Abstract Analysis of CdTe solar cells in relation to materials issues

合集下载

近空间升华法制备CdTe薄膜及其在太阳电池中的应用

近空间升华法制备CdTe薄膜及其在太阳电池中的应用

近空间升华法制备CdTe薄膜及其在太阳电池中的应用Preparation of CdTe thin films by close-spacedsublimation and its application in solar cells作者姓名沈鑫颉学位类型学历硕士学科、专业应用化学研究方向电化学技术与工程导师及职称史成武教授2013年4月合肥工业大学本论文经答辩委员会全体委员审查,确认符合合肥工业大学硕士学位论文质量要求。

答辩委员会签名:(工作单位、职称)主席:委员:导师:独创性声明本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。

据我所知,除了文中特别加以标志和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得合肥工业大学或其他教育机构的学位或证书而使用过的材料。

与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。

学位论文作者签字:签字日期:年月日学位论文版权使用授权书本学位论文作者完全了解合肥工业大学有关保留、使用学位论文的规定,有权保留并向国家有关部门或机构送交论文的复印件和磁盘,允许论文被查阅或借阅。

本人授权合肥工业大学可以将学位论文的全部或部分论文内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编学位论文。

(保密的学位论文在解密后适用本授权书)学位论文者签名:导师签名:签字日期:年月日签字日期:年月日学位论文作者毕业后去向:工作单位:电话:通讯地址:邮编:近空间升华法制备CdTe薄膜及其在太阳电池中的应用摘要本论文采用近空间升华法制备了CdTe薄膜,并对其性能及其在量子点敏化太阳电池中的应用进行了研究。

使用X-射线能谱仪(EDS)、扫描电子显微镜(SEM)、X-射线衍射仪(XRD)、紫外-可见-近红外分光光度计(UV-Vis-NIR)研究了源温度、源与衬底的距离对所制备的CdTe薄膜的化学组成、表面形貌、晶体结构和直接带隙的影响,并使用电化学工作站研究了CdTe薄膜的对多硫电解质的催化氧化还原活性。

CdTe薄膜太阳电池背接触的研究

CdTe薄膜太阳电池背接触的研究

CdTe 薄膜太阳电池背接触的研究3贺剑雄 郑家贵 李 卫 冯良桓 蔡 伟 蔡亚平张静全 黎 兵 雷 智 武莉莉 王文武(四川大学材料科学与工程学院,成都 610064)(2006年8月31日收到;2007年1月26日收到修改稿) 用近空间升华法制备了CdT e 多晶薄膜,用硝酸2磷酸(NP )混合液对薄膜表面进行了腐蚀.经SE M 观测,腐蚀后的CdT e 薄膜晶界变宽,XRD 测试发现,经NP 腐蚀后,在CdT e 薄膜表面生成了一层高电导的富T e 层.在腐蚀后的CdT e 薄膜上分别制备了Cu ,Cu ΠZnT e :Cu ,ZnT e :Cu ,ZnT e ΠZnT e :Cu 四种背接触层,比较了它们对太阳电池性能的影响.结果表明,用ZnT e ΠZnT e :Cu 复合层作为背接触层的效果较好,获得了面积为015cm 2,转换效率为13138%的CdT e 多晶薄膜太阳电池.关键词:硝磷酸腐蚀,背接触层,CdT e 太阳电池PACC :8160C ,7340L ,7360L3国家高技术研究与发展计划(批准号:2003AA513010),中国高校博士点基金(批准号:20050610024),四川省应用基础项目(批准号:2006J132083)资助的课题.E 2mail :xiaoxiong174@11引言CdT e 多晶薄膜是一种重要的光电材料,光能隙为1145eV ,是公认的理想太阳电池材料[1].在太阳电池制备中,由于CdT e 的自补偿效应而不易高掺杂,它的电子亲和势高,高功函数的金属与p 2CdT e 将形成肖特基势垒.而且,由于表面局部费米能级的钉扎效应,增加了形成低电阻接触的困难[2,3].实验表明,用腐蚀液对CdT e 薄膜进行处理改变表面的化学构成,既能消除因退火而产生的氧化层,又可以形成低电阻接触,是CdT e 太阳电池研制中的关键技术.常用的腐蚀液为溴甲醇(BM )和K 2Cr 2O 7:H 2S O 4(K D )[4—7].Danaher 等人[5]的研究表明,尽管BM 和K D 腐蚀液在CdT e 薄膜表面生成富T e 层,但是这些腐蚀液有一些严重的缺点.用K D 处理的表面形成一层阻碍形成低电阻接触的T eO 2层.用BM 处理的表面,Br 穿过CdT e 薄膜并在CdS ΠCdT e 界面积聚.因此,寻找新的腐蚀溶液和腐蚀工艺成为CdT e 太阳电池研究中的重要课题.我们用硝酸2磷酸(NP )腐蚀液对CdT e 多晶薄膜表面进行了腐蚀,研究了不同时间腐蚀后薄膜结构的变化,并在腐蚀后的CdT e 多晶薄膜上制备了四种不同结构的背接触层,比较了它们对CdT e 太阳电池性能的影响.21实验2111样品的制备 本实验样品的窗口层n 2CdS 用化学水浴法(C BD )在有SnO 2:F 薄膜的玻璃上沉积,吸收层p 2CdT e 薄膜采用我们自己设计的近空间升华系统制备.源与衬底分别用碘钨灯加热,通过调制加热功率来改变与控制它们的温度,沉积过程在氩、氮和空气中进行,真空度为10-1Pa.用高纯氮作为保护气体,样品在CdCl 2蒸气氛围、385℃下热处理20min.热处理后的CdT e 样品用硝酸2磷酸混合溶液进行表面处理.NP 溶液中H NO 3(65%),H 3PO 4(85%)与去离子水的体积比为1∶70∶30,腐蚀时间为60s.用我们自己设计的共蒸发系统沉积Cu ,ZnT e ,ZnT e :Cu ,系统的真空度为10-4Pa ,沉积时两个独立的源被隔板分开,分别加热.两个石英探头分别对ZnT e 和Cu 的沉积速率及累计厚度做同步监控,以控制掺铜浓度及膜的厚度[8].Ni 采用电子束蒸发沉积,沉积Ni 膜时的真空度为(2—3)×10-3Pa.第56卷第9期2007年9月100023290Π2007Π56(09)Π5548206物 理 学 报ACT A PHY SIC A SI NIC AV ol.56,N o.9,September ,2007ν2007Chin.Phys.S oc.2121样品的测试 X 射线衍射测试在辽宁丹东射线集团有限公司生产的DX 21000X 射线衍射仪上进行,使用Cu Kα(λ=01154184nm )辐射测试,扫描范围2θ为10°—90°,扫描速度0106°Πs.薄膜的表面形貌采用H itachi S 2450型扫描电镜(SE M )观测.组分由英国K RA T OS C O 的XS AM800型X 射线光电子能谱(XPS )仪获得,辐射源为Mg 2Kα.光照下太阳电池的输出特性和性能参数是用西安交通大学研制的太阳电池测试仪测试,光源为TG 2X 1000型长弧氙灯,入射光强为100mW Πcm 2.31结果与讨论3111NP 腐蚀CdT e 多晶薄膜311111实验过程及现象在室温下,将样品浸入NP 腐蚀溶液中,5—10s 后在CdT e 多晶薄膜样品的局部表面看到有白色气泡出现,随着腐蚀时间的增加,样品上出现气泡的面积逐渐扩大,20s 后在整个样品表面都观察到气泡.腐蚀中观察到的气泡为反应过程中的副产品.随着反应时间的增加,气泡变大,在整个反应过程中气泡一直覆盖在CdT e 表面,这是由于NP 腐蚀溶液的黏性而引起.CdT e 表面经过NP 腐蚀后颜色由原来的暗灰色变为银灰色,之后颜色不随腐蚀时间而变化.311121腐蚀前后样品的SE M 图谱我们观测了NP 腐蚀对CdT e 多晶薄膜的表面形貌的影响,如图1所示.SE M 图显示出NP 腐蚀液对表面和晶界具有很强的腐蚀效果.腐蚀前,表面是很粗糙,晶粒也比较致密(如图1(a ),(b )).腐蚀后,晶界变宽,而且表面更光滑和具有光泽(如图1(c ),(d )).311131NP 腐蚀液腐蚀样品后的XRD图谱图1 NP 腐蚀CdT e 表面的SE M 图片 (a )NP2(1∶10∶0)腐蚀前;(b )NP1(1∶70∶30)腐蚀前;(c )NP2(1∶10∶0)腐蚀60s ;(d )NP1(1∶70∶30)腐蚀50s图2 不同腐蚀时间XRD 图谱 图2为CdT e 薄膜经不同时间腐蚀后的XRD图.从图中可以看出经过10s 腐蚀后出现了六方结构的T e (101)衍射峰,而且随着腐蚀时间增加,峰值增强.同时,CdT e (220)和(311)峰也随着腐蚀时间的增加而减小.因此,我们认为,经NP 腐蚀液腐蚀的CdT e 薄膜表面有六方结构的T e 产生.T e 的带隙宽度只有0133eV ,这么窄的带隙几乎可以吸收所有波长的太阳光.但是在p 2CdT e 与T e 之间会存在一个反向势垒阻碍电子向前电极的移动,使电子和空穴在此处复合,使T e 层不能与金属电极形成很好的欧姆接触.因此会影响CdT e 太阳电池的性能,从表1看出,NP 腐蚀后直接沉积Ni 电极得到的电池效率很低.3121不同背接触层对器件性能的影响 为了获得低电阻接触,我们用相同的制备条件94559期贺剑雄等:CdT e 薄膜太阳电池背接触的研究制备了CdT e 薄膜,经相同的NP 腐蚀条件和腐蚀时间腐蚀后,分别制备了Cu ,Cu ΠZ nT e :Cu ,Z nT e :Cu ,Z nT e ΠZ nT e :Cu 四种背接触层,比较了各类电池的性能.图4 Cu 薄膜退火前后的XRD图谱图3 沉积Cu 后退火前后的XRD 图谱312111Cu ΠNi 背接触层我们在NP 腐蚀后的CdT e 薄膜表面沉积一层厚度为215nm 的Cu ,在氮气保护190℃下暗场退火40min.为了研究退火后薄膜微结构的变化,我们对图6 退火前Cu的精细谱图图5 沉积Cu 后退火前的XPS 的全谱图沉积Cu 后的样品退火前后组分的变化进行了XRD 测试.图3是样品的XRD 图谱,从图中看出,退火之后出现了Cu 1144T e 的衍射峰,而且T e 的(101)衍射峰有所增强.但是在退火前后都没有Cu 的衍射峰出现,为了理解上述实验事实,我们在载玻片上沉积了一层厚度为40nm 的Cu ,对未退火及经190℃退火的样品进行了XRD 测试,如图4.从图中看出,未退火的Cu 膜是非晶态,经190℃退火后,晶粒长大,并出现少许结晶.我们认为,用共蒸发沉积的Cu 是非晶态,随着温度的升高,Cu 离化为Cu +和Cu ++,并且和T e 结合生成碲铜相,除了生成Cu 1144T e 外,还可能生成CuT e 和Cu 2T e.图5所示为退火前的XPS 全谱图.图6为退火前Cu 的精细谱图.图7所示为退火后剥离15!后的XPS 的全谱图.从全谱上很容易地看到Cu ,T e ,C ,O 元素的存在,但是Cu 元素的峰很弱.T e 元素的峰很强.O 元素可能是由于表面吸附或者T e 氧化引起的.从全谱上可以看到出现了Cd 的峰,但是非常微弱.结合XRD 表明NP 腐蚀后0555物 理 学 报56卷图7 退火后剥离15!后的全谱图有T e 存在.从表1中看出,采用Cu ΠNi 背接触层的CdT e 太阳电池的转换效率及填充因子相比NP 腐蚀后直接沉积Ni 电极的CdT e 太阳电池高,这是因为在经过退火处理后形成了Cu x T e 相.Cu ΠNi 背接触层,实际上是Cu x T e ΠNi 背接触层.Cu x T e 的带隙在111—114eV 之间,Cu x T e 和p 2CdT e 之间只有很小的导带不连续性,形成一个小的势垒.这个很小的势垒对电子的移动阻碍很小,有利于空穴的运动.312121Cu ΠZnT e :Cu 背接触层我们在NP 腐蚀后的CdT e 薄膜表面采用共蒸发法沉积Cu ΠZnT e :Cu 背接触层,并分别在190℃,195℃下退火,然后用电子束蒸发沉积一层Ni 作电极.从表1中看出,用Cu ΠZnT e :Cu ΠNi 结构作背接触层的电池性能有较大幅度提高,我们认为虽然用Cu x T e 背接触可使CdT e 太阳电池的性能得到改善,但是由于在背电极处没有反射电子的势垒,因此有可能会使电子向背电极漂移,在背电极处复合.为此,引入ZnT e :Cu 层后改善了电池的短路电流,从而使转换效率提高.由于ZnT e :Cu 的带隙为2126eV ,使Cu x T e 与背电极之间形成一个势垒,反射向背电极漂移的电子.表1 不同背接触层CdT e 太阳电池的性能参数背接触退火温度Π℃开路电压V OC ΠV短路电流I SC Πm A填充因子FF Π%转换效率ηΠ%Ni 001516115913841413Cu ΠNi 1900170511440557186019001710116405481936Cu ΠZnT e :Cu ΠNi 19501742117345191217ZnT e :Cu ΠNi 19001685118535191140ZnT e ΠZnT e :Cu ΠNi190017161165564101716312131ZnT e :Cu背接触层图8 ZnT e ΠZnT e :Cu 背接触的能带图我们在NP 腐蚀样品后用共蒸发法沉积p +2ZnT e :Cu 背接触层,并在190℃下退火,然后镀Ni.从表1看出,这种背接触层的电池转换效率比Cu ΠNi 高,特别是短路电流密度J SC 有较大提高.我们认为图9 小面积CdT e 电池的I 2V 曲线由于NP 择优腐蚀CdT e 薄膜晶界,并使CdT e 薄膜晶界变宽,而且腐蚀后的富T e 层是孔状结构,温度升高后T e 原子加快向CdT e 多晶薄膜的晶界移动,使15559期贺剑雄等:CdT e 薄膜太阳电池背接触的研究得富T e层的T e原子减少,而剩余的T e又可使CdT e 薄膜的表面电阻降低,从而使电池的串联电阻减小,根据文献[9]可知在ZnT e:Cu多晶薄膜中,Cu的掺杂水平很低,只有极少部分的Cu原子取代Zn原子,大部分Cu原子处于晶界的无定型相中,在退火处理后,这些Cu原子被离化并穿过ZnT e的晶界与T e 生成CuxT e相,最后形成Cu x T eΠZnT e:Cu背接触层,所以电池的性能得到改善.312141ZnT eΠZnT e:Cu背接触层我们在NP腐蚀后,采用共蒸发法沉积了ZnT eΠZnT e:Cu背接触层,并在190℃下退火,从表1中看到,这种结构的太阳电池转换效率最高.我们认为, p2CdT e与p+2ZnT e:Cu的导带产生的势垒可以有效地反射向背电极漂移的电子,从而有效的增加收集效率,特别是长波收集效率,但是p+2ZnT e:Cu与金属背电极也有可能形成反向结,因而它又必须相对地薄,这又使其反射作用降低.并且对光伏器件而言,高势差的突变结可能伴随着更多的界面态,会带来不利的影响.因此,我们在NP腐蚀CdT e薄膜表面生成的富T e层和ZnT e:Cu之间引入不掺杂的p2 ZnT e过渡层,它的引入仍然保持了p2CdT e与ZnT e: Cu之间的势垒高度,只是使原来的111eV的势垒变成了018eV和013eV的两个势垒[10],如图8所示.不掺杂的ZnT e层的引入,一方面有效地反射向背电极漂移的电子,另一方面又将背接触的突变结变为缓变结,减少了p2CdT e与p+2ZnT e:Cu产生的高势差对太阳电池的不利影响,因此可以很好地改善太阳电池的性能.我们用ZnT eΠZnT e:Cu复合层作为背接触层获得了面积为015cm2的CdT e多晶薄膜太阳电池,经天津18所测试,转换效率为13138%,如图9所示.41结论11采用H NO3(65%),H3PO4(85%)与去离子水的体积比为1∶70∶30的硝酸2磷酸(NP)混合溶液对CSS方法制备的CdT e多晶薄膜进行腐蚀,腐蚀时间为60s.腐蚀后,薄膜的晶界变宽,表面变得光滑和有光泽,CdT e薄膜表面有富T e层生成.21制作了Cu,CuΠZnT e:Cu,ZnT e:Cu,ZnT eΠZnT e: Cu四种背接触层,比较了它们对CdT e薄膜太阳电池性能的影响.结果表明,用ZnT eΠZnT e:Cu复合背接触层的电池转换效率最高.获得面积为015cm2,转换效率为13138%的CdT e多晶薄膜太阳电池.本文中由四川大学材料科学与工程学院朱居木教授对样品做了XRD的测试分析,四川大学分析测试中心陈红老师对样品做了XPS测试分析,特此表示诚挚的感谢.[1]Xu Y,Diao H W,Hao H Y,Z eng X B,Liao X B2006Chin.Phys.152397[2]Y ang X W,Zheng J G,Zhang J Q,Feng L H,Cai W,Cai Y P,Li W,Li B,Lei Z,Wu L L2006Acta Phys.Sin.552504(in Chinese)[杨学文、郑家贵、张静全、冯良桓、蔡 伟、蔡亚平、李 卫、黎 兵、雷 智、武莉莉2006物理学报552504][3]X Li,Niles D W,Has oon F S,M ats on R J,Sheldon P1999J.Vac.Sci.Technol.A17805[4]Qin W Z,Zheng J G,Cai W,Feng L H,Cai Y P,Zhang J Q,Li W,Li B,Wu L L,Li Y H,Y ue L,Zheng H J2005Journal o f MaterialsScience and Engineering23256(in Chinese)[覃文治、郑家贵、蔡 伟、冯良桓、蔡亚平、张静全、李 卫、黎 兵、武莉莉、李阳华、岳 磊、郑华靖2005材料科学与工程学报23256] [5]Danaher W J,Ly ons L E,M arychurch M,M orris G C1986Appl.Sur f.Sci.27338[6]B tzner D L,W endt R,R omeo A,Z ogg H,T iwari A N2000ThinSolid Films361463[7]D obs on K evin D,Vis oly2Fisher Iris,H odes G ary,Cahen David2000Solar Energy Materials and Solar Cells62295[8]Li W,Feng L H,Wu L L,Cai Y P,Zhang J Q,Zheng J G,Cai W,LiB,Lei Z,Zhang D M2005Acta Phys.Sin.541879(in Chinese)[李 卫、冯良桓、武莉莉、蔡亚平、张静全、郑家贵、蔡 伟、黎 兵、雷 智、张冬梅2005物理学报541879][9]Zheng J G,Zhang J Q,Cai W,Li B,Cai Y P,Feng L H2001Chinese Journal o f Semiconductor s22171(in Chinese)[郑家贵、张静全、蔡 伟、黎 兵、蔡亚平、冯良桓2001半导体学报22171][10]Feng L H,Cai W,Zheng J G,Cai Y P,Li B,Zhang J Q,Wu L L,Zhu J M,Shao Y2001Acta Energiae Solaris Sinica22403(inChinese)[冯良桓、蔡 伟、郑家贵、蔡亚平、黎 兵、张静全、武莉莉、朱居木、邵 烨2001太阳能学报22403]2555物 理 学 报56卷A study of back contacts of CdTe thin film solar cells 3He Jian 2X iong Zheng Jia 2G ui Li W ei Feng Liang 2Huan Cai W ei Cai Y a 2PingZhang Jing 2Quan Li Bing Lei Zhi Wu Li 2Li W ang W en 2Wu(College o f Materials Science and Engineering ,Sichuan Univer sity ,Chengdu 610064,China )(Received 31August 2006;revised manuscript received 26January 2007)AbstractW e have prepared polycrystalline CdT e thin films by close 2spaced sublimation ,then the film surface was been etched by nitric 2phosphoric acid.A fter etching ,the grain boundaries of CdT e thin films are broadened and it could be seen clearly that the surface became polished and m ore sm ooth ,when observed by scanning electron m icroscope (SE M ).A fter NP etching ,highly conductive T e 2rich layer is formed on the surface of CdT e thin film ,as detected by X 2ray diffraction (XRD ).F our types of back 2contact layers ,including Cu ,Cu ΠZnT e :Cu ,ZnT e :Cu and ZnT e ΠZnT e :Cu were deposited respectively on the etched CdT e thin film ,and the in fluences on the solar cells performance were com pared.Our studies showed that the performance of CdT e solar cells w ith ZnT e ΠZnT e :Cu com plex back 2contact layer was better than those w ith other back 2contact layers ,and the highest conversion efficiency of 13138%has been obtained for CdT e polycrystalline thin film solar cells of 015cm 2size.K eyw ords :nitric 2phosphoric acid etching ,back 2contact layer ,CdT e solar cells PACC :8160C ,7340L ,7360L3Project supported by the National High T echnology Research and Development Program (863program )of China (G rant N o.2003AA513010),theS pecialized Research Fund for the D octoral Program of Higher Education of China (G rant N o.2005060024)and the Application F oundation Program of S ichuan Province of China (G rant N o.2006J132083).E 2mail :xiaoxiong174@35559期贺剑雄等:CdT e 薄膜太阳电池背接触的研究。

CdTe太阳能电池

CdTe太阳能电池

衬底 生长薄膜 CdTe源材料
源材料 加热器
CdTe在高于450度时升华并分解,当它们沉积在较低温度的衬底上时,再化合形 成多晶薄膜。为了制取厚度均匀、化学组份均匀、晶粒尺寸均匀的薄膜,不希望 镉离子和碲离子直接蒸发到衬底上。因此,反应室要用保护性气体维持一定的气 压。这样,源和衬底间的距离必须很小。 显然,保护气体的种类和气压、源的温度、衬底的温度等,是这种方法的最关键 的制备条件。保护气体以惰性气体为佳,也可以用氮气和空气。其中,氦气最 好,被国外大多数研究组采用。
2.碲化镉太阳能电池原理——结构
光 光 背电极
背电极 聚酰亚胺衬底 光 光 结构 结构 金属衬底
superstrate结构是在玻璃衬底上依次长上透明氧化层 (TCO)、CdS、CdTe薄膜,而太阳光是由玻璃衬底上方照射 进入,先透过TCO层,再进入CdS/CdTe结。而在substrate结构, 是先在适当的衬底上长上CdTe薄膜,再接着长CdS及TCO薄膜。 其中以superstrate的效率最高。
10cm*10cm小型碲化镉薄膜太阳能电池模组
碲化镉太阳能电池研究进展
碲化镉太阳能电池原理 碲化镉太阳能电池制作工艺 碲化镉太阳能电池成本估算 碲化镉太阳能电池优势与缺陷
1.研究进展
第一个CdTe太阳能电池是由RCA实验室在CdTe单 晶上镀上In的合金制得的。其光电转换效率为2.1%
1.研究进展
可见几乎所有的可见光都可以透过。因此CdS薄膜常用于薄膜
太阳能电池中的窗口层。
2.碲化镉太阳能电池原理
CdTe吸收层
电池的主体吸光层,它与n型的CdS窗口层形成的p-n结是整个电
池最核心的部分。多晶CdTe薄膜具有制备太阳能电池的理想的

CdTe薄膜太阳能电池

CdTe薄膜太阳能电池
1、By inserting a compact TiO2 layer with 20 nm thickness, device yield was improved to more than 80 % with a peak efficiency of 8.0 %.
2 、TiO2 buffer layer helps to solve the short-circuiting problems caused by thin CdS. The addition of a compact TiO2 layer was also found to significantly i
可编辑ppt
3
CdTe的能隙值为1.45eV,是直接能隙。 TCO的能隙为3.2~4.3eV,是间接能隙。
可编辑ppt
4
CdTe太阳能电池的结构类型
光光 背电极
聚酰亚胺衬底
光光 结构
背电极 金属衬底
结构
由于Substrate型太阳能电池CdS/CdTe的界面品质较差,欧姆接触性差, 所以转化效率较低,一般不常用。
可编辑ppt
17
In order to identify the optimum thickness for TiO2, solar cell devices with 20-, 40-, 60-, 80- and 100-nm-thick
可编辑ppt
18
可编辑ppt
19
Conclusions
可编辑ppt
16
1、TiO2 in solar cells helps in improving efficiency by stopping holes from going to TCO front contact . 2、TiO2 window layer helps in the separation of charge carriers and reduces the recombination rate.

太阳能电池研究综述

太阳能电池研究综述

太阳能电池研究进展综述[摘要]:综述了当前太阳能电池发展中的新技术和新方向。

为使太阳能电池能够更加充分地吸收太阳光,表现出更高的能量转换效率,同时具备更加低廉的成本及更为广泛的应用领域,薄膜电池、柔性电池以及叠层电池已经成为太阳能电池领域的重要发展方向。

[关键词]:太阳能电池;单晶硅;染料敏化太阳能电池[Abstract]:Summarizes the new technology and new directions in the development of the current solar cell. In order to make the solar battery can be more fully absorb sunlight, exhibit higher energy conversion efficiency, with lower cost and more widely used in the field, thin-film batteries, battery and a flexible laminated battery has become an important development direction in the field of solar battery.[Keywords]:Solar cells; Silicon; Dye sensitized solar cell1.引言人类生存离不开能源,特别是人类现代文明更离不开能源。

常规的化石能源对环境的严重污染所导致的生态破坏、地球温室效应等正日趋严重的威胁着人类生存,而且化石能源迟早会枯竭耗尽。

因此以太阳能为代表的可再生能源,实现能源工业的可再生发展具有重要意义。

太阳能电池的种类很多,按照所用材料的不同可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池等。

CdTe薄膜太阳能电池(课堂PPT)

CdTe薄膜太阳能电池(课堂PPT)
2 、TiO2 buffer layer helps to solve the short-circuiting problems caused by thin CdS. The addition of a compact TiO2 layer was also found to significantly i
16
1、TiO2 in solar cells helps in improving efficiency by stopping holes from going to TCO front contact . 2、TiO2 window layer helps in the separation of charge carriers and reduces the recombination rate.
20
CdTe太阳能电池发展前景
◆ CdTe薄膜太阳能电池具有成本低,工艺制备简单,其吸收层与光谱最一致的优点, 是未来太阳能电池发展的方向
◆ First Solar公司是全球最大的CdTe太阳能电池生产商,该致力于CdTe太阳能电池 研究十余年,至2016年,该公司总装机量达6GW,预计2016年年装机量达2GW, 占到全球太阳能电池装机量的3%。一个中型的水电站的年发电量是100MW, 该公司一年的装机量等于建20个中型水电站。
一般在不超过500nm
12
CdTe吸收层
1、CdTe能隙值为1.45eV,位于理想的太阳能电池的能隙之 间,且具有很高的吸光系数,是非常理想的光伏材料
2、CdTe层的厚度一般在2-8μm.
13
背接触层和背电极
降低CdTe和金属电极的接触势垒,引出电流,是金属电 极与CdTe形成欧姆接触
14

cdte研究进展

cdte研究进展

物理科学与技术学院学年论文题目 Cds/CdTe太阳能电池的研究进展姓名高智忠所在学院物理科学与技术学院专业班级电子科学与技术学号 00909062指导教师李蓉萍教授日期 2011 年 9 月 5 日目前, 晶体硅太阳能电池是最主要的太阳能电池材料。

然而, 硅并不是理想的光伏材料, 光的吸收率很低, 在波长0.5~1.0um范围内, 光的吸收系数低, 因此要吸收90%的光, 所需硅材料的厚度至少为100um, 成本很高。

另外, 硅的禁带宽度为1.12eV, 并非对应最佳产生光伏响应的禁带宽度1.5eV, 因此硅材料太阳能电池的理论转换效率较低, 约为25%。

现在实验室最高的转换效率已经达到24.7%, 多晶硅太阳能电池为19.8%, 但其成本非常高。

目前的研究表明, 单一发展晶体硅太阳能电池无法与常规能源相竞争。

为了制造低成本高效率的太阳能电池, 研制新材料新结构的太阳能电池变得非常必要。

作为一种非常重要的薄膜材料, Cdte的禁带宽度为1.45eV, 其禁带宽度随温度变化系数为(2.3~5.4)×0.0001Ev/K, 非常接近光伏材料的理想禁带宽度, 而且它是直接带隙材料, 具有很高的光吸收系数, 如在可见光部分, 其光吸收系数在100000/cm左右, 就只需要几个微米的厚度便可以吸收90%的光。

cds太阳能电池的理论转换效率在29%左右。

虽然同质结N一CdTe/P一CdTe也可以作太阳能电池, 但是转换效率很低, 一般小于10%, 其原因是CdTe的光吸收系数很高, 使大部分光在电池表面1~2um内就已被吸收并且激发出电子和空穴对, 但是这些少数载流子几乎在表面就被复合掉,即在电池的表面形成“死区”, 从而导致其转换效率低。

为了避免这种现象, 一般是在CdTe的表面生长一层“窗口材料”Cds 薄膜。

是宽禁带半导体材料, 带隙为 2.42eV, 与有相对较好的晶格、化学和热膨胀匹配。

石墨烯/纳米银复合材料的制备及应用研究进展

石墨烯/纳米银复合材料的制备及应用研究进展

石墨烯/纳米银复合材料的制备及应用研究进展综述了石墨烯/纳米银复合材料的制备方法及应用,讨论了其在导电、导热和生物医学等方面的应用,展望了石墨烯/纳米银复合材料的研究方向和发展前景。

标签:石墨烯;复合材料;纳米银;制备及应用石墨烯作为一种由单层单质原子组成的六边形结晶碳材料,其特殊性能的应用一直是近几年研究的重点。

但是石墨烯的生产效率低,需经常将其进行改性,达到以较少的添加量获得更好性能的目的。

其中,纳米银的出现在一定程度上扩大了石墨烯在导电[1],导热方面的应用。

而且纳米银的生产效率高,很好地解决了石墨烯/纳米银的生产问题,为石墨烯在诸多技术领域的应用拓展了空间[2]。

金属粒子由于含有自由移动的电子和极大的比表面积,在导电性和导热性方面有着出色的表现。

而纳米银颗粒,纳米银棒,纳米银线则可以在复合基体中形成网络通路,提高材料的导电性和导热性。

1 石墨烯/纳米银复合材料的制备方法目前,石墨烯掺杂纳米银复合材料可以根据纳米银的形貌特征分为石墨烯/纳米银颗粒复合材料和石墨烯/纳米银线复合材料。

纳米银的加入使得石墨烯复合材料的导电性和导热性以及石墨烯的表面硬度均得到了提高[3]。

1.1 机械共混法机械共混法可分为搅拌法和熔融共混法。

刘孔华[4]利用搅拌法制备得到石墨烯/纳米银线杂化物,在50 ℃下搅拌,升温至210 ℃,最后降至常温得到石墨烯/纳米银线杂化物。

熔融共混法是利用密炼机或者挤出机的高温和剪切作用力下将石墨烯、纳米银和基材熔融后,共混得到石墨烯/纳米复合材料。

该方法用途广泛,适用于极性和非极性聚合物和填料的共混。

并且纳米银的烧结温度在180 ℃,对于纳米银颗粒可以烧结形成一定规模的网络结构。

此方法制备的复合材料所需时间短,且纳米银线是单独制备,所以可以单独控制纳米银线的长度和长径比。

但是由于是机械共混,纳米银在石墨烯材料中的分散性不是很好,且容易发生团聚,达不到形成大量网络结构的目的。

1.2 化学还原法化学还原法是目前比较常见的将金属纳米粒子附着在石墨烯表面的方法。

CdTe量子点_罗丹明6G荧光共振能量转移体系的构建及其应用研究

CdTe量子点_罗丹明6G荧光共振能量转移体系的构建及其应用研究

Vo.l31高等学校化学学报No.2 2010年2月CHEM I CAL J OURNAL OF CH I NESE UN I VERSI T I E S260~263Cd Te量子点-罗丹明6G荧光共振能量转移体系的构建及其应用研究王绪炎,梁建功,马金杰,陈姝含,韩鹤友(华中农业大学理学院,农业微生物学国家重点实验室,武汉430070)摘要采用巯基化合物修饰的CdT e量子点构建了量子点(供体)-罗丹明6G(受体)荧光共振能量转移体系,研究了Cd T e量子点与牛血清白蛋白(BSA)的相互作用.结果表明,CdT e量子点与BS A相互作用后提高了Cd T e量子点-罗丹明6G体系的荧光共振能量转移(FRET)效率,减小了CdT e量子点和罗丹明6G分子间的距离(r),证实BS A是通过其色氨酸(T rp)残基与Cd T e量子点表面金属发生配位作用而直接结合到量子点表面的.关键词Cd T e量子点;罗丹明6G;荧光共振能量转移;牛血清白蛋白中图分类号O65713文献标识码A文章编号0251-0790(2010)02-0260-04荧光共振能量转移(FRET)技术作为一种有效的光物理分析方法被广泛应用于分子间距离和分子结构的测定以及生物学方面[1].其中,基于量子点的FRET在生物大分子相互作用[2~4]及生物传感器[5,6]等方面的研究已成为热点和FRET领域发展的一个有意义的新方向[7].牛血清白蛋白(BSA)的氨基酸序列与人血清白蛋白(H SA)非常类似,经常作为模型蛋白用于研究外源物质与蛋白质之间的相互作用[8].近年来,研究量子点与BS A相互作用已引起关注.Shao等[9]采用毛细管电泳和荧光相关光谱法[10]研究了CdTe量子点与BSA之间的相互作用,认为两者之间的相互作用主要是静电引力;Zhao等[11]在评估CdTe量子点对BSA的毒性过程中发现,氢键和范德华力是稳定CdTe量子点-BSA复合物的主要结合力;本课题组[12]研究发现,在CdTe量子点与BSA形成复合物的过程中主要的相互作用为疏水作用和配位作用.但目前对量子点与BSA的作用机理尚不清楚.本文构建了一种量子点-罗丹明6G FRET体系,应用该体系研究了BSA与量子点的相互作用,证实了BSA是通过其色氨酸残基与量子点表面金属发生配位作用而直接结合到量子点表面这一作用机理,为今后量子点在生物学上更广泛的应用提供了前期工作基础.1实验部分1.1试剂与仪器氯化镉、无水亚碲酸钠、巯基乙酸(TGA)、还原型谷胱甘肽(GSH)和罗丹明6G(R6G)(分析纯,国药集团化学试剂有限公司);牛血清白蛋白(BSA,Roche公司);PBS缓冲溶液(0101m o l/L,p H= 714);M ill-i Q超纯水(18125M8#c m).Evolution300紫外-可见分光光度计(美国Ther m o N ico le公司);LS-55荧光分光光度计(美国Per k i nE l m er公司);APEX微波化学工作站(上海屹尧微波化学技术有限公司).1.2实验过程1.2.1CdTe量子点-罗丹明6G FRET体系的构建采用微波加热法分别合成了TGA和GS H修饰的CdTe量子点[13,14].参考文献[15]方法,计算出CdTe-T和CdTe-G量子点的尺寸和浓度分别为119n m,收稿日期:2009-09-27.基金项目:国家自然科学基金(批准号:20975042)、转基因科技重大专项基金(批准号:2009ZX08012-015B)、湖北省自然科学基金重点项目(批准号:2008CDA080)和湖北省自然科学基金面上项目(批准号:2008CDB031)资助.联系人简介:韩鹤友,男,教授,博士生导师,主要从事纳米生物分析领域的研究.E-m ai:l hyhan@m ai.l 616@10-6m o l/L 和210nm ,712@10-5m o l/L .在10mL 比色管中,用PBS 缓冲溶液配制CdTe 量子点溶液(110@10-6m o l/L),依次加入R6G 溶液(R6G /量子点摩尔比为0,1,2,3,5和10),并测定其荧光光谱(测定条件:激发波长390nm;入射狭缝1010nm;出射狭缝310n m ).按E =1-F DA /F D 关系式计算出FRET 体系荧光共振能量转移效率[5,16],其中,F DA 为受体存在时供体的荧光强度;F D 为受体不存在时供体的荧光强度.1.2.2 BSA /CdTe 量子点摩尔比对荧光共振能量转移效率及供体-受体之间距离的影响 配制一系列CdTe 量子点和CdTe 量子点-BSA 溶液(CdTe 量子点浓度均为110@10-6m ol/L ,BSA /量子点摩尔比依次为0,1,2,3,5和10),37e 下振荡反应2h ,冷却至室温后测定并计算量子产率[5]及加入不同量的BSA 后,FRET 体系的荧光共振能量转移效率.按E =nR 60/(nr 60+r 6),J A D =Q ]0PL D -corr (K )IA(K )K 4d K ,R 60=8.79@10-25k 2n -4D 5D J AD ,r =R 0[n(1-E )/E ]1/6计算CdT e 量子点-罗丹明6G 之间的距离r [5,16],其中,R 0为F Êrster 半径;r 为供体与受体间的距离;k 2为空间取向因子,通常假设为2/3;5D 是供体的荧光量子产率;J AD 为供体荧光发射光谱与受体紫外吸收光谱之间的光谱重叠积分;n D 为供体与受体之间介质的折射指数;n 为接近单个受体分子的供体分子个数.2 结果与讨论2.1 CdTe 量子点-罗丹明6G FRET 体系的构建从图1可知,CdTe -T 和CdTe -G量子点荧光发射峰与R6G 的紫外吸收峰均能有效重叠,具备构建FRET 体系的条件.按公式J A D =Q ]0PL D -cor r (K )I A(K )K 4d K 计算出CdTe -T 及CdTe -G量子点与R6G 的光谱重叠积分分别为3184@10-13和3170@10-13c m 3#L /m o.lF i g .1 UV -V is ab sorption spectra of R6G (a )andnormalized fl uorescen ce spectra ofCdT e -T (b )and CdT e -G(c)Fig .2 F l uorescence s p ectra of F RET syste m sa.CdTe -G ;b .CdTe -T ;c .C dTe -G -R6G ;d .CdTe -T -R6G ;e .R6G .F i g .3 E ffect of m olar ratio of R6G to CdT eon energy transfer effic iency在量子点溶液中加入R6G 后,量子点的荧光强度下降,R6G 的荧光强度增加,这表明量子点与R6G 之间发生了荧光共振能量转移(图2).原因可能在于量子点表面修饰基团上的羧基与R6G 分子上的氨基发生相互作用,使供、受体之间的距离满足了发生FRET 的条件.随着R6G /CdTe 量子点摩尔比的增大,CdTe 量子点-R6G 之间的荧光共振能量转移效率不断增加(图3),这是因为增加接近单个供体表面的受体分子个数能够提高体系的荧光能量转移效率[16].2.2 BS A /CdTe 量子点摩尔比对荧光共振能量转移效率的影响量子点与BSA 相互作用后,BSA 钝化了量子点的表面缺陷,降低了无辐射跃迁的几率,从而使量子产率有所提高[17];但随着BSA /量子点摩尔比的持续增大,过量BSA 在量子点表面起电子陷阱的作用,使得荧光强度有所下降,量子产率反而有所降低[18,19](表1).由于在量子点成核过程中,Cd 2+-GSH 层分解形成的CdS 壳有效地钝化了CdTe 量子点的表面缺陷,故CdT e -G量子点的量子产率大于261N o .2 王绪炎等:CdT e 量子点-罗丹明6G 荧光共振能量转移体系的构建及其应用研究CdTe -T量子点的量子产率[20],且随着BSA /量子点摩尔比的持续增大,CdTe -G量子点的量子产率比CdTe -T量子点的量子产率减少得快.这也表明CdTe -G量子点的表面缺陷少于CdTe -T量子点,其表面过量BSA 的电子陷阱作用更明显.T ab le 1 E ffect of m olar ratio of B SA to CdT e on F Êrster rad i u s and d istance between CdT e and R6Gn (BSA )/n (CdT e)CdTe -TCdT e -G 5D (%)R 0/nmr /n m 5D(%)R 0/nmr /nmn (BSA )/n (CdTe)C dTe -T CdTe -G5D (%)R 0/nm r /nm5D(%)R 0/nmr /nm 035.2 3.68 4.7051.63.905.08344.93.834.3751.9 3.90 4.93139.7 3.76 4.4454.03.934.97544.53.834.2751.8 3.90 4.92245.03.834.4153.53.924.961043.53.814.1751.73.894.91F ig .4 E ffect of molar ratio of B SA to CdT eon energy transfer eff i c ien cyn (R6G)/n (CdT e)=10.从图4可知,量子点与BSA 相互作用后,提高了CdTe 量子点-R6G 之间的的荧光共振能量转移效率.随着BSA /CdTe 量子点摩尔比的持续增大,CdTe -T量子点-R6G 之间的荧光共振能量转移效率也不断提高,但CdTe -G量子点-罗丹明6G 之间的荧光共振能量转移效率的变化却不明显.以上结果表明,量子点-罗丹明6G 之间的荧光共振能量转移效率除与量子点的量子产率有关外,还应该与量子点与罗丹明6G 分子之间的距离有关.2.3 BS A /CdTe 量子点摩尔比对供体-受体之间距离的影响计算得出的量子点与罗丹明6G 之间F Êrster 半径(R 0)和距离(r )列于表1.由于巯基乙酸分子尺寸小于谷胱甘肽分子,罗丹明6G 与CdTe -T量子点之间的距离要小于与其CdTe -G量子点之间的距离.BSA /量子点摩尔比的增加使CdTe 量子点与罗丹明6G 之间的整体平均距离有所减小,即CdTe -T和CdTe -G量子点与罗丹明6G 之间的距离减小值分别为0153和0118nm .这可能是量子点与BSA 相互作用后,有一部分罗丹明6G 分子能够在更接近于量子点表面的结合位点与量子点发生荧光共振能量转移.实验还发现卵清蛋白也存在着与BSA 类似的现象.2.4 BS A 与CdTe 量子点的作用机理M a m edova 等[21]在研究BSA 与CdTe 量子点生物结合的过程中发现,富集在CdTe 量子点胶体表面的Cd 2+能够与BSA 表面的金属结合位点发生配位作用;Zhao 等[11]在研究CdTe 量子点对BSA 的毒性时发现,量子点会影响BSA 的结构,使位于疏水区的色氨酸残基(T rp -213)逐步暴露于水中,同亲水区的Trp -134一起与量子点之间产生更好的相互作用.M a ttoussi 课题组[5,16]在组装大肠杆菌麦芽糖结合蛋白与CdSe -ZnS 量子点生物传感器过程中发现,蛋白是通过其表面组氨酸残基与量子点表面金属的配位作用直接结合到量子点表面的.Fig .5 S chematic d i agra m of fl uorescen ce resonance ennergy tran sfer bet w een CdT e andR6G b efore(A)or after(B )i n terac ti ng CdT e w ith BSA综合以上研究可认为,BSA 是通过其色氨酸残基与量子点表面金属发生配位作用而直接结合到量子点表面的.由于R6G 也可与BSA 色氨酸残基相结合[22],所以与量子点表面的修饰基团结合相比,一部分R6G 分子与更接近于量子点表面的色氨酸残基发生相结合,使得量子点与R6G 之间的整体平均距离有所减小(图5).CdTe -T量子点表面缺陷较多,BSA 的色氨酸残基能更好地结合到其表面,量子点与罗丹明6G 之间的整体平均距离就更小.同步荧光光谱显示,色氨酸残基的最大发射波长($K =262高等学校化学学报 V o.l 3160nm )略有红移,而酪氨酸残基的最大发射波长($K =20n m )基本不变(图略),表明量子点与BSA 的结合位点确实更接近于色氨酸残基,使得色氨酸残基所处环境的疏水性降低,BSA 构象发生变化[23].这一作用机理与之前的研究结果[12]一致.参 考 文 献[1] Fang C .,Zhao B.M.,Lu H.T.,et a l ..J .Phys .Ch e m.C [J],2008,112(18):7278)7283[2] M ed i ntz I .L.,Konnert J .H.,C l app A.R .,e t a l ..PNAS[J],2004,101(26):9612)9617[3] Eunkeu O .,H ongM.Y .,Lee D .,et a l ..J .Am.Che m.Soc .[J],2005,127(10):3270)3271[4] C l app A.R.,M ed i n tz I .L .,U yeda T .H.,et a l ..J .Am.Ch e m.Soc .[J],2005,127(51):18212)18221[5] M ed i ntz I .L.,C l app A .R .,M att oussiH.,e t al ..N at .M ater .[J ],2003,2(6):630)638[6] L iF .S.,V an i a D.P .,N itsa R .,e t al ..J .Am.Che m.S oc .[J],2006,128(32):10378)10379[7] M ed i ntz I .L.,M attouss iH..Phys .Che m.Che m.Phys .[J],2009,11(1):17)45[8] SUN Y an -Tao(孙艳涛),Z HANG Yu -Pu(张玉璞),BI Shu -Yun(毕淑云),e t a l ..Ch e m.J .Ch i nes e U nivers ities(高等学校化学学报)[J],2009,30(6):1095)1100[9] Shao L .W.,Dong C.Q .,Ren J . C.,et a l ..Ch i n.C he m.Lett .[J],2008,19(6):707)710[10] Shao L .W.,D ong C.Q.,Ren J . C.,et a l ..J .Fl u oresc .[J],2009,19(1):151)157[11] Zh ao L.Z .,Li u R.T.,Zh ao X. C.,et al ..Sc.i Tot a.l Environ.[J],2009,407(18):5019)5023[12] L i ang J .G .,Ch en Y .P .,H an H.Y..J .M o.l S truct .[J],2008,892(1)3):116)120[13] Rogach A .L .,Franz lT .,K l ar T .A .,e t al ..J .Phys .Che m.C [J],2007,111(40):14628)14637[14] H an H.Y.,Sheng Z .H.,L i ang J .G..Ana.l Ch i m .Acta[J],2007,596(1):73)78[15] Qu L .H.,GuoW.Z .,Peng X .G .,e t al ..Che m.M at er .[J],2003,15(14):2854)2860[16] C l app A.R.,M ed i n tz I .L .,M att ou ssiH.,e t al ..J .Am.Che m.Soc .[J],2004,126(1):301)310[17] ZENG Q i ng -H u i(曾庆辉),Z HANG You -L i n(张友林),DU Chuang(杜创),e t al ..Che m.J .Ch i neseU n i vers ities(高等学校化学学报)[J],2009,30(6):1158)1161[18] J eong S .,Acher m ann M.,N anda J .,e t al ..J .Am.Che m.Soc .[J],2005,127(29):10126)10127[19] W ang Q .,Kuo Y . C.,W ang Y.W.,et a l ..J .Phys .Che m.B[J],2006,110(34):16860)16866[20] Q ian H.F .,Dong C.Q.,W eng J .F .,et a l ..S m all [J],2006,2(6):747)751[21] M am edova N .N.,N icholas A .,Kot ov Andrey L.,et a l ..Nano .Lett .[J ],2001,1(6):281)286[22] YANG M an -M an(杨曼曼),YANG P i n(杨频),X I X i ao -L i (席小莉).C h i n .S c.i Bu l .l (科学通报)[J],1997,2(12):1277)1279[23] Z HANG Xiao -W ei(张晓威),ZHAO Feng -L i n(赵凤林),L IK e -An(李克安),et al ..Che m.J .Ch i n ese Un i versiti es(高等学校化学学报)[J],1999,20(7):1063)1067Construction and Applicati on of Cd T e Quantu m Dots -Rhoda m i ne 6GFluorescence R esonance Energy T ransfer Syste m sWANG Xu-Y an ,LIANG Jian -Gong ,MA Ji n -Ji e ,C H E N Shu-H an ,HAN H e -You*(Colle g e of Science ,S t a teK e y Laboratroy of A gricatrual M icrobio logy,H uazhong A gricult ural Un i vers it y,W uhan 430070,China)Abst ract Two k i n ds of th i o ls modified CdTe quantu m dots w ere used to construct the CdTe quantum do ts (donor)-Rhoda m i n e 6G (acceptor)fl u o rescence resonance ener gy transfer(FRET )syste m s ,w h i c h w ere ap -plied to investiga te the interaction m echanis m bet w een CdTe quantum dots and bov i n e serum albu m i n (BSA ).The resu lts sho w ed that the ener gy transfer effic i e ncy of the CdTe quantum dots -rhoda m i n e 6G FRET syste m s w ere i m proved ,and the distance bet w een CdTe quantu m do ts and rhoda m i n e 6G (r )w ere decreased after CdTe quantum dots i n teracted w ith BSA,BSA w ere d irectl y bind i n g to t h e surface of quantum do t by the coor -di n ation bet w een its tryptophan(T r p)resi d ues and the m eta.l K eywords CdTe quantum do;t Rhoda m i n e 6G ;Fluorescence resonance energy transfer ;Bov ine serum album i n(Ed .:A,G )263N o .2王绪炎等:CdT e 量子点-罗丹明6G 荧光共振能量转移体系的构建及其应用研究。

CdTe——精选推荐

CdTe——精选推荐

文章编号:1000-582X(2002)08-0055-03一种用于制冷的新型太阳能电池———CdS/Cd T e!刘高斌,冯庆,刘亚静,王万录(重庆大学应用科学与技术系,重庆400044)摘要:C dS/C dT e多晶薄膜电池是一种利用C dS的优良窗口效应和C dT e良好的光电转换而做成的一种层叠的异质结薄膜太阳电池,是适用于制冷、新型、高效率、低成本的太阳能电池,具有低缺陷、能隙大、稳定性好的特点,并且制作工艺简单、经济,易于大面积沉积,而且还具有环保价值。

综述了C dS/C dT e多晶薄膜太阳能电池的特性及它的发展,同时还归纳了一些适应大面积和低成本的生产工艺。

关键词:C dS/C dT e太阳能电池;多晶薄膜;转换效率中图分类号:TK519文献标识码:A夏季,炎热的天气,正是人们使用空调、冰箱等制冷设备的高峰,而此时太阳能最充足、最丰富,这时利用太阳能作为制冷与空调的能源有巨大的优越性。

太阳能在制冷与空调方面的应用,主要是建筑、空调、大型冷库、医院冷藏、家庭冰箱等方面。

虽然太阳能制冷的技术难度较大、造价较高(因为现在太阳能电池多使用单晶硅,按现行市场价格1k W的光伏空调成本将上万元),但光伏空调与冰箱由于适应范围广,只要降低成本就会具有广阔的应用前景。

目前,人们正致力于此方面的研究开发。

最近开发出了一种非常适用于制冷的、新型、高效、低成本薄膜太阳能电池———C dS/C dT e。

作者对C dS/C dT e太阳电池的特性、发展及生产工艺做了详细叙述。

1C dS/C dT e薄膜太阳电池的特性C dS是一种宽带隙半导体材料,室温下它的禁带宽度是2.42e V。

因此C dS薄膜在异质结太阳电池中是一种重要的N型窗口材料[1],具有较好的导电性能和光的通透性。

C dS薄膜可以用真空蒸镀、溅射、高温热解喷涂、化学沉积等方法来制备。

!-"族化合物C dT e是一种理想的光电转换与太阳电池材料,在室温下其禁带宽度是1.47e V[2],与太阳光谱匹配良好,易于形成N型和P型半导体薄膜,它的理论转换效率高达28%[3,4]。

PLD法硫化物半导体敏化TiO_(2)纳米棒阵列薄膜的研究进展

PLD法硫化物半导体敏化TiO_(2)纳米棒阵列薄膜的研究进展

当代化工研究Modem Chemical Research154科研开发2021・05PLD法硫化物半导体敏化T i(J?纳米棒阵列薄膜的研究进展*孔书悦罗艳花吴楠马成李鹏冶晓英余鹏珍(西北民族大学化工学院甘肃730106)摘要:量子点敏化太阳能电池(QDSSCs)相较于其它电池具有较高的理论转化效率(66%)且其生产成本相对较低,受到太阳能业界的广泛关注切。

相较于其他太阳能电池,薄膜型电池可以降低太阳能发电的成本和缩小太阳能电池的体积,进而薄膜的制备成为太阳能电池性能好坏的关键性因素.目前大部分研究均针对于Cd系硫化物量子点展开,但由于其有较高毒性限制了Cd系硫化物在太阳能电池方面的发展。

本文详细介绍了制备无毒环保的硫化物量子点薄膜以及PLD法制薄膜的优势,并展望未来发展,为增强光电转化效率促进太阳能电池的发展提供新的思路。

关键词:量子点敏化太阳能电池;脉冲激光沉积;硫化物中图分类号:0文献标识码:AResearch Progress of Sulfide Semiconductor Sensitized TiO2Nanorod Array Films by PLD Kong Shuyue,Luo Yanhua,Wu Nan,Ma Cheng,Li Peng,Ye Xiaoying,Yu Pengzhen(College of Chemical Engineering,Northwest University for Nationalities,Gansu,730106) Abstract t Quantum dot sensitized solar cells(qdsscs)have high theoretical conversion efficiency(66%)compared with other batteries,and t heir p roduction costs are relatively loyv t which has attracted extensive attention of t he solar pared with other solar cells,thin f ilm solar c ells can reduce the cost ofsolar p ower generation and reduce the volume of s olar cells,and the p reparation of t hin f ilms has become a key f actor in th e performance of s olar cells.At p resent,most of t he researches are f ocused on Cd based sulfide quantum dots.Hoyvever,due to their high toxicity,the development of C d based sulfide in solar cells is limited.In this p aper,the advantages of p reparing non-toxic and environmentally f riendly sulfide qua­ntum dot f ilms and PLD thin f ilms are introduced in detail,and the f uture development is prospected,which provides new ideas f or enhancing the p ho toelectric conversion efficiency and p romoting the development of s olar cells.Key words z quantum dot sensitized solar cell;pulsed laser deposition^sulfide1.引言随着社会经济的发展,全球能源消耗大幅度增加,人类正面临着严重的能源危机。

测试模式对碲化镉和钙钛矿太阳电池量子效率测试结果的影响

测试模式对碲化镉和钙钛矿太阳电池量子效率测试结果的影响

·实验技术·测试模式对碲化镉和钙钛矿太阳电池量子效率测试结果的影响王文武,蒋亚男,张静全(四川大学 材料科学与工程学院,成都 610064)摘要:量子效率测试是太阳电池研究中重要的器件表征方法之一。

在测试薄膜太阳电池量子效率时,不同测试条件会引起量子效率测试结果的差异,从而对准确分析太阳电池器件制备工艺条件造成一定的影响。

测试了不同结构的碲化镉(CdTe )薄膜太阳电池和钙钛矿太阳电池在直流模式和交流模式两种不同模式下的量子效率,分析了影响量子效率测试结果的主要因素。

实验结果表明CdTe 薄膜太阳电池的量子效率测试结果受测试频率及太阳电池接受的光照历史两大因素影响;钙钛矿电池的器件因其电容特性强,测试结果受频率的影响更大。

关 键 词:CdTe 太阳电池;钙钛矿太阳电池;量子效率;直流模式;交流模式中图分类号:O475 文献标志码:A DOI: 10.12179/1672-4550.20190408The Influence of Testing Mode on Quantum Efficiency MeasurementResults of CdTe Solar Cells and Perovskite Solar CellsWANG Wenwu, JIANG Yanan, ZHANG Jingquan(College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China )Abstract: As an effective device characterization method, the measurement of quantum efficiency (QE) can be tremendously informative about different structures of thin-film solar cell.While the results may be different if the solar cells are tested in different conditions. The QE of CdTe and perovskite thin film solar cells with different structures were measured in direct current (DC) mode and alternating current (AC) mode. The results show that the quantum efficiency of CdTe solar cells is affected by test frequency and lighted time. There is more effect of the results of perovskite thin film solar cells than CdTe thin film solar cells by frequency because of its device capacitance characteristics.Key words: CdTe solar cells; perovskite solar cells; quantum efficiency; DC mode; AC mode量子效率测试是薄膜太阳电池研究中重要的测试手段之一。

CdTe太阳能电池

CdTe太阳能电池

BEIJING JIAOTONG UNIVERSITY
5、发优展点前景
镉排放量
碲化镉薄膜太阳能电池在工业规模上成本
1
大大优于晶体硅和其他材料的太阳能电池
技术,生产成本仅为0.87美元/W。
其 次 它 和 太 阳 的 光 谱 最 一 致 , 可 吸 收 95%
2
以上的阳光。
工艺相对简单,标准工艺,低能耗,无污
BEIJING JIAOTONG UNIVERSITY
CdTe吸收层
它是电池的主体吸光层,它与n型的CdS窗口层形成的 p-n结是整个电池最核心的部分。多晶CdTe薄膜具有制 备太阳能电池的理想的禁带宽度(Eg=1.45 eV)和高的 光吸收率(大约104cm-1)。CdTe的光谱响应与太阳光谱 几乎相同。
Institute of Optoelectronic Technology
BEIJING JIAOTONG UNIVERSITY
衬底加 热器
衬底
生长薄膜
CdTe源材料
源 加材 热料 器近空间升华法制各CdTe薄膜是一个相变过程,即 由气相到吸附相,然后到固相的过程。整个过程分 为升三温过个程物:理对过Cd程Te:源从升室温温过开程始、持续升被华加过热程到、升华沉温积度过。程
BEIJING JIAOTONG UNIVERSITY
三、工制艺备流程工艺
激光刻划 TCO薄膜
沉积CdS 薄膜
沉积CdTe 薄膜
含氯气氛 后处理
激光刻划半 导体薄膜
封装测试
激光刻划 背电极
沉积金属 背电极
后处理
图4 工艺流程图
Institute of Optoelectronic Technology

近空间升华法制备cdte薄膜

近空间升华法制备cdte薄膜

收稿日期:2000-10-27基金项目:国家“九五”科技攻关资助项目(96-A7-03-02-03);国家自然科学基金资助项目(59672036)第22卷第2期半导体光电Vol.22No.22001年4月Semiconductor OptoelectronicsApr.2001文章编号:1001-5868(2001)02-0121-03近空间升华法制备CdTe 薄膜蔡伟1,张静全1,2,郑家贵1,黎兵1,蔡亚平1,武莉莉1,邵烨1,冯良桓1(1.四川大学材料科学系,四川成都610064;2.贵州师范大学物理系,贵州贵阳550001)摘要:研究了衬底材料和基片温度对膜微结构的影响。

衬底温度在400C 以上薄膜结晶状况较为完整。

在结晶状况较好的CdS 薄膜上生长的CdTe 薄膜晶粒较大,尺寸均匀。

在CdTe 膜面涂敷CdCl 2甲醇溶液,可促进热处理过程中薄膜晶粒的长大。

关键词:CdTe 薄膜;近空间升华法;太阳电池中图分类号:TM914.4;TN304.2+5文献标识码:AStudy on Preparation and Structure of Cdte FilmsCAI Wei 1,ZHANG Jing-guan 1,2,ZHENG Jia-gui 1,LI Bin 1,CAI Ya-ping 1,WU Li-li 1,SHAO Ye 1,FENG Liang-huan 1(1.Department of Materials Science ,Sichuan University ,Chengdu 610064,China ;2.Department of Physics ,Guizhou Normal University ,Guiyang 550001,China )Abstract :CdTe films are prepared by closed-space sublimation technology.Film crystalline dependence on substrate materials and substrate temperature is studied.It is found that films show higher crystallinity at substrate temperature over 400C.And the CdTe films deposited on CdS films with higher crystallinity has big-ger crystallite and higher uniformity.Treatment with CdCl 2methanol solution promotes the crystallite growth of CdTe films during annealing.Key words :CdTe films ;close-space sublimation ;solar cells1引言近年来太阳电池研究的主要目标是发展低成本、高效率的地面发电用太阳电池。

不同窗口层结构的碲化镉太阳电池的变温暗IV

不同窗口层结构的碲化镉太阳电池的变温暗IV

58教育前沿 Cutting Edge Education其中V 为应用电压,n 为二极管理想因子,J 0为反向饱和电流密度,Ea 为活化能,k 为Boltzmann’s 常数,J 00为依赖于传输机制的前置因子。

热激活传输的所有关系的主要特征是(a)二极管理想因子与温度无关,根据n 和p 型层的电流传输和掺杂浓度,取值介于1到2之间;(b)在恒定电压下,lnJ 0与温度的倒数(T -1)有近似的变化。

通过Eq .(1)的变形式,可以用实验数据推导出激活能Ea 的值因此,激活能Ea 可以从nln(J 0)与1 /kT 的线性图的斜率计算出来。

根据该模型,Ea 代表界面势垒高度对于空穴在界面复合的情况,和吸收材料的带隙E g 在体复合的情况。

(1)界面复合许多异质结如CdS / CdTe,由于大的晶格失配,在界面上直接复合是一个重要的传输路径。

在冶金的结处的空穴和电子密度决定了界面复合的电流密度。

对于不对称地掺杂异质结N D > N A ,界面复合主导当前电图1 CdS/CdTe 电池在不同温度下的暗J-V 特性表2 CdS/CdTe 电池在图一区域的T,n,J 0值temperatureIdeality Factor n暗饱和电流密度K mA/cm 2T N J 0230 1.24 1.23E-112401.40 1.26E-10250 1.17 5.17E-11260 1.32 4.48E-10270 1.41 4.86E-09280 1.53 1.78E-08290 1.76 3.19E-073001.83 6.52E-07Cutting Edge Education 教育前沿 59图3 MZO/CdTe 电池在不同温度下的暗J-V 特性表3 MZO/CdTe 电池在图三区域的T,n,J 0值temperatureIdeality Factor n暗饱和电流密度K mA/cm2T N J 02300.95 2.33E-08240 1.01 5.68E-08250 1.08 2.72E-07260 1.09 3.72E-07270 1.13 1.28E-06280 1.26 3.54E-06290 1.25 5.90E-063001.33 1.73E-052.3 CdSe/CdTe 异质结太阳电池图5显示了典型的CdSe/ CdTe 异质结太阳电池温度相关的暗电流密度与电压特性。

宽光谱响应的高效CdTe 薄膜太阳电池

宽光谱响应的高效CdTe 薄膜太阳电池

3.70 eV,该条件下采用 MZO/CdTe 结构的 CdTe
薄膜太阳电池的平均光电转换效率为 12.5%,最
3.80
3.75
3.73
3.70 3.68
3.65
3.64
‫ټ‬ဤ/eV
3.60
3.58
3.56
3.55 0
50 100 150 200 250 300 350 400 450 ‫ڹת‬࿒‫܈‬/℃
图 1 MZO 薄膜的带隙与衬底温度的关系曲线 [13]
Fig. 1 Relationship between the band gap of the MZO film and the substrate temperature [13]
48
第 05 期
刘娇等:宽光谱响应的高效 CdTe 薄膜太阳电池
学术研究
式实现:1) 间接法,先沉积 CdSe,后续再通过 热扩散方式形成三元合金;2) 直接沉积 1 层三元 合金的化合物薄膜,并在后续热扩散过程中形成 成分梯度。CdSeTe 的制备方法较为多样,可以 采用真空热蒸发 [4-5]、近空间升华 [6-7]、分子束外 延 [8-9]、热壁沉积 [10]、电子束沉积 [11] 和电沉积 [12] 等方法制备。
刘 娇 1,鲍飞雄 1,傅干华 2,沈 凯 1*,麦耀华 1
(1. 暨南大学信息科学技术学院,新能源技术研究院,广州 511443;2. 成都中建材光电材料有限公司,成都 610064)
摘 要:碲化镉 (CdTe) 薄膜太阳电池是最成功的产业化薄膜太阳电池技术。近年来,CdTe 薄膜太阳电池的新
一轮技术革新使小面积 CdTe 薄膜太阳电池的最高光电转换效率从 16.5% 快速提升至 22.1%,该太阳电池的材

单色光电流-电压特性测试在碲化镉太阳电池研究中应用

单色光电流-电压特性测试在碲化镉太阳电池研究中应用

单色光电流-电压特性测试在碲化镉太阳电池研究中应用王文武;蒋亚男;张静全【摘要】针对不同结构的碲化镉(CdTe)太阳电池,测试其单色光特性,并计算出不同波长下的收集效率.结果表明,高质量的高阻层能提高太阳电池短波区的收集效率,对提高长波段的收集效率有一定作用;背接触层能够明显在电池背部形成欧姆接触;适当的硫化镉(CdS)层的厚度能够改善窗口层的界面,提升电池的器件性能.通过该测试方法可以获得器件结构与器件性能之间关系,从而为进一步优化电池结构和制备工艺、提高太阳电池转换效率提供依据.【期刊名称】《实验室研究与探索》【年(卷),期】2019(038)004【总页数】4页(P10-12,28)【关键词】太阳电池;单色光电流-电压特性;收集效率;碲化镉【作者】王文武;蒋亚男;张静全【作者单位】四川大学材料科学与工程学院,成都610064;四川大学材料科学与工程学院,成都610064;四川大学材料科学与工程学院,成都610064【正文语种】中文【中图分类】O433.1;O472;TK5140 引言单色光电流-电压(I-U)特性测试是指在特定强度、波长的单色光的测试条件下,太阳电池的电压、电流等器件性能测试[1-4],其不仅能反映太阳电池在不同波长下的器件性能,还可以得到不同波长下的太阳电池的收集效率[5-7]。

太阳电池的收集效率[8]定义为光生电流JL与短路电流JL0的比值。

在CdTe薄膜太阳电池中,收集损失主要是不同器件结构的光生载流子的输运导致。

正如Hegedus等[9]提出的,太阳电池的收集效率可以通过两个不同光照强度的J-U计算得到。

单色光I-U测试有助于分析太阳电池器件结构与其在不同波长范围的器件性能的相关关系,更有利于深入研究太阳电池器件的构造与其对不同波段太阳光响应的关系,从而为进一步提高电池器件性能提供理论依据。

同时单色光I-U测试及收集效率的计算是结合半导体物理与太阳电池器件及器件物理方面知识,能够更好地促进相关专业的学生更深入地了解器件物理及半导体相关理论。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Analysis of CdTe solar cells in relation to materials issuesM.Burgelman *,J.Verschraegen,S.Degrave,P.NolletUniversity of Gent,Electronics and Information Systems (ELIS),Pietersnieuwstraat 41,9000Gent,BelgiumAvailable online 15December 2004AbstractBy now,extensive experimental research is available on thin film solar cells based on CdTe and on CIGS,and their electrical and optical behaviour is characterised by a multitude of diverse characterisation techniques.At the same time,numerical simulation programmes have matured and are available to the research community to assist in interpreting these measurements consistently.Once multiple measurements are (more or less)quantitatively described,the numerical simulation can be used to explore the effect of a variation of materials parameter (e.g.the presence or absence of a property,or variation in a range of values)to the final solar cell characteristics.Examples of such analysis for CdTe solar cells are shown.In CdTe cells,much research has been devoted to the activation treatment of the absorber,and to the technology of the back contact.Analysis of ample measurements has evidenced the crucial role of the profile of the (effective)doping density through the device.It will be illustrated how this relative simple (but hardly mastered)materials property has a far reaching influence to the cell characteristics such as roll-over and cross-over of I –V curves,also in dependence on illumination and voltage,conventional and apparent quantum efficiency,and finally fill factor and efficiency.D 2004Elsevier B.V .All rights reserved.Keywords:Thin film solar cells;CdTe;CIGS1.IntroductionThin film solar cells based on CdTe and on CIGS are steadily approaching towards a mature stage of knowledge,understanding,fabrication and exploitation.By now,exten-sive experimental research on CdTe and CIGS materials and cells is available,and the electrical and the optical behaviour of these cells is characterised by a multitude of diverse characterisation techniques:examples are found in Refs.[1,2]for CdTe,in Refs.[3–5]for Cu(In,Ga)Se 2and in Ref.[6]for wide gap CuInS 2and Cu(In,Ga)(S,Se)2materials.At the same time,numerical simulation programmes have matured and are available to the research community to assist in interpreting these measurements consistently.A review on this was presented in Ref.[7].Modern polycrystalline cells are complicated structures,and the effects of some particular phenomenon,mechanism or materials parameter are often beyond intuition or simplerules of a thumb.Numerical simulation can then be used to provide insight,to interpret measurements and to assess the potential merits of a cell structure.Indeed,once multiple measurements are (more or less)quantitatively described,the numerical simulation can be used to explore the effect of a variation of materials parameter (e.g.the presence or absence of a property,or variation in a range of values)to the final solar cell characteristics.In this article,examples of such analysis are shown for CdTe thin film solar cells.In CdTe cells,much research has been devoted to two features,particular to this type of cell:the first is the treatment of the CdTe absorber in a chlorine containing environment,usually referred to as the CdCl 2treatment or the activation treatment (e.g.Ref.[8]),and the second is the technology of the back contact (e.g.Ref.[9]).Analysis of ample measurements has evidenced the crucial role of the profile of the (effective)doping density through the device.It will be illustrated here that this relative simple (but hardly mastered)materials property exerts a strong influence to the cell characteristics such as roll-over and cross-over of I –V curves,also in dependence on illumination and voltage,0040-6090/$-see front matter D 2004Elsevier B.V .All rights reserved.doi:10.1016/j.tsf.2004.11.011*Corresponding author.Tel.:+3292643381;fax:+3292643594.E-mail address:Marc.Burgleman@elis.ugent.be (M.Burgelman).Thin Solid Films 480–481(2005)392–398/locate/tsfconventional and apparent quantum efficiency,and finally fill factor and efficiency.Also in CIGS cells,materials related issues have been studied with numerical analysis.As this is not the emphasis of this article,we refer the interested reader further to the literature,e.g.:for an overview,Ref.[10],for the influence of grading of the materials composition(band gap grading) [11,12],for the influence of the details of the CIGS electronic surface structure on the I–V curves[13],for the influence of the CIGS defect structure in the bulk and at the surface[14,15].2.ExperimentalOur experimental work on CdTe cells was within the European CADBACK research project.The cells under discussion here were fabricated by Antec(Kelkheim(D)and Arnstadt(D)).The technology and the accomplishments of this company are well documented(e.g.Refs.[16,17]).The cells used in this work had had their activation treatment either in an air ambient or in vacuum,see Ref.[18].3.Some materials related issues in CdTe solar cells3.1.The CdTe contact barrierThere are fundamental materials reasons why finding a stable,ohmic contact to the CdTe layer in a CdTe–CdS thin film solar cell constitutes a scientific and technological challenge.The first is that CdTe is a p type material with a rather large bandgap of E g=1.45eV.According to the ideal (or na R ve)metal-semiconductor theory,the contact barrier U b for holes(measured between the hole Fermi level valence band edge at the contact)is simplyU b¼vþE gÀU mð1ÞEven with a quite common value of4.3to4.5eV for the CdTe electron affinity v,this would require a contact metal with a high work function U m exceeding5.5eV,which cannot be reached if one excludes noble metals for economic reasons.Even if the contact barrier were only partially determined by this ideal model,and partially by Fermi level pinning by contact interface states,the materials properties of CdTe do not favour a large choice of acceptable contact metals.The contact properties can be improved if the CdTe layer is heavily doped.However, obtaining a doping density exceeding1016cmÀ3in CdTe also is a problem,since CdTe is prone to self-compensa-tion.This is related to the rather high value of the band gap,to the introduction of chlorine by the activation treatment,and to many possible interactions and complex formations between impurities and native defects in CdTe [19,20].Thus,making a good,stable contact to CdTe is an art in itself,and it comprises several steps:surface pre-treatment(e.g.etching),control of diffusion of extrinsic dopants from the contact or buffer layer to the CdTe layer, the application of buffer layers to prevent unwanted diffusion or reactions.Copper containing contacts initially perform well(copper forms a shallow acceptor in CdTe), but their long time performance can be a problem[21],as the copper under circumstances diffuses through the CdTe layer and accumulates at the CdS junction and in the CdS layer.Stable contact structures containing no intentional copper were proposed instead[20].In any case,it is clear that the materials and processes used for the contact formation can affect the doping and impurity profile throughout the cell.The presence of a contact barrier affects the I–V characteristics of a CdTe thin film solar cell in a character-istic way:the I–V curves show a kink in the forward biased quadrant,which is commonly called roll-over of the I–V curves[22].The main effects on the cell performance are a decrease in fill factor FF when U b exceeds about0.45eV, and the associated efficiency loss[22,23].However,several secondary effects are reported:(i)A minority carrier (electron)current can be present at the CdTe back contact, giving rise to cross-over of the I–V curves[23];in special cases,all I–V curves of a set of experiments can cross over in one single point[24].These effects are favoured by red light illumination,by thin cells(b5A m)[25]and by a large apparent electron diffusion length,which can be caused by 2-D effects[24].(ii)When the CdTe doping at the back contact is sufficiently high,the hole current through the contact is described by drift and diffusion through the space charge layer(SCL);this effect weakens the aspect of the roll-over,and eventually the room temperature I–V curve looks as if there were only a weak barrier,or even no barrier at all[26].(iii)Also,high doping at the contact makes the apparent barrier dependent on bias voltage and illumination [26].Though these effects render the determination of the barrier from room temperature I–V measurements doubtful, they generally influence the fill factor and the efficiency in a positive way.These effects illustrate the crucial role of the doping profile in the cell.3.2.The CdTe activation treatment(or CdCl2treatment)The treatment of CdTe and other II–VI materials with chlorine containing species has been studied a long time since.In the late1980s,this treatment,with CdCl2as the chlorine source,was applied to CdTe-based solar cells [8,27],and was quickly adopted by the research community as an indispensable and somehow magic recipe of the fabrication of CdTe solar cells[28].The effects of this treatment have been investigated intensely,see,e.g.Ref.[29].We briefly summarise:grain growth occurs when the initial grains are small(41A m)but not when the initial grains are large(N1A m;this is the case for CdTe pro-duced with Close Spaced Sublimation(CSS));the internalM.Burgelman et al./Thin Solid Films480–481(2005)392–398393crystallographic structure of the grains improves in all cases (disappearance of sub-grain structure);the p type doping is established (type conversion)or improved;the minority carrier lifetime s n is improved;the density of deep electronic states in the bulk or at the interface can be re-duced,but other deep states can be introduced [30,31];intermixing between CdS and CdTe at the interface can be promoted.It is clear that these effects more or less thoroughly modify the set of input parameters to be used in numerical simulation of CdCl 2treated solar cells.Especially the doping and recombination properties of the cell are affected by the activation treatment.Hence,a detailed character-isation of the shallow and deep states is needed:doping type,concentration profile,energy levels or distribution,capture cross sections.4.Numerical simulations of CdTe solar cells:results and discussion4.1.The baseline parameter set for numerical simulations To illustrate the influence of the doping parameters (density profile,deep states,...)on the characteristics of a CdTe solar cell,we will start from a set of b baseline parameters Q ,and then vary a few selected parameters,while all other parameters retain their baseline value.Baseline parameters for a b generic Q CdTe cell were proposed in Ref.[32].Here,however,we want to start from a parameter set which consistently describes two specific CdTe cell series made by Antec:one,which had its activation treatment in air,and one with its activation treatment in vacuum.The cell technology and the measurements were presented in Ref.[18];it was concluded that the air-activated cells are more robust to variations in the contact technology than the vacuum-activated cells.These measurements were analysed with the simulation programme SCAPS [33],and a single set of parameters (for each cell)was found [34]which allows to simulate adequately the I –V (light and dark)curves and the I sc –V oc curves,the C –V curves,and the C –f curves,all in a range of temperatures,and the effects of (apparent)quantum efficiency at varying voltage bias.We will present elsewhere in detail how such a consistent parameter set was obtained [35];here we will just take it as a starting point for our simulations.We stress that the only deep states that were taken into account are those determined by us with DLTS [36,37].The main features of these baseline parameter sets are given in Fig.1for the air-activated cells and in Fig.2for the vacuum cells.The most relevant differences between the two are:the contact barrier U b (0.42vs.0.55eV for air/vacuum-activated cells),the CdTe thickness (5vs.8.7A m for air/vacuum-activated cells)and the doping profile (both have a rather high doping at the CdS junction,but air-activated cells have a substantially higher doping in the bulk and at the CdTe contact).The slight differences in the energy levels of the deep states between vacuum and air-activated cells (compare Fig.1to Fig.2)stem from our DLTS measurements [37].Fig. 1.Schematic representation of the model parameters for an air-activated CdTe solar cell.Top:band diagram with deep levels;the energies are in eV above the valence band.Bottom:profile of the shallow doping density.The width of the CdS layer (70nm)has been expanded by a factor of 10for bettervisibility.Fig.2.Schematic representation of the model parameters for a vacuum-activated CdTe solar cell.Top:band diagram with deep levels;the energies are in eV above the valence band.Bottom:profile of the shallow doping density.The width of the CdS layer (70nm)has been expanded by a factor of 10for better visibility.M.Burgelman et al./Thin Solid Films 480–481(2005)392–3983944.2.Results of numerical modellingIn Fig.3,the simulated I –V curves of vacuum and air-activated cells are shown when the contact barrier U b is varied.The effects illustrate what is commonly known.When U b increases,the I –V curves start to roll-over in the forward biased quadrant from about U b z 0.4eV at room temperature,then FF decreases,and finally an S-shaped I –V curve in the active quadrant develops.The associated efficiency loss is shown in Fig.4.The lower efficiency for the vacuum-activated cells is due to the overall lower doping density,as we will show.When the doping density at the CdTe contact is varied,the other parameters having their baseline value for each cell,the I –V curves of Fig.5are obtained.The resemblance with Fig.3,where U b wasvaried,is striking.This illustrates that the effects of contact doping can be mistakenly interpreted as an effect of contact barrier.In particular,a high doping density at the CdTe contact can effectively mask the effects of a contact barrier.This result has been presented before (e.g.Ref.[26]),but it is often overlooked.The influence of the shallow and deep doping profiles is further illustrated in Fig.6where the density of deep acceptors at 0.72eV above the valence band is varied,and in Fig.7where the shallow acceptor concentration in the bulk of the CdTe layer of vacuum-activated cells is varied.An increased defect density causes increased recombination inside and outside the spacechargeFig.3.Variation of the I –V characteristics with the energy barrier U b at the CdTe back contact.The other parameters have their baseline values.Top:a vacuum-activated cell;U b varies from 0.42to 0.60eV (step 0.02eV).Bottom:an air-activated cell;U b varies from 0.40to 0.52eV (step 0.02eV).Fig.4.Efficiency of a vacuum (dashed line)and an air-activated (solid line)cell as a function of the contact energy barrier U b .The baseline values for both areindicated.Fig.5.Variation of the I –V characteristics of a vacuum-activated cell (top)and an air-activated cell (bottom)with the doping density N Acontact at the CdTe back contact.The other parameters have their baseline values (thus U b =0.42eV (air)and 0.55eV (vacuum)).Top:a vacuum-activated cell;the N Acontact values are 1013,3Â1013,1014,...,1017cm À3.Bottom:an air-activated cell;the N Acontact values are 1014,3Â1014,1015,...,1017cm À3.Fig.6.Variation of the I –V characteristics of an air-activated cell with the deep acceptor density at junction (level at E V +0.72eV).The values of N Adeep are:1014,1015,1016and 1017cm À3.The other parameters have their baseline values.M.Burgelman et al./Thin Solid Films 480–481(2005)392–398395layer (SCL),and this deteriorates first V oc and then also J sc ,as can be seen in Fig.6.A low CdTe bulk doping density deteriorates FF ,as is illustrated in Fig.7for vacuum-activated cells.This has been ascribed to a too low electric field in the SCL [38].The influence of the densities of some of the components of the shallow doping and the deep levels is summarised in Fig.8for air-activated cells and in Fig.9for vacuum-activated cells.In both cases,a high shallow doping at the contact N Acontact is favourable.If N Acontact could be increased beyond 1016cm À3,an efficiency gain of 0.5%(absolute)can still be expected.Also the bulk doping should be as high as possible,though the gain is only marginal for N Abulk N 5Â1015cm À3(Fig.9).The deep acceptors at i E V +0.72eV only contribute to the doping at reverse bias voltage,but they enhance the recombination in the SCL in the bias active voltage bias range (0b V b V oc ):therefore,their concentration should be limited to about 1015cm À3(Fig.8).Other components of deep levels were investigated in literature.It was,e.g.pointed out that deep donors close to the back contact cause a loss of V oc due to compensation of the shallow acceptor doping in CdTe close to the back contact [25].This is consistent with our resultsof Fig.5,though a loss of FF seems to a more dominant effect for cells described by our parameter set.The efficiency does not depend monotonously on the doping density N Ajunction near the CdS/CdTe junction,as several effects are simultaneously present.At high N Ajunction ,V oc is high because of the higher built-in voltage,but the long wavelength current response decreases because of the small SCL width;at low N Ajunction ,the current collection is poor because of the electric field in the SCL is too weak;J sc is maximal for intermediate N Ajunction i 2Â1015cm À3,the maximum being broader for air-activated cells;for inter-mediate N Ajunction i 5to 8Â1015cm À3,V oc is decreased because the roll-over of the I –V curves already starts in the active quadrant.This complicated behaviour makes the CdTe doping near the junction the most critical parameter to adjust.Especially for vacuum-activated cells,this parameter should be in a rather narrow range.The simulation results obtained here maybe can explain the sometimes contradictory effects reported by introducing copper as a dopant from the back contact into the CdTe layer.It definitely diffuses easily completely through the CdTe layer,and accumulates at the CdTe/CdS junction and in the CdS layer [21].We showed here however that the resulting cell behaviour is very sensitive to variations in the doping profile near the junction.Hence,technologies which rely on establishing a well-tuned profile of copper related acceptors may bear a risk in terms of producibility and stability.The profile of shallow doping density in our cells is high–low–high,when going from the back contact to the junction.Such a profile has been invoked before to explain a set of measurements on cells of other fabrication [39].The variations in such a high–low–high profile have been invoked to explain the behaviour of CdTe cells upon ageing [40].Other profiles of the shallow doping have also been reported,e.g.a doping density increasing monotonously from the junction to the contact [25].The simulations shown here show that all components of the shallow and the deep doping profile have their influence on the final I –V characteristics of a thin CdTe solarcell.Fig.7.Variation of the I –V characteristics of a vacuum-activated cell with the shallow doping density N A bulk in the CdTe bulk.The N A bulk values are 1014,3Â1014,1015,...,1017cm À3.The other parameters have their baselinevalues.Fig.8.Efficiency of an air-activated cell as a function of the density of the shallow doping at the contact and at the CdS junction,and of the deep acceptor density at junction (level at E V +0.72eV).The other parameters have their baselinevalues.Fig.9.Efficiency of a vacuum-activated cell as a function of the density of the shallow CdTe doping,at the contact,in the bulk,and at the CdS junction.The other parameters have their baseline values.M.Burgelman et al./Thin Solid Films 480–481(2005)392–398396It is however evident that,whilst numerical simulation can lead to the conclusion that the doping profile in CdTe is a critical parameter,and give results about minimal or maximal values or optimal ranges,it cannot give any hints as how to obtain such a desired doping profile.Also the doping(shallow and deep)in the CdS layer plays its role.Its effects on the apparent quantum efficiency under short wavelength illumination(k b500nm or h m N2.5 eV)and under a forward bias voltage,recently have been studied intensely[41–44]and reviewed[45].We do not take up this subject in this paper,but refer to the literature.5.ConclusionsThe position dependence(profile)of the shallow doping in the CdTe layer of CdTe/CdS thin film solar cells seems a trivial materials property,but it is hardly technologically mastered.We showed here that it has a profound effect on all aspects of the I–V curves,and hence on the performance of the solar cell.This holds even more for the positional and energetic profile of the deep impurities in the material.We derived a set of baseline parameters which consistently describe an extended set of measurements on air and vacuum-activated CdTe cells;this is a laborious task in itself.We studied the influence of a selection of parameters related to the shallow and deep doping.Some parameters should be as high as possible:this is the case for the shallow doping in the bulk and at the contact.Others,like the density of deep acceptor states at E V+0.72eV,or the contact barrier U b should be minimised.We derived practical maximal(or minimal)values for these parameters,above (or below)which further improvement is marginal.The shallow doping density close to the CdS/CdTe junction influences multiple aspects of the I–V curves,and it should be within a tolerance window.The cells which had their CdCl2treatment in air generally meet these constraints better than vacuum-activated cells,especially what concerns the shallow doping near the contact.This makes air-activated cells more robust against variations in contact technology,which could produce variations in contact barrier height.AcknowledgementsThis work is supported by the Research Fund of the University of Gent(BOF-GOA).References[1]K.Durose,P.R.Edwards,D.P.Halliday,Journal of Crystal Growth197(1999)733.[2]K.Durose,D.Boyle,A.Abken,C.Ottley,P.Nollet,S.Degrave,M.Burgelman,R.Wendt,J.Beier,D.Bonnet,Physica Status Solidi.A, Applied Research229(2002)1055.[3]O.Lundberg,M.Bodeg3rd,J.Malmstr f m,L.Stolt,Progress inPhotovoltaics11(2003)77.[4]M.Turcu,U.Rau,Thin Solid Films431–432(2003)158.[5]R.Klenk,Thin Solid Films387(2001)135.[6]S.Siebentritt,Thin Solid Films403–404(2002)1.[7]M.Burgelman,J.Verschraegen,S.Degrave,P.Nollet,Progress inPhotovoltaics12(2004)143.[8]B.McCandles,L.Moulton,R.Birkmire,Progress in Photovoltaics5(1997)249.[9]D.B7tzner,A.Romeo,M.Terheggen,M.D f beli,H.Zogg,A.Tiwari,Thin Solid Films451–452(2004)536.[10]R.Klenk,Thin Solid Films387(2001)135.[11]T.Dullweber,G.Hanna,U.Rau,H.-W.Schock,Solar EnergyMaterials and Solar Cells67(2001)145.[12]C.H.Huang,Sheng S.Li,T.J.Anderson,Proceedings of the29nd IEEE Photovoltaic Specialists Conference(New Orleans), 2002,p.748.[13]U.Rau,M.Schmidt,Thin Solid Films387(2001)141.[14]I.Eisgruber,J.Granata,J.Sites,J.Hou,J.Kessler,Solar EnergyMaterials and Solar Cells53(1998)367.[15]A.Niemegeers,M.Burgelman,R.Herberholz,U.Rau,D.Hariskos,H.-W.Schock,Progress in Photovoltaics6(1998)407.[16]D.Bonnet,H.Richter,K.H.J7ger,Proceedings of the13th EuropeanPhotovoltaic Solar Energy Conference(Nice),1995,p.1456. [17]D.Bonnet,Proceedings of the2nd World Conference on PhotovoltaicSolar Energy Conversion(Wien),1998,p.397.[18]P.Nollet,M.Burgelman,S.Degrave,J.Beier,Proceedings of the29th IEEE Photovoltaic Specialists Conference(New Orleans), 2002,p.704.[19]Y.Marfaing,Thin Solid Films387(2001)123.[20]D.Halliday,M.Potter,D.Boyle,K.Durose,Materials ResearchSociety Symposia Proceedings668(2001)H1.8.1.[21]K.Dobson,I.Visoly-Fisher,G.Hodes,D.Cahen,Advanced Materials13(2001)149.[22]G.Stollwerck,J.Sites,Proceedings of the13th European PhotovoltaicSolar Energy Conference(Nice),1995,p.1995.[23]A.Niemegeers,M.Burgelman,Journal of Applied Physics81(1997)2881.[24]M.Burgelman,P.Nollet,S.Degrave,J.Beier,Proceedings of the28thIEEE Photovoltaic Specialists Conference(Anchorage),2000,p.551.[25]T.McMahon, A.Fahrenbruch,Proceedings of the28th IEEEPhotovoltaic Specialists Conference(Anchorage),2000,p.559. [26]J.Beier,M.K f ntges,P.Nollet,S.Degrave,M.Burgelman,MaterialsResearch Society Symposia Proceedings668(2001)H9.5.1. [27]B.McCandles,L.Moulton,R.Birkmire,Progress in Photovoltaics5(1997)249.[28]B.Ba Y ol,International Journal of Solar Energy12(1992)25.[29]K.Krishna,V.Dutta,Journal of Applied Physics96(2004)3962.[30]S.Ringel,A.Smith,M.McDougal,A.Rohatgi,Journal of AppliedPhysics70(1991)881.[31]A.Niemegeers,M.Burgelman,H.Richter,D.Bonnet,Proceedings ofthe14th European Photovoltaic Solar Energy Conference(Barcelona), 1997,p.2079.[32]M.Gloeckler, A.Fahrenbruch,J.Sites,Proceedings of the3rdWorld Conference on Photovoltaic Energy Conversion(Osaka), 2003,p.491.[33]M.Burgelman,P.Nollet,S.Degrave,Thin Solid Films361–362(2000)527.[34]Peter Nollet,PhD thesis,University of Gent/ELIS(2004).[35]P.Nollet,M.Burgelman,to be presented at the19th EuropeanPhotovoltaic Solar Energy Conference(Paris,June2004).[36]J.Versluys,P.Clauws,P.Nollet,S.Degrave,M.Burgelman,ThinSolid Films431–432(2003)148.[37]J.Versluys,P.Clauws,P.Nollet,S.Degrave,M.Burgelman,ThinSolid Films451–452(2004)434.[38]M.Burgelman,P.Nollet,S.Degrave,Applied Physics.A69(1999)149.M.Burgelman et al./Thin Solid Films480–481(2005)392–398397[39]V.Singh,D.Linam,D.Dils,J.McClure,G.Lush,Solar EnergyMaterials and Solar Cells63(2000)445.[40]S.Degrave,P.Nollet,G.Stojanoska,M.Burgelman,K.Durose,Pro-ceedings of the17th European Photovoltaic Conference(M q nchen), 2001,p.1058.[41]G.Agostinelli, D.L.B7tzner,M.Burgelman,Proceedings of the29th IEEE Photovoltaic Specialists Conference(New Orleans),2002, p.744.[42]P.Nollet,M.K f ntges,M.Burgelman,S.Degrave,R.Reineke-Koch,Thin Solid Films431–432(2003)414.[43]G.Agostinelli,D.B7tzner,M.Burgelman,Thin Solid Films431–432(2003)407.[44]G.Agostinelli, E.Dunlop, D.B7tzner, A.Tiwari,P.Nollet,M.Burgelman,M.K f ntges,3rd World Conference of Photovoltaic Energy Conversion(Osaka),2003,p.356.[45]M.Gloeckler,J.Sites,Journal of Applied Physics95(2004)4438.M.Burgelman et al./Thin Solid Films480–481(2005)392–398 398。

相关文档
最新文档