矩形的判定证明题
矩形的判定试题及答案
矩形的判定试题及答案一、选择题1. 下列选项中,不能判定四边形ABCD是矩形的是()。
A. AB∥CD,AD∥BCB. ∠A=∠B=∠C=∠D=90°C. 对角线AC=BD且互相平分D. AB=CD且AD=BC答案:D2. 如果一个平行四边形的对角线相等,那么这个平行四边形一定是()。
A. 正方形B. 菱形C. 矩形D. 梯形答案:C二、填空题3. 在矩形ABCD中,若∠BAC=90°,AB=3cm,BC=4cm,则对角线AC的长度为_________。
答案:5cm(根据勾股定理)4. 若矩形的长为8cm,宽为6cm,则其周长为_________。
答案:28cm(周长=2*(长+宽))三、解答题5. 已知平行四边形ABCD中,AB=3cm,BC=4cm,∠B=90°,求证:ABCD是矩形。
证明:由于ABCD是平行四边形,所以AB∥CD,AD∥BC。
又因为∠B=90°,根据平行四边形的性质,对应的角也相等,即∠A=∠C=∠D=90°。
因此,ABCD是一个矩形。
6. 如图所示,矩形EFGH中,EF=6cm,FH=8cm,求对角线EH的长度。
解:由于EFGH是矩形,所以EH是FH的对角线,并且EH=GF。
根据矩形的性质,对角线相等,所以EH=FH。
又因为FH=8cm,所以EH=8cm。
四、综合题7. 在矩形PQMN中,已知PQ=10cm,QM=4cm,求证:对角线PN的长度为√41cm。
证明:由于PQMN是矩形,所以PQ∥MN,PM∥QN,且∠PQM=∠QMN=90°。
根据勾股定理,PN² = PM² + QM²。
由于PM=QN=PQ=10cm,QM=4cm,所以PN² = 10² + 4² = 100 + 16 = 116。
因此,PN = √116 = √41cm。
答案:对角线PN的长度为√41cm。
九年级数学 第一章 特殊平行四边形2 矩形的性质与判定第2课时 矩形的判定作业
A.4 B.4.8 C.5.2 D.6
第10题图
11.如图,在△ABC 中,AC 的垂直平分线分别交 AC,AB 于点 D, F,BE⊥DF 交 DF 的延长线于点 E,已知∠A=30°,BC=2,AF=BF, 则四边形 BCDE 的面积是_2___3____.
第11题图
12.如图,在矩形ABCD中,AE=AF,过点E作EH⊥EF交DC于点H,过F 作FG⊥EF交BC于点G,连接GH,当AD,AB满足______A__B_=__A(D关系)时, 四边形EFGH为矩形.
第12题图
13.如图,AB∥CD,PM,PN,QM,QN分别为∠APQ,∠BPQ,∠CQP, ∠DQP的平分线.求证:四边形PMQN是矩形.
证明:∵PM,PN,QM 分别平分∠APQ,∠BPQ,∠CQP,∴∠MPQ
=21 ∠APQ,∠NPQ=21 ∠BPQ,∠MQP=21 ∠CQP.∵∠APQ+∠BPQ =180°,∴∠MPQ+∠NPQ=90°,即∠MPN=90°.同理可证∠MQN =90°.∵AB∥CD,∴∠APQ+∠CQP=180°,∴∠MPQ+∠MQP=90 °,即∠PMQ=90°,∴四边形 PMQN 是矩形
9.如图,顺次连接四边形ABCD各边的中点,得到四边形EFGH,在下列
条件中,能使四边形EFGH为矩形的是( C)
A.AB=CD B.AC=BD C.AC⊥BD D.AD∥BC
第9题图
10.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且 点P不与点B,C重合),PE⊥AB于点E,PF⊥AC于点F,则EF的最小值为
第5题图
6.(2019·江西)如图,四边形ABCD中,AB=CD,AD=BC,对角线AC, BD相交于点O,且OA=OD.求证:四边形ABCD是矩形.
1.2 矩形的性质和判定 课时练习(含答案解析)
北师大版数学九年级上册第一章第二节矩形的性质与判定课时练习一、单选题(共15题)1.如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B 与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是()A.四边形ABCD由矩形变为平行四边形B.BD的长度增大C.四边形ABCD的面积不变D.四边形ABCD的周长不变答案:C解析:解答:∵矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,∴AD=BC,AB=DC,∴四边形变成平行四边形,故A正确;BD的长度增加,故B正确;∵拉成平行四边形后,高变小了,但底边没变,∴面积变小了,故C错误;∵四边形的每条边的长度没变,∴周长没变,故D正确,故选C.分析: 由将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,由平行四边形的判定定理知四边形变成平行四边形,由于四边形的每条边的长度没变,所以周长没变;拉成平行四边形后,高变小了,但底边没变,所以面积变小了,BD的长度增加了2.如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD 答案:D解析:解答: ∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠CDA=∠BAD=90°,AC=BD,OA=12AC,OB=12BD,∴OA=OB,∴A、B、C正确,D错误,故选:D.分析: 矩形的性质:四个角都是直角,对角线互相平分且相等;由矩形的性质容易得出结论3.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为()A.17 B.18 C.19 D.20答案:D解析:解答: ∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴∠ABC=∠D=90°,CD=AB=5,BC=AD=12,OA=OB,OM为△ACD的中位线,∴OM=12CD=2.5,AC=22512=13,∵O是矩形ABCD的对角线AC的中点,∴BO=12AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,故选:D.分析: 本题考查了矩形的性质、三角形的中位线的性质以及直角三角形斜边上的中线等于斜边的一半这一性质,题目的综合性很好4. 如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm,则这个矩形的一条较短边的长度为()A.10cm B.8cm C.6cm D.5cm 答案:D解析:解答: ∵四边形ABCD是矩形,∴OA=OC=12AC,OD=OB=12BD,AC=BD,∴OA=OB,∵AC+BD=20,∴AC=BD=10cm,∴OA=OB=5cm,∵OA=OB,∠AOB=60°,∴△OAB是等边三角形,∴AB=OA=5cm,故选D.分析:根据矩形的性质求出OA=OB,AC=BD,求出AC的长,求出OA和OB的长,推出等边三角形OAB,求出AB=OA,代入求出即可5.如图,矩形ABCD的两条对角线交于点O,若∠AOD=120°,AB=6,则AC等于()A.8 B.10 C.12 D.18答案:C解析:解答: ∵矩形ABCD的两条对角线交于点O,∴OA=OB=12 AC,∵∠AOD=120°,∴∠AOB=180°-∠AOD=180°-120°=60°,∴△AOB是等边三角形,∴OA=AB=6,∴AC=2OA=2×6=12.故选C.分析: 本题考查了矩形的性质,等边三角形的判定与性质,熟记矩形的对角线互相平分且相等是解题的关键6.如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD的长为()A.4 B.3 C.2 D.1答案:A解析:解答: 在矩形ABCD中,∠ABC=90°,∵∠ACB=30°,AB=2,∴AC=2AB=2×2=4,∵四边形ABCD是矩形,∴BD=AC=4.故选A.分析: 根据直角三角形30°角所对的直角边等于斜边的一半可得AC=2AB,再根据矩形的对角线相等解答7.一个矩形被分成不同的4个三角形,其中绿色三角形的面积占矩形面积的15%,黄色的三角形的面积是212,则该矩形的面积为()A.602B.702 C.1202 D.1402答案:A解析:解答:∵黄色三角形与绿色三角形面积之和是矩形面积的50%;∴矩形的面积=21÷(50%-15%)=21÷35%=60(2).故选:A.分析: 黄色三角形与绿色三角形面积之和是矩形面积的50%,而绿色三角形面积占矩形面积的15%,所以黄色三角形面积占矩形面积的(50%-15%)=35%,已知黄色三角形面积是21平方厘米,用除法即可得出矩形的面积8.如图,矩形ABCD中,AC交BD于点O,∠AOD=60°,OE⊥AC.若AD=3,则OE=()A.1 B.2 C.3 D.4答案:A解析:解答: ∵四边形ABCD是矩形,∠AOD=60°,∴△ADO是等边三角形,∴OA=3,∠OAD=60°,∴∠OAE=30°,∵OE⊥AC,∴△OAE是一个含30°的直角三角形,∴OE=1,故选A分析: 先根据等边三角形的性质得出OA=3,根据△OAE是一个含30°的直角三角形,进而得出OE的长度9.矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是()A.16 B.22或16 C.26 D.22或26答案:D解析:解答: ∵四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠AEB=∠ABE,∴AE=AB,①当AE=3,DE=5时,AD=BC=3+5=8,AB=CD=AE=3,即矩形ABCD的周长是AD+AB+BC+CD=8+3+8+3=22;②当AE=5,DE=3时,AD=BC=3+5=8,AB=CD=AE=5,即矩形ABCD的周长是AD+AB+BC+CD=8+5+8+5=26;即矩形的周长是22或26分析: 根据矩形性质得出AD=BC,AB=CD,AD∥BC,求出AE=AB,分为当AE=3或AE=5两种情况,求出即可10.矩形具有而菱形不具有的性质是()A.对角线相等B.两组对边分别平行C.对角线互相平分D.两组对角分别相等答案:A解析:解答: ∵矩形具有的性质是:对角线相等且互相平分,两组对边分别平行,两组对角分别相等;菱形具有的性质是:两组对边分别平行,对角线互相平分,两组对角分别相等;∴矩形具有而菱形不具有的性质是:对角线相等.故选A.分析: 根据矩形与菱形的性质求解即可求得答案.注意矩形与菱形都是平行四边形.11.矩形的一内角平分线把矩形的一条边分成3cm和5cm的两部分,则此矩形的周长为()A.16cm B.22cm C.26cm D.22cm或26cm答案:D解析:解答: ∵四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AB=AE,当AE=3cm时,AB=AE=3=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=3cm+8cm+3cm+8cm=22cm;当AE=5cm时,AB=AE=5cm=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=5cm+8cm+5cm+8cm=26cm;故选D.分析: 根据矩形的性质得出AD=BC,AB=CD,AD∥BC,推出∠AEB=∠CBE,求出∠ABE=∠CBE=∠AEB,推出AB=AE=CD,分为两种情况,代入求出即可12. 矩形的对角线所成的角之一是65°,则对角线与各边所成的角度是()A.57.5°B.32.5°C.57.5°,23.5°D.57.5°,32.5°答案:D解析:解答: ∵四边形ABCD是矩形,∴∠ABC=90°,AD∥BC,AB∥CD,AC=BD,AO=OC,OB=OD,∴OB=OA=OC=OD,∠OAB=∠OCD,∠DAO=∠OCB,∴∠OAD=∠ODA,∠OCB=∠OBC,∠ODC=∠OCD,∠OAB=∠OBA=12×(180°-∠AOB)=12×(180°-65°)=57.5°,∵∠ABC=90°,∴∠ACB=90°-57.5°=32.5°,即∠OAD=∠ODA=∠OBC=∠OCB=32.5°,∠OAB=∠OBA=∠ODC=∠OCD=57.5°,对角线与各边所成的角度是57.5°和32.5°,故选D.分析: 根据矩形的性质得出∠ABC=90°,AD∥BC,AB∥CD,AC=BD,AO=OC,OB=OD,推出OB=OA=OC=OD,∠OAB=∠OCD,∠DAO=∠OCB,求出∠OAD=∠ODA,∠OCB=∠OBC,∠ODC=∠OCD,根据三角形内角和定理求出即可13.矩形具有而菱形不具有的性质是()A.对角线相等B.对角线平分一组对角C.对角线互相平分D.对角线互相垂直答案:A解析:解答:矩形的对角线互相平分且相等;菱形的对角线互相垂直平分,并且每一条对角线平分一组对角;根据矩形和菱形的性质得出:矩形具有而菱形不具有的性质是:对角线相等;故选:A.分析: 根据矩形好菱形的性质,容易得出结论.14.过四边形的各个顶点分别作对角线的平行线,若这四条平行线围成一个矩形,则原四边形一定是()A.对角线相等的四边形B.对角线垂直的四边形C.对角线互相平分且相等的四边形D.对角线互相垂直平分的四边形答案:B解析:解答:如图所示:∵四边形EFGH是矩形,∴∠E=90°,∵EF∥AC,EH∥BD,∴∠E+∠EAG=180°,∠E+∠EBO=180°,∴∠EAO=∠EBO=90°,∴四边形AEBO是矩形,∴∠AOB=90°,∴AC⊥BD,故选:B.分析: 由矩形的性质得出∠E=90°,由平行线的性质得出∠EAO=∠EBO=90°,证出四边形AEBO是矩形,得出∠AOB=90°即可15. 若矩形的一条对角线与一边的夹角是40°,则两条对角线所夹的锐角的度数为()A.80°B.60°C.45°D.40°答案:A解析:解答:图形中∠1=40°,∵矩形的性质对角线相等且互相平分,∴OB=OC,∴△BOC是等腰三角形,∴∠OBC=∠1,则∠AOB=2∠1=80°.故选A.分析: 根据矩形的性质,得△BOC是等腰三角形,再由等腰三角形的性质进行答题.二、填空题(共5题)16.如图,平行四边形ABCD的对角线相交于点O,请你添加一个条件__________(只添一个即可),使平行四边形ABCD是矩形.答案: AC=BD.答案不唯一解析:解答: 添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故答案为:AC=BD.答案不唯一分析:根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可17.平行四边形ABCD的对角线相交于点O,分别添加下列条件:①∠ABC=90°;②AC⊥BD;③AB=BC;④AC平分∠BAD;⑤AO=DO.使得四边形ABCD是矩形的条件有________答案:①⑤解析:解答: 要使得平行四边形ABCD为矩形添加:①∠ABC=90°;⑤AO=DO2个即可分析:四边形ABCD是平行四边形,要成为矩形加上一个角为直角或对角线相等即可18.如图,要使平行四边形ABCD是矩形,则应添加的条件是________(只填一个).答案:∠ABC=90°或AC=BD(不唯一)解析:解答: 根据矩形的判定定理:对角线相等的平行四边形是矩形,有一个角是直角的平行四边形是矩形故添加条件:∠ABC=90°或AC=BD.故答案为:∠ABC=90°或AC=BD分析: 根据矩形的判定定理:①对角线相等的平行四边形是矩形,②有一个角是直角的平行四边形是矩形,直接添加条件即可19.如图,在四边形ABCD中,对角线AC,BD相交于点O,且AO=CO,BO=DO,在不添加任何辅助线的前提下,要想该四边形成为矩形,只需再加上一个条件是________(填上你认为正确的一个答案即可)答案:∠DAB=90°解析:解答:可以添加条件∠DAB=90°,∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∵∠DAB=90°,∴四边形ABCD是矩形,故答案为:∠DAB=90°分析: 根据对角线互相平分线的四边形为平行四边形可得四边形ABCD是平行四边形,添加条件∠DAB=90°可根据有一个角是直角的平行四边形是矩形进行判定20.木工做一个长方形桌面,量得桌面的长为15cm,宽为8cm,对角线为17cm,这个桌面_________(填”合格”或”不合格”)答案:合格解析:解答:∵AB=DC=8cm,BC=AD=15cm,∴四边形ABCD是平行四边形,∵AC=17cm,AB=8cm,BC=15cm,∴AC2=AB2+BC2,∴∠B=90°,∴四边形ABCD是矩形,即四边形是长方形,故答案为:合格.分析: 先退出思想是平行四边形,根据勾股定理的逆定理求出∠B=90°,根据矩形的判定推出即可三、解答题(共5题)21.如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF.(1)求证:四边形EFGH是平行四边形;答案:解答: (1)在平行四边形ABCD中,∠A=∠C,又∵AE=CG,AH=CF,∴△AEH≌△CGF.∴EH=GF.在平行四边形ABCD中,AB=CD,AD=BC,∴AB-AE=CD-CG,AD-AH=BC-CF,即BE=DG,DH=BF.又∵在平行四边形ABCD中,∠B=∠D,∴△BEF≌△DGH.∴GH=EF.∴四边形EFGH是平行四边形.(2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形答案:解答: (2)证明:连接BD,AC.∵AH=AE,AD=AB,∴AH AE AD AB∴HE∥BD,同理可证,GH∥AC,∵四边形ABCD是平行四边形且AB=AD,∴平行四边形ABCD是菱形,∴AC⊥BD,∴∠EHG=90°.又∵四边形EFGH是平行四边形,∴四边形EFGH是矩形解析:分析: (1)易证得△AEH≌△CGF,从而证得BE=DG,DH=BF.故有,△BEF≌△DGH,根据两组对边分别相等的四边形是平行四边形而得证.(2)由题意知,平行四边形ABCD是菱形,连接AC,BD,则有AC⊥BD,由AB=AD,且AH=AE可证得HE∥BD,同理可得到HG∥AC,故HG⊥HE,又由1知四边形HGFE是平行四边形,故四边形HGFE 是矩形. 22.如图,在△ABC 中,AB =AC =5,BC =6,AD 为BC 边上的高,过点A 作AE ∥BC ,过点D 作DE ∥AC ,AE 与DE 交于点E ,AB 与DE 交于点F ,连结BE .求四边形AEBD 的面积答案: 解答:∵AE ∥BC ,BE ∥AC ,∴四边形AEDC 是平行四边形.∴AE =CD .在△ABC 中,AB =AC ,AD 为BC 边上的高,∴∠ADB =90°,BD =CD . ∴BD =AE .∴平行四边形AEBD 是矩形.在Rt △ADC 中,∠ADB =90°,AC =5,CD =12BC =3, ∴AD =2253 =4.∴四边形AEBD 的面积为:BD •AD =CD •AD =3×4=12.解析:分析:利用平行四边形的性质和矩形的判定定理推知平行四边形AEBD 是矩形.在Rt △ADC 中,由勾股定理可以求得AD 的长度,由等腰三角形的性质求得CD (或BD )的长度,则矩形的面积=长×宽=AD •BD =AD •CD23.如图,在平行四边形ABCD 中,∠BAD 的平分线交CD 于点E ,交BC 的延长线于点F ,连接BE ,∠F =45°.求证:四边形ABCD 是矩形答案:解答:证明:∵四边形ABCD 是平行四边形,∴AD∥BC.∴∠DAF=∠F.∵∠F=45°,∴∠DAE=45°.∵AF是∠BAD的平分线,∴∠EAB=∠DAE=45°.∴∠DAB=90°.又∵四边形ABCD是平行四边形,21世纪教育网∴四边形ABCD是矩形.解析:分析: 欲证明四边形ABCD是矩形,只需推知∠DAB是直角24.有一块形状如图所示的玻璃,不小心把DEF部分打碎,现在只测得AB=60cm,BC=80cm,∠A=120°,∠B=60°,∠C=150°,你能设计一个方案,根据测得的数据求出AD的长吗?答案:AD=140cm.解析:解答:过C作CM∥AB,交AD于M,∵∠A=120°,∠B=60°,∴∠A+∠B=180°,∴AM∥BC,∵AB∥CM,∴四边形ABCM是平行四边形,∴AB=CM=60cm,BC=AM=80cm,∠B=∠AMC=60°,∵AD∥BC,∠C=150°,∴∠D=180°-150°=30°,∴∠MCD=60°-30°=30°=∠D,∴CM=DM=60cm,∴AD=60cm+80cm=140cm.分析: 过C作CM∥AB,交AD于M,推出平行四边形ABCM,推出AM=BC=80cm,AB=CM=60cm,∠B=∠AMC,求出∠D=∠MCD,求出CM=DM=60cm,代入AD=AM+DM 求出即可25.如图,△ABC中,AB=AC,AD、AE分别是∠BAC与∠BAC的外角的平分线,BE⊥AE.求证:AB=DE答案:见解答解析:解答:∵AD、AE分别是∠BAC与∠BAC的外角的平分线,∴∠BAD+∠EAB=12(∠BAC+∠FAB)=90°,∵BE⊥AE,∴DA∥BE,∵AB=AC,∴∠ABC=∠ACB,∵∠FAB=∠ABC+∠ACB=2∠ABC,且∠FAB=2∠EAB,∴∠ABC=∠EAB,∴AE∥BD,∴四边形AEBD为平行四边形,且∠BEA=90°,∴四边形AEBD为矩形,∴AB=DE.分析: 先由角平分线和等腰三角形的性质证明AE∥BD,再由AD、AE分别是∠BAC与∠BAC 的外角的平分线可证得DA⊥AE,可得AD∥BE,可证得四边形ADBE为矩形,可得结论。
矩形的性质与判定典型例题
矩形的证明题目一.选择题(共5小题)1.(2016春•巴南区校级月考)如图矩形都是由大小不等的正方形按照一定规律组成的,其中,第①个矩形的周长为6,第②个矩形的周长为10,第③个矩形的周长为16,…,则第⑧个矩形的周长为()A.168 B.170 C.178 D.1882.(2016•姜堰区校级模拟)矩形ABCD中,AB=4,BC=8,矩形CEFG上的点G在CD边,EF=a,CE=2a,连接BD、BF、DF,则△BDF的面积是( )A.32 B.16 C.8 D.16+a23.(2016•深圳模拟)如图所示,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下面的结论:①△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S△AOE=S△COE,其中正确结论有()A.1个 B.2个 C.3个 D.4个4.(2015•十堰一模)如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为()A.8B.8 C.4D.65.(2015•天台县模拟)如图,矩形ABCD中,BC=1,连接AC与BD交于点E1,过E1作E1F1⊥BC于F1,连接AF1交BD于E2,过E2作E2F2⊥BC于F2,连接AF2交BD于E3,过E3作E3F3⊥BC于F3,…,以此类推,则BF n (其中n为正整数)的长为( )A. B. C. D.二.解答题(共25小题)6.(2015•龙岩)如图,E,F分别是矩形ABCD的边AD,AB上的点,若EF=EC,且EF⊥EC.(1)求证:AE=DC;(2)已知DC=,求BE的长.7.(2015•玉林)如图,在矩形ABCD中,AB=5,AD=3,点P是AB边上一点(不与A,B重合),连接CP,过点P作PQ⊥CP交AD边于点Q,连接CQ.(1)当△CDQ≌△CPQ时,求AQ的长;(2)取CQ的中点M,连接MD,MP,若MD⊥MP,求AQ的长.8.(2015•石家庄二模)已知:如图所示,四边形ABCD是矩形,分别以BC、CD为一边作等边△EBC和等边△FCD,点E在矩形上方,点F在矩形内部,连接AE、EF.(1)求∠ECF的度数;(2)求证:AE=FE.9.(2015春•巴南区校级期末)如图,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.(1)猜想线段GF与GC有何数量关系?并证明你的结论;(2)若AB=3,AD=4,求线段GC的长.10.(2015秋•开江县期末)已知,四边形ABCD是长方形,F是DA延长线上一点,CF交AB于点E,G是CF 上一点,且AG=AC,∠ACG=2∠GAF.(1)若∠ACB=60°,求∠ECB的度数.(2)若AF=12cm,AG=6。
第04讲 矩形的判定、判定与性质综合(原卷版)-初中数学暑假自学课讲义(9年级北师大版)
第04讲矩形的判定、判定与性质综合1.掌握矩形的判定定理.2.学会用矩形的性质与判定综合解题.矩形的判定矩形的判定有三种方法:1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.要点:在平行四边形的前提下,加上“一个角是直角”或“对角线相等”都能判定平行四边形是矩形.考点一:矩形的判定例1.下列条件不能判定一个四边形是矩形的是()A .四个内角都相等B .四条边都相等C .对角线相等且互相平分D .对角线相等的平行四边形例2.下列说法不正确的是()A .有一个角为直角的平行四边形是矩形B .有三个角为直角的四边形是矩形C .对角线相等的平行四边形是矩形D .对角线互相垂直的平行四边形是矩形例3.在平行四边形ABCD 中,对角线AC ,BD 相交于点O .下列条件不能..判定平行四边形ABCD 为矩形的是()A .∠ABC =90°B .AC =BD C .AC ⊥BD D .∠BAD =∠ADC例4.能判断一个平行四边形是矩形的条件是()A .两条对角线互相平分B .一组邻边相等C .两条对角线互相垂直D .两条对角线相等考点二:添加一个条件成为矩形例5.如图,要使平行四边形ABCD 为矩形,则可添加下列哪个条件()A .BO DO =B .AC BD ⊥C .AB BC =D .AO DO =例6.如图,在平行四边形ABCD 中,在不添加任何辅助线的情况下,添加以下哪个条件,能使平行四边形ABCD 是矩形()A .AD AB ⊥B .AB BC =C .AB CD D .A C∠=∠例7.如图,在四边形ABCD 中,AD BC ∥,AC 交BD 于点O ,再添加什么条件可以判定四边形ABCD 为矩形()A .,AB CD AB AD =∥B .,OA OC BC CD==C .,AB CD AC BD ==D .,AD BC AC BD==例8.如图,AD 是ABC 的中线,四边形ADCE 是平行四边形,下列条件中,能判定四边形ADCE 是矩形的是()A .90BAC ∠=︒B .AC 平分DAE ∠C .AB AC =D .AB AE =考点三:矩形的判定的证明例9.如图,BD 是平行四边形ABCD 的一条对角线,E 是CD 的中点,连接AE 并延长交BC 的延长线于F .(1)求证:BC CF =.(2)当DB DF =时,求证:四边形ABCD 是矩形.例10.如图,在平行四边形ABCD 中,E 为线段AD 的中点,延长BE 与CD 的延长线交于点F ,连接AF ,BD ,90BDF ∠=︒.(1)求证:四边形ABDF 是矩形;(2)若4BC =,3DF =,求四边形ABCF 的面积S .例11.如图,四边形ABCD 的对角线AC BD 、交于点O ,BE AC ⊥于E ,DF AC ⊥于F ,点O 既是AC 的中点,又是EF 的中点.(1)求证:BOE DOF ≌;(2)若12OA BD =,求证:四边形ABCD 是矩形.例12.如图,平行四边形ABCD 的对角线AC BD ,交于点O ,E 为OC 中点,过点C 作CF BD ∥交BE 的延长线于F ,连接DF .(1)求证:FCE BOE ≅ (2)当ADC △满足什么条件时,四边形OCFD 为矩形?请说明理由.考点四:根据矩形的判定与性质求长度例13.如图,在矩形ABCD 中,EG 垂直平分BD 于点G ,若4AB =,3BC =,则线段EG 的长度是______.例14.四边形ABCD 的对角线相交于点O ,且OA OB OC OD ===,60AOB ∠=︒,则:AB AC =_______.例15.如图,在平行四边形ABCD 中,∠ACB =90°,过点D 作DE ⊥BC 交BC 的延长线于点E ,连接AE 交CD 于点F ,连接BF .若∠ABC =60°,CE =2,则BF =_____.例16.如图,在矩形ABCD 中,AB =4,AD =6,O 为对角线AC 的中点,点P 在AD 边上,且AP =2,点Q 在BC 边上,连接PQ 与OQ ,则PQ −OQ 的最大值为______.考点五:根据矩形的判定与性质求角度例17.如图,矩形ABCD 中,BE ⊥AC 于点E ,若∠ACB =23°,则∠DBE =_______度.例18.如图,在矩形ABCD 中,2=AD AB ,点E 在AD 上,且BE AD =,则ECD ∠=________.例19.如图,在ABCD Y 中,E 为边BC 上一点,以AE 为边作矩形AEFG .若40BAE ∠=︒,10CEF ∠=︒,则D ∠的大小为______度.例20.如图,在矩形ABCD 中,对角线AC 、BD 交于点O ,DE 平分∠ADC .若∠AOB =60°,则∠COE 的大小为____.例21.在矩形ABCD 中,AB =4,BC =3,过点A 作∠DAC 的角平分线交BC 的延长线于点H ,取AH 的中点P ,连接BP ,则S △ABP =___.考点六:根据矩形的判定与性质求面积例22.已知矩形ABCD ,点E 在AD 边上,DE AE <,连接BE ,点G 在BC 边上,连接EG ,BE 平分AEG ∠,若5BG GC =,2DE CG =,10BE =ABE 的面积是___________.例23.如图,在矩形ABCD 中,AE 平分BAD ∠交BC 于点E ,15CAE ∠=︒.有下面的结论:①ODC ∆是等边三角形;②135AOE ∠=︒;③AOE COE S S ∆∆=.其中,正确结论的个数为_________.例24.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,取EF 的中点G ,连接CG ,BG ,BD ,DG ,下列结论:①BE =CD ;②∠DGF =135°;③△BEG ≌△DCG ;④∠ABG +∠ADG =180°;⑤若23AB AD =,则3S △BDG =13S △DGF .其中正确的结论是_____.(请填写所有正确结论的序号)一、单选题1.(2020·湖北·中考真题)已知ABCD Y 中,下列条件:①AB BC =;②AC BD =;③AC BD ⊥;④AC 平分BAD ∠,其中能说明ABCD Y 是矩形的是()A .①B .②C .③D .④2.(2020·山东菏泽·统考中考真题)如果顺次连接四边形的各边中点得到的四边形是矩形,那么原来四边形的对角线一定满足的条件是()A .互相平分B .相等C .互相垂直D .互相垂直平分3.(2013·河北·中考真题)如已知:线段AB ,BC ,∠ABC ="90°."求作:矩形ABCD .以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是A .两人都对B .两人都不对C .甲对,乙不对D .甲不对,乙对二、填空题4.(2021·黑龙江·统考中考真题)如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,在不添加任何辅助线的情况下,请你添加一个条件______________,使平行四边形ABCD 是矩形..交DC 的延长线于点F ,延长(1)求证:△ABE ≌△FCE 别是OA ,OC 的中点.(1)求证:BE DF =;BD一、单选题1.如图,在四边形ABCD 中,对角线条件,不能判定四边形ABCD A .AB AD =2.连接菱形各边中点,可得到的A .菱形的四条边都相等C .菱形的对角线互相平分3.如图,平行四边形89EF AE ==,,AB 的长为(A .10B .73O ,若AO =BO ,AD A .42AB =,则四边形AECF 的面积为(A .3B .17.已知如图,AD BC ∥,面积为()A .2B .38.如图,在平行四边形ABCD 的延长线于点E ,连接AE ,交BC 于点F A .5B .259.如图,矩形1111D C B A 在矩形ABCD 结1BB ,1DB ,1BD ,1DD ,若矩形知道下列哪个值就一定可以求得四边形A .矩形ABCD 的面积2A .①②④B .②③④二、填空题11.矩形的判定定理包括:(1)___________的平行四边形是矩形;(2)____________的平行四边形是矩形;(3)____________的四边形是矩形.12.四边形ABCD 中,AC BD 、交于O ,给出条件①,OA OC OB OD ==;②,AB CD AC BD ==;③OA OB OC OD ===;④,AB BC AC BD ⊥=.其中能推得四边形ABCD 是矩形的是(填序号)___________.13.如图,AB ∥CD ,∠A =∠B =90°,AB =4cm ,BC =3cm ,则AB 与CD 之间的距离为________.14.如图,在ABC 中,AC BC =,D ,E 分别是边AB ,AC 的中点,将ADE V 绕点E 旋转180︒得CFE ,则四边形ADCF 的形状为______.15.如图,△ABC 的边BC 长为4cm .将△ABC 平移2cm 得到△A ′B ′C ′,且BB ′⊥BC ,则阴影部分的面积为______2cm .16.如图,在ABC 中,=AB AC ,120A ∠=︒,D 是BC 上任意一点,分别作DE AB ⊥于E ,DF AC ⊥于F .如果12BC =,那么+=DE DF ________.17.如图,ABC 是等腰直角三角形,90C = ∠,4AC BC ==,点P 是AB 上的一个动点(点P 与点A 、B 不重合),过点P 分别作PE BC ⊥于点E ,PF AC ⊥于点F ,连接EF .(1)四边形PECF 的形状是______;(2)线段EF 的最小值为______.18.如图,在矩形ABCD 中,8AB =,10AD =,点E F 、分别是AB BC 、上的动点,点E 不与AB 、重合,且EF AB =,点G 是五边形AEFCD 内点,GE GF =,且90EGF ∠=︒.①当点E 为AB 的中点时,AEG ∠=_____________.②点G 到AB 边距离为m ,则m 的取值范围为_____________.三、解答题19.如图,在平行四边形ABCD 中,点P 是AB 边上一点(不与A ,B 重合),过点P 作PQ ⊥CP ,交AD 边于点Q ,且∠QPA =∠PCB .求证:四边形ABCD 是矩形.20.如图,在平行四边形ABCD 中,过点D 作DE AB ⊥于点,E 点F 在CD 边上,,CF AE =连接,.AF BF (1)求证:四边形BFDE 是矩形;(2)若AF 平分,DAB ∠3,5,CF DF ==求四边形BFDE 的面积.21.如图,ABCD Y 四个内角的平分线围成四边形EFGH ,猜想四边形EFGH 的形状,并说明理由.22.如图,在平行四边形ABCD 中,点O 是边BC 的中点,连接DO 并延长,交AB 延长线于点E ,连接,BD EC .(1)求证:四边形BECD 是平行四边形;(2)若55A ∠=︒,则当BOD ∠=__________时,四边形BECD 是矩形(不用证明)23.如图,在菱形ABCD 中,对角线AC 和BD 交于点O ,分别过点B 、C 作BE AC ∥,CE BD ∥,BE 与CE 交于点E .(1)求证:四边形OBEC 是矩形;(2)当60ABD ∠=︒,4=AD 时,求ED 的长.24.如图,菱形ABCD 的对角线AC 和BD 交于点O ,分别过点C 、D 作CE BD ∥,∥DE AC ,CE 和DE 交于点E .(1)判断四边形ODEC 的形状并说明理由;(2)连接AE ,交CD 于点F ,当602ADB AD ∠=︒=,时,求AE 的长.25.如图,平行四边形ABCD 的对角线交于点O ,以OD ,CD 为邻边作平行四边形DOEC ,OE 交BC 于点F ,连接BE .(1)求证:F 为BC 中点.(2)若OB ⊥AC ,OF =1,求平行四边形ABCD 的周长.26.如图,已知:如图,在四边形ABCD 中,点G 在边BC 的延长线上,CE 平分BCD ∠,CF 平分GCD ∠,EF BC ∥交CD 于点O .(1)求证:OE OF =;(2)若点O 为CD 的中点,求证:四边形DECF 是矩形.27.如图1,在DBF 中,DB DF =,DC BF ⊥于点C ,点E 是BD 的中点,连接CE 并延长,使AE CE =,连接AD AB 、.(1)求证:四边形ABCD 是矩形.(2)如图2,点H 为DF 的中点,连接CH ,若4AB =,2BC =,求四边形ECHD 的面积.28.如图,四边形ABCD 的对角线AC ,BD 交于点O ,其中AD ∥BC ,AD =BC ,AC =2OB ,AE 平分∠BAD 交CD 于点E ,连接(1)求证:四边形ABCD 是矩形;(2)若∠OAE =15°,①求证:DA =DO =DE ;②直接写出∠DOE 的度数.29.如图1,在平行四边形ABCD F .(1)当90ABC ∠=︒时,G 是EF 的中点,联结,DB DG (如图2),请直接写出BDG ∠的度数中点.(1)求证:C ABE DF ≌△△;(2)延长AE 至G ,使EG AE =,连接CG ,延长①当AB 与AC 满足什么数量关系时,四边形②若210AP DP ==,25CP =,5CD =,求四边形31.如图所示,在菱形ABCD 中,P 为边过点E 作EF AC ⊥于点F ,延长EF 交AD 点N .(1)当点E 与点P 重合时,求证:AFE BNE △≌△(2)如图①,若点E 在线段AP 上,且5AD =,△是什么特殊三角形?并证明你(3)如图②,若点E在线段BP上,连接NP、FP,则NFP的结论.。
矩形的判定(5种题型)(解析版)
矩形的判定(5种题型)【知识梳理】一、矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”)要点诠释:②证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.②题设中出现多个直角或垂直时,常采用“三个角是直角的四边形是矩形”来判定矩形.二.矩形的判定与性质(1)关于矩形,应从平行四边形的内角的变化上认识其特殊性:一个内角是直角的平行四边形,进一步研究其特有的性质:是轴对称图形、内角都是直角、对角线相等.同时平行四边形的性质矩形也都具有.在处理许多几何问题中,若能灵活运用矩形的这些性质,则可以简捷地解决与角、线段等有关的问题.(2)下面的结论对于证题也是有用的:①△OAB、△OBC都是等腰三角形;②∠OAB=∠OBA,∠OCB=∠OBC;③点O到三个顶点的距离都相等.【考点剖析】题型一:矩形的判定定理的理解例1.(2022•陕西)在下列条件中,能够判定▱ABCD为矩形的是()A.AB=AD B.AC⊥BD C.AB=AC D.AC=BD【分析】由矩形的判定和菱形的判定分别对各个选项进行判断即可.【解答】解:A.∵▱ABCD中,AB=AD,∴▱ABCD是菱形,故选项A不符合题意;B.∵▱ABCD中,AC⊥BD,∴▱ABCD是菱形,故选项B不符合题意;C.▱ABCD中,AB=AC,不能判定▱ABCD是矩形,故选项C不符合题意;D.∵▱ABCD中,AC=BD,∴▱ABCD是矩形,故选项D符合题意;故选:D.【点评】本题考查了矩形的判定、菱形的判定、平行四边形的性质等知识;熟练掌握矩形的判定和菱形的判定是解题的关键.【变式】已知四边形ABCD是平行四边形,对角线AC与BD相交于点O,那么下列结论中正确的是()A.当AB=BC时,四边形ABCD是矩形B.当AC BD⊥时,四边形ABCD是矩形C.当OA=OB时,四边形ABCD是矩形D.当ABD CBD∠=∠时,四边形ABCD是矩形【答案】C【解析】C答案中,当OA=OB时,可知四边形ABCD的对角线相等,则可得平行四边形ABCD是矩形.【总结】考察矩形的证明方法.题型二:添加一个条件使四边形是矩形例2.(2022•甘肃)如图,在四边形ABCD中,AB∥DC,AD∥BC,在不添加任何辅助线的前提下,要想四边形ABCD成为一个矩形,只需添加的一个条件是.【分析】先证四边形ABCD是平行四边形,再由矩形的判定即可得出结论.【解答】解:需添加的一个条件是∠A=90°,理由如下:∵AB∥DC,AD∥BC,∴四边形ABCD是平行四边形,又∵∠A=90°,∴平行四边形ABCD是矩形,故答案为:∠A=90°(答案不唯一).【点评】本题考查了矩形的判定、平行四边形的判定与性质等知识,熟练掌握矩形的判定和平行四边形的判定与性质是解题的关键.【变式】(2022•前进区一模)如图,已知四边形ABCD为平行四边形,对角线AC与BD交于点O,试添加一个条件,使▱ABCD为矩形.【分析】根据对角线相等的平行四边形是矩形可添加的条件是AC=BD.【解答】解:∵AC=BD,四边形ABCD为平行四边形,∴四边形ABCD为矩形.故答案为:AC=BD.【点评】本题考查矩形的判定,熟练掌握矩形的判定方法是解决本题的关键.题型三:证明四边形是矩形例3.(2022•巴中)如图,▱ABCD中,E为BC边的中点,连接AE并延长交DC的延长线于点F,延长EC 至点G,使CG=CE,连接DG、DE、FG.(1)求证:△ABE≌△FCE;(2)若AD=2AB,求证:四边形DEFG是矩形.【分析】(1)由平行四边形的性质推出AB∥CD,根据平行线的性质推出∠EAB=∠CFE,利用AAS即可判定△ABE≌△FCE;(2)先证明四边形DEFG是平行四边形,再证明DF=EG,即可证明四边形DEFG是矩形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠CFE,又∵E为BC的中点,∴EC=EB,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS);(2)∵△ABE≌△FCE,∴AB=CF,∵四边形ABCD是平行四边形,∴AB=DC,∴DC=CF,又∵CE=CG,∴四边形DEFG是平行四边形,∵E为BC的中点,CE=CG,∴BC=EG,又∵AD=BC=EG=2AB,DF=CD+CF=2CD=2AB,∴DF=EG,∴平行四边形DEFG是矩形.【点评】本题考查了矩形的判定,平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定与性质,证明△ABE≌△FCE是解题的关键.【变式1】(2022•六盘水)如图,在平行四边形ABCD中,AE平分∠BAC,CF平分∠ACD.(1)求证:△ABE≌△CDF;(2)当△ABC AECF是矩形?请写出证明过程.【分析】(1)由ASA证△ABE≌△CDF即可;(2)由(1)可知,∠CAE=∠ACF,则AE∥CF,再由全等三角形的性质得AE=CF,则四边形AECF是平行四边形,然后由等腰三角形的在得∠AEC=90°,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,AB∥CD,∴∠BAC=∠ACD,∵AE平分∠BAC、CF平分∠ACD,∴∠BAE=∠CAE=∠BAC,∠DCF=∠ACF=∠ACD,∴∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA);(2)解:当△ABC满足AB=AC时,四边形AECF是矩形,理由如下:由(1)可知,∠CAE=∠ACF,∴AE∥CF,∵△ABE≌△CDF,∴AE=CF,∴四边形AECF是平行四边形,又∵AB=AC,AE平分∠BAC,∴AE⊥BC,∴∠AEC=90°,∴平行四边形AECF是矩形.【点评】本题考查了矩形的判定、全等三角形的判定与性质、等腰三角形的性质等知识,熟练掌握矩形的判定是解题的关键.【变式2】(2022•十堰)如图,▱ABCD中,AC,BD相交于点O,E,F分别是OA,OC的中点.(1)求证:BE=DF;(2)设=k,当k为何值时,四边形DEBF是矩形?请说明理由.【分析】(1)利用平行四边形的性质,即可得到BO=OD,EO=FO,进而得出四边形BFDE是平行四边形,进而得到BE=DF;(2)先确定当OE=OD时,四边形DEBF是矩形,从而得k的值.【解答】(1)证明:如图,连接DE ,BF ,∵四边形ABCD 是平行四边形,∴BO =OD ,AO =OC ,∵E ,F 分别为AO ,OC 的中点,∴EO =OA ,OF =OC ,∴EO =FO ,∵BO =OD ,EO =FO ,∴四边形BFDE 是平行四边形,∴BE =DF ;(2)解:当k =2时,四边形DEBF 是矩形;理由如下:当BD =EF 时,四边形DEBF 是矩形,∴当OD =OE 时,四边形DEBF 是矩形,∵AE =OE ,∴AC =2BD ,∴当k =2时,四边形DEBF 是矩形.【点评】本题主要考查了平行四边形的判定与性质,矩形的判定,注意对角线互相平分的四边形是平行四边形.题型四:矩形的性质与判定求线段长 例4.(2022秋·广东佛山·九年级校考阶段练习)如图,在ABCD Y 中,AE BC ⊥于点E ,延长BC 至点F ,使CF E =,连接DF ,AF 与DE 交于点O .(1)求证:四边形AEFD 为矩形;(2)若3AB =,2OE =,5BF =,求DF 的长.【答案】(1)见解析 (2)125【分析】(1)根据线段的和差关系可得BC EF =,根据平行四边形的性质可得AD ∥BC ,AD BC =,即可得出AD EF =,可证明四边形AEFD 为平行四边形,根据AE BC ⊥即可得结论;(2)根据矩形的性质可得AF DE =,可得BAF 为直角三角形,利用“面积法”可求出AE 的长,即可得答案.【详解】(1)BE CF =,BE CE CF CE ∴+=+,即BC EF =, ABCD 是平行四边形,AD ∴∥BC ,AD BC =,AD EF ∴=, AD ∥EF ,∴四边形AEFD 为平行四边形,AE BC ⊥,90AEF ∴∠=︒,∴四边形AEFD 为矩形.(2)四边形AEFD 为矩形,AF DE ∴=,DF AE =,2OE =,∴4DE =,∵3AB =,5BF =,∴222AB AF BF +=,BAF ∴为直角三角形,90BAF ∠=︒,∴1122ABFS AB AF BF AE=⨯=⨯,∴125 AE=,∴125 DF AE==.【点睛】本题考查平行四边形的性质、矩形的判定与性质及勾股定理的逆定理,熟练掌握相关性质及判定定理是解题关键.【变式】如图,平行四边形ABCD中P是AD上一点,E为BP上一点,且AE=BE=EP.(1)求证:四边形ABCD是矩形;(2)过E作EF⊥BP于E,交BC于F,若BP=BC,S△BEF=5,CD=4,求CF.【答案】(1)证明:AE=BE=EP,∴∠EAB=∠EBA,∠EAD=∠EPA,∵∠ABE+∠EAB+∠EAP+∠APE=180°,2∠EAB+2∠EAP=180°,∴∠EAB+∠EAP=90°,∴∠BAD=90°,∵平行四边形ABCD∴四边形ABCD为矩形;(2)解:如图连接PF,作PM⊥BC于M,EN⊥BC于N,∵四边形ABCD为矩形,∴∠C=∠D=∠PMC=90°,∴四边形PMCD为矩形,同理四边形ABMP为矩形,∴PM=CD=4,∠PMC=∠PMF=90°,∵BE=EP,EN∥PM,∴BN=NM ,∴EN=12PM=2, ∵12·BF ·EN=5,∴BF=5,∵EF ⊥BP ,BE=EP∴PF=BF=5,∴FM=3,∴AP=BM=8,∴BC=BP=∴CF=BC-BF=.题型五:矩形的性质与判定求面积例5.(2022•云南)如图,在平行四边形ABCD 中,连接BD ,E 为线段AD 的中点,延长BE 与CD 的延长线交于点F ,连接AF ,∠BDF =90°.(1)求证:四边形ABDF 是矩形;(2)若AD =5,DF =3,求四边形ABCF 的面积S .【分析】(1)由四边形ABCD 是平行四边形,得∠BAE =∠FDE ,而点E 是AD 的中点,可得△BEA ≌△FED (ASA ),即知EF =EB ,从而四边形ABDF 是平行四边形,又∠BDF =90°,即得四边形ABDF 是矩形;(2)由∠AFD =90°,AB =DF =3,AF =BD ,得AF ===4,S 矩形ABDF =DF •AF =12,四边形ABCD 是平行四边形,得CD =AB =3,从而S △BCD =BD •CD =6,即可得四边形ABCF 的面积S 为18.【解答】(1)证明:∵四边形ABCD是平行四边形,∴BA∥CD,∴∠BAE=∠FDE,∵点E是AD的中点,∴AE=DE,在△BEA和△FED中,,∴△BEA≌△FED(ASA),∴EF=EB,又∵AE=DE,∴四边形ABDF是平行四边形,∵∠BDF=90°.∴四边形ABDF是矩形;(2)解:由(1)得四边形ABDF是矩形,∴∠AFD=90°,AB=DF=3,AF=BD,∴AF===∴S矩形ABDF=DF•AF=3×4=12,BD=AF=4,∵四边形ABCD是平行四边形,∴CD=AB=3,∴S△BCD=BD•CD=×4×3=6,∴四边形ABCF的面积S=S矩形ABDF+S△BCD=12+6=18,答:四边形ABCF的面积S为18.【点评】本题考查平行四边形性质及应用,涉及矩形的判定,全等三角形判定与性质,勾股定理及应用等,解题的关键是掌握全等三角形判定定理,证明△BEA≌△FED.【变式1】已知ABCD 的对角线AC ,BD 相交于O ,△ABO 是等边三角形,AB =4,求这个平行四边形的面积.【答案】 解: ∵四边形ABCD 是平行四边形.∴△ABO ≌△DCO又∵△ABO 是等边三角形∴△DCO 也是等边三角形,即AO =BO =CO =DO∴AC =BD∴ ABCD 为矩形.∵AB =4,AC =AO +CO∴AC =8在Rt △ABC 中,由勾股定理得:BC =∴矩形ABCD 的面积为:AB BC =16 【变式2】(2023春·江苏南京·九年级统考期中)如图,O 为矩形ABCD 的对角线AC 的中点,过O 作EF AC ⊥分别交AD ,BC 于点E ,F .(1)求证:四边形AFCE 是菱形.(2)若6AB =,12BC =,求菱形AFCE 的面积.【答案】(1)见解析(2)45【分析】(1)先根据矩形的性质可得OA OC =,AD BC ∥,再根据ASA 定理证出AOE COF ≌,根据全等cm cm cm cm 2cm三角形的性质可得OE OF =,然后根据菱形的判定即可得证;(2)设菱形AFCE 的边长为x ,则12BF x =−,在Rt ABF 中,利用勾股定理求出x 的值,然后根据菱形的面积公式即可得.【详解】(1)证明:四边形ABCD 是矩形,∴OA OC =,AD BC ∥,OAE OCF ∴∠=∠,∵O 为矩形ABCD 的对角线AC 的中点,∴OA OC =,在AOE △和COF 中,OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA AOE COF ∴≌, OE OF ∴=,∴四边形AECF 是平行四边形,又EF AC ⊥,∴四边形AECF 是菱形.(2)解:四边形ABCD 是矩形,90ABC ∴∠=︒,设菱形AFCE 的边长为x ,则AF CF x ==,12BC =,12BF BC CF x ∴=−=−,在Rt ABF 中,222AB BF AF +=,即()222612x x +−=,解得7.5x =, 7.5CF ∴=,则四边形AFCE 的面积为7.5645CF AB ⋅=⨯=.【点睛】本题考查了矩形的性质、菱形的判定与性质、勾股定理等知识点,熟练掌握菱形的判定与性质是解题关键.【过关检测】一、单选题 1.(2023·河北邯郸·统考模拟预测)如图,在四边形ABCD 中,给出部分数据,若添加一个数据后,四边形ABCD 是矩形,则添加的数据是( )A .4CD =B .2CD =C .2OD = D .4OD =【答案】D 【分析】根据对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形即可得到答案.【详解】解:当4OD =时,由题意可知,4AO CO ==,4BO DO ==,∴四边形ABCD 是平行四边形,∵8AC BD ==,∴四边形ABCD 是矩形,故选:D【点睛】此题考查了矩形的判定,熟练掌握矩形的判定方法是解题的关键.2.(2023·浙江湖州·统考模拟预测)如图,在Rt △ABC 中,点D ,E ,F 分别是边AB ,AC ,BC 的中点,AC =8,BC =6,则四边形CEDF 的面积是( )A .6B .12C .24D .48【答案】B【分析】利用三角形的中位线定理,先证明四边形DECF 是矩形,再利用矩形的面积公式进行计算即可. 【详解】解: 点D ,E ,F 分别是边AB ,AC ,BC 的中点,AC =8,BC =6,11//,3,//,4,22DE BC DE BC DF AC DF AC ∴====∴ 四边形DECF 是平行四边形,90,C ∠=︒∴ 四边形DECF 是矩形,3412.DECF S ∴=⨯=矩形故选:.B【点睛】本题考查的是三角形的中位线的性质,矩形的判定与性质,掌握利用三角形的中位线证明四边形是平行四边形是解题的关键. A .3B .【答案】A 【分析】连接AC ,由菱形的性质可证ABC 和ACD 是等边三角形,从而求得2AC =,根据点E 、F 是AB 、CD 的中点可得CE AB ⊥,AF CD ⊥,进而证明四边形AECF 是矩形,再利用勾股定理求出=EC 即可求出结果.【详解】解:连接AC ,∵四边形ABCD 是菱形,ABC ∠︒=60,2AB =,==60B D ∴∠∠︒ ,====2AB BC CD AD ,==120BAD BCD ∠∠︒,==60BAC BCA ∴∠∠︒,==60DAC DCA ∠∠︒,∴ABC 和ACD 是等边三角形,2AC AB ==,∵点E 、F 是AB 、CD 的中点,CE AB ∴⊥,AF CD ⊥,==30CAF ACE ∠∠︒,==90BAF DCE ∴∠∠︒,∴四边形AECF 是矩形, 1==12AE AB ,∴在Rt AEC 中,EC∴矩形AECF 的面积为:=1AE EC ⨯故选:A .【点睛】本题考查了菱形的性质、矩形的判定和性质及等边三角形的判定和性质和勾股定理,熟练运用相关知识,正确作出辅助线是解题的关键. A .232−B .2【答案】C 【分析】根据矩形的性质得出AD BC ∥,得出DEC BCE ∠=∠,证明45ABE AEB ∠==︒,得出2AB AE ==,根据勾股定理求出BE =【详解】解:∵四边形ABCD 是矩形,∴AD BC ∥,∴DEC BCE ∠=∠,∵EC 平分DEB ∠,∴DEC BEC ∠=∠,∴BEC ECB ∠=∠,∴BE BC =,∵四边形ABCD 是矩形,∴90A ∠=︒,∵=45ABE ∠︒,∴45ABE AEB ∠=∠=︒,∴2AB AE ==.∵由勾股定理得:BE ===,∴BC BE ==∴2DE AD AE BC AB =−=−=,故选:C .【点睛】本题主要考查了矩形的性质、角平分线的性质、等腰三角形的性质、勾股定理的应用等知识;要学会添加常用的辅助线,构造特殊三角形来解决问题.熟练掌握矩形的性质、等腰三角形的判定与性质是解决问题的关键. 5.(2023·江苏无锡·校考一模)如图,ABCD Y 的对角线AC 与BD 相交于点O ,添加下列条件不能证明ABCD Y 是菱形的是( )A .ABD ADB ∠=∠ B .AC BD ⊥C .AB BC =D .AC BD =【答案】D 【分析】由菱形的判定、矩形的判定分别对各个选项进行判断即可.【详解】解:A 、∵ABD ADB ∠=∠,∴AB AD =,∴ABCD Y 是菱形,故选项不符合题意;B 、∵四边形ABCD 是平行四边形,AC BD ⊥,∴ABCD Y 是菱形,故选项不符合题意;C 、∵四边形ABCD 是平行四边形,AB BC =,∴ABCD Y 是菱形,故选项不符合题意,D 、∵四边形ABCD 是平行四边形,AC BD =,∴ABCD Y 是矩形,故选项符合题意;故选:D .【点睛】本题考查了菱形的判定、矩形的判定,熟练掌握菱形的判定方法是解题的关键.【答案】C【分析】根据矩形的判定定理逐一判断即可.【详解】解:A 、一组对角相等的平行四边形不一定是矩形,是假命题,不符合题意;B 、对角线相等且平分的四边形是矩形,是假命题,不符合题意;C 、顺次连接菱形四边中点得到的四边形是矩形,是真命题,符合题意;如图所示,在菱形ABCD 中,E F G H 、、、分别是AB BC CD AD 、、、的中点,∴EH 是ABD △的中位线,∴12EH BD EH BD =,∥,同理得111222EF AC EF AC FG BD GH AC ===,∥,,, ∴EH FG EF GH ==,,∴四边形EFGH 是平行四边形,∵四边形ABCD 是菱形,∴AC BD ⊥,∴EH EF ⊥,∴四边形EFGH 是矩形;D 、对角线相等的四边形不一定是矩形,也有可能是等腰梯形,是假命题,不符合题意;故选C .【点睛】本题主要考查了判断命题真假,矩形的判定,熟知矩形的判定定理是解题的关键.【答案】C【分析】连接CM ,先证四边形PCQM 是矩形,得PQ CM =,再由勾股定理得3BD =,当CM BD ⊥时,CM 最小,则PQ 最小,然后由面积法求出CM 的长,即可得出结论.【详解】解:如图,连接CM ,MP CD ⊥于点P ,MQ BC ⊥于点Q ,90CPM CQM ∴∠=∠=︒,四边形ABCD 是矩形,6BC AD ∴==,8CD AB ==,90BCD ∠=︒,∴四边形PCQM 是矩形,PQ CM ∴=,由勾股定理得:10BD ==,当CM BD ⊥时,CM 最小,则PQ 最小, 此时,1122BCD S BD CM BC CD =⋅=⋅△, 即11106822CM ⨯⨯=⨯⨯,245CM ∴=, PQ ∴的最小值为245,故选:C .【点睛】勾股定理、垂线段最短以及三角形面积等知识,熟练掌握矩形的判定与性质是解题的关键. 8.(2023·山东德州·统考二模)如图,矩形ABCD 中,6AB =,4=AD ,点E ,F 分别是AB ,DC 上的动点,EF BC ∥,则BF DE +最小值是( )A .13B .10C .12D .5【答案】B 【分析】延长AD ,取点M ,使得AD DM =,连接MP ,根据全等三角形的判定得到ADE DMF ≌,得到DE MF =,故当B ,F ,M 三点共线时,BF DE +的值最小,即为BM 的值.【详解】延长AD ,取点M ,使得AD DM =,连接MP ,如图∵EF BC ∥,四边形ABCD 是矩形∴四边形AEFD 和四边形EBCF 是矩形∵AD DM =,AE DF =,90EAD FDM ==︒∠∠∴ADE DMF ≌∴DE MF =∴=BF DE BF FM ++∵点E ,F 分别是AB ,DC 上的动点故当B ,F ,M 三点共线时,BF DE +的值最小,且BF DE +的值等于BM 的值在Rt BAM △中,10BM ===故选:B . 【点睛】本题考查了矩形的判定和性质,全等三角形的判定和性质,勾股定理等,做出辅助线,构建DMF 使得ADE DMF ≌是解决本题的关键.二、填空题 9.(2023·甘肃武威·统考三模)如图矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E ,F ,AB =3,BC =4,则图中阴影部分的面积为_____.【答案】6.【分析】首先结合矩形的性质证明△AOE ≌△COF ,得△AOE 、△COF 的面积相等,从而将阴影部分的面积转化为△BCD 的面积.【详解】∵四边形ABCD 是矩形,∴OA =OC ,∠AEO =∠CFO ;又∵∠AOE =∠COF ,在△AOE 和△COF 中,∵AEO CFO OA OC AOE COF ∠=∠⎧⎪=⎨⎪∠∠⎩=,∴△AOE ≌△COF (ASA ),∴S △AOE =S △COF ,∴S 阴影=S △AOE+S △BOF+S △COD =S △AOE+S △BOF+S △COD =S △BCD ;∵S △BCD =12BC•CD =6,∴S 阴影=6.故答案为6.【点睛】本题主要考查矩形的性质,三角形全等的判定和性质定理,掌握三角形的判定和性质定理,是解题的关键.【答案】AE BC ⊥(答案不唯一)【分析】根据矩形的判定方法即可求解.【详解】解:菱形ABCD ,BE DF =,∴AD DF BC BE −=−,即CE AF =,且AF CE =,∴四边形AECF 是平行四边形,根据矩形的判定,①四边形AECF 是平行四边形,AE BC ⊥,∴90AEC ∠=︒,平行四边形AECF 是矩形;②四边形AECF 是平行四边形,若CF AD ⊥,∴90AFC ∠=︒,平行四边形AECF 是矩形;故答案为:AE BC ⊥(答案不唯一).【点睛】本题主要考查矩形,掌握矩形的判定方法是解题的关键. 11.(2023春·吉林·八年级期中)如图,在ABCD Y 中AC BD 、相交于点O ,8AC =,当OD =______时,ABCD Y 是矩形.【答案】4【分析】根据矩形的判定与性质即可解答.【详解】解:四边形ABCD 为平行四边形,∴要使四边形ABCD 为矩形,则8BD AC ==,142OD BD ∴==,故答案为:4.【点睛】本题主要考查了矩形的判定与性质,熟练掌握矩形的对角线相等且互相平分是解题的关键.12.(2023·江苏徐州·统考一模)如图,△ABC 的边BC 长为4cm .将△ABC 平移2cm 得到△A ′B ′C ′,且BB ′⊥BC ,则阴影部分的面积为______2cm .【答案】8【分析】根据平移的性质即可求解.【详解】解:由平移的性质S △A′B′C′=S △ABC ,BC=B′C′,BC ∥B′C′,∴四边形B′C′CB 为平行四边形,∵BB′⊥BC ,∴四边形B′C′CB 为矩形,∵阴影部分的面积=S △A′B′C′+S 矩形B′C′CB-S △ABC=S 矩形B′C′CB=4×2=8(cm2).故答案为:8.【点睛】本题考查了矩形的判定和平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.【答案】14【分析】有矩形的性质和勾股定理分别求出EJ FJ =AK BK ==【详解】解:在矩形ABCD 中,∵4590BAF ABF ∠=︒∠=︒,,∴45454ABG AFB AB BF ∠=︒∠=︒==,,,∵6BC =,∴2BE CF AH DG ====,∴2HG EF ==,∴EJ FJ =∵4AB =,∴AK BK ===∴(24614S ⎡⎤=⨯−=⎢⎥⎣⎦阴影.故答案为:14.【点睛】本题主要考查矩形的性质、勾股定理,掌握相关知识并理解题意是解题的关键. 统考一模)如图,ABC 的边,将ABC 平移得到A B C ''',且 【答案】62【分析】利用平行的性质可得2BB CC ''==,BC B C ''==A ABC B C '''≌△△,利用两组对边分别相等的四边形是平行四边形,可证四边形BCC B ''是平行四边形,同时可证得ABC A B C S S '''=△△,再证明四边形BCC B ''是矩形,由此可得阴影部分的面积等于矩形BCC B ''的面积,然后利用矩形的面积公式进行计算.【详解】解:∵将ABC 平移2cm 得到A B C ''',∴2BB CC ''==,BC B C ''==A ABC B C '''≌△△, ∴四边形BCC B ''是平行四边形,∵BB BC '⊥,90B BC ∴='∠︒,∴四边形BCC B ''是矩形,∴22BCC B S S ''==⨯=阴影,故答案为:【点睛】本题考查了平移的性质、平行四边形的判定与性质、矩形的判定与性质,熟练掌握平移的性质,证明四边形BCC B ''是矩形是解题的关键.三、解答题 分别是ABC 各边的中点. 请你为ABC 添加一个条件,使得四边形【答案】(1)四边形ADEF 为平行四边形,证明见解析(2)90DAF ∠=︒,四边形ADEF 为矩形,证明见解析【分析】(1)根据三角形中位线定理得到DE AC EF AB ∥,∥,根据平行四边形的判定定理证明结论;(2)根据矩形的判定定理证明.【详解】(1)解:四边形ADEF 为平行四边形,理由如下:∵D ,E ,F 分别是ABC 各边的中点,∴DE AC EF AB ∥,∥,∴四边形ADEF 是平行四边形;(2)90DAF ∠=︒,四边形ADEF 为矩形,理由如下:由(1)得:四边形ADEF 为平行四边形,又∵90DAF ∠=°,∴平行四边形ADEF 是矩形.【点睛】本题考查的是三角形中位线定理、平行四边形和矩形的判定定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键. (1)求证:四边形ABCF (2)若ED EC =,求证:【答案】(1)见解析(2)见解析【分析】(1)根据,AB DC FC AB =∥,可得四边形ABCF 是平行四边形,再由90BCD ∠=︒,即可求证;(2)根据四边形ABCF 是矩形,90AFD AFC ∠=∠=︒,从而得到90,90DAF D CGF ECD ∠=︒−∠∠=︒−∠,再由ED EC =,可得D ECD ∠=∠,从而得到DAF CGF ∠=∠,进而得到EAG EGA ∠=∠,即可求证.【详解】(1)证明:∵,AB DC FC AB =∥,∴四边形ABCF 是平行四边形.∵90BCD ∠=︒,∴四边形ABCF 是矩形.(2)证明:∵四边形ABCF 是矩形,∴90AFD AFC ∠=∠=︒,∴90,90DAF D CGF ECD ∠=︒−∠∠=︒−∠.∵ED EC =,∴D ECD ∠=∠.∴DAF CGF ∠=∠.∵EGA CGF ∠=∠,∴EAG EGA ∠=∠.∴EA EG =.【点睛】本题主要考查了矩形的判定和性质,等腰三角形的判定和性质,熟练掌握矩形的判定和性质,等腰三角形的判定和性质是解题的关键.【答案】见解析【分析】首先证明四边形ABCD 是平行四边形,得出OA OC =,OB OD =,根据OA OD =,得出AC BD =,即可证明.【详解】解:证明:∵AB CD =,AB CD ∥,∴四边形ABCD 为平行四边形,∴OA OC =,OB OD =.又∵OA OD =,∴AC BD =,∴平行四边形ABCD 为矩形.【点睛】本题考查了矩形的判定、平行四边形的判定与性质;熟练掌握矩形的判定是解题的关键. 18.(2023·湖北恩施·统考二模)如图,在平行四边形ABCD 中,对角线,BD AC 相交于点,,O AE BD BF AC ⊥⊥,垂足分别为,E F .若CF DE =,求证:四边形ABCD 为矩形.【答案】见解析【分析】利用HL 证明ADE BCF ≌,得出AE BF =,利用AAS 证明AOE BOF △≌△,得出AO BO =,结合平行四边形的性质可得出AC BD =,然后利用矩形的判定即可证明.【详解】证明:∵四边形ABCD 是平行四边形,∴AD BC =,2AC AO =,2BD BO =,∵,AE BD BF AC ⊥⊥,∴90AED AEO BFC BFO ∠=∠=∠=∠=︒,又CF DE =∴()Rt Rt HL ADE BCF ≌,∴AE BF =,又AOE BOF ∠=∠,∴()AAS AOE BOF ≌,∴AO BO =,又2AC AO =,2BD BO =,∴平行四边形ABCD 是矩形.【点睛】本题考查了平行四边形的性质,全等三角形的判定与性质,矩形的判定等知识,证明AO BO =是解题的关键. 19.(2023·湖南岳阳·模拟预测)如图所示,ABC 中,D 是BC 中点,过点A 作BC 的平行线交CE 的延长线于F ,且AF BD =,连接BF .请从以下三个条件:①AB AC =;②FB AD =;③E 是AD 的中点,选择一个合适作为已知条件,使四边形AFBD 为矩形.(1)你添加的条件是 ;(填序号)(2)添加条件后,请证明四边形AFBD 为矩形.【答案】(1)①(2)见解析【分析】(1)根据已知可得四边形AFBD 是平行四边形,添加条件能证明四边形是矩形即可求解;(2)先证明四边形AFBD 是平行四边形,①根据三线合一得出AD BD ⊥,能证明四边形是矩形;②只能证明四边形为平行四边形;③证明AFE DCE △≌△,可得AF DC =,进而根据已知得出BD AF =,不能证明四边形是矩形.【详解】(1)解:添加的条件是①故答案为:①.(2)证明:∵AF BC ∥,AF BD =,∴四边形AFBD 是平行四边形,①AB AC =;∵ABC 中,D 是BC 中点,∴四边形AFBD 是矩形;②添加FB AD =;四边形AFBD 是平行四边形,不能证明四边形AFBD 是矩形;③E 是AD 的中点∴AE DE =,∵AF BC ∥,∴FAE DCE ∠=∠,又AEF DEC ∠=∠,∴()AAS AFE DCE ≌,∴DC AF =,又BD CD =,∴BD AF =,∴③不能证明四边形AFBD 是矩形.【点睛】本题考查了矩形的判定,熟练掌握矩形的判定定理是解题的关键. (1)求证:四边形OCED 是矩形;(2)设AC =12,BD =16,求OE 的长.【答案】(1)见解析(2)10【分析】(1)先证明平行四边形ABCD 为菱形,可得AC BD ⊥,通过CE BD ∥,DE AC ∥证明四边形OCED 为平行四边形,结合AC BD ⊥即可证明;(2)由(1)可得平行四边形ABCD 为菱形,故12OC AO AC ==,12OB DO BD ==,结合四边形OCED 是矩形,运用勾股定理即可求得OE 的长. 【详解】(1)∵四边形ABCD 为平行四边形,AB BC =,∴平行四边形ABCD 为菱形,∴AC BD ⊥,∵CE BD ∥,DE AC ∥,∴四边形OCED 为平行四边形,又∵AC BD ⊥,∴四边形OCED 为矩形.(2)∵=12AC ,16BD =, ∴162OC AC ==,182DO BD ==,在Rt COD 中,10CD =,由(1)知四边形OCED 为矩形,∴10OE CD ==.【点睛】本题考查了菱形的判定和性质,矩形的判定和性质,勾股定理等,熟练掌握四边形的判定和性质是解题的关键. 21.(2023·湖南长沙·校考二模)如图,平行四边形ABCD 中,AC BC ⊥,过点D 作∥DE A C 交BC 的延长线于点E ,点M 为AB 的中点,连接CM .(1)求证:四边形ADEC 是矩形;(2)若5CM =,且8AC =,求四边形ADEB 的周长.【答案】(1)证明见解析(2)36【分析】(1)根据平行四边形的性质得到AD BC ∥,由∥DE A C 即可证明四边形ADEC 是平行四边形,再由AC BC ⊥即可证明平行四边形四边形ADEC 是矩形;(2)先根据直角三角形斜边上的中线等于斜边的一半求出10AB =,进而利用勾股定理求出6BC =,再利用平行四边形的性质得到6AD =,由此即可利用矩形周长公式求出答案.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,∵∥DE A C , ∴四边形ADEC 是平行四边形,∵AC BC ⊥,即A C C E ⊥,∴平行四边形四边形ADEC 是矩形;(2)解:∵AC BC ⊥,点M 为AB 的中点,5CM =,∴210AB CM ==,在Rt ABC △中,由勾股定理得6BC ==, ∵四边形ABCD 是平行四边形,四边形ADEC 是矩形∴6AD BC CE ===,8DE AC ==∴四边形ADEB 的周长68661036AD DE CE CB AB =++++=++++=.【点睛】本题主要考查了矩形的性质与判定,平行四边形的性质与判定,勾股定理,直角三角形斜边上的中线的性质,熟知矩形的性质与判定定理是解题的关键. 22.(2023·山东济南·统考三模)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,AE ⊥BD 于点E ,DF ⊥AC 于点F . 求证:AE =DF .【答案】见解析【分析】根据矩形的性质得到OA =OC =OB =OD ,再根据AE ⊥BD ,DF ⊥AC 得出∠AEO =∠DFO ,从而证明出△AOE ≌△DOF 即可.【详解】证明:∵四边形ABCD 是矩形,对角线AC ,BD 相交于点O ,∴OA =OC =OB =OD ,∵AE ⊥BD ,DF ⊥AC ,∴∠AEO =∠DFO =90°,在△AOE 和△DOF 中,AEO DFO AOE DOFAO DO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△DOF (AAS ),∴AE =DF .【点睛】本题主要考查矩形的性质和三角形全等的判定与性质,解题关键是找到全等三角形,熟练运用全等三角形的判定进行证明. 八年级北京交通大学附属中学校考期中)如图,在ABC 中,点(1)求证:四边形ADFE 为矩形;(2)若30C ∠=︒,2AF =,写出矩形【答案】(1)证明见解析(2)2【分析】(1)连接DE ,先根据三角形的中位线的性质证明四边形ADFE 是平行四边形,再根据对角线相等的平行四边形是矩形证明即可;(2)根据矩形的性质得出90BAC FEC ∠=∠=︒,再根据直角三角形斜边上的中线等于斜边的一半得出4BC =,2CF =,然后解直角三角形求出矩形的边长即可得出矩形的周长.【详解】(1)连接DE ,如图,∵点E ,F 分别是边AC ,BC 的中点,∴EF AB ∥,12EF AB =.∵点D 是边AB 的中点, ∴12AD AB =.∴AD EF =.∴四边形ADFE 是平行四边形.∵点D ,E 分别是边AB ,AC 的中点, ∴12DE BC =. ∵2BC AF =,∴AF DE =.∴平行四边形ADFE 是矩形.(2)∵四边形ADFE 为矩形,∴90BAC FEC ∠=∠=︒.∵2AF =,点F 是边BC 的中点,∴24BC AF ==,2CF AF ==.∵30C ∠=︒,∴1EF =,CE∴AE CE ==∴矩形ADFE 的周长为:())2212AE EF +==.【点睛】本题主要考查了矩形的判定和性质,三角形的中位线的性质,直角三角形的性质以及解直角三角形,熟练掌握矩形的判定和性质是解题的关键.。
专题15 矩形的性质与判定(解析版)
专题15 矩形的性质与判定【考点归纳】(1)矩形的定义:有一个角是直角的平行四边形是矩形.(2)矩形的性质①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.(3)矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”)(5)①证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.②题设中出现多个直角或垂直时,常采用“三个角是直角的四边形是矩形”来判定矩形.【好题必练】一、选择题1.(2020秋•光明区期末)如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点M是边AB 上一点(不与点A,B重合),作ME⊥AC于点E,MF⊥BC于点F,若点P是EF的中点,则CP的最小值是()A.1.2B.1.5C.2.4D.2.5【答案】A【解析】解:连接CM,如图所示:∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵ME⊥AC,MF⊥BC,∠ACB=90°,∴四边形CEMF是矩形,∴EF=CM,∵点P是EF的中点,∴CP=EF,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,∵△ABC的面积=AB×CM=AC×BC,∴CM===2.4,∴CP=EF=CM=1.2,故选:A.2.(2020秋•凤翔县期末)如图,点P是Rt△ABC中斜边AC(不与A,C重合)上一动点,分别作PM⊥AB于点M,作PN⊥BC于点N,连接BP、MN,若AB=6,BC=8,当点P在斜边AC上运动时,则MN的最小值是()A.1.5B.2C.4.8D.2.4【答案】C.【解析】解:∵∠ABC=90°,AB=6,BC=8,∴AC===10,∵PM⊥AB,PN⊥BC,∠C=90°,∴四边形BNPM是矩形,∴MN=BP,由垂线段最短可得BP⊥AC时,线段MN的值最小,此时,S△ABC=BC•AB=AC•BP,即×8×6=×10•BP,解得:BP=4.8,即MN的最小值是4.8,故选:C.3.(2020•竹溪县模拟)下列说法中,错误的是()A.菱形的对角线互相垂直B.对角线互相垂直的四边形是菱形C.矩形的四个内角都相等D.四个内角都相等的四边形是矩形【答案】B【解析】解:A、∵菱形的对角线互相垂直,∴选项A不符合题意;B、∵对角线互相垂直平分的四边形是菱形,∴选项B符合题意;C、∵矩形的四个角都是直角,∴矩形的四个内角都相等,∴选项C不符合题意;D、∵四个内角都相等的四边形是四个角都是直角,∴四个内角都相等的四边形是矩形,∴选项D不符合题意;故选:B.4.(2020秋•武侯区校级月考)如图,在△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF的中点,则PM的最小值为()A.5B.2.5C.4.8D.2.4【答案】D.【解析】解:连接AP,如图所示:∵∠BAC=90°,AB=6,AC=8,∴BC==10,∵PE⊥AB,PF⊥AC,∴四边形AFPE是矩形,∴EF=AP,EF与AP互相平分,∵M是EF的中点,∴M为AP的中点,∴PM=AP,根据直线外一点到直线上任一点的距离,垂线段最短,即AP⊥BC时,AP最短,同样PM也最短,∴当AP⊥BC时,AP==4.8,∴AP最短时,AP=4.8,∴当PM最短时,PM=AP=2.4.故选:D.5.(2020春•沙坪坝区校级月考)下列说法正确的是()A.矩形的对角线互相垂直且平分B.矩形的邻边一定相等C.对角线相等的四边形是矩形D.有三个角为直角的四边形为矩形【答案】D.【解析】解:A、∵矩形的对角线互相平分且相等,∴选项A不符合题意;B、∵矩形的邻边一定垂直,不一定相等,∴选项B不符合题意;C、∵对角线相等的平行四边形是矩形,∴选项C不符合题意;D、∵有三个角为直角的四边形为矩形,∴选项D符合题意;故选:D.6.(2020春•江夏区期末)如图,点P是Rt△ABC中斜边AC(不与A,C重合)上一动点,分别作PM⊥AB于点M,作PN⊥BC于点N,点O是MN的中点,若AB=6,BC=8,当点P在AC上运动时,则BO的最小值是()A.1.5B.2C.2.4D.2.5【答案】C.【解析】解:连接BP,如图所示:∵∠ABC=90°,PM⊥AB于点M,作PN⊥BC于点N,∴四边形BMPN是矩形,AC===10,∴BP=MN,BP与MN互相平分,∵点O是MN的中点,∴BO=MN,当BP⊥AC时,BP最小===4.8,∴MN=4.8,∴BO=MN=2.4,故选:C.二、填空题7.(2020•顺义区一模)如图,将一矩形纸片ABCD沿着虚线EF剪成两个全等的四边形纸片.根据图中标示的长度与角度,求出剪得的四边形纸片中较短的边AE的长是.【答案】3【解析】解:过F作FQ⊥AD于Q,则∠FQE=90°,∵四边形ABCD是长方形,∴∠A=∠B=90°,AB=DC=4,AD∥BC,∴四边形ABFQ是矩形,∴AB=FQ=DC=4,∵AD∥BC,∴∠QEF=∠BFE=45°,∴EQ=FQ=4,∴AE=CF=×(10﹣4)=3,故答案为:3.8.如图,在Rt△ABC中,∠BAC=90°,且BA=6,AC=8,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为.【答案】【解析】解:∵∠BAC=90°,且BA=6,AC=8,∴BC==10,∵DM⊥AB,DN⊥AC,∴∠DMA=∠DNA=∠BAC=90°,∴四边形DMAN是矩形,∴MN=AD,∴当AD⊥BC时,AD的值最小,此时,△ABC的面积=AB×AC=BC×AD,∴AD==,∴MN的最小值为;故答案为:.9.在△ABC中,AB=6cm,AC=8cm,BC=10cm,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,连接EF,则EF的最小值为cm.【答案】【解析】解:∵AB=6cm,AC=8cm,BC=10cm,∴AB2+AC2=BC2,∴△ABC为直角三角形,∠A=90°,∵PE⊥AB于E,PF⊥AC于F,∴∠AEP=∠AFP=90°,∴四边形AEPF为矩形,连接AP,如图,EF=AP,当AP的值最小时,EF的值最小,当AP⊥BC时,AP的值最小,根据△ABC面积公式,×AB•AC=×AP•BC,∴AP===,∴EF的最小值为.故答案为.10.如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为AB上一动点,且PE⊥AC于E,PF⊥BC于F,则线段EF长度的最小值是.【答案】【解析】解:连接PC.∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°;又∵∠ACB=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=4,BC=3,∴AB=5,∴AC•BC=AB•PC,∴PC=.∴线段EF长的最小值为;故答案是:.11.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为.【答案】2.4【解析】解:连接AP,∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP,∵AP的最小值即为直角三角形ABC斜边上的高,即2.4,∴EF的最小值为2.4,故答案为:2.4.三、解答题12.如图,在菱形ABCD中,对角线AC与BD交于点O,过点C作AC的垂线,过点D作BD的垂线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,求四边形的ABCD面积.【答案】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE⊥AC,DE⊥BD,∴平行四边形OCED是矩形;(2)解:由(1)知,四边形OCED是菱形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD的面积为:AC•BD=×4×2=4.【解析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.13.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF =BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是.【答案】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∵CF=BE,∴BC=EF,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴平行四边形AEFD是矩形;(2)解:∵AB=CD,BE=CF,∠AEB=∠DFC=90°,∴Rt△ABE≌Rt△DCF(HL),∴矩形AEFD的面积=菱形ABCD的面积,∵∠ABC=60°,∴△ABC是等边三角形,∵AC=10,∴AE=AC=5,AB=10,BO=5,∵AD=EF=10,∴矩形AEFD的面积=菱形ABCD的面积=×10×10=50,故答案为:50.【解析】(1)根据菱形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据全等三角形的判定定理得到Rt△ABE≌Rt△DCF(HL),求得矩形AEFD的面积=菱形ABCD 的面积,根据等腰三角形的性质得到结论.14.如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于E,CF∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若AE=4,AD=5,求OE的长.【答案】(1)证明:∵菱形ABCD,∴AD∥BC.∵CF∥AE,∴四边形AECF是平行四边形.∵AE⊥BC,∴平行四边形AECF是矩形;(2)解:∵AE=4,AD=5,∴AB=5,BE=3.∵AB=BC=5,∴CE=8.∴AC=4,∵对角线AC,BD交于点O,∴AO=CO=2.∴OE=2.【解析】(1)根据菱形的性质得到AD∥BC,推出四边形AECF是平行四边形,根据矩形的判定定理即可得到结论;(2)根据已知条件得到得到CE=8.求得AC=4,于是得到结论.15.(2020•石景山区一模)如图,在▱ABCD中,∠ACB=90°,过点D作DE⊥BC交BC的延长线于点E.(1)求证:四边形ACED是矩形;(2)连接AE交CD于点F,连接BF.若∠ABC=60°,CE=2,求BF的长.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠CAD=∠ACB=90°.又∵∠ACE=90°,DE⊥BC,∴四边形ACED是矩形.(2)解:∵四边形ACED是矩形,∴AD=CE=2,AF=EF,AE=CD.∵四边形ABCD是平行四边形,∴BC=AD=2,AB=CD.∴AB=AE.又∵∠ABC=60°,∴△ABE是等边三角形.∴∠BFE=90°,.在Rt△BFE中,.【解析】(1)根据四边形ABCD是平行四边形,可得AD∥BC.所以∠CAD=∠ACB=90°.又∠ACE =90°,即可证明四边形ACED是矩形;(2)根据四边形ACED是矩形,和四边形ABCD是平行四边形,可以证明△ABE是等边三角形.再根据特殊角三角函数即可求出BF的长.16.(2020春•灌云县期中)如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若△ABC是边长为2的正三角形,求四边形AODE的面积.【答案】(1)证明:∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOD=90°,∴四边形AODE是矩形;(2)解:∵△ABC是边长为2的正三角形,∴AB=AC=2,∠ABC=60°,∵四边形ABCD为菱形,∴AO=AC=1,OD=OB,∵∠AOB=90°,∴OB===,∴OD=OB=,∵四边形AODE是矩形,∴四边形AODE的面积=×1=.【解析】(1)根据题意可判断出四边形AODE是平行四边形,再由菱形的性质可得出AC⊥BD,即∠AOD =90°,继而可判断出四边形AODE是矩形;(2)由菱形的性质和勾股定理求出OB,得出OD,由矩形的面积公式即可得出答案。
《矩形的性质和判定》同步练习及答案
矩形的性质和判定一.填空题1.如图,矩形ABCD中,∠ABC的平分线交AD边于点E,点F是CD的中点,连接EF.若AB=8,且EF平分∠BED,则AD的长为.题1 题3 题42.若矩形的一条对角线与一边的夹角是40°,则两条对角线相交所成的锐角是.3.如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是.4.如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.5.如图,在矩形ABCD中,∠ABC的平分线交AD于点E,连接CE.若BC=7,AE=4,则CE= .·题5 题6 题76.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF= cm.7.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加条件,才能保证四边形EFGH是矩形.8.如图,在四边形ABCD中,对角线AC、BD相交于点O,且AO=CO,BO=DO,要使四边形ABCD 为矩形,则需添加的条件为(填一个即可).题8 题11 题129.已知四边形ABCD为平行四边形,要使得四边形ABCD为矩形,则可以添加一个条件为.10.木匠做一个矩形木框,长为80cm,宽为60cm,对角线的长为100cm,则这个木框(填“合格”或“不合格”)11.如图,在四边形ABCD中,已知AB∥DC,AB=DC,在不添加任何辅助线的情况下,请补充一个条件,使四边形ABCD成为矩形,这个条件是.12.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件,使四边形DBCE是矩形.)二.解答题13.如图,在▱ABCD中,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接BE,∠F=45°.(1)求证:四边形ABCD是矩形;(2)若AB=14,DE=8,求sin∠AEB的值.14.如图,AD是等腰△ABC底边BC上的高.点O是AC中点,延长DO到E,使OE=OD,连接AE,CE.(1)求证:四边形ADCE的是矩形;[(2)若AB=17,BC=16,求四边形ADCE的面积.15.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若EA=EG,求证:ED=EC.[16.如图,在▱ABCD中,AE⊥BC于点E点,延长BC至F点使CF=BE,连接AF,DE,DF.(1)求证:四边形AEFD是矩形;(2)若AB=6,DE=8,BF=10,求AE的长.17.平行四边形ABCD中,过点D作DE⊥AB于点E,点F在CD上,CF=AE,连接BF,AF.(1)求证:四边形BFDE是矩形;`(2)若AF平分∠BAD,且AE=3,DE=4,求矩形BFDE的面积.矩形的性质和判定解析一.填空题(共12小题)1.如图,矩形ABCD中,∠ABC的平分线交AD边于点E,点F是CD的中点,连接EF.若AB=8,且EF平分∠BED,则AD的长为12 .【分析】根据两直线平行,内错角相等求出∠AEB=∠EBC,再求出∠ABE=∠EBC,根据等角对等边可得AE=AB,然后根据AD=AE+ED代入数据计算即可得解.【解答】解:∵矩形ABCD中,∴AD∥BC,∴∠AEB=∠EBC,∵∠ABC的平分线交AD边于点E,【∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE=8,同理得出ED=DF=DC=4,∴AD=AE+ED=8+4=12,故答案为:12.2.若矩形的一条对角线与一边的夹角是40°,则两条对角线相交所成的锐角是80°.【分析】因为两条对角线相交所成的锐角只有一个,直接应用三角形的内角和定理求解即可.【解答】解:由矩形的对角线相等且互相平分,所构成的三角形为等腰三角形,利用等边对等角,所以另一底角为40°,两条对角线相交所成的钝角为:180°﹣40°×2=100°]故它们所成锐角为:180°﹣100°=80°.故答案为80.3.如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是.【分析】根据四边形ABCD是矩形,得到∠ABE=∠BAD=90°,根据余角的性质得到∠BAE=∠ADB,根据相似三角形的性质得到BE=1,求得BC=2,根据勾股定理得到AE==,BD==,根据三角形的面积公式得到BF==,过F作FG⊥BC于G,根据相似三角形的性质得到CG=,根据勾股定理即可得到结论.【解答】解:∵四边形ABCD是矩形,∴∠ABE=∠BAD=90°,∵AE⊥BD,∴∠AFB=90°,—∴∠BAF+∠ABD=∠ABD+∠ADB=90°,∴∠BAE=∠ADB,∴△ABE∽△ADB,∴,∵E是BC的中点,∴AD=2BE,∴2BE2=AB2=2,∴BE=1,∴BC=2,∴AE==,BD==,》∴BF==,过F作FG⊥BC于G,∴FG∥CD,∴△BFG∽△BDC,∴==,∴FG=,BG=,∴CG=,∴CF==.故答案为:.|4.如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.【分析】由AAS证明△ABM≌△DEA,得出AM=AD,证出BC=AD=3EM,连接DM,由HL证明Rt △DEM≌Rt△DCM,得出EM=CM,因此BC=3CM,设EM=CM=x,则BM=2x,AM=BC=3x,在Rt△ABM 中,由勾股定理得出方程,解方程即可.【解答】解:∵四边形ABCD是矩形,∴AB=DC=1,∠B=∠C=90°,AD∥BC,AD=BC,∴∠AMB=∠DAE,∵DE=DC,∴AB=DE,∵DE⊥AM,∴∠DEA=∠DEM=90°,。
矩形的性质和判定
初中数学 矩形的性质和判定 编稿老师 巩建兵 一校黄楠 二校 杨雪 审核 宋树庆【考点精讲】矩形概念性质判定方法对称性:轴对称图形对角线相等且互相平分四个角都是直角定义有三个角是直角的四边形对角线相等的平行四边形【典例精析】例题1 如图,在△ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点(且点P 不与点B 、C 重合),PE ⊥AB 于点E ,PF ⊥AC 于点F ,M 为EF 中点。
设AM 的长为x ,试求x 的最小值。
思路导航:根据勾股定理的逆定理求出△ABC 是直角三角形,得出四边形AEPF 是矩形,所以AM =12EF =12AP ,在Rt △ABC 中利用AP 求出x 的最小值。
答案:解:连接AP ,∵AB =6,AC =8,BC =10,∴AB 2+AC 2=36+64=100,BC 2=100,∴AB 2+AC 2=BC 2,∴∠BAC =90°,∵PE ⊥AB ,PF ⊥AC ,∴∠AEP =∠AFP =∠BAC=90°,∴四边形AEPF 是矩形,∴AP =EF ,∵∠BAC =90°,M 为EF 中点,∴AM =12EF=12AP ,当AP ⊥BC 时,AP 值最小,此时S △BAC =12×6×8=12×10×AP ,AP =4.8,即x 的最小值为2.4。
点评:本题考查了垂线段最短,三角形面积,勾股定理的逆定理,矩形的判定等的应用,关键是求出AP的最小值和得出AM与AP的数量关系。
例题2 请看下面小明同学完成的一道证明题的思路:如图1,已知△ABC中,AB=AC,CD⊥AB,垂足是D,P是BC边上任意一点,PE ⊥AB,PF⊥AC,垂足分别是E、F。
求证:PE+PF=CD。
证明思路:如图2,过点P作PG∥AB交CD于点G,则四边形PGDE为矩形,PE=GD;又可证△PGC≌△CFP,则PF=CG;所以PE+PF=DG+GC=DC。
矩形的性质和判定同步练习及答案
矩形的性质和判定一.填空题1.如图,矩形ABCD中,∠ABC的平分线交AD边于点E,点F是CD的中点,连接EF.若AB=8,且EF平分∠BED,则AD的长为.题1 题3 题42.若矩形的一条对角线与一边的夹角是40°,则两条对角线相交所成的锐角是.3.如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是.4.如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.5.如图,在矩形ABCD中,∠ABC的平分线交AD于点E,连接CE.若BC=7,AE=4,则CE= .题5 题6 题76.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF= cm.7.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加条件,才能保证四边形EFGH是矩形.8.如图,在四边形ABCD中,对角线AC、BD相交于点O,且AO=CO,BO=DO,要使四边形ABCD 为矩形,则需添加的条件为(填一个即可).题8 题11 题129.已知四边形ABCD为平行四边形,要使得四边形ABCD为矩形,则可以添加一个条件为.10.木匠做一个矩形木框,长为80cm,宽为60cm,对角线的长为100cm,则这个木框(填“合格”或“不合格”)11.如图,在四边形ABCD中,已知AB∥DC,AB=DC,在不添加任何辅助线的情况下,请补充一个条件,使四边形ABCD成为矩形,这个条件是.12.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件,使四边形DBCE是矩形.二.解答题13.如图,在▱ABCD中,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接BE,∠F=45°.(1)求证:四边形ABCD是矩形;(2)若AB=14,DE=8,求sin∠AEB的值.14.如图,AD是等腰△ABC底边BC上的高.点O是AC中点,延长DO到E,使OE=OD,连接AE,CE.(1)求证:四边形ADCE的是矩形;(2)若AB=17,BC=16,求四边形ADCE的面积.15.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若EA=EG,求证:ED=EC.16.如图,在▱ABCD中,AE⊥BC于点E点,延长BC至F点使CF=BE,连接AF,DE,DF.(1)求证:四边形AEFD是矩形;(2)若AB=6,DE=8,BF=10,求AE的长.17.平行四边形ABCD中,过点D作DE⊥AB于点E,点F在CD上,CF=AE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DE=4,求矩形BFDE的面积.矩形的性质和判定解析一.填空题(共12小题)1.如图,矩形ABCD中,∠ABC的平分线交AD边于点E,点F是CD的中点,连接EF.若AB=8,且EF平分∠BED,则AD的长为12 .【分析】根据两直线平行,内错角相等求出∠AEB=∠EBC,再求出∠ABE=∠EBC,根据等角对等边可得AE=AB,然后根据AD=AE+ED代入数据计算即可得解.【解答】解:∵矩形ABCD中,∴AD∥BC,∴∠AEB=∠EBC,∵∠ABC的平分线交AD边于点E,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE=8,同理得出ED=DF=DC=4,∴AD=AE+ED=8+4=12,故答案为:12.2.若矩形的一条对角线与一边的夹角是40°,则两条对角线相交所成的锐角是80°.【分析】因为两条对角线相交所成的锐角只有一个,直接应用三角形的内角和定理求解即可.【解答】解:由矩形的对角线相等且互相平分,所构成的三角形为等腰三角形,利用等边对等角,所以另一底角为40°,两条对角线相交所成的钝角为:180°﹣40°×2=100°故它们所成锐角为:180°﹣100°=80°.故答案为80.3.如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是.【分析】根据四边形ABCD是矩形,得到∠ABE=∠BAD=90°,根据余角的性质得到∠BAE=∠ADB,根据相似三角形的性质得到BE=1,求得BC=2,根据勾股定理得到AE==,BD==,根据三角形的面积公式得到BF==,过F作FG⊥BC于G,根据相似三角形的性质得到CG=,根据勾股定理即可得到结论.【解答】解:∵四边形ABCD是矩形,∴∠ABE=∠BAD=90°,∵AE⊥BD,∴∠AFB=90°,∴∠BAF+∠ABD=∠ABD+∠ADB=90°,∴∠BAE=∠ADB,∴△ABE∽△ADB,∴,∵E是BC的中点,∴AD=2BE,∴2BE2=AB2=2,∴BE=1,∴BC=2,∴AE==,BD==,∴BF==,过F作FG⊥BC于G,∴FG∥CD,∴△BFG∽△BDC,∴==,∴FG=,BG=,∴CG=,∴CF==.故答案为:.4.如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.【分析】由AAS证明△ABM≌△DEA,得出AM=AD,证出BC=AD=3EM,连接DM,由HL证明Rt △DEM≌Rt△DCM,得出EM=CM,因此BC=3CM,设EM=CM=x,则BM=2x,AM=BC=3x,在Rt△ABM中,由勾股定理得出方程,解方程即可.【解答】解:∵四边形ABCD是矩形,∴AB=DC=1,∠B=∠C=90°,AD∥BC,AD=BC,∴∠AMB=∠DAE,∵DE=DC,∴AB=DE,∵DE⊥AM,∴∠DEA=∠DEM=90°,在△ABM和△DEA中,,∴△ABM≌△DEA(AAS),∴AM=AD,∵AE=2EM,∴BC=AD=3EM,连接DM,如图所示:在Rt△DEM和Rt△DCM中,,∴Rt△DEM≌Rt△DCM(HL),∴EM=CM,∴BC=3CM,设EM=CM=x,则BM=2x,AM=BC=3x,在Rt△ABM中,由勾股定理得:12+(2x)2=(3x)2,解得:x=,∴BM=;故答案为:.5.如图,在矩形ABCD中,∠ABC的平分线交AD于点E,连接CE.若BC=7,AE=4,则CE= 5 .【分析】首先证明AB=AE=CD=4,在Rt△CED中,根据CE=计算即可.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,AB=CD,BC=AD=7,∠D=90°,∴∠AEB=∠EBC,∵∠ABE=∠EBC,∴AB=AE=CD=4,在Rt△EDC中,CE===5.故答案为56.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF= cm.【分析】根据勾股定理求出AC,根据矩形性质得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可.【解答】解:∵四边形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:BD=AC==10(cm),∴DO=5cm,∵点E、F分别是AO、AD的中点,∴EF=OD=,故答案为:.7.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加AC⊥BD 条件,才能保证四边形EFGH是矩形.【分析】根据三角形的中位线平行于第三边,HG∥BD,EH∥AC,根据平行线的性质∠EHG=∠1,∠1=∠2,根据矩形的四个角都是直角,∠EFG=90°,所以∠2=90°,因此AC⊥BD.【解答】解:∵G、H、E分别是BC、CD、AD的中点,∴HG∥BD,EH∥AC,∴∠EHG=∠1,∠1=∠2,∴∠2=∠EHG,∵四边形EFGH是矩形,∴∠EHG=90°,∴∠2=90°,∴AC⊥BD.故还要添加AC⊥BD,才能保证四边形EFGH是矩形.8.如图,在四边形ABCD中,对角线AC、BD相交于点O,且AO=CO,BO=DO,要使四边形ABCD 为矩形,则需添加的条件为∠DAB=90°(填一个即可).【分析】根据对角线互相平分线的四边形为平行四边形可得四边形ABCD是平行四边形,添加条件∠DAB=90°可根据有一个角是直角的平行四边形是矩形进行判定.【解答】解:可以添加条件∠DAB=90°,∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∵∠DAB=90°,∴四边形ABCD是矩形,故答案为:∠DAB=90°.9.已知四边形ABCD为平行四边形,要使得四边形ABCD为矩形,则可以添加一个条件为∠BAD=90°.【分析】根据矩形的判定方法:已知平行四边形,再加一个角是直角填空即可.【解答】解:∵四边形ABCD是平行四边形,∠BAD=90°,∴四边形ABCD是矩形,故答案为:∠BAD=90°(答案不唯一).10.木匠做一个矩形木框,长为80cm,宽为60cm,对角线的长为100cm,则这个木框合格(填“合格”或“不合格”)【分析】只要算出桌面的长与宽的平方和是否等于对角线的平方,如果相等可得长、宽、对角线构成的是直角三角形,由此可得到每个角都是直角,根据矩形的判定:有三个角是直角的四边形是矩形,可得此桌面合格.【解答】解:解:∵802+602=10000=1002,即:AD2+DC2=AC2,∴∠D=90°,同理:∠B=∠BCD=90°,∴四边形ABCD是矩形,故答案为合格.11.如图,在四边形ABCD中,已知AB∥DC,AB=DC,在不添加任何辅助线的情况下,请补充一个条件,使四边形ABCD成为矩形,这个条件是∠A=90°.【分析】根据有一个角是90°的平行四边形是矩形,即可解决问题.【解答】解:∵AB∥DC,AB=DC,∴四边形ABCD是平行四边形,∴当∠A=90°时,四边形ABCD是平行四边形.故答案为∠A=90°.(填∠B=90°或∠C=90°或∠D=90°也可以)12.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件EB=DC ,使四边形DBCE是矩形.【解答】解:添加EB=DC.理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴DE∥BC,又∵DE=AD,∴DE=BC,∴四边形DBCE为平行四边形.又∵EB=DC,∴四边形DBCE是矩形.故答案是:EB=DC.二.解答题(共6小题)13.如图,在▱ABCD中,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接BE,∠F=45°.(1)求证:四边形ABCD是矩形;(2)若AB=14,DE=8,求sin∠AEB的值.【分析】(1)欲证明四边形ABCD是矩形,只需推知∠DAB是直角;(2)如图,过点B作BH⊥AE于点H.构建直角△BEH.通过解该直角三角形可以求得sin ∠AEB的值.在Rt△BCE中,由勾股定理得.在Rt△AHB中,BH=AB•sin45°=7.所以通过解Rt△BHE得到:sin∠AEB=.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAF=∠F.∵∠F=45°,∴∠DAE=45°.∵AF是∠BAD的平分线,∴∠EAB=∠DAE=45°.∴∠DAB=90°.又∵四边形ABCD是平行四边形,∴四边形ABCD是矩形.(2)解:如图,过点B作BH⊥AE于点H.∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠DCB=∠D=90°.∵AB=14,DE=8,∴CE=6.在Rt△ADE中,∠DAE=45°,∴∠DEA=∠DAE=45°.∴AD=DE=8.∴BC=8.在Rt△BCE中,由勾股定理得.在Rt△AHB中,∠HAB=45°,∴BH=AB•sin45°=7.∵在Rt△BHE中,∠BHE=90°,∴sin∠AEB=.14.如图,AD是等腰△ABC底边BC上的高.点O是AC中点,延长DO到E,使OE=OD,连接AE,CE.(1)求证:四边形ADCE的是矩形;(2)若AB=17,BC=16,求四边形ADCE的面积.【分析】(1)根据平行四边形的性质得出四边形ADCE是平行四边形,根据垂直推出∠ADC=90°,根据矩形的判定得出即可;(2)求出DC,根据勾股定理求出AD,根据矩形的面积公式求出即可.【解答】(1)证明:∵点O是AC中点,∴AO=OC,∵OE=OD,∴四边形ADCE是平行四边形,∵AD是等腰△ABC底边BC上的高,∴∠ADC=90°,∴四边形ADCE是矩形;(2)解:∵AD是等腰△ABC底边BC上的高,BC=16,AB=17,∴BD=CD=8,AB=AC=17,∠ADC=90°,由勾股定理得:AD===15,∴四边形ADCE的面积是AD×DC=15×8=120.15.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若EA=EG,求证:ED=EC.【分析】(1)由条件可先证得四边形ABCF为平行四边形,再由∠B=90°可证得结论;(2)利用等腰三角形的性质可求得∠EAG=∠EGA=∠FGC,再利用直角三角形的性质可求得∠D=∠ECD,可证得ED=EC.【解答】证明:(1)∵AB∥CD,且FC=AB,∴四边形ABCF为平行四边形,∵∠B=90°,∴四边形ABCF是矩形;(2)∵EA=EG,∴∠EAG=∠EGA=∠FGC,∵四边形ABCF为矩形,∴∠AFC=∠AFD=90°,∴∠D+∠DAF=∠FGC+∠ECD=90°,∴∠D=∠ECD,∴ED=EC.16.如图,在▱ABCD中,AE⊥BC于点E点,延长BC至F点使CF=BE,连接AF,DE,DF.(1)求证:四边形AEFD是矩形;(2)若AB=6,DE=8,BF=10,求AE的长.【分析】(1)先证明四边形AEFD是平行四边形,再证明∠AEF=90°即可.(2)证明△ABF是直角三角形,由三角形的面积即可得出AE的长.【解答】(1)证明:∵CF=BE,∴CF+EC=BE+EC.即 EF=BC.∵在▱ABCD中,AD∥BC且AD=BC,∴AD∥EF且AD=EF.∴四边形AEFD是平行四边形.∵AE⊥BC,∴∠AEF=90°.∴四边形AEFD是矩形;(2)解:∵四边形AEFD是矩形,DE=8,∴AF=DE=8.∵AB=6,BF=10,∴AB2+AF2=62+82=100=BF2.∴∠BAF=90°.∵AE⊥BF,∴△ABF的面积=AB•AF=BF•AE.∴AE===.17.平行四边形ABCD中,过点D作DE⊥AB于点E,点F在CD上,CF=AE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DE=4,求矩形BFDE的面积.【分析】(1)根据有一个角是90度的平行四边形是矩形即可判定.(2)首先证明AD=DF,求出AD即可解决问题.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴DF∥BE,∵CF=AE,∴DF=BE,∴四边形BFDE是平行四边形,∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形.(2)∵AB∥CD,∴∠BAF=∠AFD,∵AF平分∠BAD,∴∠DAF=∠AFD,∴AD=DF,在Rt△ADE中,∵AE=3,DE=4,∴AD==5,∴矩形的面积为20.18.在▱ABCD中,过点D作DE⊥AB于点E,点F在CD上,CF=AE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AD=DF,求证:AF平分∠BAD.【分析】(1)先证明四边形BFDE是平行四边形,再证明∠DEB=90°即可.(2)欲证明AF平分∠BAD,只要证明∠DAF=∠BAF即可.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,即BE∥DF,∵CF=AE,∴DF=BE,∴四边形BFDE是平行四边形,∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形.(2)由(1)可知AB∥CD,∴∠BAF=∠AFD,∵AD=DF,∴∠DAF=∠AFD,∴∠BAF=∠DAF,即AF平分∠BAD.。
矩形的判定专项练习30题
矩形的判定专项练习30题1.在四边形ABCD中,AD∥BC,E、F为AB上两点,且△DAF≌△XXX。
证明:(1)∠A=90°;(2)四边形ABCD 是矩形。
1)因为AD∥BC,所以∠DAB = ∠CBA,又因为△DAF≌△XXX,所以∠DAF = ∠XXX,∠AFD = ∠XXX。
因此,∠FAB = ∠ECB,∠AFD = ∠XXX,所以∠BAD =∠CBD。
因为∠BAD + ∠ABC = 180°,所以∠ABC + ∠CBD= 180°,即ABCD为平行四边形,所以∠A = 90°。
2)因为ABCD为平行四边形,所以∠A = ∠C,∠B =∠D。
又因为AD∥BC,所以∠BAD + ∠ABC = 180°,即∠BAD = ∠DCB。
因此,∠A = ∠C = 90°,所以ABCD为矩形。
2.在平行四边形ABCD中,∠ABC,∠BCD的平分线BE、CF分别交AD于E、F,BE、CF交于点G,点H为BC的中点,GH的延长线交GB的平行线CM于点M。
证明:(1)∠BGC=90°;(2)四边形GBMC为矩形。
1)因为ABCD为平行四边形,所以∠ABC = ∠BCD,又因为BE、CF分别是∠ABC,∠BCD的平分线,所以∠ABE = ∠XXX。
因此,△ABE≌△CBF,所以AE = CF,因为GH 为BC的中点,所以GH = HB。
又因为BE、CF交于点G,所以XXX GF。
因此,△GHE≌△GFB,所以∠BGC = 90°。
2)因为ABCD为平行四边形,所以∠ABC = ∠BCD,又因为BE、CF分别是∠ABC,∠BCD的平分线,所以∠ABE = ∠XXX。
因此,△ABE≌△CBF,所以AE = CF。
因为点H 为BC的中点,所以HM∥AB,又因为GB∥AB,所以HM∥GB。
因为GH = HB,所以GM = MB。
因此,GBMC为平行四边形,又因为∠BGC = 90°,所以GBMC为矩形。
专题10 矩形的判定 题型全覆盖(25题)-2020-2021学年八年级数学下(人教版)(解析版)
专题10 矩形的判定题型全覆盖(25题)【思维导图】【考查题型】考查题型一添加一个条件使四边形是矩形1.(2020·江阴市八年级期中)已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC【答案】B【提示】由矩形的判定方法即可得出答案.【详解】A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形,正确;B、∠A=∠C不能判定这个平行四边形为矩形,错误;C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故正确;D、AB⊥BC,所以∠B=90°,可以判定这个平行四边形为矩形,正确,故选B.【名师点拨】本题考查了矩形的判定,熟练掌握“有一个角是直角的平行四边形是矩形、对角线相等的平行四边形是矩形、有三个角是直角的四边形是矩形”是解题的关键.2.(2020·辽宁营口市·八年级期末)四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AC=BDC.AB=BC D.AD=BC【答案】B【提示】四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理可得,只需添加条件是对角线相等.【详解】可添加AC=BD,理由如下:∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形.故选B.【名师点拨】考查了矩形的判定,关键是矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.3.(2020·辽宁沈阳市·九年级期末)四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AB=BC C.AC⊥BD D.AC=BD【答案】D【提示】四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是对角线相等.【详解】添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选D.【名师点拨】考查了矩形的判定,关键是掌握矩形的判定方法:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.4.(2020·郑州市八年级期中)如图,顺次连接四边形ABCD各边的中点的四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A.AB∥DC B.AC=BD C.AC⊥BD D.AB=CD【答案】C【提示】根据矩形的判定定理(有一个角为直角的平行四边形是矩形).先证四边形EFGH是平行四边形,要使四边形EFGH 为矩形,需要∠EFG=90度.由此推出AC⊥BD.【详解】依题意得:四边形EFGH是由四边形ABCD各边中点连接而成,连接AC、BD,故EF∥AC∥HG,EH∥BD∥FG,所以四边形EFGH是平行四边形,要使四边形EFGH为矩形,根据矩形的判定(有一个角为直角的平行四边形是矩形),当AC⊥BD时,∠EFG=∠EHG=90度,四边形EFGH为矩形.故选C.【名师点拨】本题考查了矩形的判定定理,难度一般.矩形的判定定理:(1)有一个角是直角的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.(3)对角线互相平分且相等的四边形是矩形.5.(2020·自贡市八年级期中)如图,要使平行四边形ABCD成为矩形,需添加的条件是()A.AB=BC B.AC⊥BD C.∠ABC=90°D.∠1=∠2【答案】C【提示】根据矩形的判定定理(①有一个角是直角的平行四边形是矩形,②有三个角是直角的四边形是矩形,③对角线相等的平行四边形是矩形)逐一判断即可.【详解】A、根据AB=BC和平行四边形ABCD不能得出四边形ABCD是矩形,故本选项错误;B、∵四边形ABCD是平行四边形,∴当AC⊥BD时四边形ABCD是菱形,故本选项错误;C、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项错误;D、∵四边形ABCD是平行四边形,∴AD∥BC,∴∠2=∠ACB,∵∠1=∠2,∴∠1=∠ACB,∴AB=BC,∴四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项错误;故选:C.【名师点拨】本题考查矩形的判定,解题的关键是掌握矩形的判定方法.考查题型二证明四边形是矩形6.(2020·东莞市九年级期中)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.【答案】(1)证明见解析;(2)结论:四边形ACDF是矩形.理由见解析.【提示】(1)只要证明AB=CD,AF=CD即可解决问题;(2)结论:四边形ACDF是矩形.根据对角线相等的平行四边形是矩形判断即可;【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=AF.(2)解:结论:四边形ACDF是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF是平行四边形,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF是矩形.【名师点拨】本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.7.(2020·石家庄市八年级期中)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是.【答案】(1)证明见解析;(2)4.【提示】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD的面积为:12AC•BD=12×4×2=4,故答案为4.【名师点拨】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.8.(2020·株洲市八年级期中)在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.【答案】(1)见解析(2)见解析【解析】试题提示:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.试题提示:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【名师点拨】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.9.(2020·扬州市八年级期末)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.【答案】解:(1)证明:如图,∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,4=∠6.∵MN∥BC,∴∠1=∠5,3=∠6.∴∠1=∠2,∠3=∠4.∴EO=CO ,FO=CO .∴OE=OF .(2)∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°.∵CE=12,CF=5,∴EF 13.∴OC=12EF=6.5. (3)当点O 在边AC 上运动到AC 中点时,四边形AECF 是矩形.理由如下:当O 为AC 的中点时,AO=CO ,∵EO=FO ,∴四边形AECF 是平行四边形.∵∠ECF=90°,∴平行四边形AECF 是矩形.【详解】(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案.(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF 的长,即可根据直角三角形斜边上的中线性质得出CO 的长.(3)根据平行四边形的判定以及矩形的判定得出即可.10.(2020·湖北咸宁市·八年级期末)如图,在□ABCD 中,对角线 AC 与 BD 相交于点 O ,点 E ,F 分别为 OB , OD 的中点,延长 AE 至G ,使 EG =AE ,连接 CG .(1)求证: △ABE ≌△CDF ;(2)当 AB 与 AC 满足什么数量关系时,四边形 EGCF 是矩形?请说明理由.【答案】(1)见解析;(2)2AC AB =时,四边形EGCF 是矩形,理由见解析.【提示】(1)由平行四边形的性质得出AB=CD ,AB ∥CD ,OB=OD ,OA=OC ,由平行线的性质得出∠ABE=∠CDF ,证出BE=DF ,由SAS 证明△ABE ≌△CDF 即可;(2)证出AB=OA ,由等腰三角形的性质得出AG ⊥OB ,∠OEG=90°,同理:CF ⊥OD ,得出EG ∥CF ,由三角形中位线定理得出OE ∥CG ,EF ∥CG ,得出四边形EGCF 是平行四边形,即可得出结论.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,OB=OD ,OA=OC ,∴∠ABE=∠CDF ,∵点E ,F 分别为OB ,OD 的中点,∴BE=12OB ,DF=12OD , ∴BE=DF ,在△ABE 和△CDF 中,AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩()ABE CDF SAS ∴≅(2)当AC=2AB 时,四边形EGCF 是矩形;理由如下:∵AC=2OA ,AC=2AB ,∴AB=OA ,∵E 是OB 的中点,∴AG ⊥OB ,∴∠OEG=90°,同理:CF ⊥OD ,∴AG ∥CF ,∴EG ∥CF ,∵EG=AE ,OA=OC ,∴OE 是△ACG 的中位线,∴OE ∥CG ,∴EF ∥CG ,∴四边形EGCF 是平行四边形,∵∠OEG=90°,∴四边形EGCF 是矩形.【名师点拨】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题.考查题型三 根据矩形的性质与判定求角度11.(2020·江西八年级期末)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB∶∠ODC=4∶3,求∠ADO的度数.【答案】(1)证明见解析;(2)∠ADO==36°.【提示】(1)先判断四边形ABCD是平行四边形,继而根据已知条件推导出AC=BD,然后根据对角线相等的平行四边形是矩形即可;(2)设∠AOB=4x,∠ODC=3x,则∠OCD=∠ODC=3x.,在△ODC中,利用三角形内角和定理求出x的值,继而求得∠ODC 的度数,由此即可求得答案.【详解】(1)∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,又∵∠AOB=2∠OAD,∠AOB是△AOD的外角,∴∠AOB=∠OAD+∠ADO.∴∠OAD=∠ADO.∴AO=OD.又∵AC=AO+OC=2AO,BD=BO+OD=2OD,∴AC=BD.∴四边形ABCD是矩形.(2)设∠AOB=4x,∠ODC=3x,则∠ODC=∠OCD=3x,在△ODC中,∠DOC+∠OCD+∠CDO=180°∴4x+3x+3x=180°,解得x=18°,∴∠ODC=3×18°=54°,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADO=∠ADC-∠ODC=90°-54°=36°.【名师点拨】本题考查了矩形的判定与性质,三角形内角和定理等知识,熟练掌握和灵活运用相关知识是解题的关键. 12.(2020·南阳市八年级期中)如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC =180°.(1)求证:四边形ABCD是矩形;(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.【答案】(1)见解析;(2)∠BDF=18°.【提示】(1)先证明四边形ABCD是平行四边形,求出∠ABC=90°,然后根据矩形的判定定理,即可得到结论;(2)求出∠FDC的度数,根据三角形的内角和,求出∠DCO,然后得到OD=OC,得到∠CDO,即可求出∠BDF的度数.【详解】(1)证明:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴CO=OD,∴∠ODC=∠DCO=54°,∴∠BDF=∠ODC﹣∠FDC=18°.【名师点拨】本题考查了平行四边形的判定和性质,矩形的判定和性质,能灵活运用定理进行推理是解题的关键.注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.13.(2020·云南迪庆藏族自治州·八年级期末)如图,四边形ABCD中,对角线AC,BD相交于点O,AB∥CD,AB=CD,且OA=OD.(1)求证:四边形ABCD是矩形;(2)DF⊥AC于点F,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?【答案】(1)详见解析;(2)18°【提示】(1)利用对边平行且相等证明四边形ABCD是平行四边形,再利用对角线相等的平行四边形是矩形,即可证明四边形ABCD是矩形;(2)先求出∠FDC=36°,再求出∠OCD =∠ODC=54°,即可求出∠BDF.【详解】(1)∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形;(2)∵四边形ABCD是矩形,∴∠ADC=90°,OC=OD,∴∠ODC=∠OCD,∵∠ADF:∠FDC=3:2,∴∠ADF=54°,∠FDC=36°,∵DF⊥AC,∴∠OCD=∠ODC=90°-∠FDC=54°,∴∠BDF=∠ODC-∠FDC=54°-36°=18°.【名师点拨】本题考查了矩形的判定与性质、平行四边形的判定、等腰三角形的判定与性质;熟练掌握矩形的判定与性质,并能进行推理计算是解决问题的关键.14.(2020·渠县九年级期末)如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,且OA=OB .(1)求证:四边形ABCD 是矩形;(2)若AD=4,∠AOD=60°,求AB 的长.【答案】(1)证明见解析;(2)【提示】(1)由▱ABCD 得到OA=OC ,OB=OD ,由OA=OB ,得到;OA=OB=OC=OD ,对角线平分且相等的四边形是矩形,即可推出结论;(2)根据矩形的性质借用勾股定理即可求得AB 的长度.【详解】(1)证明:在平行四边形ABCD 中, OA=OC=12AC ,OB=OD=12BD , 又∵OA=OB ,∴AC=BD ,∴平行四边形ABCD 是矩形.(2)∵四边形ABCD 是矩形,∴∠BAD=90°,OA=OD .又∵∠AOD=60°, ∴AOD 是等边三角形,∴OD=AD=4,∴BD=2OD=8,在Rt ABD 中,==15.(2020·江苏无锡市·八年级期末)如图,已知OAB ∆中,OA OB =,分别延长AO 、BO 到点C 、D ,使得OC AO =,OD BO =,连接AD 、DC 、CB .(1)求证:四边形ABCD 是矩形;(2)以OA 、OB 为一组邻边作AOBE ,连接CE ,若CE BD ⊥,求AOB ∠的度数.【答案】(1)证明过程见解析;(2)120AOB ∠=︒【提示】(1)根据已知条件推出四边形ABCD 是平行四边形,求得AO =12AC ,BO =12BD ,等量代换得到AC =BD ,于是得到四边形ABCD 是矩形;(2)连接OE ,设EC 与BD 交于F ,根据垂直的定义得到∠CFD =90°,根据平行四边形的性质得到AE ∥BO ,根据直角三角形的性质得到EO =AO ,推出△AEO 是等边三角形,于是得到结论.【详解】(1)证明:∵OC =AO ,OD =BO ,∴四边形ABCD 是平行四边形,∴AO =12AC ,BO =12BD , ∵AO =BO ,∴AC =BD ,∴四边形ABCD 是矩形;(2)解:连接OE ,设EC 与BD 交于F ,∵EC ⊥BD ,∴∠CFD =90°,∵四边形AEBO 是平行四边形,∴AE ∥BO ,∴∠AEC =∠CFD =90°,即△AEC 是直角三角形,∵EO 是Rt △AEC 中AC 边上的中线,∴EO =AO ,∵四边形AEBO 是平行四边形,∴OB =AE ,∵OA =OB ,∴AE =OA =OE ,∴△AEO 是等边三角形,∴∠OAE =60°,∵∠OAE +∠AOB =180°,∴∠AOB =120°.【名师点拨】本题考查了矩形的判定和性质,平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.考查题型四 根据矩形的性质与判定求线段长16.(2020·辽宁阜新市·九年级期中)如图,在ABCD 中,AE BC ⊥于点E 点,延长BC 至F 点使=CF BE ,连接AF ,DE ,DF .(1)求证:四边形AEFD 是矩形;(2)若6AB =,8DE =,10BF =,求AE 的长.【答案】(1)见解析;(2)245【解析】试题提示:(1)先证明四边形AEFD 是平行四边形,再证明∠AEF=90°即可.(2)证明△ABF 是直角三角形,由三角形的面积即可得出AE 的长.试题解析:(1)证明:∵CF=BE,∴CF+EC=BE+EC.即 EF=BC.∵在▱ABCD中,AD∥BC且AD=BC,∴AD∥EF且AD=EF.∴四边形AEFD是平行四边形.∵AE⊥BC,∴∠AEF=90°.∴四边形AEFD是矩形;(2)∵四边形AEFD是矩形,DE=8,∴AF=DE=8.∵AB=6,BF=10,∴AB2+AF2=62+82=100=BF2.∴∠BAF=90°.∵AE⊥BF,∴△ABF的面积=12AB•AF=12BF•AE.∴AE=•6824105 AB AFBF⨯==.17.(2020·辽宁鞍山市·八年级期中)如图,在ABCD中,对角线AC,BD交于点O,过点B作BE⊥CD于点E,延长CD到点F,使DF=CE,连接AF.(1)求证:四边形ABEF是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF的长度.【答案】(1)见解析;.【提示】(1)根据菱形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据直角三角形斜边中线可得:OF=12AC,利用勾股定理计算AC的长,可得结论.【详解】(1)证明:∵四边形ABCD是平行四边形∴AB=CD,AB∥CD.∵DF=CE,∴DF+DE=CE+ED,即:FE=CD.∵点F、E在直线CD上∴AB=FE,AB∥FE.∴四边形ABEF是平行四边形又∵BE⊥CD,垂足是E,∴∠BEF=90°.∴四边形ABEF是矩形.(2)解:∵四边形ABEF是矩形O,∴∠AFC=90°,AB=FE.∵AB=6,DE=2,∴FD=4.∵FD=CE,∴CE=4.∴FC=10.在Rt△AFD中,∠AFD=90°.∵∠ADF=45°,∴AF=FD=4.在Rt△AFC中,∠AFC=90°.∴AC==∵点O是平行四边形ABCD对角线的交点,∴O为AC中点在Rt△AFC中,∠AFC=90°.O为AC中点. ∴OF=12.【名师点拨】本题考查了矩形的判定和性质,平行四边形的性质,勾股定理,正确的识别图形是解题的关键.18.(2020·江西吉安市·九年级期中)如图,在△ABC中,AC=9,AB=12,BC=15,P为BC边上一动点,PG⊥AC于点G,PH⊥AB于点H.(1)求证:四边形AGPH是矩形;(2)在点P的运动过程中,GH的长度是否存在最小值?若存在,请求出最小值,若不存在,请说明理由.【答案】(1)证明见解析;(2)见解析.【提示】(1)根据“矩形的定义”证明结论;(2)连结AP.当AP⊥BC时AP最短,结合矩形的两对角线相等和面积法来求GH的值.【详解】(1)证明∵AC=9 AB=12 BC=15,∴AC2=81,AB2=144,BC2=225,∴AC2+AB2=BC2,∴∠A=90°.∵PG⊥AC,PH⊥AB,∴∠AGP=∠AHP=90°,∴四边形AGPH是矩形;(2)存在.理由如下:连结AP.∵四边形AGPH是矩形,∴GH=AP.∵当AP⊥BC时AP最短.∴9×12=15•AP.∴AP=365.【名师点拨】本题考查了矩形的判定与性质.解答(2)题时,注意“矩形的对角线相等”和“面积法”的正确应用.19.(2020·浙江杭州市·八年级期末)如图,矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F.(1)求证:BF=BC;(2)若AB=4cm,AD=3cm,求CF的长.【答案】(1)见解析;(2)CF=5cm.【提示】(1)要求证BF=BC只要证明∠CFB=∠FCB就可以,从而转化为证明∠BCE=∠BDC就可以;(2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cm,CD=4cm,在直角△BCD中,根据三角形的面积等于12 BD•CE=12BC•DC,就可以求出CE的长.要求CF的长,可以在直角△CEF中用勾股定理求得.其中EF=BF﹣BE,BE在直角△BCE中根据勾股定理就可以求出,由此解决问题.【详解】证明:(1)∵四边形ABCD是矩形,∴∠BCD=90°,∴∠CDB+∠DBC=90°.∵CE⊥BD,∴∠DBC+∠ECB=90°.∴∠ECB=∠CDB.∵∠CFB=∠CDB+∠DCF,∠BCF=∠ECB+∠ECF,∠DCF=∠ECF,∴∠CFB=∠BCF∴BF=BC(2)∵四边形ABCD是矩形,∴DC=AB=4(cm),BC=AD=3(cm).在Rt △BCD 中,由勾股定理得BD =5. 又∵BD•CE =BC•DC ,∴CE =125BC DC BD ⋅=.∴BE 95=. ∴EF =BF ﹣BE =3﹣9655=.∴CF ==cm . 【名师点拨】本题考查矩形的判定与性质,等腰三角形的判定定理,等角对等边,以及勾股定理,三角形面积计算公式的运用,灵活运用已知,理清思路,解决问题.20.(2020·江苏连云港市·八年级期末)已知BC =5,AB =1,AB ⊥BC ,射线CM ⊥BC ,动点P 在线段BC 上(不与点B ,C 重合),过点P 作DP ⊥AP 交射线CM 于点D ,连接AD .(1)如图1,若BP =4,判断△ADP 的形状,并加以证明.(2)如图2,若BP =1,作点C 关于直线DP 的对称点C ′,连接AC ′.①依题意补全图2;②请直接写出线段AC ′的长度.【答案】(1)△ADP 是等腰直角三角形.证明见解析;(2)①补图见解析;【提示】(1)先判断出PC =AB ,再用同角的余角相等判断出∠APB =∠PDC ,得出△ABP ≌△PCD (AAS ),即可得出结论; (2)①利用对称的性质画出图形;②过点C '作C 'Q ⊥BA 交BA 的延长线于Q ,先求出CP =4,AB =AP ,∠CPD =45°,进而得出C 'P =CP =4,∠C 'PD =∠CPD =45°,再判断出四边形BQC 'P 是矩形,进而求出AQ =BQ ﹣AB =3,最后用勾股定理即可得出结论.【详解】(1)△ADP是等腰直角三角形.证明如下:∵BC=5,BP=4,∴PC=1.∵AB=1,∴PC=AB.∵AB⊥BC,CM⊥BC,DP⊥AP,∴∠B=∠C=90°,∠APB+∠DPC=90°,∠PDC+∠DPC=90°,∴∠APB=∠PDC.在△ABP和△PCD中,∵B CAPB PDCAB PC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABP≌△PCD(AAS),∴AP=PD.∵∠APD=90°,∴△ADP是等腰直角三角形.(2)①依题意补全图2;②过点C'作C'Q⊥BA交BA的延长线于Q.∵BP=1,AB=1,BC=5,∴CP=4,AB=AP.∵∠ABP=90°,∴∠APB=45°.∵∠APD=90°,∴∠CPD=45°,连接C'P.∵点C与C'关于DP对称,∴C'P=CP=4,∠C'PD=∠CPD=45°,∴∠CPC'=90°,∴∠BPC'=90°,∴∠Q=∠ABP=∠BPC'=90°,∴四边形BQC'P是矩形,∴C'Q=BP=1,BQ=C'P=4,∴AQ=BQ﹣AB=3.在Rt△AC'Q中,AC′【名师点拨】本题考查了矩形的判定与性质以及全等三角形的判定和性质,等腰三角形的判定和性质,勾股定理,构造出直角三角形是解答本题的关键.考查题型五根据矩形的性质与判定求面积21.(2020·辽宁沈阳市·九年级期末)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是.【答案】(1)见解析;(2)【提示】(1)根据菱形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据全等三角形的判定定理得到Rt△ABE≌Rt△DCF(HL),求得矩形AEFD的面积=菱形ABCD的面积,根据等腰三角形的性质得到结论.【详解】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∵CF=BE,∴BC=EF,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴平行四边形AEFD是矩形;(2)∵AB=CD,BE=CF,∠AEB=∠DFC=90°,∴Rt△ABE≌Rt△DCF(HL),∴矩形AEFD的面积=菱形ABCD的面积,∵∠ABC=60°,∴△ABC是等边三角形,∵AC=10,∴AO=1AC=5,AB=10,BO=2∴矩形AEFD的面积=菱形ABCD的面积=12故答案为:【名师点拨】本题考查了矩形的判定和性质,菱形的性质,勾股定理,正确的识别图形是解题的关键.22.(2020·吉林长春市·八年级期末)如图,在矩形ABCD中,EF经过对角线BD的中点O,分别交AD,BC于点E,F(1)求证:△BOF≌△DOE;(2)若AB=4cm,AD=5cm,当EF⊥BD时,求四边形ABFE的面积.【答案】(1)见解析;(2)10cm2【提示】(1)利用矩形的性质可得:AD∥BC,进而可证全等;(2)利用全等的性质可得:ED=FB.AE=CF,可得四边形ABFE的面积是矩形面积的一半.【详解】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠BFO=∠DEO,∠FBO=∠EDO,又∵O是BD中点,∴OB=OD,∴△BOF≌△DOE(AAS).(2)由(1)可得ED=FB.∴AE=CF,∴S四边形ABFE=S四边形CDEF.又∵AB=4cm,AD=5cm∴S矩形ABCD=20cm2,∴S四边形ABFE=10cm2.故答案为(1)见解析;(2)10cm2.【名师点拨】本题考查矩形的性质,全等的性质和判定,关键是找好对应关系.23.(2020·江西南昌市·八年级期中)如图所示,四边形ABCD是平行四边形,AC、BD交于点O,∠1=∠2.(1)求证:四边形ABCD是矩形;(2)若∠BOC=120°,AB=4cm,求四边形ABCD的面积.【答案】(1)详见解析;(2)【提示】(1)因为∠1=∠2,所以BO=CO,2BO=2CO,又因为四边形ABCD是平行四边形,所以AO=CO,BO=OD,则可证AC=BD,根据对角线相等的平行四边形是矩形即可判定;(2)在△BOC中,∠BOC=120°,则∠1=∠2=30°,AC=2AB,根据勾股定理可求得BC的值,则四边形ABCD的面积可求.【详解】(1)证明:∵∠1=∠2,∴BO=CO,即2BO=2CO.∵四边形ABCD是平行四边形,∴AO=CO,BO=OD,∴AC=2CO,BD=2BO,∴AC=BD.∵四边形ABCD是平行四边形,∴四边形ABCD是矩形;(2)在△BOC中,∵∠BOC=120°,∴∠1=∠2=(180°-120°)÷2=30°,∴在Rt△ABC中,AC=2AB=2×4=8(cm),∴.∴四边形ABCD的面积=4⨯2)【名师点拨】此题把矩形的判定、勾股定理和平行四边形的性质结合求解.考查学生综合运用数学知识的能力.解决本题的关键是读懂题意,得到相应的四边形的各边之间的关系.24.(2020·江苏镇江市·八年级期中)如图,点O是菱形ABCD对角线的交点,过点C作CM∥OD,过点D作DE⊥CM,E为垂足.(1)求证:四边形OCED是矩形.(2)若AB =17,BD =30,则四边形ADEC 的面积为 平方单位.【答案】(1)证明见解析;(2)180【提示】(1)本题根据平行的性质以及菱形对角线互相垂直即可直接求证.(2)本题利用菱形性质以及勾股定理求解OA 、OC 、OD ,继而利用割补法求解四边形面积.【详解】(1)∵四边形ABCD 是菱形,∴AC ⊥BD ,即∠COD =90°,∵CE ∥OD ,∴∠OCE=∠COD=90°,∵DE ⊥CM ,∴∠DEC=∠OCE=∠COD=90°,∴四边形OCED 是矩形;(2)∵在菱形ABCD 中,AB =17,∴AB =BC =CD =17,OA=OC ,∵BD =30,∴OD =12BD =15,∴8OA OC ===, ∴11=81581518022AOD OCED ADEC S S S OA OD OC OD =+•+•=⨯⨯+⨯=矩四边形, 故四边形ADEC 的面积为180平方单位.【名师点拨】本题考查四边形的综合,解题关键在于对菱形、矩形对应概念的理解,各判定定理要熟记于心,菱形对角线互相垂直常作为勾股定理应用的前提.25.(2020·山东枣庄市·九年级期中)如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,点M ,N 分别为OA 、OC 的中点,延长BM 至点E ,使EM BM =,连接DE .(1)求证:AMB CND △≌△;(2)若2BD AB =,且5AB =,4DN =,求四边形DEMN 的面积.【答案】(1)见解析;(2)24【提示】(1)由四边形ABCD 是平行四边形得出AB=CD ,AB //CD ,进而得到∠BAC=∠DCA ,再结合AO=CO ,M,N 分别是OA 和OC 中点即可求解;(2)证明△ABO 是等腰三角形,结合M 是AO 的中点,得到∠BMO=∠EMO=90°,同时△DOC 也是等腰三角形,N 是OC 中点,得到∠DNO=90°,得到EM //DN ,再由(1)得到EM=DN ,得出四边形EMND 为矩形,进而求出面积.【详解】解:(1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB //CD ,OA=OC ,∴∠BAC=∠DCA ,又点M ,N 分别为OA 、OC 的中点,∴1122===AM AO CO CN , 在AMB ∆和CND ∆中,=⎧⎪∠=∠⎨⎪=⎩AB CD BAC DCA AM CN ,∴()△≌△AMB CND SAS .(2)BD=2BO ,又已知BD=2AB ,∴BO=AB ,∴△ABO 为等腰三角形;又M 为AO 的中点,∴由等腰三角形的“三线合一”性质可知:BM ⊥AO ,∴∠BMO=∠EMO=90°,同理可证△DOC 也为等腰三角形,又N 是OC 的中点,∴由等腰三角形的“三线合一”性质可知:DN ⊥CO ,∠DNO=90°,∵∠EMO+∠DNO=90°+90°=180°,∴EM //DN ,又已知EM=BM ,由(1)中知BM=DN ,∴EM=DN ,∴四边形EMND 为平行四边形,又∠EMO=90°,∴四边形EMND 为矩形,在Rt △ABM 中,由勾股定理有:3AM ==,∴AM=CN=3,∴MN=MO+ON=AM+CN=3+3=6,∴6424EMND S MN ME =⋅=⨯=矩形.故答案为:24.【名师点拨】本题考查了平行四边形的性质、矩形的判定和性质、矩形的面积公式等,熟练掌握其性质和判定方法是解决此类题的关键.。
《矩形的判定》练习及答案
《矩形的判定》练习满分100分80分过关限时30分钟一.选择题(共4小题,每题10分,共40分)1.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是矩形C.对角线相等的平行四边形是矩形D.对角线互相垂直的平行四边形是矩形2.下列关于矩形的说法,正确的是()A.对角线相等的四边形是矩形B.对角线互相平分的四边形是矩形C.矩形的对角线相等且互相平分D.矩形的对角线互相垂直且平分3.如图,□ABCD中,对角线AC,BD相交于点O,OA=3,若要使平行四边形ABCD为矩形,则OB的长度为()A.4B.3C.2D.14.对于四边形ABCD,给出下列6组条件,①∠A=90°,∠B=∠C=∠D;②∠A=∠B=90°,∠C=∠D;③∠A=∠B=∠C=∠D;④∠A=∠B=∠C=90°;⑤AC=BD;⑥AB∥CD,AD∥BC.其中能得到“四边形ABCD是矩形”的条件有()A.1组B.2组C.3组D.4组二.填空题(共4小题,每题10分,共40分)5.如图,四边形ABCD是平行四边形,要使它变为矩形,需要添加的条件是(写一个即可).6.在四边形ABCD中,对角线AC、BD交于点O,从①AB=CD;②AB∥CD;③OA=OC;④OB=OD;⑤AC=BD;⑥∠ABC=90°这六个条件中,可选取三个推出四边形ABCD是矩形,如①②⑤→四边形ABCD是矩形.请再写出符合要求的两个:;.7.如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快s后,四边形ABPQ成为矩形.8.如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值是.三.解答题(共2小题,每题10分,共20分)9.在△ABC中,AD⊥BC于点D,点E为AC边的中点,过点A作AF∥BC,交DE的延长线于点F,连接CF.(1)如图1,求证:四边形ADCF是矩形;(2)如图2,当AB=AC时,取AB的中点G,连接DG、EG,在不添加任何辅助线和字母的条件下,请直接写出图中所有的平行四边形(不包括矩形ADCF).10.如图,在△ABC中,点O是AC边上一动点,过点O作BC的平行线交∠ACB的角平分线于点E,交∠ACB的外角平分线于点F(1)求证:EO=FO;(2)当点O运动到何处时,四边形CEAF是矩形?请证明你的结论.(3)在第(2)问的结论下,若AE=3,EC=4,AB=12,BC=13,请直接写出凹四边形ABCE 的面积为.参考答案与试题解析一.选择题(共4小题)1.【分析】根据矩形的判定方法:对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”)可以选出答案.【解答】解:A、对角线相等的四边形不一定是矩形,等腰梯形的对角线也相等,故此选项错误;B、对角线互相垂直的四边形不一定是矩形,例如菱形,菱形的对角线互相垂直,故此选项错误;C、对角线相等的平行四边形是矩形,故此选项正确;D、对角线互相垂直的平行四边形是菱形,故此选项错误.故选:C.2.【分析】由矩形的判定与性质分别作出判断,即可得出结论.【解答】解:A、对角线相等的四边形是矩形,不正确;B、对角线互相平分的四边形是矩形,不正确;C、矩形的对角线相等且互相平分,正确;D、矩形的对角线互相垂直且平分,不正确;故选:C.3.【分析】根据矩形的性质得到OA=OC,OB=OD,AC=BD,求出OA=OB即可.【解答】解:假如平行四边形ABCD是矩形,OA=OC,OB=OD,AC=BD,∴OA=OB=3.故选:B.4.【分析】根据矩形的判定,用排除法即可判定所选答案.【解答】解:①由∠A=90°,∠B=∠C=∠D可以得到∠A=∠B=∠C=∠D=90°,故①正确;②由∠A=∠B=90°,∠C=∠D=90°可以得到∠A=∠B=∠C=∠D=90°,故②正确;③∠A=∠B=∠C=∠D能得到四个角都是直角,故③正确;④∠A=∠B=∠C=90°,有三个角是直角的四边形为矩形,故④正确;⑤AC=BD,只有一组对边相等的四边形不一定是矩形,故⑤错误,⑥AB∥CD,AD∥BC,只能得到四边形为平行四边形,故⑥错误,∴正确的有4个,故选:D.二.填空题(共4小题)5.【分析】根据对角线相等的平行四边形是矩形,填空即可.【解答】解:∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD是矩形,故答案为AC=BD.6.【分析】根据平行四边形的判定(有一组对边平行且相等的四边形是平行四边形,对角线互相平分的四边形是平行四边形)得出平行四边形ABCD,再根据矩形的判定定理推出即可.【解答】解:①②⑥或③④⑥,理由是:∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∵∠ABC=90°,∴平行四边形ABCD是矩形.∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵∠ABC=90°,∴平行四边形ABCD是矩形,故答案为:①②⑥,③④⑥.7.【分析】根据矩形的性质,可得BC与AD的关系,根据矩形的判定定理,可得BP=AQ,构建一元一次方程,可得答案.【解答】解;设最快x秒,四边形ABPQ成为矩形,由BP=AQ得3x=20﹣2x.解得x=4,故答案为:4.8.【分析】根据矩形的性质就可以得出EF,AP互相平分,且EF=AP,根据垂线段最短的性质就可以得出AP⊥BC时,AP的值最小,即AM的值最小,由勾股定理求出BC,根据面积关系建立等式求出其解即可.【解答】解:∵PE⊥AB,PF⊥AC,∠BAC=90°,∴∠EAF=∠AEP=∠AFP=90°,∴四边形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交点就是M点,∵当AP的值最小时,AM的值就最小,∴当AP⊥BC时,AP的值最小,即AM的值最小.∵AP×BC=AB×AC,∴AP×BC=AB×AC,在Rt△ABC中,由勾股定理,得BC==10,∵AB=6,AC=8,∴10AP=6×8,∴AP=∴AM=,故答案为:.三.解答题(共2小题)9.【分析】(1)由△AEF≌△CED,推出EF=DE,又AE=EC,推出四边形ADCF是平行四边形,只要证明∠ADC=90°,即可推出四边形ADCF是矩形.(2)四边形ABDF、四边形AGEF、四边形GBDE、四边形AGDE、四边形GDCE都是平行四边形.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠EDC,……………………………………………………………………1分∵E是AC中点,∴AE=EC,…………………………………………………………………………2分在△AEF和△CED中,,∴△AEF≌△CED,………………………………………………………………3分∴EF=DE,………………………………………………………………………4分∵AE=EC,∴四边形ADCF是平行四边形,…………………………………………………5分∵AD⊥BC,∴∠ADC=90°,∴四边形ADCF是矩形.…………………………………………………………6分(2)∵线段DG、线段GE、线段DE都是△ABC的中位线,又AF∥BC,…………7分∴AB∥DE,DG∥AC,EG∥BC,………………………………………………………8分∴四边形ABDF、四边形AGEF、四边形GBDE、四边形AGDE、四边形GDCE都是平行四边形.…………………………………………………………………………………10分10.【分析】(1)由平行线的性质和角平分线的定义得出∠OEC=∠OCE,证出EO=CO,同理得出FO=CO,即可得出EO=FO;(2)由对角线互相平分证明四边形CEAF是平行四边形,再由对角线相等即可得出结论;(3)先根据勾股定理求出AC,得出△ACE的面积=AE×EC,再由勾股定理的逆定理证明△ABC是直角三角形,得出△ABC的面积=AB?AC,凹四边形ABCE的面积=△ABC的面积﹣△ACE的面积,即可得出结果.【解答】(1)证明:∵EF∥BC,∴∠OEC=∠BCE,……………………………………………………………………1分∵CE平分∠ACB,∴∠BCE=∠OCE,……………………………………………………………………2分∴∠OEC=∠OCE,∴EO=CO,……………………………………………………………………………3分同理:FO=CO,∴EO=FO;……………………………………………………………………………4分(2)解:当点O运动到AC的中点时,四边形CEAF是矩形;理由如下:……5分由(1)得:EO=FO,又∵O是AC的中点,∴AO=CO,∴四边形CEAF是平行四边形,……………………………………………………6分∵EO=FO=CO,∴EO=FO=AO=CO,∴EF=AC,……………………………………………………………………………7分∴四边形CEAF是矩形;……………………………………………………………8分(3)解:由(2)得:四边形CEAF是矩形,∴∠AEC=90°,∴AC===5,△ACE的面积=AE×EC=×3×4=6,∵122+52=132,即AB2+AC2=BC2,∴△ABC是直角三角形,∠BAC=90°,∴△ABC的面积=AB?AC=×12×5=30,∴凹四边形ABCE的面积=△ABC的面积﹣△ACE的面积=30﹣6=24;故答案为:24.……………………………………………………………………10分。
矩形判定
.-.矩形(判定)————————————————————————————————作者:————————————————————————————————日期:导学—反馈—感悟 导学案——19. 2.1矩形(2)一、学习任务1)理解并掌握矩形的判定方法.2)能应用矩形定义、判定等知识,解决简单的证明题和计算题。
二、课前独学:(一)复习巩固:1.图1,在矩形ABCD 中,对角线AC ,BD 交于点O ,已知,AB=2.5,则AC 的长为 。
2.图2,直角三角形斜边上的高和斜边上的中线分别是5cm 和6cm ,则它的面积是 3.(2008年山东省临沂市)如图,矩形ABCD 中,AB =2,BC =3,对角线AC 的垂直平分线分别交AD ,BC 于点E 、F ,连接CE ,则CE 的长________.图1 图2 图34.已知如图4,矩形ABCD 中AE ⊥BD ,BF ⊥AC ,E 、F 分别为垂足,试说明AE=BF 的理由。
图4(二)自学辅助提纲(预习课本P95——96页): 1、如果用定义来判定矩形,需要哪些条件?2、除了用定义判定矩形外,还有其他的方法判定一个平行四边形为矩形吗?写出你的猜想结论,对其证明并写出几何语言。
3、工人师傅在做门窗或矩形零件时,不仅要测量两组对边的长度是否分别相等,常常还要测量它们的两条对角线是否相等,以确保图形是矩形,你知道其中的道理吗?4、完成P96“思考”,对结论进行证明,并写出几何语言FEABDCED ABC5、用表格梳理矩形判定定理判定定理文字语言图形语言几何语言(上述部分题目由同学们在课前完成) 家长签名: 三.课堂组学,解决疑难: 四.班学PK ,展示成果: (三)、范例分析,运用新知 补例:(练习册P82题7)如图,在□ABCD 中,E 、F 为BC 边上两点,且BE=CF ,AF=DE. 求证:(1)△ABF ≌△DCE ;(2)四边形ABCD 是矩形.【题组一】基础训练 1.下列四边形那些是矩形?2.(2008宁夏)平行四边形ABCD 中,AC ,BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是矩形,那么这个条件是( )A . AB =BC B .AC =BD C . AC ⊥BD D .AB ⊥BD 3.下列命题中错误..的是 ( ) A.平行四边形的对边相等 B.两组对边分别相等的四边形是平行四边形 C.矩形的对角线相等 D.对角线相等的四边形是矩形4.在四边形ABCD 中,AD ∥BC ,∠D=90°,若再添加一个条件,就能推出四边形ABCD 是矩形,你所添加的条件是: .(写出一种情况即可) 【题组二】课本好题1.(课本P96题1)八年级(3)班同学要在广场上布置一个矩形的花坛.计划用“串红”摆成两条对角线.如果一条对角线用了38盆“串红”,还需要从花房运来 盆“串红”,理由为 ,如果一条对角线用了49盆“串红”, 还需要从花房运来 盆“串红”,理由为 .2. (课本P96题2)如图,□ABCD 的对角线AC ,BD 相交于点O ,△OAB 是等边三角形,且AB=4cm ,则□ABCD 的面积为 .AB CDE F 5 5 55 77 7 5753.(课本P102题1)如图,四边形ABCD 是平行四边形,AC ,BD 相交于点O ,且∠1=∠2.求证四边形ABCD 为平行四边形. 4、(课本P102题2)求证:四个角都相等的四边形是矩形. 5、(课本P102题3)一个木匠要制作矩形的踏板,他在一个对边平行的长木板上分别沿与长边垂直的方向锯了两次,他能得到矩形踏板吗?为什么? 6、(课本P103题8)小明想做一个无盖纸盒.他在一块矩形硬纸板的四角画出四个相同的正方形,用剪刀剪下,然后把纸板的四边沿虚线折起,用胶带粘好,一个无盖纸盒就做成了.纸盒的底面是什么形状?为什么?【题组三】能力提升1.已知M 为□ABCD 的AD 边的中点,且MB =MC 。
专题17 矩形的判定与性质(含答案)
专题17矩形的判定与性质知识解读矩形是特殊的平行四边形,理解矩形的定义,我们可从矩形的共性和特性两个方面来理解.共性:矩形是一个特殊的平行四边形,它具有平行四边形的一切性质,如对边平行且相等,对角相等,邻角互补,对角线互相平分等.特性:矩形的四个内角都等于90°,矩形的对角线相等.矩形的对称性矩形作为一个特殊的平行四边形,它应该是一个中心对称图形,同时由于对角线将矩形分成四个等腰三角形,相对的两个等腰三角形全等,所以矩形又是轴对称图形,它有两条对称轴.判定一个四边形为矩形,可从两个角度进行证明:一是证明它有三个角为直角;另一个是先证明它为平行四边形,再证它有一个角为直角或两条对角线相等.培优学案典例示范一、利用矩形对角线分得的四个等腰三角形进行角度的计算例1如图4-17-1,在矩形ABCD中,AE⊥BD,∠DAE:∠BAE=3:1,求∠BAE,∠EAO的度数.【提示】利用“∠DAE:∠BAE=3:1”“∠BAD=90°”,可求得∠BAE,然后借助△A0B是等腰三角形,求得∠AOB的度数,进而利用∠AEO=90°,求出∠EA0的度数.O E DAB C如图4-17-1 【解答】【技巧点评】矩形被每条对角线分成两个直角三角形,被两条对角线分成四个等腰三角形,因此矩形中的计算问题可以转化到直角三角形和等腰三角形中去解决.跟踪训练1.如果矩形的两条对角线所成的钝角是120°,那么对角线与矩形短边的长度之比为()A.3:2B.2:1C.1.5:1D.1:1二、利用矩形对边平行且相等,邻边垂直解决问题例2如图4-17-2,在矩形ABCD中,E,F分别是边BC,AB上的点,且EF=ED,EF⊥ED. 求证:AE平分∠BAD.E CBFA D如图4-17-2 【提示】由于∠BAD=90°,要证明AE平分∠BAD,只需设法求得∠BAE=45,可先证明BEF≌CDE,然后证明△ABE是等腰直角三角,即可证得∠BAE=45°.【解答】【技巧点评】本题证明△BEF ≌△CDE的三个条件,除了EF=ED已知之外,其他都是通过矩形的性质得到的,证明△ABE是等腰直角三角形,也用到矩形的对边相等来证明.跟踪训练2.如图4-17-3,在矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周长为32cm,求AE的长.【解答】三、平移矩形的一条对角线,得到等腰三角形例3如图4-17-4,四边形ABCD是矩形,过A点作AE∥BD,交CB的延长线于E点。
矩形的性质与判定经典例题练习
矩 形第一课时1、矩形的定义2、矩形的性质 1)边 2)角 3)对角线4)对称性3.已知矩形ABCD 中,S 矩形ABCD =24 cm 2,若BC =6 cm ,则对角线AC 的长是________ cm.练一练: 1、矩形的两条对角线把矩形分成 个等腰三角形.2、矩形具有而平行四边形不具有的性质是( )A .对角线互相平分B .两组对边分别相等C .相邻两角互补D .对角线相等3.已知E 是矩形ABCD 的边BC 的中点,那么S △AED =________S 矩形ABCD ( )A.21B.41C.51D.61 4.在矩形ABCD 的边AB 上有一点E ,且CE =DE ,若AB =2AD ,则∠ADE 等于( )A.45°B.30°C.60°D.75°【探究三】直角三角形斜边上的中线性质1、根据矩形对角线性质可得到直角三角形斜边上的中线性质:练一练:1、已知直角三角形的周长为14,斜边上的中线长为3.则直角三角形的面积为( ) A .5B .6C .7D .82、如果一个直角三角形斜边上的中线与斜边上的高所夹的锐角为34°,那么这个直角三角形的较小的内角是 度.精讲精练例1、如图,在矩形ABCD 中,AC 、BD 相较于点O ,AE 平分BAD ∠交BC 于E ,若15CAE ∠=︒,求BOE ∠的度数。
变式:已知矩形ABCD 中,如图2,对角线AC 、BD 相交于O ,AE ⊥BD 于E ,若∠DAE ∶∠BAE =3∶1,则∠EAC =________.例题2、如图,已知BD 、CE 是ABC 的两条高,M 、N 分别是BC 、DE 的中点,MN 与DE 有怎样的位置关系。
请证明。
例题3.如图,周长为68的矩形ABCD 被分成7个全等的矩形,则矩形ABCD 的面积为( )A.98B.196C.280D.284三、用中学习: 1.(2013•老河口市模拟)由10块相同的长方形地砖拼成面积为1.6m 2的矩形ABCD (如图),则矩形ABCD 的周长为多少?2.矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是( )A.16B.22C.26D.22或263.矩形的两条对角线的夹角是60°,一条对角线与矩形短边的和为15,那么矩形对角线的长为_______,短边长为_______.O N M D CBA 4.矩形ABCD 的周长是56 cm ,它的两条对角线相交于O ,△AOB 的周长比△BOC 的周长少 4 cm ,则AB =_______,BC =_______.5、 矩形是轴对称图形,它有______条对称轴.6、在矩形ABCD 中,对角线AC ,BD 相交于点O ,若对角线AC=10cm ,•边BC=•8cm ,•则△ABO 的周长为________.7、如图2,根据实际需要,要在矩形实验田里修一条公路(•小路任何地方水平宽度都相等),则剩余实验田的面积为________.(1) (2)8、在矩形ABCD 中, 对角线交于O 点,AB=0.6, BC=0.8, 那么△AOB 的面积为_______________; 周长为_______9、一个矩形周长是12cm, 对角线长是5cm, 那么它的面积为__________________.10.在△ABC 中, AM 是中线, ∠BAC=90︒, AB=6cm, AC=8cm, 那么AM 的长为_____________________.11.在矩形ABCD 中, AB=3, BC=4, P 为形内一点, 那么PA+PB+PC+PD 的最小值为______12.如图, 矩形ABCD 对角线交于O 点, 且满足AM=BN, 给出以下结论: ①MN //DC; ②∠DMN=∠MNC; ③OMD ONC S S =. 其中正确的是______________.13、 已知,如图,矩形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是OA ,OB 的中点.(1)求证:△ADE ≌△BCF ;(2)若AD=4cm ,AB=8cm ,求OF 的长.14、如图,在矩形ABCD 中,已知AB=8cm ,BC=10cm ,折叠矩形的一边AD ,使点D 落在BC 边的中点F 处,折痕为AE ,求CE 的长.矩形的判定典型例题及练习归纳矩形的三种判定方法:精讲精练例1、已知:如图,ABCD 的四个内角的平分线分别相交于点E 、F 、G 、H 。
专题27 矩形-重难点题型(学生版)
专题5.1 矩形-重难点题型【题型1 矩形的性质(求角的度数)】【例1】(2021春•南京月考)如图,在矩形ABCD中,AC、BD交于点O,DE⊥AC于点E,∠AOD=110°,则∠CDE大小是()A.55°B.40°C.35°D.20°【变式1-1】(2021春•天津期中)如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF,AF.若AB=2,AD=3,则∠AEF的大小为()A.30°B.45°C.60°D.不能确定【变式1-2】(2021春•秦淮区校级月考)如图,在矩形ABCD中,对角线AC,BD相交于点O,若AE平分∠BAD 交于点E,且BO=BE,则∠CAE=.【变式1-3】(2021春•苏州期中)已知:如图,在矩形ABCD中,点E在AD边上,且EC平分∠BED,若AB=1,BC=√2,则∠ECD=°.【题型2 矩形的性质(求线段长度)】【例2】(2021春•江阴市月考)如图,在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O 作OE垂直AC交AD于点E,则DE的长是()A.3B.5C.2.4D.2.5【变式2-1】(2021春•鄞州区校级期中)矩形ABCD与ECFG如图放置,点B,C,F共线,点C,E,D共线,连接AG,取AG的中点H,连接EH.若AB=CF=4,BC=CE=2,则EH=()A.√2B.2C.√3D.√5【变式2-2】(2021春•玄武区期中)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=74,AF=254,则AC的长为.【变式2-3】(2021春•苏州期中)如图,在矩形ABCD中,AB=3,AD=6,E是AD上一点,AE=1,P是BC上一动点,连接AP,取AP的中点F,连接EF,当线段EF取得最小值时,线段PD的长度是.【题型3 矩形的性质综合】【例3】(2021春•余杭区月考)已知:如图,在矩形ABCD中,E是BC上一点,且AE=AD,DF⊥AE于点F.(1)求证:CE=FE;(2)若FD=5,CE=1,求矩形的面积.【变式3-1】(2021春•渝中区校级期中)如图,在矩形ABCD中,对角线AC、BD交于点O,AE平分∠BAD,交BC于点E,交BD于点F.已知∠CAE=15°,AB=2.(1)求矩形ABCD的面积;(2)求证:OE=FE.【变式3-2】(2020秋•天心区期末)如图所示,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若AC=6√3,求AB的长.【变式3-3】(2021春•越秀区校级期中)如图,矩形ABCD中,AB=2√3,BC=3,点E射线BC上一动点,△ABE 关于AE的轴对称图形为△F AE.(1)当点F在对角线AC上时,求FC的长;(2)当△FCE是直角三角形时,求BE的长.【题型4 直角三角形斜边中线】【例4】(2021春•海淀区校级期中)如图,在Rt△ABC中,∠ACB=90°,AC=6,CD为中线,延长CB至点E,使BE=BC,连接DE,F为DE的中点,连接BF,若BF=3,则BC的长为()A.6√3B.3√10C.8D.6【变式4-1】(2021春•海淀区校级月考)如图,四边形ABCD中,∠BAD=∠BCD=90°,M、N分别为对角线BD、AC的中点,连接MN,判定MN与AC的位置关系并证明.【变式4-2】(2021春•东湖区期中)如图,在△ABC中,BD⊥AC于点D,CE⊥AB于点E,点M,N分别是BC,DE的中点.(1)求证:MN⊥DE;(2)若∠A=60°,连接EM,DM,判断△EDM的形状,并说明理由.【变式4-3】(2021春•邛崃市期中)如图,△ABC中,CD、BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点.(1)求证:MN⊥DE;(2)连接DM,ME,猜想∠A与∠DME之间的关系,并写出推理过程.【题型5 判定矩形成立的条件】【例5】(2021春•阳谷县期末)在四边形ABCD中,AC,BD交于点O.在下列各组条件中,不能判定四边形ABCD 为矩形的是()A.∠A=∠C,∠B+∠C=180°,AC⊥BD B.AO=CO,BO=DO,∠A=90°C.∠A=∠B=90°,AC=BD D.AB=CD,AD=BC,AC=BD【变式5-1】(2021春•招远市期中)如图,下列条件不能判定四边形ABCD是矩形的是()A.∠DAB=∠ABC=∠BCD=90°B.AB∥CD,AB=CD,AB⊥ADC.AO=BO,CO=DO D.AO=BO=CO=DO【变式5-2】(2020春•涿鹿县期中)在四边形ABCD中,对角线AC,BD交于点O且AC,BD互相平分,若添加一个条件使得四边形ABCD是矩形,则这个条件可以是(填写一个即可).【变式5-3】(2020春•房山区期末)在四边形ABCD中,有以下四个条件:①AB∥CD;②AD=BC;③AC=BD;④∠ADC=∠ABC.从中选取三个条件,可以判定四边形ABCD为矩形.则可以选择的条件序号是.【题型6 矩形的判定证明(根据直角判定)】【例6】(2021春•龙口市期中)如图,已知△ABC中,AB=AC,AD是角平分线,F为BA延长线上的一点,AE 平分∠F AC,DE∥BA交AE于E.求证:四边形ADCE是矩形.【变式6-1】(2021春•南京月考)如图,在△ABC中,点D是BC的中点,点E是AD边的中点,过点A作AF∥CB交CE的延长线于点F,连接BF.(1)求证:AF=BD;(2)当△ABC满足什么条件时,四边形BDAF为矩形,并说明理由.【变式6-2】(2021•连云港模拟)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当线段AB与线段AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.【变式6-3】(2020春•鄂州期中)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由;(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;【题型7 矩形的判定证明(根据对角线判定)】【例7】(2021春•静海区月考)如图,将▱ABCD的边AB延长至点E,使AB=BE,连接DE,EC,BD,DE交BC于点O.(1)求证△ABD≌△BEC;(2)若∠BOD=2∠A,求证四边形BECD是矩形.【变式7-1】(2020秋•丹东期末)如图,AD是△ABC的中线,AE∥BC,且AE=12BC,连接DE,CE.(1)求证:AB=DE;(2)当△ABC满足什么条件时,四边形ADCE是矩形?并说明理由.【变式7-2】(2020秋•兰州期末)如图,AC、BD相交于点O,且O是AC、BD的中点,点E在四边形ABCD外,且∠AEC=∠BED=90°,求证:四边形ABCD是矩形.【变式7-3】(2021春•镇江期中)如图,在△ABC中,O是AC上的任意一点(不与点A、C重合),过点O平行于BC的直线l分别与∠BCA、∠DCA的平分线交于点E、F.(1)OE与OF相等吗?证明你的结论.(2)试确定点O的位置,使四边形AECF是矩形,并加以证明.【题型8 矩形的判定与性质综合】【例8】(2021春•崇川区校级月考)如图,在四边形ABCD中,AC、BD相交于点O,AD∥BC,∠ADC=∠ABC,OA=OB.(1)如图1,求证:四边形ABCD为矩形;(2)如图2,P是AD边上任意一点,PE⊥BD,PF⊥AC,E、F分别是垂足,若AD=12,AB=5,求PE+PF 的值.【变式8-1】(2021春•惠民县期末)如图,过△ABC边AC的中点O,作OE⊥AC,交AB于点E,过点A作AD ∥BC,与BO的延长线交于点D,连接CD,CE,若CE平分∠ACB,CE⊥BO于点F.(1)求证:①OC=BC;②四边形ABCD是矩形;(2)若BC=3,求DE的长.【变式8-2】(2020春•滨江区期末)矩形ABCD中,AB=3,BC=4.点E,F在对角线AC上,点M,N分别在边AD,BC上.(1)如图1,若AE=CF=1,M,N分别是AD,BC的中点.求证:四边形EMFN为矩形.(2)如图2,若AE=CF=0.5,AM=CN=x(0<x<2),且四边形EMFN为矩形,求x的值.【变式8-3】(2020春•定远县期末)如图1,已知AD∥BC,AB∥CD,∠B=∠C.(1)求证:四边形ABCD为矩形;(2)M为AD的中点,在AB上取一点N,使∠BNC=2∠DCM.①如图2,若N为AB中点,BN=2,求CN的长;②如图2,若CM=3,CN=4,求BC的长.。
矩形的判定
矩形的判定
学习目标:
1.理解并掌握矩形的判定方法。
2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力。
教学过程:
一、自主探究,提出问题
1.复习
(1)矩形概念:
(2)矩形性质:
边:
角:
对角线:
对称性:
2.矩形的判定1:
几何语言:∵
∴
矩形的判定2:
几何语言:∵
∴
3.矩形判定2的证明
已知:四边形ABCD是平行四边形,AC=BD
求证:四边形ABCD是矩形
二、合作交流,解决问题
1.已知:如图(1)平行四边形ABCD的四个内角的平分线分别相交于点E,F,
G,H。
求证:四边形EFGH是矩形
三、巩固练习
1.下列说法错误的是()
A 对角线相等并且两组对边分别平行的四边形是矩形。
B对角线互相平分且相等的四边形是矩形;
C对角线相等的四边形是矩形;
D对角线相等的平行四边形是矩形。
2.下列各句判定矩形的说法正确的有_____________________(填序号)(1)四
个角都相等的四边形是矩形。
(2)有一个角是直角且两组对边分别相等的四边形是矩形。
(3)有一个角是直角的四边形是矩形;
(4)有三个角是直角的四边形是矩形;
3. 已知在平行四边形ABCD中,对角线AC,BD相交于点O,且∠OBC=∠OCB.
求证:四边形ABCD是矩形
4.如图,□ABCD的对角线AC 、BD 交于O,△OAB是等边三角形,且AB=4cm,求
□ABCD的面积?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴ AO=OC= AC=3 , OD=OB , ∠ AOB=9°0 ,
由勾股定理得:
2
2
2
BO =AB ﹣ AO ,而 AB=5 ,
∴ DO=BO=4 ,
∴ 四边形 CODE 的周长 =2( 3+4 ) =14.
理由如下: ∵ DE ∥ AC ,CE ∥BD ,
∴ 四边形 OCED 是平行四边形,
∵ 四边形 ABCD 是菱形,
∴∠ COD=9°0 ,
∴ 四边形 OCED 是矩形;
( 2)在菱形 ABCD 中, ∵ AC=6 , BD=8 ,
∴ OC= AC= ×6=3, OD= BD= ×8=4,
∴ CD=
在 △ MOD 和 △ NOB 中, ∠ MDO= ∠NBO ,DO=BO, ∠ MOD= ∠ NOB
∴△ MOD ≌△ NOB ( AS BMDN 是平行四边形
∵ MD=MB
∴ 平行四边形 BMDN 是菱形
( 2)解:根据( 1)可知:
设 MD 长为 x,则 MB=DM=x , AM=8-x
=
=5 ,
在矩形 OCED 中, OE=CD=5 .
答案:( 1)证明见解析( 2)
3.考点:菱形的性质与判定矩形的性质和判定
试题解析:( 1)证明: ∵ 四边形 ABCD 是矩形,
∴ AD ∥ BC ,
∴∠ MDO= ∠NBO
∵ MN 是 BD 的中垂线,
∴ DO=BO ,BD ⊥MN,MD=MB
∴∠ BEA= ∠ CDA , BE=CD ,
∵ DE=CB ,
∴ 四边形 BCDE 是平行四边形,
∵ AE=AD ,
∴∠ AED= ∠ ADE ,
∵∠ BEA= ∠ CDA ,
∴∠ BED= ∠ CDE ,
∵ 四边形 BCDE 是平行四边形,
∴ BE ∥ CD,
∴∠ CDE+ ∠ BED=18°0 ,
2
2
2
在 Rt△ AMB 中, BM =AM +AB
2
22
即 x =( 8﹣ x) +4 ,
解得: x=5,
答: MD 长为 5。
4.考点:矩形的性质和判定
试题解析:( 1) ∵四边形 ABCD 是平行四边形,
∴ AB ∥ CD .
∵ BE ∥ DF, BE=DF ,
∴ 四边形 BFDE 是平行四边形.
∴ DE =OC=3, CE=OD =4.
∵
,
∴ 在 Rt△
中,
15.考点:矩形的性质和判定菱形的性质与判定
试题解析:( 1)如图, ∵ 四边形 ABCD 为菱形, ∴∠ COD=9°0 ;而 CE∥BD , DE ∥ AC , ∴∠ OCE= ∠ ODE=9°0 , ∴ 四边形 CODE 是矩形. ( 2) ∵ 四边形 ABCD 为菱形,
试题解析:( 1)先求出四边形 OCED 是平行四边形,再根据菱形的对角线互相垂直求出
∠ COD=9°0 ,然后根
据有一个角是直角的平行四边形是矩形解答;
( 2)根据菱形的对角线互相平分求出 OC、 OD ,再根据勾股定理列式求出 CD,然后根据矩形的对角线相等求
解.
解:( 1)四边形 OCED 是矩形.
∴ BD ∥ AE , BD=AE ,
∴ AE ∥ CD
∵ 点 D 是 BC 中点,
∴ BD=CD ,
∴ AE=CD ,
∴ 四边形 ADCE 是平行四边形
在 △ ABC 中, AB=AC ,BD=CD ,
∴ AD ⊥ BC ,
∴∠ ADC=9°0 ,
∴ 四边形 ADCE 是矩形
2.考点:矩形的性质和判定菱形的性质与判定
1.考点:矩形的性质和判定全等三角形的判定
试题解析:( 1)证明: ∵ 四边形 ABDE 是平行四边形, ∴ AB ∥ DE , AB=DE , ∴∠ B= ∠ EDC 又 ∵ AB=AC , ∴ AC=DE ∴∠ EDC= ∠ ACD
在 △ ACD 和 △ EDC 中
∴△ ACD ≌△ EDC
( 2)证明: ∵四边形 ABDE 是平行四边形,
1.如图,在 △ ABC 中, AB=AC , D 为边 BC 上一点,以 AB , BD 为邻边作平行四边形 ABDE ,连接 AD 、 CE .( 1)求证: △ ACD ≌△ EDC ;( 2)若点 D 是 BC 中点,说明四边形 ADCE 是矩形.
2.已知:点 O 为菱形 ABCD 对角线的交点, DE∥ AC, CE∥ BD,( 1)试判断四边形 OCED 的形状,并说明理 由.( 2)若 AC=6, BD=8,求线段 OE 的长.
7.如图,菱形 ABCD 的对角线交于 O 点, DE∥ AC, CE∥BD.( 1)求证:四边形 OCED 是矩形;( 2)若 AD =5, BD =8 ,计算 tan∠ DCE 的值.
8.如图,已知菱形 ABCD 中,对角线 AC 、 BD 相交于点 O,过点 C 作 CE∥ BD ,过点 D 作 DE∥ AC ,CE 与 DE 相交于点 E.( 1)求证:四边形 CODE 是矩形;( 2)若 AB=5 , AC=6 ,求四边形 CODE 的周长.
∴∠ DAF= ∠ FAB ,
即 AF 平分 ∠ DAB .
5. .考点:全等三角形的判定矩形的性质和判定
试题解析:证明: ∵∠ BAD= ∠ CAE ,
∴∠ BAD ﹣ ∠ BAC= ∠ CAE ﹣ ∠ BAC ,
∴∠ BAE= ∠ CAD ,
∵ 在 △ BAE 和△ CAD 中
∴△ BAE ≌△ CAD ( SAS),
3. 已知:如图,平行四边形 ABCD的四个内角的平分线分别相交于点 E,F,G,H,求证:四边形 EFGH是矩形。
4.在平行四边形 ABCD 中,过点 D 作 DE⊥ AB 于点 E,点 F 在边 CD 上, DF=BE ,连接 AF , BF. ( 1)求 证:四边形 BFDE 是矩形;( 2)若 CF=3 , BF=4 ,DF=5 ,求证: AF 平分 ∠ DAB .
\
5.如图, AB=AC , AD=AE ,DE=BC ,且 ∠ BAD= ∠ CAE .求证:四边形 BCDE 是矩形.
6.如图, CD 垂直平分 AB 于点 D ,连接 CA, CB,将 BC 沿 BA 的方向平移,得到线段 DE ,交 AC 于点 O,连接 EA , EC.( 1)求证:四边形 ADCE 是矩形;( 2)若 CD =1,AD =2,求 sin∠COD 的值.
∵ DE ⊥ AB ,
∴∠ DEB=90° ,
∴ 四边形 BFDE 是矩形;( 6 分)
( 2)解: ∵ 四边形 ABCD 是平行四边形,
∴ AB ∥ DC ,
∴∠ DFA= ∠ FAB .
在 Rt△ BCF 中,由勾股定理,得
BC=FC2+FB2=32+42=5 , ∴ AD=BC=DF=5 , ∴∠ DAF= ∠ DFA ,
∴∠ BED= ∠ CDE=9°0 ,
∴ 四边形 BCDE 是矩形.
7.考点:菱形的性质与判定
试题解析:( 1) ∵DE∥ AC, CE∥ BD
∴ 四边形
是平行四边形.
∵ 四边形
是菱形 ,
∴
.
∴
.
∴ 平行四边形
是矩形.
( 2) ∵ 四边形
是菱形, BD =8,
∴
, CD=AD =5.
∴
.
∵ 四边形
是矩形 ,