2018-2019学年高中新创新一轮复习理数通用版:课时达标检测(十六) 导数与函数的综合问题
【通用版】2018-2019学年高中理数新创新一轮复习 课时达标检测五 函数的单调性与最值含解析
课时达标检测(五) 函数的单调性与最值[小题对点练——点点落实]对点练(一) 函数的单调性1.(2018·阜阳模拟)给定函数①y =x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1.其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④解析:选B ①y =x 12在(0,1)上递增;②∵t =x +1在(0,1)上递增,且0<12<1,故y =log 12(x +1)在(0,1)上递减;③结合图象可知y =|x -1|在(0,1)上递减;④∵u =x +1在(0,1)上递增,且2>1,故y =2x +1在(0,1)上递增.故在区间(0,1)上单调递减的函数序号是②③.2.(2018·天津模拟)若函数f (x )满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”,则f (x )的解析式可以是( )A .f (x )=(x -1)2B .f (x )=e xC .f (x )=1xD .f (x )=ln(x +1)解析:选C 根据条件知,f (x )在(0,+∞)上单调递减.对于A ,f (x )=(x -1)2在(1,+∞)上单调递增,排除A ;对于B ,f (x )=e x 在(0,+∞)上单调递增,排除B ;对于C ,f (x )=1x 在(0,+∞)上单调递减,C 正确;对于D ,f (x )=ln(x +1)在(0,+∞)上单调递增,排除D.3.(2018·宜春模拟)函数f (x )=log 3(3-4x +x 2)的单调递减区间为( ) A .(-∞,2) B .(-∞,1),(3,+∞) C .(-∞,1)D .(-∞,1),(2,+∞)解析:选C 由3-4x +x 2>0得x <1或x >3.易知函数y =3-4x +x 2的单调递减区间为(-∞,2),函数y =log 3x 在其定义域上单调递增,由复合函数的单调性知,函数f (x )的单调递减区间为(-∞,1),故选C.4.(2018·贵阳模拟)下列四个函数中,在定义域上不是单调函数的是( ) A .y =-2x +1 B .y =1x C .y =lg xD .y =x 3解析:选B y =-2x +1在定义域上为单调递减函数;y =lg x 在定义域上为单调递增函数;y =x 3在定义域上为单调递增函数;y =1x 在(-∞,0)和(0,+∞)上均为单调递减函数,但在定义域上不是单调函数.故选B.5.若函数f (x )=8x 2-2kx -7在[1,5]上为单调函数,则实数k 的取值范围是( ) A .(-∞,8]B .[40,+∞)C .(-∞,8]∪[40,+∞)D .[8,40]解析:选C 由题意知函数f (x )=8x 2-2kx -7的图象的对称轴为x =k8,因为函数f (x )=8x 2-2kx -7在[1,5]上为单调函数,所以k 8≤1或k8≥5,解得k ≤8或k ≥40,所以实数k的取值范围是(-∞,8]∪[40,+∞).故选C.6.定义运算⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,若函数f (x )=⎪⎪⎪⎪⎪⎪x -1 2-x x +3在(-∞,m )上单调递减,则实数m 的取值范围是( )A .(-2,+∞)B .[-2,+∞)C .(-∞,-2)D .(-∞,-2]解析:选D ∵⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,∴f (x )=⎪⎪⎪⎪⎪⎪⎪⎪x -1 2-x x +3=(x -1)(x +3)-2×(-x )=x 2+4x -3=(x +2)2-7,∴f (x )的单调递减区间为(-∞,-2), ∵函数f (x )在(-∞,m )上单调递减,∴(-∞,m )⊆(-∞,-2),即m ≤-2.故选D. 对点练(二) 函数的最值1.已知a >0,设函数f (x )=2 018x +1+2 0162 018x +1(x ∈[-a ,a ])的最大值为M ,最小值为N ,那么M +N =( )A .2 016B .2 018C .4 032D .4 034解析:选D 由题意得f (x )=2 018x +1+2 0162 018x +1=2 018-22 018x+1.∵y =2 018x +1在[-a ,a ]上是单调递增的,∴f (x )=2 018-22 018x +1在[-a ,a ]上是单调递增的,∴M =f (a ),N =f (-a ),∴M +N =f (a )+f (-a )=4 036-22 018a +1-22 018-a +1=4 034.2.已知函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数g (x )=f (x )x在区间(1,+∞)上一定( )A .有最小值B .有最大值C .是减函数D .是增函数解析:选D 由题意知a <1,又函数g (x )=x +ax -2a 在[|a |,+∞)上为增函数,故选D.3.(2018·湖南雅礼中学月考)若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2(a >0且a ≠1)的值域是[4,+∞),则实数a 的取值范围是( )A .(1,2]B .(0,2]C .[2,+∞)D .(1,2 2 ]解析:选A 当x ≤2时,-x +6≥4.当x >2时,⎩⎪⎨⎪⎧3+log a x ≥4,a >1,∴a ∈(1,2],故选A.4.(2018·安徽合肥模拟)已知函数f (x )=(x 2-2x )·sin(x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,则M +m =( )A .4B .2C .1D .0解析:选A 设t =x -1,则y =(x 2-2x )sin(x -1)+x +1=(t 2-1)sin t +t +2,t ∈[-2,2].记g (t )=(t 2-1)sin t +t +2,则函数y =g (t )-2=(t 2-1)sin t +t 是奇函数.由已知得y =g (t )-2的最大值为M -2,最小值为m -2,所以M -2+(m -2)=0,即M +m =4.故选A.5.已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f (x )的最小值是________.解析:当x ≥1时,x +2x -3≥2x ·2x -3=22-3,当且仅当x =2x ,即x =2时等号成立,此时f (x )min =22-3<0;当x <1时,lg(x 2+1)≥lg(02+1)=0,此时f (x )min =0.所以f (x )的最小值为22-3.答案:22-36.(2018·益阳模拟)已知函数f (x )的值域为⎣⎡⎦⎤38,49,则函数g (x )=f (x )+1-2f (x )的值域为________.解析:∵38≤f (x )≤49,∴13≤1-2f (x )≤12.令t =1-2f (x ),则f (x )=12(1-t 2)⎝⎛⎭⎫13≤t ≤12,令y =g (x ),则y =12(1-t 2)+t ,即y =-12(t -1)2+1⎣⎡⎦⎤13≤t ≤12.∴当t =13时,y 有最小值79;当t =12时,y 有最大值78.∴g (x )的值域为⎣⎡⎦⎤79,78. 答案:⎣⎡⎦⎤79,78[大题综合练——迁移贯通]1.已知函数f (x )=ax +1a (1-x )(a >0),且f (x )在[0,1]上的最小值为g (a ),求g (a )的最大值.解:f (x )=⎝⎛⎭⎫a -1a x +1a ,当a >1时,a -1a >0,此时f (x )在[0,1]上为增函数,∴g (a )=f (0)=1a ;当0<a <1时,a -1a<0,此时f (x )在[0,1]上为减函数,∴g (a )=f (1)=a ;当a =1时,f (x )=1,此时g (a )=1.∴g (a )=⎩⎪⎨⎪⎧a ,0<a <1,1a ,a ≥1,∴g (a )在(0,1)上为增函数,在[1,+∞)上为减函数,又a =1时,有a =1a=1,∴当a =1时,g (a )取最大值1.2.(2018·衡阳联考)已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数;(2)求f (x )在[-3,3]上的最大值和最小值.解:(1)证明:设x 1>x 2,则f (x 1)-f (x 2)=f (x 1-x 2+x 2)-f (x 2)=f (x 1-x 2)+f (x 2)-f (x 2)=f (x 1-x 2).又∵x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2),∴f (x )在R 上为减函数.(2)∵f (x )在R 上是减函数,∴f (x )在[-3,3]上也是减函数,∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3).而f (3)=3f (1)=-2,且f (0)+f (0)=f (0),∴f (0)=0,又f (-3)+f (3)=f(-3+3)=0,∴f(-3)=-f(3)=2.∴f(x)在[-3,3]上的最大值为2,最小值为-2.3.已知f(x)=xx-a(x≠a).(1)若a=-2,试证明f(x)在(-∞,-2)内单调递增;(2)若a>0且f(x)在(1,+∞)上单调递减,求a的取值范围.解:(1)证明:任设x1<x2<-2,则f(x1)-f(x2)=x1x1+2-x2x2+2=2(x1-x2)(x1+2)(x2+2).∵(x1+2)(x2+2)>0,x1-x2<0,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴f(x)在(-∞,-2)上单调递增.(2)任设1<x1<x2,则f(x1)-f(x2)=x1x1-a-x2x2-a=a(x2-x1)(x1-a)(x2-a).∵a>0,x2-x1>0,∴要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0在(1,+∞)上恒成立,∴a≤1.综上所述知a的取值范围是(0,1].。
2018-2019学年高中新创新一轮复习理数通用版:课时达标检测 三角函数的图象与性质 Word版含解析
课时达标检测(二十) 三角函数的图象与性质[小题对点练——点点落实]对点练(一) 三角函数的定义域和值域) (是的值a -b ,则]b ,a [,值域为⎣⎢⎡⎦⎥⎤π3,π的定义域为x 2cos =y 已知函数)考安徽联·(2018.1 A .2 B .3 2+3C.3-2.D -b ,所以2,1]-[的值域为x 2cos =y ,所以函数⎣⎢⎡⎦⎥⎤π3,π的定义域为x 2cos =y 因为函数 B 选解析:a =1-(-2)=3,故选B.)(为的最大值与最小值分别x 2sin -x 2cos =y .函数2 A .3,-1 B .3,-2 C .2,-1D .2,-2 =y ,1,1]-[∈t ,则x sin =t ,令1+x 2sin -x 2sin -=x 2sin -x 2sin -1=x 2sin -x 2cos =y D 选解析: 2.-,最小值为2为,所以最大值2+21)+t (-=1+t 2-2t - )(为的值ab ,则[5,8]的值域是)x (f 时,函数]π,0[∈x ,若b +⎝ ⎛⎭⎪⎫2cos2x 2+sin x a =)x (f .已知函数3 224-42或51-215.A 15-215.B 224-42.C 224+42或51+215.D .b +a +⎝⎛⎭⎪⎫x +π4sin a 2=b +)x sin +x cos +1(a =)x (f A 选解析: ,5π4≤π4+x ≤π4∴,π≤x ≤0∵ 0.≠a ,依题意知1≤⎝⎛⎭⎪⎫x +π4sin ≤22-∴ 5.=b ,3-23=a ∴⎩⎨⎧ 2a +a +b =8,b =5,时,0>a 当① 8.=b ,23-3=a ∴⎩⎨⎧2a +a +b =5,b =8,时,0<a 当② 8.=b ,23-3=a 或5=b ,3-23=a 综上所述, .224-42或51-215=ab 所以)(1]如例⎩⎪⎨⎪⎧a ,a≤b,b ,a>b.=b *a 定义运算:)考湖南衡阳八中月·(2018.4 ⎣⎢⎡⎦⎥⎤-22,22A. 1,1]-[.B ⎣⎢⎡⎦⎥⎤22,1C. ⎣⎢⎡⎦⎥⎤-1,22D. 解析:选D 根据三角函数的周期性,我们只看两函数在一个最小正周期内的情况即可.设x ∈[0,2π],,x >sin x cos ,时π2≤x <5π4或π4<x ≤0当,⎣⎢⎡⎦⎥⎤-1,22∈)x (f ,x cos =)x (f ,x cos ≥x sin ,时5π4≤x ≤π4当.⎣⎢⎡⎦⎥⎤-1,22的值域为)x (f 综上知.]1,0-[∪⎣⎢⎡⎭⎪⎫0,22∈)x (f ,x sin =)x (f ________________.=x ,此时________为的最大值⎝⎛⎭⎪⎫x +π42cos -3=y .函数5 .)Z ∈k (πk 2+3π4=x ,即πk 2+π=π4+x ,此时5=2+3为的最大值⎝⎛⎭⎪⎫x +π42cos -3=y 函数解析: )Z ∈k (πk 2+3π45答案: 对点练(二) 三角函数的性质) (为的单调递增区间⎝ ⎛⎭⎪⎫π3-2x 2sin =y )考安徽六安一中月·(2018.1 )Z ∈k (⎣⎢⎡⎦⎥⎤kπ-π12,kπ+5π12A. )Z ∈k (⎣⎢⎡⎦⎥⎤kπ+5π12,kπ+11π12B. )Z ∈k (⎣⎢⎡⎦⎥⎤kπ-π3,kπ+π6C. )Z ∈k (⎣⎢⎡⎦⎥⎤kπ+π6,kπ+2π3D. 5π12+πk ,即)Z ∈k (3π2+πk 2≤π3-x 2≤π2+πk 2∴,⎝⎛⎭⎪⎫2x -π32sin -=y 函数可化为∵ B 选解析:.)Z ∈k (11π12+πk ≤x ≤ 2.(2018·云南检测)下列函数中,存在最小正周期的是( )A .y =sin|x |B .y =cos|x | |x tan|=y .C01)+2x (=y .D =T ,最小正周期x cos =|x cos|=y :B ;不是周期函数⎩⎪⎨⎪⎧sin x ,x≥0,-sin x ,x<0,=|x sin|=y :A B 选解析:,无最小正周期.1=01)+2x (=y :D ;不是周期函数⎩⎪⎨⎪⎧tan x ,x≥0,-tan x ,x<0,=|x tan|=y :C ;π2 π12=x 的图象关于直线)<14ω(1<⎝⎛⎭⎪⎫ωx-π43cos =)x (f 若函数)模辽宁抚顺一·(2018.3对称,则ω=( )A .2B .3C .6D .9 ,即Z ∈k ,πk =π4-ωπ12∴对称,π12=x 的图象关于直线)<14ω(1<⎝⎛⎭⎪⎫ωx-π43cos =)x (f ∵ B 选解析:ω=12k +3,k ∈Z .∵1<ω<14,∴ω=3.故选B.)(=⎝ ⎛⎭⎪⎫π6f ,则)x -(f =⎝ ⎛⎭⎪⎫π3+x f 都有x 对任意)φ+x ω2sin(=)x (f 若函数)考福建六校联·(2018.4 A .2或0 B .0 C .-2或0D .-2或2 ,可知函数图象的一条对称轴为)x -(f =⎝ ⎛⎭⎪⎫π3+x f 都有x 对任意)φ+x ω2sin(=)x (f 由函数 D 选解析:-或2=⎝ ⎛⎭⎪⎫π6f ∴时,函数取得最大值或者最小值.π6=x 根据三角函数的性质可知,当.π6=π3×12=x 直线 2.故选D.⎝ ⎛⎭⎪⎫π4+x f,都有x 对任意实数②是偶函数;)x (f ①同时具有以下两个性质:)x (f .若函数5)(是的解析式可以)x (f 则.⎝ ⎛⎭⎪⎫π4-x f = xcos =)x (f .A ⎝⎛⎭⎪⎫2x +π2cos =)x (f .B ⎝⎛⎭⎪⎫4x +π2sin =)x (f .Cx cos 6=)x (f .D 是偶函x cos =)x (f ∵对称,π4=x 数,且它的图象关于直线是偶函)x (f 由题意可得,函数 C 选解析:sin -=⎝⎛⎭⎪⎫2x +π2cos =)x (f 函数∵A.除对称,故排π4=x ,不是最值,故不满足图象关于直线22=⎝ ⎛⎭⎪⎫π4f 数,,是最小值,1-=⎝ ⎛⎭⎪⎫π4f 是偶函数,x cos 4=⎝⎛⎭⎪⎫4x +π2sin =)x (f 函数∵B.除是奇函数,不满足条件,故排x 2,不是最值,故0=⎝ ⎛⎭⎪⎫π4f 是偶函数.x cos 6=)x (f 函数∵满足条件.C 故对称,π4=x 故满足图象关于直线 D.除对称,故排π4=x 不满足图象关于直线∈x 对一切⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6≤)x (f 若.0≠ab ,R ∈b ,a ,其中x cos 2b +x sin 2a =)x (f 已知)考洛阳统·(2018.6) (是的单调递增区间)x (f ,则0>⎝ ⎛⎭⎪⎫π2f 恒成立,且R ) Z ∈k (⎣⎢⎡⎦⎥⎤kπ-π3,kπ+π6A. )Z ∈k (⎣⎢⎡⎦⎥⎤kπ+π6,kπ+2π3B. )Z ∈k (⎣⎢⎡⎦⎥⎤kπ,kπ+π2C. )Z ∈k (⎣⎢⎡⎦⎥⎤kπ-π2,kπD. 是π6=x ∴,⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6≤)x (f ∵.b a =φtan 中,其)φ+x sin(2a2+b2=x cos 2b +x sin 2a =)x (f B 选解析:的取值可以φ∴,0>⎝ ⎛⎭⎪⎫π2f .又)Z ∈k (πk +π6=φ,)Z ∈k (πk +π2=φ+π3的图象的一条对称轴,即)x (f 函数k (2π3+πk ≤x ≤π6+πk 得)Z ∈k (π2+πk 2≤5π6-x 2≤π2-πk 2由,⎝⎛⎭⎪⎫2x -5π6sin a2+b2=)x (f ∴,5π6是-∈Z ),故选B.⎝ ⎛⎭⎪⎫π2,0的图象关于)π<θ)(0<θ+x cos(2+)θ+x sin(23=)x (f 若函数)检河北石家庄一·(2018.7) (是上的最小值⎣⎢⎡⎦⎥⎤-π4,π6在)x (f 对称,则函数 1-.A 3.-B 12.-C 32.-D =⎝ ⎛⎭⎪⎫π2f ,则由题意,知⎣⎢⎡⎦⎥⎤2x +θ+π62sin =)θ+x cos(2+)θ+x sin(23=)x (f B 选解析:上是减函数,所以⎣⎢⎡⎦⎥⎤-π4,π4在)x (f ,x 2sin 2-=)x (f ,所以5π6=θ,所以π<θ0<又,0=⎝ ⎛⎭⎪⎫π+θ+π62sin B.选,故3=-π32sin -=⎝ ⎛⎭⎪⎫π6f 上的最小值为⎣⎢⎡⎦⎥⎤-π4,π6在)x (f 函数[大题综合练——迁移贯通].⎝ ⎛⎭⎪⎫x +π222sin +⎝⎛⎭⎪⎫2x -π3cos =)x (f 设函数)模湖南岳阳二·(2017.1 (1)求f (x )的最小正周期和对称轴方程;的值域.)x (f 时,求⎣⎢⎡⎦⎥⎤-π3,π4∈x 当)(2)π+x cos(2-1+x sin 232+x cos 212=)x (f (1)解: ,1+⎝⎛⎭⎪⎫2x +π3sin 3=1+x sin 232+x cos 232= 所以f (x )的最小正周期T =π. ,Z ∈k ,π2+πk =π3+x 2由 .Z ∈k ,π12+kπ2=x 得对称轴方程为 ,5π6≤π3+x 2≤π3,所以-π4≤x ≤π3因为-)(2 .⎣⎢⎡⎦⎥⎤-12,3+1的值域为)x (f 所以 1.-x 2 cos +2)x cos +x (sin =)x (f 已知函数)拟北京怀柔区模·(2018.2 (1)求函数f (x )的最小正周期;上的最大值和最小值.⎣⎢⎡⎦⎥⎤-π4,π4在区间)x (f 求函数)(2 ,⎝⎛⎭⎪⎫2x +π4sin 2=x cos2+x sin 2=x cos2+x cos x 2sin =1-x cos 2+2)x cos +x (sin =)x (f ∵(1)解: .π=2π2=T 的最小正周期)x (f 函数∴ .⎝⎛⎭⎪⎫2x +π4sin 2=)x (f 可知,)(1由)(2 ,⎣⎢⎡⎦⎥⎤-π4,3π4∈π4+x 2∴,⎣⎢⎡⎦⎥⎤-π4,π4∈x ∵ 1.-,2上的最大值和最小值分别为⎣⎢⎡⎦⎥⎤-π4,π4在区间)x (f 故函数.⎣⎢⎡⎦⎥⎤-22,1∈⎝⎛⎭⎪⎫2x +π4sin ∴ .)R ∈x (x cos 23-x cos x 2sin =)x (f 已知函数)模辽宁葫芦岛普通高中二·(2017.3 的值;αcos 2求,⎝ ⎛⎭⎪⎫5π12,2π3∈α且12=)α(f 若)(1 的最小值.a 上单调递增,求实数)b <a (]πb ,πa [在)x (f ,且函数b 上的最大值为⎣⎢⎡⎦⎥⎤π4,π2在)x (f 记函数)(2 .⎝⎛⎭⎪⎫2x -π32sin =x cos 23-x sin 2=)x (f (1)解: .14=⎝⎛⎭⎪⎫2α-π3sin ∴,12=)α(f ∵ ,⎝ ⎛⎭⎪⎫5π12,2π3∈α∵,⎝ ⎛⎭⎪⎫π2,π∈π3-α2∴ .154=-⎝⎛⎭⎪⎫2α-π3cos ∴ 32×14-12×154=-⎝⎛⎭⎪⎫2α-π3+π3cos =α2 cos ∴ .3+158=-∈k ,πk 2+π2≤π3-x 2≤πk 2+π2由-.2=b ∴,[1,2]∈)x (f ,⎣⎢⎡⎦⎥⎤π6,2π3∈π3-x 2,时⎣⎢⎡⎦⎥⎤π4,π2∈x 当)(2Z ,.Z ∈k ,πk +5π12≤x ≤πk +π12得- 又∵函数f (x )在[a π,2π](a <2)上单调递增,,⎣⎢⎡⎦⎥⎤-π12+2π,5π12+2π⊆]π2,πa [∴ ,π2<πa ≤π2+π12-∴ .2312的最小值是a 实数∴,2<a ≤2312∴。
2018-2019学年高中新创新一轮复习理数通用版:课时达标检测 函数与方程 Word版含解析
课时达标检测(十一) 函数与方程[小题对点练——点点落实]对点练(一) 函数的零点问题1.(2018·河北武邑中学基础训练)方程ln(x +1)-2x =0(x >0)的根存在的大致区间是( )A .(0,1)B .(1,2)C .(2,e)D .(3,4)解析:选B 令f (x )=ln(x +1)-2x ,则f (1)=ln(1+1)-2=ln 2-2<0,f (2)=ln 3-1>0,所以函数f (x )的零点所在大致区间为(1,2).故选B.2.(2018·四川双流中学必得分训练)函数f (x )=2x +2x 的零点所处的区间是( ) A .[-2,-1] B .[-1,0] C .[0,1]D .[1,2]解析:选B f (-2)=2-2+2×(-2)<0,f (-1)=2-1+2×(-1)<0,f (0)=20+0>0,由零点存在性定理知,函数f (x )的零点在区间[-1,0]上.故选B.3.(2018·云南大理州统测)函数f (x )=⎩⎪⎨⎪⎧ln x ,x >0,-x (x +2),x ≤0的零点个数是( )A .0B .1C .2D .3解析:选D 当x >0时,令f (x )=0可得x =1;当x ≤0时,令f (x )=0可得x =-2或x =0.因此函数的零点个数为3.故选D.4.关于x 的方程|x 2-2x |=a 2+1(a >0)的解的个数是( ) A .1 B .2 C .3D .4解析:选B ∵a >0,∴a 2+1>1.而y =|x 2-2x |的图象如图所示,∴y =|x 2-2x |的图象与y =a 2+1的图象总有2个交点,即方程|x 2-2x |=a 2+1(a >0)的解的个数是2.5.函数f (x )=2sin πx -x +1的零点个数为( ) A .4 B .5 C .6D .7解析:选B 令2sin πx -x +1=0,得2sin πx =x -1,令h (x )=2sin πx ,g (x )=x -1,则f (x )=2sin πx -x +1的零点个数问题就转化为函数h (x )与g (x )的图象的交点个数问题.h (x )=2sin πx 的最小正周期为T =2ππ=2,画出两个函数的图象,如图所示,因为h (1)=g (1),h ⎝⎛⎭⎫52>g ⎝⎛⎭⎫52,g (4)=3>2,g (-1)=-2,所以两个函数图象的交点共5个,所以f (x )=2sin πx -x +1的零点个数为5.对点练(二) 函数零点的应用问题1.已知函数f (x )=log 3x +2x -a 在区间(1,2)内有零点,则实数a 的取值范围是( ) A .(-1,-log 32) B .(0,log 52) C .(log 32,1)D .(1,log 34)解析:选C ∵单调函数f (x )=log 3x +2x -a 在区间(1,2)内有零点,∴f (1)·f (2)<0,即(1-a )·(log 32-a )<0,解得log 32<a <1,故选C.2.(2018·甘肃天水一中月考)已知函数f (x )=ln x -ax 2+ax 恰有两个零点,则实数a 的取值范围为( )A .(-∞,0)B .(0,+∞)C .(0,1)∪(1,+∞)D .(-∞,0)∪{1}解析:选C 由题意,显然x =1是函数f (x )的一个零点,取a =-1,则f (x )=ln x +x 2-x ,f ′(x )=2x 2-x +1x =2⎝⎛⎭⎫x -142+78x>0恒成立.则f (x )仅有一个零点,不符合题意,排除A 、D ;取a =1,则f (x )=ln x -x 2+x ,f ′(x )=1-2x 2+x x =(1+2x )(1-x )x,f ′(x )=0得x=1,则f (x )在(0,1)上递增,在(1,+∞)上递减,f (x )max =f (1)=0,即f (x )仅有一个零点,不符合题意,排除B ,故选C.3.已知函数f (x )=⎩⎪⎨⎪⎧sin πx ,0≤x ≤1,log 2 017x ,x >1,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a+b +c 的取值范围是( )A .(1,2 017)B .(1,2 018)C .[2,2 018]D .(2,2 018)解析:选D 作出函数f (x )的图象与直线y =m ,如图所示,不妨设a <b <c ,当0≤x ≤1时,函数f (x )的图象与直线y =m 的交点分别为A ,B ,由正弦曲线的对称性,可得A (a ,m )与B (b ,m )关于直线x =12对称,因此a +b =1,当直线y =m =1时,由log 2 017x =1,解得x =2 017.若满足f (a )=f (b )=f (c ),且a ,b ,c 互不相等,由a <b <c 可得1<c <2 017,因此可得2<a +b +c <2 018,即a +b +c ∈(2,2 018).故选D.4.(2018·孝感模拟)若函数f (x )=(m -2)x 2+mx +(2m +1)的两个零点分别在区间(-1,0)和区间(1,2)内,则实数m 的取值范围是( )A.⎝⎛⎭⎫-12,14B.⎝⎛⎭⎫-14,12 C.⎝⎛⎭⎫14,12D.⎣⎡⎦⎤-14,12 解析:选C 依题意并结合函数f (x )的图象可知,⎩⎪⎨⎪⎧m ≠2,f (-1)·f (0)<0,f (1)·f (2)<0,即⎩⎪⎨⎪⎧m ≠2,[m -2-m +(2m +1)](2m +1)<0,[m -2+m +(2m +1)][4(m -2)+2m +(2m +1)]<0,解得14<m <12.5.(2018·广东七校联合体联考)若函数f (x )=2x +a 2x -2a 的零点在区间(0,1)上,则实数a 的取值范围是( )A.⎝⎛⎭⎫-∞,12 B .(-∞,1) C.⎝⎛⎭⎫12,+∞D .(1,+∞)解析:选C 易知函数f (x )的图象连续,且在(0,1)上单调递增.∴f (0)f (1)=(1-2a )(2+a 2-2a )<0,解得a >12.6.已知x 0是f (x )=⎝⎛⎭⎫12x +1x 的一个零点,x 1∈(-∞,x 0),x 2∈(x 0,0),则( ) A .f (x 1)<0,f (x 2)<0 B .f (x 1)>0,f (x 2)>0 C .f (x 1)>0,f (x 2)<0D .f (x 1)<0,f (x 2)>0解析:选C 在同一坐标系下作出函数f (x )=⎝⎛⎭⎫12x ,f (x )=-1x 的图象(图略),由图象可知当x ∈(-∞,x 0)时,⎝⎛⎭⎫12x >-1x ;当x ∈(x 0,0)时,⎝⎛⎭⎫12x <-1x ,所以当x 1∈(-∞,x 0),x 2∈(x 0,0)时,有f (x 1)>0,f (x 2)<0.7.(2018·龙岩质检)已知f (x )是奇函数,且是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是________.解析:令y =f (2x 2+1)+f (λ-x )=0,则f (2x 2+1)=-f (λ-x )=f (x -λ),因为f (x )是R 上的单调函数,所以2x 2+1=x -λ,即2x 2-x +1+λ=0只有一个实根,则Δ=1-8(1+λ)=0,解得λ=-78.答案:-788.已知函数f (x )=⎩⎪⎨⎪⎧log 2(x +1),x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.解析:函数g (x )=f (x )-m 有3个零点,转化为f (x )-m =0的根有3个,进而转化为y =f (x ),y =m 的交点有3个.画出函数y =f (x )的图象,则直线y =m 与其有3个公共点.又抛物线顶点为(-1,1),由图可知实数m 的取值范围是(0,1).答案:(0,1)[大题综合练——迁移贯通]1.已知a 是正实数,函数f (x )=2ax 2+2x -3-a .如果函数y =f (x )在区间[-1,1]上有零点,求a 的取值范围.解:f (x )=2ax 2+2x -3-a 的对称轴为x =-12a. ①当-12a ≤-1,即0<a ≤12时,须使⎩⎪⎨⎪⎧ f (-1)≤0,f (1)≥0,即⎩⎪⎨⎪⎧a ≤5,a ≥1,∴无解.②当-1<-12a <0,即a >12时,须使⎩⎪⎨⎪⎧ f ⎝⎛⎭⎫-12a ≤0,f (1)≥0,即⎩⎪⎨⎪⎧-12a -3-a ≤0,a ≥1,解得a ≥1,∴a 的取值范围是[1,+∞).2.(2018·德州模拟)已知函数f (x )=-x 2-2x .g (x )=⎩⎪⎨⎪⎧x +14x ,x >0,x +1,x ≤0.(1)求g [f (1)]的值;(2)若方程g [f (x )]-a =0有4个实数根,求实数a 的取值范围. 解:(1)∵f (1)=-12-2×1=-3,∴g [f (1)]=g (-3)=-3+1=-2.(2)令f (x )=t ,则原方程化为g (t )=a ,易知方程f (x )=t 在t ∈(-∞,1)内有2个不同的解,则原方程有4个解等价于函数y =g (t )(t <1)与y =a 的图象有2个不同的交点,作出函数y =g (t )(t <1)的图象,如图所示,由图象可知,当1≤a <54时,函数y =g (t )(t <1)与y =a 有2个不同的交点,即所求a 的取值范围是⎣⎡⎭⎫1,54. 3.(2018·信阳模拟)已知函数f (x )=log 2(2x +1). (1)求证:函数f (x )在(-∞,+∞)上单调递增;(2)若g (x )=log 2(2x -1)(x >0),且关于x 的方程g (x )=m +f (x )在[1,2]上有解,求m 的取值范围.解:(1)证明:∵函数f (x )=log 2(2x +1),任取x 1<x 2,则f (x 1)-f (x 2)=log 2(2x 1+1)-log 2(2x 2+1)=log 22x 1+12x 2+1,∵x 1<x 2,∴0<2x 1+12x 2+1<1,∴log 22x 1+12x 2+1<0,∴f (x 1)<f (x 2),∴函数f (x )在(-∞,+∞)上单调递增. (2)∵g (x )=m +f (x ), ∴m =g (x )-f (x )=log 2(2x -1)-log 2(2x +1) =log 22x -12x +1=log 2⎝⎛⎭⎫1-22x +1,∵1≤x ≤2,∴2≤2x ≤4, ∴log 213≤log 2⎝⎛⎭⎫1-22x +1≤log 235,故m 的取值范围为⎣⎡⎦⎤log 213,log 235.。
2018-2019学年高中新创新一轮复习理数通用版:课时达标检测 直线与圆锥曲线 Word版含解析
课时达标检测(四十七) 直线与圆锥曲线[小题常考题点——准解快解]1.直线y =b a x +3与双曲线x 2a 2-y 2b 2=1的交点个数是( )A .1B .2C .1或2D .0解析:选A 因为直线y =b a x +3与双曲线的渐近线y =ba x 平行,所以它与双曲线只有1个交点.2.已知直线y =22(x -1)与抛物线C :y 2=4x 交于A ,B 两点,点M (-1,m ),若MA ―→MA ―→·MB ―→=0,则m =( )A. 2B.22C.12D .0解析:选B 由⎩⎨⎧y =22(x -1),y 2=4x ,得A (2,22),B ⎝⎛⎭⎫12,-2,又∵M (-1,m )且MA ―→·MB ―→=0,∴2m 2-22m +1=0,解得m =22. 3.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( )A .2 B.455 C.4105D.8105解析:选C 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 24+y 2=1,y =x +t消去y ,得5x 2+8tx +4(t 2-1)=0.则x 1+x 2=-85t ,x 1x 2=4(t 2-1)5.∴|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=2· ⎝⎛⎭⎫-85t 2-4×4(t 2-1)5=425·5-t 2,故当t =0时,|AB |max =4105. 4.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)上的一点到双曲线的左、右焦点的距离之差为4,若抛物线y =ax 2上的两点A (x 1,y 1),B (x 2,y 2)关于直线y =x +m 对称,且x 1x 2=-12,则m的值为( )A.32B.52 C .2D .3解析:选A 由双曲线的定义知2a =4,得a =2,所以抛物线的方程为y =2x 2.因为点A (x 1,y 1),B (x 2,y 2)在抛物线y =2x 2上,所以y 1=2x 21,y 2=2x 22,两式相减得y 1-y 2=2(x 1-x 2)(x 1+x 2),不妨设x 1<x 2,又A ,B 关于直线y =x +m 对称,所以y 1-y 2x 1-x 2=-1,故x 1+x 2=-12,而x 1x 2=-12,解得x 1=-1,x 2=12,设A (x 1,y 1),B (x 2,y 2)的中点为M (x 0,y 0),则x 0=x 1+x 22=-14,y 0=y 1+y 22=2x 21+2x 222=54,因为中点M 在直线y =x +m 上,所以54=-14+m ,解得m =32. 5.已知倾斜角为60°的直线l 通过抛物线x 2=4y 的焦点,且与抛物线相交于A ,B 两点,则弦AB 的长为________.解析:直线l 的方程为y =3x +1,由⎩⎨⎧y =3x +1,x 2=4y ,得y 2-14y +1=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=14,∴|AB |=y 1+y 2+p =14+2=16.答案:166.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线与抛物线y =x 2+1只有一个公共点,则双曲线的离心率为________.解析:双曲线x 2a 2-y 2b2=1的一条渐近线为y =ba x ,由方程组⎩⎪⎨⎪⎧y =b a x ,y =x 2+1,消去y ,得x 2-b a x +1=0有唯一解,所以Δ=⎝⎛⎭⎫b a 2-4=0,b a =2,所以e =c a =a 2+b 2a = 1+⎝⎛⎭⎫b a 2= 5.答案: 57.已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若MA ―→·MB ―→=0,则k =________.解析:如图所示,设F 为焦点,易知F (2,0),取AB 的中点P ,过A ,B 分别作准线的垂线,垂足分别为G ,H ,连接MF ,MP ,由MA ―→·MB ―→=0,知MA ⊥MB ,则|MP |=12|AB |=12(|AF |+|BF |)=12(|AG |+|BH |),所以MP 为直角梯形BHGA 的中位线,所以MP ∥AG ∥BH ,由|MP |=|AP |,得∠GAM =∠AMP =∠MAP ,又|AG |=|AF |,AM 为公共边,所以△AMG ≌△AMF ,所以∠AFM =∠AGM =90°,则MF ⊥AB ,所以k =-1k MF=2.答案:2[大题常考题点——稳解全解]1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点分别为F 1(-2,0),F 2(2,0),离心率为63.过点F 2的直线l (斜率不为0)与椭圆C 交于A ,B 两点,线段AB 的中点为D ,O 为坐标原点,直线OD 交椭圆于M ,N 两点.(1)求椭圆C 的方程;(2)当四边形MF 1NF 2为矩形时,求直线l 的方程. 解:(1)由题意可知⎩⎪⎨⎪⎧c =2,c a =63,a 2=b 2+c 2,解得a =6,b = 2.故椭圆C 的方程为x 26+y 22=1.(2)由题意可知直线l 的斜率存在.设其方程为y =k (x -2),点A (x 1,y 1),B (x 2,y 2),M (x 3,y 3),N (-x 3,-y 3),由⎩⎪⎨⎪⎧x 26+y 22=1,y =k (x -2)得(1+3k 2)x 2-12k 2x +12k 2-6=0,所以x 1+x 2=12k 21+3k 2,则y 1+y 2=k (x 1+x 2-4)=-4k 1+3k 2,所以AB 的中点D 的坐标为⎝ ⎛⎭⎪⎫6k 21+3k 2,-2k 1+3k 2,因此直线OD 的方程为x +3ky =0(k ≠0).由⎩⎪⎨⎪⎧x +3ky =0,x 26+y 22=1解得y 23=21+3k 2,x 3=-3ky 3.因为四边形MF 1NF 2为矩形,所以F 2M ―→·F 2N ―→=0,即(x 3-2,y 3)·(-x 3-2,-y 3)=0,所以4-x 23-y 23=0.所以4-2(9k 2+1)1+3k2=0.解得k =±33.故直线l 的方程为3x -3y -23=0或3x +3y -23=0.2.已知中心在原点,焦点在x 轴上的椭圆C 的离心率为12,其一个顶点是抛物线x 2=-43y 的焦点.(1)求椭圆C 的标准方程;(2)若过点P (2,1)的直线l 与椭圆C 在第一象限相切于点M ,求直线l 的方程和点M 的坐标.解:(1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),由题意得b =3,c a =12,解得a =2,c =1.故椭圆C 的标准方程为x 24+y 23=1.(2)因为过点P (2,1)的直线l 与椭圆C 在第一象限相切,所以直线l 的斜率存在,故可设直线l 的方程为y =k (x -2)+1(k ≠0).由⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -2)+1,得(3+4k 2)x 2-8k (2k -1)x +16k 2-16k -8=0.① 因为直线l 与椭圆C 相切,所以Δ=[-8k (2k -1)]2-4(3+4k 2)(16k 2-16k -8)=0, 整理,得96(2k +1)=0,解得k =-12.所以直线l 的方程为y =-12(x -2)+1=-12x +2.将k =-12代入①式,可以解得M 点的横坐标为1,故切点M 的坐标为⎝⎛⎭⎫1,32. 3.已知过点(2,0)的直线l 1交抛物线C :y 2=2px (p >0)于A ,B 两点,直线l 2:x =-2交x 轴于点Q .(1)设直线QA ,QB 的斜率分别为k 1,k 2,求k 1+k 2的值;(2)点P 为抛物线C 上异于A ,B 的任意一点,直线PA ,PB 交直线l 2于M ,N 两点,OM ―→·ON ―→=2,求抛物线C 的方程.解:(1)设直线l 1的方程为x =my +2,点A (x 1,y 1),B (x 2,y 2).联立方程⎩⎪⎨⎪⎧x =my +2,y 2=2px ,得y 2-2pmy -4p =0,则y 1+y 2=2pm ,y 1y 2=-4p . k 1+k 2=y 1x 1+2+y 2x 2+2=y 1my 1+4+y 2my 2+4=2my 1y 2+4(y 1+y 2)(my 1+4)(my 2+4)=-8mp +8mp(my 1+4)(my 2+4)=0.(2)设点P (x 0,y 0),直线PA :y -y 1=y 1-y 0x 1-x 0(x -x 1),当x =-2时,y M =-4p +y 1y 0y 1+y 0,同理y N =-4p +y 2y 0y 2+y 0.因为OM ―→·ON ―→=2,所以4+y N y M =2,即-4p +y 2y 0y 2+y 0·-4p +y 1y 0y 1+y 0=16p 2-4py 0(y 2+y 1)+y 20y 1y 2y 2y 1+y 0(y 2+y 1)+y 20=16p 2-8p 2my 0-4py 20-4p +2pmy 0+y 20=-4p (-4p +2pmy 0+y 20)-4p +2pmy 0+y 20=-2,故p =12,所以抛物线C 的方程为y 2=x .4.如图,已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c,0),F 2(c,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程. 解:(1)由题设知⎩⎪⎨⎪⎧b =3,c a =12,b 2=a 2-c 2,解得⎩⎪⎨⎪⎧a =2,b =3,c =1,∴椭圆的方程为x 24+y 23=1.(2)由题设,以F 1F 2为直径的圆的方程为x 2+y 2=1, ∴圆心到直线l 的距离d =2|m |5.由d <1得|m |<52.(*) ∴|CD |=21-d 2=21-45m 2=255-4m 2. 设A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧y =-12x +m ,x 24+y23=1,得x 2-mx +m 2-3=0,由根与系数的关系可得x 1+x 2=m ,x 1x 2=m 2-3. ∴|AB |= ⎣⎡⎦⎤1+⎝⎛⎭⎫-122[m 2-4(m 2-3)] =1524-m 2. 由|AB ||CD |=534得 4-m 25-4m 2=1,解得m =±33,均满足(*).12x+33或y=-12x-33.∴直线l的方程为y=-。
2018-2019学年高中新创新一轮复习理数通用版:课时达标检测(十四) 导数与函数的单调性 含解析
课时达标检测(十四) 导数与函数的单调性[小题对点练——点点落实]对点练(一) 利用导数讨论函数的单调性或求函数的单调区间1.(2018·福建龙岩期中)函数f (x )=x 3+bx 2+cx +d 的图象如图,则函数y =log 2⎝⎛⎭⎫x 2+23bx +c 3的单调递减区间为( ) A .(-∞,-2) B .[3,+∞) C .[-2,3]D.⎣⎡⎭⎫12,+∞ 解析:选A 由题图可以看出-2,3是函数f (x )=x 3+bx 2+cx +d 的两个极值点,即方程f ′(x )=3x 2+2bx +c =0的两根,所以-2b 3=1,c3=-6,即2b =-3,c =-18,所以函数y =log 2⎝⎛⎭⎫x 2+23bx +c 3可化为y =log 2(x 2-x -6).解x 2-x -6>0得x <-2或x >3.因为二次函数y =x 2-x -6的图象开口向上,对称轴为直线x =12,所以函数y =log 2(x 2-x -6)的单调递减区间为(-∞,-2).故选A.2.(2017·焦作二模)设函数f (x )=2(x 2-x )ln x -x 2+2x ,则函数f (x )的单调递减区间为( )A.⎝⎛⎭⎫0,12B.⎝⎛⎭⎫12,1 C .(1,+∞)D .(0,+∞)解析:选B 由题意可得f (x )的定义域为(0,+∞),f ′(x )=2(2x -1)ln x +2(x 2-x )·1x -2x +2=(4x -2)ln x .由f ′(x )<0可得(4x -2)ln x <0,所以⎩⎪⎨⎪⎧ 4x -2>0,ln x <0,或⎩⎪⎨⎪⎧4x -2<0,ln x >0,解得12<x <1,故函数f (x )的单调递减区间为⎝⎛⎭⎫12,1,故选B. 3.(2018·湖北荆州质检)函数f (x )=ln x -12x 2-x +5的单调递增区间为________.解析:函数f (x )的定义域为(0,+∞),再由f ′(x )=1x -x -1>0可解得0<x <5-12.答案:⎝ ⎛⎭⎪⎫0,5-12 对点练(二) 利用导数解决函数单调性的应用问题1.(2018·河南洛阳模拟)已知函数f (x )=-x 3+ax 2-x -1在R 上是单调函数,则实数a 的取值范围是( )A .(-∞,- 3 ]∪[3,+∞)B .[-3, 3 ]C .(-∞,-3)∪(3,+∞)D .(-3,3)解析:选B f ′(x )=-3x 2+2ax -1,由题意知,f ′(x )≤0在R 上恒成立,则Δ=(2a )2-4×(-1)×(-3)≤0恒成立,解得-3≤a ≤ 3.2.(2018·河北正定中学月考)函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)·f ′(x )<0,设a =f (0),b =f ⎝⎛⎭⎫12,c =f (3),则( )A .a <b <cB .c <a <bC .c <b <aD .b <c <a解析:选B 由f (x )=f (2-x )可知,f (x )的图象关于直线x =1对称.根据题意知当x ∈(-∞,1)时,f ′(x )>0,f (x )为增函数,当x ∈(1,+∞)时,f ′(x )<0,f (x )为减函数,所以f (3)=f (-1)<f (0)<f ⎝⎛⎭⎫12,即c <a <b .故选B.3.(2018·河北唐山期末)已知函数f (x )=ln(e x +e -x )+x 2,则使得f (2x )>f (x +3)成立的x的取值范围是( )A .(-1,3)B .(-∞,-3)∪(3,+∞)C .(-3,3)D .(-∞,-1)∪(3,+∞)解析:选D 因为f (-x )=ln(e -x +e x )+(-x )2=ln(e x +e -x )+x 2=f (x ),所以函数f (x )是偶函数.通过导函数可知函数y =e x +e-x在(0,+∞)上是增函数,所以函数f (x )=ln(e x +e-x)+x 2在(0,+∞)上也是增函数,所以不等式f (2x )>f (x +3)等价于|2x |>|x +3|,解得x <-1或x >3.故选D.4.(2018·云南大理州统测)定义在R 上的函数f (x )的导函数为f ′(x ),若对任意x ,有f (x )>f ′(x ),且f (x )+2 017为奇函数,则不等式f (x )+2 017e x <0的解集是( )A .(-∞,0)B .(0,+∞) C.⎝⎛⎭⎫-∞,1e D.⎝⎛⎭⎫1e ,+∞解析:选B 设h (x )=f (x )e x ,则h ′(x )=f ′(x )-f (x )e x<0,所以h (x )是定义在R 上的减函数.因为f (x )+2 017为奇函数,所以f (0)=-2 017,h (0)=-2 017.因为f (x )+2 017e x <0,所以f (x )e x <-2 017,即h (x )<h (0),结合函数h (x )的单调性可知x >0,所以不等式f (x )+2 017e x <0的解集是(0,+∞).故选B.5.若函数f (x )=x +4mx -m ln x 在[1,2]上为减函数,则m 的最小值为( ) A.32 B.34 C.23D.43解析:选C 因为f (x )=x +4m x -m ln x 在[1,2]上为减函数,所以f ′(x )=1-4m x2-m x =x 2-mx -4mx2≤0在[1,2]上恒成立,所以x 2-mx -4m ≤0在[1,2]上恒成立.令g (x )=x 2-mx -4m ,所以⎩⎪⎨⎪⎧g (1)=1-m -4m ≤0,g (2)=4-2m -4m ≤0,所以m ≥23,故m 的最小值为23,故选C.6.已知函数f (x )=x sin x ,x 1,x 2∈⎝⎛⎭⎫-π2,π2,且f (x 1)<f (x 2),那么( ) A .x 1-x 2>0B .x 1+x 2>0C .x 21-x 22>0D .x 21-x 22<0解析:选D 由f (x )=x sin x 得f ′(x )=sin x +x cos x ,当x ∈⎝⎛⎭⎫0,π2时,f ′(x )>0,即f (x )在⎝⎛⎭⎫0,π2上为增函数,又f (-x )=-x sin(-x )=x sin x =f (x ),因而f (x )为偶函数,∴当f (x 1)<f (x 2)时有f (|x 1|)<f (|x 2|),∴|x 1|<|x 2|,x 21-x 22<0,故选D.7.已知函数f (x )=-ln x +ax ,g (x )=(x +a )e x ,a <0,若存在区间D ,使函数f (x )和g (x )在区间D 上的单调性相同,则a 的取值范围是( )A.⎝⎛⎭⎫-∞,-12 B .(-∞,0) C.⎝⎛⎭⎫-1,-12 D .(-∞,-1)解析:选D f (x )的定义域为(0,+∞),f ′(x )=-1x +a =ax -1x ,由a <0可得f ′(x )<0,即f (x )在定义域(0,+∞)上单调递减.g ′(x )=e x +(x +a )e x =(x +a +1)e x ,令g ′(x )=0,解得x =-(a +1),当x ∈(-∞,-a -1)时,g ′(x )<0,当x ∈(-a -1,+∞)时,g ′(x )>0,故g (x )的单调递减区间为(-∞,-a -1),单调递增区间为(-a -1,+∞).因为存在区间D ,使f (x )和g (x )在区间D 上的单调性相同,所以-a -1>0,即a <-1,故a 的取值范围是(-∞,-1),故选D.8.(2018·宁夏育才中学月考)若函数f (x )=a ln x -x 在区间(1,2)上单调递增,则实数a 的取值范围是________.解析:由f ′(x )=ax -1=a -x x ≥0得a -x ≥0,即a ≥x ,又x ∈(1,2),所以a ≥2. 答案:[2,+∞)[大题综合练——迁移贯通]1.设函数f (x )=12x 2+e x -x e x .(1)求f (x )的单调区间;(2)若当x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.解:(1)函数f (x )的定义域为(-∞,+∞),f ′(x )=x +e x -(e x +x e x )=x (1-e x ).若x <0,则1-e x >0,所以f ′(x )<0; 若x >0,则1-e x <0,所以f ′(x )<0; 若x =0,则f ′(x )=0.∴f (x )在(-∞,+∞)上为减函数,即f (x )的单调递减区间为(-∞,+∞). (2)由(1)知f (x )在[-2,2]上单调递减, ∴[f (x )]min =f (2)=2-e 2.∴当m <2-e 2时,不等式f (x )>m 恒成立. 2.已知函数f (x )=x 2+a ln x .(1)当a =-2时,求函数f (x )的单调递减区间;(2)若函数g (x )=f (x )+2x在[1,+∞)上单调,求实数a 的取值范围.解:(1)由题意知,函数的定义域为(0,+∞),当a =-2时,f ′(x )=2x -2x =2(x +1)(x -1)x ,由f ′(x )<0得0<x <1,故f (x )的单调递减区间是(0,1).(2)由题意得g ′(x )=2x +a x -2x2,函数g (x )在[1,+∞)上是单调函数.①若g (x )为[1,+∞)上的单调递增函数,则g ′(x )≥0在[1,+∞)上恒成立,即a ≥2x -2x 2在[1,+∞)上恒成立,设φ(x )=2x-2x 2,∵φ(x )在[1,+∞)上单调递减, ∴φ(x )max =φ(1)=0,∴a ≥0.②若g (x )为[1,+∞)上的单调递减函数, 则g ′(x )≤0在[1,+∞)上恒成立,不可能. ∴实数a 的取值范围为[0,+∞).3.(2018·郑州质检)已知函数f (x )=a ln x -ax -3(a ∈R ). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎡⎦⎤f ′(x )+m 2在区间(t,3)上总不是单调函数,求m 的取值范围. 解:(1)函数f (x )的定义域为(0,+∞),且f ′(x )=a (1-x )x.当a >0时,f (x )的增区间为(0,1),减区间为(1,+∞);当a <0时,f (x )的增区间为(1,+∞),减区间为(0,1); 当a =0时,f (x )不是单调函数.(2)由(1)及题意得f ′(2)=-a2=1,即a =-2,∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x .∴g (x )=x 3+⎝⎛⎭⎫m 2+2x 2-2x , ∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t,3)上总不是单调函数, 即g ′(x )=0在区间(t,3)上有变号零点.由于g ′(0)=-2,∴⎩⎪⎨⎪⎧g ′(t )<0,g ′(3)>0.g ′(t )<0,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9; 由g ′(3)>0,得m >-373.∴-373<m <-9.即实数m 的取值范围是⎝⎛⎭⎫-373,-9.。
2018-2019学年高中新创新一轮复习理数通用版:课时达标检测(十五) 导数与函数的极值、最值 Word版含解析
课时达标检测(十五) 导数与函数的极值、最值[小题常考题点——准解快解]1.(2018·太原一模)函数y =f (x )的导函数的图象如图所示,则下列说法错误的是( )A .(-1,3)为函数y =f (x )的单调递增区间B .(3,5)为函数y =f (x )的单调递减区间C .函数y =f (x )在x =0处取得极大值D .函数y =f (x )在x =5处取得极小值解析:选C 由函数y =f (x )的导函数的图象可知,当x <-1或3<x <5时,f ′(x )<0,y =f (x )单调递减;当x >5或-1<x <3时,f ′(x )>0,y =f (x )单调递增.所以函数y =f (x )的单调递减区间为(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞).函数y =f (x )在x =-1,5处取得极小值,在x =3处取得极大值,故选项C 错误,故选C.2.函数f (x )=2x 3+9x 2-2在[-4,2]上的最大值和最小值分别是( ) A .25,-2 B .50,14 C .50,-2D .50,-14解析:选C 因为f (x )=2x 3+9x 2-2,所以f ′(x )=6x 2+18x ,当x ∈[-4,-3)或x ∈(0,2]时,f ′(x )>0,f (x )为增函数,当x ∈(-3,0)时,f ′(x )<0,f (x )为减函数,由f (-4)=14,f (-3)=25,f (0)=-2,f (2)=50,故函数f (x )=2x 3+9x 2-2在[-4,2]上的最大值和最小值分别是50,-2.3.已知a ∈R ,函数f (x )=13x 3-ax 2+ax +2的导函数f ′(x ) 在(-∞,1)上有最小值,若函数g (x )=f ′(x )x,则( ) A .g (x )在(1,+∞)上有最大值 B .g (x )在(1,+∞)上有最小值 C .g (x )在(1,+∞)上为减函数 D .g (x )在(1,+∞)上为增函数解析:选D 函数f (x )=13x 3-ax 2+ax +2的导函数f ′(x )=x 2-2ax +a ,f ′(x )图象的对称轴为x =a ,又f ′(x )在(-∞,1)上有最小值,所以a <1.函数g (x )=f ′(x )x =x +ax-2a ,g ′(x )=1-a x 2=x 2-ax2,当x ∈(1,+∞)时,g ′(x )>0,所以g (x )在(1,+∞)上为增函数.故选D.4.(2018·河南模拟)若函数f (x )=13x 3-⎝⎛⎭⎫1+b 2x 2+2bx 在区间[-3,1]上不是单调函数,则f (x )在R 上的极小值为( )A .2b -43B.32b -23 C .0D .b 2-16b 3解析:选A 由题意得f ′(x )=(x -b )(x -2).因为f (x )在区间[-3,1]上不是单调函数,所以-3<b <1.由f ′(x )>0,解得x >2或x <b ;由f ′(x )<0,解得b <x <2.所以f (x ) 的极小值为f (2)=2b -43.故选A.5.(2018·河南息县第一高级中学段测)函数f (x )=x 3-3x -1,若对于区间(-3,2]上的任意x 1,x 2,都有|f (x 1)-f (x 2)|≤t ,则实数t 的最小值是( )A .20B .18C .3D .0解析:选A 对于区间(-3,2]上的任意x 1,x 2,都有|f (x 1)-f (x 2)|≤t ,等价于在区间(-3,2]上,f (x )max -f (x )min ≤t .∵f (x )=x 3-3x -1,∴f ′(x )=3x 2-3=3(x -1)(x +1).∵x ∈(-3,2],∴函数f (x )在(-3,-1),(1,2)上单调递增,在(-1,1)上单调递减,∴f (x )max =f (2)=f (-1)=1,f (x )min =f (-3)=-19,∴f (x )max -f (x )min =20,∴t ≥20,即实数t 的最小值是20.6.(2018·安徽百校论坛联考)已知函数f (x )=a e x -x 2-(2a +1)x ,若函数f (x )在区间(0,ln 2)上有最值,则实数a 的取值范围是( )A .(-∞,-1)B .(-1,0)C .(-2,-1)D .(-∞,0)∪(0,1)解析:选A f ′(x )=a (e x -2)-2x -1.∵x ∈(0,ln 2),∴e x -2<0,-2x -1<0.当a ≥0时,f ′(x )<0在(0,ln 2)上恒成立,即函数f (x )在(0,ln 2)上单调递减,函数y =f (x )在区间(0,ln 2)上无最值.当a <0时,设g (x )=a (e x -2)-2x -1,则g ′(x )=a e x -2<0,∴g (x )在(0,ln 2)上为减函数.又∵g (0)=-a -1,g (ln 2)=-2ln 2-1<0,若函数f (x )在区间(0,ln 2)上有最值,则函数g (x )有零点,即g (x )=0有解,∴g (0)=-a -1>0,解得a <-1.故选A.[大题常考题点——稳解全解]1.(2018·济宁模拟)已知函数f (x )=1+ln xkx (k ≠0).求函数f (x )的极值. 解:f (x )=1+ln xkx ,其定义域为(0,+∞), 则f ′(x )=-ln xkx 2.令f ′(x )=0,得x =1,当k >0时,若0<x <1,则f ′(x )>0; 若x >1,则f ′(x )<0,∴f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,即当x =1时,函数f (x )取得极大值1k ,无极小值.当k <0时,若0<x <1,则f ′(x )<0; 若x >1,则f ′(x )>0,∴f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,即当x =1时,函数f (x )取得极小值1k ,无极大值.2.(2018·石家庄模拟)已知函数f (x )=ax -2x -3ln x ,其中a 为常数.(1)当函数f (x )的图象在点⎝⎛⎭⎫23,f ⎝⎛⎭⎫23处的切线的斜率为1时,求函数f (x )在⎣⎡⎦⎤32,3上的最小值;(2)若函数f (x )在区间(0,+∞)上既有极大值又有极小值,求a 的取值范围. 解:(1)因为f ′(x )=a +2x 2-3x ,所以f ′⎝⎛⎭⎫23=a =1, 故f (x )=x -2x -3ln x ,则f ′(x )=(x -1)(x -2)x 2.由f ′(x )=0得x =1或x =2.当x 变化时,f ′(x ),f (x )的变化情况如下表:从而在⎣⎡⎦⎤32,3上,f (x )有最小值, 且最小值为f (2)=1-3ln 2.(2)f ′(x )=a +2x 2-3x =ax 2-3x +2x 2(x >0),由题设可得方程ax 2-3x +2=0有两个不等的正实根, 不妨设这两个根为x 1,x 2,且x 1≠x 2,则⎩⎨⎧Δ=9-8a >0,x 1+x 2=3a>0,x 1x 2=2a >0解得0<a <98.故所求a 的取值范围为⎝⎛⎭⎫0,98. 3.(2018·汉中模拟)已知函数f (x )=ln x -mx (m ∈R ).(1)若函数y =f (x )的图象过点P (1,-1),求曲线y =f (x )在点P 处的切线方程; (2)求函数f (x )在区间[1,e]上的最大值. 解:(1)因为点P (1,-1)在曲线y =f (x )上, 所以-m =-1,解得m =1. 因为f ′(x )=1x -1,所以f ′(1)=0, 所以切线的方程为y =-1. (2)f ′(x )=1x -m =1-mx x .①当m ≤0时,由x ∈[1,e],得f ′(x )>0,所以函数f (x )在[1,e]上单调递增, 则f (x )max =f (e)=1-m e ;②当1m ≥e ,即0<m ≤1e 时,由x ∈[1,e],得f ′(x )>0,所以函数f (x )在[1,e]上单调递增,则f (x )max =f (e)=1-m e ; ③当1<1m <e ,即1e<m <1时,函数f (x )在⎣⎡⎭⎫1,1m 上单调递增,在⎝⎛⎦⎤1m ,e 上单调递减,则f (x )max =f ⎝⎛⎭⎫1m =-ln m -1; ④当0<1m ≤1,即m ≥1时,由x ∈[1,e],得f ′(x )≤0, 所以函数f (x )在[1,e]上单调递减, 则f (x )max =f (1)=-m .综上,当m ≤1e 时,f (x )max =1-m e ;当1e <m <1时,f (x )max =-ln m -1; 当m ≥1时,f (x )max =-m .4.(2018·河南安阳调研)已知函数f (x )=12x 2-(a +1)x +a ln x +1,a ∈R .(1)若x =3是f (x )的极值点,求f (x )的极大值; (2)求a 的范围,使得f (x )≥1恒成立. 解:(1)f ′(x )=x -(a +1)+ax (x >0).∵x =3是f (x )的极值点,∴f ′(3)=3-(a +1)+a3=0,解得a =3.当a =3时,f ′(x )=x 2-4x +3x =(x -1)(x -3)x . 当x 变化时,f ′(x ),f (x )的变化见下表:∴f (x )的极大值为f (1)=-52.(2)f (x )≥1恒成立,即x >0时, 12x 2-(a +1)x +a ln x ≥0恒成立.设g (x )=12x 2-(a +1)x +a ln x ,则g ′(x )=x -(a +1)+a x =(x -1)(x -a )x.①当a ≤0时,由g ′(x )<0得g (x )的单调递减区间为(0,1), 由g ′(x )>0得g (x )的单调递增区间为(1,+∞), ∴g (x )min =g (1)=-a -12≥0,解得a ≤-12.②当0<a <1时,由g ′(x )<0得g (x )的单调递减区间为(a,1),由g ′(x )>0得g (x )的单调递增区间为(0,a ),(1,+∞),此时g (1)=-a -12<0,不合题意.③当a =1时,g (x )在(0,+∞)上单调递增,此时g (1)=-a -12<0,不合题意.④当a >1时,由g ′(x )<0得g (x )的单调递减区间为(1,a ), 由g ′(x )>0得g (x )的单调递增区间为(0,1),(a ,+∞), 此时g (1)=-a -12<0,不合题意.综上所述,当a ≤-12时,f (x )≥1恒成立.。
2018-2019学年高中新创新一轮复习理数通用版:课时达标检测(十三) 导数的概念及运算 Word版含解析
课时达标检测(十三) 导数的概念及运算[小题对点练——点点落实]对点练(一) 导数的运算1.(2018·泉州质检)设函数f (x )=x (x +k )(x +2k ),则f ′(x )=( ) A .3x 2+3kx +k 2 B .x 2+2kx +2k 2 C .3x 2+6kx +2k 2D .3x 2+6kx +k 2解析:选C 法一:f (x )=x (x +k )(x +2k ),f ′(x )=(x +k )(x +2k )+x [(x +k )(x +2k )]′=(x +k )·(x +2k )+x (x +2k )+x (x +k )=3x 2+6kx +2k 2,故选C.法二:因为f (x )=x (x +k )(x +2k )=x 3+3kx 2+2k 2x ,所以f ′(x )=3x 2+6kx +2k 2,故选C.2.(2018·泰安一模)给出下列结论: ①若y =log 2x ,则y ′=1x ln 2;②若y =-1x ,则y ′=12x x;③若f (x )=1x 2,则f ′(3)=-227;④若y =a x (a >0),则y ′=a x ln a .其中正确的个数是( )A .1B .2C .3D .4解析:选D 根据求导公式可知①正确;若y =-1x =-x -12,则y ′=12x -32=12x x,所以②正确;若f (x )=1x 2,则f ′(x )=-2x -3,所以f ′(3)=-227,所以③正确;若y =a x (a >0),则y ′=a x ln a ,所以④正确.因此正确的结论个数是4,故选D.3.若函数y =x m 的导函数为y ′=6x 5,则m =( ) A .4 B .5 C .6D .7解析:选C 因为y =x m ,所以y ′=mx m -1,与y ′=6x 5相比较,可得m =6. 4.已知函数f (x )=xe x (e 是自然对数的底数),则其导函数f ′(x )=( )A.1+x e xB.1-x e xC .1+xD .1-x解析:选B 函数f (x )=xe x ,则其导函数f ′(x )=e x -x e x e 2x =1-x ex ,故选B.5.若f (x )=x 2-2x -4ln x ,则f ′(x )<0的解集为( ) A .(0,+∞) B .(0,2) C .(0,2)∪(-∞,-1)D .(2,+∞)解析:选B 函数f (x )=x 2-2x -4ln x 的定义域为{x |x >0},f ′(x )=2x -2-4x =2x 2-2x -4x ,由f ′(x )=2x 2-2x -4x<0,得0<x <2,∴f ′(x )<0的解集为(0,2),故选B. 6.(2018·信阳模拟)已知函数f (x )=a e x +x ,若1<f ′(0)<2,则实数a 的取值范围是( ) A.⎝⎛⎭⎫0,1e B .(0,1) C .(1,2)D .(2,3)解析:选B 根据题意,f (x )=a e x +x ,则f ′(x )=(a e x )′+x ′=a e x +1,则f ′(0)=a +1,若1<f ′(0)<2,则1<a +1<2,解得0<a <1,所以实数a 的取值范围为(0,1).故选B.对点练(二) 导数的几何意义1.(2018·安徽八校联考)函数f (x )=tan x 2在⎣⎡⎦⎤π2,f ⎝⎛⎭⎫π2处的切线的倾斜角α为( ) A.π6 B.π4 C.π3D.π2解析:选Bf ′(x )=⎝ ⎛⎭⎪⎫sin x2cos x 2′=12cos 2x 2,得切线斜率k =tan α=f ′⎝⎛⎭⎫π2=1,故α=π4,选B.2.若函数f (x )=x 3-x +3的图象在点P 处的切线平行于直线y =2x -1,则点P 的坐标为( )A .(1,3)B .(-1,3)C .(1,3)或(-1,3)D .(1,-3)解析:选C f ′(x )=3x 2-1,令f ′(x )=2,即3x 2-1=2⇒x =1或-1,又f (1)=3,f (-1)=3,所以P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故点P 的坐标为(1,3)或(-1,3).3.(2018·福州质检)过点(-1,1)与曲线f (x )=x 3-x 2-2x +1相切的直线有( ) A .0条B .1条C .2条D .3条解析:选C 设切点P (a ,a 3-a 2-2a +1),由f ′(x )=3x 2-2x -2,当a ≠-1时,可得切线的斜率k =3a 2-2a -2=(a 3-a 2-2a +1)-1a -(-1),所以(3a 2-2a -2)(a +1)=a 3-a 2-2a ,即(3a 2-2a -2)(a +1)=a (a -2)(a +1),所以a =1,此时k =-1.又(-1,1)是曲线上的点且f ′(-1)=3≠-1,故切线有2条.4.(2018·重庆一模)已知直线y =a 与函数f (x )=13x 3-x 2-3x +1的图象相切,则实数a的值为( )A .-26或83B .-1或3C .8或-83D .-8或83解析:选D 令f ′(x )=x 2-2x -3=0,得x =-1或x =3,∵f (-1)=83,f (3)=-8,∴a =83或-8. 5.(2018·临川一模)函数f (x )=x +ln xx 的图象在x =1处的切线与两坐标轴围成的三角形的面积为( )A.12B.14C.32D.54解析:选B 因为f (x )=x +ln xx ,f ′(x )=1+1-ln x x 2,所以f (1)=1,f ′(1)=2,故切线方程为y -1=2(x -1).令x =0,可得y =-1;令y =0,可得x =12.故切线与两坐标轴围成的三角形的面积为12×1×12=14,故选B.6.(2018·成都诊断)若曲线y =ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( )A.⎝⎛⎭⎫-12,+∞ B.⎣⎡⎭⎫-12,+∞ C .(0,+∞)D .[0,+∞)解析:选D 由题意知,函数y =ln x +ax 2的定义域为(0,+∞),y ′=1x +2ax =2ax 2+1x≥0恒成立,即2ax 2+1≥0,a ≥-12x 2恒成立,又在定义域内,-12x 2∈(-∞,0),所以实数a 的取值范围是[0,+∞).7.(2017·柳州二模)已知函数f (x )=x 2+bx +c (b ,c ∈R ),F (x )=f ′(x )e x ,若F (x )的图象在x =0处的切线方程为y =-2x +c ,则函数f (x )的最小值是( )A .2B .1C .0D .-1解析:选C ∵f ′(x )=2x +b ,∴F (x )=2x +b e x ,F ′(x )=2-2x -be x,又F (x )的图象在x=0处的切线方程为y =-2x +c ,∴⎩⎪⎨⎪⎧ F ′(0)=-2,F (0)=c ,得⎩⎪⎨⎪⎧b =c ,b =4,∴f (x )=(x +2)2≥0,f (x )min=0.8.(2018·唐山模拟)已知函数f (x )=x 2-1,g (x )=ln x ,则下列说法中正确的为( ) A .f (x ),g (x )的图象在点(1,0)处有公切线B .存在f (x )的图象的某条切线与g (x )的图象的某条切线平行C .f (x ),g (x )的图象有且只有一个交点D .f (x ),g (x )的图象有且只有三个交点解析:选B 对于A ,f (x )的图象在点(1,0)处的切线为y =2x -2,函数g (x )的图象在点(1,0)处的切线为y =x -1,故A 错误;对于B ,函数g (x )的图象在(1,0)处的切线为y =x -1,设函数f (x )的图象在点(a ,b )处的切线与y =x -1平行,则f ′(a )=2a=1,a =12,故b = ⎝⎛⎭⎫122-1=-34,即g (x )的图象在(1,0)处的切线与f (x )的图象在⎝⎛⎭⎫12,-34处的切线平行,B 正确;如图作出两函数的图象,可知两函数的图象有两个交点,C ,D 错误.故选B.9.(2018·包头一模)已知函数f (x )=x 3+ax +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.解析:函数f (x )=x 3+ax +1的导数为f ′(x )=3x 2+a ,f ′(1)=3+a ,又f (1)=a +2,所以切线方程为y -a -2=(3+a )(x -1),因为切线经过点(2,7),所以7-a -2=(3+a )(2-1),解得a =1.答案:1[大题综合练——迁移贯通]1.(2018·兰州双基过关考试)定义在实数集上的函数f (x )=x 2+x ,g (x )=13x 3-2x +m .(1)求函数f (x )的图象在x =1处的切线方程;(2)若f (x )≥g (x )对任意的x ∈[-4,4]恒成立,求实数m 的取值范围. 解:(1)∵f (x )=x 2+x ,∴f (1)=2. ∵f ′(x )=2x +1,∴f ′(1)=3.∴所求切线方程为y -2=3(x -1),即3x -y -1=0. (2)令h (x )=g (x )-f (x )=13x 3-x 2-3x +m ,则h ′(x )=(x -3)(x +1). ∴当-4≤x ≤-1时,h ′(x )≥0; 当-1<x ≤3时,h ′(x )≤0; 当3<x ≤4时,h ′(x )>0.要使f (x )≥g (x )恒成立,即h (x )max ≤0, 由上知h (x )的最大值在x =-1或x =4处取得, 而h (-1)=m +53,h (4)=m -203,∴h (x )的最大值为m +53,∴m +53≤0,即m ≤-53.∴实数m 的取值范围为⎝⎛⎦⎤-∞,-53. 2.(2018·青岛期末)设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解:(1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又因为f ′(x )=a +bx2,所以⎩⎨⎧2a -b 2=12,a +b 4=74.解得⎩⎪⎨⎪⎧a =1,b =3,所以f (x )=x -3x .(2)证明:设P (x 0,y 0)为曲线y =f (x )上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0,得y =-6x 0,所以切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0.令y =x ,得y =x =2x 0,所以切线与直线y =x 的交点坐标为(2x 0,2x 0).所以曲线y =f (x )在点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积S =12⎪⎪⎪⎪-6x 0 |2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形面积为定值,且此定值为6.3.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.(3)证明:不存在与曲线C 同时切于两个不同点的直线. 解:(1)由题意得f ′(x )=x 2-4x +3, 则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞). (2)设曲线C 的其中一条切线的斜率为k ,则由题意,及(1)可知,⎩⎪⎨⎪⎧k ≥-1,-1k ≥-1,解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1,得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).(3)证明:设存在直线与曲线C 同时切于不同的两点A (x 1,y 1),B (x 2,y 2),x 1≠x 2,则点A (x 1,y 1)处的切线方程为y -⎝⎛⎭⎫13x 31-2x 21+3x 1=(x 21-4x 1+3)(x -x 1),化简得y =(x 21-4x 1+3)x +⎝⎛⎭⎫-23x 31+2x 21,而点B (x 2,y 2)处的切线方程是y =(x 22-4x 2+3)x +⎝⎛⎭⎫-23x 32+2x 22. 由于两切线是同一直线,则有x 21-4x 1+3=x 22-4x 2+3,即x 1+x 2=4;又有-23x 31+2x 21=-23x 32+2x 22,即-23(x 1-x 2)·(x 21+x 1x 2+x 22)+2(x 1-x 2)(x 1+x 2)=0,则-13(x 21+x 1x 2+x 22)+4=0,则x 1(x 1+x 2)+x 22-12=0,即(4-x 2)×4+x 22-12=0,即x 22-4x 2+4=0,解得x 2=2.但当x 2=2时,由x 1+x 2=4得x 1=2,这与x 1≠x 2矛盾. 所以不存在与曲线C 同时切于两个不同点的直线.。
【通用版】2018-2019学年高中理数新创新一轮复习 课时达标检测二 命题及其关系、充分条件与必要条件含解析
课时达标检测(二) 命题及其关系、充分条件与必要条件[小题对点练——点点落实]对点练(一) 命题及其关系1.命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是( )A .若x +y 是偶数,则x 与y 不都是偶数B .若x +y 是偶数,则x 与y 都不是偶数C .若x +y 不是偶数,则x 与y 不都是偶数D .若x +y 不是偶数,则x 与y 都不是偶数解析:选C 由于“x ,y 都是偶数”的否定表达是“x ,y 不都是偶数”,“x +y 是偶数”的否定表达是“x +y 不是偶数”,故原命题的逆否命题为“若x +y 不是偶数,则x ,y 不都是偶数”,故选C.2.命题“若△ABC 有一内角为π3,则△ABC 的三内角成等差数列”的逆命题( ) A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题解析:选D 原命题显然为真,原命题的逆命题为“若△ABC 的三内角成等差数列,则△ABC 有一内角为π3”,它是真命题. 3.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真解析:选D 对于原命题:“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题:“若{x |ax 2+bx +c <0}≠∅,则抛物线y =ax 2+bx +c 的开口向下”是一个假命题,因为当不等式ax 2+bx +c <0的解集非空时,可以有a >0,即抛物线的开口可以向上,因此否命题也是假命题.故选D.4.(2018·德州一中模拟)下列命题中为真命题的序号是________.①若x ≠0,则x +1x ≥2;②命题:若x 2=1,则x =1或x =-1的逆否命题为:若x ≠1且x ≠-1,则x 2≠1;③“a =1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件;④命题“若x <-1,则x 2-2x -3>0”的否命题为“若x ≥-1,则x 2-2x -3≤0”.解析:当x <0时,x +1x≤-2,故①是假命题;根据逆否命题的定义可知,②是真命题;“a =±1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件,故③是假命题;根据否命题的定义知④是真命题.答案:②④5.“在△ABC 中,若∠C =90°,则∠A ,∠B 都是锐角”的否命题为:________________________________________________________________________. 解析:原命题的条件:在△ABC 中,∠C =90°,结论:∠A ,∠B 都是锐角.否命题是否定条件和结论.即“在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角”.答案:在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角对点练(二) 充分条件与必要条件1.(2016·山东高考)已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 由题意知a ⊂α,b ⊂β,若a ,b 相交,则a ,b 有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a ,b 的位置关系可能为平行、相交或异面.因此“直线a 和直线b 相交”是“平面α和平面β相交”的充分不必要条件.故选A.2.(2018·浙江名校联考)一次函数y =-m n x +1n 的图象同时经过第一、三、四象限的必要不充分条件是( )A .m >1,且n <1B .mn <0C .m >0,且n <0D .m <0,且n <0解析:选B 因为y =-m n x +1n 的图象经过第一、三、四象限,故-m n >0,1n <0,即m >0,n <0,但此为充要条件,因此,其必要不充分条件为mn <0.3.(2018·河南豫北名校联盟精英对抗赛)设a ,b ∈R ,则“log 2a >log 2b ”是“2a -b >1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A log 2a >log 2b ⇔a >b >0,2a -b >1⇔a >b ,所以“log 2a >log 2b ”是“2a -b >1”的充分不必要条件.故选A.4.(2018·重庆第八中学调研)定义在R 上的可导函数f (x ),其导函数为f ′(x ),则“f ′(x )为偶函数”是“f (x )为奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B ∵f (x )为奇函数,∴f (-x )=-f (x ).∴[f (-x )]′=[-f (x )]′,∴f ′(-x )·(-x )′=-f ′(x ),∴f ′(-x )=f ′(x ),即f ′(x )为偶函数;反之,若f ′(x )为偶函数,如f ′(x )=3x 2,f (x )=x 3+1满足条件,但f (x )不是奇函数,所以“f ′(x )为偶函数”是“f (x )为奇函数”的必要不充分条件.故选B.5.(2018·山西怀仁一中期中)命题“∀x ∈[1,2),x 2-a ≤0”为真命题的一个充分不必要条件可以是( )A .a ≥4B .a >4C .a ≥1D .a >1解析:选B x 2-a ≤0⇔a ≥x 2.因为x 2∈[1,4),所以a ≥4.故a >4是已知命题的一个充分不必要条件.故选B.6.(2018·广东梅州质检)已知命题p :“方程x 2-4x +a =0有实根”,且綈p 为真命题的充分不必要条件为a >3m +1,则实数m 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(0,1)解析:选B 命题p :“方程x 2-4x +a =0有实根”为真时,Δ=16-4a ≥0,∴a ≤4.∴綈p 为真命题时,a >4.又∵綈p 为真命题的充分不必要条件为a >3m +1,∴(3m +1,+∞)是(4,+∞)的真子集,∴3m +1>4,解得m >1,故选B.7.(2018·福建闽侯二中期中)设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.解析:由|4x -3|≤1,得12≤x ≤1;由x 2-(2a +1)·x +a (a +1)≤0,得a ≤x ≤a +1.∵綈p 是綈q 的必要不充分条件,∴q 是p 的必要不充分条件,∴p 是q 的充分不必要条件.∴⎣⎡⎦⎤12,1[a ,a +1].∴a ≤12.且a +1≥1,两个等号不能同时成立,解得0≤a ≤12.∴实数a 的取值范围是⎣⎡⎦⎤0,12. 答案:⎣⎡⎦⎤0,12[大题综合练——迁移贯通]1.写出命题“已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2≥4b ”的逆命题、否命题、逆否命题,并判断它们的真假.解:(1)逆命题:已知a ,b ∈R ,若a 2≥4b ,则关于x 的不等式x 2+ax +b ≤0有非空解集,为真命题.(2)否命题:已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2<4b ,为真命题.(3)逆否命题:已知a ,b ∈R ,若a 2<4b ,则关于x 的不等式x 2+ax +b ≤0没有非空解集,为真命题.2.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝⎛⎭⎫x -342+716, ∵x ∈⎣⎡⎦⎤34,2,∴716≤y ≤2,∴A =⎩⎨⎧⎭⎬⎫y ⎪⎪716≤y ≤2. 由x +m 2≥1,得x ≥1-m 2,∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件,∴A ⊆B ,∴1-m 2≤716,解得m ≥34或m ≤-34, 故实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞. 3.已知集合A ={x |x 2-6x +8<0},B ={x |(x -a )(x -3a )<0}.(1)若x ∈A 是x ∈B 的充分条件,求a 的取值范围.(2)若A ∩B =∅,求a 的取值范围.解:A ={x |x 2-6x +8<0}={x |2<x <4}, B ={x |(x -a )(x -3a )<0}.(1)当a =0时,B =∅,不合题意.当a >0时,B ={x |a <x <3a },要满足题意, 则⎩⎪⎨⎪⎧a ≤2,3a ≥4,解得43≤a ≤2. 当a <0时,B ={x |3a <x <a },要满足题意, 则⎩⎪⎨⎪⎧ 3a ≤2,a ≥4,无解. 综上,a 的取值范围为⎣⎡⎦⎤43,2.(2)要满足A ∩B =∅,当a >0时,B ={x |a <x <3a },则a ≥4或3a ≤2,即0<a ≤23或a ≥4. 当a <0时,B ={x |3a <x <a },则a ≤2或a ≥43,即a <0. 当a =0时,B =∅,A ∩B =∅.综上,a 的取值范围为⎝⎛⎦⎤-∞,23∪[4,+∞).。
2018-2019学年高中新创新一轮复习理数通用版:课时达标检测 集 合 Word版含解析
课时达标检测(一) 集 合[小题对点练——点点落实]对点练(一) 集合的概念与集合间的基本关系 1.已知集合A ={1,2,3},B ={2,3},则( )A .A =BB .A ∩B =∅C .A BD .B A 解析:选D ∵A ={1,2,3},B ={2,3},∴B A .⊆C |C {=B ,}0≤3-x 2+2x |N ∈x {=A 已知集合)拟莱州一中模·(2018.2A },则集合B 中元素的个数为( )A .2B .3C .4D .5 B个子集,因此集合4=22有,共}{0,1=}1≤x ≤3-|N ∈x {=}0≤1)-x 3)(+x |(N ∈x {=A C 选解析:中元素的个数为4,选C.3.(2018·广雅中学测)(是图n Ven 的关系}0=x +2x |x {=N 和}1,0,1-{=M ,则正确表示集合R =U 若全集)试B.选,故M N ,所以}1,0,1-{=M ,而}1,0-{=}0=x +2x |x {=N 由题意知, B 选解析: .________为的值m ,则A ∈3若,}m +2m 2,2+m {=A .已知集合4 ,3=m +2m 2且3=2+m 时,1=m ,当32=-m 或1=m ,则3=m +2m 2或3=2+m 由题意得解析:.32=-m ,故3=m +2m 2则,12=2+m 时,32=-m 根据集合中元素的互异性可知不满足题意;当 32-答案: .________是的取值范围 b -a ,则实数B ⊆A ,若]b ,a [=B ,}16≤x 2≤|4x {=A .已知集合5,所4≥b ,2≤a ,所以B ⊆A ,因为[2,4]=}4≤x ≤|2x {=}42≤x 2≤2|2x {=}16≤x 2≤|4x {=A 集合解析:以a -b ≤2-4=-2,即实数a -b 的取值范围是(-∞,-2].答案:(-∞,-2]对点练(二) 集合的基本运算)(=N ∪M ,则}0≤x |lg x {=N ,}x =2x |x {=M .设集合1 A .[0,1]B .(0,1]C .[0,1)D .(-∞,1] .][0,1=N ∪M ,}1≤x <0|x {=}0≤x |lg x {=N ,}{0,1=}x =2x |x {=M A 选解析: )(=B ∩A ,则}A ∈x ,2x =y |y {=B ,}1,0,1-{=A .若集合2 A .{0}B .{1}C .{0,1}D .{0,-1} .}{0,1=B ∩A ,所以}{0,1=}A ∈x ,2x =y |y {=B 因为 C 选解析: )(=B ∪)A U ∁(则,}3≤y ≤|1y {=B ,}2≤x ≤|0x {=A ,集合R =U 设全集)考中原名校联·(2018.3 A .(2,3]B .(-∞,1]∪(2,+∞)C .[1,2)D .(-∞,0)∪[1,+∞).)∞,+1[∪0),∞-(=B ∪)A U ∁(以,所}3≤y ≤|1y {=B ,}<0x 或2>x |x {=A U ∁因为 D 选解析: 4.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉)(=Q -P ,那么}2|<1-x ||x {=Q ,}<1x 2|log x {=P ,如果}Q A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3} .由}<3x |1<x {=Q ,所以3<x 1<得,12|<-x |由;}<2x |0<x {=P ,所以2<x 0<得,1<x 2log 由 B 选解析:题意,得P -Q ={x |0<x ≤1}.∪P .若}0≤b +ax +2x |x {=Q ,}2>0-y -2y |y {=P 已知集合)考河北正定中学月·(2018.5Q =R ,且P ∩Q =(2,3],则a +b =( )A .-5B .5C .-1D .1 ,所以1,3]-[=Q ,得](2,3=Q ∩P 及R =Q ∪P .由}1-<y 或2>y |y {=}2>0-y -2y |y {=P A 选解析:-a =-1+3,b =-1×3,即a =-2,b =-3,a +b =-5,故选A.6.(2018·唐山统一考) (是,则图中阴影部分表示的集合}<1x |2x {=B ,}6<0-x 5-2x |x {=A ,集合R =U 若全集)试A .{x |2<x <3}B .{x |-1<x ≤0}C .{x |0≤x <6}D .{x |x <-1} =B ,所以0<x ,解得1<x 2由.}<6x 1<-|x {=A ,所以6<x 1<-,解得06<-x 5-2x 由 C 选解析: C.选,故}<6x ≤|0x {=A ∩)B U ∁(以,所}0≥x |x {=B U ∁,A ∩)B U ∁(为.又题图中阴影部分表示的集合}<0x |x { )(是的取值范围m ,则实数}>4x |x {=B ∩A .若}m ≥x |x {=B ,}12>0-x -2x |x {=A .已知集合7 A .(-4,3)B .[-3,4]C .(-3,4)D .(-∞,4] 解析:选B 集合A ={x |x <-3或x >4},∵A ∩B ={x |x >4},∴-3≤m ≤4,故选B.)(为}{1,4,7合,则集}0=21+x 8-2x |x {=N ,}{2,3,5=M ,集合}<8x |0<Z ∈x {=U .已知全集8 )N U ∁(∩M .A)N ∩M (U ∁.B )N ∪M (U ∁.C N ∩)M U ∁(.D =N ∩M ,}{3,5=}{1,3,4,5,7∩{2,3,5}=)N U ∁(∩M ,}{2,6=N ,}{1,2,3,4,5,6,7=U 由已知得 C 选解析:选,}{6=}{2,6∩{1,4,6,7}=N ∩)M U ∁(,}{1,4,7=)N ∪M (U ∁,}{2,3,5,6=N ∪M ,},3,4,5,6,7{1=)N ∩M (U ∁,}{2 C.[大题综合练——迁移贯通].}R ∈m ,R ∈x ,0≤4-2m +mx 2-2x |x {=B ,}0≤3-x 2-2x |x {=A .已知集合1 (1)若A ∩B =[0,3],求实数m 的值;的取值范围.m ,求实数B R ∁⊆A 若)(2 解:由已知得A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)因为A ∩B =[0,3],2.=m 所以⎩⎪⎨⎪⎧ m -2=0,m +2≥3.所以,}2+m >x 或2-m <x |x {=B R ∁(2) ,1-<2+m 或32>-m ,所以B R ∁⊆A 因为 即m >5或m <-3. 因此实数m 的取值范围是(-∞,-3)∪(5,+∞). 2.已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }. (1)当m =-1时,求A ∪B ; (2)若A ⊆B ,求实数m 的取值范围; (3)若A ∩B =∅,求实数m 的取值范围. 解:(1)当m =-1时,B ={x |-2<x <2}, 则A ∪B ={x |-2<x <3}. ,2-≤m 解得⎩⎪⎨⎪⎧ 1-m >2m ,2m≤1,1-m≥3,知B ⊆A 由)(2 即实数m 的取值范围为(-∞,-2]. (3)由A ∩B =∅,得 ,符合题意;∅=B 时,13≥m ,即m -1≥m 2若① ⎩⎪⎨⎪⎧ m <13,2m≥3,或⎩⎪⎨⎪⎧ m <13,1-m≤1时,需13<m ,即m -1<m 2若② .13<m ≤0即,∅或13<m ≤0得 综上知m ≥0,即实数m 的取值范围为[0,+∞). .}>1x 2|log x {=B ,}27≤x 3≤|3x {=A 已知集合)考江西玉山一中月·(2018.3;A ∪)B R ∁(,B ∩A 分别求)(1 (2)已知集合C ={x |1<x <a },若C ⊆A ,求实数a 的取值范围. ,33≤x 3≤13即,72≤x 3≤3∵(1)解: ∴1≤x ≤3,∴A ={x |1≤x ≤3}. ,22>log x 2log 即,1>x 2log ∵ ∴x >2,∴B ={x |x >2}. ∴A ∩B ={x |2<x ≤3}.B R∁∴,x|x{=}2≤A)B R∁(∴=∪≤.}3x|x{(2)由(1)知A={x|1≤x≤3},C⊆A.当C为空集时,满足C⊆A,a≤1;当C为非空集合时,可得1<a≤3.综上所述,a≤3.实数a的取值范围是{a|a≤3}.。
2018-2019学年高中新创新一轮复习理数通用版:课时达标检测(二) 命题及其关系、充分条件与必要条件
课时达标检测(二) 命题及其关系、充分条件与必要条件[小题对点练——点点落实]对点练(一) 命题及其关系1.命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是( )A .若x +y 是偶数,则x 与y 不都是偶数B .若x +y 是偶数,则x 与y 都不是偶数C .若x +y 不是偶数,则x 与y 不都是偶数D .若x +y 不是偶数,则x 与y 都不是偶数解析:选C 由于“x ,y 都是偶数”的否定表达是“x ,y 不都是偶数”,“x +y 是偶数”的否定表达是“x +y 不是偶数”,故原命题的逆否命题为“若x +y 不是偶数,则x ,y 不都是偶数”,故选C.2.命题“若△ABC 有一内角为π3,则△ABC 的三内角成等差数列”的逆命题( ) A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题解析:选D 原命题显然为真,原命题的逆命题为“若△ABC 的三内角成等差数列,则△ABC 有一内角为π3”,它是真命题. 3.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真解析:选D 对于原命题:“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题:“若{x |ax 2+bx +c <0}≠∅,则抛物线y =ax 2+bx +c 的开口向下”是一个假命题,因为当不等式ax 2+bx +c <0的解集非空时,可以有a >0,即抛物线的开口可以向上,因此否命题也是假命题.故选D.4.(2018·德州一中模拟)下列命题中为真命题的序号是________.①若x ≠0,则x +1x ≥2;②命题:若x 2=1,则x =1或x =-1的逆否命题为:若x ≠1且x ≠-1,则x 2≠1; ③“a =1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件;④命题“若x <-1,则x 2-2x -3>0”的否命题为“若x ≥-1,则x 2-2x -3≤0”.解析:当x<0时,x+1x≤-2,故①是假命题;根据逆否命题的定义可知,②是真命题;“a=±1”是“直线x-ay=0与直线x+ay=0互相垂直”的充要条件,故③是假命题;根据否命题的定义知④是真命题.答案:②④5.“在△ABC中,若∠C=90°,则∠A,∠B都是锐角”的否命题为:________________________________________________________________________.解析:原命题的条件:在△ABC中,∠C=90°,结论:∠A,∠B都是锐角.否命题是否定条件和结论.即“在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角”.答案:在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角对点练(二)充分条件与必要条件1.(2016·山东高考)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A由题意知a⊂α,b⊂β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.故选A.2.(2018·浙江名校联考)一次函数y=-mn x+1n的图象同时经过第一、三、四象限的必要不充分条件是()A.m>1,且n<1 B.mn<0C.m>0,且n<0 D.m<0,且n<0解析:选B因为y=-mn x+1n的图象经过第一、三、四象限,故-mn>0,1n<0,即m>0,n<0,但此为充要条件,因此,其必要不充分条件为mn<0.3.(2018·河南豫北名校联盟精英对抗赛)设a,b∈R,则“log2a>log2b”是“2a-b>1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A log2a>log2b⇔a>b>0,2a-b>1⇔a>b,所以“log2a>log2b”是“2a-b>1”的充分不必要条件.故选A.4.(2018·重庆第八中学调研)定义在R上的可导函数f(x),其导函数为f′(x),则“f′(x)为偶函数”是“f(x)为奇函数”的()A.充分不必要条件B.必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B ∵f (x )为奇函数,∴f (-x )=-f (x ).∴[f (-x )]′=[-f (x )]′,∴f ′(-x )·(-x )′=-f ′(x ),∴f ′(-x )=f ′(x ),即f ′(x )为偶函数;反之,若f ′(x )为偶函数,如f ′(x )=3x 2,f (x )=x 3+1满足条件,但f (x )不是奇函数,所以“f ′(x )为偶函数”是“f (x )为奇函数”的必要不充分条件.故选B.5.(2018·山西怀仁一中期中)命题“∀x ∈[1,2),x 2-a ≤0”为真命题的一个充分不必要条件可以是( )A .a ≥4B .a >4C .a ≥1D .a >1解析:选B x 2-a ≤0⇔a ≥x 2.因为x 2∈[1,4),所以a ≥4.故a >4是已知命题的一个充分不必要条件.故选B.6.(2018·广东梅州质检)已知命题p :“方程x 2-4x +a =0有实根”,且綈p 为真命题的充分不必要条件为a >3m +1,则实数m 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(0,1)解析:选B 命题p :“方程x 2-4x +a =0有实根”为真时,Δ=16-4a ≥0,∴a ≤4.∴綈p 为真命题时,a >4.又∵綈p 为真命题的充分不必要条件为a >3m +1,∴(3m +1,+∞)是(4,+∞)的真子集,∴3m +1>4,解得m >1,故选B.7.(2018·福建闽侯二中期中)设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.解析:由|4x -3|≤1,得12≤x ≤1;由x 2-(2a +1)·x +a (a +1)≤0,得a ≤x ≤a +1.∵綈p 是綈q 的必要不充分条件,∴q 是p 的必要不充分条件,∴p 是q 的充分不必要条件.∴⎣⎡⎦⎤12,1[a ,a +1].∴a ≤12.且a +1≥1,两个等号不能同时成立,解得0≤a ≤12.∴实数a 的取值范围是⎣⎡⎦⎤0,12. 答案:⎣⎡⎦⎤0,12[大题综合练——迁移贯通]1.写出命题“已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2≥4b ”的逆命题、否命题、逆否命题,并判断它们的真假.解:(1)逆命题:已知a ,b ∈R ,若a 2≥4b ,则关于x 的不等式x 2+ax +b ≤0有非空解集,为真命题.(2)否命题:已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2<4b ,为真命题.(3)逆否命题:已知a ,b ∈R ,若a 2<4b ,则关于x 的不等式x 2+ax +b ≤0没有非空解集,为真命题.2.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝⎛⎭⎫x -342+716, ∵x ∈⎣⎡⎦⎤34,2,∴716≤y ≤2,∴A =⎩⎨⎧⎭⎬⎫y ⎪⎪716≤y ≤2. 由x +m 2≥1,得x ≥1-m 2,∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件,∴A ⊆B ,∴1-m 2≤716,解得m ≥34或m ≤-34, 故实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞. 3.已知集合A ={x |x 2-6x +8<0},B ={x |(x -a )(x -3a )<0}.(1)若x ∈A 是x ∈B 的充分条件,求a 的取值范围.(2)若A ∩B =∅,求a 的取值范围.解:A ={x |x 2-6x +8<0}={x |2<x <4},B ={x |(x -a )(x -3a )<0}.(1)当a =0时,B =∅,不合题意.当a >0时,B ={x |a <x <3a },要满足题意,则⎩⎪⎨⎪⎧a ≤2,3a ≥4,解得43≤a ≤2. 当a <0时,B ={x |3a <x <a },要满足题意,则⎩⎪⎨⎪⎧ 3a ≤2,a ≥4,无解. 综上,a 的取值范围为⎣⎡⎦⎤43,2.(2)要满足A ∩B =∅,当a >0时,B ={x |a <x <3a },则a ≥4或3a ≤2,即0<a ≤23或a ≥4.当a <0时,B ={x |3a <x <a },则a ≤2或a ≥43,即a <0. 当a =0时,B =∅,A ∩B =∅.综上,a 的取值范围为⎝⎛⎦⎤-∞,23∪[4,+∞).。
2018-2019学年高中新创新一轮复习理数通用版:课时达标检测(十) 函数的图象及其应用 含解析
课时达标检测(十) 函数的图象及其应用[小题对点练——点点落实]对点练(一) 函数的图象1.(2018·陕西汉中教学质量检测)函数f (x )=⎝⎛⎭⎫x -1x sin x 的图象大致是( )解析:选D 令f (x )=0可得x =±1,或x =k π(k ≠0,k ∈Z),又f (-x )=⎝⎛⎭⎫-x +1x sin(-x )=⎝⎛⎭⎫x -1x sin x =f (x ),即函数f (x )=⎝⎛⎭⎫x -1x sin x 是偶函数,且经过点(1,0),(π,0),(2π,0),(3π,0),…,故选D.2.(2018·甘肃南裕固族自治县一中月考)已知函数f (x )=-x 2+2,g (x )=log 2|x |,则函数F (x )=f (x )·g (x )的图象大致为( )解析:选B f (x ),g (x )均为偶函数,则F (x )也为偶函数,由此排除A ,D.当x >2时,-x 2+2<0,log 2|x |>0,所以F (x )<0,排除C ,故选B.3.(2018·安徽蚌埠二中等四校联考)如图所示的图象对应的函数解析式可能是( )A .y =2x -x 2-1B .y =2x sin x 4x +1C .y =x ln xD .y =(x 2-2x )e x解析:选D A 中,y =2x -x 2-1,当x 趋于-∞时,函数y =2x 的值趋于0,y =x 2+1的值趋于+∞,所以函数y =2x -x 2-1的值小于0,故A 中的函数不满足.B 中,y =sin x 是周期函数,所以函数y =2x sin x4x +1的图象是以x 轴为中心的波浪线,故B 中的函数不满足.C中,函数y =x ln x的定义域为(0,1)∪(1,+∞),故C 中的函数不满足.D 中,y =x 2-2x ,当x <0或x >2时,y >0,当0<x <2时,y <0,且y =e x >0恒成立,所以y =(x 2-2x )e x 的图象在x 趋于+∞时,y 趋于+∞,故D 中的函数满足.4.(2018·昆明模拟)如图所示的图形是由一个半径为2的圆和两个半径为1的半圆组成的,它们的圆心分别是O ,O 1,O 2,动点P 从A 点出发沿着圆弧按A →O →B →C →A →D →B 的路线运动(其中A ,O ,O 1,O 2,B 五点共线),记点P 运动的路程为x ,设y =|O 1P |2,y 与x 的函数关系式为y =f (x ),则y =f (x )的大致图象是( )解析:选A 当x ∈[0,π]时,y =1.当x ∈(π,2π)时, O 1P ―→=O 2P ―→-O 2O 1―→,设O 2P ―→与O 2O 1―→的夹角为θ,因为|O 2P ―→|=1,|O 2O 1―→|=2,θ=x -π,所以y =|O 1P ―→|2=(O 2P ―→-O 2O 1―→)2=5-4cos θ=5+4cos x ,x ∈(π,2π),此时函数y =f (x )的图象是曲线,且单调递增,排除C ,D.当x ∈[2π,4π)时,因为O 1P ―→=OP ―→-OO 1―→,设OP ―→,OO 1―→的夹角为α,因为|OP ―→|=2,|OO 1―→|=1,α=2π-12x ,所以y =|O 1P ―→|2=(OP ―→-OO 1―→)2=5-4cos α=5-4cos 12x ,x ∈[2π,4π),此时函数y =f (x )的图象是曲线,且单调递减,排除B.故选A.对点练(二) 函数图象的应用问题1.(2018·福建厦门双十中学期中)已知函数f (x )=x 2+e x -12(x <0)与g (x )=x 2+ln(x +a )的图象上存在关于y 轴对称的点,则实数a 的取值范围是( )A.⎝⎛⎭⎫-∞,1e B .(-∞, e)。
2018-2019学年高中新创新一轮复习理数通用版:课时达标检测(三十) 数列的综合问题 Word版含解析
课时达标检测(三十) 数列的综合问题[小题常考题点——准解快解]1.(2018·安徽六安一中月考)已知数列{a n }的通项公式为a n =5-n ,其前n 项和为S n ,将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n .若存在m ∈N *,使对任意n ∈N *,S n ≤T m +λ恒成立,则实数λ的取值范围是( )A .[2,+∞)B .(3,+∞)C .[3,+∞)D .(2,+∞)解析:选D 依题意得S n =(4+5-n )n 2=n (9-n )2,根据二次函数的性质,n =4,5时,S n 取得最大值为10.另外,根据通项公式得数列{a n }的前4项为a 1=4,a 2=3,a 3=2,a 4=1,观察易知抽掉第二项后,余下的三项可组成等比数列.所以数列{b n }中,b 1=4,公比q =12,所以T n =4⎝⎛⎭⎫1-12n 1-12=8⎝⎛⎭⎫1-12n ,所以4≤T n <8.因为存在m ∈N *,对任意n ∈N *,S n ≤T m +λ恒成立,所以10<8+λ,所以λ>2.故选D.2.(2018·北京景山学校段测)已知数列{a n }满足a 1=1,P (a n ,a n +1)(n ∈N *)在直线x -y +1=0上,如果函数f (n )=1n +a 1+1n +a 2+…+1n +a n(n ∈N *,n ≥2),那么函数f (n )的最小值为( )A.13 B .14C.712D .512解析:选C 将点P 的坐标代入直线方程,得a n +1-a n =1,所以{a n }是首项为1,公差为1的等差数列,所以a n =n ,所以f (n )=1n +1+1n +2+…+1n +n ,f (n +1)=1n +2+1n +3+…+1n +n +2,所以f (n +1)-f (n )=1n +n +1+1n +n +2-1n +1>12n +2+12n +2-1n +1=0,所以f (n )单调递增,故f (n )的最小值为f (2)=712,故选C.3.(2018·江西金溪一中月考)据统计测量,已知某养鱼场,第一年鱼的质量增长率为200%,以后每年的增长率为前一年的一半.若饲养5年后,鱼的质量预计为原来的t 倍.下列选项中,与t 值最接近的是( )A .11B .13C .15D .17解析:选B 设鱼原来的质量为a ,饲养n 年后鱼的质量为a n ,q =200%=2,则a 1=a (1+q ),a 2=a 1⎝⎛⎭⎫1+q 2=a (1+q )⎝⎛⎭⎫1+q 2,…,a 5=a (1+2)×(1+1)×⎝⎛⎭⎫1+12×⎝⎛⎭⎫1+122×⎝⎛⎭⎫1+123=40532a ≈12.7a ,即5年后,鱼的质量预计为原来的12.7倍,故选B. 4.(2018·湖北襄阳四校联考)我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:第一步:构造数列1,12,13,14,…,1n .①第二步:将数列①的各项乘以n2,得到一个新数列a 1,a 2,a 3,…,a n .则a 1a 2+a 2a 3+a 3a 4+…+a n -1a n =( ) A.n 24 B .(n -1)24C.n (n -1)4D .n (n +1)4解析:选C 由题意知所得新数列为1×n 2,12×n 2,13×n 2,…,1n ×n2,所以a 1a 2+a 2a 3+a 3a 4+…+a n-1a n=n 24⎣⎢⎡⎦⎥⎤11×2+12×3+13×4+…+1(n -1)×n =n 24⎣⎢⎡⎦⎥⎤⎣⎡⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎣⎢⎡⎭⎪⎫1n -1-1n =n 24⎣⎡⎭⎫1-1n =n (n -1)4,故选C. 5.(2018·辽宁盘锦高中月考)数列{a n }满足a 1=14,a n +1=14-4a n,若不等式a 2a 1+a 3a 2+…+a n +2a n +1<n +λ对任何正整数n 恒成立,则实数λ的最小值为( ) A.74 B .34C.78D .38解析:选A 因为数列{a n }满足a 1=14,a n +1=14-4a n,所以反复代入计算可得a 2=26,a 3=38,a 4=410,a 5=512,…,由此可归纳出通项公式a n =n 2(n +1),经验证,成立.所以a n +1an=1+1n (n +2)=1+12⎝ ⎛⎭⎪⎫1n -1n +2,所以a 2a 1+a 3a 2+…+a n +2a n +1=n +1+12⎝ ⎛⎭⎪⎫1+12-1n +2-1n +3=n+74-12⎣⎢⎡⎭⎪⎫1n +2+1n +3.因为要求a 2a 1+a 3a 2+…+a n +2a n +1<n +λ对任何正整数n 恒成立,所以λ≥74.故选A.6.已知数列{a n }满足a n +2-a n +1=a n +1-a n ,n ∈N *,且a 5=π2,若函数f (x )=sin 2x +2cos 2x2,记y n =f (a n ),则数列{y n }的前9项和为( )A .0B .-9C .9D .1解析:选C 由已知可得,数列{a n }为等差数列,f (x )=sin 2x +cos x +1,∴f ⎝⎛⎭⎫π2=1.∵f (π-x )=sin(2π-2x )+cos(π-x )+1=-sin 2x -cos x +1,∴f (π-x )+f (x )=2.∵a 1+a 9=a 2+a 8=…=2a 5=π,∴f (a 1)+…+f (a 9)=2×4+1=9,即数列{y n }的前9项和为9.7.(2018·四川成都石室中学模拟)若f (x )=x m +ax 的导函数为f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f (n )(n ∈N *)的前n 项和为( ) A.n n +1 B .n +2n +1C.n n -1D .n +1n解析:选A 因为f (x )=x m +ax ,所以f ′(x )=mx m -1+a .又因为f ′(x )=2x +1,所以m =2,a =1,所以f (n )=n 2+n =n (n +1),所以1f (n )=1n (n +1)=1n -1n +1,所以数列⎩⎨⎧⎭⎬⎫1f (n )的前n 项和为1f (1)+1f (2)+…+1f (n )=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1.故选A.8.(2018·河南新乡模拟)若数列{a n +1-a n }是等比数列,且a 1=1,a 2=2,a 3=5,则a n=________.解析:∵a 2-a 1=1,a 3-a 2=3,∴q =3,∴a n +1-a n =3n -1,∴a n -a 1=a 2-a 1+a 3-a 2+…+a n -1-a n -2+a n -a n -1=1+3+…+3n -2=3n -1-12,∵a 1=1,∴a n =3n -1+12.答案:3n -1+129.(2018·广东潮州模拟)已知S n 为数列{a n }的前n 项和,a n =2·3n -1(n ∈N *),若b n =a n +1S n S n +1,则b 1+b 2+…+b n =________.解析:由a n =2·3n -1可知数列{a n }是以2为首项,3为公比的等比数列,所以S n =2(1-3n )1-3=3n-1,则b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1,则b 1+b 2+…+b n =⎝⎛⎭⎫1S 1-1S 2+⎝⎛⎭⎫1S 2-1S 3+…+⎝⎛⎭⎪⎫1S n -1S n +1=1S 1-1S n +1=12-13n +1-1.答案:12-13n +1-110.(2018·安徽六安一中段测)已知f (x )是定义在R 上不恒为零的函数,对于任意的x ,y ∈R 都有f (xy )=xf (y )+yf (x )成立,数列{a n }满足a n =f (3n )(n ∈N *),且a 1=3,则数列{a n }的通项公式a n =________.解析:因为a n =f (3n ),所以a n +1=f (3n +1)且a 1=3=f (3).又因为对于任意的x ,y ∈R 都有f (xy )=xf (y )+yf (x )成立,所以令x =3n ,y =3,则f (3n +1)=3n f (3)+3f (3n ),所以a n +1=3a n +3·3n,所以a n +13n +1-a n 3n =1,所以⎩⎨⎧⎭⎬⎫a n 3n 是以1为首项,1为公差的等差数列,所以a n3n =1+(n-1)×1=n ,所以a n =n ·3n .答案:n ·3n[大题常考题点——稳解全解]1.(2018·山西八校联考)已知等比数列{a n }的公比q >1,a 1=1,且2a 2,a 4,3a 3成等差数列.(1)求数列{a n }的通项公式;(2)记b n =2na n ,求数列{b n }的前n 项和T n .解:(1)由2a 2,a 4,3a 3成等差数列可得2a 4=2a 2+3a 3, 即2a 1q 3=2a 1q +3a 1q 2, 又q >1,a 1=1,故2q 2=2+3q , 即2q 2-3q -2=0,得q =2,因此数列{a n }的通项公式为a n =2n -1. (2)b n =2n ×2n -1=n ×2n ,T n =1×2+2×22+3×23+…+n ×2n ,① 2T n =1×22+2×23+3×24+…+n ×2n +1.② ①-②得-T n =2+22+23+…+2n -n ×2n +1, -T n =2(2n -1)2-1-n ×2n +1,T n =(n -1)×2n +1+2.2.(2017·山东高考)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2. (1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2),…,P n +1(x n +1,n +1)得到折线P 1P 2…P n +1,求由该折线与直线y =0,x =x 1,x =x n +1所围成的区域的面积T n .解:(1)设数列{x n }的公比为q ,由已知得q >0.由题意得⎩⎪⎨⎪⎧x 1+x 1q =3,x 1q 2-x 1q =2.所以3q 2-5q -2=0.因为q >0,所以q =2,x 1=1,因此数列{x n }的通项公式为x n =2n -1.(2)过P 1,P 2,…,P n +1向x 轴作垂线,垂足分别为Q 1,Q 2,…,Q n +1.由(1)得x n +1-x n =2n-2n -1=2n -1,记梯形P n P n +1Q n +1Q n 的面积为b n ,由题意得b n =(n +n +1)2×2n -1=(2n +1)×2n -2,所以T n =b 1+b 2+…+b n =3×2-1+5×20+7×21+…+(2n -1)×2n -3+(2n +1)×2n -2.①又2T n =3×20+5×21+7×22+…+(2n -1)×2n -2+(2n +1)×2n -1.② ①-②得-T n =3×2-1+(2+22+…+2n -1)-(2n +1)×2n -1=32+2(1-2n -1)1-2-(2n +1)×2n -1. 所以T n =(2n -1)×2n +12.3.(2018·河北二市联考)在等比数列{a n }中,a n >0(n ∈N *),a 1a 3=4,且a 3+1是a 2和a 4的等差中项,若b n =log 2a n +1.(1)求数列{b n }的通项公式; (2)若数列{c n }满足c n =a n +1+1b 2n -1·b 2n +1,求数列{c n }的前n 项和.解:(1)设等比数列{a n }的公比为q ,且q >0, 在等比数列{a n }中,由a n >0,a 1a 3=4得,a 2=2,① 又a 3+1是a 2和a 4的等差中项, 所以2(a 3+1)=a 2+a 4,②把①代入②得,2(2q +1)=2+2q 2, 解得q =2或q =0(舍去), 所以a n =a 2q n -2=2n -1, 则b n =log 2a n +1=log 22n =n . (2)由(1)得,c n =a n +1+1b 2n -1·b 2n +1=2n +1(2n -1)(2n +1)=2n+12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以数列{c n }的前n 项和S n =2+22+…+2n +12⎣⎢⎡⎦⎥⎤(1-13)+⎝⎛⎭⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =2(1-2n )1-2+12⎝ ⎛⎭⎪⎫1-12n +1 =2n +1-2+n2n +1.4.(2018·河北定州中学阶段性检测)已知数列{a n }的前n 项和为S n ,且S n =n 22+3n2.(1)求数列{a n }的通项公式; (2)若数列{b n }满足b n =a n +2-a n +1a n +2·a n,且数列{b n }的前n 项和为T n ,求证:T n <2n +512. 解:(1)因为S n =n 22+3n2,①所以当n ≥2时,S n -1=(n -1)22+3(n -1)2,②所以由①②两式相减得a n =S n -S n -1=n 22+3n 2-(n -1)22-3(n -1)2=n +1.又因为n =1时,a 1=S 1=2适合a n =n +1, 所以a n =n +1.(2)证明:由(1)知b n =n +3-(n +1)+1(n +3)(n +1)=2+12⎝ ⎛⎭⎪⎫1n +1-1n +3,所以T n =b 1+b 2+b 3+…+b n=2n +12⎝ ⎛⎭⎪⎫12-14+13-15+…+1n +1-1n +3 =2n +12⎝ ⎛⎭⎪⎫12+13-1n +2-1n +3=2n +512-12⎝ ⎛⎭⎪⎫1n +2+1n +3<2n +512.。
2018-2019学年高中新创新一轮复习理数通用版:课时达标检测(五十二) 排列、组合 Word版含解析
课时达标检测(五十二)排列、组合[小题对点练——点点落实]对点练(一)两个计数原理1.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一个有序整数对(x,y)作为一个点的坐标,则这样的点的个数是()A.9B.14C.15 D.21解析:选B当x=2时,x≠y,点的个数为1×7=7个.当x≠2时,由P⊆Q,∴x=y,∴x可从3,4,5,6,7,8,9中取,有7种方法,因此满足条件的点的个数是7+7=14.2.(2018·云南调研)设集合A={-1,0,1},集合B={0,1,2,3},定义A*B={(x,y)|x∈A∩B,y∈A∪B},则A*B中元素的个数是()A.7 B.10C.25D.52解析:选B因为集合A={-1,0,1},集合B={0,1,2,3},所以A∩B={0,1},A∪B={-1,0,1,2,3},所以x有2种取法,y有5种取法,所以根据分步乘法计数原理得有2×5=10(个).3.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友一本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种解析:选B赠送1本画册,3本集邮册.需从4人中选取1人赠送画册,其余赠送集邮册,有4种方法.赠送2本画册,2本集邮册,只需从4人中选出2人赠送画册,其余2人赠送集邮册,有6种方法.由分类加法计数原理,不同的赠送方法有4+6=10(种).4.(2018·绍兴模拟)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为() A.243 B.252C.261 D.279解析:选B0,1,2,…,9共能组成9×10×10=900个三位数,其中无重复数字的三位数有9×9×8=648个,∴有重复数字的三位数的个数为900-648=252.5.有4件不同颜色的衬衣,3件不同花样的裙子,另有2套不同样式的连衣裙.需选择一套服装参加“五一”节歌舞演出,则不同的选择方式种数为()A.24 B.14C.10 D.9解析:选B第一类:一件衬衣,一件裙子搭配一套服装有4×3=12种方式;第二类:选2套连衣裙中的一套服装有2种选法,由分类加法计数原理,共有12+2=14种选择方式.6.如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,则不同的染色方法总数为________.解析:先染顶点S,有5种染法,再染顶点A有4种染法,染顶点B有3种染法,顶点C的染法有两类:若C与A同色,则顶点D有3种染法;若C与A不同色,则C有2种染法,D有2种染法,所以共有5×4×3×3+5×4×3×2×2=420种染色方法.答案:420对点练(二)排列、组合问题1.(2018·福建漳州八校联考)有六人排成一排,其中甲只能在排头或排尾,乙、丙两人必须相邻,则满足要求的排法有()A.34种B.48种C.96种D.144种解析:选C特殊元素优先安排,先让甲从头、尾中选取一个位置,有C12种选法,乙、丙相邻,捆绑在一起看作一个元素,与其余三个元素全排列,最后乙、丙可以换位,故共有C12·A44·A22=96种排法,故选C.2.将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么互不相同的安排方法的种数为()A.10 B.20C.30 D.40解析:选B将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么必然是一个宿舍2名,而另一个宿舍3名,共有C35C22A22=20(种).3.“住房”“医疗”“教育”“养老”“就业”成为现今社会关注的五个焦点.小赵想利用国庆节假期调查一下社会对这些热点的关注度.若小赵准备按照顺序分别调查其中的4个热点,则“住房”作为其中的一个调查热点,但不作为第一个调查热点的种数为()A.13 B.24C.18 D.72解析:选D可分三步:第一步,先从“医疗”“教育”“养老”“就业”这4个热点中选出3个,有C34种不同的选法;第二步,在调查时,“住房”安排的顺序有A13种可能情况;第三步,其余3个热点调查的顺序有A33种排法.根据分步乘法计数原理可得,不同调查顺序的种数为C34A13A33=72.4.(2017·舟山二模)将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的分配方案共有()A.18种B.24种C.36种D.72种解析:选C1个路口3人,其余路口各1人的分配方法有C13A33种.1个路口1人,2个路口各2人的分配方法有C23A33种,由分类加法计数原理知,甲、乙在同一路口的分配方案为C13A33+C23A33=36(种).5.(2018·豫南九校联考)某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有()A.72种B.36种C.24种D.18种解析:选B A12(C23C13+C13C23)=36(种).6.7位身高均不等的同学排成一排照相,要求中间最高,依次往两端身高逐渐降低,共有________种排法.解析:先排最中间位置有1种排法,再排左边3个位置,由于顺序一定,共有C36种排法,再排剩下右边三个位置,共1种排法,所以排法种数为C36=20.答案:207.把座位编号为1,2,3,4,5的五张电影票全部分给甲、乙、丙、丁四个人,每人至少一张,至多两张,且分得的两张票必须是连号,那么不同的分法种数为________(用数字作答).解析:先将票分为符合条件的4份,由题意,4人分5张票,且每人至少一张,至多两张,则三人每人一张,一人2张,且分得的票必须是连号,相当于将1,2,3,4,5这五个数用3个板子隔开,分为四部分且不存在三连号.在4个空位插3个板子,共有C34=4种情况,再对应到4个人,有A44=24种情况,则共有4×24=96种情况.答案:968.若把英语单调“good”的字母顺序写错了,则可能出现的错误种数共有________种.解析:把g,o,o,d 4个字母排一行,可分两步进行,第一步:排g和d,共有A24种排法;第二步:排两个o,共1种排法,所以总的排法种数为A24=12种.其中正确的有一种,所以错误的共A24-1=12-1=11(种).答案:11[大题综合练——迁移贯通]1.从4名男同学中选出2人,6名女同学中选出3人,并将选出的5人排成一排.(1)共有多少种不同的排法?(2)若选出的2名男同学不相邻,共有多少种不同的排法?(用数字表示)解:(1)从4名男生中选出2人,有C24种选法,从6名女生中选出3人,有C36种选法,根据分步乘法计数原理知选出5人,再把这5个人进行排列共有C24C36A55=14 400(种).(2)在选出的5个人中,若2名男生不相邻,则第一步先排3名女生,第二步再让男生插空,根据分步乘法计数原理知共有C24C36A33A24=8 640(种).2.有5个男生和3个女生,从中选出5人担任5门不同学科的科代表,求分别符合下列条件的选法数:(1)有女生但人数必须少于男生;(2)某女生一定担任语文科代表;(3)某男生必须包括在内,但不担任数学科代表;(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.解:(1)先选后排,可以是2女3男,也可以是1女4男,先选有C35C23+C45C13种情况,后排有A55种情况,则符合条件的选法数为(C35C23+C45C13)·A55=5 400.(2)除去该女生后,先选后排,则符合条件的选法数为C47·A44=840.(3)先选后排,但先安排该男生,则符合条件的选法数为C47·C14·A44=3 360.(4)先从除去该男生该女生的6人中选3人有C36种情况,再安排该男生有C13种情况,选出的3人全排有A33种情况,则符合条件的选法数为C36·C13·A33=360.3.有编号分别为1,2,3,4的四个盒子和四个小球,把小球全部放入盒子.(1)共有多少种放法?(2)恰有一个空盒,有多少种放法?(3)恰有2个盒子内不放球,有多少种放法?解:(1)∵1号球可放入任意一个盒子内,有4种放法.同理,2,3,4号小球也各有4种放法,∴共有44=256种放法.(2)恰有一个空盒,则这4个盒子中只有3个盒子内有小球,且小球数只能是1,1,2. 先从4个小球中任选2个放在一起,有C 24种方法,然后与其余2个小球看成三组,分别放入4个盒子中的3个盒子中,有A 34种放法.∴由分步乘法计数原理知共有C 24A 34=144种不同的放法.(3)恰有2个盒子内不放球,也就是把4个小球只放入2个盒子内,有两类放法: ①一个盒子内放1个球,另一个盒子内放3个球.先把小球分为两组,一组1个,另一组3个,有C 14种分法,再放到2个盒子内,有A 24种放法,共有C 14A 24种放法;②把4个小球平均分成2组,每组2个,有C 242种分法,放入2个盒子内,有A 24种放法,共有12C 24A 24种放法. ∴由分类加法计数原理知共有C 14A 24+12C 24A 24=84种不同的放法.。
2018-2019学年高中新创新一轮复习理数通用版:课时达标检测 对数与对数函数 Word版含解析
课时达标检测(九) 对数与对数函数[小题对点练——点点落实]对点练(一) 对数的运算1.(2018·山西重点协作体模拟)已知log 7[log 3(log 2x )]=0,那么x -12=( )A.13B.36C.33D.24解析:选D 由条件知,log 3(log 2x )=1,∴log 2x =3,∴x =8,∴x -12=24.故选D. 2.(2018·德阳模拟)计算:⎝⎛⎭⎫278-13+log 2(log 216)=________.解析:原式=⎝⎛⎭⎫23-3×⎛⎫⎪⎝⎭13-+log 24=23+2=83.答案:833.(2018·江西百校联盟模拟)已知14a =7b =4c =2,则1a -1b +1c=________.解析:14a =7b =4c =2,则a =log 142,b =log 72,c =log 42,∴1a =log 214,1b =log 27,1c =log 24,∴1a -1b +1c =log 214-log 27+log 24=log 28=3.答案:34.(2018·成都外国语学校模拟)已知2x =3,log 483=y ,则x +2y 的值为________.解析:由2x =3,log 483=y 得x =log 23,y =log 483=12log 283,所以x +2y =log 23+log 283=log 28=3.答案:35.若lg x +lg y =2lg(x -2y ),则xy 的值为________.解析:∵lg x +lg y =2lg(x -2y ), ∴xy =(x -2y )2,即x 2-5xy +4y 2=0, 即(x -y )(x -4y )=0,解得x =y 或x =4y . 又x >0,y >0,x -2y >0, 故x =y 不符合题意,舍去. ∴x =4y ,即xy =4.答案:4对点练(二) 对数函数的图象及应用1.(2018·广东韶关南雄模拟)函数f (x )=x a 满足f (2)=4,那么函数g (x )=|log a (x +1)|的图象大致为( )解析:选C 法一:∵f (2)=4,∴2a =4,解得a =2,∴g (x )=|log 2(x +1)|=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,-log 2(x +1),-1<x <0,∴当x ≥0时,函数g (x )单调递增,且g (0)=0;当-1<x <0时,函数g (x )单调递减.故选C.法二:由f (2)=4,即2a =4得a =2,∴g (x )=|log 2(x +1)|,函数g (x )是由函数y =|log 2x |向左平移一个单位得到的,只有C 项符合,故选C.2.(2018·深圳模拟)已知函数f (x )=|lg x |.若0<a <b ,且f (a )=f (b ),则a +2b 的取值范围是( )A .(22,+∞)B .[22,+∞)C .(3,+∞)D .[3,+∞)解析:选C f (x )=|lg x |的图象如图所示,由题知f (a )=f (b ),则有0<a <1<b ,∴f (a )=|lg a |=-lg a ,f (b )=|lg b |=lg b ,即-lg a =lg b ,则a =1b ,∴a +2b =2b +1b .令g (b )=2b +1b ,g ′(b )=2-1b2,显然当b∈(1,+∞)时,g ′(b )>0,∴g (b )在(1,+∞)上为增函数,∴g (b )=2b +1b>3,故选C.3.设平行于y 轴的直线分别与函数y 1=log 2x 及函数y 2=log 2x +2的图象交于B ,C 两点,点A (m ,n )位于函数y 2=log 2x +2的图象上,如图,若△ABC 为正三角形,则m ·2n =________.解析:由题意知,n =log 2m +2,所以m =2n -2.又BC =y 2-y 1=2,且△ABC 为正三角形,所以可知B (m +3,n -1)在y 1=log 2x 的图象上,所以n -1=log 2(m +3),即m =2n -1-3,所以2n =43,所以m =3,所以m ·2n =3×43=12.答案:124.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________.解析:问题等价于函数y =f (x )与y =-x +a 的图象有且只有一个交点,结合函数图象可知a >1.答案:(1,+∞)对点练(三) 对数函数的性质及应用 1.(2018·湖北孝感统考)函数f (x )=1ln (3x +1)的定义域是( )A.⎝⎛⎭⎫-13,+∞ B.⎝⎛⎭⎫-13,0∪(0,+∞) C.⎣⎡⎭⎫-13,+∞ D .[0,+∞)解析:选B 由⎩⎪⎨⎪⎧3x +1>0,ln (3x +1)≠0,解得x >-13且x ≠0,故选B.2.(2018·河南新乡模拟)设a =60.4,b =log 0.40.5,c =log 80.4,则a ,b ,c 的大小关系是( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析:选B ∵a =60.4>1,b =log 0.40.5∈(0,1),c =log 80.4<0,∴a >b >c .故选B. 3.若log a 23<1(a >0,且a ≠1),则实数a 的取值范围是( )A.⎝⎛⎭⎫0,23 B .(1,+∞) C.⎝⎛⎭⎫0,23∪(1,+∞) D.⎝⎛⎭⎫23,1解析:选C 当0<a <1时,log a 23<log a a =1,∴0<a <23;当a >1时,log a 23<log a a =1,∴a >1.∴实数a 的取值范围是⎝⎛⎭⎫0,23∪(1,+∞). 4.(2018·郴州模拟)设f (x )=lg ⎝⎛⎭⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是( )A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)解析:选A 由f (x )是奇函数可得a =-1,∴f (x )=lg 1+x1-x ,定义域为(-1,1).由f (x )<0,可得0<1+x1-x<1,∴-1<x <0.5.(2018·长沙模拟)若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上单调递减,则a 的取值范围为( )A .[1,2)B .[1,2]C .[1,+∞)D .[2,+∞)解析:选A 令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,其图象的对称轴为x=a ,要使函数f (x )在(-∞,1]上单调递减,则⎩⎪⎨⎪⎧ g (1)>0,a ≥1,即⎩⎪⎨⎪⎧2-a >0,a ≥1,解得1≤a <2,即a∈[1,2),故选A.6.(2018·商丘模拟)已知f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2,则f (x )在区间⎣⎡⎦⎤0,32上的最大值为( ) A .4 B .2 C .6D .8解析:选B ∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2,f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4],∴当x ∈[0,1]时, f (x )是增函数;当x ∈⎝⎛⎦⎤1,32时,f (x )是减函数.故函数f (x )在⎣⎡⎦⎤0,32上的最大值是f (1)=2. 7.(2018·辽宁沈阳模拟)已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm =________.解析:∵f (x )=|log 3x |,正实数m ,n 满足m <n ,且f (m )=f (n ),∴-log 3m =log 3n ,∴mn =1.∵f (x )在区间[m 2,n ]上的最大值为2,函数f (x )在[m 2,1)上是减函数,在(1,n ]上是增函数,∴-log 3m 2=2或log 3n =2.若-log 3m 2=2,得m =13,则n =3,此时log 3n =1,满足题意.那么n m =3÷13=9.同理,若log 3n =2,得n =9,则m =19,此时-log 3m 2=4>2,不满足题意.综上可得nm =9.答案:9[大题综合练——迁移贯通]1.已知函数f (x )=log 21+axx -1(a 为常数)是奇函数.(1)求a 的值与函数f (x )的定义域;(2)若当x ∈(1,+∞)时,f (x )+log 2(x -1)>m 恒成立,求实数m 的取值范围. 解:(1)∵函数f (x )=log 21+axx -1是奇函数,∴f (-x )=-f (x ),∴log 21-ax -x -1=-log 21+ax x -1,即log 2ax -1x +1=log 2x -11+ax ,∴a =1,f (x )=log 21+xx -1.令1+xx -1>0,得⎩⎪⎨⎪⎧ 1+x >0,x -1>0,或⎩⎪⎨⎪⎧1+x <0,x -1<0,解得x <-1或x >1.∴函数f (x )的定义域为{x |x <-1或x >1}. (2)∵f (x )+log 2(x -1)=log 2(1+x ), 当x >1时,x +1>2,∴log 2(1+x )>log 22=1. ∵当x ∈(1,+∞)时,f (x )+log 2(x -1)>m 恒成立, ∴m ≤1.∴m 的取值范围是(-∞,1].2.(2018·枣庄模拟)设x ∈[2,8]时,函数f (x )=12log a (ax )·log a (a 2x )(a >0,且a ≠1)的最大值是1,最小值是-18,求实数a 的值.解:f (x )=12(log a x +1)(log a x +2)=12[(log a x )2+3log a x +2] =12⎝⎛⎭⎫log a x +322-18. 当f (x )取最小值-18时,log a x =-32.∵x ∈[2,8],∴a ∈(0,1). ∵f (x )是关于log a x 的二次函数,∴f (x )的最大值必在x =2或x =8处取得.若12⎝⎛⎭⎫log a 2+322-18=1,则a =2-13, 此时f (x )取得最小值时,x =(2-13)-23=2∉[2,8],舍去;若12⎝⎛⎭⎫log a 8+322-18=1,则a =12, 此时f (x )取得最小值时,x =⎝⎛⎭⎫12-32=22∈[2,8],符合题意.∴a =12. 3.(2018·江西师大附中诊断)已知函数f (x )=log a x +m (a >0且a ≠1)的图象过点(8,2),点P (3,-1)关于直线x =2的对称点Q 在f (x )的图象上.(1)求函数f (x )的解析式;(2)令g (x )=2f (x )-f (x -1),求g (x )的最小值及取得最小值时x 的值. 解:(1)点P (3,-1)关于直线x =2的对称点Q 的坐标为(1,-1).由⎩⎪⎨⎪⎧ f (8)=2,f (1)=-1,得⎩⎪⎨⎪⎧m +log a 8=2,m +log a 1=-1,解得m =-1,a =2,故函数f (x )的解析式为f (x )=-1+log 2x .(2)g (x )=2f (x )-f (x -1)=2(-1+log 2x )-[-1+log 2(x -1)]=log 2x 2x -1-1(x >1),∵x 2x -1=(x -1)2+2(x -1)+1x -1 =(x -1)+1x -1+2≥2(x -1)·1x -1+2=4,当且仅当x -1=1x -1, 即x =2时,“=”成立,而函数y =log 2x 在(0,+∞)上单调递增, 则log 2x 2x -1-1≥log 24-1=1,故当x =2时,函数g (x )取得最小值1.。
2018-2019学年高中新创新一轮复习理数通用版:课时达标检测 二项式定理 Word版含解析
课时达标检测(五十三) 二项式定理[小题对点练——点点落实]对点练(一) 二项式的通项公式及应用) (是的展开式中的常数项10⎝ ⎛⎭⎪⎫x +2x2.二项式1 A .180 B .90 C .45D .360 得,0=k 52-5令,k 52-5x k 10C k 2=k ⎝ ⎛⎭⎪⎫2x2k -01)x ·(k 10C =1+k T 的展开式的通项为10⎝⎛⎭⎪⎫x +2x2A 选:解析180.=210C 22故常数项为,2=k ()=a 则,03的项的系数为32x 的展开式中含5⎝⎛⎭⎪⎫x -a x 已知.2 3A. 3.-B C .6D .-6 -=a 得,03=)a -(15C 由1.=r 解得,32=5-2r 2由,5-2r2x r)a -(r5C =r ⎝ ⎛⎭⎪⎫-a x ·r -5)x (r 5C =1+r T D 选:解析 6.故选D.) (为项的系数3x 的展开式中,含6)x +1(x 在.3 A .30 B .20 C .15D .10 =3x 26C 为的项3x 的展开式中含6)x +1(x ,则r x r 6C =1+r T 项为1+r 的展开式的第6)x +1( C 选解析:15.为,所以系数3x 15 ) (为项的系数3x 展开式中101)+x -2x (.4 A .-210 B .210 C .30D .-30 -x (10C +91)-x (2x 910C -…+)1-x (9)2x (10C -10)2x (010C =101)]-x (-2x [=101)+x -2x ( A 选解析: A.选,故021-=)710C -(10C +89C 910C -项的系数为:3x ,所以含101) ________.=n ,则45是项的系数2x 的展开式中含有n )x 3+1(知已)考山东高·(2017.5 4.=n ∴,45=232n C 为项的系数2x 含有∴,r x r 3r n C =1+r T 的展开式的通项n )x 3+1(解析: 答案:4.________为的值x d 2x ⎠⎛a -2,则3的展开式的第二项的系数为-6⎝ ⎛⎭⎪⎫ax +366. =x d 22x -⎠⎛a ,因此1-=a 得,解3=-5a 16C 36,由5a 16C 36该二项展开式的第二项的系数为解析:.73=83+13=-1-2|x33=x d 2x ⎠⎛-2-1 73答案:.________是的项的系数3x 含的展开式中,8x)-1(+7x)-1(+6x)-1(+5x)-1(在.7 121.-=31)-(38C +31)-(37C +31)-(36C +31)-(35C 项的系数为3x 含展开式中解析: 答案:-121)案用数字填写答(.________为的系数7y 2x 中的展开式8y)+x y)(-x (.8 82-8=68C -78C 的系数为7y 2x ∴,68C ,其系数为-)6y 2y·(x =7y 2x ,78C ,其系数为)7x·(xy =7y 2x 解析:=-20.答案:-20对点练(二) 二项式系数的性质及应用)(为的值m 数,则实36=6a +…+2a +1a 且,6x 6a +…+2x 2a +x 1a +0a =6mx)+1(若.1 A .1或3 B .-3 C .1D .1或-3 …+3a +2a +1a 又.6a +…+2a +1a +0a =6m)+1(得,1=x 令.1=60)+1(=0a 得,0=x 令 D 选解析: 3.-=m 或1=m ∴,62=46=6m)+1(∴,36=6a + )(=7a +…+2a +1a 则,8x 8a +…+2x 2a +x 1a +0a =72x)-1x)(+1(若.2 A .-2 B .-3 C .125D .-131 以,所812-=72)-(7C =8a 又.1=0a 则,0=x 令,2-=8a +…+2a +1a +0a 则,1=x 令 C 选解析:125.=)128-(-1-2-=7a +…+2a +1a 3.(2018·河北省“五校联盟”质量检)(为,则展开式的中间项的系数812为的展开式中,偶数项的二项式系数之和n 2x)-1(式在二项)测 A .-960 B .960 C .1 120D .1 680 的展开式中,二项式系n 2x)-1(在,所以812为根据题意,奇数项的二项式系数之和也应 C 选解析:,41 120x =4x 42)-(48C =5T 且项,5第的展开式的中间项为82x)-1(则,8=n ,625=n 2即,625为数之和即展开式的中间项的系数为1 120,故选C .) (是,则展开式中常数项314的展开式中第三项与第五项的系数之比为n ⎝⎛⎭⎪⎫x2-1x .若4 A .-10 B .10 C .-45D .45,314=C2n C4n ,所以5r 2-n x2r 1)-(r n C =r 2-x r 1)-(·r -n )2·(x r n C =1+r T 为因为展开式的通项公式 D 选解析:45.=81)-(810C =9T 为常数项∴8.=r ∴,0=5r2-02令,5r 2-0·x2r 1)-(·r 10C =1+r T ∴,01=n ∴ ⎝⎛⎭⎪⎪⎫9x -133x .在二项式5.________为的系数x 中,则展开式625为的展开式中,偶数项的二项式系数之和n 所.9=n 得,解625=1-n 2以因为二项式展开式中,偶数项与奇数项的二项式系数之和相等,所解析:,1=r 43-9令.r 43-9x r ⎝ ⎛⎭⎪⎫-13·r -99r 9C =r ⎝ ⎛⎭⎪⎪⎫-133x ·r -9(9x)r 9C =1+r T 为的展开式中,通项9⎝ ⎛⎭⎪⎪⎫9x -133x 以二项式84.=6⎝ ⎛⎭⎪⎫-13×39×69C 的系数为x 中,所以展开式6=r 得解 答案:84⎝ ⎛⎭⎪⎫x -1x .在二项式6.________是项的系数2x 含项的二项式系数最大,则展开式中5第的展开式中恰好n 的展开式的通8⎝ ⎛⎭⎪⎫x -1x ∵8.=n ∴项的二项式系数最大,5第的展开式中恰好n ⎝ ⎛⎭⎪⎫x -1x 在二项式∵解析:56.-=38C 项的系数是-2x 含展开式中∴,3=r 则,2=r 2-8令,2r -8x r 8C r 1)-(=1+r T 为项 答案:-56.____________于的值可能等n 则项系数最大,7第的展开式中,若n y)+x (在.7 系数相等且6T 与7T 若②;21=n ,项31有系数最大,则共7T 仅若①根据题意,分三种情况:解析:11,12,13.于的值可能等n 以所.13=n ,项41有系数相等且最大,则共8T 与7T 若③;11=n ,项21有最大,则共 答案:11,12,13[大题综合练——迁移贯通],求:7x 7a +…+2x 2a +x 1a +0a =72x)-1(知.已1 ;7a +…+2a +1(1)a ;7a +5a +3a +1(2)a ;6a +4a +2a +0(3)a |.7|a +…+|2|a +|1|a +|0(4)|a 解:令x =1,①1.-=7a +6a +5a +4a +3a +2a +1a +0a 则令x =-1,②.73=7a -6a +5a -4a +3a -2a +1a -0a 则 ,1=07C =0a ∵(1) 2.-=7a +…+3a +2a +1a ∴ 1 094.-=-1-372=7a +5a +3a +1a 得,2)÷②-①(2)( 1 093.=-1+372=6a +4a +2a +0a 得,2)÷②+①)((3 |7|a +…+|2|a +|1|a +|0|a ∴小于零,7a ,5a ,3a ,1a 而大于零,6a ,4a ,2a ,0a 中展开式72x)-1(∵(4) )7a +5a +3a +1(a -)6a +4a +2a +0(a = =1 093-(-1 094)=2 187.112.为项的系数x 含,展开式中625为的展开式的二项式系数之和)数是正实m (n )x m +1(知.已2 (1)求m ,n 的值;(2)求展开式中奇数项的二项式系数之和;项的系数.2x 含的展开式中)x -1(n )x m +1(求)(3 m或2=m 得,解211=2m 28C 项的系数为x 含,r2x r m r n C =1+r 8.T =n 得,解625=n 2得由题意可)(1解:=-2(舍去).故m ,n 的值分别为2,8.128.=1-82=8C +68C +48C +28C +08C 展开式中奇数项的二项式系数之和为)(2 ,8)x 2+1x(-8)x 2+1(=)x -1(8)x 2+1(3)( 1 008.=2228C -4248C 的系数为2x 含所以 11.为的系数x 的展开式中)*N ∈n ,m (n 2x)+1(+m x)+1(=)f(x 知.已3 的值;n 的系数取最小值时2x 求)(1 的奇次幂项的系数之和.x 展开式中)x (f 的系数取得最小值时,求2x 当)(2 11.=n 2+m ∴,11=1n 2C +1m C 得由已知)(1解: .错误!+2错误!=错误!)m -1(1+错误!=)1-n (n 2+错误!=2n C 22+2m C 为的系数2x 3.=n ,此时22值的系数取得最小2x 时,5=m ∴,*N ∈m ∵ 3.=n ,5=m 的系数取得最小值时,2x 知,当)(1由)(2 .3)x 2+1(+5)x +1(=)x (f ∴ ,5x 5a +…+2x 2a +x 1a +0a =)x (f 的展开式为)x (f 设,95=33+52=5a +4a +3a +2a +1a +0a ,1=x 令 ,1-=5a -4a +3a -2a +1a -0a ,1-=x 令 30.为的奇次幂项的系数之和x ,故展开式中06=)5a +3a +1a 2(得两式相减。
2018-2019学年高中新创新一轮复习理数通用版:课时达标检测(五十) 统 计 Word版含解析
课时达标检测(五十) 统 计[小题对点练——点点落实]对点练(一) 随机抽样1.某学校为了了解某年高考数学的考试成绩,在高考后对该校1 200名考生进行抽样调查,其中有400名文科考生,600名理科考生,200名艺术和体育类考生,从中抽取120名考生作为样本,记这项调查为①;从10名家长中随机抽取3名参加座谈会,记这项调查为②,则完成①,②这两项调查宜采用的抽样方法依次是( )A .分层抽样法,系统抽样法B .分层抽样法,简单随机抽样法C .系统抽样法,分层抽样法D .简单随机抽样法,分层抽样法解析:选B 在①中,文科考生、理科考生、艺术和体育类考生会存在差异,采用分层抽样法较好;在②中,抽取的样本个数较少,宜采用简单随机抽样法.2.某校高三年级共有学生900人,编号为1,2,3,…,900,现用系统抽样的方法抽取一个容量为45的样本,则抽取的45人中,编号落在[481,720]的人数为( )A .10B .11C .12D .13解析:选C 系统抽样,是抽多少人就把总体分成多少组,于是抽样间隔就是用总体数量除以样本容量:90045=20.于是落在[481,720]内的人数为720-48020=12,故选C. 3.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .93B .123C .137D .167解析:选C 初中部的女教师人数为110×70%=77,高中部的女教师人数为150×(1-60%)=60,该校女教师的人数为77+60=137,故选C.4.高三(3)班共有学生56人,座号分别为1,2,3,…,56,现根据座号,用系统抽样的方法,抽取一个容量为4的样本.已知3号、17号、45号同学在样本中,那么样本中还有一个同学的座号是( )A .30B .31C .32D .33解析:选B由系统抽样的特点,得到样本中的座号形成一个以3为首项,公差为17-3=14的等差数列,则第三个座号是17+14=31.故选B.5.假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你依次写出最先检测的5袋牛奶的编号________________________________________________________________________ (下面摘取了随机数表第7行至第9行).844217533157245506887704744767217633502583921206766301637859169556671998105071751286735807443952387933211234297864560782524207443815510013429966027954解析:找到第8行第7列的数开始向右读,第一个数785,符合条件,第二个数916,舍去,第三个数955,舍去,第四个数667,符合条件,这样依次读出结果.故答案为:785,667,199,507,175.答案:785,667,199,507,1756.一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):A类轿车10辆,则z的值为________.解析:由题意可得50100+300+150+450+z+600=10100+300,解得z=400.答案:4007.(2018·湖北重点中学适应模拟)某校高三年级共有30个班,学校心理咨询室为了了解同学们的心理状况,将每个班编号,依次为1到30,现用系统抽样的方法抽取5个班进行调查,若抽到的编号之和为75,则抽到的最小的编号为________.解析:系统抽样的抽取间隔为305=6,设抽到的最小编号为x,则x+(6+x)+(12+x)+(18+x )+(24+x )=75,所以x =3.答案:3对点练(二) 用样本估计总体1.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设所得分数的中位数为m e ,众数为m 0,平均值为x -,则( )A .m e =m 0=x -B .m e =m 0<x -C .m e <m 0<x -D .m 0<m e <x -解析:选D 由图可知,30名学生的得分情况依次为2个人得3分,3个人得4分,10个人得5分,6个人得6分,3个人得7分,2个人得8分,2个人得9分,2个人得10分.中位数为第15,16个数(分别为5,6)的平均数,即m e =5.5;5出现的次数最多,故m 0=5;x -=(3×2+4×3+5×10+6×6+7×3+8×2+9×2+10×2)÷30≈5.97.于是得m 0<m e <x -.2.如图是某样本数据的茎叶图,则该样本的中位数、众数、极差分别是( )A.32 34 32B .33 45 35C .34 45 32D .33 36 35解析:选B 观察茎叶图,16个数已经按大小顺序列出,从上往下数第8个数和第9个数是最中间两个数,它们是32和34,中位数是它们的平均数:33.再读茎叶图,45出现次数最多,共3次,故为众数.极差等于最大值减最小值:47-12=35.故选B.3.(2017·九江二模)已知一组数据x 1,x 2,…,x n 的方差为2,若数据ax 1+b ,ax 2+b ,…,ax n +b (a >0)的方差为8,则a 的值为( )A .1 B. 2C .2D .4解析:选C 根据方差的性质可知,a 2×2=8,故a =2.4.(2018·湖北黄冈质检)已知数据x 1,x 2,x 3,…,x n 是某市n (n ≥3,n ∈N *)个普通职工的年收入,设这n 个数据的中位数为x ,平均数为y ,方差为z ,如果再加上世界首富的年收入x n +1,则这(n +1)个数据中,下列说法正确的是( )A .年收入平均数可能不变,中位数可能不变,方差可能不变B .年收入平均数大大增大,中位数可能不变,方差变大C .年收入平均数大大增大,中位数可能不变,方差也不变D .年收入平均数大大增大,中位数一定变大,方差可能不变解析:选B ∵数据x 1,x 2,x 3,…,x n 是某市n (n ≥3,n ∈N *)个普通职工的年收入,x n +1为世界首富的年收入,则x n +1远大于x 1,x 2,x 3,…,x n ,故这(n +1)个数据中,年收入平均数大大增大;中位数可能不变,也可能稍微变大;由于数据的集中程度受到x n +1的影响比较大,更加离散,则方差变大.5.为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为( )A .①③B .①④C .②③D .②④解析:选B ∵x 甲=26+28+29+31+315=29, x 乙=28+29+30+31+325=30, ∴x 甲<x 乙,又s 2甲=9+1+0+4+45=185,s 2乙=4+1+0+1+45=2,∴s甲>s乙.故可判断结论①④正确.6.五一期间,某淘宝店趁势推出了“抢红包”的促销活动.已知每人有5次抢红包的机会,每次可得到1元至30元不等的红包.甲、乙二人在这5次抢红包活动中获得的红包金额的茎叶图如图所示.若甲5次获得的红包金额的均值为x1,乙5次获得的红包金额的均值为x2,则x1-x2=________.解析:由茎叶图可知,甲获得的红包金额分别为1,2,12,20,30,乙获得的红包金额分别为1,2,5,10,30,所以甲获得的红包金额的均值x1=1+2+12+20+305=13,乙获得的红包金额的均值x2=1+2+5+10+305=9.6,所以x1-x2=13-9.6=3.4.答案:3.47.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示.(1)直方图中x的值为________;(2)在这些用户中,用电量落在区间[100,250)内的户数为________.解析:(1)由频率分布直方图总面积为1,得(0.001 2+0.002 4×2+0.003 6+x+0.006 0)×50=1,解得x=0.004 4.(2)用电量在[100,250)内的频率为(0.003 6+0.004 4+0.006 0)×50=0.7,故所求户数为100×0.7=70.答案:(1)0.004 4(2)708.已知x是1,2,3,x,5,6,7这七个数据的中位数且1,2,x2,-y这四个数据的平均数为1,则y-1x的最小值为________.解析:由题意1+2+x2-y=4,所以y=x2-1.由中位数定义知,3≤x≤5,所以y-1 x=x2-1-1x.当x∈[3,5]时,函数y=x2-1与y=-1x均为增函数,所以y=x2-1-1x在[3,5]上为增函数,所以⎝⎛⎭⎫y -1x min =8-13=233. 答案:233[大题综合练——迁移贯通]1.(2018·湖北四校联考)某班级准备从甲、乙两人中选一人参加某项比赛,已知在一个学期10次考试中,甲、乙两人的成绩(单位:分)的茎叶图如图所示.你认为选派谁参赛更合适?并说明理由.解:根据茎叶图可知,甲的平均成绩x -甲=79+84+85+87+87+88+93+94+96+9710=89,乙的平均成绩x -乙=75+77+85+88+89+89+95+96+97+9910=89,甲、乙的平均成绩相等. 又甲成绩的方差s 2甲=110[(79-89)2+(84-89)2+(85-89)2+(87-89)2+(87-89)2+(88-89)2+(93-89)2+(94-89)2+(96-89)2+(97-89)2]=30.4,乙成绩的方差s 2乙=110[(75-89)2+(77-89)2+(85-89)2+(88-89)2+(89-89)2+(89-89)2+(95-89)2+(96-89)2+(97-89)2+(99-89)2]=60.6,故甲成绩的方差小于乙成绩的方差,因此选派甲参赛更合适.2.随着移动互联网的发展,与餐饮美食相关的手机应用软件层出不穷.现从使用A 和B 两款订餐软件的商家中分别随机抽取50个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如下:(1)试估计使用A 款订餐软件的50个商家的“平均送达时间”的众数及平均数;(2)根据以上抽样调查数据,将频率视为概率,回答下列问题:①能否认为使用B 款订餐软件“平均送达时间”不超过40分钟的商家达到75%?②如果你要从A和B两款订餐软件中选择一款订餐,你会选择哪款?说明理由.解:(1)依题意可得,使用A款订餐软件的50个商家的“平均送达时间”的众数为55.使用A款订餐软件的50个商家的“平均送达时间”的平均数为15×0.06+25×0.34+35×0.12+45×0.04+55×0.4+65×0.04=40.(2)①使用B款订餐软件“平均送达时间”不超过40分钟的商家的比例估计值为0.04+0.20+0.56=0.80=80%>75%.故可以认为使用B款订餐软件“平均送达时间”不超过40分钟的商家达到75%.②使用B款订餐软件的50个商家的“平均送达时间”的平均数为15×0.04+25×0.2+35×0.56+45×0.14+55×0.04+65×0.02=35<40,所以选B款订餐软件.3.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.解:(1)由频率分布直方图可知,月均用水量在[0,0.5)中的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]中的频率分别为0.08,0.20,0.26,0.06,0.04,0.02.由0.04+0.08+0.5×a+0.20+0.26+0.5×a+0.06+0.04+0.02=1,解得a=0.30.(2)由(1)知100位居民每人的月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计全市30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(3)因为前6组的频率之和为0.04+0.08+0.15+0.20+0.26+0.15=0.88>0.85,而前5组的频率之和为0.04+0.08+0.15+0.20+0.26=0.73<0.85,所以2.5≤x<3.由0.30×(x-2.5)=0.85-0.73,解得x=2.9.所以,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.。
2018-2019学年高中新三维一轮复习数学浙江专版:课时
课时跟踪检测(十六)函数模型及其应用一抓基础,多练小题做到眼疾手快1.某种商品进价为4元/件,当日均零售价为6元/件,日均销售100件,当单价每增加1元,日均销量减少10件,试计算该商品在销售过程中,若每天固定成本为20元,则预计单价为多少时,利润最大()A.8元/件B.10元/件C.12元/件D.14元/件解析:选B设单价为6+x,日均销售量为100-10x,则日利润y=(6+x-4)(100-10x)-20=-10x2+80x+180=-10(x-4)2+340(0<x<10).∴当x=4时,y max=340.即单价为10元/件,利润最大,故选B.2.在某个物理实验中,测量得变量x和变量y的几组数据,如下表:则对x,y最适合的拟合函数是()A.y=2x B.y=x2-1C.y=2x-2 D.y=log2x解析:选D根据x=0.50,y=-0.99,代入计算,可以排除A;根据x=2.01,y=0.98,代入计算,可以排除B、C;将各数据代入函数y=log2x,可知满足题意.故选D.3.(2018·温州十校联考)烟台某中学的研究性小组为了考察长岛县的旅游开发情况,从某码头乘汽艇出发,沿直线方向匀速开往该岛,靠近岛时,绕小岛环行两周后,把汽艇停靠岸边考察,然后又乘汽艇沿原航线提速返回,设t为出发后某一时刻,S为汽艇与码头在时刻t的距离,下列图象能大致表示S=f(t)的函数关系的是()解析:选C因为该汽艇中途停靠岸边考察,此时间段S不变,故排除A、B,因为S 为汽艇与码头在时刻t的距离,其图象能表示S=f(t)的函数关系,而D图表示的不是函数关系,故排除D.故选C.4.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________km.解析:设出租车行驶x km 时,付费y 元, 则y =⎩⎪⎨⎪⎧9,0<x ≤3,8+2.15(x -3)+1,3<x ≤8,8+2.15×5+2.85(x -8)+1,x >8,由y =22.6,解得x =9. 答案:95.已知某矩形广场的面积为4万平方米,则其周长至少为________. 解析:设这个广场的长为x 米, 则宽为40 000x米. 所以其周长为l =2⎝⎛⎭⎫x +40 000x ≥800, 当且仅当x =200时取等号. 答案:800二保高考,全练题型做到高考达标1.某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内通话时间t (分钟)与电话费s (元)的函数关系如图所示,当通话150分钟时,这两种方式电话费相差( )A .10元B .20元C .30元D.403元 解析:选A 依题意可设s A (t )=20+kt ,s B (t )=mt , 又s A (100)=s B (100),∴100k +20=100m ,得k -m =-0.2,于是s A (150)-s B (150)=20+150k -150m =20+150×(-0.2)=-10, 即两种方式电话费相差10元.选A.2.(2018·金华模拟)如图,有一直角墙角,两边的长度足够长,在P 处有一棵树与两墙的距离分别是a m(0<a <12),4 m ,不考虑树的粗细.现在想用16 m 长的篱笆,借助墙角围成一个矩形的花圃ABCD .设此矩形花圃的最大面积为S ,若将这棵树围在花圃内,则函数S =f (a )(单位:m 2)的图象大致是( )解析:选C 设AD 长为x ,则CD 长为16-x , 又因为要将P 点围在矩形ABCD 内, ∴a ≤x ≤12,则矩形ABCD 的面积为x (16-x ), 当0<a ≤8时,当且仅当x =8时,S =64, 当8<a <12时,S =a (16-a ),S =⎩⎪⎨⎪⎧64,0<a ≤8,a (16-a ),8<a <12,分段画出函数图象可得其形状与C 接近,故选C.3.(2018·北京朝阳统一考试)设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正常数).公司决定从原有员工中分流x (0<x <100,x ∈N *)人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2x %.若要保证产品A 的年产值不减少,则最多能分流的人数是( )A .15B .16C .17D .18解析:选B 由题意,分流前每年创造的产值为100t (万元),分流x 人后,每年创造的产值为(100-x )(1+1.2x %)t ,则由⎩⎪⎨⎪⎧0<x <100,x ∈N *,(100-x )(1+1.2x %)t ≥100t ,解得0<x ≤503.因为x ∈N *,所以x 的最大值为16.4.世界人口在过去40年内翻了一番,则每年人口平均增长率是(参考数据lg 2≈ 0.301 0 , 100.007 5≈1.017) ( )A .1.5%B .1.6%C .1.7%D .1.8%解析:选C 设每年人口平均增长率为x ,则(1+x )40=2,两边取以10为底的对数,则40lg(1+x )=lg 2,所以lg(1+x )=lg 240≈0.007 5, 所以100.007 5=1+x ,得1+x =1.017,所以x =1.7%.5.将甲桶中的a 升水缓慢注入空桶乙中,t 分钟后甲桶中剩余的水符合指数衰减曲线y =a e nt .假设过5分钟后甲桶和乙桶的水量相等,若再过m 分钟甲桶中的水只有a8,则m 的值为( )A .7B .8C .9D .10解析:选D 根据题意知12=e 5n ,令18a =a e nt ,即18=e nt ,因为12=e 5n ,故18=e 15n ,比较知t =15,m =15-5=10.6.一艘轮船在匀速行驶过程中每小时的燃料费与速度v 的平方成正比,且比例系数为k ,除燃料费外其他费用为每小时96元.当速度为10海里/小时时,每小时的燃料费是6元.若匀速行驶10海里,当这艘轮船的速度为________海里/小时时,总费用最小.解析:设每小时的总费用为y 元,则y =k v 2+96, 又当v =10时,k ×102=6, 解得k =0.06,所以每小时的总费用y =0.06v 2+96,匀速行驶10海里所用的时间为10v 小时,故总费用为W =10v y =10v (0.06v 2+96)=0.6v +960v≥20.6v ×960v=48, 当且仅当0.6v =960v,即v =40时等号成立. 故总费用最小时轮船的速度为40海里/小时. 答案:407.某厂有许多形状为直角梯形的铁皮边角料(如图),为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图阴影部分)备用,则截取的矩形面积的最大值为________.解析:依题意知:20-x 20=y -824-8,即x =54(24-y ),∴阴影部分的面积S =xy =54(24-y )·y =54(-y 2+24y )=-54 (y -12)2+180.∴当y =12时,S 有最大值为180.答案:1808.某公司为了业务发展制定了一个激励销售人员的奖励方案,在销售额x 为8万元时,奖励1万元.销售额x 为64万元时,奖励4万元.若公司拟定的奖励模型为y =a log 4x +b .某业务员要得到8万元奖励,则他的销售额应为______(万元).解析:依题意得⎩⎪⎨⎪⎧a log 48+b =1,a log 464+b =4,即⎩⎪⎨⎪⎧32a +b =1,3a +b =4.解得a =2,b =-2. ∴y =2log 4x -2,当y =8时,即2log 4x -2=8. x =1 024(万元). 答案:1 0249.如图所示,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE =4米,CD =6米.为合理利用这块钢板,在五边形ABCDE 内截取一个矩形BNPM ,使点P 在边DE 上.(1)设MP =x 米,PN =y 米,将y 表示成x 的函数,求该函数的解析式及定义域;(2)求矩形BNPM 面积的最大值. 解:(1)作PQ ⊥AF 于Q ,所以PQ =(8-y )米, EQ =(x -4)米. 又△EPQ ∽△EDF , 所以EQ PQ =EFFD ,即x -48-y =42.所以y =-12x +10,定义域为{x |4≤x ≤8}.(2)设矩形BNPM 的面积为S 平方米, 则S (x )=xy =x ⎝⎛⎭⎫10-x 2=-12(x -10)2+50, S (x )是关于x 的二次函数,且其图象开口向下,对称轴为x =10,所以当x ∈[4,8]时,S (x )单调递增.所以当x =8米时,矩形BNPM 的面积取得最大值,为48平方米.10.某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件.(1)设一次订购x 件,服装的实际出厂单价为p 元,写出函数p =f (x )的表达式; (2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少? 解:(1)当0<x ≤100时,p =60; 当100<x ≤600时,p =60-(x -100)×0.02=62-0.02x .所以p =⎩⎪⎨⎪⎧60,0<x ≤100,62-0.02x ,100<x ≤600.(2)设利润为y 元,则当0<x ≤100时,y =60x -40x =20x ; 当100<x ≤600时,y =(62-0.02x )x -40x =22x -0.02x 2.所以y =⎩⎪⎨⎪⎧20x ,0<x ≤100,22x -0.02x 2,100<x ≤600. 当0<x ≤100时,y =20x 是单调递增函数, 当x =100时,y 最大,此时y max =20×100=2 000; 当100<x ≤600时,y =22x -0.02x 2=-0.02(x -550)2+6 050, 所以当x =550时,y 最大,此时y max =6 050. 显然6 050>2 000.所以当一次订购550件时,该厂获得利润最大,最大利润为6 050元. 三上台阶,自主选做志在冲刺名校1.(2018·杭州二中联考)如图,P 是正方体ABCD -A 1B 1C 1D 1对角线AC 1上一动点,设AP 的长度为x ,若△PBD 的面积为f (x ),则f (x )的图象大致是( )解析:选A 设正方体的棱长为1,连接AC 交BD 于O ,连接PO ,则PO 是等腰△PBD 的高,故△PBD 的面积为f (x )=12BD ×PO .在三角形PAO 中,PO =PA 2+AO 2-2PA ×AO cos ∠PAO =x 2+12-2x ×22×63,∴f (x )=12×2×x 2+12-2x ×22×63=22x 2-23x +12, 画出其图象,可知A 正确.2.有一种新型的洗衣液,去污速度特别快.已知每投放k (1≤k ≤4,且k ∈R)个单位的洗衣液在装有一定量水的洗衣机中,它在水中释放的浓度y (克/升)随着时间x (分钟)变化的函数关系式近似为y =k ·f (x ),其中f (x )=⎩⎨⎧248-x -1,0≤x ≤4,7-12x ,4<x ≤14.若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液的浓度不低于4克/升时,它才能起到有效去污的作用.(1)若只投放一次k 个单位的洗衣液,当两分钟时水中洗衣液的浓度为3克/升,求k 的值;(2)若只投放一次4个单位的洗衣液,则有效去污时间可达几分钟?(3)若第一次投放2个单位的洗衣液,10分钟后再投放1个单位的洗衣液,则在第12分钟时洗衣液是否还能起到有效去污的作用?请说明理由.解:(1)由题意知k ⎝⎛⎭⎫248-2-1=3,∴k =1.(2)因为k =4,所以y =⎩⎪⎨⎪⎧968-x -4,0≤x ≤4,28-2x ,4<x ≤14.当0≤x ≤4时,由968-x-4≥4,解得-4≤x <8,所以0≤x ≤4.当4<x ≤14时,由28-2x ≥4,解得x ≤12,所以4<x ≤12. 综上可知,当y ≥4时,0≤x ≤12,所以只投放一次4个单位的洗衣液的有效去污时间可达12分钟. (3)在第12分钟时,水中洗衣液的浓度为2×⎝⎛⎭⎫7-12×12+1×⎣⎡⎦⎤248-(12-10)-1=5(克/升),又5>4, 所以在第12分钟时洗衣液还能起到有效去污的作用.。
2018-2019学年高中新创新一轮复习理数通用版:课时达标检测(十一) 函数与方程
课时达标检测(十一) 函数与方程[小题对点练——点点落实]对点练(一) 函数的零点问题1.(2018·河北武邑中学基础训练)方程ln(x +1)-2x =0(x >0)的根存在的大致区间是( )A .(0,1)B .(1,2)C .(2,e)D .(3,4)解析:选B 令f (x )=ln(x +1)-2x ,则f (1)=ln(1+1)-2=ln 2-2<0,f (2)=ln 3-1>0,所以函数f (x )的零点所在大致区间为(1,2).故选B.2.(2018·四川双流中学必得分训练)函数f (x )=2x +2x 的零点所处的区间是( ) A .[-2,-1] B .[-1,0] C .[0,1]D .[1,2]解析:选B f (-2)=2-2+2×(-2)<0,f (-1)=2-1+2×(-1)<0,f (0)=20+0>0,由零点存在性定理知,函数f (x )的零点在区间[-1,0]上.故选B.3.(2018·云南大理州统测)函数f (x )=⎩⎪⎨⎪⎧ln x ,x >0,-x (x +2),x ≤0的零点个数是( )A .0B .1C .2D .3解析:选D 当x >0时,令f (x )=0可得x =1;当x ≤0时,令f (x )=0可得x =-2或x =0.因此函数的零点个数为3.故选D.4.关于x 的方程|x 2-2x |=a 2+1(a >0)的解的个数是( ) A .1 B .2 C .3D .4解析:选B ∵a >0,∴a 2+1>1.而y =|x 2-2x |的图象如图所示,∴y =|x 2-2x |的图象与y =a 2+1的图象总有2个交点,即方程|x 2-2x |=a 2+1(a >0)的解的个数是2.5.函数f (x )=2sin πx -x +1的零点个数为( ) A .4 B .5 C .6D .7解析:选B 令2sin πx -x +1=0,得2sin πx =x -1,令h (x )=2sin πx ,g (x )=x -1,则f (x )=2sin πx -x +1的零点个数问题就转化为函数h (x )与g (x )的图象的交点个数问题.h (x )=2sin πx 的最小正周期为T =2ππ=2,画出两个函数的图象,如图所示,因为h (1)=g (1),h ⎝⎛⎭⎫52>g ⎝⎛⎭⎫52,g (4)=3>2,g (-1)=-2,所以两个函数图象的交点共5个,所以f (x )=2sin πx -x +1的零点个数为5.对点练(二) 函数零点的应用问题1.已知函数f (x )=log 3x +2x -a 在区间(1,2)内有零点,则实数a 的取值范围是( ) A .(-1,-log 32) B .(0,log 52) C .(log 32,1)D .(1,log 34)解析:选C ∵单调函数f (x )=log 3x +2x -a 在区间(1,2)内有零点,∴f (1)·f (2)<0,即(1-a )·(log 32-a )<0,解得log 32<a <1,故选C.2.(2018·甘肃天水一中月考)已知函数f (x )=ln x -ax 2+ax 恰有两个零点,则实数a 的取值范围为( )A .(-∞,0)B .(0,+∞)C .(0,1)∪(1,+∞)D .(-∞,0)∪{1}解析:选C 由题意,显然x =1是函数f (x )的一个零点,取a =-1,则f (x )=ln x +x 2-x ,f ′(x )=2x 2-x +1x =2⎝⎛⎭⎫x -142+78x>0恒成立.则f (x )仅有一个零点,不符合题意,排除A 、D ;取a =1,则f (x )=ln x -x 2+x ,f ′(x )=1-2x 2+x x =(1+2x )(1-x )x,f ′(x )=0得x=1,则f (x )在(0,1)上递增,在(1,+∞)上递减,f (x )max =f (1)=0,即f (x )仅有一个零点,不符合题意,排除B ,故选C.3.已知函数f (x )=⎩⎪⎨⎪⎧sin πx ,0≤x ≤1,log 2 017x ,x >1,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a+b +c 的取值范围是( )A .(1,2 017)B .(1,2 018)C .[2,2 018]D .(2,2 018)解析:选D 作出函数f (x )的图象与直线y =m ,如图所示,不妨设a <b <c ,当0≤x ≤1时,函数f (x )的图象与直线y =m 的交点分别为A ,B ,由正弦曲线的对称性,可得A (a ,m )与B (b ,m )关于直线x =12对称,因此a +b =1,当直线y =m =1时,由log 2 017x =1,解得x =2 017.若满足f (a )=f (b )=f (c ),且a ,b ,c 互不相等,由a <b <c 可得1<c <2 017,因此可得2<a +b +c <2 018,即a +b +c ∈(2,2 018).故选D.4.(2018·孝感模拟)若函数f (x )=(m -2)x 2+mx +(2m +1)的两个零点分别在区间(-1,0)和区间(1,2)内,则实数m 的取值范围是( )A.⎝⎛⎭⎫-12,14B.⎝⎛⎭⎫-14,12 C.⎝⎛⎭⎫14,12D.⎣⎡⎦⎤-14,12 解析:选C 依题意并结合函数f (x )的图象可知,⎩⎪⎨⎪⎧m ≠2,f (-1)·f (0)<0,f (1)·f (2)<0,即⎩⎪⎨⎪⎧m ≠2,[m -2-m +(2m +1)](2m +1)<0,[m -2+m +(2m +1)][4(m -2)+2m +(2m +1)]<0,解得14<m <12.5.(2018·广东七校联合体联考)若函数f (x )=2x +a 2x -2a 的零点在区间(0,1)上,则实数a 的取值范围是( )A.⎝⎛⎭⎫-∞,12 B .(-∞,1) C.⎝⎛⎭⎫12,+∞D .(1,+∞)解析:选C 易知函数f (x )的图象连续,且在(0,1)上单调递增.∴f (0)f (1)=(1-2a )(2+a 2-2a )<0,解得a >12.6.已知x 0是f (x )=⎝⎛⎭⎫12x +1x 的一个零点,x 1∈(-∞,x 0),x 2∈(x 0,0),则( ) A .f (x 1)<0,f (x 2)<0 B .f (x 1)>0,f (x 2)>0 C .f (x 1)>0,f (x 2)<0D .f (x 1)<0,f (x 2)>0解析:选C 在同一坐标系下作出函数f (x )=⎝⎛⎭⎫12x ,f (x )=-1x 的图象(图略),由图象可知当x ∈(-∞,x 0)时,⎝⎛⎭⎫12x >-1x ;当x ∈(x 0,0)时,⎝⎛⎭⎫12x <-1x ,所以当x 1∈(-∞,x 0),x 2∈(x 0,0)时,有f (x 1)>0,f (x 2)<0.7.(2018·龙岩质检)已知f (x )是奇函数,且是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是________.解析:令y =f (2x 2+1)+f (λ-x )=0,则f (2x 2+1)=-f (λ-x )=f (x -λ),因为f (x )是R 上的单调函数,所以2x 2+1=x -λ,即2x 2-x +1+λ=0只有一个实根,则Δ=1-8(1+λ)=0,解得λ=-78.答案:-788.已知函数f (x )=⎩⎪⎨⎪⎧log 2(x +1),x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.解析:函数g (x )=f (x )-m 有3个零点,转化为f (x )-m =0的根有3个,进而转化为y =f (x ),y =m 的交点有3个.画出函数y =f (x )的图象,则直线y =m 与其有3个公共点.又抛物线顶点为(-1,1),由图可知实数m 的取值范围是(0,1).答案:(0,1)[大题综合练——迁移贯通]1.已知a 是正实数,函数f (x )=2ax 2+2x -3-a .如果函数y =f (x )在区间[-1,1]上有零点,求a 的取值范围.解:f (x )=2ax 2+2x -3-a 的对称轴为x =-12a. ①当-12a ≤-1,即0<a ≤12时,须使⎩⎪⎨⎪⎧ f (-1)≤0,f (1)≥0,即⎩⎪⎨⎪⎧a ≤5,a ≥1,∴无解.②当-1<-12a <0,即a >12时,须使⎩⎪⎨⎪⎧ f ⎝⎛⎭⎫-12a ≤0,f (1)≥0,即⎩⎪⎨⎪⎧-12a -3-a ≤0,a ≥1,解得a ≥1,∴a 的取值范围是[1,+∞).2.(2018·德州模拟)已知函数f (x )=-x 2-2x .g (x )=⎩⎪⎨⎪⎧x +14x ,x >0,x +1,x ≤0.(1)求g [f (1)]的值;(2)若方程g [f (x )]-a =0有4个实数根,求实数a 的取值范围. 解:(1)∵f (1)=-12-2×1=-3,∴g [f (1)]=g (-3)=-3+1=-2.(2)令f (x )=t ,则原方程化为g (t )=a ,易知方程f (x )=t 在t ∈(-∞,1)内有2个不同的解,则原方程有4个解等价于函数y =g (t )(t <1)与y =a 的图象有2个不同的交点,作出函数y =g (t )(t <1)的图象,如图所示,由图象可知,当1≤a <54时,函数y =g (t )(t <1)与y =a 有2个不同的交点,即所求a 的取值范围是⎣⎡⎭⎫1,54. 3.(2018·信阳模拟)已知函数f (x )=log 2(2x +1). (1)求证:函数f (x )在(-∞,+∞)上单调递增;(2)若g (x )=log 2(2x -1)(x >0),且关于x 的方程g (x )=m +f (x )在[1,2]上有解,求m 的取值范围.解:(1)证明:∵函数f (x )=log 2(2x +1),任取x 1<x 2,则f (x 1)-f (x 2)=log 2(2x 1+1)-log 2(2x 2+1)=log 22x 1+12x 2+1,∵x 1<x 2,∴0<2x 1+12x 2+1<1,∴log 22x 1+12x 2+1<0,∴f (x 1)<f (x 2),∴函数f (x )在(-∞,+∞)上单调递增. (2)∵g (x )=m +f (x ), ∴m =g (x )-f (x )=log 2(2x -1)-log 2(2x +1) =log 22x -12x +1=log 2⎝⎛⎭⎫1-22x +1,∵1≤x ≤2,∴2≤2x ≤4, ∴log 213≤log 2⎝⎛⎭⎫1-22x +1≤log 235,故m 的取值范围为⎣⎡⎦⎤log 213,log 235.。
2018-2019学年高中新创新一轮复习理数通用版:第六章 数列
第六章⎪⎪⎪数 列第一节 数列的概念与简单表示本节主要包括2个知识点: 1.数列的通项公式; 2.数列的性质.突破点(一) 数列的通项公式[基本知识]1.数列的定义按照一定顺序排列的一列数称为数列.数列中的每一个数叫做这个数列的项,数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第一项(通常也叫做首项).2.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.3.数列的递推公式如果已知数列{a n }的第一项(或前几项),且任何一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个式子来表示,即a n =f (a n -1)(或a n =f (a n -1,a n -2)等),那么这个式子叫做数列{a n }的递推公式.4.S n 与a n 的关系已知数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,这个关系式对任意数列均成立.[基本能力]1.判断题(1)所有数列的第n 项都能使用公式表达.( )(2)根据数列的前几项归纳出数列的通项公式可能不止一个.( ) (3)若已知数列{a n }的递推公式为a n +1=12a n -1,且a 2=1,则可以写出数列{a n }的任何一项.( )(4)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( ) 答案:(1)× (2)√ (3)√ (4)× 2.填空题(1)已知数列{a n }的前4项为1,3,7,15,则数列{a n }的一个通项公式为________. 答案:a n =2n -1(n ∈N *)(2)已知数列{a n }中,a 1=1,a n +1=a n2a n +3,则a 2=________. 答案:15(3)已知S n 是数列{a n }的前n 项和,且S n =n 2+1,则数列{a n }的通项公式是________________.答案:a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2[全析考法]利用数列的前几项求通项数列的前几项中,先看看哪些部分是变化的,哪些是不变的,再探索各项中变化部分与序号间的关系.[例1] (1)(2018·江西鹰潭一中期中)数列1,-4,9,-16,25,…的一个通项公式是( ) A .a n =n 2 B .a n =(-1)n n 2 C .a n =(-1)n +1n 2D .a n =(-1)n (n +1)2(2)(2018·山西太原五中调考)把1,3,6,10,15,…,这些数叫做三角形数,这是因为这些数目的圆点可以排成一个正三角形(如图所示).则第7个三角形数是( ) A .27 B .28 C .29D .30[解析] (1)法一:该数列中第n 项的绝对值是n 2,正负交替的符号是(-1)n +1,故选C. 法二:将n =2代入各选项,排除A ,B ,D ,故选C.(2)观察三角形数的增长规律,可以发现每一项比它的前一项多的点数正好是该项的序号,即a n =a n -1+n (n ≥2).所以根据这个规律计算可知,第7个三角形数是a 7=a 6+7=a 5+6+7=15+6+7=28.故选B.[答案] (1)C (2)B[方法技巧]由数列的前几项求通项公式的思路方法(1)分式形式的数列,分别求分子、分母的通项,较复杂的还要考虑分子、分母的关系.(2)若第n 项和第n +1项正负交错,那么符号用(-1)n 或(-1)n+1或(-1)n-1来调控.(3)对于较复杂数列的通项公式,其项与序号之间的关系不容易发现,这就需要将数列各项的结构形式加以变形,可使用添项、通分、分割等方法,将数列的各项分解成若干个常见数列对应项的“和”“差”“积”“商”后再进行归纳.[提醒] 根据数列的前几项写出数列的一个通项公式利用了不完全归纳法,其蕴含着“从特殊到一般”的思想,由不完全归纳得出的结果是不可靠的,要注意代值检验.利用an 与S n 的关系求通项数列{a n }的前n 项和S n 与通项a n 的关系为a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,通过纽带:a n =S n-S n -1(n ≥2),根据题目已知条件,消掉a n 或S n ,再利用特殊形式(累乘或累加)或通过构造成等差数列或者等比数列求解.[例2] 已知数列{a n }的前n 项和为S n . (1)若S n =(-1)n +1·n ,求a 5+a 6及a n ;(2)若S n =3n +2n +1,求a n .[解] (1)a 5+a 6=S 6-S 4=(-6)-(-4)=-2, 当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=(-1)n +1·n -(-1)n ·(n -1)=(-1)n +1·[n +(n -1)]=(-1)n +1·(2n -1),又a 1也适合此式,所以a n =(-1)n +1·(2n -1).(2)因为当n =1时,a 1=S 1=6;当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2·3n -1+2,由于a 1不适合此式,所以a n =⎩⎪⎨⎪⎧6,n =1,2·3n -1+2,n ≥2.[方法技巧]已知S n 求a n 的三个步骤(1)先利用a 1=S 1求出a 1.(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式.(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.[例3] (1)n 1n +1n n (2)在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2),求数列{a n }的通项公式. (3)在数列{a n }中a 1=1,a n +1=3a n +2,求数列{a n }的通项公式. (4)已知数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式. [解] (1)因为a n +1-a n =3n +2, 所以a n -a n -1=3n -1(n ≥2),所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n (3n +1)2(n ≥2).当n =1时,a 1=2=12×(3×1+1),符合上式,所以a n =32n 2+n 2.(2)因为a n =n -1n a n -1(n ≥2), 所以a n -1=n -2n -1a n -2,…,a 2=12a 1.由累乘法可得a n =a 1·12·23·…·n -1n =a 1n =1n (n ≥2).又a 1=1符合上式,∴a n =1n .(3)因为a n +1=3a n +2,所以a n +1+1=3(a n +1),所以a n +1+1a n +1=3,所以数列{a n +1}为等比数列,公比q =3.又a 1+1=2,所以a n +1=2·3n -1,所以a n =2·3n -1-1.(4)∵a n +1=2a na n +2,a 1=1,∴a n ≠0, ∴1a n +1=1a n +12,即1a n +1-1a n =12, 又a 1=1,则1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12,∴a n =2n +1(n ∈N *).[方法技巧] 典型的递推数列及处理方法[全练题点]1.[考点一](2018·湖南衡阳二十六中期中)在数列1,1,2,3,5,8,x,21,34,55,…中,x 的值为( )A .11B .12C .13D .14解析:选C 观察所给数列的项,发现从第3项起,每一项都是与它相邻的前两项的和,所以x =5+8=13,故选C.2.[考点一]数列1,-58,715,-924,…的一个通项公式是( )A .a n =(-1)n +12n -1n 2+n(n ∈N *) B .a n =(-1)n-12n +1n 3+3n (n ∈N *) C .a n =(-1)n +12n -1n 2+2n (n ∈N *) D .a n =(-1)n-12n +1n 2+2n(n ∈N *) 解析:选D 所给数列各项可写成:31×3,-52×4,73×5,-94×6,…,通过对比各选项,可知选D.3.[考点二](2018·黑龙江双鸭山一中期末)已知数列{a n }的前n 项和为S n ,若S n =2a n -4,n ∈N *,则a n =( )A .2n +1B .2nC .2n -1D .2n -2解析:选A 因为S n =2a n -4,所以n ≥2时,有S n -1=2a n -1-4, 两式相减可得S n -S n -1=2a n -2a n -1,即a n =2a n -2a n -1,整理得a n =2a n -1,即a na n -1=2(n ≥2).因为S 1=a 1=2a 1-4,所以a 1=4,所以a n =2n +1.4.[考点三](2018·山东潍坊期中)在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ,则a n =( ) A .2+ln n B .2+(n -1)ln n C .2+n ln nD .1+n +ln n解析:选A 法一:由已知得a n +1-a n =ln ⎝⎛⎭⎫1+1n =ln n +1n ,而a n =(a n -a n -1)+(a n -1+a n -2)+…+(a 2-a 1)+a 1,n ≥2,所以a n =ln n n -1+ln n -1n -2+…+ln 21+2=ln ⎝⎛⎭⎪⎫n n -1·n -1n -2·…·21+2=ln n +2,n ≥2.当n =1时,a 1=2=ln 1+2.故选A. 法二:由a n =a n -1+ln ⎝⎛⎭⎫1+1n -1=a n -1+ln nn -1=a n -1+ln n -ln(n -1)(n ≥2),可知a n-ln n =a n -1-ln(n -1)(n ≥2).令b n =a n -ln n ,则数列{b n }是以b 1=a 1-ln 1=2为首项的常数列,故b n =2,所以2=a n -ln n ,所以a n =2+ln n .故选A.突破点(二) 数列的性质[基本知识]数列的分类[基本能力](1)已知函数f (x )=x -1x ,设a n =f (n )(n ∈N *),则{a n }是________数列(填“递增”或“递减”).答案:递增(2)数列{a n }的通项公式为a n =-n 2+9n ,则该数列第________项最大.答案:4或5(3)现定义a n =5n +⎝⎛⎭⎫15n ,其中n ∈N *,则{a n }是_______数列(填“递增”或“递减”). 答案:递增(4)对于数列{a n },“a n +1>|a n |(n =1,2,…)”是“{a n }为递增数列”的____________条件. 答案:充分不必要[全析考法](1)数,所以在求数列中的最大(小)项时,应注意数列中的项可以是相同的,故不应漏掉等号.(2)数列是自变量不连续的函数,不能对数列直接求导判断单调性.要先写出数列对应的函数,对函数进行求导,再将函数的单调性对应到数列中去.[例1] (1)已知数列{a n }的通项公式为a n =n ⎝⎛⎭⎫23n ,则数列{a n }中的最大项为( ) A.89 B .23C.6481D .125243(2)已知数列{a n }的通项公式为a n =2n 2+tn +1,若{a n }是单调递增数列,则实数t 的取值范围是( )A .(-6,+∞)B .(-∞,-6)C .(-∞,-3)D .()-3,+∞[解析] (1)法一(作差比较法):a n +1-a n =(n +1)⎝⎛⎭⎫23n +1-n ⎝⎛⎭⎫23n =2-n 3·⎝⎛⎭⎫23n , 当n <2时,a n +1-a n >0,即a n +1>a n ; 当n =2时,a n +1-a n =0,即a n +1=a n ; 当n >2时,a n +1-a n <0,即a n +1<a n . 所以a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,所以数列{a n }中的最大项为a 2或a 3,且a 2=a 3=2×⎝⎛⎭⎫232=89.故选A.法二(作商比较法):a n +1a n =(n +1)⎝⎛⎭⎫23n +1n ⎝⎛⎭⎫23n =23⎝⎛⎭⎫1+1n , 令a n +1a n >1,解得n <2;令a n +1a n=1,解得n =2; 令a n +1a n<1,解得n >2. 又a n >0,故a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,所以数列{a n }中的最大项为a 2或a 3,且a 2=a 3=2×⎝⎛⎭⎫232=89.故选A. (2)法一:因为{a n }是单调递增数列, 所以对于任意的n ∈N *,都有a n +1>a n , 即2(n +1)2+t (n +1)+1>2n 2+tn +1, 化简得t >-4n -2,所以t >-4n -2对于任意的n ∈N *都成立, 因为-4n -2≤-6,所以t >-6.故选A.法二:设f (n )=2n 2+tn +1,其图象的对称轴为n =-t 4,要使{a n }是递增数列,则-t 4<1+22,即t >-6.故选A. [答案] (1)A (2)A [方法技巧]1.判断数列单调性的两种方法 (1)作差比较法a n +1-a n >0⇔数列{a n }是单调递增数列;a n +1-a n <0⇔数列{a n }是单调递减数列;a n +1-a n =0⇔数列{a n }是常数列.(2)作商比较法a n <0时①a n +1a n>1⇔数列{a n }是单调递减数列;②a n +1a n<1⇔数列{a n }是单调递增数列; ③a n +1a n=1⇔数列{a n }是常数列 (1)利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2)找到数列的最大项;(2)利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1(n ≥2)找到数列的最小项.数列的周期性通常是求出数列的前n 项观察规律.确定出数列的一个周期,然后再解决相应的问题.[例2] (1)(2018·黄冈质检)已知数列{x n }满足x n +2=|x n +1-x n |(n ∈N *),若x 1=1,x 2=a (a ≤1,a ≠0),且x n +3=x n 对于任意的正整数n 均成立,则数列{x n }的前2 017项和S 2 017=( )A .672B .673C .1 342D .1 345(2)(2018·广东四校联考)数列{a n }满足a 1=2,a n +1=11-a n (n ∈N *),则a 2 018=( )A .-2B .-1C .2D .12[解析] (1)∵x 1=1,x 2=a (a ≤1,a ≠0),∴x 3=|x 2-x 1|=|a -1|=1-a ,∴x 1+x 2+x 3=1+a +(1-a )=2,又x n +3=x n 对于任意的正整数n 均成立,∴数列{x n }的周期为3,所以数列{x n }的前2 017项和S 2 017=S 672×3+1=672×2+1=1 345.故选D.(2)数列{a n }满足a 1=2,a n +1=11-a n (n ∈N *),∴a 2=11-2=-1,a 3=11-(-1)=12,a 4=11-12=2,…,可知此数列有周期性,周期T =3,即a n +3=a n ,则a 2 018=a 672×3+2=a 2=-1.故选B.[答案] (1)D (2)B [方法技巧]周期数列的常见形式与解题方法(1)周期数列的常见形式①利用三角函数的周期性,即所给递推关系中含有三角函数; ②相邻多项之间的递推关系,如后一项是前两项的差;③相邻两项的递推关系,等式中一侧含有分式,又较难变形构造出特殊数列. (2)解决此类题目的一般方法根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n 项的和.[全练题点]1.[考点二](2018·安徽名校联盟考前模拟)在数列{a n }中,若对任意的n ∈N *均有a n +a n +1+a n +2为定值,且a 1=2,a 9=3,a 98=4,则数列{a n }的前100项的和S 100=( )A .132B .299C .68D .99解析:选B 因为对任意的n ∈N *均有a n +a n +1+a n +2为定值,所以a n +a n +1+a n +2=a n+1+a n +2+a n +3,所以a n +3=a n ,所以数列{a n }是周期数列,且周期为3.故a 2=a 98=4,a 3=a 9=3,a 100=a 1=2,所以S 100=33(a 1+a 2+a 3)+a 100=299.故选B.2.[考点一](2018·山东枣庄第八中学阶段性检测)已知数列⎩⎨⎧⎭⎬⎫n +2n ,欲使它的前n 项的乘积大于36,则n 的最小值为( )A .7B .8C .9D .10解析:选B 由数列⎩⎨⎧⎭⎬⎫n +2n 的前n 项的乘积31·42·53·…·n +2n =(n +1)(n +2)2>36,得n 2+3n-70>0,解得n <-10或n >7.又因为n ∈N *,所以n 的最小值为8,故选B.3.[考点一]已知函数f (x )=⎩⎨⎧(3-a )x +2,x ≤2,a9-22+11x x ,x >2(a >0,且a ≠1),若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( )A .(0,1)B .⎣⎡⎭⎫83,3 C .(2,3)D .(1,3)解析:选C 因为{a n }是递增数列,所以⎩⎪⎨⎪⎧3-a >0,a >1,(3-a )×2+2<a 2,解得2<a <3,所以实数a 的取值范围是(2,3).4.[考点二](2018·辽宁重点中学协作体联考)在数列{a n }中,a 1=1,a n +1-a n =sin (n +1)π2,记S n 为数列{a n }的前n 项和,则S 2 018=( )A .0B .2 018C .1 010D .1 009解析:选C 由a 1=1及a n +1-a n =sin (n +1)π2,得a n +1=a n +sin (n +1)π2,所以a 2=a 1+sin π=1,a 3=a 2+sin 3π2=0,a 4=a 3+sin 4π2=0,a 5=a 4+sin 5π2=1,a 6=a 5+sin 6π2=1,a 7=a 6+sin 7π2=0,a 8=a 7+sin 8π2=0,…,可见数列{a n }为周期数列,周期T =4,所以S 2 018=504(a 1+a 2+a 3+a 4)+a 1+a 2=1 010.[全国卷5年真题集中演练——明规律]1.(2015·全国卷Ⅱ)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.解析:∵a n +1=S n +1-S n ,a n +1=S n S n +1,∴S n +1-S n =S n S n +1.∵S n ≠0,∴1S n -1S n +1=1,即1S n +1-1S n =-1.又1S 1=-1,∴⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列.∴1S n=-1+(n-1)×(-1)=-n ,∴S n =-1n.答案:-1n2.(2014·全国卷Ⅱ)数列 {a n }满足 a n +1=11-a n , a 8=2,则a 1 =________. 解析:将a 8=2代入a n +1=11-a n ,可求得a 7=12;再将a 7=12代入a n +1=11-a n,可求得a 6=-1;再将a 6=-1代入a n +1=11-a n,可求得a 5=2;由此可以推出数列{a n }是一个周期数列,且周期为3,所以a 1=a 7=12.答案:123.(2013·全国卷Ⅰ)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =________.解析:当n =1时,由已知S n =23a n +13,得a 1=23a 1+13,即a 1=1;当n ≥2时,由已知得到S n -1=23a n -1+13,所以a n =S n -S n -1=⎝⎛⎭⎫23a n +13-⎝⎛⎭⎫23a n -1+13 =23a n -23a n -1, 所以a n =-2a n -1,所以数列{a n }为以1为首项,以-2为公比的等比数列,所以a n =(-2)n -1.答案:(-2)n -14.(2016·全国卷Ⅲ)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3; (2)求{a n }的通项公式.解:(1)由题意可得a 2=12,a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0得2a n +1(a n +1)=a n (a n +1).因此{a n }的各项都为正数,所以a n +1a n=12.故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1.[课时达标检测][小题对点练——点点落实]对点练(一) 数列的通项公式 1.在数列{a n }中,a 1=1,a n +1=2a n a n +2(n ∈N *),则14是这个数列的( )A .第6项B .第7项C .第8项D .第9项解析:选B 由a n +1=2a n a n +2可得1a n +1=1a n +12,即数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=1为首项,12为公差的等差数列,故1a n=1+(n -1)×12=12n +12,即a n =2n +1,由2n +1=14,解得n =7,故选B.2.(2018·南昌模拟)在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n ≥2,n ∈N *),则a 3a 5的值是( )A.1516B .158 C.34 D .38解析:选C 由已知得a 2=1+(-1)2=2,∴2a 3=2+(-1)3,a 3=12,∴12a 4=12+(-1)4,a 4=3,∴3a 5=3+(-1)5,∴a 5=23,∴a 3a 5=12×32=34.3.(2018·河南郑州一中考前冲刺)数列{a n }满足:a 1=1,且对任意的m ,n ∈N *,都有a m +n =a m +a n +mn ,则1a 1+1a 2+1a 3+…+1a 2 018=( )A.2 0172 018 B .2 0182 019 C.4 0342 018D .4 0362 019解析:选D ∵a 1=1,且对任意的m ,n ∈N *都有a m +n =a m +a n +mn ,∴a n +1=a n +n +1,即a n +1-a n =n +1,用累加法可得a n =a 1+(n -1)(n +2)2=n (n +1)2,∴1a n=2n (n +1)=2⎝⎛⎭⎫1n -1n +1,∴1a 1+1a 2+1a 3+…+1a 2 018=2⎣⎡⎭⎫1-12+12-13+…+12 018-12 019=4 0362 019,故选D.4.(2018·甘肃天水检测)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( ) A .2n -1B .12n -1C.⎝⎛⎭⎫23n -1D .⎝⎛⎭⎫32n -1解析:选D 因为a n +1=S n +1-S n ,所以S n =2a n +1=2(S n +1-S n ),所以S n +1S n=32,所以数列{S n }是以S 1=a 1=1为首项,32为公比的等比数列,所以S n =⎝⎛⎭⎫32n -1.故选D. 5.(2018·兰州模拟)在数列1,2,7,10,13,…中219是这个数列的第________项.解析:数列1,2,7,10,13,…,即数列1,3×1+1,3×2+1,3×3+1,3×4+1,…,∴该数列的通项公式为a n =3(n -1)+1=3n -2,∴3n -2=219=76,∴n =26,故219是这个数列的第26项. 答案:266.(2018·河北冀州中学期中)已知数列{a n }满足a 1=1,且a n =n (a n +1-a n )(n ∈N *),则a 3=________,a n =________.解析:由a n =n (a n +1-a n ),可得a n +1a n=n +1n ,则a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 2a 1·a 1=nn -1×n -1n -2×n -2n -3×…×21×1=n (n ≥2),∴a 3=3.∵a 1=1满足a n =n ,∴a n =n .答案:3 n7.(2018·福建晋江季延中学月考)已知数列{a n }满足a 1+2a 2+3a 3+…+na n =n +1(n ∈N *),则数列{a n }的通项公式为________________.解析:已知a 1+2a 2+3a 3+…+na n =n +1,将n =1代入,得a 1=2;当n ≥2时,将n -1代入得a 1+2a 2+3a 3+…+(n -1)a n -1=n ,两式相减得na n =(n +1)-n =1,∴a n =1n ,∴a n =⎩⎪⎨⎪⎧2,n =1,1n,n ≥2.答案:a n =⎩⎪⎨⎪⎧2,n =1,1n ,n ≥2对点练(二) 数列的性质1.已知数列{a n }的通项公式为a n =9n 2-9n +29n 2-1(n ∈N *).则下列说法正确的是( ) A .这个数列的第10项为2731B.98101是该数列中的项 C .数列中的各项都在区间⎣⎡⎭⎫14,1内 D .数列{a n }是单调递减数列解析:选C a n =9n 2-9n +29n 2-1=(3n -1)(3n -2)(3n -1)(3n +1)=3n -23n +1.令n =10,得a 10=2831.故选项A 不正确,令3n -23n +1=98101,得9n =300,此方程无正整数解,故98101不是该数列中的项.因为a n =3n -23n +1=3n +1-33n +1=1-33n +1,又n ∈N *,所以数列{a n }是单调递增数列,所以14≤a n <1,所以数列中的各项都在区间⎣⎡⎭⎫14,1内,故选项C 正确,选项D 不正确,故选C.2.(2018·湖北黄冈中学期中)已知数列{a n }中,a 1=12,a n +1=1+a n 1-a n ,则a 2 018=( )A .-2B .12C .-13D .3解析:选D ∵a 1=12,∴a 2=1+a 11-a 1=3,a 3=1+a 21-a 2=-2,a 4=1+a 31-a 3=-13,a 5=1+a 41-a 4=12,…,∴数列{a n }是周期数列且周期T =4,∴a 2 018=a 2=3,故选D. 3.(2018·河南郑州质量预测)已知数列{a n }满足a n +1=a n -a n -1(n ≥2),a 1=m ,a 2=n ,S n 为数列{a n }的前n 项和,则S 2 017的值为( )A .2 017n -mB .n -2 017mC .mD .n解析:选C 根据题意计算可得a 3=n -m ,a 4=-m ,a 5=-n ,a 6=m -n ,a 7=m ,a 8=n ,…,因此数列{a n }是以6为周期的周期数列,且a 1+a 2+…+a 6=0,所以S 2 017=S 336×6+1=a 1=m .故选C.4.(2018·安徽淮南模拟)已知{a n }中,a n =n 2+λn ,且{a n }是递增数列,则实数λ的取值范围是( )A .(-2,+∞)B .[-2,+∞)C .(-3,+∞)D .[-3,+∞)解析:选C ∵{a n }是递增数列,∴∀n ∈N *,a n +1>a n ,∴(n +1)2+λ(n +1)>n 2+λn ,化简得λ>-(2n +1),∴λ>-3.故选C.5.(2018·北京海淀区模拟)数列{a n }的通项为a n =⎩⎪⎨⎪⎧2n -1,n ≤4,-n 2+(a -1)n ,n ≥5(n ∈N *),若a 5是{a n }中的最大值,则a 的取值范围是________.解析:当n ≤4时,a n =2n -1单调递增,因此n =4时取最大值,a 4=24-1=15. 当n ≥5时,a n =-n 2+(a -1)n =-⎝⎛⎭⎫n -a -122+(a -1)24.∵a 5是{a n }中的最大值,∴⎩⎪⎨⎪⎧a -12≤5.5,-25+5(a -1)≥15,解得9≤a ≤12.∴a 的取值范围是[9,12].答案:[9,12][大题综合练——迁移贯通]1.(2018·东营模拟)设数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,满足T n=2S n -n 2,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式. 解:(1)令n =1,T 1=2S 1-1,∵T1=S1=a1,∴a1=2a1-1,∴a1=1.(2)n≥2时,T n-1=2S n-1-(n-1)2,则S n=T n-T n-1=2S n-n2-[2S n-1-(n-1)2]=2(S n-S n-1)-2n+1=2a n-2n+1.因为当n=1时,a1=S1=1也满足上式,所以S n=2a n-2n+1(n≥1),当n≥2时,S n-1=2a n-1-2(n-1)+1,两式相减得a n=2a n-2a n-1-2,所以a n=2a n-1+2(n≥2),所以a n+2=2(a n-1+2),因为a1+2=3≠0,所以数列{a n+2}是以3为首项,公比为2的等比数列.所以a n+2=3×2n-1,所以a n=3×2n-1-2,当n=1时也成立,所以a n=3×2n-1-2.2.(2018·浙江舟山模拟)已知S n为正项数列{a n}的前n项和,且满足S n=12a2n+12a n(n∈N*).(1)求a1,a2,a3,a4的值;(2)求数列{a n}的通项公式.解:(1)由S n=12a2n+12a n(n∈N*)可得,a1=12a21+12a1,解得a1=1,a1=0(舍).S2=a1+a2=12a22+12a2,解得a2=2(负值舍去);同理可得a3=3,a4=4.(2)因为S n=12a2n+a n2,①所以当n≥2时,S n-1=12a2n-1+a n-12,②①-②得a n=12(a n-a n-1)+12(a2n-a2n-1),所以(a n-a n-1-1)(a n+a n-1)=0.由于a n+a n-1≠0,所以a n-a n-1=1,又由(1)知a1=1,所以数列{a n}是首项为1,公差为1的等差数列,所以a n=n.3.(2018·山西太原月考)已知等比数列{a n}是递增数列,a2a5=32,a3+a4=12,又数列{b n}满足b n=2log2a n+1,S n是数列{b n}的前n项和.(1)求S n;(2)若对任意n ∈N *,都有S n a n≤S ka k成立,求正整数k 的值.解:(1)因为{a n }是等比数列,则a 2a 5=a 3a 4=32, 又a 3+a 4=12,且{a n }是递增数列, 所以a 3=4,a 4=8,所以q =2,a 1=1, 所以a n =2n -1.所以b n =2log 2a n +1=2log 22n =2n .所以S n =2+4+…+2n =n (2+2n )2=n 2+n . (2)令c n =S n a n=n 2+n2n -1,则c n +1-c n =S n +1a n +1-S n a n =(n +1)(n +2)2n -n (n +1)2n -1=(n +1)(2-n )2n .所以当n =1时,c 1<c 2; 当n =2时,c 3=c 2;当n ≥3时,c n +1-c n <0,即c 3>c 4>c 5>…, 所以数列{c n }中最大项为c 2和c 3.所以存在k =2或3,使得任意的正整数n ,都有S k a k≥S na n.第二节 等差数列及其前n 项和本节主要包括3个知识点:1.等差数列基本量的计算;2.等差数列的基本性质及应用;3.等差数列的判定与证明.突破点(一) 等差数列基本量的计算[基本知识]1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2.[基本能力]1.判断题(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( ) (3)等差数列{a n }的单调性是由公差d 决定的.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) 答案:(1)× (2)√ (3)√ (4)√ 2.填空题(1)已知等差数列{a n },a 5=-20,a 20=-35,则a n =________. 答案:-15-n(2)已知等差数列5,427,347,…,则该数列的第5项为________.答案:217(3)等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6=________. 答案:12(4)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________. 答案:6[全析考法][典例] (1)(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8(2)(2018·安徽江南十校模拟)《九章算术》是我国古代的数学名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知A ,B ,C ,D ,E 五人分5钱,A ,B 两人所得与C ,D ,E 三人所得相同,且A ,B ,C ,D ,E 每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E 所得为( )A.23钱 B .43钱C.56钱 D .32钱(3)(2018·南昌模拟)已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3+S 4=S 5. ①求数列{a n }的通项公式;②令b n =(-1)n -1a n ,求数列{b n }的前2n 项和T 2n .[解析] (1)设等差数列{a n }的首项为a 1,公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧ 2a 1+7d =24,2a 1+5d =16,解得⎩⎪⎨⎪⎧a 1=-2,d =4,故选C. (2)由题意,设A 所得为a -4d ,B 所得为a -3d ,C 所得为a -2d ,D 所得为a -d ,E所得为a ,则⎩⎪⎨⎪⎧5a -10d =5,2a -7d =3a -3d ,解得a =23,故E 所得为23钱.故选A.(3)①设等差数列{a n }的公差为d ,由S 3+S 4=S 5,可得a 1+a 2+a 3=a 5,即3a 2=a 5, 所以3(1+d )=1+4d ,解得d =2. ∴a n =1+(n -1)×2=2n -1. ②由①,可得b n =(-1)n -1·(2n -1).∴T 2n =1-3+5-7+…+(4n -3)-(4n -1) =(-2)×n =-2n .[答案] (1)C (2)A[方法技巧]解决等差数列基本量计算问题的思路(1)在等差数列{a n }中,a 1与d 是最基本的两个量,一般可设出a 1和d ,利用等差数列的通项公式和前n 项和公式列方程(组)求解即可.(2)与等差数列有关的基本运算问题,主要围绕着通项公式a n =a 1+(n -1)d 和前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d ,在两个公式中共涉及五个量:a 1,d ,n ,a n ,S n ,已知其中三个量,选用恰当的公式,利用方程(组)可求出剩余的两个量.[全练题点]1.(2018·武汉调研)已知数列{a n }是等差数列,a 1+a 7=-8,a 2=2,则数列{a n }的公差d 等于( )A .-1B .-2C .-3D .-4解析:选C 法一:由题意可得⎩⎪⎨⎪⎧a 1+(a 1+6d )=-8,a 1+d =2,解得d =-3.法二:a 1+a 7=2a 4=-8,∴a 4=-4, ∴a 4-a 2=-4-2=2d ,∴d =-3.2.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则正整数m 的值为________.解析:因为等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,所以a m =S m-S m -1=2,a m +1=S m +1-S m =3,数列的公差d =1,a m +a m +1=S m +1-S m -1=5,即2a 1+2m -1=5,所以a 1=3-m . 由S m =(3-m )m +m (m -1)2×1=0, 解得正整数m 的值为5. 答案:53.(2018·福州模拟)已知等差数列{a n }的各项均为正数,其公差为2,a 2a 4=4a 3+1. (1)求{a n }的通项公式; (2)求a 1+a 3+a 9+…+a 3n .解:(1)依题意知,a n =a 1+2(n -1),a n >0.因为a 2a 4=4a 3+1,所以(a 1+2)(a 1+6)=4(a 1+4)+1, 所以a 21+4a 1-5=0,解得a 1=1或a 1=-5(舍去), 所以a n =2n -1. (2)a 1+a 3+a 9+…+a 3n=(2×1-1)+(2×3-1)+(2×32-1)+…+(2×3n -1) =2×(1+3+32+…+3n )-(n +1) =2×1-3n +11-3-(n +1)=3n +1-n -2.突破点(二) 等差数列的基本性质及应用[基本知识]等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *). (3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)数列S m ,S 2m -S m ,S 3m -S 2m ,…(m ∈N *)也是等差数列,公差为m 2d .(5)S 2n -1=(2n -1)a n ,S 2n =n (a 1+a 2n )=n (a n +a n +1),遇见S 奇,S 偶时可分别运用性质及有关公式求解.(6){a n },{b n }均为等差数列且其前n 项和为S n ,T n ,则a n b n =S 2n -1T 2n -1.(7)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列,其首项与{a n }的首项相同,公差是{a n }的公差的12.[基本能力](1)(2018·岳阳模拟)在等差数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=________.答案:100(2)设等差数列{a n }的前n 项和为S n ,等差数列{b n }的前n 项和为T n ,若S n T n =n +1n -1,则a 1+a nb 1+b n=________. 答案:n +1n -1(3)(2018·天水模拟)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________.答案:60(4)等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________.解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5.答案:S 5[全析考法][例1] (1)(2018·银川模拟)已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 的值为( )A .8B .12C .6D .4(2)(2018·山西太原模拟)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 8+a 10)=36,则a 6=( ) A .8 B .6 C .4D .3(3)(2018·湖北武汉调研)若等差数列{a n }的前n 项和S n 满足S 4=4,S 6=12,则S 2=( ) A .-1 B .0 C .1D .3[解析] (1)由a 3+a 6+a 10+a 13=32,得(a 3+a 13)+(a 6+a 10)=32,得4a 8=32,∴a 8=8,∴m =8.故选A.(2)由等差数列的性质可知2(a 1+a 3+a 5)+3(a 8+a 10)=2×3a 3+3×2a 9=6×2a 6=36,得a 6=3,故选D.(3)根据等差数列的性质,可得S 2,S 4-S 2,S 6-S 4成等差数列,即2(S 4-S 2)=S 2+S 6-S 4,因此S 2=0.[答案] (1)A (2)D (3)B[方法技巧]利用等差数列性质求解问题的注意点(1)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).因此,若出现a m -n ,a m ,a m +n 等项时,可以利用此性质将已知条件转化为与a m (或其他项)有关的条件;若求a m 项,可由a m =12(a m -n +a m +n )转化为求a m -n ,a m +n 或a m +n +a m -n 的值.(2)要注意等差数列通项公式及前n 项和公式的灵活应用,如a n =a m +(n -m )d ,d =a n -a m n -m,S 2n -1=(2n -1)a n ,S n =n (a 1+a n )2=n (a 2+a n -1)2(n ,m ∈N *)等.[提醒] 一般地,a m +a n ≠a m +n ,等号左、右两边必须是两项相加,当然也可以是a m -n+a m +n =2a m .等差数列前n 项和最值问题n n 差数列前n 项和S n 的最值问题.[例2] 等差数列{a n }的首项a 1>0,设其前n 项和为S n ,且S 5=S 12,则当n 为何值时,S n 有最大值?[解] 设等差数列{a n }的公差为d ,由S 5=S 12得5a 1+10d =12a 1+66d ,d =-18a 1<0.法一(函数法): S n =na 1+n (n -1)2d =na 1+n (n -1)2·⎝⎛⎭⎫-18a 1 =-116a 1(n 2-17n )=-116a 1⎝⎛⎭⎫n -1722+28964a 1, 因为a 1>0,n ∈N *,所以当n =8或n =9时,S n 有最大值. 法二(通项变号法):设此数列的前n 项和最大,则⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎨⎧a 1+(n -1)·⎝⎛⎭⎫-18a 1≥0,a 1+n ·⎝⎛⎭⎫-18a 1≤0,解得⎩⎪⎨⎪⎧n ≤9,n ≥8,即8≤n ≤9, 又n ∈N *,所以当n =8或n =9时,S n 有最大值.[方法技巧]求等差数列前n 项和S n 最值的两种方法(1)函数法利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)通项变号法①a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[全练题点]1.[考点一](2018·陕西咸阳模拟)设等差数列{a n }的前n 项和为S n ,若S 9=54,则a 2+a 4+a 9=( )A .9B .15C .18D .36解析:选C 由等差数列的通项公式及性质,可得S 9=9(a 1+a 9)2=9a 5=54,a 5=6,则a 2+a 4+a 9=a 1+a 5+a 9=3a 5=18.故选C.2.[考点一](2018·辽宁鞍山一中期末)等差数列{a n }的前n 项和为S n ,若m >1,且a m -1+a m +1-a 2m =0,S 2m -1=38,则m 等于( )A .38B .20C .10D .9解析:选C 因为a m -1+a m +1-a 2m =0,所以a m -1+a m +1=2a m =a 2m ,显然a m ≠0,所以a m =2.又因为S 2m -1=(2m -1)(a 1+a 2m -1)2=(2m -1)a m =38.所以将a m =2代入可得(2m -1)×2=38,解得m =10,故选C.3.[考点二](2018·成都模拟)已知等差数列{a n }的前n 项和为S n ,a 4+a 7+a 10=9,S 14-S 3=77,则使S n 取得最小值时n 的值为( )A .4B .5C .6D .7解析:选B 根据等差数列的性质可得a 4+a 7+a 10=3a 7=9,得a 7=3.S 14-S 3=11a 9=77,解得a 9=7,所以等差数列的通项公式为a n =2n -11.当n =6时,a n >0;当n =5时,a n <0,所以使S n 取得最小值的n 的值为5.4.[考点二](2018·吉林长春外国语学校期末)已知等差数列{a n }的前n 项和为S n ,若S 13<0,S 12>0,则在数列中绝对值最小的项为( )A .第5项B .第6项C .第7项D .第8项解析:选C 根据等差数列{a n }的前n 项和公式S n =n (a 1+a n )2,因为⎩⎪⎨⎪⎧S 13<0,S 12>0,所以⎩⎪⎨⎪⎧ a 1+a 13<0,a 1+a 12>0,由⎩⎪⎨⎪⎧ a 1+a 13=2a 7,a 1+a 12=a 6+a 7,得⎩⎪⎨⎪⎧a 7<0,a 6+a 7>0,所以数列{a n }中绝对值最小的项为第7项.突破点(三) 等差数列的判定与证明[全析考法][典例] (2018·n 1n (a n +1-n -1)=(n+1)(a n +n )(n ∈N *).(1)求证数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求其通项公式;(2)设b n =2a n -15,求数列{|b n |}的前n 项和T n . [解] (1)∵n (a n +1-n -1)=(n +1)(a n +n )(n ∈N *),∴na n +1-(n +1)a n =2n (n +1),∴a n +1n +1-a nn=2,∴数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,其公差为2,首项为2,∴a nn =2+2(n -1)=2n .(2)由(1)知a n =2n 2,∴b n =2a n -15=2n -15, 则数列{b n }的前n 项和S n =n (-13+2n -15)2=n 2-14n .令b n =2n -15≤0,解得n ≤7.5.∴当n ≤7时,数列{|b n |}的前n 项和T n =-b 1-b 2-…-b n =-S n =-n 2+14n . 当n ≥8时,数列{|b n |}的前n 项和T n =-b 1-b 2-…-b 7+b 8+…+b n =-2S 7+S n =-2×(72-14×7)+n 2-14n =n 2-14n +98.∴T n =⎩⎪⎨⎪⎧14n -n 2,n ≤7,n 2-14n +98,n ≥8.[方法技巧] 等差数列的判定与证明方法[提醒] 判断时易忽视定义中从第2项起,以后每项与前一项的差是同一常数,即易忽视验证a 2-a 1=d 这一关键条件.[全练题点]1.(2016·浙江高考)如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n+2|,A n ≠A n +2,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n +2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( )A .{S n }是等差数列B .{S 2n }是等差数列C .{d n }是等差数列D .{d 2n }是等差数列解析:选A 由题意,过点A 1,A 2,A 3,…,A n ,A n +1,…分别作直线B 1B n +1的垂线(图略),高分别记为h 1,h 2,h 3,…,h n ,h n +1,…,根据平行线的性质,得h 1,h 2,h 3,…,h n ,h n +1,…成等差数列,又S n =12×|B n B n +1|×h n ,|B n B n +1|为定值,所以{S n }是等差数列.故选A.2.(2018·岳阳模拟)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.解:(1)证明:当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n-1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式.故a n=⎩⎨⎧12,n =1,-12n (n -1),n ≥2.[全国卷5年真题集中演练——明规律] 1.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8解析:选A 设等差数列{a n }的公差为d ,因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23,即(a 1+d )(a 1+5d )=(a 1+2d )2.又a 1=1,所以d 2+2d =0.又d ≠0,则d =-2,所以{a n }前6项的和S 6=6×1+6×52×(-2)=-24.2.(2016·全国卷Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100B .99C .98D .97解析:选C 法一:∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧ a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.故选C.法二:∵{a n }是等差数列,∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.在等差数列{a n }中,a 5,a 10,a 15,…,a 100成等差数列,且公差d ′=a 10-a 5=8-3=5.故a 100=a 5+(20-1)×5=98.故选C.3.(2013·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________.解析:由已知⎩⎨⎧S 10=10a 1+10×92d =0,S15=15a 1+15×142d =25,解得a 1=-3,d =23,那么nS n =n 2a 1+n 2(n -1)2d =n 33-10n 23.由于函数f (x )=x 33-10x 23在x =203处取得极小值,因而检验n =6时,6S 6=-48,而n =7时,7S 7=-49.∴nS n 的最小值为-49.答案:-494.(2014·全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. 解:(1)由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1. 两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1.由(1)知,a 3=λ+1.令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.[课时达标检测][小题对点练——点点落实]对点练(一) 等差数列基本量的计算1.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2-S n =36,则n =( ) A .5 B .6 C .7D .8解析:选D 由题意知S n +2-S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.2.在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为( ) A .37 B .36 C .20D .19解析:选A a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37,∴m =37.故选A. 3.在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n =( )A .n (3n -1)B .n (n +3)2 C .n (n +1)D .n (3n +1)2解析:选C 依题意得a n +1=a n +a 1,即a n +1-a n =a 1=2,所以数列{a n }是以2为首项、2为公差的等差数列,a n =2+2(n -1)=2n ,S n =n (2+2n )2=n (n +1),故选C. 4.(2018·太原一模)在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0 C.14D .12解析:选B 由题知,a 2+a 4=2a 3=2,又∵a 2a 4=34,数列{a n }单调递增,∴a 2=12,a 4=32.∴公差d =a 4-a 22=12.∴a 1=a 2-d =0. 对点练(二) 等差数列的基本性质及应用1.设等差数列{a n }的前n 项和为S n ,且S 9=18,a n -4=30(n >9),若S n =336,则n 的值为( )A .18B .19。
2018-2019学年高中新创新一轮复习理数通用版:第六章 数列 Word版含解析
第六章⎪⎪⎪数 列第一节 数列的概念与简单表示本节主要包括2个知识点: 1.数列的通项公式; 2.数列的性质.突破点(一) 数列的通项公式[基本知识]1.数列的定义按照一定顺序排列的一列数称为数列.数列中的每一个数叫做这个数列的项,数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第一项(通常也叫做首项).2.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.3.数列的递推公式如果已知数列{a n }的第一项(或前几项),且任何一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个式子来表示,即a n =f (a n -1)(或a n =f (a n -1,a n -2)等),那么这个式子叫做数列{a n }的递推公式.4.S n 与a n 的关系已知数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,这个关系式对任意数列均成立.[基本能力]1.判断题(1)所有数列的第n 项都能使用公式表达.( )(2)根据数列的前几项归纳出数列的通项公式可能不止一个.( ) (3)若已知数列{a n }的递推公式为a n +1=12a n -1,且a 2=1,则可以写出数列{a n }的任何一项.( )(4)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( ) 答案:(1)× (2)√ (3)√ (4)× 2.填空题(1)已知数列{a n }的前4项为1,3,7,15,则数列{a n }的一个通项公式为________. 答案:a n =2n -1(n ∈N *)(2)已知数列{a n }中,a 1=1,a n +1=a n2a n +3,则a 2=________. 答案:15(3)已知S n 是数列{a n }的前n 项和,且S n =n 2+1,则数列{a n }的通项公式是________________.答案:a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2[全析考法]利用数列的前几项求通项数列的前几项中,先看看哪些部分是变化的,哪些是不变的,再探索各项中变化部分与序号间的关系.[例1] (1)(2018·江西鹰潭一中期中)数列1,-4,9,-16,25,…的一个通项公式是( ) A .a n =n 2 B .a n =(-1)n n 2 C .a n =(-1)n +1n 2D .a n =(-1)n (n +1)2(2)(2018·山西太原五中调考)把1,3,6,10,15,…,这些数叫做三角形数,这是因为这些数目的圆点可以排成一个正三角形(如图所示).则第7个三角形数是( ) A .27 B .28 C .29D .30[解析] (1)法一:该数列中第n 项的绝对值是n 2,正负交替的符号是(-1)n +1,故选C. 法二:将n =2代入各选项,排除A ,B ,D ,故选C.(2)观察三角形数的增长规律,可以发现每一项比它的前一项多的点数正好是该项的序号,即a n =a n -1+n (n ≥2).所以根据这个规律计算可知,第7个三角形数是a 7=a 6+7=a 5+6+7=15+6+7=28.故选B.[答案] (1)C (2)B[方法技巧]由数列的前几项求通项公式的思路方法(1)分式形式的数列,分别求分子、分母的通项,较复杂的还要考虑分子、分母的关系.(2)若第n 项和第n +1项正负交错,那么符号用(-1)n 或(-1)n+1或(-1)n-1来调控.(3)对于较复杂数列的通项公式,其项与序号之间的关系不容易发现,这就需要将数列各项的结构形式加以变形,可使用添项、通分、分割等方法,将数列的各项分解成若干个常见数列对应项的“和”“差”“积”“商”后再进行归纳.[提醒] 根据数列的前几项写出数列的一个通项公式利用了不完全归纳法,其蕴含着“从特殊到一般”的思想,由不完全归纳得出的结果是不可靠的,要注意代值检验.利用an 与S n 的关系求通项数列{a n }的前n 项和S n 与通项a n 的关系为a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,通过纽带:a n =S n-S n -1(n ≥2),根据题目已知条件,消掉a n 或S n ,再利用特殊形式(累乘或累加)或通过构造成等差数列或者等比数列求解.[例2] 已知数列{a n }的前n 项和为S n . (1)若S n =(-1)n +1·n ,求a 5+a 6及a n ;(2)若S n =3n +2n +1,求a n .[解] (1)a 5+a 6=S 6-S 4=(-6)-(-4)=-2, 当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=(-1)n +1·n -(-1)n ·(n -1)=(-1)n +1·[n +(n -1)]=(-1)n +1·(2n -1),又a 1也适合此式,所以a n =(-1)n +1·(2n -1).(2)因为当n =1时,a 1=S 1=6;当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2·3n -1+2,由于a 1不适合此式,所以a n =⎩⎪⎨⎪⎧6,n =1,2·3n -1+2,n ≥2.[方法技巧]已知S n 求a n 的三个步骤(1)先利用a 1=S 1求出a 1.(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式.(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.[例3] (1)n 1n +1n n (2)在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2),求数列{a n }的通项公式. (3)在数列{a n }中a 1=1,a n +1=3a n +2,求数列{a n }的通项公式. (4)已知数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式. [解] (1)因为a n +1-a n =3n +2, 所以a n -a n -1=3n -1(n ≥2),所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n (3n +1)2(n ≥2).当n =1时,a 1=2=12×(3×1+1),符合上式,所以a n =32n 2+n 2.(2)因为a n =n -1n a n -1(n ≥2), 所以a n -1=n -2n -1a n -2,…,a 2=12a 1.由累乘法可得a n =a 1·12·23·…·n -1n =a 1n =1n (n ≥2).又a 1=1符合上式,∴a n =1n .(3)因为a n +1=3a n +2,所以a n +1+1=3(a n +1),所以a n +1+1a n +1=3,所以数列{a n +1}为等比数列,公比q =3.又a 1+1=2,所以a n +1=2·3n -1,所以a n =2·3n -1-1.(4)∵a n +1=2a na n +2,a 1=1,∴a n ≠0, ∴1a n +1=1a n +12,即1a n +1-1a n =12, 又a 1=1,则1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12,∴a n =2n +1(n ∈N *).[方法技巧] 典型的递推数列及处理方法[全练题点]1.[考点一](2018·湖南衡阳二十六中期中)在数列1,1,2,3,5,8,x,21,34,55,…中,x 的值为( )A .11B .12C .13D .14解析:选C 观察所给数列的项,发现从第3项起,每一项都是与它相邻的前两项的和,所以x =5+8=13,故选C.2.[考点一]数列1,-58,715,-924,…的一个通项公式是( )A .a n =(-1)n +12n -1n 2+n(n ∈N *) B .a n =(-1)n-12n +1n 3+3n (n ∈N *) C .a n =(-1)n +12n -1n 2+2n (n ∈N *) D .a n =(-1)n-12n +1n 2+2n(n ∈N *) 解析:选D 所给数列各项可写成:31×3,-52×4,73×5,-94×6,…,通过对比各选项,可知选D.3.[考点二](2018·黑龙江双鸭山一中期末)已知数列{a n }的前n 项和为S n ,若S n =2a n -4,n ∈N *,则a n =( )A .2n +1B .2nC .2n -1D .2n -2解析:选A 因为S n =2a n -4,所以n ≥2时,有S n -1=2a n -1-4, 两式相减可得S n -S n -1=2a n -2a n -1,即a n =2a n -2a n -1,整理得a n =2a n -1,即a na n -1=2(n ≥2).因为S 1=a 1=2a 1-4,所以a 1=4,所以a n =2n +1.4.[考点三](2018·山东潍坊期中)在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ,则a n =( ) A .2+ln n B .2+(n -1)ln n C .2+n ln nD .1+n +ln n解析:选A 法一:由已知得a n +1-a n =ln ⎝⎛⎭⎫1+1n =ln n +1n ,而a n =(a n -a n -1)+(a n -1+a n -2)+…+(a 2-a 1)+a 1,n ≥2,所以a n =ln n n -1+ln n -1n -2+…+ln 21+2=ln ⎝⎛⎭⎪⎫n n -1·n -1n -2·…·21+2=ln n +2,n ≥2.当n =1时,a 1=2=ln 1+2.故选A. 法二:由a n =a n -1+ln ⎝⎛⎭⎫1+1n -1=a n -1+ln nn -1=a n -1+ln n -ln(n -1)(n ≥2),可知a n-ln n =a n -1-ln(n -1)(n ≥2).令b n =a n -ln n ,则数列{b n }是以b 1=a 1-ln 1=2为首项的常数列,故b n =2,所以2=a n -ln n ,所以a n =2+ln n .故选A.突破点(二) 数列的性质[基本知识]数列的分类[基本能力](1)已知函数f (x )=x -1x ,设a n =f (n )(n ∈N *),则{a n }是________数列(填“递增”或“递减”).答案:递增(2)数列{a n }的通项公式为a n =-n 2+9n ,则该数列第________项最大.答案:4或5(3)现定义a n =5n +⎝⎛⎭⎫15n ,其中n ∈N *,则{a n }是_______数列(填“递增”或“递减”). 答案:递增(4)对于数列{a n },“a n +1>|a n |(n =1,2,…)”是“{a n }为递增数列”的____________条件. 答案:充分不必要[全析考法](1)数,所以在求数列中的最大(小)项时,应注意数列中的项可以是相同的,故不应漏掉等号.(2)数列是自变量不连续的函数,不能对数列直接求导判断单调性.要先写出数列对应的函数,对函数进行求导,再将函数的单调性对应到数列中去.[例1] (1)已知数列{a n }的通项公式为a n =n ⎝⎛⎭⎫23n ,则数列{a n }中的最大项为( ) A.89 B .23C.6481D .125243(2)已知数列{a n }的通项公式为a n =2n 2+tn +1,若{a n }是单调递增数列,则实数t 的取值范围是( )A .(-6,+∞)B .(-∞,-6)C .(-∞,-3)D .()-3,+∞[解析] (1)法一(作差比较法):a n +1-a n =(n +1)⎝⎛⎭⎫23n +1-n ⎝⎛⎭⎫23n =2-n 3·⎝⎛⎭⎫23n , 当n <2时,a n +1-a n >0,即a n +1>a n ; 当n =2时,a n +1-a n =0,即a n +1=a n ; 当n >2时,a n +1-a n <0,即a n +1<a n . 所以a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,所以数列{a n }中的最大项为a 2或a 3,且a 2=a 3=2×⎝⎛⎭⎫232=89.故选A.法二(作商比较法):a n +1a n =(n +1)⎝⎛⎭⎫23n +1n ⎝⎛⎭⎫23n =23⎝⎛⎭⎫1+1n , 令a n +1a n >1,解得n <2;令a n +1a n=1,解得n =2; 令a n +1a n<1,解得n >2. 又a n >0,故a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,所以数列{a n }中的最大项为a 2或a 3,且a 2=a 3=2×⎝⎛⎭⎫232=89.故选A. (2)法一:因为{a n }是单调递增数列, 所以对于任意的n ∈N *,都有a n +1>a n , 即2(n +1)2+t (n +1)+1>2n 2+tn +1, 化简得t >-4n -2,所以t >-4n -2对于任意的n ∈N *都成立, 因为-4n -2≤-6,所以t >-6.故选A.法二:设f (n )=2n 2+tn +1,其图象的对称轴为n =-t 4,要使{a n }是递增数列,则-t 4<1+22,即t >-6.故选A. [答案] (1)A (2)A [方法技巧]1.判断数列单调性的两种方法 (1)作差比较法a n +1-a n >0⇔数列{a n }是单调递增数列;a n +1-a n <0⇔数列{a n }是单调递减数列;a n +1-a n =0⇔数列{a n }是常数列.(2)作商比较法a n <0时①a n +1a n>1⇔数列{a n }是单调递减数列;②a n +1a n<1⇔数列{a n }是单调递增数列; ③a n +1a n=1⇔数列{a n }是常数列 (1)利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2)找到数列的最大项;(2)利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1(n ≥2)找到数列的最小项.数列的周期性通常是求出数列的前n 项观察规律.确定出数列的一个周期,然后再解决相应的问题.[例2] (1)(2018·黄冈质检)已知数列{x n }满足x n +2=|x n +1-x n |(n ∈N *),若x 1=1,x 2=a (a ≤1,a ≠0),且x n +3=x n 对于任意的正整数n 均成立,则数列{x n }的前2 017项和S 2 017=( )A .672B .673C .1 342D .1 345(2)(2018·广东四校联考)数列{a n }满足a 1=2,a n +1=11-a n (n ∈N *),则a 2 018=( )A .-2B .-1C .2D .12[解析] (1)∵x 1=1,x 2=a (a ≤1,a ≠0),∴x 3=|x 2-x 1|=|a -1|=1-a ,∴x 1+x 2+x 3=1+a +(1-a )=2,又x n +3=x n 对于任意的正整数n 均成立,∴数列{x n }的周期为3,所以数列{x n }的前2 017项和S 2 017=S 672×3+1=672×2+1=1 345.故选D.(2)数列{a n }满足a 1=2,a n +1=11-a n (n ∈N *),∴a 2=11-2=-1,a 3=11-(-1)=12,a 4=11-12=2,…,可知此数列有周期性,周期T =3,即a n +3=a n ,则a 2 018=a 672×3+2=a 2=-1.故选B.[答案] (1)D (2)B [方法技巧]周期数列的常见形式与解题方法(1)周期数列的常见形式①利用三角函数的周期性,即所给递推关系中含有三角函数; ②相邻多项之间的递推关系,如后一项是前两项的差;③相邻两项的递推关系,等式中一侧含有分式,又较难变形构造出特殊数列. (2)解决此类题目的一般方法根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n 项的和.[全练题点]1.[考点二](2018·安徽名校联盟考前模拟)在数列{a n }中,若对任意的n ∈N *均有a n +a n +1+a n +2为定值,且a 1=2,a 9=3,a 98=4,则数列{a n }的前100项的和S 100=( )A .132B .299C .68D .99解析:选B 因为对任意的n ∈N *均有a n +a n +1+a n +2为定值,所以a n +a n +1+a n +2=a n+1+a n +2+a n +3,所以a n +3=a n ,所以数列{a n }是周期数列,且周期为3.故a 2=a 98=4,a 3=a 9=3,a 100=a 1=2,所以S 100=33(a 1+a 2+a 3)+a 100=299.故选B.2.[考点一](2018·山东枣庄第八中学阶段性检测)已知数列⎩⎨⎧⎭⎬⎫n +2n ,欲使它的前n 项的乘积大于36,则n 的最小值为( )A .7B .8C .9D .10解析:选B 由数列⎩⎨⎧⎭⎬⎫n +2n 的前n 项的乘积31·42·53·…·n +2n =(n +1)(n +2)2>36,得n 2+3n-70>0,解得n <-10或n >7.又因为n ∈N *,所以n 的最小值为8,故选B.3.[考点一]已知函数f (x )=⎩⎨⎧(3-a )x +2,x ≤2,a9-22+11x x ,x >2(a >0,且a ≠1),若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( )A .(0,1)B .⎣⎡⎭⎫83,3 C .(2,3)D .(1,3)解析:选C 因为{a n }是递增数列,所以⎩⎪⎨⎪⎧3-a >0,a >1,(3-a )×2+2<a 2,解得2<a <3,所以实数a 的取值范围是(2,3).4.[考点二](2018·辽宁重点中学协作体联考)在数列{a n }中,a 1=1,a n +1-a n =sin (n +1)π2,记S n 为数列{a n }的前n 项和,则S 2 018=( )A .0B .2 018C .1 010D .1 009解析:选C 由a 1=1及a n +1-a n =sin (n +1)π2,得a n +1=a n +sin (n +1)π2,所以a 2=a 1+sin π=1,a 3=a 2+sin 3π2=0,a 4=a 3+sin 4π2=0,a 5=a 4+sin 5π2=1,a 6=a 5+sin 6π2=1,a 7=a 6+sin 7π2=0,a 8=a 7+sin 8π2=0,…,可见数列{a n }为周期数列,周期T =4,所以S 2 018=504(a 1+a 2+a 3+a 4)+a 1+a 2=1 010.[全国卷5年真题集中演练——明规律]1.(2015·全国卷Ⅱ)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.解析:∵a n +1=S n +1-S n ,a n +1=S n S n +1,∴S n +1-S n =S n S n +1.∵S n ≠0,∴1S n -1S n +1=1,即1S n +1-1S n =-1.又1S 1=-1,∴⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列.∴1S n=-1+(n-1)×(-1)=-n ,∴S n =-1n.答案:-1n2.(2014·全国卷Ⅱ)数列 {a n }满足 a n +1=11-a n , a 8=2,则a 1 =________. 解析:将a 8=2代入a n +1=11-a n ,可求得a 7=12;再将a 7=12代入a n +1=11-a n,可求得a 6=-1;再将a 6=-1代入a n +1=11-a n,可求得a 5=2;由此可以推出数列{a n }是一个周期数列,且周期为3,所以a 1=a 7=12.答案:123.(2013·全国卷Ⅰ)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =________.解析:当n =1时,由已知S n =23a n +13,得a 1=23a 1+13,即a 1=1;当n ≥2时,由已知得到S n -1=23a n -1+13,所以a n =S n -S n -1=⎝⎛⎭⎫23a n +13-⎝⎛⎭⎫23a n -1+13 =23a n -23a n -1, 所以a n =-2a n -1,所以数列{a n }为以1为首项,以-2为公比的等比数列,所以a n =(-2)n -1.答案:(-2)n -14.(2016·全国卷Ⅲ)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3; (2)求{a n }的通项公式.解:(1)由题意可得a 2=12,a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0得2a n +1(a n +1)=a n (a n +1).因此{a n }的各项都为正数,所以a n +1a n=12.故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1.[课时达标检测][小题对点练——点点落实]对点练(一) 数列的通项公式 1.在数列{a n }中,a 1=1,a n +1=2a n a n +2(n ∈N *),则14是这个数列的( )A .第6项B .第7项C .第8项D .第9项解析:选B 由a n +1=2a n a n +2可得1a n +1=1a n +12,即数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=1为首项,12为公差的等差数列,故1a n=1+(n -1)×12=12n +12,即a n =2n +1,由2n +1=14,解得n =7,故选B.2.(2018·南昌模拟)在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n ≥2,n ∈N *),则a 3a 5的值是( )A.1516B .158 C.34 D .38解析:选C 由已知得a 2=1+(-1)2=2,∴2a 3=2+(-1)3,a 3=12,∴12a 4=12+(-1)4,a 4=3,∴3a 5=3+(-1)5,∴a 5=23,∴a 3a 5=12×32=34.3.(2018·河南郑州一中考前冲刺)数列{a n }满足:a 1=1,且对任意的m ,n ∈N *,都有a m +n =a m +a n +mn ,则1a 1+1a 2+1a 3+…+1a 2 018=( )A.2 0172 018 B .2 0182 019 C.4 0342 018D .4 0362 019解析:选D ∵a 1=1,且对任意的m ,n ∈N *都有a m +n =a m +a n +mn ,∴a n +1=a n +n +1,即a n +1-a n =n +1,用累加法可得a n =a 1+(n -1)(n +2)2=n (n +1)2,∴1a n=2n (n +1)=2⎝⎛⎭⎫1n -1n +1,∴1a 1+1a 2+1a 3+…+1a 2 018=2⎣⎡⎭⎫1-12+12-13+…+12 018-12 019=4 0362 019,故选D.4.(2018·甘肃天水检测)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( ) A .2n -1B .12n -1C.⎝⎛⎭⎫23n -1D .⎝⎛⎭⎫32n -1解析:选D 因为a n +1=S n +1-S n ,所以S n =2a n +1=2(S n +1-S n ),所以S n +1S n=32,所以数列{S n }是以S 1=a 1=1为首项,32为公比的等比数列,所以S n =⎝⎛⎭⎫32n -1.故选D. 5.(2018·兰州模拟)在数列1,2,7,10,13,…中219是这个数列的第________项.解析:数列1,2,7,10,13,…,即数列1,3×1+1,3×2+1,3×3+1,3×4+1,…,∴该数列的通项公式为a n =3(n -1)+1=3n -2,∴3n -2=219=76,∴n =26,故219是这个数列的第26项. 答案:266.(2018·河北冀州中学期中)已知数列{a n }满足a 1=1,且a n =n (a n +1-a n )(n ∈N *),则a 3=________,a n =________.解析:由a n =n (a n +1-a n ),可得a n +1a n=n +1n ,则a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 2a 1·a 1=nn -1×n -1n -2×n -2n -3×…×21×1=n (n ≥2),∴a 3=3.∵a 1=1满足a n =n ,∴a n =n .答案:3 n7.(2018·福建晋江季延中学月考)已知数列{a n }满足a 1+2a 2+3a 3+…+na n =n +1(n ∈N *),则数列{a n }的通项公式为________________.解析:已知a 1+2a 2+3a 3+…+na n =n +1,将n =1代入,得a 1=2;当n ≥2时,将n -1代入得a 1+2a 2+3a 3+…+(n -1)a n -1=n ,两式相减得na n =(n +1)-n =1,∴a n =1n ,∴a n =⎩⎪⎨⎪⎧2,n =1,1n,n ≥2.答案:a n =⎩⎪⎨⎪⎧2,n =1,1n ,n ≥2对点练(二) 数列的性质1.已知数列{a n }的通项公式为a n =9n 2-9n +29n 2-1(n ∈N *).则下列说法正确的是( ) A .这个数列的第10项为2731B.98101是该数列中的项 C .数列中的各项都在区间⎣⎡⎭⎫14,1内 D .数列{a n }是单调递减数列解析:选C a n =9n 2-9n +29n 2-1=(3n -1)(3n -2)(3n -1)(3n +1)=3n -23n +1.令n =10,得a 10=2831.故选项A 不正确,令3n -23n +1=98101,得9n =300,此方程无正整数解,故98101不是该数列中的项.因为a n =3n -23n +1=3n +1-33n +1=1-33n +1,又n ∈N *,所以数列{a n }是单调递增数列,所以14≤a n <1,所以数列中的各项都在区间⎣⎡⎭⎫14,1内,故选项C 正确,选项D 不正确,故选C.2.(2018·湖北黄冈中学期中)已知数列{a n }中,a 1=12,a n +1=1+a n 1-a n ,则a 2 018=( )A .-2B .12C .-13D .3解析:选D ∵a 1=12,∴a 2=1+a 11-a 1=3,a 3=1+a 21-a 2=-2,a 4=1+a 31-a 3=-13,a 5=1+a 41-a 4=12,…,∴数列{a n }是周期数列且周期T =4,∴a 2 018=a 2=3,故选D. 3.(2018·河南郑州质量预测)已知数列{a n }满足a n +1=a n -a n -1(n ≥2),a 1=m ,a 2=n ,S n 为数列{a n }的前n 项和,则S 2 017的值为( )A .2 017n -mB .n -2 017mC .mD .n解析:选C 根据题意计算可得a 3=n -m ,a 4=-m ,a 5=-n ,a 6=m -n ,a 7=m ,a 8=n ,…,因此数列{a n }是以6为周期的周期数列,且a 1+a 2+…+a 6=0,所以S 2 017=S 336×6+1=a 1=m .故选C.4.(2018·安徽淮南模拟)已知{a n }中,a n =n 2+λn ,且{a n }是递增数列,则实数λ的取值范围是( )A .(-2,+∞)B .[-2,+∞)C .(-3,+∞)D .[-3,+∞)解析:选C ∵{a n }是递增数列,∴∀n ∈N *,a n +1>a n ,∴(n +1)2+λ(n +1)>n 2+λn ,化简得λ>-(2n +1),∴λ>-3.故选C.5.(2018·北京海淀区模拟)数列{a n }的通项为a n =⎩⎪⎨⎪⎧2n -1,n ≤4,-n 2+(a -1)n ,n ≥5(n ∈N *),若a 5是{a n }中的最大值,则a 的取值范围是________.解析:当n ≤4时,a n =2n -1单调递增,因此n =4时取最大值,a 4=24-1=15. 当n ≥5时,a n =-n 2+(a -1)n =-⎝⎛⎭⎫n -a -122+(a -1)24.∵a 5是{a n }中的最大值,∴⎩⎪⎨⎪⎧a -12≤5.5,-25+5(a -1)≥15,解得9≤a ≤12.∴a 的取值范围是[9,12].答案:[9,12][大题综合练——迁移贯通]1.(2018·东营模拟)设数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,满足T n=2S n -n 2,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式. 解:(1)令n =1,T 1=2S 1-1,∵T1=S1=a1,∴a1=2a1-1,∴a1=1.(2)n≥2时,T n-1=2S n-1-(n-1)2,则S n=T n-T n-1=2S n-n2-[2S n-1-(n-1)2]=2(S n-S n-1)-2n+1=2a n-2n+1.因为当n=1时,a1=S1=1也满足上式,所以S n=2a n-2n+1(n≥1),当n≥2时,S n-1=2a n-1-2(n-1)+1,两式相减得a n=2a n-2a n-1-2,所以a n=2a n-1+2(n≥2),所以a n+2=2(a n-1+2),因为a1+2=3≠0,所以数列{a n+2}是以3为首项,公比为2的等比数列.所以a n+2=3×2n-1,所以a n=3×2n-1-2,当n=1时也成立,所以a n=3×2n-1-2.2.(2018·浙江舟山模拟)已知S n为正项数列{a n}的前n项和,且满足S n=12a2n+12a n(n∈N*).(1)求a1,a2,a3,a4的值;(2)求数列{a n}的通项公式.解:(1)由S n=12a2n+12a n(n∈N*)可得,a1=12a21+12a1,解得a1=1,a1=0(舍).S2=a1+a2=12a22+12a2,解得a2=2(负值舍去);同理可得a3=3,a4=4.(2)因为S n=12a2n+a n2,①所以当n≥2时,S n-1=12a2n-1+a n-12,②①-②得a n=12(a n-a n-1)+12(a2n-a2n-1),所以(a n-a n-1-1)(a n+a n-1)=0.由于a n+a n-1≠0,所以a n-a n-1=1,又由(1)知a1=1,所以数列{a n}是首项为1,公差为1的等差数列,所以a n=n.3.(2018·山西太原月考)已知等比数列{a n}是递增数列,a2a5=32,a3+a4=12,又数列{b n}满足b n=2log2a n+1,S n是数列{b n}的前n项和.(1)求S n;(2)若对任意n ∈N *,都有S n a n≤S ka k成立,求正整数k 的值.解:(1)因为{a n }是等比数列,则a 2a 5=a 3a 4=32, 又a 3+a 4=12,且{a n }是递增数列, 所以a 3=4,a 4=8,所以q =2,a 1=1, 所以a n =2n -1.所以b n =2log 2a n +1=2log 22n =2n .所以S n =2+4+…+2n =n (2+2n )2=n 2+n . (2)令c n =S n a n=n 2+n2n -1,则c n +1-c n =S n +1a n +1-S n a n =(n +1)(n +2)2n -n (n +1)2n -1=(n +1)(2-n )2n .所以当n =1时,c 1<c 2; 当n =2时,c 3=c 2;当n ≥3时,c n +1-c n <0,即c 3>c 4>c 5>…, 所以数列{c n }中最大项为c 2和c 3.所以存在k =2或3,使得任意的正整数n ,都有S k a k≥S na n.第二节 等差数列及其前n 项和本节主要包括3个知识点:1.等差数列基本量的计算;等差数列的基本性质及应用;等差数列的判定与证明.突破点(一) 等差数列基本量的计算[基本知识]1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2.[基本能力]1.判断题(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( ) (3)等差数列{a n }的单调性是由公差d 决定的.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) 答案:(1)× (2)√ (3)√ (4)√ 2.填空题(1)已知等差数列{a n },a 5=-20,a 20=-35,则a n =________. 答案:-15-n(2)已知等差数列5,427,347,…,则该数列的第5项为________.答案:217(3)等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6=________. 答案:12(4)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________. 答案:6[全析考法][典例] (1)(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8(2)(2018·安徽江南十校模拟)《九章算术》是我国古代的数学名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知A ,B ,C ,D ,E 五人分5钱,A ,B 两人所得与C ,D ,E 三人所得相同,且A ,B ,C ,D ,E 每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E 所得为( )A.23钱 B .43钱C.56钱 D .32钱(3)(2018·南昌模拟)已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3+S 4=S 5. ①求数列{a n }的通项公式;②令b n =(-1)n -1a n ,求数列{b n }的前2n 项和T 2n .[解析] (1)设等差数列{a n }的首项为a 1,公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧ 2a 1+7d =24,2a 1+5d =16,解得⎩⎪⎨⎪⎧a 1=-2,d =4,故选C. (2)由题意,设A 所得为a -4d ,B 所得为a -3d ,C 所得为a -2d ,D 所得为a -d ,E所得为a ,则⎩⎪⎨⎪⎧5a -10d =5,2a -7d =3a -3d ,解得a =23,故E 所得为23钱.故选A.(3)①设等差数列{a n }的公差为d ,由S 3+S 4=S 5,可得a 1+a 2+a 3=a 5,即3a 2=a 5, 所以3(1+d )=1+4d ,解得d =2. ∴a n =1+(n -1)×2=2n -1. ②由①,可得b n =(-1)n -1·(2n -1).∴T 2n =1-3+5-7+…+(4n -3)-(4n -1) =(-2)×n =-2n .[答案] (1)C (2)A[方法技巧]解决等差数列基本量计算问题的思路(1)在等差数列{a n }中,a 1与d 是最基本的两个量,一般可设出a 1和d ,利用等差数列的通项公式和前n 项和公式列方程(组)求解即可.(2)与等差数列有关的基本运算问题,主要围绕着通项公式a n =a 1+(n -1)d 和前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d ,在两个公式中共涉及五个量:a 1,d ,n ,a n ,S n ,已知其中三个量,选用恰当的公式,利用方程(组)可求出剩余的两个量.[全练题点]1.(2018·武汉调研)已知数列{a n }是等差数列,a 1+a 7=-8,a 2=2,则数列{a n }的公差d 等于( )A .-1B .-2C .-3D .-4解析:选C 法一:由题意可得⎩⎪⎨⎪⎧a 1+(a 1+6d )=-8,a 1+d =2,解得d =-3.法二:a 1+a 7=2a 4=-8,∴a 4=-4, ∴a 4-a 2=-4-2=2d ,∴d =-3.2.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则正整数m 的值为________.解析:因为等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,所以a m =S m-S m -1=2,a m +1=S m +1-S m =3,数列的公差d =1,a m +a m +1=S m +1-S m -1=5,即2a 1+2m -1=5,所以a 1=3-m . 由S m =(3-m )m +m (m -1)2×1=0, 解得正整数m 的值为5. 答案:53.(2018·福州模拟)已知等差数列{a n }的各项均为正数,其公差为2,a 2a 4=4a 3+1. (1)求{a n }的通项公式; (2)求a 1+a 3+a 9+…+a 3n .解:(1)依题意知,a n =a 1+2(n -1),a n >0.因为a 2a 4=4a 3+1,所以(a 1+2)(a 1+6)=4(a 1+4)+1, 所以a 21+4a 1-5=0,解得a 1=1或a 1=-5(舍去), 所以a n =2n -1. (2)a 1+a 3+a 9+…+a 3n=(2×1-1)+(2×3-1)+(2×32-1)+…+(2×3n -1) =2×(1+3+32+…+3n )-(n +1) =2×1-3n +11-3-(n +1)=3n +1-n -2.突破点(二) 等差数列的基本性质及应用[基本知识]等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *). (3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)数列S m ,S 2m -S m ,S 3m -S 2m ,…(m ∈N *)也是等差数列,公差为m 2d .(5)S 2n -1=(2n -1)a n ,S 2n =n (a 1+a 2n )=n (a n +a n +1),遇见S 奇,S 偶时可分别运用性质及有关公式求解.(6){a n },{b n }均为等差数列且其前n 项和为S n ,T n ,则a n b n =S 2n -1T 2n -1.(7)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列,其首项与{a n }的首项相同,公差是{a n }的公差的12.[基本能力](1)(2018·岳阳模拟)在等差数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=________.答案:100(2)设等差数列{a n }的前n 项和为S n ,等差数列{b n }的前n 项和为T n ,若S n T n =n +1n -1,则a 1+a nb 1+b n=________. 答案:n +1n -1(3)(2018·天水模拟)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________.答案:60(4)等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________.解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5.答案:S 5[全析考法][例1] (1)(2018·银川模拟)已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 的值为( )A .8B .12C .6D .4(2)(2018·山西太原模拟)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 8+a 10)=36,则a 6=( ) A .8 B .6 C .4D .3(3)(2018·湖北武汉调研)若等差数列{a n }的前n 项和S n 满足S 4=4,S 6=12,则S 2=( ) A .-1 B .0 C .1D .3[解析] (1)由a 3+a 6+a 10+a 13=32,得(a 3+a 13)+(a 6+a 10)=32,得4a 8=32,∴a 8=8,∴m =8.故选A.(2)由等差数列的性质可知2(a 1+a 3+a 5)+3(a 8+a 10)=2×3a 3+3×2a 9=6×2a 6=36,得a 6=3,故选D.(3)根据等差数列的性质,可得S 2,S 4-S 2,S 6-S 4成等差数列,即2(S 4-S 2)=S 2+S 6-S 4,因此S 2=0.[答案] (1)A (2)D (3)B[方法技巧]利用等差数列性质求解问题的注意点(1)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).因此,若出现a m -n ,a m ,a m +n 等项时,可以利用此性质将已知条件转化为与a m (或其他项)有关的条件;若求a m 项,可由a m =12(a m -n +a m +n )转化为求a m -n ,a m +n 或a m +n +a m -n 的值.(2)要注意等差数列通项公式及前n 项和公式的灵活应用,如a n =a m +(n -m )d ,d =a n -a m n -m,S 2n -1=(2n -1)a n ,S n =n (a 1+a n )2=n (a 2+a n -1)2(n ,m ∈N *)等.[提醒] 一般地,a m +a n ≠a m +n ,等号左、右两边必须是两项相加,当然也可以是a m -n+a m +n =2a m .等差数列前n 项和最值问题n n 差数列前n 项和S n 的最值问题.[例2] 等差数列{a n }的首项a 1>0,设其前n 项和为S n ,且S 5=S 12,则当n 为何值时,S n 有最大值?[解] 设等差数列{a n }的公差为d ,由S 5=S 12得5a 1+10d =12a 1+66d ,d =-18a 1<0.法一(函数法): S n =na 1+n (n -1)2d =na 1+n (n -1)2·⎝⎛⎭⎫-18a 1 =-116a 1(n 2-17n )=-116a 1⎝⎛⎭⎫n -1722+28964a 1, 因为a 1>0,n ∈N *,所以当n =8或n =9时,S n 有最大值. 法二(通项变号法):设此数列的前n 项和最大,则⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎨⎧a 1+(n -1)·⎝⎛⎭⎫-18a 1≥0,a 1+n ·⎝⎛⎭⎫-18a 1≤0,解得⎩⎪⎨⎪⎧n ≤9,n ≥8,即8≤n ≤9, 又n ∈N *,所以当n =8或n =9时,S n 有最大值.[方法技巧]求等差数列前n 项和S n 最值的两种方法(1)函数法利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)通项变号法①a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[全练题点]1.[考点一](2018·陕西咸阳模拟)设等差数列{a n }的前n 项和为S n ,若S 9=54,则a 2+a 4+a 9=( )A .9B .15C .18D .36解析:选C 由等差数列的通项公式及性质,可得S 9=9(a 1+a 9)2=9a 5=54,a 5=6,则a 2+a 4+a 9=a 1+a 5+a 9=3a 5=18.故选C.2.[考点一](2018·辽宁鞍山一中期末)等差数列{a n }的前n 项和为S n ,若m >1,且a m -1+a m +1-a 2m =0,S 2m -1=38,则m 等于( )A .38B .20C .10D .9解析:选C 因为a m -1+a m +1-a 2m =0,所以a m -1+a m +1=2a m =a 2m ,显然a m ≠0,所以a m =2.又因为S 2m -1=(2m -1)(a 1+a 2m -1)2=(2m -1)a m =38.所以将a m =2代入可得(2m -1)×2=38,解得m =10,故选C.3.[考点二](2018·成都模拟)已知等差数列{a n }的前n 项和为S n ,a 4+a 7+a 10=9,S 14-S 3=77,则使S n 取得最小值时n 的值为( )A .4B .5C .6D .7解析:选B 根据等差数列的性质可得a 4+a 7+a 10=3a 7=9,得a 7=3.S 14-S 3=11a 9=77,解得a 9=7,所以等差数列的通项公式为a n =2n -11.当n =6时,a n >0;当n =5时,a n <0,所以使S n 取得最小值的n 的值为5.4.[考点二](2018·吉林长春外国语学校期末)已知等差数列{a n }的前n 项和为S n ,若S 13<0,S 12>0,则在数列中绝对值最小的项为( )A .第5项B .第6项C .第7项D .第8项解析:选C 根据等差数列{a n }的前n 项和公式S n =n (a 1+a n )2,因为⎩⎪⎨⎪⎧S 13<0,S 12>0,所以⎩⎪⎨⎪⎧ a 1+a 13<0,a 1+a 12>0,由⎩⎪⎨⎪⎧ a 1+a 13=2a 7,a 1+a 12=a 6+a 7,得⎩⎪⎨⎪⎧a 7<0,a 6+a 7>0,所以数列{a n }中绝对值最小的项为第7项.突破点(三) 等差数列的判定与证明[全析考法][典例] (2018·n 1n (a n +1-n -1)=(n+1)(a n +n )(n ∈N *).(1)求证数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求其通项公式;(2)设b n =2a n -15,求数列{|b n |}的前n 项和T n . [解] (1)∵n (a n +1-n -1)=(n +1)(a n +n )(n ∈N *),∴na n +1-(n +1)a n =2n (n +1),∴a n +1n +1-a nn=2,∴数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,其公差为2,首项为2,∴a nn =2+2(n -1)=2n .(2)由(1)知a n =2n 2,∴b n =2a n -15=2n -15, 则数列{b n }的前n 项和S n =n (-13+2n -15)2=n 2-14n .令b n =2n -15≤0,解得n ≤7.5.∴当n ≤7时,数列{|b n |}的前n 项和T n =-b 1-b 2-…-b n =-S n =-n 2+14n . 当n ≥8时,数列{|b n |}的前n 项和T n =-b 1-b 2-…-b 7+b 8+…+b n =-2S 7+S n =-2×(72-14×7)+n 2-14n =n 2-14n +98.∴T n =⎩⎪⎨⎪⎧14n -n 2,n ≤7,n 2-14n +98,n ≥8.[方法技巧] 等差数列的判定与证明方法[提醒] 判断时易忽视定义中从第2项起,以后每项与前一项的差是同一常数,即易忽视验证a 2-a 1=d 这一关键条件.[全练题点]1.(2016·浙江高考)如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n+2|,A n ≠A n +2,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n +2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( )A .{S n }是等差数列B .{S 2n }是等差数列C .{d n }是等差数列D .{d 2n }是等差数列解析:选A 由题意,过点A 1,A 2,A 3,…,A n ,A n +1,…分别作直线B 1B n +1的垂线(图略),高分别记为h 1,h 2,h 3,…,h n ,h n +1,…,根据平行线的性质,得h 1,h 2,h 3,…,h n ,h n +1,…成等差数列,又S n =12×|B n B n +1|×h n ,|B n B n +1|为定值,所以{S n }是等差数列.故选A.2.(2018·岳阳模拟)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.解:(1)证明:当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n-1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式.故a n=⎩⎨⎧12,n =1,-12n (n -1),n ≥2.[全国卷5年真题集中演练——明规律] 1.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8解析:选A 设等差数列{a n }的公差为d ,因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23,即(a 1+d )(a 1+5d )=(a 1+2d )2.又a 1=1,所以d 2+2d =0.又d ≠0,则d =-2,所以{a n }前6项的和S 6=6×1+6×52×(-2)=-24.2.(2016·全国卷Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100B .99C .98D .97解析:选C 法一:∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧ a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.故选C.法二:∵{a n }是等差数列,∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.在等差数列{a n }中,a 5,a 10,a 15,…,a 100成等差数列,且公差d ′=a 10-a 5=8-3=5.故a 100=a 5+(20-1)×5=98.故选C.3.(2013·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________.解析:由已知⎩⎨⎧S 10=10a 1+10×92d =0,S15=15a 1+15×142d =25,解得a 1=-3,d =23,那么nS n =n 2a 1+n 2(n -1)2d =n 33-10n 23.由于函数f (x )=x 33-10x 23在x =203处取得极小值,因而检验n =6时,6S 6=-48,而n =7时,7S 7=-49.∴nS n 的最小值为-49.答案:-494.(2014·全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. 解:(1)由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1. 两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1.由(1)知,a 3=λ+1.令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.[课时达标检测][小题对点练——点点落实]对点练(一) 等差数列基本量的计算1.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2-S n =36,则n =( ) A .5 B .6 C .7D .8解析:选D 由题意知S n +2-S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.2.在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为( ) A .37 B .36 C .20D .19解析:选A a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37,∴m =37.故选A. 3.在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n =( )A .n (3n -1)B .n (n +3)2 C .n (n +1)D .n (3n +1)2解析:选C 依题意得a n +1=a n +a 1,即a n +1-a n =a 1=2,所以数列{a n }是以2为首项、2为公差的等差数列,a n =2+2(n -1)=2n ,S n =n (2+2n )2=n (n +1),故选C. 4.(2018·太原一模)在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0 C.14D .12解析:选B 由题知,a 2+a 4=2a 3=2,又∵a 2a 4=34,数列{a n }单调递增,∴a 2=12,a 4=32.∴公差d =a 4-a 22=12.∴a 1=a 2-d =0. 对点练(二) 等差数列的基本性质及应用1.设等差数列{a n }的前n 项和为S n ,且S 9=18,a n -4=30(n >9),若S n =336,则n 的值为( )A .18B .19。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时达标检测(十六)导数与函数的综合问题[一般难度题——全员必做]1.(2017·全国卷Ⅱ)设函数f(x)=(1-x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.解:(1)f′(x)=(1-2x-x2)e x.令f′(x)=0,得x=-1-2或x=-1+ 2.当x∈(-∞,-1-2)时,f′(x)<0;当x∈(-1-2,-1+2)时,f′(x)>0;当x∈(-1+2,+∞)时,f′(x)<0.所以f(x)在(-∞,-1-2),(-1+2,+∞)上单调递减,在(-1-2,-1+2)上单调递增.(2)f(x)=(1+x)(1-x)e x.①当a≥1时,设函数h(x)=(1-x)e x,则h′(x)=-x e x<0(x>0).因此h(x)在[0,+∞)上单调递减,又h(0)=1,故h(x)≤1,所以f(x)=(x+1)h(x)≤x+1≤ax+1.②当0<a<1时,设函数g(x)=e x-x-1,则g′(x)=e x-1>0(x>0),所以g(x)在[0,+∞)上单调递增,而g(0)=0,故e x≥x+1.当0<x<1时,f(x)>(1-x)(1+x)2,(1-x)(1+x)2-ax-1=x(1-a-x-x2),取x0=5-4a-12,则x0∈(0,1),(1-x0)(1+x0)2-ax0-1=0,故f(x0)>ax0+1.当a≤0时,取x0=5-1 2,则x0∈(0,1),f(x0)>(1-x0)(1+x0)2=1≥ax0+1.综上,a的取值范围是[1,+∞).2.(2018·沈阳监测)已知函数f(x)=a ln x(a>0),e为自然对数的底数.(1)若过点A(2,f(2))的切线斜率为2,求实数a的值;(2)当x >0时,求证f (x )≥a ⎝⎛⎭⎫1-1x ; (3)若在区间(1,e)上e x a-e 1ax <0恒成立,求实数a 的取值范围. 解:(1)由题意得f ′(x )=ax ,∴f ′(2)=a2=2,∴a =4.(2)证明:令g (x )=a ⎝⎛⎭⎫ln x -1+1x (x >0), 则g ′(x )=a ⎝⎛⎭⎫1x -1x 2.令g ′(x )>0,即a ⎝⎛⎭⎫1x -1x 2>0,解得x >1, 令g ′(x )<0,解得0<x <1;∴g (x )在(0,1)上单调递减,在(1,+∞)上单调递增. ∴g (x )的最小值为g (1)=0,∴f (x )≥a ⎝⎛⎭⎫1-1x . (3)由题意可知e x a<e 1a x ,化简得x -1a <ln x , 又x ∈(1,e),∴a >x -1ln x.令h (x )=x -1ln x,则h ′(x )=ln x -1+1x (ln x )2,由(2)知,当x ∈(1,e)时,ln x -1+1x >0, ∴h ′(x )>0,即h (x )在(1,e)上单调递增, ∴h (x )<h (e)=e -1.∴a ≥e -1. 故实数a 的取值范围为[e -1,+∞).3.(2018·海南校级联考)已知函数f (x )=1x +k ln x ,k ≠0.(1)当k =2时,求函数f (x )的图象的切线斜率中的最大值; (2)若关于x 的方程f (x )=k 有解,求实数k 的取值范围. 解:(1)函数f (x )=1x +k ln x 的定义域为(0,+∞),f ′(x )=-1x2+kx (x >0).当k =2时,f ′(x )=-1x 2+2x =-⎝⎛⎭⎫1x -12+1≤1,当且仅当x =1时,等号成立. 所以函数f (x )的图象的切线斜率中的最大值为1.(2)因为关于x 的方程f (x )=k 有解,令g (x )=f (x )-k =1x +k ln x -k ,则问题等价于函数g (x )存在零点.g ′(x )=-1x 2+k x =kx -1x 2.当k <0时,g ′(x )<0在(0,+∞)上恒成立,所以函数g (x )在(0,+∞)上单调递减.因为g (1)=1-k >0,g (e1-1k )=1e1-1k +k ⎝⎛⎭⎫1-1k -k =1e1-1k -1<1e -1<0,所以函数g (x )存在零点.当k >0时,令g ′(x )=0,得x =1k .g ′(x ),g (x )随x 的变化情况如下表:所以g ⎝⎛⎭⎫1k =k -k +k ln 1k =-k ln k 为函数g (x )的最小值,当g ⎝⎛⎭1k >0,即0<k <1时,函数g (x )没有零点,当g ⎝⎛⎭⎫1k ≤0,即k ≥1时,注意到g (e)=1e +k -k >0,所以函数g (x )存在零点.综上,当k <0或k ≥1时,关于x 的方程f (x )=k 有解.[中档难度题——学优生做]1.(2018·广东珠海期末)已知函数f (x )=x -ln(x +a )的最小值为0,其中a >0,设g (x )=ln x +m x .(1)求a 的值; (2)对任意x 1>x 2>0,g (x 1)-g (x 2)x 1-x 2<1恒成立,求实数m 的取值范围;(3)讨论方程g (x )=f (x )+ln(x +1)在[1,+∞)上根的个数. 解:(1)f (x )的定义域为(-a ,+∞),f ′(x )=1-1x +a =x +a -1x +a. 由f ′(x )=0,解得x =1-a >-a .当x 变化时,f ′(x ),f (x )的变化情况如下表:因此,f 故由题意f (1-a )=1-a =0,所以a =1. (2)由g (x 1)-g (x 2)x 1-x 2<1知g (x 1)-x 1<g (x 2)-x 2对任意x 1>x 2>0恒成立,即h (x )=g (x )-x =ln x -x +mx 在(0,+∞)上为减函数. h ′(x )=1x -1-m x 2≤0在(0,+∞)上恒成立,所以m ≥x -x 2在(0,+∞)上恒成立, 而(x -x 2)max =14,则m ≥14,即实数m 的取值范围为⎣⎡⎭⎫14,+∞.(3)由题意知方程可化为ln x +mx =x ,即m =x 2-x ln x (x ≥1).设m (x )=x 2-x ln x ,则m ′(x )=2x -ln x -1(x ≥1).设h (x )=2x -ln x -1(x ≥1),则h ′(x )=2-1x >0,因此h (x )在[1,+∞)上单调递增,h (x )min =h (1)=1.所以m (x )=x 2-x ln x 在[1,+∞)上单调递增.因此当x ≥1时,m (x )≥m (1)=1.所以当m ≥1时方程有一个根,当m <1时方程无根.2.(2017·广西陆川二模)已知函数f (x )=ln x -mx +m . (1)求函数f (x )的单调区间;(2)若f (x )≤0在(0,+∞)上恒成立,求实数m 的取值范围; (3)在(2)的条件下,对任意的0<a <b ,求证:f (b )-f (a )b -a <1a (a +1).解:(1)f ′(x )=1x -m =1-mx x,x ∈(0,+∞),当m ≤0时,f ′(x )>0恒成立,则函数f (x )在(0,+∞)上单调递增,无单调递减区间; 当m >0时,由f ′(x )=1-mx x>0,得x ∈⎝⎛⎭⎫0,1m , 由f ′(x )=1-mx x<0,得x ∈⎝⎛⎭⎫1m ,+∞, 此时f (x )的单调递增区间为⎝⎛⎭⎫0,1m ,单调递减区间为⎝⎛⎭⎫1m ,+∞. 综上,当m ≤0时,函数f (x )的单调递增区间是(0,+∞),无单调递减区间; 当m >0时,函数f (x )的单调递增区间是⎝⎛⎭⎫0,1m ,单调递减区间是⎝⎛⎭⎫1m ,+∞. (2)由(1)知:当m ≤0时,f (x )在(0,+∞)上单调递增,f (1)=0,显然不符合题意; 当m >0时,f (x )max =f ⎝⎛⎭⎫1m =ln 1m -1+m =m -ln m -1, 只需m -ln m -1≤0即可.令g (x )=x -ln x -1,则g ′(x )=1-1x =x -1x ,x ∈(0,+∞), ∴g (x )在(0,1)上单调递减,在(1,+∞)上单调递增.∴g (x )min =g (1)=0.∴g (x )≥0对x ∈(0,+∞)恒成立,也就是m -ln m -1≥0对m ∈(0,+∞)恒成立, 由m -ln m -1=0,解得m =1.∴若f (x )≤0在(0,+∞)上恒成立,则m =1.(3)证明:f (b )-f (a )b -a =ln b -ln a +a -b b -a =ln b -ln ab -a-1=lnb a b a -1·1a -1. 由(2)得f (x )≤0在(0,+∞)上恒成立,即ln x ≤x -1,当且仅当x =1时取等号. 又由0<a <b 得b a >1,∴0<ln b a <ba -1,即lnb aba -1<1.则lnb a b a -1·1a -1<1a -1=1-a a =1-a 2a (1+a )<1a (1+a ). [较高难度题——学霸做]1.(2017·天津高考)设a ∈Z ,已知定义在R 上的函数f (x )=2x 4+3x 3-3x 2-6x +a 在区间(1,2)内有一个零点x 0,g (x )为f (x )的导函数.(1)求g (x )的单调区间;(2)设m ∈[1,x 0)∪(x 0,2],函数h (x )=g (x )(m -x 0)-f (m ),求证:h (m )h (x 0)<0; (3)求证:存在大于0的常数A ,使得对于任意的正整数p ,q ,且pq ∈[1,x 0)∪(x 0,2],满足⎪⎪⎪⎪p q -x 0≥1Aq4. 解:(1)由f (x )=2x 4+3x 3-3x 2-6x +a ,可得g (x )=f ′(x )=8x 3+9x 2-6x -6,进而可得g ′(x )=24x 2+18x -6.令g ′(x )=0,解得x =-1或x =14.当x 变化时,g ′(x ),g (x )的变化情况如下表:所以g (x )的单调递增区间是(-∞,-1),⎝⎛⎭⎫14,+∞,单调递减区间是⎝⎛⎭⎫-1,14. (2)证明:由h (x )=g (x )(m -x 0)-f (m ), 得h (m )=g (m )(m -x 0)-f (m ),h (x 0)=g (x 0)(m -x 0)-f (m ). 令函数H 1(x )=g (x )(x -x 0)-f (x ), 则H 1′(x )=g ′(x )(x -x 0). 由(1)知,当x ∈[1,2]时,g ′(x )>0,故当x ∈[1,x 0)时,H 1′(x )<0,H 1(x )单调递减; 当x ∈(x 0,2]时,H 1′(x )>0,H 1(x )单调递增.因此,当x ∈[1,x 0)∪(x 0,2]时,H 1(x )>H 1(x 0)=-f (x 0)=0,可得H 1(m )>0,即h (m )>0. 令函数H 2(x )=g (x 0)(x -x 0)-f (x ), 则H 2′(x )=g (x 0)-g (x ). 由(1)知g (x )在[1,2]上单调递增,故当x ∈[1,x 0)时,H 2′(x )>0,H 2(x )单调递增; 当x ∈(x 0,2]时,H 2′(x )<0,H 2(x )单调递减.因此,当x ∈[1,x 0)∪(x 0,2]时,H 2(x )<H 2(x 0)=0,可得H 2(m )<0,即h (x 0)<0.所以h (m )h (x 0)<0.(3)证明:对于任意的正整数p ,q ,且pq ∈[1,x 0)∪(x 0,2], 令m =pq ,函数h (x )=g (x )(m -x 0)-f (m ).由(2)知,当m ∈[1,x 0)时,h (x )在区间(m ,x 0)内有零点;当m ∈(x 0,2]时,h (x )在区间(x 0,m )内有零点.所以h (x )在(1,2)内至少有一个零点,不妨设为x 1, 则h (x 1)=g (x 1)⎝⎛⎭⎫p q -x 0-f ⎝⎛⎭⎫p q =0. 由(1)知g (x )在[1,2]上单调递增, 故0<g (1)<g (x 1)<g (2), 于是⎪⎪⎪⎪p q -x 0=⎪⎪⎪⎪⎪⎪⎪⎪f ⎝⎛⎭⎫p q g (x 1)≥⎪⎪⎪⎪f ⎝⎛⎭⎫p q g (2) =|2p 4+3p 3q -3p 2q 2-6pq 3+aq 4|g (2)q 4.因为当x ∈[1,2]时,g (x )>0,故f (x )在[1,2]上单调递增,所以f (x )在区间[1,2]上除x 0外没有其他的零点,而pq ≠x 0,故f ⎝⎛⎭⎫p q ≠0.又因为p ,q ,a 均为整数,所以|2p 4+3p 3q -3p 2q 2-6pq 3+aq 4|是正整数,从而|2p 4+3p 3q -3p 2q 2-6pq 3+aq 4|≥1.所以⎪⎪⎪⎪p q -x 0≥1g (2)q 4.所以只要取A =g (2),就有⎪⎪⎪⎪p q -x 0≥1Aq4. 2.(2017·江苏高考)已知函数f (x )=x 3+ax 2+bx +1(a >0,b ∈R )有极值,且导函数f ′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域; (2)证明:b 2>3a ;(3)若f (x ),f ′(x )这两个函数的所有极值之和不小于-72,求a 的取值范围.解:(1)由f (x )=x 3+ax 2+bx +1, 得f ′(x )=3x 2+2ax +b =3⎝⎛⎭⎫x +a 32+b -a 23. 当x =-a 3时,f ′(x )有极小值b -a 23.因为f ′(x )的极值点是f (x )的零点, 所以f ⎝⎛⎭⎫-a 3=-a 327+a 39-ab3+1=0, 又a >0,故b =2a 29+3a .因为f (x )有极值, 故f ′(x )=0有实根,从而b -a 23=19a (27-a 3)≤0,即a ≥3.当a =3时,f ′(x )>0(x ≠-1), 故f (x )在R 上是增函数,f (x )没有极值; 当a >3时,f ′(x )=0有两个相异的实根 x 1=-a -a 2-3b 3,x 2=-a +a 2-3b 3.当x 变化时,f ′(x ),f (x )的变化情况如下表:故f (x )的极值点是x 1,x 2.从而a >3. 因此b =2a 29+3a ,定义域为(3,+∞).(2)证明:由(1)知,b a =2a a 9+3a a .设g (t )=2t 9+3t ,则g ′(t )=29-3t 2=2t 2-279t 2.当t ∈⎝⎛⎭⎫362,+∞时,g ′(t )>0, 从而g (t )在⎝⎛⎭⎫362,+∞上单调递增.因为a >3,所以a a >33, 故g (a a )>g (33)=3,即ba> 3.因此b 2>3a . (3)由(1)知,f (x )的极值点是x 1,x 2,且x 1+x 2=-23a ,x 21+x 22=4a 2-6b 9.从而f (x 1)+f (x 2)=x 31+ax 21+bx 1+1+x 32+ax 22+bx 2+1=x 13(3x 21+2ax 1+b )+x 23(3x 22+2ax 2+b )+13a (x 21+x 22)+23b (x 1+x 2)+2 =4a 3-6ab 27-4ab 9+2=0.记f (x ),f ′(x )所有极值之和为h (a ), 因为f ′(x )的极值为b -a 23=-19a 2+3a ,所以h (a )=-19a 2+3a ,a >3.因为h ′(a )=-29a -3a 2<0,于是h (a )在(3,+∞)上单调递减. 因为h (6)=-72,于是h (a )≥h (6),故a ≤6.因此a 的取值范围为(3,6].。