a 1和d (或q )是两个基本量,所以等差数列与等比数列的基本运算问题一般先设出这两个基本量,然后根据通项公式,求和公式构建这两者的方程组,通过解方程组求其值,这也是方程思想在数列问题中的体现.【例1】等比数列{a n }的前n 项和为S n ,已知a 2a 5=2a 3,且a 4与2a 7的等差中项为54,则S 5等于( )A .29B .31C .33D .36【例2】.{}a n 是公差不为0的等差数列,满足a 24+a 25=a 26+a 27,则该数列的前10项和S 10等于( )A .-10B .-5C .0D .5【例3】.已知递增数列{a n }对任意n ∈N *均满足a n ∈N *,aa n =3n ,记b n =a 2·3n -1(n ∈N *),则数列{b n }的前n 项和等于( )A .2n +nB .2n +1-1 C.3n +1-3n2D.3n +1-32题组训练一 等差、等比数列的基本运算1.设等差数列{a n }的前n 项和为S n ,若a 3+a 5=4,S 15=60则a 20等于( ) A .4 B .6 C .10 D .122.在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 8+a 10)=36,则a 6等于( ) A .8 B .6 C .4 D .33.已知等比数列{a n }的前n 项和为S n ,a 1+a 3=30,S 4=120,设b n =1+log 3a n ,那么数列{b n }的前15项和为( )A .152B .135C .80D .16 题型二 等差、等比数列的性质及应用 【题型要点】(1)解决此类问题的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.(2)等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.【例4】已知数列{a n },{b n }满足b n =log 2a n ,n ∈N *,其中{b n }是等差数列,且a 8·a 2 008=14,则b 1+b 2+b 3+…+b 2 015等于( ) A .log 22 015B .2 015C .-2 015D .1 0082.各项均为正数的等比数列{a n }的前n 项和为S n ,若S 4=10,S 12=130,则S 8等于( ) A .-30 B .40 C .40或-30D .40或-503.等比数列{a n }的首项为32,公比为-12,前n 项和为S n ,则当n ∈N *时,S n -1S n的最大值与最小值之和为( )A .-23B .-712C.14D.56题组训练二 等差、等比数列的性质及应用1.在等比数列{a n }中,a 3,a 15是方程x 2-7x +12=0的两根,则a 1a 17a 9的值为( )A .2 3B .4C .±2 2D .±4 2.设公差为d 的等差数列{a n }的前n 项和为S n ,若a 1=1,-217<d <-19,则当S n 取最大值时n 的值为________.3.若{a n }是等差数列,首项a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,则使前n 项和S n>0成立的最大正整数n 是( )A .2 016B .2 017C .4 032D .4 033题型三 等差、等比数列的综合问题 【题型要点】关于等差、等比数列的综合问题多属于两者运算的综合题以及相互之间的转化,关键是求出两个数列的基本量:首项和公差(或公比),灵活运用性质转化条件,简化运算,准确记忆相关的公式是解决此类问题的关键.【例3】已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6. (1)求数列{a n }的通项公式a n 与前n 项和S n ;(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ恒成立,求实数λ的取值范围.题组训练三 等差、等比数列的综合问题已知数列{a n }中,a 1=1,a n ·a n +1=n⎪⎭⎫⎝⎛21,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N *.(1)判断数列{b n }是否为等比数列,并求出b n ; (2)求T 2n .题型四 数列与其他知识的交汇 【题型要点】数列在中学教材中既有相对独立性,又有较强的综合性,很多数列问题一般转化,特殊数列求解,一些题目常与函数、向量、三角函数、解析几何等知识交汇结合,考查数列的基本运算与应用.【例4】 已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 2 016OC →,且A ,B ,C 三点共线(该直线不过点O ),则S 2 016等于( )A .1 007B .1 008C .2 015D .2 016题组训练四 数列与其他知识的交汇1.在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为( )A.12B.32C .1D .-322.已知各项都为正数的等比数列{a n }满足a 7=a 6+2a 5,存在两项a m ,a n 使得 a m ·a n =4a 1,则1m +4n的最小值为( )A.32B.53C.256D.433.艾萨克·牛顿(1643年1月4日-1727年3月31日)英国皇家学会会长,英国著名物理学家,同时在数学上也有许多杰出贡献,牛顿用“作切线”的方法求函数f (x )的零点时给出一个数列{}x n 满足x n +1=x n -f (x n )f ′(x n ),我们把该数列称为牛顿数列.如果函数f (x )=ax 2+bx +c (a >0)有两个零点1,2,数列{}x n 为牛顿数列,设a n =ln x n -2x n -1,已知a 1=2,x n >2,则{}a n 的通项公式a n =________.【专题训练】 一、选择题1.等比数列{a n }中,a 4=2,a 7=5,则数列{lg a n }的前10项和等于( ) A .2 B .lg 50 C .10D .52.在正项等比数列{a n }中,已知a 3a 5=64,则a 1+a 7的最小值为( ) A .64B .32C .16D .83.一个等比数列的前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列的项数是( )A .13B .12C .11D .104.在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n 等于( )A .n (3n -1)B.n (n +3)2C .n (n +1)D.n (3n +1)25.记S n 为正项等比数列{a n }的前n 项和,若S 12-S 6S 6-7·S 6-S 3S 3-8=0,且正整数m ,n满足a 1a m a 2n =2a 35,则1m +8n的最小值是( ) A.157 B.95 C.53D.756.数列{}a n 是以a 为首项,b 为公比的等比数列,数列{}b n 满足b n =1+a 1+a 2+…+a n (n =1,2,…),数列{}c n 满足c n =2+b 1+b 2+…+b n (n =1,2,…),若{}c n 为等比数列,则a +b 等于( )A. 2 B .3 C. 5 D .6二、填空题7.数列{a n }的通项a n =n 2·⎪⎭⎫ ⎝⎛-3sin 3cos22ππn n ,其前n 项和为S n ,则S 30=________. 8.已知数列{a n }满足a 1=2,且a n =2na n -1a n -1+n -1(n ≥2,n ∈N *),则a n =________.9.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?( )A .8日B .9日C .12日D .16日10.数列{log k a n }是首项为4,公差为2的等差数列,其中k >0,且k ≠1.设c n =a n lg a n ,若{c n }中的每一项恒小于它后面的项,则实数k 的取值范围为________.三、解答题11.已知数列{}a n 的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值;(2)是否存在常数λ,使得数列{a n +λ}为等比数列?若存在,求出λ的值和通项公式a n ;若不存在,请说明理由.12.已知数列{a n }的前n 项和为S n ,且S n -1=3(a n -1),n ∈N *. (1)求数列{a n }的通项公式;(2)设数列{b n }满足a n +1=⎪⎭⎫⎝⎛23a n ·b n ,若b n ≤t 对于任意正整数n 都成立,求实数t 的取值范围.。
2023年高考数学----等差、等比数列的基本量问题规律方法与典型例题讲解
2023年高考数学----等差、等比数列的基本量问题规律方法与典型例题讲解 【规律方法】利用等差数列中的基本量(首项,公差,项数),等比数列的基本量(首项,公比,项数)翻译条件,将问题转换成含基本量的方程或不等式问题求解.【典型例题】例1.(2022·全国·模拟预测)已知等差数列{}n a 的前n 项和为n S ,且292521a a +=,1768S =,则3a =( ) A .4 B .3 C .2 D .1【答案】D【解析】设等差数列{}n a 的公差为d , 由已知1112()5(8)21171617682a d a d a d +++=⎧⎪⎨⨯+=⎪⎩, 解得1120d a ⎧=⎪⎨⎪=⎩, 310212a ∴=+⨯=故选:D.例2.(2022·江西·临川一中高三阶段练习(文))已知数列{}n a 满足13a =,11n n a a +=+,则10a =( ) A .80 B .100C .120D .143【答案】C【解析】因为11n n a a +=+,所以2111n a ++=+,即)2111n a ++=,11=,所以数列2,公差为1的等差数列,2(1)11n n+−⨯=+,所以22na n n=+,所以2101020120a=+=.故选:C.例3.(2022·新疆·高三期中(理))已知一个项数为偶数的等比数列{}n a,所有项之和为所有奇数项之和的3倍,前4项之积为64,则1a=()A.1 B.1−C.2 D.1或1−【答案】D【解析】设首项为1a,公比为q,数列共有2n项,则{}21n a−满足首项为1a,公比为2q,项数为n项,设所有奇数项之和为n T,因为所有项之和是奇数项之和的3倍,所以1q≠,所以()()211321211nn na qT a a aq−−=++=−,()21211nna qSq−=−,故满足()()()21221211311nnnna qS qT a qq−−==−−,解得2q=,又461234164a a a a a q⋅⋅⋅=⋅=,所以11a=±.故选:D例4.(2022·全国·高三阶段练习(文))已知公差不为零的等差数列{}n a中,3514a a+=,且1a,2a,5a成等比数列,则数列{}n a的前9项的和为()A.1 B.2 C.81 D.80【答案】C【解析】因为3514a a+=,所以4214a=,解得47a=.又1a ,2a ,5a 成等比数列,所以2215a a a =.设数列{}n a 的公差为d ,则()()()244423a d a d a d −=−+,即()()()272737d d d −=−+,整理得220d d −=.因为0d ≠,所以2d =. 所以()()199991178122a a S ⨯+⨯+===. 故选:C.例5.(2022·重庆八中高三阶段练习)已知数列{}n a 满足21121411,,32n n n na a a a a a +++===,则5a =( ) A .122− B .102−C .92−D .82−【答案】D【解析】∵11a =,2132a =,2114n n n n a a a a +++=, ∴数列1n n a a +⎧⎫⎨⎬⎩⎭是首项为21132=a a ,公比为4的等比数列,∴311144322n n n n a a −−+=⨯=, 当2n ≥时,111(1)(6)4521221121114441422−−−−−−−−−−⎛⎫⎛⎫=⋅⋅⋅⋅=⨯⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭n n n n n n n n n n n a a a a a a a a2872−+=nn ,∵n =1时,187121−+==a ,∴2872−+=nn n a ,254078522−+−==a ,故选:D.例6.(2022·湖北·高三阶段练习)在公差不为零的等差数列{}n a 中,11a =,且1a ,3a ,13a 成等比数列,设数列{}12nn a +⋅的前n 项和为n T ,则7T =( )A .9322⨯+B .71128⨯+C .81322⨯+D .71324⨯+【答案】C【解析】设等差数列{}n a 的公差为()0d d ≠,由1a ,3a ,13a 成等比数列,得23113a a a =⋅,即()212112d d +=+,解得2d =或0d =(舍去),所以21n a n =−.从而()12212n nn a n +⋅=+⋅,故()123325272212n n T n =⨯+⨯+⨯+++⋅,()()23123252212212n n n T n n +=⨯+⨯++−⋅++⋅,两式相减,得()()211231122322222222126221212n nn n n T n n +++−−=⨯+⨯+⨯++⨯−+⋅=+⨯−+⋅−()12122n n +=−−⋅−,所以()12122n n T n +=−⋅+.所以871322T =⨯+.故选:C.例7.(2022·江苏无锡·高三期中)已知两个等差数列2,6,10,…,198及2,8,14,…,200,将这两个等差数列的公共项按从小到大的顺序组成一个新数列,则这个新数列的各项之和为( ) A .1460 B .1472 C .1666 D .1678【答案】C【解析】有两个等差数列2,6,10,...,198及2,8,14, (200)由这两个等差数列的公共项按从小到大的顺序组成一个新数列,2,14,26,38,50,…,182,194是两个数列的相同项. 共有194211712−+=个,也是等差数列, 它们的和为21941716662+⨯=, 这个新数列的各项之和为1666. 故选:C.。
2022-2021年南方新课堂·高考数学(理科)二轮复习测试:专题三第1讲等差数列与等比数列
专题三 数列第1讲 等差数列与等比数列一、选择题1.(2022·云南昆明一中第六次考前强化)已知等差数列{a n }的前n 项和为S n ,若a 3+a 5=8,则S 7=( )A .28B .32C .56D .24 解析:S 7=7×(a 1+a 7)2=7×(a 3+a 5)2=28.故选A.答案:A2.等比数列{a n }的前n 项和为S n ,若2S 4=S 5+S 6,则数列{a n }的公比q 的值为( )A .-2或1B .-1或2C .-2D .1解析:法一:若q =1, 则S 4=4a 1,S 5=5a 1,S 6=6a 1, 明显不满足2S 4=S 5+S 6,故A 、D 错. 若q =-1,则S 4=S 6=0,S 5=a 5≠0, 不满足条件,故B 错,因此选C. 法二:经检验q =1不适合, 则由2S 4=S 5+S 6,得2(1-q 4)=1-q 5+1-q 6,化简得q 2+q -2=0,解得q =1(舍去),q =-2. 答案:C3.(2022·吉林长春质量检测)设等差数列{a n }的前n 项和为S n ,a 1>0且a 6a 5=911,则当S n 取最大值时,n 的值为( )A .9B .10C .11D .12解析:由题意,不妨设a 6=9t ,a 5=11t ,则公差d =-2t ,其中t >0,因此a 10=t ,a 11=-t ,即当n =10时,S n 取得最大值.答案:B4.(2022·安徽六安一中综合训练)在各项均为正数的等比数列{a n }中,若a m +1·a m -1=2a m (m ≥2),数列{a n }的前n 项积为T n ,若T 2m -1=512,则m 的值为( )(导学号 55460115)A .4B .5C .6D .7解析:由等比数列的性质可知a m +1·a m -1=a 2m =2a m (m ≥2),∴a m =2,即数列{a n }为常数列,a n =2,∴T 2m -1=22m -1=512=29,即2m -1=9,所以m =5. 答案:B5.(2022·辽宁东北育才学校五模)已知等比数列{a n }的各项都是正数,且3a 1,12a 3,2a 2成等差数列,则a 8+a 9a 6+a 7=( )(导学号 55460116) A .6 B .7 C .8 D .9解析:∴3a 1,12a 3,2a 2成等差数列,∴a 3=3a 1+2a 2,∴q 2-2q -3=0,∴q =3或q =-1(舍去). ∴a 8+a 9a 6+a 7=a 1q 7+a 1q 8a 1q 5+a 1q 6=q 2+q 31+q =q 2=32=9. 答案:D 二、填空题6.各项均不为零的等差数列{a n }中,a 1=2,若a 2n -a n -1-a n +1=0(n ∈N *,n≥2),则S 2 016=________.解析:由于a 2n -a n -1-a n +1=0(n ∈N *,n ≥2),即a 2n -2a n =0,∴a n =2,n ≥2,又a 1=2,∴a n =2,n ∈N *,故S 2 016=4 032.答案:4 0327.(2022·浙江卷)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.解析:∵a n +1=2S n +1,∴S n +1-S n =2S n +1, ∴S n +1=3S n +1,∴S n +1+12=3⎝ ⎛⎭⎪⎫S n +12,∴数列⎩⎨⎧⎭⎬⎫S n +12是公比为3的等比数列, ∴S 2+12S 1+12=3.又S 2=4,∴S 1=1,∴a 1=1,∴S 5+12=⎝ ⎛⎭⎪⎫S 1+12×34=32×34=2432,∴S 5=121. 答案:1 1218.(2022·广东3月测试)已知数列{a n }的各项均为正数,S n 为其前n 项和,且对任意n ∈N *,均有a n ,S n ,a 2n 成等差数列,则a n =________.解析:∵a n ,S n ,a 2n 成等差数列,∴2S n =a n +a 2n .当n =1时,2a 1=2S 1=a 1+a 21. 又a 1>0,∴a 1=1.当n ≥2时,2a n =2(S n -S n -1)=a n +a 2n -a n -1-a 2n -1,∴(a 2n -a 2n -1)-(a n +a n -1)=0,∴(a n +a n -1)(a n -a n -1)-(a n +a n -1)=0, 又a n +a n -1>0,∴a n -a n -1=1,∴{a n }是以1为首项,1为公差的等差数列, ∴a n =n (n ∈N *). 答案:n 三、解答题9.已知等差数列{a n }满足a 3=2,前3项和S 3=92.(导学号 55460117) (1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n . 解:(1)设{a n }的公差为d ,则由已知条件得 a 1+2d =2,3a 1+3×22d =92,化简得a 1+2d =2,a 1+d =32,解得a 1=1,d =12,故{a n }的通项公式a n =1+n -12,即a n =n +12.(2)由(1)得b 1=1,b 4=a 15=15+12=8.设{b n }的公比为q ,则q 3=b 4b 1=8,从而q =2, 故{b n }的前n 项和T n =b 1(1-q n )1-q =1×(1-2n )1-2=2n -1.10.(2021·广东卷)设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1. (导学号 55460118) (1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列; (3)求数列{a n }的通项公式.(1)解:当n =2时,4S 4+5S 2=8S 3+S 1,即4(a 1+a 2+a 3+a 4)+5(a 1+a 2)=8(a 1+a 2+a 3)+a 1, 整理得a 4=4a 3-a 24,又a 2=32,a 3=54,所以a 4=78.(2)证明:当n ≥2时,有4S n +2+5S n =8S n +1+S n -1, 即4S n +2+4S n +S n =4S n +1+4S n +1+S n -1, ∴4(S n +2-S n +1)=4(S n +1-S n )-(S n -S n -1), 即a n +2=a n +1-14a n (n ≥2).经检验,当n =1时,上式成立.∵a n +2-12a n +1a n +1-12a n =⎝ ⎛⎭⎪⎫a n +1-14a n -12a n +1a n +1-12a n =12⎝ ⎛⎭⎪⎫a n +1-12a n a n +1-12a n=12为常数,且a 2-12a 1=1,∴数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以1为首项,12为公比的等比数列.(3)解:由(2)知,a n +1-12a n =12n -1(n ∈N *),等式两边同乘2n ,得2n a n +1-2n -1a n =2(n ∈N *). 又20a 1=1,∴数列{2n -1a n }是以1为首项,2为公差的等差数列. ∴2n -1a n =2n -1, 即a n =2n -12n -1(n ∈N *).则数列{a n }的通项公式为a n =2n -12n -1(n ∈N *).11.已知数列{a n }的各项均为正数,前n 项和为S n ,且S n =a n (a n +1)2(n ∈N *).(导学号 55460119)(1)求证:数列{a n }是等差数列;(2)设b n =1S n ,T n =b 1+b 2+…+b n ,求T n .(1)证明:S n =a n (a n +1)2(n ∈N *),①S n -1=a n -1(a n -1+1)2(n ≥2).②①-②得:a n =a 2n +a n -a 2n -1-a n -12(n ≥2),整理得:(a n +a n -1)(a n -a n -1)=(a n +a n -1)(n ≥2). ∵数列{a n }的各项均为正数, ∴a n +a n -1≠0, ∴a n -a n -1=1(n ≥2). 当n =1时,a 1=1,∴数列{a n }是首项为1,公差为1的等差数列. (2)解:由(1)得S n =n 2+n2,∴b n =2n 2+n =2n (n +1)=2⎝ ⎛⎭⎪⎪⎫1n -1n +1, ∴T n =2⎣⎢⎡⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎦⎥⎥⎤⎝ ⎛⎭⎪⎪⎫1n -1n +1=2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1.。
高考数学复习——数列、等差数列与等比数列(小题)
高考数学复习——数列、等差数列与等比数列(小题)
热点一 等差数列、等比数列的基本运算
1.等差数列、等比数列的基本公式(n ∈N *)
等差数列的通项公式:a n =a 1+(n -1)d ;
等比数列的通项公式:a n =a 1·q n -1.
等差数列的求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2
d ; 等比数列的求和公式:S n =⎩⎪⎨⎪⎧ a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1,na 1,q =1.
2.等差数列、等比数列问题的求解策略
(1)抓住基本量,首项a 1、公差d 或公比q ;
(2)熟悉一些结构特征,如前n 项和为S n =an 2+bn (a ,b 是常数)的形式的数列为等差数列,通项公式为a n =p ·q n -1(p ,q ≠0)的形式的数列为等比数列;
(3)由于等比数列的通项公式、前n 项和公式中变量n 在指数位置,所以常用两式相除(即比值的方式)进行相关计算.
例1 (1)(2019·柳州模拟)已知点(n ,a n )在函数f (x )=2x
-1的图象上(n ∈N *).数列{a n }的前n 项和为S n ,设b n
=164
n S +,数列{b n }的前n 项和为T n .则T n 的最小值为________. 答案 -30
解析 ∵点(n ,a n )在函数y =2x -1的图象上,
∴a n =2n -1,
∴{a n }是首项为a 1=1,公比q =2的等比数列,。
第1讲 等差数列与等比数列
q
,
所
以
a2+a3+a4 a1+a2+a3
=
(aa11++aa22++aa33)q=q=2,由 a1+a2+a3=a1(1+q+q2)=a1(1+2+22)=1,解
得 a1=17,所以 a6+a7+a8=a1(q5+q6+q7)=17×(25+26+27)=17×25×(1+2
+22)=32,故选 D.
a1=1,故 S6=6+6×2 5×2=36,选 A.
上一页
返回导航
下一页
第二部分 专题三 数 列
9
2.(2020·湖北八校第一次联考)已知数列{an}是等比数列,a2=1,a5=-18,
若 Sk=-181,则 k=________. 解析:设等比数列{an}的公比为 q,因为 a2=1,a5=-18,所以 q3=-18,解
上一页
返回导航
下一页
第二部分 专题三 数 列
16
(2)设等比数列{an}的公比为 q,因为 a3,a15 是方程 x2+6x+2=0 的两个根, 所以 a3a15=a29=2,a3+a15=-6,所以 a3<0,a15<0,则 a9=- 2,所以a2aa916 =aa299=a9=- 2. 【答案】 (1)D (2)B
上一页
返回导航
下一页
第二部分 专题三 数 列
13
(2)在等比数列{an}中,a3,a15 是方程 x2+6x+2=0 的两个根,则a2aa916的值 为( )
A.-2+2 2
B.- 2
C. 2
D.- 2或 2
上一页
返回导航
下一页
第二部分 专题三 数 列
14
【解析】
(1) 方 法 一 : 设 等 比 数 列 {an} 的 公 比 为
高考数学二轮复习专题4数列第1讲等差数列与等比数列理
第1讲等差数列与等比数列等差、等比数列的基本运算1.(2015新课标全国卷Ⅰ)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和.若S8=4S4,则a10等于( B )(A)(B)(C)10 (D)12解析:设等差数列{a n}的首项为a1,公差为d.由题设知d=1,S8=4S4,所以8a1+28=4(4a1+6),解得a1=,所以a10=+9=,选B.2.(2015辽宁省锦州市质量检测(一))已知各项不为0的等差数列{a n}满足a4-2+3a8=0,数列{b n}是等比数列,且b7=a7,则b2b8b11等于( D )(A)1 (B)2 (C)4 (D)8解析:因为a4-2+3a8=0,所以a1+3d-2+3(a1+7d)=0,所以4(a1+6d)-2=0,即4a7-2=0,又a7≠0,所以a7=2,所以b7=2,所以b2b8b11=b1q·b1q7·b1q10=(b1q6)3==8.故选D.3.(2015河南郑州第二次质量预测)设等比数列{a n}的前n项和为S n,若27a3-a6=0,则= .解析:设等比数列公比为q(q≠1),因为27a3-a6=0,所以27a3-a3q3=0,所以q3=27,q=3,所以====28.答案:28等差、等比数列的性质及应用4.(2015河南省六市第二次联考)已知数列{a n}为等比数列,若a4+a6=10,则a7(a1+2a3)+a3a9的值为( C )(A)10 (B)20 (C)100 (D)200解析:a7(a1+2a3)+a3a9=a1a7+2a3a7+a3a9=+2a4a6+=(a4+a6)2=102=100.故选C.5.设等比数列{a n}中,前n项和为S n,已知S3=8,S6=7,则a7+a8+a9等于( A )(A)(B)-(C)(D)解析:因为a7+a8+a9=S9-S6,在等比数列中S3,S6-S3,S9-S6也成等比数列,即8,-1,S9-S6成等比数列,所以有8(S9-S6)=1,即S9-S6=.故选A.6.(2015新课标全国卷Ⅱ)已知等比数列{a n}满足a1=,a3a5=4(a4-1),则a2等于( C )(A)2 (B)1 (C)(D)解析:法一根据等比数列的性质,结合已知条件求出a4,q后求解.因为a3a5=,a3a5=4(a4-1),所以=4(a4-1),所以-4a4+4=0,所以a4=2.又因为q3===8,所以q=2,所以a2=a1q=×2=.故选C.法二直接利用等比数列的通项公式,结合已知条件求出q后求解.因为a3a5=4(a4-1),所以a1q2·a1q4=4(a1q3-1),将a1=代入上式并整理,得q6-16q3+64=0,解得q=2,所以a2=a1q=.故选C.7.(2015哈师大附中、东北师大附中、辽宁实验中学第一次联合模拟)设S n是公差不为零的等差数列{a n}的前n项和,且a1>0,若S5=S9,则当S n最大时,n等于( B )(A)6 (B)7 (C)8 (D)9解析:依题意得S9-S5=a6+a7+a8+a9=0,所以2(a7+a8)=0,所以a7+a8=0,又a1>0,所以该等差数列的前7项为正数,从第8项开始为负数.所以当S n最大时,n=7.故选B.8.(2015东北三校第一次联合模拟)若等差数列{a n}中,满足a4+a6+a2010+a2012=8,则S2015= .解析:因为a4+a6+a2010+a2012=8,所以2(a4+a2012)=8,所以a4+a2012=4.所以S2015===4030.答案:4030等差、等比数列的综合问题9.(2015甘肃二诊)设等差数列{a n}的前n项和为S n,且满足S17>0,S18<0,则,,…,中最大的项为( C )(A)(B)(C)(D)解析:因为S17==17a9>0,S18==9(a10+a9)<0,所以a9>0,a10+a9<0,所以a10<0.所以等差数列为递减数列,则a1,a2,…,a9为正,a10,a11,…为负,S1,S2,…,S17为正,S18,S19,…为负,所以>0,>0,…,>0,<0,<0,…,<0,又S1<S2<…<S9,a1>a2>…>a9,所以,,…,中最大的项为.故选C.10.(2014辽宁卷)设等差数列{a n}的公差为d,若数列{}为递减数列,则( C )(A)d<0 (B)d>0(C)a1d<0 (D)a1d>0解析:因为数列{}为递减数列,a1a n=a1[a1+(n-1)d]=a1dn+a1(a1-d),等式右边为关于n的一次函数,所以a1d<0.11.(2015兰州高三诊断)在等比数列{a n}中,已知a1=2,a4=16.(1)求数列{a n}的通项公式;(2)若a3,a5分别为等差数列{b n}的第3项和第5项,试求数列{b n}的前n项和S n.解:(1)因为{a n}为等比数列,所以=q3=8;所以q=2.所以a n=2·2n-1=2n.(2)b3=a3=23=8,b5=a5=25=32,又因为{b n}为等差数列,所以b5-b3=24=2d,所以d=12,b1=a3-2d=-16,所以S n=-16n+×12=6n2-22n.一、选择题1.(2015云南第二次检测)设S n是等差数列{a n}的前n项和,若a1∶a2=1∶2,则S1∶S3等于( D )(A)1∶3 (B)1∶4 (C)1∶5 (D)1∶6解析:S1∶S3=a1∶(a1+a2+a3)=a1∶3a2,又a1∶a2=1∶2,所以S1∶S3=1∶6.故选D.2.(2015银川九中月考)已知数列{a n}的前n项和为S n,a1=1,S n=2a n+1,则S n等于( B )(A)2n-1 (B)()n-1(C)()n-1(D)解析:由S n=2a n+1得S n=2(S n+1-S n),所以S n+1=S n.所以{S n}是以S1=a1=1为首项,为公比的等比数列.所以S n=()n-1.故选B.3.(2015河北石家庄二模)等比数列{a n}的前n项和为S n,已知S3=a2+5a1,a7=2,则a5等于( A )(A)(B)-(C)2 (D)-2解析:设公比为q,因为S3=a2+5a1,所以a1+a2+a3=a2+5a1,所以a3=4a1,所以q2==4,又a7=2,所以a5===.故选A.4.已知{a n}为等比数列,a4+a7=2,a5a6=-8,则a1+a10等于( D )(A)7 (B)5 (C)-5 (D)-7解析:法一利用等比数列的通项公式求解.由题意得所以或所以a1+a10=a1(1+q9)=-7.法二利用等比数列的性质求解.由解得或所以或所以a1+a10=a1(1+q9)=-7.故选D.5.(2015兰州高三诊断)已知等差数列{a n}的前n项和为S n,若a4=18-a5,则S8等于( D )(A)18 (B)36 (C)54 (D)72解析:因为a4=18-a5,所以a4+a5=18,所以S8====72.故选D.6.(2014郑州市第二次质量预测)在数列{a n}中,a n+1=ca n(c为非零常数),前n项和为S n=3n+k,则实数k为( A )(A)-1 (B)0 (C)1 (D)2解析:由a n+1=ca n,可知{a n}是等比数列,设公比q,由S n=,得S n=-·q n+.由S n=3n+k,知k=-1.故选A.7.设{a n}是公差不为零的等差数列,满足+=+,则该数列的前10项和等于( C )(A)-10 (B)-5 (C)0 (D)5解析:设等差数列{a n}的首项为a1,公差为d(d≠0),由+=+得,(a1+3d)2+(a1+4d)2=(a1+5d)2+(a1+6d)2,整理得2a1+9d=0,即a1+a10=0,所以S10==0.故选C.8.(2015北京卷)设{a n}是等差数列,下列结论中正确的是( C )(A)若a1+a2>0,则a2+a3>0(B)若a1+a3<0,则a1+a2<0(C)若0<a1<a2,则a2>(D)若a1<0,则(a2-a1)(a2-a3)>0解析:因为{a n}为等差数列,所以2a2=a1+a3.当a2>a1>0时,得公差d>0,所以a3>0,所以a1+a3>2,所以2a2>2,即a2>,故选C.9.(2015大连市二模)已知等差数列{a n}的前n项和为S n,a2=4,S10=110,则的最小值为( C )(A)7 (B)(C)(D)8解析:设等差数列{a n}的公差为d,则解得所以a n=2+2(n-1)=2n,S n=2n+×2=n2+n,所以==++≥2+=.当且仅当=,即n=8时取等号.故选C.10.(2015福建卷)若a,b是函数f(x)=x2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于( D ) (A)6 (B)7 (C)8 (D)9解析:由题可知a,b是x2-px+q=0的两根,所以a+b=p>0,ab=q>0,故a,b均为正数.因为a,b,-2适当排序后成等比数列,所以-2是a,b的等比中项,得ab=4,所以q=4.又a,b,-2适当排序后成等差数列,所以-2是第一项或第三项,不妨设a<b,则-2,a,b成递增的等差数列,所以2a=b-2,联立消去b得a2+a-2=0,得a=1或a=-2,又a>0,所以a=1,此时b=4,所以p=a+b=5,所以p+q=9.故选D.二、填空题11.(2015黑龙江高三模拟)等差数列{a n}中,a4+a8+a12=6,则a9-a11= .解析:设等差数列{a n}公差为d,因为a4+a8+a12=6,所以3a8=6,即a8=a1+7d=2,所以a9-a11=a1+8d-(a1+10d)=a1+ d=(a1+7d)=×2=.答案:12.(2015宁夏石嘴山高三联考)若正项数列{a n}满足a2=,a6=,且=(n≥2,n∈N*),则log2a4= .解析:因为=(n≥2,n∈N*),所以=a n-1·a n+1,所以数列{a n}为等比数列.又a2=,a6=,所以q4==.因为数列为正项数列,所以q>0,所以q=.所以a4=a2q2=×=,所以log2a4=log2=-3.答案:-313.(2015安徽卷)已知数列{a n}中,a1=1,a n=a n-1+(n≥2),则数列{a n}的前9项和等于.解析:因为a1=1,a n=a n-1+(n≥2),所以数列{a n}是首项为1、公差为的等差数列,所以前9项和S9=9+×=27.答案:2714.(2015湖南卷)设S n为等比数列{a n}的前n项和.若a1=1,且3S1,2S2,S3成等差数列,则a n= .解析:设等比数列{a n}的公比为q(q≠0),依题意得a2=a1·q=q,a3=a1q2=q2, S1=a1=1,S2=1+q,S3=1+q+q2.又3S1,2S2,S3成等差数列,所以4S2=3S1+S3,即4(1+q)=3+1+q+q2,所以q=3(q=0舍去).所以a n=a1q n-1=3n-1.答案:3n-1。
高考数学二轮复习 专题3 数列 第一讲 等差数列与等比数列 理
高考数学二轮复习 专题3 数列 第一讲 等差数列与等比数列 理第一讲 等差数列与等比数列1.等差数列的定义.数列{a n }满足a n +1-a n =d (其中n∈N *,d 为与n 值无关的常数)⇔{a n }是等差数列. 2.等差数列的通项公式.若等差数列的首项为a 1,公差为d ,则a n =a 1+(n -1)d =a m +(n -m )d (n ,m ∈N *). 3.等差中项.若x ,A ,y 成等差数列,则A =x +y2,其中A 为x ,y 的等差中项.4.等差数列的前n 项和公式.若等差数列首项为a 1,公差为d ,则其前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d2.1.等比数列的定义. 数列{a n }满足a n +1a n=q (其中a n ≠0,q 是与n 值无关且不为零的常数,n ∈N *)⇔{a n }为等比数列.2.等比数列的通项公式.若等比数列的首项为a 1,公比为q ,则a n =a 1·q n -1=a m ·qn -m(n ,m ∈N *).3.等比中项.若x ,G ,y 成等比数列,则G 2=xy ,其中G 为x ,y 的等比中项,G 值有两个. 4.等比数列的前n 项和公式.设等比数列的首项为a 1,公比为q ,则S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q ,q ≠1.判断下面结论是否正确(请在括号中打“√”或“×”).(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.(×)(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.(√) (3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.(×) (4)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.(×) (5)G 为a ,b 的等比中项⇔G 2=ab .(×) (6)1+b +b 2+b 3+b 4+b 5=1-b51-b.(×)1.在等差数列{a n }中,a 2=1,a 4=5,则数列{a n }的前5项和S 5=(B ) A .7 B .15 C .20 D .25解析:2d =a 4-a 2=5-1=4⇒d =2,a 1=a 2-d =1-2=-1,a 5=a 2+3d =1+6=7,故S 5=(a 1+a 5)×52=6×52=15.2. (2015·北京卷)设{a n }是等差数列,下列结论中正确的是(C ) A .若a 1+a 2>0,则a 2+a 3>0 B .若a 1+a 3<0,则a 1+a 2<0 C .若0<a 1<a 2,则a 2>a 1a 3 D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0解析:设等差数列{a n}的公差为d,若a1+a2>0,a2+a3=a1+d+a2+d=(a1+a2)+2d,由于d正负不确定,因而a2+a3符号不确定,故选项A错;若a1+a3<0,a1+a2=a1+a3-d=(a1+a3)-d,由于d正负不确定,因而a1+a2符号不确定,故选项B错;若0<a1<a2,可知a1>0,d>0,a2>0,a3>0,∴a22-a1a3=(a1+d)2-a1(a1+2d)=d2>0,∴a2>a1a3,故选项C正确;若a1<0,则(a2-a1)(a2-a3)=d·(-d)=-d2≤0,故选项D错.3.(2015·新课标Ⅱ卷)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=(B)A.21 B.42C.63 D.84解析:∵ a1=3,a1+a3+a5=21,∴ 3+3q2+3q4=21.∴ 1+q2+q4=7.解得q2=2或q2=-3(舍去).∴a3+a5+a7=q2(a1+a3+a5)=2×21=42.故选B.4.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是(B)A.90 B.100C.145 D.190解析:设公差为d,则(1+d)2=1·(1+4d).∵d≠0,解得d=2,∴S10=100.一、选择题1.已知等差数列{a n}中,前n项和为S n,若a3+a9=6,则S11=(B)A.12 B.33 C.66 D.99解析:∵{a n}为等差数列且a3+a9=6,∴a 6+a 6=a 3+a 9=6. ∴a 6=3. ∴S 11=a 1+a 112×11=a 6+a 62×11=11a 6=11×3=33.2.在等比数列{a n }中,若a 1+a 2=20,a 3+a 4=40,则数列{a n }的前6项和S 6=(B ) A .120 B .140 C .160 D .180 解析:∵{a n }为等比数列,∴a 1+a 2,a 3+a 4,a 5+a 6为等比数列. ∴(a 3+a 4)2=(a 1+a 2)(a 5+a 6). 即a 5+a 6=(a 3+a 4)2a 1+a 2=40220=80.∴S 6=a 1+a 2+a 3+a 4+a 5+a 6=20+40+80=140.3.已知数列{a n }的前n 项和S n =n 2-2n -1,则a 3+a 17=(C ) A .15 B .17 C .34 D .398 解析:∵S n =n 2-2n -1, ∴a 1=S 1=12-2-1=-2. 当n ≥2时,a n =S n -S n -1=n 2-2n -1-[(n -1)2-2(n -1)-1] =n 2-(n -1)2+2(n -1)-2n -1+1 =n 2-n 2+2n -1+2n -2-2n =2n -3.∴a n =⎩⎪⎨⎪⎧-2,n =1,2n -3,n ≥2.∴a 3+a 17=(2×3-3)+(2×17-3)=3+31=34. 4.(2014·陕西卷)原命题为“若a n +a n +12<a n ,n ∈N *,则{a n }为递减数列”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是(A )A .真,真,真B .假,假,真C .真,真,假D .假,假,假 解析:由a n +a n +12<a n ⇒a n +1<a n ⇒{a n }为递减数列,所以原命题为真命题;逆命题:若{a n }为递减数列,则a n +a n +12<a n ,n ∈N +;若{a n }为递减数列,则a n +1<a n ,即a n +a n +12<a n ,所以逆命题为真;否命题:若a n +a n +12≥a n ,n ∈N +,则{a n }不为递减数列;由a n +a n +12≥a n ⇒a n ≤a n +1⇒{a n }不为递减数列,所以否命题为真;因为逆否命题的真假为原命题的真假相同,所以逆否命题也为真命题. 故选A.5.某棵果树前n 年的总产量S n 与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为(C )A .5B .7C .9D .11解析:由图可知6,7,8,9这几年增长最快,超过平均值,所以应该加入m =9,因此选C.二、填空题6.(2015·安徽卷)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于27.解析:由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9a 1+9×(9-1)2×12=9+18=27.7.设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =32. 解析:将S 2=3a 2+2,S 4=3a 4+2两个式子全部转化成用a 1,q 表示的式子,即⎩⎪⎨⎪⎧a 1+a 1q =3a 1q +2,a 1+a 1q +a 1q 2+a 1q 3=3a 1q 3+2,两式作差得:a 1q 2+a 1q 3=3a 1q (q 2-1),即:2q 2-q -3=0,解得q =32或q =-1(舍去).8.(2014·广东卷)等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=5.解析:由题意知a 1a 5=a 23=4,且数列{a n }的各项均为正数,所以a 3=2, ∴a 1a 2a 3a 4a 5=(a 1a 5)·(a 2a 4)·a 3=(a 23)2·a 3=a 53=25,∴log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2(a 1a 2a 3a 4a 5)=log 225=5. 三、解答题9.已知数列{a n }满足,a 1=1,a 2=2,a n +2 =a n +a n +12,n ∈N *.(1)令b n =a n +1-a n ,证明:{b n }是等比数列; (2)求{a n }的通项公式. 解析:(1)b 1=a 2-a 1=1, 当n ≥2时,b n =a n +1-a n =a n -1+a n2-a n =-12(a n -a n -1)=-12b n -1,所以{b n }是以1为首项,-12为公比的等比数列.(2)由(1)知b n =a n +1-a n =⎝ ⎛⎭⎪⎫-12n -1,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+1+⎝ ⎛⎭⎪⎫-12+…+⎝ ⎛⎭⎪⎫-12n -2=1+1-⎝ ⎛⎭⎪⎫-12n -11-⎝ ⎛⎭⎪⎫-12=1+23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n -1=53-23⎝ ⎛⎭⎪⎫-12n -1, 当n =1时,53-23⎝ ⎛⎭⎪⎫-121-1=1=a 1.所以a n =53-23⎝ ⎛⎭⎪⎫-12n -1(n ∈N *).10.(2015·安徽卷)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n . 解析:(1)由题设知a 1·a 4=a 2·a 3=8,又a 1+a 4=9,可解得⎩⎪⎨⎪⎧a 1=1,a 4=8或⎩⎪⎨⎪⎧a 1=8,a 4=1(舍去). 由a 4=a 1q 3得公比q =2,故a n =a 1qn -1=2n -1.(2)S n =a 1(1-q n )1-q=2n-1.又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1, 所以T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎫1S n -1S n +1=1S 1-1S n +1=1-12n +1-1.。
高考数学大二轮复习专题二数列第一讲等差数列等比数列限时规范训练理
第一讲 等差数列、等比数列1.(2019·宽城区校级期末)在等差数列{a n }中,已知a 2+a 5+a 12+a 15=36,则S 16=( ) A .288 B .144 C .572D .72解析:a 2+a 5+a 12+a 15=2(a 2+a 15)=36, ∴a 1+a 16=a 2+a 15=18, ∴S 16=16(a 1+a 16)2=8×18=144,故选B. 答案:B2.(2019·高考全国卷Ⅲ)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( )A .16B .8C .4D .2 解析:由题意知⎩⎪⎨⎪⎧a 1>0,q >0,a 1+a 1q +a 1q 2+a 1q 3=15,a 1q 4=3a 1q 2+4a 1,解得⎩⎪⎨⎪⎧a 1=1,q =2,∴a 3=a 1q 2=4.故选C.答案:C3.(2019·咸阳二模)《周髀算经》中一个问题:从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,若冬至、立春、春分的日影子长的和是37.5尺,芒种的日影子长为4.5尺,则冬至的日影子长为( )A .15.5尺B .12.5尺C .10.5尺D .9.5尺解析:设此等差数列{a n }的公差为d ,则a 1+a 4+a 7=3a 1+9d =37.5,a 1+11d =4.5, 解得:d =-1,a 1=15.5. 故选A. 答案:A4.(2019·德州一模)在等比数列{a n }中,a 1=1,a 5+a 7a 2+a 4=8,则a 6的值为( ) A .4 B .8 C .16D .32解析:设等比数列{a n }的公比为q , ∵a 1=1,a 5+a 7a 2+a 4=8, ∴a 1(q 4+q 6)a 1(q +q 3)=8,解得q =2. 则a 6=25=32. 故选D. 答案:D5.(2019·信州区校级月考)已知等差数列{a n }的首项a 1=2,前n 项和为S n ,若S 8=S 10,则a 18=( )A .-4B .-2C .0D .2解析:∵等差数列{a n }的首项a 1=2,前n 项和为S n ,S 8=S 10, ∴8a 1+7×82d =10a 1+10×92d ,即16+28d =20+45d ,解得d =-417,∴a 18=a 1+17d =2+17×⎝ ⎛⎭⎪⎫-417=-2.故选B. 答案:B6.(2019·南充模拟)已知等比数列{a n }中的各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 10+a 11a 8+a 9=( ) A .1+ 2 B .1- 2 C .3+2 2D .3-2 2解析:等比数列{a n }中的各项都是正数, 公比设为q ,q >0,a 1,12a 3,2a 2成等差数列,可得a 3=a 1+2a 2, 即a 1q 2=a 1+2a 1q , 即q 2-2q -1=0,解得q =1+2(负的舍去),则a 10+a 11a 8+a 9=q 2(a 8+a 9)a 8+a 9=q 2=3+2 2. 故选C. 答案:C7.(2019·林州市校级月考)在正数x 、y 之间插入数a ,使x ,a ,y 成为等差数列,又在x ,y 之间插入数b 、c ,且x ,b ,c ,y 成等比数列,则有( )A .a 2≤bc B .a 2>bc C .a 2=bcD .a 2≥bc解析:在正数x 、y 之间插入数a ,使x ,a ,y 成为等差数列, 又在x ,y 之间插入数b 、c ,且x ,b ,c ,y 成等比数列,∴⎩⎨⎧2a =x +y ≥2xy ,xy =bc ,∴a 2≥bc . 故选D. 答案:D8.(2019·龙岩期末测试)等差数列{a n }中,若a 4+a 7=2,则2a 1·2a 2·2a 3·…·2a 10=( )A .256B .512C .1 024D .2 048解析:等差数列{a n }中,若a 4+a 7=2, 可得a 1+a 10=a 4+a 7=2, 则2a 1·2a 2·2a 3·…·2a 10=2a 1+a 2+…+a 10=212×10(a 1+a 10)=25×2=1 024.故选C. 答案:C9.(2019·长春模拟)等差数列{a n }中,已知|a 6|=|a 11|,且公差d >0,则其前n 项和取最小值时n 的值为( )A .6B .7C .8D .9 解析:由d >0可得等差数列{a n }是递增数列,又|a 6|=|a 11|,所以-a 6=a 11,即-a 1-5d =a 1+10d ,所以a 1=-15d 2,则a 8=-d 2<0,a 9=d2>0,所以前8项和为前n 项和的最小值,故选C.答案:C10.(2019·合肥质检)已知数列{a n }是首项为a ,公差为1的等差数列,数列{b n }满足b n=1+a n a n.若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围是( )A .(-8,-7)B .[-8,-7)C .(-8,-7]D .[-8,-7]解析:因为{a n }是首项为a ,公差为1的等差数列,所以a n =n +a -1, 因为b n =1+a n a n =1+1a n,又对任意的n ∈N *都有b n ≥b 8成立, 所以1+1a n ≥1+1a 8,即1a n ≥1a 8对任意的n ∈N *恒成立,因为数列{a n }是公差为1的等差数列,所以{a n }是单调递增的数列,所以⎩⎪⎨⎪⎧a 8<0,a 9>0,即⎩⎪⎨⎪⎧8+a -1<0,9+a -1>0,解得-8<a <-7. 答案:A11.已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),4a 5=a 3.设T n=S n -1S n,则数列{T n }中最大项的值为( )A.34B.45C.56D.78解析:设等比数列{a n }的公比为q ,则q 2=a 5a 3=14.又{a n }不是递减数列且a 1=32,所以q =-12,故等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎫-12n-1=(-1)n -1×32n,S n=1-⎝ ⎛⎭⎪⎫-12n=⎩⎪⎨⎪⎧1+12n,n 为奇数,1-12n,n 为偶数.当n 为奇数时,S n 随n 的增大而减小,所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对任意的n ∈N *,总有-712≤S n -1S n <0或0<S n -1S n ≤56,即数列{T n }中最大项的值为56.故选C.答案:C12.(2019·合肥二模)“垛积术”(隙积术)是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、刍童垛、三角垛等等.某仓库中部分货物堆放成如图所示的“茭草垛”:自上而下,第一层1件,以后每一层比上一层多1件,最后一层是n 件.已知第一层货物单价1万元,从第二层起,货物的单价是上一层单价的910.若这堆货物总价是100-200⎝ ⎛⎭⎪⎫910n万元,则n 的值为( )A .7B .8C .9D .10解析:由题意可得第n 层的货物的价格为a n =n ·⎝ ⎛⎭⎪⎫910n -1,设这堆货物总价是S n =1·⎝ ⎛⎭⎪⎫9100+2·⎝ ⎛⎭⎪⎫9101+3·⎝ ⎛⎭⎪⎫9102+…+n ·⎝ ⎛⎭⎪⎫910n -1,①由①×910可得910S n =1·⎝ ⎛⎭⎪⎫9101+2·⎝ ⎛⎭⎪⎫9102+3·⎝ ⎛⎭⎪⎫9103+…+n ·⎝ ⎛⎭⎪⎫910n,②由①-②可得110S n =1+⎝ ⎛⎭⎪⎫9101+⎝ ⎛⎭⎪⎫9102+⎝ ⎛⎭⎪⎫9103+…+⎝ ⎛⎭⎪⎫910n -1-n ·⎝ ⎛⎭⎪⎫910n =1-⎝ ⎛⎭⎪⎫910n1-910-n ·⎝ ⎛⎭⎪⎫910n=10-(10+n )·⎝ ⎛⎭⎪⎫910n,∴S n =100-10(10+n )·⎝ ⎛⎭⎪⎫910n,∵这堆货物总价是100-200⎝ ⎛⎭⎪⎫910n万元,∴n =10, 故选D. 答案:D13.(2019·高考全国卷Ⅲ)记S n 为等差数列{a n }的前n 项和.若a 3=5,a 7=13,则S 10=________.解析:∵{a n }为等差数列,a 3=5,a 7=13, ∴公差d =a 7-a 37-3=13-54=2,首项a 1=a 3-2d =5-2×2=1, ∴S 10=10a 1+10×92d =100.答案:10014.(2019·安徽合肥二模)已知各项均为正数的数列{a n }前n 项和为S n ,若S 1=2,3S 2n -2a n +1S n =a 2n +1,则a n =________.解析:由S 1=2,得a 1=S 1=2. 由3S 2n -2a n +1S n =a 2n +1, 得4S 2n =(S n +a n +1)2.又a n >0,∴2S n =S n +a n +1,即S n =a n +1. 当n ≥2时,S n -1=a n , 两式作差得a n =a n +1-a n ,即a n +1a n=2. 又由S 1=2,3S 21-2a 2S 1=a 22,求得a 2=2. ∴当n ≥2时,a n =2×2n -2=2n -1.验证当n =1时不成立,∴a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.答案:⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥215.已知数列{a n }满足a n +2-2a n +1+a n =0,且a 4=π2,若函数f (x )=sin 2x +2cos 2x 2,记y n =f (a n ),则数列{y n }的前7项和为________.解析:根据题意,数列{a n }满足a n +2-2a n +1+a n =0,则数列{a n }是等差数列, 又由a 4=π2,则a 1+a 7=a 2+a 6=a 3+a 5=2a 4=π,函数f (x )=sin 2x +2cos 2x2=sin 2x +cos x +1,f (a 1)+f (a 7)=sin 2a 1+cos a 1+1+sin 2a 7+cos a 7+1=sin 2a 1+cos a 1+1+sin 2(π-a 1)+cos (π-a 1)+1=2,同理可得:f (a 2)+f (a 6)=f (a 3)+f (a 5)=2,f (a 4)=sin π+cos π2+1=1,则数列{y n }的前7项和f (a 1)+f (a 2)+f (a 3)+f (a 4)+f (a 5)+f (a 6)+f (a 7)=7; 故答案为7. 答案:716.如图,点D 为△ABC 的边BC 上一点,BD →=2DC →,E n (n ∈N )为AC 上一列点,且满足:E n A →=(4a n -1)E n D →+14a n +1-5E n B →,其中实数列{a n }满足4a n -1≠0,且a 1=2,则1a 1-1+1a 2-1+1a 3-1+…+1a n -1=________.解析:点D 为△ABC 的边BC 上一点, BD →=2DC →,E n D →-E n B →=2(E n C →-E n D →),∴E n C →=32E n D →-12E n B →又E n A →=λE n C →=3λ2E n D →-λ2E n B →,4a n -1=-3×14a n +1-5,∴4a n +1-5=-34a n -1,4a n +1-4=1-34a n -1=4a n -44a n -1,a n +1-1=a n -14a n -1, 1a n +1-1=4a n -1a n -1=4+3a n -1,∴1a n +1-1+2=3⎝ ⎛⎭⎪⎫1a n -1+2,∴1a n -1+2=3n, 1a n -1=3n-2. S n =3×(1-3n)1-3-2n =3n +1-3-4n2. 故答案为:3n +1-3-4n2. 答案:3n +1-3-4n2。
高三数学二轮复习-第1讲等差数列、等比数列专题攻略课件-理-新人教版
4.(2010年高考北京卷)已知{an}为等差数列,且a3 =-6,a6=0. (1)求{an}的通项公式; (2)若等比数列{bn}满足b1=-8,b2=a1+a2+a3, 求{bn}的前n项和公式. 解:(1)设等差数列{an}的公差为 d.
因为 a3=-6,a6=0,
所以aa11+ +25dd= =-0,6, 解得ad=1=2-. 10,
A.6
B.7
Hale Waihona Puke C.8D.9解析:选 A.∵{an}是等差数列, ∴a4+a6=2a5=-6, 即 a5=-3,d=a55- -a11=-34+11=2,得{an}是首 项为负数的递增数列,所有的非正项之和最 小.∵a6=-1,a7=1,∴当 n=6 时,Sn 取最小 值,故选 A.
3.(2010 年高考辽宁卷)设{an}是由正数组成的等
比数列,Sn 为其前 n 项和.已知 a2a4=1,S3=7,
则 S5=( )
15
31
A. 2
B. 4
33 C. 4
17 D. 2
解析:选 B.an>0,a2a4=a21q4=1①,S3=a1+a1q+ a1q2=7②. 解得 a1=4,q=12或-13(舍去), S5=a111--qq5=4×1-1-12312=341,故选 B.
(1)求通项an及Sn; (2)设{bn-an}是首项为1,公比为3的等比数 列,求数列{bn}的通项公式及前n项和Tn.
【解】 (1)∵{an}是首项为 a1=19,公差为 d =-2 的等差数列,
∴an=19-2(n-1)=21-2n, Sn=19n+12n(n-1)×(-2)=20n-n2. (2)由题意得 bn-an=3n-1,即 bn=an+3n-1,∴ bn=3n-1-2n+21,Tn=Sn+(1+3+…+3n-1)=- n2+20n+3n-2 1.
新教材2024高考数学二轮专题复习分册一专题三数列第一讲等差数列与等比数列__小题备考微专题1等差数
第一讲等差数列与等比数列——小题备考常考常用结论1.等差数列(1)通项公式:a n=a1+(n-1)d;(2)求和公式:S n==na1+d;(3)性质:①若m,n,p,q∈N*,且m+n=p+q,则a m+a n=a p+a q;②a n=a m+(n-m)d;③S m,S2m-S m,S3m-S2m,…成等差数列.2.等比数列(1)通项公式:a n=a1q n-1(q≠0);(2)求和公式:当q=1时,S n=na1;当q≠1时,S n==;(3)性质:①若m,n,p,q∈N*,且m+n=p+q,则a m·a n=a p·a q;②a n=a m·q n-m;③S m,S2m-S m,S3m-S2m,…(S m≠0)成等比数列.微专题1 等差数列与等比数列的基本量计算1.[2023·江西赣州二模]已知等差数列{a n}中,S n是其前n项和,若a3+S3=22,a4-S4=-15,则a5=( )A.7 B.10 C.11 D.132.[2023·安徽合肥二模]已知等差数列{a n}的前n项和为S n,a4=-1,a1+a5=2,则S8的值为( )A.-27B.-16C.-11D.-93.[2023·吉林长春三模]已知等比数列{a n}的公比为q(q>0且q≠1),若a6+8a1=a4+8a3,则q的值为( )A.B.C.2D.44.[2023·全国甲卷]已知正项等比数列{a n}中,a1=1,S n为{a n}前n项和,S5=5S3-4,则S4=( )A.7B.9C.15D.305.[2023·辽宁鞍山二模]天干地支纪年法源于中国,中国自古便有十天干与十二地支.十天干即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”“乙亥”之后地支回到“子”重新开始,即“丙子”,…,以此类推,2023年是癸卯年,请问:在100年后的2123年为( )A.壬午年B.癸未年C.己亥年D.戊戌年1.(1)[2023·山东济南模拟](多选)已知等差数列{a n},前n项和为S n,a1>0,<-1,则下列结论正确的是( )A.a2022>0B.S n的最大值为S2023C.|a n|的最小值为a2022D.S4044<0(2)[2023·湖南长沙明德中学三模]中国古代数学著作《增减算法统宗》中有这样一段记载:“三百七十八里关,初行健步不为难,次日脚痛减一半,如此六日过其关.”则此人在第六天行走的路程是________里(用数字作答).技法领悟1.在等差(比)数列中,a1,d(q),n,a n,S n这五个量知道其中任意三个,就可以求出其他两个.求解这类问题时,一般是转化为首项a1和公差d(公比q)这两个基本量的有关运算.2.对于等比数列的前n项和公式,应按照公比q与1的关系分类讨论.一般地,若涉及n 较小的等比数列的前n项和问题,为防止遗忘分类讨论,可直接利用通项公式写出,而不必使用前n项和公式.[巩固训练1] (1)[2022·全国乙卷]记S n为等差数列的前n项和.若2S3=3S2+6,则公差d=________.(2)[2023·河北正定中学模拟]已知等比数列{a n}的前三项和为39,a6-6a5+9a4=0,则a5=( )A.81B.243C.27D.729微专题1 等差数列与等比数列的基本量计算保分题1.解析:设公差为d,则a1+2d+3a1+3d=22,a1+3d-4a1-6d=-15,解得a1=3,d =2,故a5=a1+4d=3+8=11.故选C.答案:C2.解析:因为{a n}是等差数列,设公差为d,因为a4=-1,a1+a5=2,所以,则,因为{a n}的前n项和为S n,所以S8=8×5+=-16,故选B.答案:B3.解析:已知等比数列{a n}的公比为q(q>0且q≠1),若a6+8a1=a4+8a3,则a6-a4=8a3-8a1,所以==q3=8,解得q=2.故选C.答案:C4.解析:由题知1+q+q2+q3+q4=5(1+q+q2)-4,即q3+q4=4q+4q2,即q3+q2-4q -4=0,即(q-2)(q+1)(q+2)=0.由题知q>0,所以q=2.所以S4=1+2+4+8=15.故选C.答案:C5.解析:由题意得:天干可看作公差为10的等差数列,地支可看作公差为12的等差数列,由于100÷10=10,余数为0,故100年后天干为癸;由于100÷12=8…4,余数为4,故100年后地支为未;综上:100年后的2123年为癸未年.故选B.答案:B提分题[例1] (1)解析:∵数列{a n}为等差数列,a1>0,<-1,∴数列{a n}为递减的等差数列,∴a2023<0,a2022>0,故A正确;∵数列{a n}为递减的等差数列,a2023<0,a2022>0,∴S n的最大值为S2022,故B错;∵a2023<0,a2022>0,∴由<-1得a2023<-a2022,∴a2023+a2022<0,∴|a2023|>|a2022|,∴|a n|的最小值为|a2022|,即a2022,故C正确;S4044==2022(a2022+a2023)<0,故D正确.故选ACD.(2)解析:将这个人行走的路程依次排成一列得等比数列{a n},n∈N*,n≤6,其公比q=,令数列{a n}的前n项和为S n,则S6=378,而S6==,因此=378,解得a1=192,所以此人在第六天行走的路程a6=a1×=6(里).答案:ACD (2)6[巩固训练1] (1)解析:方法一设等差数列{a n}的首项为a1,公差为d.因为2S3=3S2+6,所以2(a1+a1+d+a1+2d)=3(a1+a1+d)+6,所以6a1+6d=6a1+3d+6,解得d=2.方法二设等差数列{a n}的首项为a1,公差为d.由2S3=3S2+6,可得2×3a2=3(a1+a2)+6.整理,得a2-a1=2,所以d=2.(2)解析:由a6-6a5+9a4=0⇒a4·(q2-6q+9)=0.而a n≠0,∴q=3,又a1+a2+a3=a1+3a1+9a1=13a1=39⇒a1=3,∴a n=3n,a5=35=243.故选B.答案:(1)2答案:B。
高考数学第1讲 等差数列、等比数列(小题速做)
核心知识 突破热点 高考押题 限时规范训练
大二轮复习 数学(文)
2.设等比数列{an}满足 a1+a3=10,a2+a4=5,则 a1a2…an 的最大
值为________. 解析:解法一:aa21+ +aa43=(aa1+1+aa3)3 ·q=150,∴q=12,
核心知识 突破热点 高考押题 限时规范训练
大二轮复习 数学(文)
2.解题策略:等差、等比数列性质的应用策略 (1)项数是关键:解题时特别关注条件中项的下标即项数的关系,寻 找项与项之间、多项之间的关系,选择恰当的性质解题. (2)整体代入:计算时要注意整体思想,如求 Sn 可以将与 a1+an 相 等的式子整体代入,不一定非要求出具体的项. (3)构造不等式函数:可以构造不等式函数利用函数性质求范围或最 值.
∴a1+a1122=10,∴a1=8.
∴a1·a2·a3·…·an=an1·qn(n2-1)=8n×12n(n2-1)=2-n22+7n.
当
n=3
或
n=4
时,-n2+7n最大为 2
6.
∴a1a2…an 的最大值为 26=64.
核心知识 突破热点 高考押题 限时规范训练
大二轮复习 数学(文)
因为{an}是等差数列,Sm-1=-2,Sm=0, 所以 am=Sm-Sm-1=2. 因为 Sm+1=3,所以 am+1=Sm+1-Sm=3. 所以 d=am+1-am=3-2=1. 又因为 Sm=m(a12+am)=m(a12+2)=0, 所以 a1=-2,所以 am=-2+(m-1)·1=2,所以 m=5.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
限时规范训练(九)(建议限时45分钟,实际用时________分钟)一、选择题(本题共12小题,每小题5分,共60分)1.(2019·吉林辽源联考)设函数f (x )的定义如表所示,且对任意自然数n 均有x n +1=f (x n ).若x 0=6,则x 2 019的值为( )A.1 C .4D .5解析:选D.根据x 0=6,x n +1=f (x n ),有x 1=4,x 2=f (x 1)=2,x 3=f (x 2)=1,x 4=f (x 3)=5,x 5=f (x 4)=6,所以可知x n +5=x n ,则x 2 019=x 403×5+4=x 4=5.2.(2019·洛阳联考)在各项均为正数的等比数列{a n }中,a 1=2,且a 2,a 4+2,a 5成等差数列,记S n 是数列{a n }的前n 项和,则S 5=( )A .32B .62C .27D .81解析:选B.设等比数列{a n }的公比为q (q >0).∵a 2,a 4+2,a 5成等差数列,∴a 2+a 5=2(a 4+2),∴2q +2q 4=2(2q 3+2),解得q =2,∴S 5=2×(1-25)1-2=62,故选B.3.(2019·江西吉安二模)已知等差数列{a n }的各项均为正数,a 1=1,且a 3,a 4+52,a 11成等比数列.若p -q =10,则a p -a q =( )A .14B .15C .16D .17解析:选B.设等差数列{a n }的公差为d ,由题意分析知,d >0,因为a 3,a 4+52,a 11成等比数列,所以⎝⎛⎭⎫a 4+522=a 3a 11,即⎝⎛⎭⎫72+3d 2=(1+2d )(1+10d ),即44d 2-36d -45=0,所以d =32或d =-1522(舍去),所以a n =3n -12,所以a p -a q =32(p -q )=15.4.(2019·长沙模拟)设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的( )A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件解析:选C.若对任意的正整数n,a2n-1+a2n<0,则a1+a2<0,又a1>0,所以a2<0,<0.若q<0,可取q=-1,a1=1,则a1+a2=1-1=0,不满足对任意的正整数所以q=a2a1n,a2n-1+a2n<0.所以“q<0”是“对任意的正整数n,a2n-1+a2n<0”的必要而不充分条件.故选C.5.(2019·邯郸二模)设{a n}是公差为2的等差数列,b n=a2n,若{b n}为等比数列,则b1+b2+b3+b4+b5=()A.142 B.124C.128 D.144解析:选B.因为{a n}是公差为2的等差数列,b n=a2n,所以a n=a1+(n-1)×2=a1+2n-2,因为{b n}为等比数列,所以b22=b1b3.所以(a4)2=a2·a8,所以(a1+8-2)2=(a1+4-2)(a1+16-2),解得a1=2,所以b n=a2n=2+2×2n-2=2n+1,所以b1+b2+b3+b4+b5=22+23+24+25+26=124.6.(2019·济南模拟)朱世杰是历史上最伟大的数学家之一,他所著的《四元玉鉴》卷中“如像招数”五问中有如下问题:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人.每人日支米三升,共支米四百三石九斗二升,问筑堤几日”.其大意为:官府陆续派遣1 864人前往修筑堤坝.第一天派出64人,从第二天开始,每天派出的人数比前一天多7人.修筑堤坝的每人每天分发大米3升,共发出大米40 392升,问修筑堤坝多少天.在这个问题中,第5天应发大米()A.894升B.1 170升C.1 275升D.1 467升解析:选B.由题意知,每天派出的人数构成首项为64,公差为7的等差数列,则第5天的总人数为5×64+5×42×7=390,所以第5天应发大米390×3=1 170升.7.(2019·西安八校联考)设等差数列{a n}的前n项和为S n,若S6>S7>S5,则满足S n S n+1<0的正整数n 的值为( ) A .10 B .11 C .12D .13解析:选C.由S 6>S 7>S 5,得S 7=S 6+a 7<S 6,S 7=S 5+a 6+a 7>S 5,所以a 7<0,a 6+a 7>0,所以S 13=13(a 1+a 13)2=13a 7<0,S 12=12(a 1+a 12)2=6(a 6+a 7)>0,所以S 12S 13<0,即满足S n S n +1<0的正整数n 的值为12,故选C.8.(2019·张家界三模)已知等比数列{a n }的前n 项积为T n ,若a 1=-24,a 4=-89,则当T n 取得最大值时,n 的值为( )A .2B .3C .4D .6解析:选C.设等比数列{a n }的公比为q ,则a 4=-24q 3=-89,q 3=127,q =13,此等比数列各项均为负数,当n 为奇数时,T n 为负数,当n 为偶数时,T n 为正数,所以T n 取得最大值时,n 为偶数,排除B ,而T 2=(-24)2×⎝⎛⎭⎫13=24×8=192,T 4=(-24)4⎝⎛⎭⎫136=84×19=849>192,T 6=(-24)6⎝⎛⎭⎫1315=86×⎝⎛⎭⎫139=8639=19×8637<849.T 4最大,选择C.9.(2019·盐城模拟)已知a 1,a 2,a 3,a 4依次成等比数列,且公比q 不为1.将此数列删去一个数后得到的数列(按原来的顺序)是等差数列,则正数q 的值是( )A.1+52B .±1+52 C.±1+32D .-1+32解析:选B.因为公比q 不为1,所以删去的数不是a 1,a 4.①若删去a 2,则由2a 3=a 1+a 4得2a 1q 2=a 1+a 1q 3,又a 1≠0,所以2q 2=1+q 3,整理得q 2(q -1)=(q -1)(q +1).又q ≠1,所以q 2=q +1,又q >0,得q =1+52;②若删去a 3,则由2a 2=a 1+a 4得2a 1q =a 1+a 1q 3,又a 1≠0,所以2q =1+q 3,整理得q (q +1)(q -1)=q -1.又q ≠1,则可得q (q +1)=1,又q >0,得q =-1+52.综上所述,q =±1+52,故选B.10.(2019·大连模拟)已知正项数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,(a n -S n -1)2=S n S n -1,若b n =log 2a n +16,则b n =( ) A .2n -3 B .2n -4 C .n -3D .n -4解析:选A.当n ≥2时,(a n -S n -1)2=S n S n -1,即(S n -2S n -1)2=S n S n -1,即(S n -S n -1)(S n-4S n -1)=0,∵正项数列{a n }的前n 项和为S n ,∴S n ≠S n -1,∴S n =4S n -1,∴数列{S n }是等比数列,首项为1,公比为4,∴S n =4n -1,∴当n ≥2时,a n =S n -S n -1=4n -1-4n -2=3×4n -2,∴a n =⎩⎪⎨⎪⎧1,n =1,3×4n -2,n ≥2,∴当n ≥2时,b n =log 2a n +16=log 222n -3=2n -3,又当n =1时也符合,故b n =2n -3(n ∈N *),故选A.11.(2019·百校联盟模拟)已知数列{a n }是各项均为正数的等比数列,S n 是其前n 项和,若S 2+a 2=S 3-3,则a 4+3a 2的最小值为( )A .12B .9C .16D .18解析:选D.因为S 3-S 2=a 3,所以由S 2+a 2=S 3-3,得a 3-a 2=3,设等比数列{a n }的公比为q ,则a 1=3q (q -1),由于{a n }的各项为正,所以q >1.a 4+3a 2=a 1q 3+3a 1q =a 1q (q 2+3)=3q (q -1)q (q 2+3)=3(q 2+3)q -1=3⎝ ⎛⎭⎪⎫q -1+4q -1+2≥18,当且仅当q -1=2,即q =3时,a 4+3a 2取得最小值为18,故选D.12.(2019·昆明第三次综合测试)已知数列{a n }的通项公式为a n =log 2n +1n +2(n ∈N *),设其前n 项和为S n ,则使S n <-5成立的正整数n 有( )A .最小值63B .最大值63C .最小值31D .最大值31解析:选A.∵a n =log 2n +1n +2(n ∈N *),∴S n =a 1+a 2+…+a n =log 223+log 234+…+log 2n +1n +2=(log 22-log 23)+(log 23-log 24)+…+log 2(n +1)-log 2(n +2)=log 22-log 2(n +2)=log 22n +2,由S n <-5得2n +2<132即n >62,故使S n <-5成立的正整数n 的最小值是63.二、填空题(本题共4小题,每小题5分,共20分)13.(2019·北京卷)设等差数列{a n }的前n 项和为S n ,若a 2=-3,S 5=-10,则a 5=________,S n 的最小值为________.解析:∵a 2=a 1+d =-3,S 5=5a 1+10d =-10, ∴a 1=-4,d =1, ∴a 5=a 1+4d =0, ∴a n =a 1+(n -1)d =n -5.令a n <0,则n <5,即数列{a n }中前4项为负,a 5=0,第6项及以后为正. ∴S n 的最小值为S 4=S 5=-10. 答案:0 -1014.(2019·辽宁省五校协作体联考)已知等比数列{a n }的首项为1,公比为3,等差数列{b n }的首项为-5,公差为1,把{b n }中的各项按如下规则依次插入到{a n }的每相邻两项之间,构成新数列{c n }:a 1,b 1,a 2,b 2,b 3,a 3,b 4,b 5,b 6,a 4,…,即在a n 和a n +1两项之间依次插入{b n }中的n 项,则C 2 018=________.(用数字作答)解析:根据题中新数列的构成特点可知a n +1=C (1+2+…+n )+(n +1)=C (n +1)(n +2)2,所以取n =62,可得a 63=C 2 016,所以C 2 018在a 63与a 64之间.故C 2 018=b 1+2+…+62+(2 018-2 016)=b 1 955=-5+1 954×1=1 949.答案:1 94915.(2019·福建闽侯二模)已知数列{a n }的通项公式为a n =3n ,记数列{a n }的前n 项和为S n ,若∃n ∈N *,使得⎝⎛⎭⎫S n +32k ≥3n -6成立,则实数k 的取值范围是________. 解析:∵a n =3n,∴S n =3(1-3n )(1-3)=3(3n -1)2,∴S n +32=3n +12.∵∃n ∈N *,⎝⎛⎭⎫S n +32k ≥3n -6,∴∃n ∈N *,k ≥3n -6S n +32=3n -63n +12=2n -43n ,即k ≥⎝ ⎛⎭⎪⎫2n -43n min.令b n =2n -43n ,则b n +1-b n =2(n +1)-43n +1-2n -43n =-4n +103n +1,∴当n ≤2时,b n +1>b n ;当n ≥3时,b n +1<b n ,∴b 1<b 2=0,b 3>b 4>…>0,∴⎝ ⎛⎭⎪⎫2n -43n min=b 1=-23,∴k ≥-23,∴实数k 的取值范围为⎣⎡⎭⎫-23,+∞. 答案:⎣⎡⎭⎫-23,+∞ 16.设某数列的前n 项和为S n ,若S nS 2n为常数,则称该数列为“和谐数列”.若一个首项为1,公差为d (d ≠0)的等差数列{a n }为“和谐数列”,则该等差数列的公差d =________.解析:由S nS 2n=k (k 为常数),且a 1=1,得n +12n (n -1)d =k ⎣⎡⎦⎤2n +12×2n (2n -1)d , 即2+(n -1)d =4k +2k (2n -1)d ,整理得, (4k -1)dn +(2k -1)(2-d )=0, ∵对任意正整数n ,上式恒成立,∴⎩⎪⎨⎪⎧d (4k -1)=0,(2k -1)(2-d )=0,得⎩⎪⎨⎪⎧d =2,k =14.∴数列{a n }的公差为2. 答案:2。