大工14春《复变函数与积分变换》在线1答案

合集下载

复变函数与积分变换习题答案

复变函数与积分变换习题答案

第一章 复数与复变函数1.1计算下列各式: (1) (1)(32);i i +--解: (1)(32)(1)322 3.i i i i i +--=+-+=-+ (2);(1)(2)ii i --解:2(13)3.(1)(2)2213101010i i i i i ii i i i i i +-====+----+-(3)1(1);1z z x iy z -=+≠-+ 解: 2222222211(1)(1)12.11(1)(1)(1)z x iy x iy x iy x y yi z x iy x y x y x y-+--++-+-===++++++++++ 1.3 将圆周方程22()0(0)a x y bx cy d a ++++=≠写成复数形式(即可z 与z 表示,其中z x iy =+).解: 把22,,22z z z z x y x y z z i+-==+=⋅代入圆周方程得: ()()0,222()()20,0.b caz z z z z z d iaz z b ic z b ic z d Az z Bz Bz C ⋅+++-+=⋅+-+++=⋅+++=故其中2,,2.A a B b ic C d ==+= 1.5 将下列各复数写成三角形式.(1) sin cos ;i αα+ 解: sin cos 1,i αα+= 故sin cos cos()sin().22i i ππαααα+=-+- (2) sincos.66i ππ--解: 2arg(sincos )arctan(cot ),666263i ππππππππ--=-=--=-s i n c o s 66i ππ--=2222cos()sin()cos()sin.3333i i ππππ-+-=- 1.7 指出满足下列各式的点z 的轨迹是什么曲线?(1) 1;z i +=解: 以(0,1)-为圆心,1为半径的圆周.(2) 0,zz az az b +++=其中a 为复数,为b 实常数;解: 由题设可知 2()()||0,z a z a b a +++-=即22||||,z a a b +=- 若2||,a b =则z 的轨迹为一点;a -若2||,a b >则z 的轨迹为圆,圆心在a -,若2||,a b <无意义.第二章 解析函数1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因0()()lim z f z z f z z∆→+∆-∆0()Re()Re lim z z z z z z zz∆→+∆+∆-=∆ 0Re Re Re limz z z z z z z z∆→∆+∆+∆∆=∆0Re lim(Re Re )z zz z z z∆→∆=+∆+∆ 000Re lim(Re )lim(Re ),z x y z xz zz z z x i y ∆→∆→∆→∆∆=+=+∆∆+∆ 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0.3.确定下列函数的解析区域和奇点,并求出导数.(1)(,).az bc d cz d++至少有一不为零 解: 当0c ≠时,()az b f z cz d +=+除d z c =-外在复平面上处处解析, dz c=-为奇点,222()()()()()()()()().()()az bf z cz daz b cz d cz d az b cz d a cz d c az b ad cb cz d cz d +''=+''++-++=++-+-==++当0c =时,显然有0d ≠,故()az b f z d +=在复平面上处处解析,且()af z d'=. 5.设()f z 在区域D 内解析,试证: 222222()|()|4|()|.f z f z x y ∂∂'+=∂∂证: 设 222(),|()|,f z u i v f z u v =+=+ 222(),|()|()().u uu u f z i f z x y x y∂∂∂∂''=-=+∂∂∂∂ 而2222222222222222222222222()|()|()()2()()()(),f z u v u v x y x y u u v v u u v v u v uv xx x x y y y y∂∂∂∂+=+++∂∂∂∂⎡⎤∂∂∂∂∂∂∂∂=+++++++⎢⎥∂∂∂∂∂∂∂∂⎣⎦又()f z 解析,则实部u 及虚部v 均为调和函数.故222222220,0.u u v vu v x yx y∂∂∂∂=+==+=∂∂∂∂则22222222()|()|4(()())4|()|.u uf z f z x y x y∂∂∂∂'+=+=∂∂∂∂ 7.设sin ,px v e y =求p 的值使v 为调和函数,并求出解析函数().f z u iv =+ 解: 要使(,)v x y 为调和函数,则有0.xx yy v v v ∆=+=即2sin sin 0,px px p e y e y -=所以1p =±时,v 为调和函数,要使()f z 解析,则有,.x y y x u v u v ==-1(,)cos cos (),1sin ()sin .px pxx pxpx y u x y u dx e ydx e y y pu e y y pe y pφφ===+'=-+=-⎰⎰所以11()()sin ,()()cos .px px y p e y y p e y C p pφφ'=-=-+即(,)cos ,px u x y pe y C =+故(cos sin ),1,()(cos sin ),1.x z xze y i y C e C pf z e y i y C e C p -⎧++=+=⎪⎨--+=-+=-⎪⎩9.求下列各式的值。

复变函数作业答案

复变函数作业答案

=-251
8.化简
(1 i)n (1 i)n2
解:原式
(1
i)
2
1 1
i i
n
2ie
n 2
i
2i n1
第二次作业
教学内容:1.2 平面点集的一般概念 1.3 复变函数
1. 填空题
(1)连接点1 i 与 1 4i 的直线断的参数方程为 z 1 i (2 5i)t 0 t 1
(2) 以 原 点 为 中 心 , 焦 点 在 实 轴 上 , 长 轴 为 a , 短 轴 为 b 的 椭 圆 的 参 数 方 程 为 z a cos t ib sin t 0 t 2
华东理工大学
复 变 函 数 与 积 分 变 换 作 业 (第 1 册)
班级____________学号_____________姓名_____________任课教师_____________
第一次作业
教学内容:1.1 复数及其运算
1.2 平面点集的一般概念
1.填空题:
(1)
3 2
,
5 2
,
3 2
5 2
(2)1 cos i sin (0 )
解:1 cos i sin
2 sin
2
[cos(2
2
)
i sin(2
2
)]
2 sin
2
ei(
2
2
)
1
(3)
(cos 5 (cos 3
i sin 5)2 i sin 3)3
.
解:
(cos (cos
5 3
i i
sin sin
5 3
arg( z
2i)
2

复变函数与积分变换习题解答

复变函数与积分变换习题解答

练 习 一1.求下列各复数的实部、虚部、模与幅角。

(1)i ii i 524321----; 解:i iii 524321---- =i 2582516+zk k Argz z z z ∈+====π221arctan 2558258Im 2516Re(2)3)231(i + 解: 3)231(i +zk k Argz z z z e i i∈+===-=-==+=πππππ210Im 1Re 1][)3sin3(cos3332.将下列复数写成三角表示式。

1)i 31- 解:i 31-)35sin 35(cos2ππi +=(2)i i +12 解:i i +12 )4sin4(cos21ππi i +=+=3.利用复数的三角表示计算下列各式。

(1)i i2332++- 解:i i 2332++- 2sin2cosππi i +==(2)422i +-解:422i +-41)]43sin 43(cos 22[ππi +=3,2,1,0]1683sin 1683[cos 2]424/3sin ]424/3[cos 28383=+++=+++=k k i k k i k ππππππ4..设321,,z z z 三点适合条件:321z z z ++=0,,1321===z z z 321,,z z z 是内接于单位圆z =1的一个正三角形的项点。

证:因,1321===z z z 所以321,,z z z 都在圆周32z z ++=0则,321z z z -=+1321=-=+z z z ,所以21z z +也在圆周1=z 上,又,12121==-+z z z z 所以以0,211,z z z +为顶点的三角形是正三角形,所以向量211z z z +与之间的张角是3π,同理212z z z +与之间的张角也是3π,于是21z z 与之间的张角是32π,同理1z 与3z ,2z 与3z 之间的张角都是32π,所以321,,z z z 是一个正三角形的三个顶点。

《复变函数与积分变换》课程考试模拟试卷A及答案

《复变函数与积分变换》课程考试模拟试卷A及答案

机 密★启用前大连理工大学网络教育学院2014年3月份《复变函数与积分变换》课程考试模 拟 试 卷考试形式:闭卷 试卷类型:(A )☆ 注意事项:本考卷满分共:100分;考试时间:90分钟。

学习中心______________ 姓名____________ 学号____________一、单项选择题(本大题共10小题,每小题2分,共20分)1、已知iii z +--=131,则=z Re ( )A 、0B 、21-C 、23-D 、无法确定2、下列函数中,为解析函数的是( ) A 、xyi y x 222--B 、xyi x +2C 、)2()1(222x x y i y x +-+-D 、33iy x +3、设2,3z i z =+=ω,则=ωarg ( )A 、3π B 、6π C 、6π-D 、3π-4、2)1()1()31(-+--=i i i z 的模为( )A 、0B 、1C 、2D 、25、=-⎰=-dz z e z z1|2|2( ) A 、e 2B 、e π2C 、22e πD 、i e 22π6、C 为正向圆周:2||=z ,则=-⎰dz z z e C z2)1(( )A 、i πB 、i π2C 、i π-D 、i π47、将点1,,1-=i z 分别映射为点0,1,-∞=ω的分式线性变换为( ) A 、11-+=z z ω B 、zz -+=11ω C 、zz e i-+=112πωD 、112-+=z z eiπω 8、0=z 是3sin zz的极点,其阶数为( ) A 、1B 、2C 、3D 、49、以0=z 为本性奇点的函数是( ) A 、zzsin B 、2)1(1-z zC 、ze 1D 、11-z e 10、设)(z f 的罗朗展开式为 +-++-+-+----nz n z z z z )1()1(2)1(11)1(222,则 =]1),([Re z f s ( )A 、-2B 、-1C 、1D 、2二、填空题(本大题共10小题,每小题3分,共30分)1、=-i33____________________________________2、设C 为正向单位圆周在第一象限的部分,则积分=⎰zdz z C3)(_________。

大工20新上《复变函数与积分变换》在线作业1

大工20新上《复变函数与积分变换》在线作业1
A: 错误
B: 正确
正确答案: A
(判断题)16: 题面见图片
A: 错误
B: 正确
正确答案: B
(判断题)17: 可导与解析是等价的概念。
A: 错误
B: 正确
正确答案: A
(判断题)18: 题面见图片
A: 错误
B: 正确
正确答案: B
(判断题)19: 扩充复平面中的所谓无穷大是指模为无穷大的唯一一个复数,与实数中的无穷大意义相同。
A: 错误
B: 正确
正确答案: A
(判断题)20: 题面见图片
A: 错误
B: 正确
正确答案: B
B: B
C: C
D: D
正确答案: A
(单选题)10: .
A: A
B: B
C: C
D: D
正确答案: A
(判断题)11: 设z=x+iy满足x-1+i(y+2)=(1+i)(1-i),则z=3-2i。
A: 错误
B: 正确
正确答案: B
(判断题)12: 解析函数在单连域内的积分只与起点及终点有关。
A: 错误
(单选题)1: 题面见图片
A: A
B: B
C: C
D: D
正确答案: C
(单选题)2: &nbsp;.
A: A
B: B
C: C
D: D
正确答案: A
(单选题)3: &nbsp;.
A: A
B: B
C: C
D: D
正确答案: B
(单选题)4: &nbsp;
A: A
B: B
C: C
D: D

复变函数与积分变换习题解答

复变函数与积分变换习题解答

= 幕级数区—n!C+!..l.._zn
+
I
的收敛半径为R
=1/lim II 玉oo
a
___.斗 !!
a,,
=l114im00
c,, /(n + 1) c11十I /(n+2)
=1/lpl;
幕级数I:nc11z11一)的收敛半径为R
= 1/lim
a

all /l�CI)
lim nc" =1/I p I ;
(1+ —1 )”
=lim 00 II千
n n+ 1
= 0;
扣厂 (3) R=1//l1-i-m)00
II
lim1/ 11 11---'>00
+
i
I
=
1/忒

恩妇 (4) R=ll�
=l;
:I 匠)I 三叶三 曰勹 CS) R=l/
酝 =II
ch
=II
=I;
皿聂l (6) R=ll�
=l11�im00I ln in I= oo ;
。 I
I�
(n + l)c11+L
故以上三个幕级数有相同的收敛半径。
2 忙 9 设级数f n=O c"收敛,而 11=0 I发散,证明f 11=0 c11z11的收敛半径力l。
3
证明
由级数Len收敛,知幕级数LC11 Z11 在z= l处收敛,由Abel定理知I:c11z11
11=0
11 =0
11=0
习题四解答
1. 下列数列{a }是否收敛?如果收敛, 求出它们的极限:
"
芒, 气), 二, I) a,,=

复变函数与积分变换解答(0401)

复变函数与积分变换解答(0401)

复变函数与积分变换试题解答2004.1.4系别___________班级__________学号__________姓名___________一、填空(每题3分,共24分)1.10)3131(ii -+的实部是21-,虚部是23,辐角主值是32π.2.满足5|2||2|≤-++z z 的点集所形成的平面图形为, 以±2为焦点 ,长半轴为25的椭圆,该图形是否为区域 否 . 3.)(z f 在0z 处可展成Taylor 级数与)(z f 在0z 处解析是否等价? 是 .4.ii -+1)1(的值为 ,1,0)],2ln 4sin()2ln 4[cos(224±=-+-+k i ek ππππ;主值为)]2ln 4sin()2ln 4[cos(24-+-πππi e .5.积分⎰=1||z z dz z e 的值为i π2,⎰==-2||2)2(sin z dz z z π 0 . 6.函数311)(--=z e iz z f 在0=z 处Taylor 展开式的收敛半径是 1 . 7.设)()]([),()]([2211ωωF t f F t f ==F F , 则=*)]()([21t f t f F )]([)]([21t f t f F F ⋅ 其中)()(21t f t f *定义为⎰∞+∞--τττd t f f )()(21 .8.函数zzz f sin )(=的有限弧立奇点=0z 0 ,0z 是何种类型的奇点? 可去 .二、(6分)设i y x y x z f 22332)(+-=,问)(z f 在何处可导?何处解析?并在可导处求出导数值.解:22332),(,),(y x y x v y x y x u =-=y x yvxy x v y y u x x u 22224,4,3,3=∂∂=∂∂-=∂∂=∂∂ (2分)均连续,要满足R C -条件,必须要222234,43y xy y x x ==成立即仅当0==y x 和43==y x 时才成立,所以函数)(z f 处处不解析; (2分) ,0)))0(0,0(0,0(=∂∂+∂∂='xv ixuf)1(1627)4343()43,43()43,43(i xv ixui f +=∂∂+∂∂=+' (2分)三、(8分)设,sin y e v px =求p 的值使v 为调和函数,并求出解析函数iv u z f +=)(.解:因y e v y e v y e p v y pe v px yy px y px xx px x sin ,cos ,sin ,sin 2-====,要使),(y x v 为调和函数,则有0=+=∆yy xx v v v 即 0s i n s i n 2=-y e y e p px px(4分)所以 1±=p 时,v 为调和函数,要使)(z f 解析,则有 y x v u =, x y v u -=⎰⎰+===)(c o s 1c o s ),(y y e py d x e dx u y x u pxpx x ψy pe y y e pu px pxy sin )(sin 1-='+-=ψ(2分)所以 c y e p py y e p p y px px +--=-='cos )1()(,sin )1()(ψψ 即 c y pe y x u px +=cos ),(,故⎪⎩⎪⎨⎧-=+-=+--=+=++=--1,)sin (cos 1,)sin (cos )(p c e c y i y e p c e c y i y e z f zx zx (2分)四、(10分)将函数13232)(2+--=z z zz f 在有限孤立奇点处展开为Laurent 级数.解:)(z f 的有限孤立奇点为210=z 及11=zz z z z z z f -+-=+--=1121113232)(2 (2分)1)当21210<-<z 时 )21(21221121)(--+--=z z z f∑∞=-+--=0)21(22)21(21n n n z z(2分)2)当+∞<-<2121z ))2(211)(21(1)21(21)(------=z z z z f∑∞=-------=0)21(2211)21(21n n nz z z(2分)3)当2110<-<z )1(2111111211)(-+--=---=z z z z z f∑∞=----=0)1(2)1(11n n n n z z(2分)4)当+∞<-<121z ))1(211)(1(111)(-+----=z z z z z f∑∞=--------=0)1(2)1()1(2111n n n nz z z(2分)五、计算下列各题(每小题6分,共24分)1.⎰=-++=32173)(ξξξξξd zz f ,求).1(i f +'解:因173)(2++=ξξξϕ在复平面上处处解析由柯西积分公式知,在3<z 内, ⎰=++==-=32)173(2)(2)()(ξπϕπξξξϕz z i z i d zz f (3分) 所以 )76(2)(+='z i z f π(2分)而点 i +1在3<z 内,故)136(2]7)1(6[2)1(i i i i f +-=++=+'ππ (1分)2.求出zz ez f 1)(+=在所有孤立奇点处的留数解:函数 zz ez f 1)(+=有孤立奇点0与∞,而且在+∞<<z 0内有如下Laurent 展开式:)1!311!2111)(!31!211(323211 ++++++++=⋅=+zz z z z z e e ezzzz ++++++=z1)!41!31!31!21!211((3分) 故 ∑∞=+-+==011)1(!1]0,[Re k zz k k es c(2分)∑∞=++-=∞01)1(!1],[Re k zz k k es(1分)3.)0()(2222>+⎰∞+∞-a dx a x x解:2222)()(a z z z f +=,它共有两个二阶极点,且)(22a z +在实轴上无奇点,在上半平面仅有二阶极点ai ,所以(2分)]),([Re 2)(2222ai z f s i dx a x x π=+⎰∞+∞(1分)a ai z zai i ai z z i ai z aiz 2)(2lim 2])[(lim 232πππ=+='+=→→ (3分)4.dx x⎰+22sin 11π解:由三角函数公式⎰⎰-=-+===========ππ020c o s 32)2c o s 1(211t dtxt x dx I (1分)⎰⎰-=-=-πππ20cos 321cos 321tdtt dt(2分)令ite z =,则zz t iz dz dt 21cos ,2+==,于是⎰⎰==+-=+-=1212161213121z Z dz z z i izdz zz I (1分)被积函数161)(2+-=z z z f 在1=z 内只有一阶极点830-=z ,由公式241]16[1l i m]),([Re 200-='+-=→z z z z f s z z 故由留数定理222412ππ=-=ii I (2分)六、(6分)求上半单位圆域}0Im ,1||:{><z z z 在映射2z w =下的象.解:令θi re z =,则πθ<<<0,1r ϕθρi i e e r z ==222,πθϕρ220,12<=<<=r(3分)故2z w =将上半单位圆域映射为1||<w 且沿0到1的半径有割痕.(3分)2z w =x 11zez=x3134+=zzizizw+-=552iieieiieieizzizzwiziziziz+-+--+=+-+--+=22233233)11()11()11()11(故七、(8分)求一映射,将半带形域0,22><<-yxππ映射为单位圆域.(2分)(1分)(2分)(2分)(1分)八、(6分)设)(z f 在1||<z 内解析,在闭圆1||≤z 上连续,且1)0(=f ,证明:⎰='±=+±1||2))0(2()()](2[z i f zdzz f z z π 证:由于⎰=+±1||)()]1(2[z zdzz f z z⎰=+±=1||22])()1()(2[z dz zz f z z z f⎰⎰==+±=1||1||22)()1()(2z z dz z z f z dz z z f (2分)))0(2(2}])()1[()0(2{202f i z f z f i z '±='+±==ππ (4分)九、(8分)用Laplace 变换求解常微分方程:⎩⎨⎧=='=''-=-'+''-'''2)0(,1)0()0(133y y y y y y y 解:在方程两边取拉氏变换,并用初始条件得 ))0()0()((3)0()0()0()(223y Sy S Y S y y S y S S Y S '---''-'--S S Y y S SY 1)())0()((3-=--+ (4分))3()33(211)()133(223-++-+-=-+-S S S S S Y S S S)1452(123-+-=S S S S2)1)(12(1--=S S S 即 111)1(12)(-+=--=S S S S S S Y(2分) 故 1)]([)(1+==-t e S Y t y L(2分)。

《复变函数与积分变换》试题及答案.

《复变函数与积分变换》试题及答案.

年级专业: 教学班号:学号: 姓名:装订线课程名称:复变函数与积分变换考试时间:110_分钟课程代码:7100031试卷总分:100_分一、计算下列各题(本大题共3小题,每小题5分,总计15分)1; 2、; 3、'|和它的主值二、(8分)设',函数'■在•平面的哪些点可导?若可导,求出在可导点的导数值。

三、(10分)证明为调和函数,并求出它的共轭调和函 数。

四、(25分,每小题各5分)计算下列积分:的正向;-de + sin 05.五、(10分)将函数 gm 在下列圆环域内分别展开为洛朗级数1.2.;・伫一15界 ^: M=i? ・的正向;3. ,■:的正向; 4.们;<:6山「:的正向;(1)(2)六、(10)1、求将上半平面lm(z>0映射到单位圆域,且满足arg r(n =匸■,的分式线性映射,。

IU-1"=—-2、平面的区域恥环犬-.被映射映射到’平面的什么区域?「2 (ff(t)--七、(5分)求矩形脉冲函数〔° 曲我的傅氏变换。

八、(6分)求’1的拉普拉斯变换。

九、(5分)求的拉氏逆变换。

十、(6分)利用拉氏变换(其它方法不得分)求解微分方程:一、参考答案及评分标准:(本大题共3小题,每小题5分,总计15分)1、* _ JT It &(1 - = ]6[oos( ——) + /sin( ——)] - m + +4 4=16(QDS(-2JT)-F /SII M -2«))=16 (2)3 3、21四、参考答案及评分标准:(每小题 5分,共25分)由柯西-黎曼方程得: '即 '.所以’在 ’可导.三、参考答案及评分标准:(10分)v^= 2-3?十3穴二…欣空二= “&xJ A 2 dy得,卩二J(-6砂必=-3A y 十 g(y}-r故 -?」;、’;J/'二、参考答案及评分标准:( 8 分)解: ■异上F ,因为dv ov=乩——=0,——=2y Exd 2u 沪 口W C?j/,所以为调和函数.证明:P V (? u由"M 得3A1 d g\y}= 2- ?A22 四、参考答案及评分标准:(每小题5分,共25分)3115~/ -1-4 Sill 0—+ - 44 2 iz2? + 5J >-2JZ一心2/1(2 d3+24 .因为-上在c 内无奇点,所以:cir = 0r/ -J6(Z4 2fl(2z+ “vsinZ? --- -------2J >42.1-------------------------------- S -------------所以洛朗级数为H m _送JJ-0所以洛朗级数为原式- 六、参考答案及评分标准: 1解:将上半平面 内点• (每小题 5分,共10分)lm (z>0映射到单位圆域 的变换为 为上半平面,所以-,故 ,所以解:边界1: ,..= i =i "丄 “0x 〉n ,忑〔故 羔K ;>= f ^dfV . -uj解:r (s}= Hr + 3sin(20■+ /cos Z] =r 2] + 3i(sin 2/J + Zj/cos 小八 (2)2 3x 2=—十 -------------------------$ S~ + 4 2 b二—+ — ------解:设二也上一在方程的两边取 拉氏变换并考虑初始条件得:,故七、 Z特殊点:作图参考答案及评分标准:(5分)十、参考答案及评分标准:(6分) 3+2八、 参考答案及评分标准:(6分)S 1 + 1I - y (/ 4 1)? 九、 参考答案及评分标准: (5分)解:取逆变换得:。

练习题-参考答案 2014年复变函数与积分变换

练习题-参考答案 2014年复变函数与积分变换

2014年复变函数与积分变换练习题参考答案一、选择题 ( 每题2分,共16分) 1.设{|1||3}P z z =<<,则P 为【 B 】(A)无界区域 (B) 多连通区域 (C)单连通区域 (D) 闭区域. 2. 函数),(),()(y x iv y x u z f +=在点000z x iy =+处连续的充要条件是【 D 】 (A) 函数)(z f 在区域D 内可导 (B) 函数),(y x u 在点00,()x y 处连续(C) 函数),(y x v 在点00,()x y 处连续(D) 函数),(y x u 和),(y x v 在点00,()x y 处连续.3. 若),(),()(y x iv y x u z f +=在区域D 内解析,则下列命题中错误的是 【 D 】 (A) 函数)(z f 在区域D 内可导(B) 函数),(),,(y x v y x u 是区域D 内的调和函数(C) 函数),(),,(y x v y x u 在区域D 内满足柯西-黎曼方程 (D) 函数),(y x u 是),(y x v 在区域D 内的共轭调和函数 4.设C 为|1|0z r-=>的正向圆周,则1Czdz z =-⎰【 B 】(A) 0 (B) 2i π (C) 1 (D) 4i π5. 下列复数项级数中绝对收敛的是【 A 】(A)1(6+8)!nn i n ∞=∑(B) ∑∞=-1)1(n n(C) ∑∞=1n nni (D)113()2nn i ∞=+∑6.下列函数中以0=z 为本性奇点的是【 D 】(A) 2sin z z z - (B) z z sin (C) z sin 1 (D) 1()z cos 7.函数()h z 在单连通区域D 内解析是函数()h z 在D 内存在原函数的【 B 】 (A) 必要条件 (B) 充分条件 (C) 充要条件 (D)既非必要条件也非充分条件.8.指数衰减函数,0()=0,0t e t f t t α-⎧>⎨<⎩(其中α>0)的傅里叶变换是【 B 】 (A) 1j αω- (B) 1j αω+ (C) 11j ω+ (D) 1j ωα+二、填空题(每题2分,共14分)9.设复数z=+ 42ie π .10.计算复值函数(1)n i L += ln2(/32)k i ππ++ .11.已知C 为|1|2z -=的正向圆周,求3z Cedz z=⎰i π .12.设C 为正向圆周1||=z ,则积分2116Cdz z=-⎰ 0 .13.幂级数061nn zn ∞=+∑的收敛半径 R= 1 .14.映射2z z ω=+在点1+zi =处的伸缩率是 .15.设k 为实常数, 2()sin f t t kt t =+,则)(t f 的拉普拉斯变换为222322()ks s k s++ . 三、计算题(每题5分,共25分)16.讨论函数3232()3(3)f z y x y i x xy =-+-的解析性, 其中z x yi =+,求导函数()f z '. (参考习题集P16第5题)17.利用留数计算43|z|=1/51dz z z-⎰. (习题集P46第4题)解 令430=zz- 得到=0=1z z ,为函数431()z zf z -=孤立奇点,…….. (1分)但是=1z 在圆||=1/5z 之内,=0z 是431()z zf z -=的三阶极点。

复变函数与积分变换习题册(含答案)

复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。

2、k 为任意整数,则34+k 的值为 。

3、复数i i (1)-的指数形式为 。

4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。

(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。

复变函数与积分变换课后习题答案

复变函数与积分变换课后习题答案
解:(1) 内包含了奇点

(2) 内包含了奇点,

19. 验证下列函数为调和函数.
解(1) 设,

从而有
,满足拉普拉斯方程,从而是调和函数.
(2) 设,

从而有
,满足拉普拉斯方程,从而是调和函数.
,满足拉普拉斯方程,从而是调和函数.
20.证明:函数,都是调和函数,但不是解析函数
证明:
∴,从而是调和函数.
(1) sinz=sinxchy+icosx∙shy
证明:
(2)cosz=cosx∙chy-isinx∙shy
证明:
(3)|sinz|2=sin2x+sh2y
证明:
(4)|cosz|2=cos2x+sh2y
证明:
21. 证明当y→∞时,|sin(x+iy)|和|cos(x+iy)|都趋于无穷大.
证明:
解:因为f(z)解析,从而满足C-R条件.
所以.
9. 试证下列函数在z平面上解析,并求其导数.
(1) f(z)=x3+3x2yi-3xy2-y3i
证明:u(x,y)=x3-3xy2, v(x,y)=3x2y-y3在全平面可微,且
所以f(z)在全平面上满足C-R方程,处处可导,处处解析.
.(2) .
证明:
12.指出下列各式中点z所确定的平面图形,并作出草图.
解:
(1)、argz=π.表示负实轴.
(2)、|z-1|=|z|.表示直线z=.
(3)、1<|z+i|<2
解:表示以-i为圆心,以1和2为半径的周圆所组成的圆环域。
(4)、Re(z)>Imz.
解:表示直线y=x的右下半平面

复变函数与积分变换 全套 课后答案

复变函数与积分变换 全套 课后答案
1 4
1 π
k 0,1
i π π ∴ z1 6 4 cos i sin 6 4 e 8 8 8 πi 9 9 z2 6 4 cos π i sin π 6 4 e 8 . 8 8 1 1 9
9.设 z e
3 2 2 2 2 x x 2 y 2 2 xy 2 y x y 2x y i
x3 3xy 2 3x 2 y y 3 i
∴ Re z 3 x 3 3xy 2 ,
Im z 3 3x 2 y y 3 .
z w z 2 Re z w w z w z 2 Re z w w
zw zw 2 z w
2 2
2
2


2
2
2


2

2
2

2
并给出最后一个等式的几何解释. 证明: z w z 2 Re z w w 在上面第五题的证明已经证明了. 下面证 z w z 2 Re z w w . ∵ z w z w z w z w z w
2 i 3 2i 2 i 3 2i 2 i 3 2i 4 7i
④解:
1 i 1 i 2 2 2 2
1 i 1 i 1 i 2 2 2 4、证明:当且仅当 z z 时,z 才是实数.


z z z w w z w w z zw z w w z w

2
2
2
2
2 Re z w

复变函数与积分变换试题和答案

复变函数与积分变换试题和答案

复变函数与积分变换试题(一)一、填空(3分×10)1.)31ln(i --的模.幅角。

2.-8i 的三个单根分别为: . . 。

3.Ln z 在 的区域内连续。

4.z z f =)(的解极域为:。

5.xyi y x z f 2)(22+-=的导数=')(z f。

6.=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s。

7.指数函数的映照特点是: 。

8.幂函数的映照特点是:。

9.若)(ωF =F [f (t )].则)(t f = F )][(1ω-f。

10.若f (t )满足拉氏积分存在条件.则L [f (t )]=。

二、(10分)已知222121),(y x y x v +-=.求函数),(y x u 使函数),(),()(y x iv y x u z f +=为解析函数.且f (0)=0。

三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2) 1.⎰=-2||)1(z z z dz2.⎰-c i z z3)(cos C :绕点i 一周正向任意简单闭曲线。

五、(10分)求函数)(1)(i z z z f -=在以下各圆环内的罗朗展式。

1.1||0<-<i z 2.+∞<-<||1i z六、证明以下命题:(5分×2)(1))(0t t -δ与o iwt e -构成一对傅氏变换对。

(2))(2ωπδ=⎰∞+∞-ω-dt e t i七、(10分)应用拉氏变换求方程组⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 满足x (0)=y (0)=z (0)=0的解y (t )。

八、(10分)就书中内容.函数在某区域内解析的具体判别方法有哪几种。

复变函数与积分变换试题答案(一)一、1. 22942ln π+ .ππk arctg 22ln 32+-2.3-i 2i 3-i3. Z 不取原点和负实轴4. 空集5. 2z 6. 0 7.将常形域映为角形域8. 角形域映为角形域9.⎰∞+∞-ωωπωωd e F i )(2110. ⎰∞+-0)(dt e t f st二、解:∵y ux x v ∂∂-=-=∂∂ xuy y v ∂∂==∂∂∴c xy u += (5分)c xy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0 (3分)∴222222)2(2)(2)(z i xyi y x i y x i xy z f -=+--=--=(2分)三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π 01=z 12=z(2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π 33=z ∞=4z2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) 23126⨯⨯i π=i 63π-四、1.解:原式⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221 (3分) z 1=0z 2=1]11[2+-=i π=0(2分)2.解:原式iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-==1ich π-五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)(11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=(2分)2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i (2分) 六、1.解:∵00)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(3分) ∴结论成立 (2)解:∵1)(2210==ωπδπ=ωω-ω-∞+∞-⎰ti t i e dw e(2分)∴)(2w πδ与1构成傅氏对∴)(2ωπδω=-∞+∞-⎰dt e t i(2分)七、解:∵⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX(3分)S (2)-(1):∴⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s (3分)∴cht e e t Y tt -=--=-121211)( 八、解:①定义;②C-R 充要条件Th ; ③v 为u 的共扼函数 10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的( )条件。

大工《复变函数与积分变换》课程考试模拟试卷A

大工《复变函数与积分变换》课程考试模拟试卷A

机 密★启用前大连理工大学网络教育学院2014年8月份《复变函数与积分变换》课程考试模 拟 试 卷考试形式:闭卷 试卷类型:(A )☆ 注意事项:本考卷满分共:100分;考试时间:90分钟。

学习中心______________ 姓名____________ 学号____________一、单项选择题(本大题共10小题,每小题2分,共20分)1、设),(y x v 在区域D 内为),(y x u 的共轭调和函数,则下列函数中为D 内解析函数的是( ) A 、),(),(y x iu y x v +B 、),(),(y x iu y x v -C 、),(),(y x iv y x u -D 、xvi x u ∂∂-∂∂ 2、设),2,1(4)1( =++-=n n in n n α,则n n α∞→lim ( ) A 、等于0B 、等于1C 、等于iD 、不存在3、下列级数中,条件收敛的级数为( )A 、∑∞=+1)231(n ni B 、∑∞=+1!)43(n nn iC 、∑∞=2ln n nniD 、∑∞=++-11)1(n n n i4、21)(-=z z f 在1-=z 处的泰勒展开式为( ) A 、3|1|)1(312101<++=-∑∞=+z z z n n nB 、3|1|)1(31210<++-=-∑∞=z z z n n nC 、3|1|)1(31210<++=-∑∞=z z z n n nD 、3|1|)1(312101<++-=-∑∞=+z z z n n n5、设函数)(z f 与)(z g 分别以a z =为本性奇点与m 级极点,则a z =为函数)()(z g z f 的( ) A 、可去奇点B 、本性奇点C 、m 级极点D 、小于m 级的极点6、设幂级数1,-∞=∞=∑∑n n n nn n znc z c 和101+∞=∑+n n n z n c 的收敛半径分别为321,,R R R ,则321,,R R R 之间的关系是( ) A 、321R R R <<B 、321R R R >>C 、321R R R <=D 、321R R R ==7、把z 平面上的点1,,1321-===z i z z 分别映射为w 平面上的点i w w w ===321,1,0的分式线性映射得( ) A 、zzi w -+⋅=11 B 、zzi w +-⋅=11 C 、zzi w -+⋅=111D 、zzi w +-⋅=1118、设)0(0,0,0)(>⎩⎨⎧≥<=-ββt e t t f t,则F =)]([t f ( ) A 、22ωβωβ+-iB 、22ωβωβ++iC 、22ωβωβ--iD 、22ωβωβ-+i9、函数)2(t -δ的拉氏变换L =-)]2([t δ( ) A 、1B 、se 2C 、se2-D 、不存在10、设k t k e t f t (sin )(2-=为实数),则L =)]([t f ( ) A 、22)2(ks k++ B 、22)2(ks k+- C 、22)2(ks k-+ D 、22)2(ks k--二、填空题(本大题共10小题,每小题3分,共30分)1、将幂函数i+15表示成三角形式为_______________________2、将幂函数ii 表示成指数形式为________________3、41i +的所有值表示成三角形式为_________________________________4、)2(-Ln 的主值为________________5、函数21)(ze zf iz +=在极点处的留数为________________6、=++⎰=dz z e z z z )cos 2(5||2________ 7、=⎰dz z i12________8、=-⎰=-4|1|1z z z________9、=⎰=dz z zz 2||cos ________ 10、假设C 是圆周1|1|=+z 的下半圆周,z 从-2到0,则积分=⎰dz C cosz ____________三、计算题(本大题共5小题,每小题8分,共40分)1、计算103131⎪⎪⎭⎫⎝⎛-+i i 的值2、判断复数列niniz n -+=11是否收敛,若收敛求出它的极限。

复变函数与积分变换部分课后答案

复变函数与积分变换部分课后答案

复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)—课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 33311;;;.22n z i ⎛⎛-+-- ⎝⎭⎝⎭① :≧设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ≨()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ≧()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ≨()332Re 3z x xy =-,()323Im 3z x y y =-.③解:≧(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=≨Re 1=⎝⎭, Im 0=⎝⎭. ④解:≧()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=≨Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ≧()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩.≨当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ≨z =x 为实数.若z =x ,x ∈ ,则z x x ==. ≨z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明≧()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤≨z w z w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.≧()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.≨()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--===其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e i i =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.≨()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:≧32π2πcos isin 199⎛⎫+= ⎪⎝⎭.≨322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3) 的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k≨1ππ1cosisin i 662=+=+z .2551cos πi sin πi 662=+=z3991cos πi sin πi 662=+=-z ⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=≨1ππ1cos i sin 332=+=+z2cos πisin π1=+=-z3551cos πi sin π332=+=-z的平方根.πi 4e ⎫=⎪⎪⎝⎭≨)()1π1i ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭≨π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:≧2πi e nz ⋅= ≨1n z =,即10n z -=.≨()()1110n z z z --+++=又≧n ≥2. ≨z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90°故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档