(北师大版)高中数学必修四:1.5《正弦函数的性质》教案(2)
高中数学 第一章 三角函数 1.5 正弦函数的图像与性质 1.5.2 正弦函数的性质教案 北师大版必修4
1.5.2 正弦函数的性质整体设计教学分析对于函数性质的研究,在高一必修中学生已经熟悉了.研究了幂函数、指数函数、对数函数的图像与性质.因此作为高中最后一个基本初等函数的性质的研究,学生已经有些经验了.其中,通过观察函数的图像,从图像的特征获得函数的性质是一个基本方法,这也是数形结合思想方法的应用.由于三角函数是刻画周期变化现象的重要数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期区间上的性质,那么就完全清楚它在整个定义域内的性质.正弦函数性质的难点,在于对函数周期性的正确理解与运用,以下的奇偶性,无论是由图像观察,还是由诱导公式进行证明,都很容易.单调性只要求由图像观察,不要求证明,而正弦的最大值和最小值可以作为单调性的一个推论,只要注意引导学生利用周期进行正确归纳即可.三维目标1.通过创设情境,如单摆运动、波浪、四季变化等,让学生感知周期现象;理解周期函数的概念;能熟练地求出简单三角函数的周期,并能根据周期函数的定义进行简单的拓展运用.2.通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物.重点难点教学重点:正弦函数的主要性质(包括周期性、单调性、奇偶性、最值或值域);深入研究函数性质的思想方法.教学难点:正弦函数性质的理解及灵活运用,特别是周期性的理解.课时安排1课时教学过程导入新课思路1.(类比导入)我们在研究一个函数的性质时,如幂函数、指数函数、对数函数的性质,往往通过它们的图像来研究.本节可先让学生画出正弦函数的图像,从学生画图像、观察图像入手,由此展开正弦函数性质的探究.思路2.(直接导入)研究函数就是要讨论函数的一些性质,y=sinx是函数,我们当然也要探讨它们的一些性质.本节课,我们就来研究正弦函数最基本的几条性质.请同学们回想一下,一般来说,我们是从哪些方面去研究一个函数的性质的呢(定义域、值域、奇偶性、单调性、最值)?然后逐一进行探究.推进新课新知探究提出问题①回忆并画出正弦曲线,观察它的形状及在坐标系中的位置;②观察正弦曲线,说出正弦函数的定义域是什么?③观察正弦曲线,说出正弦函数的值域是什么?由值域又能得到什么?④观察正弦曲线,函数值的变化有什么特点?⑤观察正弦曲线,它有哪些对称?图1活动:先让学生充分思考、讨论后再回答.对回答正确的学生,教师可鼓励他们按自己的思路继续探究,对找不到思考方向的学生,教师可参与到他们中去,并适时地给予点拨、指导. 在上一节中,要求学生不仅会画图,还要识图,这也是学生必须熟练掌握的基本功.因此,在研究正弦函数性质时,教师要引导学生充分挖掘正弦函数曲线或单位圆中的三角函数线,当然用多媒体课件来研究三角函数性质是最理想的,因为单位圆中的三角函数线更直观地表现了三角函数中的自变量与函数值之间的关系,是研究三角函数性质的好工具.用三角函数线研究三角函数的性质,体现了数形结合的思想方法,有利于我们从整体上把握有关性质. 对问题①,学生不一定画准确,教师要求学生尽量画准确,能画出它的变化趋势. 对问题②,学生很容易看出正弦函数的定义域是实数集R 〔或(-∞, +∞)〕.对问题③,学生很容易观察出正弦曲线上、下都有界,得出正弦函数的值域是[-1,1].教师要引导学生从代数的角度思考并给出证明. ∵正弦线的长度小于或等于单位圆的半径的长度, ∴|sinx|≤1,即-1≤sinx≤1.也就是说,正弦函数的值域是[-1,1].对于正弦函数y=sinx(x ∈R ),1°当且仅当x=2π+2kπ,k∈Z 时,取得最大值1. 2°当且仅当x=-2π+2kπ,k∈Z 时,取得最小值-1.对问题④,教师可引导、点拨学生先截取一段来看,选哪一段呢?如图2,通过学生充分讨论后确定,选图像上的[-2π,23π](如图3)这段.教师还要强调为什么选这段,而不选[0,2π]的道理,其他类似.图2 图3这个变化情况也可从下表中显示出来: x -2π 0 2π π 23π sinx-1↗↗1↘↘-1就是说,函数y=sinx,x ∈[-2,23]. 当x ∈[-2π,2π]时,曲线逐渐上升,是增函数,sinx 的值由-1增大到1;当x ∈[2π,23π]时,曲线逐渐下降,是减函数,sinx 的值由1减小到-1. 结合正弦函数的周期性可知:正弦函数在每一个闭区间[-2π+2kπ,2π+2kπ](k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[2π+2kπ,23π+2kπ](k ∈Z )上都是减函数,其值从1减小到-1.对问题⑤,学生能直观地得出正弦曲线关于原点O 对称.在R 上,y=sinx 为奇函数.教师要恰时恰点地引导,并提问学生怎样用学过的知识方法给予证明呢? 由诱导公式,∵sin(-x)=-sinx, ∴y=sinx 为奇函数.至此,一部分学生已经看出来了,在正弦曲线上还有其他的对称点和对称轴,如正弦曲线还关于直线x=2π对称,等等,这是由它的周期性而来的.教师可就此引导学生进一步探讨,为今后的学习打下伏笔. 讨论结果:①略. ②定义域为R .③值域为[-1,1],最大值是1,最小值是-1. ④单调性(略). ⑤奇偶性(略). 应用示例思路11.函数y=-3sin2x,x ∈R 有最大值、最小值吗?如果有,请写出取最大值、最小值时的自变量x 的集合,并说出最大值、最小值分别是什么.解:令z=2x,使函数y=-3sinz,z ∈R 取得最大值的z 的集合是{z|z=-2π+2kπ,k ∈Z }, 由2x=z=-2π+2kπ,得x=-4π+kπ. 因此使函数y=-3sin2x,x ∈R 取得最大值的x 的集合是{x|x=-4π+kπ,k∈Z }. 同理,使函数y=-3sin2x,x ∈R 取得最小值的x 的集合是{x|x=4π+kπ,k∈Z }.函数y=-3sin2x,x ∈R 的最大值是3,最小值是-3.点评:以前我们求过最值,本例也是求最值,但这里最值对应的自变量x 的值却不唯一,这从正弦函数的周期性容易得到解释.求解本例的基本依据是正弦函数的最大(小)值的性质,对于形如y=Asin(ωx+φ)+B 的函数,一般通过变量代换(如设z=ωx+φ化归为y=Asinz+B 的形式),然后进行求解.这种思想对于利用正弦函数的其他性质解决问题时也适用.2.利用三角函数的单调性,比较sin(-18π)与sin(-10π)的大小. 解:因为-2π<-10π<-18π<0,正弦函数y=sinx 在区间[-2π,0]上是增函数,所以sin(-18π)>sin(-10π).点评:推进本例时应提醒学生注意,在今后遇到的三角函数值大小比较时,必须将已知角化到同一个单调区间内,其次要注意首先大致地判断一下有没有符号不同的情况,以便快速解题.3.求函数y=sin(21x+3π),x ∈[-2π,2π]的单调递增区间. 活动:可以利用正弦函数的单调性来求所给函数的单调区间.教师要引导学生的思考方向: 把21x+3π看成z,这样问题就转化为求y=sinz 的单调区间问题,而这就简单多了. 解:令z=21x+3π.函数y=sinz 的单调递增区间是[-2π+2kπ,2π+2kπ]. 由-2π+2kπ≤21x+3π≤+2kπ,得-35π+4kπ≤x≤3π+4kπ,k∈Z .由x ∈[-2π,2π]可知,-2π≤-35π+4kπ且3π+4kπ≤2π,于是-121≤k≤125,由于k ∈Z ,所以k=0,即-35π≤x≤3π,而[-35π,3π]⊂[-2π,2π],因此,函数y=sin(2x +3π),x ∈[-2π,2π]的单调递增区间是[-35π,3π].点评:本例的求解是转化与化归思想的运用,即利用正弦函数的单调性,将问题转化为一个关于x 的不等式问题.然后通过解不等式得到所求的单调区间,要让学生熟悉并灵活运用这一数学思想方法,善于将复杂的问题简单化.4.利用“五点法”画出函数y=sinx-1的简图,并根据图像讨论它的性质. 解:列表,根据表中数据画出简图(如图4所示).x 0 2π π23π 2π Sinx 0 1 0 -1y=sinx-1-1图4函数 y=sinx-1定义域 R 值域 [-2,0] 奇偶性 非奇非偶函数周期2π单调性当x ∈[2kπ-2π,2kπ+2π](k ∈Z )时,函数是递增的; 当x ∈[2kπ+2π,2kπ+23π](k ∈Z )时,函数是递减的最大值与最小值当x=2kπ+2π(k ∈Z )时,最大值为0;当x=2kπ+23π(k ∈Z )时,最小值为-2 思路2例1 求函数y=xsin 11+的定义域.活动:学生思考操作,教师提醒学生充分利用函数图像,根据实际情况进行适当的指导点拨,纠正学生出现的一些错误或书写不规范等. 解:由1+sinx≠0,得sinx≠-1,即x≠23π+2kπ(k∈Z ). ∴原函数的定义域为{x|x≠23π+2kπ,k∈Z }. 点评:本例实际上是解三角不等式,可根据正弦曲线直接写出结果.本例可分作两步,第一步转化,第二步利用三角函数曲线写出解集.2.在下列区间中,函数y=sin(x+4π)的单调增区间是( ) A.[2π,π] B.[0,4π] C.[-π,0] D.[4π,2π]活动:函数y=sin(x+4π)是一个复合函数,即y=sin [φ(x)],φ(x)=x+4π,欲求y=sin(x+4π)的单调增区间,因φ(x)=x+4π在实数集上恒递增,故应求使y 随φ(x)递增而递增的区间.也可从转化与化归思想的角度考虑,即把x+4π看成一个整体,其道理是一样的.解:∵φ(x)=x+4π在实数集上恒递增,又y=sinx 在[2kπ-2π,2kπ+2π](k ∈Z )上是递增的,故令2kπ-2π≤x+4π≤2kπ+2π.∴2kπ-43π≤x≤2kπ+4π.∴y=sin(x+4π)的递增区间是[2kπ-43π,2kπ+4π]. 取k=-1、0、1分别得[-411π,47π]、[-43π,4π]、[45π,49π]. 答案:B点评:像这类题型,上述解法属常规解法,而运用y=Asin(ωx+φ)的单调增区间的一般结论,由一般到特殊求解,既快又准确,若本题运用对称轴方程求单调区间,则是一种颇具新意的简明而又准确、可靠的方法.当然作为选择题还可利用特殊值、图像变换等手段更快地解出. 解题规律:求复合函数单调区间的一般思路是:(1)求定义域;(2)确定复合过程,y=f(t),t=φ(x);(3)根据函数f(t)的单调性确定φ(x)的单调性;(4)写出满足φ(x)的单调性的含有x 的式子,并求出x 的范围;(5)得到x 的范围,与其定义域求交集,即是原函数的单调区间.结论:对于复合函数的单调性,可以直接根据构成函数的单调性来判断. 变式训练1.如果函数f(x)=sin(πx+θ)(0<θ<2π)的最小正周期是T,且当x=2时取得最大值,那么( )A.T=2,θ=2πB.T=1,θ=πC.T=2,θ=πD.T=1,θ=2π解:T=ππ2=2,又当x=2时,sin(π·2+θ)=sin(2π+θ)=sinθ,要使f(x)取得最大值,可取θ=2π答案:A 2.求函数y=21sin(4π-32x )的单调递减区间及单调递增区间.解:y=21sin(4π-32x )=-21sin(32x -4π).由2kπ-2π≤32x -4π≤2kπ+2π,可得3kπ-83π≤x≤3kπ+89π(k ∈Z ),为单调减区间;由2kπ+2π≤32x -4π≤2kπ+23π,可得3kπ+89π≤x≤3kπ+821π(k ∈Z ),为单调增区间.所以原函数的单调减区间为[3kπ-83π,3kπ+89π](k ∈Z );原函数的单调增区间为[3kπ+89π,3kπ+821π](k ∈Z ).知能训练课本本节练习2 1、2、3. 课堂小结1.由学生回顾归纳并说出本节学习了哪些数学知识,学习了哪些数学思想方法.这节课我们研究了正弦函数的性质.重点是掌握正弦函数的性质,通过对正弦函数从定义域、值域、最值、奇偶性、周期性、增减性、对称性等几方面的研究,更加深了我们对这个函数的理解.同时也巩固了上节课所学的正弦函数的图像的画法.2.进一步熟悉了数形结合的思想方法,转化与化归的思想方法,类比思想的方法及观察、归纳、特殊到一般的辩证统一的观点. 作业判断下列函数的奇偶性:(1)f(x)=xsin(π+x);(2)f(x)=xxx sin 1cos sin 12-++-.解答:(1)函数的定义域为R ,它关于原点对称.又∵f(x)=xsin(π+x) =-xsinx, f(-x)=-(-x)sin(-x)=-xsinx=f(x),∴函数为偶函数.(2)函数应满足1-sinx≠0,∴函数的定义域为{x|x ∈R 且x≠2kπ+2π,k ∈Z }. ∵函数的定义域关于原点不对称,∴函数既不是奇函数也不是偶函数.设计感想1.本节是三角函数的重点内容,设计的容量较大,指导思想是让学生在课堂上充分探究、大量活动.作为函数的性质,从初中就开始学习,到高中学习了幂函数、指数、对数函数后有了较深的认识,这是高中所学的最后一个基本初等函数.但由于以前所学的函数不是周期函数,所以理解较为容易,而正弦函数除具有以前所学函数的共性外,又有其特殊性,共性中包含特性,特性又离不开共性,这种普通性与特殊性的关系通过教学应让学生有所领悟.2.在解题中突出数形结合思想,在训练中降低变化技巧的难度,加大应用图像与性质解题的力度.较好地利用图像解决问题,这也是本节课主要强调的数学思想方法.3.学习三角函数的性质后,引导学生对过去所学的知识重新认识,例如sin(α+2π)=sinα这个公式,以前我们只简单地把它看成一个诱导公式,现在我们认识到了,它表明正弦函数的周期性,以提升学生的思维层次.备课资料一、近几年三角函数知识的变动情况三角函数一直是高中固定的传统内容,但近几年对这部分内容的具体要求变化较大.1998年4月21日,国家教育部专门调整了高中数学的部分教学内容,其中的调整意见第(7)条为:“对三角函数中的和差化积、积化和差的8个公式,不要求记忆”.1998年全国高考数学卷中,已尽可能减少了这8个公式的出现次数,在仅有的一次应用中,还将公式印在试卷上,以供查阅.而当时调整意见尚未生效(应在1999年生效),这不能不说对和积互化的8个公式的要求是大大降低了.但是,如果认为这次调整的仅仅是8个公式,仅仅是降低了对8公式的要求,那就太表面、太肤浅了.我们知道,三角中的和积互化历来是三角部分的重点内容之一,相当部分的三角题都是围绕它们而设计的,它们也确实在很大程度上体现了公式变形的技巧和魅力.现在要求降低了,有关的题目已不再适合作为例(习)题选用了.这样一来,三角部分还要我们教些什么呢?又该怎样教?立刻成了部分教师心头的一大困惑.有鉴于此,我们认为很有必要重新审视这部分的知识体系,理清新的教学思路,以便真正落实这次调整的意见,实现“三个有利于(有利于减轻学生过重的课业负担,有利于深化普通高中的课程改革,有利于稳定普通高中的教育教学秩序)”的既定目标.1.是“三角”还是“函数”应当说,三角函数是由“三角”和“函数”两部分知识构成的.三角本是几何学的衍生物,起始于古希腊的希帕克,经由托勒玫、利提克思等至欧拉而终于成为一门形态完备、枝繁叶茂的古典数学学科,历史上的很长一段时期,只有《三角学》盛行于世,却无“三角函数”之名.“三角函数”概念的出现,自然是在有了函数概念之后,从时间上看距今不过300余年.但是,此概念一经引入,立刻极大地改变了三角学的面貌,特别是经过罗巴切夫斯基的开拓性工作,致使三角函数可以完全独立于三角形之外,而成为分析学的一个分支,其中的角也不限于正角,而是任意实数了.有的学者甚至认为可将它更名为角函数,这是有见地的,所以,作为一门学科的《三角学》已经不再独立存在.现行中学教材也取消了原来的《代数》《三角》《几何》的格局,将三角并入了代数内容.这本身即足以说明“函数”在“三角”中应占有的比重.从《代数学》的历史演变来看,在相当长的历史时期内,“式与方程”一直是它的核心内容,那时的教材都是围绕着它们展开的.所以,书中的分式变形、根式变形、指数式变形和对数式变形可谓连篇累牍,所在皆是.这是由当时的数学认知水平决定的.而现在,函数已取代了式与方程成为代数的核心内容,比起运算技巧和变形套路来,人们更关注函数思想的认识价值和应用价值.1963年颁布的《数学教学大纲》提出数学三大能力时,首要强调的是“形式演算能力”,1990年的大纲突出强调的则是“逻辑思维能力”.现行高中《代数》课本中,充分阐发了幂函数、指数函数、对数函数的图像和性质及应用,对这三种代数式的变形却轻描淡写.所以,三角函数部分应重在“函数的图像和性质”是无疑的,这也是国际上普遍认可的观点.2.是“图像”还是“变换”现行高中三角函数部分,单列了一章专讲三角函数,这是与数学发展的潮流相一致的.大多数师生头脑中反映出来的,还是“众多的公式,纷繁的变换”,而三角函数的“图像和性质”倒是在其次的,这一点,与前面所述的“幂、指、对”函数有着极大的反差.调整以后,降低了对这部分的要求,大面积地减少了题量.把“函数”作为关键词,将目光放在“图像和性质”上,应当是正确的选择,负担轻了,障碍小了,这更方便于我们将注意力转移到对函数图像和性质的关注上,这才是“三个有利于”得以贯彻的根本. 3.国外的观点及启示下面来看一下美国和德国的观点:美国没有全国统一的教材和《考试说明》,只有一个《课程标准》,在《课程标准》中,他们对三角函数提出了下面的要求:“会用三角学的知识解三角形;会用正弦、余弦函数研究客观实际中的周期现象;掌握三角函数图像;会解三角函数方程;会证基本的和简单的三角恒等式;懂得三角函数同极坐标、复数等之间的联系”.他们还特别指出,不要在推导三角恒等式上花费过多的时间,只要掌握一些简单的恒等式推导就可以了,比较复杂的恒等式就应该完全避免了.德国在10到12年级(相当于中国的高一到高三)每年都有三角内容,10年级要求如下:(1)一个角的弧度;(2)三角函数sinx 、cosx 、tanx 和它们的图像周期性;(3)三角形中角和边的计算;(4)重要关系(特指同角三角函数的平方关系、商数关系和倒数关系).另外,在11年级和12年级的“无穷小分析”中,继续研究三角函数的图像变换、求导、求积分、求极限.从以上罗列,我们可以看出下面的共同点: 第一,突出强调三角函数的图像和性质;第二,淡化三角式的变形,仅涉及同角变换,而且要求较低,8公式根本不予介绍; 第三,明确变换的目的是为了三角形中的实际计算; 第四,注意三角函数和其他知识的联系.这带给我们的启示还是很强烈的,美国和德国的中学教育以实用为主,并不太在乎教材体系是否严谨,知识系统是否完整;我国的教材虽作调整,怎样实施且不去细说,有一个意图是可猜到的,那就是要让学生知道教材是严谨与完整的.现在看来严谨的东西,在更高的观点下是否还严谨?在圈内看是完整的,跳出圈子看,是否还完整?在一个小地方钻得太深,在另外更大的地方就可能无暇顾及.人家能在中学学到向量、行列式、微分、积分,我们却热衷于在个别地方穷追不舍,这早已引起行家的注意,从这个意义上说,此次调整应当只是第一步.在中学阶段即试图严谨与完整,其实是受前苏联教育家赞可夫的三高(高速度、高难度、高理论)影响太深的缘故. 二、备用习题1.函数y=sin(3π-2x)的单调减区间是( ) A.[2kπ-12π,2kπ+125π](k ∈Z ) B.[4kπ-35π,4kπ+311π](k ∈Z ) C.[kπ-125π,kπ+1211π](k ∈Z ) D.[kπ-12π,kπ+125π](k ∈Z )2.满足sin(x-4π)≥21的x 的集合是( )A.{x|2kπ+125π≤x≤2kπ+1213π,k ∈Z }B.{x|2k π-12π≤x≤2kπ+127π,k ∈Z }C.{x|2kπ+6π≤x≤2kπ+65π,k ∈Z }D.{x|2kπ≤x≤2kπ+6π,k ∈Z }∪{x|2kπ+65π≤x≤(2k+1)π,k∈Z }3.求函数y=lgsinx 的定义域和值域.4.已知函数y=f(x)的定义域是[0,41],求函数f(21sin 2-x )的定义域. 参考答案:1.D2.A3.解:由题意得sinx >0,∴2kπ<x <(2k+1)π,k∈Z .又∵0<sinx≤1,∴lgsinx≤0. 故函数的定义域为(2kπ,(2k+1)π),k∈Z ,值域为(-∞,0].4.解:由题意得0≤21sin 2-x ≤41,∴-23≤sinx≤-22或22≤sinx≤23∴x∈[kπ+4π,kπ+3π]∪[kπ+32π,kπ+43π],k ∈Z .。
高中数学必修4北师大版1.5正弦函数的性质与图象教案(3)
1.5.1 1.5.2 从单位圆看正弦函数性质与正弦函数图象
1.复习回顾
根据单位圆中的正弦线回答正弦函数的性质;
2.思考、分析
①描点法能绘正弦函数图象吗?(无法精确求正弦值)引入等份单位圆法绘正弦图,等分第一象限法可以吗?(根据对称性特点可以简化过程);
②观察正弦函数特点,注意正弦线与正弦函数图象关系,拐点的特征,引入五点法描图; ③利用范例巩固五点法绘图的基本步骤;
④利用正弦函数图象归纳正弦函数的性质(能否利用正弦线观察正弦函数性质)注意二者的区别。
3.范例分析
例1.设sinx=t-3,x ∈R ,求t 的取值范围。
例2.用五点法画出下列函数在区间[0,2]π上的简图,并分析相关性质。
(1)sin y x =- (2)1sin y x =+ (3) 2sin 1y x =-
例3求函数y =sin 2x -3sin x 的最大值
四、巩固练习:
2、已知|x |≤4π,求函数2sin sin y x x =+的最小值\ 5。
归纳小结
1.五点法绘图的基本步骤;
2.正弦函数的性质;
3.综合问题解答中注意角的范围与正弦函数的范围。
1sin y x =
1、的定义域值域.。
高中数学《正弦函数的性质》教学设计及说课稿模板
高中数学《正弦函数的性质》教学设计及说课稿模板《正弦函数的性质》教学设计一、教学目标【知识与技能】会用正弦函数图象研究和理解正弦函数的性质,能熟练运用正弦函数的性质解决问题。
【过程与方法】通过正弦函数的图象,探索正弦函数的性质,提升逻辑思考、归纳总结的能力。
【情感态度与价值观】通过本节的学习体验数学的严谨性,养成细心观察、认真分析、严谨认真的良好思维习惯和不断探求新知识的精神。
二、教学重难点【重点】由正弦函数的图象得到正弦函数的性质。
【难点】正弦函数的周期性和单调性。
三、教学过程(一)引入新课回忆正弦函数的概念,以及上节课所学的正弦函数图象,让学生根据图象思考正弦函数有哪些性质从而引出课题——《正弦函数的性质》。
(二)探索新知让学生自己通过五点作图法画出正弦函数的图象,并在大屏幕上展示正弦函数的标准图象。
学生一边看投影,一边思考如下问题:(1)正弦函数的定义域是什么?(2)正弦函数的值域是什么?(3)正弦函数的最值情况如何?(4)正弦函数的周期?(5)正弦函数的奇偶性?(6)正弦函数的递增区间?给学生十分钟的时间小组讨论,之后小组代表发言,师生共同总结。
1.定义域:y=sinx定义域为R2.值域:引导学生回忆单位圆中的正弦函数线,发现值域为[-1,1]3.最值:根据值域的确定得到在何处取得最值以及函数的正负性。
4.周期性:通过观察图象引导学生发现正弦函数的图象是有规律不断重复出现的,让学生思考后发现是每隔2π重复出现一次,得出y=sinx的最小正周期是2π。
之后通过诱导公式证明。
5.奇偶性:在刚才通过诱导公式证明后顺势提出公式,总结得到正弦函数是奇函数6.单调性:最后让学生根据刚才所得到的结论自己尝试总结正弦函数的单调性。
在探究完正弦函数性质后,利用单位圆和正弦函数图象理解和记忆正弦函数的性质。
(三)课堂练习出示书上例题2:用五点法画出函数的简图,并根据图象讨论它的性质。
(四)小结作业小结采用发散性问题:你今天有什么收获?作业:思考余弦函数的图象与性质是什么样的。
【高中数学必修四】第1章 正弦函数、余弦函数的性质(二)
1.4.2 正弦函数、余弦函数的性质(二)学习目标 1.掌握y =sin x ,y =cos x 的最大值与最小值,并会求简单三角函数的值域和最值.2.掌握y =sin x ,y =cos x 的单调性,并能利用单调性比较大小.3.会求函数y =A sin(ωx +φ)及y =A cos(ωx +φ)的单调区间.知识点一 正弦、余弦函数的定义域、值域 观察下图中的正弦曲线和余弦曲线. 正弦曲线:余弦曲线:可得如下性质:由正弦、余弦曲线很容易看出正弦函数、余弦函数的定义域都是实数集R ,值域都是[-1,1]. 对于正弦函数y =sin x ,x ∈R ,有:当且仅当x =π2+2k π,k ∈Z 时,取得最大值1;当且仅当x =-π2+2k π,k ∈Z 时,取得最小值-1.对于余弦函数y =cos x ,x ∈R ,有: 当且仅当x =2k π,k ∈Z 时,取得最大值1; 当且仅当x =(2k +1)π,k ∈Z 时,取得最小值-1. 知识点二 正弦、余弦函数的单调性思考1 观察正弦函数y =sin x ,x ∈⎣⎡⎦⎤-π2,3π2的图象.正弦函数在⎣⎡⎦⎤-π2,3π2上函数值的变化有什么特点?推广到整个定义域呢?答案 观察图象可知:当x ∈⎣⎡⎦⎤-π2,π2时,曲线逐渐上升,是增函数,sin x 的值由-1增大到1; 当x ∈⎣⎡⎦⎤π2,3π2时,曲线逐渐下降,是减函数,sin x 的值由1减小到-1. 推广到整个定义域可得当x ∈⎣⎡⎦⎤-π2+2k π,π2+2k π(k ∈Z )时,正弦函数y =sin x 是增函数,函数值由-1增大到1; 当x ∈⎣⎡⎦⎤π2+2k π,3π2+2k π(k ∈Z )时,正弦函数y =sin x 是减函数,函数值由1减小到-1. 思考2 观察余弦函数y =cos x ,x ∈[-π,π]的图象.余弦函数在[-π,π]上函数值的变化有什么特点?推广到整个定义域呢? 答案 观察图象可知:当x ∈[-π,0]时,曲线逐渐上升,函数是增函数,cos x 的值由-1增大到1; 当x ∈[0,π]时,曲线逐渐下降,函数是减函数,cos x 的值由1减小到-1. 推广到整个定义域可得当x ∈[2k π-π,2k π],k ∈Z 时,余弦函数y =cos x 是增函数,函数值由-1增大到1; 当x ∈[2k π,(2k +1)π],k ∈Z 时,余弦函数y =cos x 是减函数,函数值由1减小到-1. 思考3 正弦函数、余弦函数的单调区间是什么?答案 y =sin x 的增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,减区间为⎣⎡⎦⎤π2+2k π,3π2+2k π,k ∈Z . y =cos x 的增区间为[-π+2k π,2k π],k ∈Z ,减区间为[2k π,π+2k π],k ∈Z . 梳理 解析式y =sin xy =cos x图象值域[-1,1] [-1,1]单调性在⎣⎡ -π2+2k π,π2 ]+2k π,k ∈Z 上递增,在⎣⎡ π2+2k π,3π2+ ]2k π,k ∈Z 上递减 在[-π+2k π,2k π],k ∈Z 上递增, 在[2k π,π+2k π],k ∈Z 上递减 最值当x =π2+2k π,k ∈Z 时,y max =1;当x=-π2+2k π,k ∈Z 时,y min =-1当x =2k π,k ∈Z 时,y max =1;当x =π+2k π,k ∈Z 时,y min =-11.正弦函数在定义域上是单调函数.( × ) 提示 正弦函数不是定义域上的单调函数. 2.正弦函数在第一象限是增函数.( × )提示 正弦函数在第一象限不是增函数,因为在第一象限,如-5π3<π6,但sin ⎝⎛⎭⎫-5π3=sin π3=32,sin π6=12,sin ⎝⎛⎭⎫-5π3>sin π6. 3.存在实数x ,使得cos x = 2.( × ) 提示 余弦函数最大值为1.4.余弦函数y =cos x 在[0,π]上是减函数.( √ ) 提示 由余弦函数的单调性可知正确.类型一 求正弦、余弦函数的单调区间 例1 求函数y =2sin ⎝⎛⎭⎫π4-x 的单调递增区间. 考点 正弦函数、余弦函数的单调性 题点 正弦函数、余弦函数单调性的判断 解 y =2sin ⎝⎛⎭⎫π4-x =-2sin ⎝⎛⎭⎫x -π4, 令z =x -π4,则y =-2sin z .因为z 是x 的一次函数,所以要求y =-2sin z 的单调递增区间,即求sin z 的单调递减区间, 即2k π+π2≤z ≤2k π+3π2(k ∈Z ).∴2k π+π2≤x -π4≤2k π+3π2(k ∈Z ),即2k π+3π4≤x ≤2k π+7π4(k ∈Z ),∴函数y =2sin ⎝⎛⎭⎫π4-x 的单调递增区间为⎣⎡⎦⎤2k π+3π4,2k π+7π4(k ∈Z ). 反思与感悟 用整体替换法求函数y =A sin(ωx +φ)或y =A cos(ωx +φ)的单调区间时,如果式子中x 的系数为负数,先利用诱导公式将x 的系数变为正数再求其单调区间.求单调区间时,需将最终结果写成区间形式.跟踪训练1 求函数f (x )=2cos ⎝⎛⎭⎫2x -π6的单调递增区间. 考点 正弦函数、余弦函数的单调性 题点 正弦函数、余弦函数单调性的判断 解 令-π+2k π≤2x -π6≤2k π,k ∈Z ,解得-5π12+k π≤x ≤π12+k π,k ∈Z ,所以函数f (x )的单调递增区间是⎣⎡⎦⎤-5π12+k π,π12+k π,k ∈Z .类型二 正弦、余弦函数单调性的应用命题角度1 利用正、余弦函数的单调性比较大小 例2 利用三角函数的单调性,比较下列各组数的大小. (1)sin 196°与cos 156°; (2)cos ⎝⎛⎭⎫-235π与cos ⎝⎛⎭⎫-174π. 考点 正弦函数、余弦函数的单调性 题点 正弦函数、余弦函数单调性的应用 解 (1)sin 196°=sin(180°+16°)=-sin 16°, cos 156°=cos(180°-24°)=-cos 24°=-sin 66°. ∵0°<16°<66°<90°,且y =sin x 在[0°,90°]上是增函数, ∴sin 16°<sin 66°,从而-sin 16°>-sin 66°,即sin 196°>cos 156°. (2)cos ⎝⎛⎭⎫-235π=cos 235π=cos ⎝⎛⎭⎫4π+35π=cos 35π, cos ⎝⎛⎭⎫-174π=cos 174π=cos ⎝⎛⎭⎫4π+π4=cos π4. ∵0<π4<35π<π,且y =cos x 在[0,π]上是减函数,∴cos 35π<cos π4,即cos ⎝⎛⎭⎫-235π<cos ⎝⎛⎭⎫-174π. 反思与感悟 用正弦函数或余弦函数的单调性比较大小时,应先将异名化同名,把不在同一单调区间内的角用诱导公式转化到同一单调区间,再利用单调性来比较大小. 跟踪训练2 cos 1,cos 2,cos 3的大小关系是________.(用“>”连接) 考点 正弦函数、余弦函数的单调性 题点 正弦函数、余弦函数单调性的应用 答案 cos 1>cos 2>cos 3解析 由于0<1<2<3<π,而y =cos x 在[0,π)上单调递减,所以cos 1>cos 2>cos 3. 命题角度2 已知三角函数的单调性求参数范围例3 已知ω是正数,函数f (x )=2sin ωx 在区间⎣⎡⎦⎤-π3,π4上是增函数,求ω的取值范围. 考点 正弦函数、余弦函数的单调性 题点 正弦函数、余弦函数单调性的应用 解 由-π2+2k π≤ωx ≤π2+2k π(k ∈Z ),ω>0,得-π2ω+2k πω≤x ≤π2ω+2k πω,k ∈Z , ∴f (x )的单调递增区间是⎣⎡⎦⎤-π2ω+2k πω,π2ω+2k πω,k ∈Z . 根据题意,得⎣⎡⎦⎤-π3,π4⊆⎣⎡⎦⎤-π2ω+2k πω,π2ω+2k πω(k ∈Z ), 从而有⎩⎨⎧-π2ω≤-π3,π2ω≥π4,ω>0,解得0<ω≤32.故ω的取值范围是⎝⎛⎦⎤0,32.反思与感悟 此类问题可先解出f (x )的单调区间,将问题转化为集合间的包含关系,然后列不等式组求出参数范围.跟踪训练3 已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A.⎣⎡⎦⎤12,54 B.⎣⎡⎦⎤12,34 C.⎝⎛⎦⎤0,12 D .(0,2]考点 正弦函数、余弦函数的单调性 题点 正弦函数、余弦函数单调性的应用 答案 A解析 取ω=54,f (x )=sin ⎝⎛⎭⎫54x +π4, 其减区间为⎣⎡⎦⎤85k π+π5,85k π+π,k ∈Z , 显然⎝⎛⎭⎫π2,π⊆⎣⎡⎦⎤85k π+π5,85k π+π,k ∈Z ,排除B ,C. 取ω=2,f (x )=sin ⎝⎛⎭⎫2x +π4, 其减区间为⎣⎡⎦⎤k π+π8,k π+58π,k ∈Z , 显然⎝⎛⎭⎫π2,π⊈⎣⎡⎦⎤k π+π8,k π+58π,k ∈Z ,排除D.类型三 正弦、余弦函数的值域或最值例4 求函数f (x )=2sin 2x +2sin x -12,x ∈⎣⎡⎦⎤π6,5π6的值域. 考点 正弦函数、余弦函数的最大值与最小值 题点 正弦函数的最大值与最小值 解 令t =sin x ,因为x ∈⎣⎡⎦⎤π6,5π6, 所以t ∈⎣⎡⎦⎤12,1,则f (x )可化为y =2t 2+2t -12=2⎝⎛⎭⎫t +122-1,t ∈⎣⎡⎦⎤12,1, 所以当t =12时,y min =1,当t =1时,y max =72,故f (x )的值域是⎣⎡⎦⎤1,72. 反思与感悟 一般函数的值域求法有:观察法、配方法、判别式法、反比例函数法等.三角函数是函数的特殊形式,一般方法也适用,但要结合三角函数本身的性质. 常见的三角函数求值域或最值的类型有以下几种:(1)形如y =sin(ωx +φ)的三角函数,令t =ωx +φ,根据题中x 的取值范围,求出t 的取值范围,再利用三角函数的单调性、有界性求出y =sin t 的最值(值域).(2)形如y =a sin 2x +b sin x +c (a ≠0)的三角函数,可先设t =sin x ,将函数y =a sin 2x +b sin x +c (a ≠0)化为关于t 的二次函数y =at 2+bt +c (a ≠0),根据二次函数的单调性求值域(最值). (3)对于形如y =a sin x (或y =a cos x )的函数的最值还要注意对a 的讨论.跟踪训练4 已知函数f (x )=2a sin x +b 的定义域为⎣⎡⎦⎤-π3,2π3,函数的最大值为1,最小值为-5,求a 和b 的值.考点 正弦函数、余弦函数的最大值与最小值 题点 正弦函数的最大值与最小值 解 ∵-π3≤x ≤2π3,∴-32≤sin x ≤1.若a =0,不满足题意.若a >0,则⎩⎪⎨⎪⎧2a +b =1,-3a +b =-5,解得⎩⎪⎨⎪⎧a =12-63,b =-23+12 3.若a <0,则⎩⎪⎨⎪⎧2a +b =-5,-3a +b =1,解得⎩⎪⎨⎪⎧a =-12+63,b =19-12 3.故a =12-63,b =-23+123或a =-12+63,b =19-12 3.1.函数y =cos x -1的最小值是( ) A .0 B .1 C .-2 D .-1考点 正弦函数、余弦函数的最大值与最小值 题点 余弦函数的最大值与最小值 答案 C解析 cos x ∈[-1,1],所以y =cos x -1的最小值为-2. 2.函数y =sin 2x 的单调递减区间是( ) A.⎣⎡⎦⎤π2+2k π,3π2+2k π(k ∈Z ) B.⎣⎡⎦⎤k π+π4,k π+3π4(k ∈Z ) C.[]π+2k π,3π+2k π(k ∈Z ) D.⎣⎡⎦⎤k π-π4,k π+π4(k ∈Z ) 考点 正弦函数、余弦函数的单调性 题点 正弦函数、余弦函数单调性的判断 答案 B解析 由2k π+π2≤2x ≤2k π+3π2,k ∈Z ,得k π+π4≤x ≤k π+3π4,k ∈Z ,∴y =sin 2x 的单调递减区间是⎣⎡⎦⎤k π+π4,k π+3π4(k ∈Z ). 3.下列不等式中成立的是( ) A .sin ⎝⎛⎭⎫-π8>sin ⎝⎛⎭⎫-π10 B .sin 3>sin 2 C .sin 75π>sin ⎝⎛⎭⎫-25π D .sin 2>cos 1考点 正弦函数、余弦函数的单调性 题点 正弦函数、余弦函数单调性的应用 答案 D解析 ∵sin 2=cos ⎝⎛⎭⎫π2-2=cos ⎝⎛⎭⎫2-π2, 且0<2-π2<1<π,∴cos ⎝⎛⎭⎫2-π2>cos 1, 即sin 2>cos 1.故选D.4.函数y =cos x 在区间[-π,a ]上为增函数,则a 的取值范围是________. 考点 正弦函数、余弦函数的单调性 题点 正弦函数、余弦函数单调性的应用 答案 (-π,0]解析 因为y =cos x 在[-π,0]上是增函数,在[0,π]上是减函数,所以只有-π<a ≤0时满足条件,故a ∈(-π,0].5.求函数y =3-2sin 12x 的最值及取到最值时的自变量x 的集合.考点 正弦函数、余弦函数的最大值与最小值 题点 正弦函数的最大值与最小值 解 ∵-1≤sin 12x ≤1,∴当sin 12x =-1,12x =2k π-π2,k ∈Z ,即x =4k π-π,k ∈Z 时,y max =5,此时自变量x 的集合为{x |x =4k π-π,k ∈Z }; 当sin 12x =1,12x =2k π+π2,k ∈Z ,即x =4k π+π,k ∈Z 时,y min =1,此时自变量x 的集合为{x |x =4k π+π,k ∈Z }.1.求函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间的方法把ωx +φ看成一个整体,由2k π-π2≤ωx +φ≤2k π+π2(k ∈Z )解出x 的范围,所得区间即为增区间,由2k π+π2≤ωx +φ≤2k π+3π2(k ∈Z )解出x 的范围,所得区间即为减区间.若ω<0,先利用诱导公式把ω转化为正数后,再利用上述整体思想求出相应的单调区间.2.比较三角函数值的大小,先利用诱导公式把问题转化为同一单调区间上的同名三角函数值的大小比较,再利用单调性作出判断. 3.求三角函数值域或最值的常用方法将y 表示成以sin x (或cos x )为元的一次或二次等复合函数,再利用换元或配方或利用函数的单调性等来确定y 的范围.一、选择题1.当-π2≤x ≤π2时,函数f (x )=2sin ⎝⎛⎭⎫x +π3有( ) A .最大值1,最小值-1 B .最大值1,最小值-12C .最大值2,最小值-2D .最大值2,最小值-1考点 正弦函数、余弦函数的最大值与最小值 题点 正弦函数的最大值与最小值 答案 D解析 因为-π2≤x ≤π2,所以-π6≤x +π3≤5π6,所以-12≤sin ⎝⎛⎭⎫x +π3≤1,所以-1≤f (x )≤2. 2.下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上为减函数的是( )A .y =sin ⎝⎛⎭⎫2x +π2B .y =cos ⎝⎛⎭⎫2x +π2C .y =sin ⎝⎛⎭⎫x +π2D .y =cos ⎝⎛⎭⎫x +π2考点 正弦函数、余弦函数的单调性题点 正弦函数、余弦函数单调性的判断答案 A3.下列关系式中正确的是( )A .sin 11°<cos 10°<sin 168°B .sin 168°<sin 11°<cos 10°C .sin 11°<sin 168°<cos 10°D .sin 168°<cos 10°<sin 11°考点 正弦函数、余弦函数的单调性题点 正弦函数、余弦函数单调性的应用答案 C解析 ∵sin 168°=sin(180°-12°)=sin 12°,cos 10°=sin(90°-10°)=sin 80°.∴由正弦函数的单调性,得sin 11°<sin 12°<sin 80°,即sin 11°<sin 168°<cos 10°.4.(2017·九江高一检测)y =2sin xsin x +2的最小值是( )A .2B .-2C .1D .-1考点 正弦函数、余弦函数的最大值与最小值题点 正弦函数的最大值与最小值答案 B解析 由y =2sin x sin x +2=2-4sin x +2,当sin x =-1时,y =2sin xsin x +2取得最小值-2.5.(2017·全国Ⅲ)函数f (x )=15sin ⎝⎛⎭⎫x +π3+cos ⎝⎛⎭⎫x -π6的最大值为() A.65 B .1 C.35 D.15考点 正弦函数、余弦函数的最大值与最小值题点 正弦函数的最大值与最小值答案 A 解析 ∵⎝⎛⎭⎫x +π3+⎝⎛⎭⎫π6-x =π2, ∴f (x )=15sin ⎝⎛⎭⎫x +π3+cos ⎝⎛⎭⎫x -π6 =15sin ⎝⎛⎭⎫x +π3+cos ⎝⎛⎭⎫π6-x =15sin ⎝⎛⎭⎫x +π3+sin ⎝⎛⎭⎫x +π3 =65sin ⎝⎛⎭⎫x +π3≤65. ∴f (x )max =65. 故选A.6.函数y =sin x 的定义域为[a ,b ],值域为⎣⎡⎦⎤-1,12,则b -a 的最大值与最小值之和等于( ) A.4π3 B.8π3C .2πD .4π 考点 正弦函数、余弦函数的最大值与最小值题点 正弦函数的最大值与最小值答案 C解析 作出y =sin x 的一个简图,如图所示,∵函数的值域为⎣⎡⎦⎤-1,12, 且sin π6=sin 5π6=12,sin 3π2=-1, ∴定义域[a ,b ]中,b -a 的最小值为3π2-5π6=2π3, 定义域[a ,b ]中,b -a 的最大值为2π+π6-5π6=4π3, 故可得,最大值与最小值之和为2π.7.若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω的值可为( )A.32B.23 C .2 D .3考点 正弦函数、余弦函数的单调性题点 正弦函数、余弦函数单调性的应用答案 A解析 由题意知,T 4=π3,即T =4π3,4π3=2πω, ∴ω=32. 二、填空题8.sin 1,sin 2,sin 3按从小到大排列的顺序为__________.考点 正弦函数、余弦函数的单调性题点 正弦函数、余弦函数单调性的应用答案 sin 3<sin 1<sin 2解析 ∵1<π2<2<3<π, sin(π-2)=sin 2,sin(π-3)=sin 3.y =sin x 在⎝⎛⎭⎫0,π2上递增,且0<π-3<1<π-2<π2, ∴sin(π-3)<sin 1<sin(π-2),即sin 3<sin 1<sin 2.9.函数y =2sin ⎝⎛⎭⎫2x +π3⎝⎛⎭⎫-π6≤x ≤π6的值域是________. 考点 正弦函数、余弦函数的最大值与最小值题点 正弦函数的最大值与最小值答案 [0,2]解析 ∵-π6≤x ≤π6,∴0≤2x +π3≤2π3, ∴0≤sin ⎝⎛⎭⎫2x +π3≤1,∴y ∈[0,2]. 10.函数y =13sin ⎝⎛⎭⎫π6-x (x ∈[0,π])的单调递增区间为________. 考点 正弦函数、余弦函数的单调性题点 正弦函数、余弦函数单调性的判断答案 ⎣⎡⎦⎤2π3,π解析 原式可化为y =-13sin ⎝⎛⎭⎫x -π6, ∵x ∈[0,π],∴-π6≤x -π6≤5π6. 要求函数的单调递增区间,只需求f (x )=13sin ⎝⎛⎭⎫x -π6的单调递减区间. 则π2≤x -π6≤5π6, 即2π3≤x ≤π. ∴y =13sin ⎝⎛⎭⎫π6-x (x ∈[0,π])的单调递增区间为⎣⎡⎦⎤2π3,π. 11.若f (x )=2sin ωx (0<ω<1)在区间⎣⎡⎦⎤0,π3上的最大值是2,则ω=________. 考点 正弦函数、余弦函数的最大值与最小值题点 正弦函数的最大值与最小值答案 34解析 ∵x ∈⎣⎡⎦⎤0,π3,即0≤x ≤π3,且0<ω<1, ∴0≤ωx ≤ωπ3<π3, ∵f (x )max =2sinωπ3=2, ∴sin ωπ3=22,ωπ3=π4, 即ω=34. 三、解答题12.求下列函数的单调递增区间.(1)y =1-sin x 2;(2)y =12log sin ⎝⎛⎭⎫x 2-π3. 考点 正弦函数、余弦函数的单调性题点 正弦函数、余弦函数单调性的判断解 (1)由2k π+π2≤x 2≤2k π+32π,k ∈Z , 得4k π+π≤x ≤4k π+3π,k ∈Z .∴y =1-sin x 2的单调递增区间为[4k π+π,4k π+3π](k ∈Z ).(2)要求函数y =12log sin ⎝⎛⎭⎫x 2-π3的单调递增区间,即求使y =sin ⎝⎛⎭⎫x 2-π3>0且单调递减的区间.∴2k π+π2≤x 2-π3<2k π+π,k ∈Z ,整理得4k π+5π3≤x <4k π+8π3,k ∈Z .∴函数y =12log sin ⎝⎛⎭⎫x 2-π3的单调递增区间为⎣⎡⎭⎫4k π+5π3,4k π+8π3,k ∈Z .13.求下列函数的最大值和最小值.(1)f (x )=sin ⎝⎛⎭⎫2x -π6,x ∈⎣⎡⎦⎤0,π2;(2)f (x )=-2cos 2x +2sin x +3,x ∈⎣⎡⎦⎤π6,5π6.考点 正弦函数、余弦函数的最大值与最小值题点 正弦函数、余弦函数最值的综合问题解 (1)当x ∈⎣⎡⎦⎤0,π2时,2x -π6∈⎣⎡⎦⎤-π6,5π6,由函数图象知,f (x )=sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤sin ⎝⎛⎭⎫-π6,sin π2=⎣⎡⎦⎤-12,1.所以,f (x )在⎣⎡⎦⎤0,π2上的最大值和最小值分别为1,-12.(2)f (x )=-2(1-sin 2x )+2sin x +3=2sin 2x +2sin x +1=2⎝⎛⎭⎫sin x +122+12.因为x ∈⎣⎡⎦⎤π6,5π6,所以12≤sin x ≤1.当sin x =1时,y max =5;当sin x =12时,y min =52.所以,f (x )在⎣⎡⎦⎤π6,5π6上的最大值和最小值分别为5,52.四、探究与拓展14.已知奇函数f (x )在[-1,0]上单调递减,α,β为锐角三角形两内角,则() A .f (cos α)>f (cos β) B .f (sin α)>f (sin β)C .f (sin α)>f (cos β)D .f (sin α)<f (cos β)考点 正弦函数、余弦函数的单调性题点 正弦函数、余弦函数单调性的应用 答案 D解析 由题意,得α+β>π2,∴π2>α>π2-β>0, ∴sin α>sin ⎝⎛⎭⎫π2-β,即1>sin α>cos β>0,∴-1<-sin α<-cos β<0.∵奇函数f (x )在[-1,0]上单调递减,∴f (-sin α)>f (-cos β),∴-f (sin α)>-f (cos β),∴f (sin α)<f (cos β).15.已知函数f (x )=a sin ⎝⎛⎭⎫2x -π3+b (a >0).当x ∈⎣⎡⎦⎤0,π2时,f (x )的最大值为3,最小值是-2,求a 和b 的值.考点 正弦函数、余弦函数的最大值与最小值 题点 正弦函数的最大值与最小值解 ∵0≤x ≤π2,∴-π3≤2x -π3≤2π3, ∴-32≤sin ⎝⎛⎭⎫2x -π3≤1, 又a >0,∴f (x )max =a +b =3,f (x )min =-32a +b =-2. 由⎩⎪⎨⎪⎧ a +b =3,-32a +b =-2,得⎩⎪⎨⎪⎧a =2,b =-2+ 3.。
(北师大版)高中数学必修四:1.5《从单位圆看正弦函数的性质》教案设计
§5.1 单位圆与正弦函数一、教学目标1、知识与技能:(1)回忆锐角的正弦函数定义;(2)熟练运用锐角正弦函数的性质;(3)理解通过单位圆引入任意角的正弦函数的意义;(4)掌握任意角的正弦函数的定义;(5)理解有向线段的概念;(6)了解正弦函数图像的画法;(7)掌握五点作图法,并会用此方法画出[0,2π]上的正弦曲线。
2、过程与方法:初中所学的正弦函数,是通过直角三角形中给出定义的;由于我们已将角推广到任意角的情况,而且一般都是把角放在平面直角坐标系中,这样一来,我们就在直角坐标系中来找直角三角形,从而引出单位圆;利用单位圆的独特性,是高中数学中的一种重要方法,在第二节课的正弦函数图像,以及在后面的正弦函数的性质中都有直接的应用;讲解例题,总结方法,巩固练习。
3、情感态度与价值观:通过本节的学习,使同学们对正弦函数的概念有了一个新的认识;在由锐角的正弦函数推广到任意角的正弦函数的过程中,体会特殊与一般的关系,形成一种辩证统一的思想;通过单位圆的学习,建立数形结合的思想,激发学习的学习积极性;培养学生分析问题、解决问题的能力。
二、教学重、难点重点:1.任意角的正弦函数定义,以及正弦函数值的几何表示。
2.正弦函数图像的画法。
难点:1.正弦函数值的几何表示。
2.利用正弦线画出y=sinx,x∈[0, 2π]的图像。
三、学法与教法在初中,我们知道直角三角形中锐角的对边比上斜边就叫着这个角的正弦,当把锐角放在直角坐标系中时,角的终边与单位圆交于一点,正弦函数对应于该点的纵坐标,当是任意角时,通过函数定义的形式引出正弦函数的定义;作正弦函数y=sinx图像时,在正弦函数定义的基础上,通过平移正弦线得出其图像,再归结为五点作图法。
教法: 探究讨论法。
四、教学过程(一)、创设情境,揭示课题我们学习角的概念的推广和弧度制,就是为了学习三角函数。
请同学们回忆(1)角的概念的推广及弧度制、象限角等概念;(2)初中所学的正弦函数是如何定义的?并想一想它有哪些性质?学生思考回答以后,教师小结。
【北师大版】高中数学必修四全册学案(全册共340页 附答案)
【北师大版】高中数学必修四全册学案(全册共340页附答案)目录§1周期现象§2角的概念的推广§3弧度制4.1 单位圆与任意角的正弦函数、余弦函数的定义4.2 单位圆与周期性4.3 单位圆与正弦函数、余弦函数的基本性质4.4 单位圆的对称性与诱导公式(一)4.4 单位圆的对称性与诱导公式(二)5.1 正弦函数的图像5.2 正弦函数的性质§6余弦函数的图像与性质7.1 正切函数的定义7.2 正切函数的图像与性质7.3 正切函数的诱导公式§8函数y=A sin(ωx+φ)的图像与性质(一)§8函数y=A sin(ωx+φ)的图像与性质(二)§9三角函数的简单应用章末复习课第二章平面向量§1从位移、速度、力到向量2.1 向量的加法2.2 向量的减法3.1 数乘向量3.2 平面向量基本定理§4平面向量的坐标§5从力做的功到向量的数量积§1周期现象内容要求 1.了解周期现象,能判断简单的实际问题中的周期(重点).2.初步了解周期函数的概念,能判断简单的函数的周期性(难点).知识点周期现象(1)概念:相同间隔重复出现的现象.(2)特点:①有一定的规律;②不断重复出现.【预习评价】1.(正确的打“√”,错误的打“×”)(1)地球上一年春、夏、秋、冬四季的变化是周期现象.(√)(2)钟表的分针每小时转一圈,它的运行是周期现象.(√)2.观察“2,0,1,7,2,0,1,7,2,0,1,7,…”寻找规律,则第25个数字是________.解析观察可知2,0,1,7每隔四个数字重复出现一次,具有周期性,故第25个数字为2. 答案 2题型一周期现象的判断【例1】判断下列现象是否为周期现象,并说明理由.(1)地球的自转;(2)连续抛掷一枚骰子,朝上一面的点数;(3)钟表的秒针的转动;(4)某段高速公路每天通过的车辆数.解(1)地球每天自转一圈,并且每一天内的任何时段总会重复前一天内相同时段的动作,因此是周期现象.(2)连续抛掷一枚骰子,朝上一面的点数有可能为1,2,…,6,并且前一次出现的点数,下一次可能出现,也可能不出现,故出现的点数是随机的,因此不是周期现象.(3)钟表的秒针的转动,每一分钟转一圈,并且每分钟总是重复前一分钟的动作,因此是周期现象.(4)某段高速公路每天通过的车辆数,会因时间、天气、交通状况等因素而发生变化,没有一个确定的规律,因此不是周期现象.规律方法周期现象的判断关键:首先要认真审题,明确题目的实际背景,然后应牢牢抓住“间隔相同,现象(或值)重复出现”这一重要特征进行判断.【训练1】判断下列现象是否为周期现象:(1)每届奥运会的举办时间;(2)北京天安门广场的国旗,日出时升旗,日落时降旗,则其每天的升旗时间;(3)中央电视台每晚7:00的新闻联播.解(1)奥运会每4年一届,所以其举办时间呈周期现象.(2)北京每天的日出、日落随节气变化,并非恒定,相邻两天的升旗时间间隔是变化的,不是常数,所以不是周期现象.(3)每24小时,新闻联播重复一次,所以是周期现象.题型二周期现象的应用【例2】一个地区不同日子里白昼的时长是不同的,所给表是某地一年中10天测量的白昼时间统计表(时间近似到0.1小时):坐标系中画出这些数据的散点图,并估计该地区一年中大约有多少天白昼时间大于15.9小时.(2)白昼时间的变化是否具有周期现象?你估计该地区来年6月21日的白昼时间是多少?解(1)散点图如图所示,因为从4月27日至8月13日的白昼时间均超过15.9小时,所以该地区一年白昼时间超过15.9小时的大约有3+31+30+31+12=107(天).(2)由散点图可知,白昼时间的变化是周期现象,该地区来年6月21日的白昼时间为19.4小时.规律方法收集数据、画散点图,分析、研究数据特点从而得出结论是用数学方法研究现实问题的常用方法.【训练2】受日月的引力,海水会发生涨落,这种现象叫做潮汐.已知某海滨浴场的海浪高度y(米)是时间t(0≤t≤24,单位:时)的函数,记作y=f(t),下表是某日各时的浪高数据:几次?时间最长的一次是什么时候?有多长时间?解由题中表可知,一天内能开放三次,时间最长的一次是上午9时至下午3时,共6个小时.【例3】2017年5月1日是星期一,问2017年10月1日是星期几?解按照公历记法,2017年5、7、8这三个月份都是31天,6、9月份各30天.从2017年5月1日到2017年10月1日共有153天,因为每星期有7天,故由153=22×7-1知,从2017年5月1日再过154天恰好与5月1日相同都是星期一,这一天是公历2017年10月2日,故2017年10月1日是星期日.【迁移1】试确定自2017年5月1日再过200天是星期几?解由200=28×7+4知自2017年5月1日再过200天是星期五.【迁移2】从2017年5月1日到2017年10月1日经过了几个星期五?几个星期一?解因为从2017年5月1日到2017年10月1日的153天中有21个完整的周期零6天,在每个周期中有且仅有一个星期五和一个星期一,故共经过了22个星期五,21个星期一.【迁移3】试确定自2017年5月1日再过7k+3(k∈Z)天后那一天是星期几?解每隔七天,周一至周日依次循环,故7k天后为周一,7k+3天后为星期四.规律方法应用周期性解决实际问题的两个要点特别提醒计算两个日期的间隔时间时要注意有的月份30天,有的月份31天,二月份有28天(或29天).课堂达标1.下列自然现象:月亮东升西落,气候的冷暖,昼夜变化,火山爆发.其中是周期现象的有( )A.1个B.2个C.3个D.4个解析月亮东升西落及昼夜变化为周期现象;气候的冷暖与火山爆发不是周期现象,故选B.答案 B2.如果今天是星期五,则58天后的那一天是星期( )A.五B.六C.日D.一解析每隔七天循环一次,58=7×8+2,故58天后为周日.答案 C3.共有50架飞机组成编队,按侦察机、直升机、轰炸机、歼击机的顺序轮换编队,则最后一架飞机是________飞机.解析周期为4,50=12×4+2,所以最后一架是直升机.答案直升机4.某物体作周期运动,如果一个周期为0.4秒,那么运动4秒,该物体经过了________个周期.解析4÷0.4=10,所以经过了10个周期.答案105.某班有48名学生,每天安排4名同学进行卫生值日,按一周上五天课,一学期二十周计算,该班每位同学一学期要值日几次?解共有48名学生,每天安排4名,则12个上课日就轮完一遍.一学期有5×20=100(个)上课日,而12×8=96(个)上课日,所以一个学期内该班每位同学至少值日8次,有部分同学要值日9次.课堂小结1.对于某些具有重复现象的事件,研究其规律,可预测未来在一定时间该现象发生的可能性及发生规律,具有一定的研究价值.2.利用散点图可以较直观地分析两变量之间的某种关系,然后再利用这种关系选择一种合适的函数去拟合这些散点,从而可以避免因盲目选择函数模型而造成的不必要的失误.基础过关1.下列是周期现象的为( ) ①闰年每四年一次;②某交通路口的红绿灯每30秒转换一次; ③某超市每天的营业额; ④某地每年6月份的平均降雨量. A .①②④B .②④C .①②D .①②③解析 ①②是周期现象;③中每天的营业额是随机的,不是周期现象;④中每年6月份的降雨量也是随机的,不是周期现象. 答案 C2.把17化成小数,小数点后第20位是( )A .1B .2C .4D .8解析 17=0.1·42857·,小数点后“142857”呈周期性变化,且周期为 6.∵20=3×6+2,∴第20位为4. 答案 C3.按照规定,奥运会每4年举行一次.2016的夏季奥运会在巴西举办,那么下列年份中不举办夏季奥运会的应该是( ) A .2020 B .2024 C .2026D .2028解析 C 中2026不是4的倍数,选C. 答案 C4.把一批小球按2个红色,5个白色的顺序排列,第30个小球是________色. 解析 周期为7,30=4×7+2,所以第30个小球与第2个小球颜色相同,为红色. 答案 红5.如图所示,变量y与时间t(s)的图像如图所示,则时间t至少隔________ s时y=1会重复出现1次.答案 26.若今天是星期一,则第7天后的那一天是星期几?第120天后的那一天是星期几?(注:今天是第一天)解每星期有7天,从星期一到星期日,呈周期性变化,其周期为7.∴第7天后的那一天是星期一.∵120=17×7+1,∴第120天后的那一天是星期二.7.水车上装有16个盛水槽,每个盛水槽最多盛水10升,假设水车5分钟转一圈,计算1小时内最多盛水多少升?解因为1小时=60分钟=12×5分钟,且水车5分钟转一圈,所以1小时内水车转12圈.又因为水车上装有16个盛水槽,每个盛水槽最多盛水10升,所以每转一圈,最多盛水16×10=160(升,)所以水车1小时内最多盛水160×12=1 920(升).能力提升8.钟表分针的运动是一个周期现象,其周期为60分钟,现在分针恰好指在2点处,则100分钟后分针指在( )A.8点处B.10点处C.11点处D.12点处解析由于100=1×60+40,所以100分钟后分针所指位置与40分钟后分针所指位置相同,现在分针恰好指在2点处,经过40分钟分针应指在10点处,故选B.答案 B9.设钟摆每经过1.8秒回到原来的位置.在图中钟摆达到最高位置A点时开始计时,经过1分钟后,钟摆的大致位置是( )A.点A处B.点B处C.O、A之间D.O、B之间解析 钟摆的周期T =1.8 秒,1分钟=(33×1.8+0.6)秒,又T 4<0.6<T2,所以经过1分钟后,钟摆在O 、B 之间. 答案 D10.今天是星期六,再过100天后是星期________. 解析 100=14×7+2,∴再过100天是星期一. 答案 一11.一个质点,在平衡位置O 点附近振动,如果不考虑阻力,可将此振动看作周期运动,从O 点开始计时,质点向左运动第一次到达M 点用了0.3 s ,又经过0.2 s 第二次通过M 点,则质点第三次通过M 点,还要经过的时间可能是________ s.解析 质点从O 点向左运动,O →M 用了0.3 s ,M →A →M 用了0.2 s ,由于M →O 与O →M 用时相同,因此质点运动半周期T2=0.2+0.3×2=0.8(s),从而当质点第三次经过M 时用时应为M →O →B →O →M ,所用时间为0.3×2+0.8=1.4(s). 答案 1.412.游乐场中的摩天轮匀速旋转,每转一圈需要12分钟,其中心O 距离地面40.5米,半径40米.如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时,请解答下列问题:(1)你与地面的距离随时间的变化而变化,这个现象是周期现象吗? (2)转四圈需要多少时间?(3)你第四次距地面最高需要多少时间? (4)转60分钟时,你距离地面是多少? 解 (1)是周期现象,周期12分钟/圈. (2)转四圈需要时间为4×12=48(分钟).(3)第1次距离地面最高需122=6(分钟),而周期是12分钟,所以第四次距地面最高需12×3+6=42(分钟).(4)∵60÷12=5,∴转60分钟时你距离地面与开始时刻距离地面相同,即40.5-40=0.5(米).13.(选做题)下面是一个古希腊的哲学家、数学家、天文学家毕达哥拉斯的故事:有一次毕达哥拉斯处罚学生,让他来回数在黛安娜神庙的七根柱子(这七根柱子的标号分别为A,B,C,…,G),如图所示,一直到指出第1 999个数的柱子的标号是哪一个才能够停止.你能帮助这名学生尽快结束这个处罚吗?解通过观察可发现规律:数“2,3,4,…,1 997,1 998,1 999”按标号为“B,C,D,E,F,G,F,E,D,C,B,A”这12个字母循环出现,因此周期是12.先把1去掉,(1 999-1)÷12=166……6,因此第1 999个数的柱子的标号与第167个周期的第6个数的标号相同,故数到第1 999个数的柱子的标号是G.§2角的概念的推广内容要求 1.理解正角、负角、零角与象限角的概念(知识点1 角的概念(1)角的概念:角可以看成平面内一条射线绕着端点O从一个位置OA旋转到另一个位置OB 所形成的图形.点O是角的顶点,射线OA,OB分别是角α的始边和终边.(2)按照角的旋转方向,分为如下三类:(正确的打“√”,错误的打“×”)(1)按逆时针方向旋转所成的角是正角(√)(2)按顺时针方向旋转所成的角是负角(√)(3)没有作任何旋转就没有角对应(×)(4)终边和始边重合的角是零角(×)(5)经过1小时时针转过30°(×)知识点2 象限角如果角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是第几象限角.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.【预习评价】1.锐角属于第几象限角?钝角又属于第几象限角?提示锐角属于第一象限角,钝角属于第二象限角.2.第二象限的角比第一象限的角大吗?提示不一定.如120° 是第二象限的角,390°是第一象限的角,但120°<390°.知识点3 终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任何一个与角α终边相同的角,都可以表示成角α与周角的整数倍的和.【预习评价】(正确的打“√”,错误的打“×”)(1)终边相同的角一定相等(×)(2)相等的角终边一定相同(√)(3)终边相同的角有无数多个(√)(4)终边相同的角它们相差180°的整数倍(×)题型一角的概念的推广【例1】写出下图中的角α,β,γ的度数.解要正确识图,确定好旋转的方向和旋转的大小,由角的概念可知α=330°,β=-150°,γ=570°.规律方法 1.理解角的概念的三个“明确”2.表示角时的两个注意点(1)字母表示时:可以用希腊字母α,β等表示,“角α”或“∠α”可以简化为“α”.(2)用图示表示角时:箭头不可以丢掉,因为箭头代表了旋转的方向,也即箭头代表着角的正负.【训练1】(1)图中角α=________,β=________;(2)经过10 min,分针转了________.解析(1)α=-(180°-30°)=-150°β=30°+180°=210°.(2)分针按顺时针过了周角的16,即-60°.答案(1)-150°210°(2)-60°题型二终边相同的角【例2】已知α=-1 910°.(1)把α写成β+k×360°(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求θ,使θ与α的终边相同,且-720°≤θ<0°.解(1)-1 910°=250°-6×360°,其中β=250°,从而α=250°+(-6)×360°,它是第三象限角.(2)令θ=250°+k×360°(k∈Z),取k=-1,-2就得到满足-720°≤θ<0°的角,即250°-360°=-110°,250°-720°=-470°.所以θ为-110°,-470°.规律方法将任意角化为α+k·360°(k∈Z,且0°≤α<360°)的形式,关键是确定k.可用观察法(α的绝对值较小时适用),也可用除以360°的方法.要注意:正角除以360°,按通常的除法进行,负角除以360°,商是负数,且余数为正值.【训练2】写出终边在阴影区域内(含边界)的角的集合.解 终边在直线OM 上的角的集合为M ={α|α=45°+k ·360°,k ∈Z }∪{α|α=225°+k ·360°,k ∈Z }={α|α=45°+2k ·180°,k ∈Z }∪{α|α=45°+(2k +1)·180°,k ∈Z } ={α|α=45°+n ·180°,n ∈Z }.同理可得终边在直线ON 上的角的集合为{α|α=60°+n ·180°,n ∈Z }, 所以终边在阴影区域内(含边界)的角的集合为 {α|45°+n ·180°≤α≤60°+n ·180°,n ∈Z }.【探究1】 在四个角-20°,-400°,-2 000°,1 600°中,第四象限角的个数是( ) A .0 B .1 C .2D .3解析 -20°是第四象限角,-400°=-360°-40°与-40°终边相同,是第四象限角,-2 000°=-6×360°+160°与160°终边相同,是第二象限角,1 600°=4×360°+160°与160°终边相同,是第二象限角,故第四象限角有2个. 答案 C【探究2】 写出终边落在第一象限和第二象限内的角的集合.解 根据终边相同的角一定是同一象限的角,又可以先写出第一象限锐角范围和第二象限钝角的范围,再加上360°的整数倍即可. 所以表示为:第一象限角的集合:S ={β|β=k ·360°+α,0°<α<90°,k ∈Z },或S ={β|k ·360°<β<k ·360°+90°,k ∈Z }.第二象限角的集合:S ={β|β=k ·360°+α,90°<α<180°,k ∈Z },或S ={β|k ·360°+90°<β<k ·360°+180°,k ∈Z }.【探究3】 已知α为第二象限角,那么2α,α2分别是第几象限角?解 ∵α是第二象限角,∴90+k ×360°<α<180°+k ×360°,180°+2k ×360°<2α<360°+2k ×360°,k ∈Z .∴2α是第三或第四象限角,或是终边落在y 轴的非正半轴上的角.同理45°+k 2×360°<α2<90°+k2×360°,k ∈Z .当k 为偶数时,不妨令k =2n ,n ∈Z ,则45°+n ×360°<α2<90°+n ×360°,此时,α2为第一象限角;当k 为奇数时,令k =2n +1,n ∈Z ,则225°+n ×360°<α2<270°+n ×360°,此时,α2为第三象限角.∴α2为第一或第三象限角. 【探究4】 已知α为第一象限角,求180°-α2是第几象限角.解 ∵α为第一象限角,∴k ·360°<α<k ·360°+90°,k ∈Z , ∴k ·180°<α2<k ·180°+45°,k ∈Z , ∴-45°-k ·180°<-α2<-k ·180°,k ∈Z ,∴135°-k ·180°<180°-α2<180°-k ·180°,k ∈Z .当k =2n (n ∈Z )时,135°-n ·360°<180°-α2<180°-n ·360°,为第二象限角;当k =2n +1(n ∈Z )时,-45°-n ·360°<180°-α2<-n ·360°,为第四象限角.∴180°-α2是第二或第四象限角.规律方法 1.象限角的判定方法(1)根据图像判定.利用图像实际操作时,依据是终边相同的角的概念,因为0°~360°之间的角与坐标系中的射线可建立一一对应的关系.(2)将角转化到0°~360°范围内,在直角坐标平面内,0°~360°范围内没有两个角终边是相同的.2.α,2α,α2等角的终边位置的确定方法不等式法:(1)利用象限角的概念或已知条件,写出角α的范围. (2)利用不等式的性质,求出2α,α2等角的范围.(3)利用“旋转”的观点,确定角终边的位置.例如,如果得到k ×120°<α3<k ×120°+30°,k ∈Z ,可画出0°<α3<30°所表示的区域,再将此区域依次逆时针或顺时针转动120°(如图所示).易错警示 由α的范围确定2α的范围时易忽视终边在坐标轴上的情况.课堂达标1.-361°的终边落在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析 因为-361°的终边和-1°的终边相同,所以它的终边落在第四象限,故选D. 答案 D2.设A ={θ|θ为锐角},B ={θ|θ为小于90°的角},C ={θ|θ为第一象限的角},D ={θ|θ为小于90°的正角},则下列等式中成立的是( ) A .A =B B .B =C C .A =CD .A =D解析 直接根据角的分类进行求解,容易得到答案. 答案 D3.将-885°化为α+k ·360°(0°≤α<360°,k ∈Z )的形式是________________. 答案 195°+(-3)×360°4.与-1 692°终边相同的最大负角是________. 解析 ∵-1 692°=-5×360°+108°, ∴与108°终边相同的最大负角为-252°. 答案 -252°5.如图所示,写出终边落在阴影部分的角的集合.解设终边落在阴影部分的角为α,角α的集合由两部分组成.①{α|k·360°+30°≤α<k·360°+105°,k∈Z}.②{α|k·360°+210°≤α<k·360°+285°,k∈Z}.∴角α的集合应当是集合①与②的并集:{α|k·360°+30°≤α<k·360°+105°,k∈Z}∪{α|k·360°+210°≤α<k·360°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}∪{α|(2k+1)180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,或(2k+1)·180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|n·180°+30°≤α<n·180°+105°,n∈Z}.课堂小结1.对角的理解,初中阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理解这一概念时,要注意“旋转方向”决定角的“正负”,“旋转量”决定角的“绝对值大小”.2.区域角的表示形式并不唯一,如第二象限角的集合,可以表示为{α|90°+k×360°<α<180°+k×360°,k∈Z},也可以表示为{α|-270°+k×360°<α<-180°+k×360°,k∈Z}.基础过关1.下列各组角中,终边相同的是( )A.495°和-495°B.1 350°和90°C.-220°和140°D.540°和-810°解析-220°=-360°+140°,∴-220°与140°终边相同.答案 C2.设A={小于90°的角},B={锐角},C={第一象限角},D={小于90°而不小于0°的角},那么有( )A.B C A B.B A CC.D A∩C) D.C∩D=B解析锐角、0°~90°的角、小于90°的角及第一象限角的范围,如下表所示.答案 D3.若α是第四象限角,则180°-α是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析可以给α赋一特殊值-60°,则180°-α=240°,故180°-α是第三象限角.答案 C4.已知角α=-3 000°,则与角α终边相同的最小正角是______.解析∵-3 000°=-9×360°+240°,∴与-3 000°角终边相同的最小正角为240°.答案240°5.在-180°~360°范围内,与2 000°角终边相同的角是______.解析因为2 000°=200°+5×360°,2 000°=-160°+6×360°,所以在-180°~360°范围内与2 000°角终边相同的角有-160°,200°两个.答案-160°,200°6.在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°;(3)-950°15′.解(1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角.7.写出与25°角终边相同的角的集合,并求出该集合中满足不等式-1 080°≤β<-360°的角β.解与25°角终边相同的角的集合为S={β|β=k·360°+25°,k∈Z}.令k=-3,则有β=-3×360°+25°=-1 055°,符合条件;令k=-2,则有β=-2×360°+25°=-695°,符合条件;令k =-1,则有β=-1×360°+25°=-335°,不符合条件. 故符合条件的角有-1 055°,-695°.能力提升8.以下命题正确的是( ) A .第二象限角比第一象限角大B .A ={α|α=k ·180°,k ∈Z },B ={β|β=k ·90°,k ∈Z },则ABC .若k ·360°<α<k ·360°+180°(k ∈Z ),则α为第一或第二象限角D .终边在x 轴上的角可表示为k ·360°(k ∈Z ) 解析 A 不正确,如-210°<30°.在B 中,当k =2n ,k ∈Z 时,β=n ·180°,n ∈Z . ∴AB ,∴B 正确.又C 中,α为第一或第二象限角或在y 轴的非负半轴上, ∴C 不正确.显然D 不正确. 答案 B9.集合M =⎩⎨⎧⎭⎬⎫x |x =k ·180°2±45°,k ∈Z ,P =⎩⎨⎧⎭⎬⎫x |x =k ·180°4±90°,k ∈Z ,则M 、P之间的关系为( ) A .M =P B .M P C .M PD .M ∩P =∅解析 对集合M 来说,x =(2k ±1)·45°,即45°的奇数倍;对集合P 来说,x =(k ±2)·45°,即45°的倍数. 答案 B10.已知角α、β的终边相同,那么α-β的终边在________. 解析 ∵α、β终边相同, ∴α=k ·360°+β(k ∈Z ).∴α-β=k ·360°,故α-β终边会落在x 轴非负半轴上. 答案 x 轴的非负半轴上11.若α为第一象限角,则k ·180°+α(k ∈Z )的终边所在的象限是第________象限. 解析 ∵α是第一象限角,∴k 为偶数时,k ·180°+α终边在第一象限;k 为奇数时,k ·180°+α终边在第三象限. 答案 一或三12.求终边在直线y =x 上的角的集合S .解 因为直线y =x 是第一、三象限的角平分线,在0°~360°之间所对应的两个角分别是45°和225°,所以S ={α|α=k ·360°+45°,k ∈Z }∪{α|α=k ·360°+225°,k∈Z }={α|α=2k ·180°+45°,k ∈Z }∪{α|α=(2k +1)·180°+45°,k ∈Z }={α|α=n ·180°+45°,n ∈Z }.13.(选做题)已知角α、β的终边有下列关系,分别求α、β间的关系式: (1)α、β的终边关于原点对称; (2)α、β的终边关于y 轴对称.解 (1)由于α、β的终边互为反向延长线,故α、β相差180°的奇数倍(如图1),于是α-β=(2k -1)·180°(k ∈Z ).(2)在0°~360°内,设α的终边所表示的角为90°-θ,由于α、β关于y 轴对称(如图2),则β的终边所表示的角为90°+θ.于是α=90°-θ+k 1·360°(k 1∈Z ),β=90°+θ+k 2·360°(k 2∈Z ).两式相加得α+β=(2k +1)·180°(k ∈Z ).§3 弧度制内容要求 1.了解弧度制的意义,能正确地进行弧度与角度的换算,熟记特殊角的弧度数(重点).2.掌握弧度制下的弧长公式,会用弧度解决一些实际问题(难点).知识点1 弧度制 (1)角度制与弧度制的定义(2)如果半径为r 的圆的圆心角α所对弧的长为l ,那么角α的弧度数的绝对值是|α|=lr. 【预习评价】(正确的打“√”,错误的打“×”)(1)“度”与“弧度”是度量角的两种不同的度量单位(√) (2)1°的角是周角的1360,1 rad 的角是周角的12π(√)(3)1°的角比1 rad 的角要大(×)(4)1 rad 的角的大小和所在圆的半径的大小有关(×) 知识点2 角度制与弧度制的换算 常见角度与弧度互化公式如下:请填充完整下表,一些特殊角的角度数与弧度数的对应关系有:设扇形的半径为R ,弧长为l ,α(0<α<2π)为其圆心角,则1.一个扇形的半径为2 cm ,圆心角为π6,则该扇形所对的弧长l =________cm.答案π32.一个扇形的半径为2 cm ,其对应的弧长为2.则该扇形的面积为________cm 2. 答案 2知识点4 利用弧度制表示终边相同的角在弧度制下,与α终边相同的角连同α在内可以表示为2k π+α(k ∈Z ),其中α的单位必须是弧度. 【预习评价】1.与30°终边相同的角为( ) A .2k π+π3(k ∈Z )B .2k π+π6(k ∈Z )C .360°k +π3(k ∈Z )D .2k π+30°(k ∈Z )答案 B2.终边在x 轴上的角的集合用弧度制表示为________. 答案 {α|α=k π,k ∈Z }题型一 角度与弧度的互化【例1】 将下列角度与弧度进行互化: (1)20°;(2)-15°;(3)7π12;(4)-115π.解 (1)20°=20×π180 rad =π9 rad.(2)-15°=-15×π180 rad =-π12 rad.(3)712π rad =712×180°=105°. (4)-115π rad =-115×180°=-396°.规律方法 角度制与弧度制互化的原则、方法以及注意点(1)原则:牢记180°=π rad ,充分利用1°=π180rad 和1 rad =⎝ ⎛⎭⎪⎫180π°进行换算.(2)方法:设一个角的弧度数为α,角度数为n ,则α rad =α·180°;n °=n ·π180rad.(3)注意点:①用“弧度”为单位度量角时,“弧度”二字或“rad”可以省略不写;②用“弧度”为单位度量角时,“常常把弧度数写成多少π的形式,如无特别要求,不必把π写成小数;③度化弧度时,应先将分、秒化成度,再化成弧度. 【训练1】 将下列各角度与弧度互化: (1)512π;(2)-76π;(3)-157°30′. 解 (1)512π=512×180°=75°;(2)-76π=-76×180°=-210°;(3)-157°30′=-157.5°=-157.5×π180rad=-78π rad.题型二 用弧度制表示终边相同的角【例2】 (1)把-1 480°写成α+2k π(k ∈Z )的形式,其中0≤α<2π; (2)若β∈[-4π,0),且β与(1)中α终边相同,求β. 解 (1)∵-1 480°=-74π9=-10π+16π9,0≤16π9<2π,∴-1 480°=16π9-2×5π=16π9+2×(-5)π.(2)∵β与α终边相同,∴β=2k π+16π9,k ∈Z .又∵β∈[-4π,0),∴β1=-2π9,β2=-209π.【训练2】 用弧度制表示终边在图中阴影区域内角的集合(包括边界)并判断 2 015°是不是这个集合的元素.解 因为150°=5π6.所以终边在阴影区域内角的集合为S =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫β⎪⎪⎪5π6+2k π≤β≤3π2+2k π,k ∈Z . 因为2 015°=215°+5×360°=43π36+10π,又5π6<43π36<3π2.所以2 015°=43π36∈S ,即2 015°是这个集合的元素.方向1 求弧长【例3-1】 已知扇形OAB 的圆心角α为120°,半径长为6.求的长;解 ∵α=120°=23π,r =6,∴的长l =23π×6=4π.方向2 求圆心角【例3-2】 已知扇形周长为10,面积是4,求扇形的圆心角. 解 设圆心角是θ,半径是r , 则⎩⎪⎨⎪⎧2r +r θ=10,12θ·r 2=4⇒⎩⎪⎨⎪⎧r =4,θ=12或⎩⎪⎨⎪⎧r =1,θ=8(舍).故扇形圆心角为12.方向3 求面积的最值【例3-3】 已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?解 设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S , 则l +2r =40,∴l =40-2r . ∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100.∴当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2,此时θ=l r =40-2×1010rad =2 rad.∴当扇形的圆心角为2 rad ,半径为10 cm 时,扇形的面积最大为100 cm 2.规律方法 灵活运用扇形弧长公式、面积公式列方程组求解是解决此类问题的关键,有时运用函数思想、转化思想解决扇形中的有关最值问题,将扇形面积表示为半径的函数,转化为r 的二次函数的最值问题.课堂达标1.与120°角终边相同的角为( ) A .2k π-2π3(k ∈Z )B.11π3C .2k π-10π3(k ∈Z )D .(2k +1)π+2π3(k ∈Z )解析 120°=2π3且2k π-10π3=(2k -4)π+2π3(k ∈Z ),∴120°与2k π-10π3(k ∈Z ),终边相同.答案 C2.-23π12化为角度应为( )A .-345°B .-15°C .-315°D .-375°解析 -23π12=-2312×180°=-345°.答案 A3.已知扇形的半径为12,弧长为18,则扇形圆心角为________.解析 由弧长公式l =αR 得α=l R =1812=32.答案 324.下列结论不正确的是________(只填序号).①π3 rad =60°;②10°=π18 rad ;③36°=π5 rad ;④5π8 rad =115°. 解析5π8 rad =58×180°=112.5°,∴④错. 答案 ④5.一个扇形的面积为1,周长为4,求圆心角的弧度数. 解 设扇形的半径为R ,弧长为l ,则2R +l =4, ∴l =4-2R ,根据扇形面积公式S =12lR ,得1=12(4-2R )·R ,∴R =1,∴l =2,∴α=l R =21=2,即扇形的圆心角为2 rad.课堂小结1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad”这一关系式. 3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,具体应用时,要注意角的单位取弧度.基础过关1.在半径为10的圆中,240°的圆心角所对弧长为( )A.403πB.203π C.2003π D.4003π 解析 240°=240×π180 rad =43π rad ,∴弧长l =|α|·r =43π×10=403π,故选A.答案 A2.下列与9π4的终边相同的角的表达式中,正确的是( )A .2k π+45°(k ∈Z )B .k ·360°+9π4(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )答案 C3.若α=-3,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析 ∵-π<-3<-π2,∴-3是第三象限角.答案 C4.若三角形三内角之比为4∶5∶6,则最大内角的弧度数是____________. 答案 25π5.如果一扇形的弧长变为原来的32倍,半径变为原来的一半,则该扇形的面积为原扇形面积的________.解析 由于S =12lR ,若l ′=32l ,R ′=12R ,则S ′=12l ′R ′=12×32l ×12R =34S .答案 346.把下列各角化为2k π+α(0≤α<2π,k ∈Z ) 的形式且指出它是第几象限角,并写出与它终边相同的角的集合.(1)-46π3;(2)-1 485°;(3)-20.解 (1)-46π3=-8×2π+2π3,它是第二象限角,终边相同的角的集合为。
【北师大版】高中数学必修4第一章:1.5.1正弦函数的图像 教学设计
【北师大版】高中数学必修四 正弦函数的图像教学设计 教学设计一、教材分析《正弦函数的图像与性质》是数学必修四(北师大版)第一章三角函数第五节部分内容,其主要内容是正弦函数的图像与性质。
过去学生已经学习了一次函数、二次函数、指数函数和对数函数等,此前还学过三角函数线,在此基础上来学习正弦函数的图像与性质,为今后余弦函数、正切函数的图像与性质、函数的图像的研究打好基础。
因此,本节的学习有着极其重要的地位。
本节共分两个课时,本课为第一课时,主要是利用正弦线画出x y sin =,[]π2,0∈x 的图像,考察图像的特点,介绍“五点作图法”,再利用图像研究正弦函数的主要性质(定义域、值域、周期性、奇偶性和单调性) 二、设计思想 教法分析(1)教学模式:建构式教学法本节课应用这种教学模式的具体操作程序是:创设问题情景——小组协作探索——猜想尝试整理——动手画图验证——知识巩固应用——方法归纳整合。
这种教学模式的特点是:学生在一定的情境背景(已具备函数基础知识和三角函数线知识)下,借助老师和学习伙伴的帮助,利用必要的学习资料等学习环境要素充分发挥学生的主动性、积极性和首创精神,最终达到使学生有效地实现对当前所学知识的意义建构的目的(即在学习过程中帮助学生很好地掌握正弦函数的图像的画法,并对与正弦函数有关的图像平移变换和对称变换达到较深刻的理解)。
(2)教学手段:利用计算机多媒体辅助教学为了给学生认识理解“正弦函数的图像”提供更加形像、直观、清晰的材料,我准备利用电脑动画模拟演示利用单位圆中的正弦线画出正弦函数的图像的过程。
运用多媒体教学手段使问题变得形像直观,易于突破难点,借以帮助学生完成对所学知识的过程建构 学法分析引导学生认真观察“正弦函数的几何作图法”教学课件的演示,指导学生进行分组讨论交流,促进学生知识体系的建构和数学思想方法的形成,注意面向全体学生,培养学生勇于探索、勤于思考的精神,提高学生合作学习和数学交流的能力。
高中数学北师大版必修四1.5.2 教学设计 《正弦函数的性质》
《正弦函数的性质》
教材通过正弦函数的图像研究了正弦函数的性质,分析得出结论。
在此过程中,让学生体会数形结合的好处,进而锻炼学生作图、识图的能力,以便更好地掌握正弦函数的性质。
【知识与能力目标】
1、会借助正弦函数的图像得出正弦函数的性质。
2、掌握正弦函数的性质并会应用。
【过程与方法目标】
借助正弦函数的图像得出正弦函数性质。
【情感态度价值观目标】
通过本节课的学习,使学生能够看图说性质,体会“数形结合”的思想。
【教学重点】
借助正弦函数的图像得出正弦函数的性质。
【教学难点】
掌握正弦函数的性质并熟练应用。
电子课件调整、相应的教具带好、熟悉学生名单、电子白板要调试好。
一、复习导入。
用“五点法”画正弦函数sin y x 的图像。
二、探究新知。
方法归纳:
三、例题解析。
北师大版数学高一必修4教学案1.5.2正弦函数的性质
第2课时 正弦函数的性质[核心必知]正弦函数y =sin x 的性质函数 y =sin x 定义域 R 值域 [-1,1] 奇偶性 奇函数 周期T =2π单调性在⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z )上是增加的; 在⎣⎡⎦⎤2k π+π2,2k π+3π2(k ∈Z )上是减少的 最值当x =2k π+π2(k ∈Z )时,y max =1;当x =2k π+3π2(k ∈Z )时,y min =-11.“正弦函数在第一象限是增加的”这一说法正确吗?为什么?提示:不正确.事实上,“第一象限”是由所有的区间⎝⎛⎭⎪⎫2k π,2k π+π2(k ∈Z )构成的,在这样若干个区间所构成的集合的并集内,显然函数值不是随着x 值的增加而增加的.2.正弦曲线有对称轴和对称中心吗?分别有多少个?提示:正弦函数曲线既是轴对称图形,又是中心对称图形.函数y =sin x ,(x ∈R )的对称轴是x =k π+π2(k ∈Z ),有无数条;对称中心是点(k π,0)(k ∈Z ),有无穷多个.讲一讲1.求函数y =lg ⎝⎛⎭⎫sin x -22的定义域. [尝试解答] 要使函数y =lg ⎝⎛⎭⎫sin x -22有意义, 则sin x -22>0,即sin x >22. 作出正弦函数y =sin x ,x ∈[0,2π]的图像. 如图,由图像可以得到满足条件的x 的集合为⎝ ⎛⎭⎪⎫π4+2k π,3π4+2k π,k ∈Z .∴函数y =lg ⎝⎛⎭⎫sin x -22的定义域为 ⎝ ⎛⎭⎪⎫π4+2k π,3π4+2k π,k ∈Z .1.求由三角函数参与构成的函数定义域,对于自变量必须满足: (1)使三角函数有意义. (2)分式形式的分母不等于零. (3)偶次根式的被开方数不小于零.(4)对数的真数大于0.2.求三角函数定义域时,常常归结为解三角不等式(组),这时可利用三角函数的图像直观地求得解集.练一练1.求函数y =-3sin x 的定义域.解:要使函数有意义,必须使-3sin x ≥0.即sin x ≤0, ∴(2k -1)π≤x ≤2k π,k ∈Z .∴函数的定义域为[(2k -1)π,2k π],k ∈Z .讲一讲2.求下列函数的值域. (1)y =2-sin x ; (2)y =lg sin x ;(3)y =sin 2x -4sin x +5,x ∈⎣⎡⎦⎤0,π2.[尝试解答] (1)正弦函数y =sin x 的值域为[-1,1].所以函数y =2-sin x 的值域为[1,3].(2)∵0<sin x ≤1, ∴y =lg sin x ≤0.∴函数y =lgsin x 的值域为(-∞,0].(3)令t =sin x ,由x ∈⎣⎢⎡⎦⎥⎤0,π2,得0≤t ≤1.y =t 2-4t +5=(t -2)2+1.当t =0,即sin x =0时,最大值为5, 当t =1,即sin x =1时,最小值为2. ∴该函数的值域是[2,5].1.对于形如f (x )=a sin x +b 的函数的值域可以利用正弦函数图像或有界性直接解决. 2.对于形如f (x )=A sin 2x +B sin x +C 的函数,可用配方法求其值域,注意当x 有具体限制范围时,需要考虑sin x 的范围.练一练2. 求函数y =a -2sin x (a ∈R )取得最大值、最小值时x 的集合. 解:当sin x =1时,y 最小,此时x =π2+2k π,k ∈Z ,当sin x =-1时,y 最大,此时x =-π2+2k π,k ∈Z ,所以,函数y =a -2sin x 取得最大值时x 的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =-π2+2k π,k ∈Z , 取得最小值时x 的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =π2+2k π,k ∈Z .讲一讲3.判断下列函数的奇偶性. (1)f (x )=x sin(π+x );(2)f (x )=lg(1-sin x )-lg(1+sin x ).[尝试解答] (1)函数的定义域为R ,关于原点对称. f (x )=x sin(π+x )=-x sin x , f (-x )=-(-x )sin(-x ) =-x sin x =f (x ). ∴f (x )是偶函数.(2)由⎩⎪⎨⎪⎧1-sin x >01+sin x >0⇒-1<sin x <1,得函数定义域为{x |x ∈R ,且x ≠π2+k π,k ∈Z },关于原点对称.又f (-x )=lg[1-sin(-x )]-lg[1+sin(-x )] =lg(1+sin x )-lg(1-sin x )=-f (x ), ∴函数f (x )是奇函数.练一练3.判断函数y =1+sin x -cos 2x1+sin x的奇偶性.解:函数应满足1+sin x ≠0,∴函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ∈R ,且x ≠2k π+32π,k ∈Z .∵函数的定义域不关于原点对称,∴该函数既不是奇函数也不是偶函数.讲一讲4.求下列函数的单调增区间. (1)y =2sin(-x );(2)y =a +b sin x (a ,b ∈R 且b ≠0). [尝试解答] (1)y =2sin(-x )=-2sin x , ∴函数y =2sin(-x )的递增区间就是函数 u =2sin x 的递减区间.∴函数y =2sin(-x )的递增区间为⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2(k ∈Z ).(2)∵y =sin x 的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ),减区间为⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2(k ∈Z ).∴当b >0时,y =a +b sin x 的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z );当b <0时,y =a +b sin x 的单调增区间为⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2(k ∈Z ).求形如y =a +b sin x 的函数的单调区间,只需考察y =sin x 的单调区间,当b >0时,y =a +b sin x 与y =sin x 的单调区间相同,当b <0时,则y =sin x 的单调递增(减)区间是y =a +b sin x 的递减(增)区间.练一练 4.求函数y =2-sin x的单调区间. 解:∵y =2-sin x=⎝⎛⎭⎫12sin x,∴所求函数的单调性与y =sin x 的单调性正好相反.∴所求函数的单调增区间是⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2,(k ∈Z ).单调减区间是⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2,(k ∈Z ).求函数y =sin 2x -4sin x -1的值域.[错解] ∵y =sin 2x -4sin x -1=(sin x -2)2-5, ∴y ≥-5.∴此函数的值域为[-5,+∞).[错因] 在探讨y =(sin x -2)2-5的值域时,误认为sin x ∈R ,而忽略了正弦函数的有界性,即|sin x |≤1.这也是此类问题的常见错误.[正解] ∵y =sin 2x -4sin x -1 =(sin x -2)2-5, 且-1≤sin x ≤1∴当sin x =-1时,函数的最大值是4.当sin x =1时,函数的最小值是-4. ∴此函数的值域为[-4,4].1.正弦函数y =sin x ,x ∈R 的图像的一条对称轴是( ) A .y 轴 B .x 轴C .直线x =π2 D .直线x =π答案:C2.函数f (x )=1+sin x 的最小正周期是( ) A.π2 B .π C.3π2 D .2π 答案:D3.(天津高考)函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为( )A .-1B .-22 C.22D .0 解析:选B 由已知x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以sin ⎝⎛⎭⎪⎫2x -π4∈⎣⎡⎦⎤-22,1,故函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π4上的最小值为-22.4.函数f (x )=sin 2x +1的奇偶性是________. 解析:f (-x )=sin 2(-x )+1=sin 2x +1=f (x ) ∴f (x )是偶函数. 答案:偶函数5.设函数y =sin(x -π6)取得最大值的x 的集合是________.解析:当且仅当x -π6=π2+2k π,k ∈Z ,即x =2π3+2k π,k ∈Z 时,y =sin(x -π6)取最大值.故x 的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =2π3+2k π,k ∈Z .答案: {x |x =2π3+2k π,k ∈Z }6.比较下列各组数的大小.(1)sin 2 012°和cos 160°;(2)sin 74和cos 53;解:(1)sin 2 012°=sin(360°×5+212°)=sin 212°=sin(180°+32°)=-sin 32°. cos 160°=cos(180°-20°)=-cos 20°=-sin 70°. ∵sin 32°<sin 70°,∴-sin 32°>-sin 70°, 即sin 2 012°>cos 160°.(2)cos 53=sin ⎝ ⎛⎭⎪⎫π2+53,又π2<74<π2+53<3π2,y =sin x 在⎣⎢⎡⎦⎥⎤π2,3π2上是减少的,∴sin 74>sin ⎝ ⎛⎭⎪⎫π2+53=cos 53,即sin 74>cos 53.一、选择题1.函数y =4sin x ,x ∈[-π,π]的单调性是( ) A .在[-π,0]上是增加的,在[0,π]上是减少的B .在⎣⎡⎦⎤-π2,π2上是增加的,在⎣⎡⎦⎤-π,-π2和⎣⎡⎦⎤π2,π上是减少的C .在[0,π]上是增加的,在[-π,0]上是减少的D .在⎣⎡⎦⎤-π,-π2∪⎣⎡⎦⎤π2,π上是增加的,在⎣⎡⎦⎤-π2,π2上是减少的解析:选B 由正弦函数y =4sin x ,x ∈[-π,π]的图像,可知它在⎣⎢⎡⎦⎥⎤-π2,π2上是增加的,在⎣⎡⎦⎤-π,-π2和⎣⎢⎡⎦⎥⎤π2,π上是减少的.2.函数y =|sin x |的最小正周期是( ) A .2π B .π C.π2 D.π4解析:选B 画出函数y =|sin x |的图像,易知函数y =|sin x |的最小正周期是π. 3.下列关系式中正确的是( ) A .sin 11°<cos 10°<sin 168° B .sin 168°<sin 11°<cos 10° C .sin 11°<sin 168°<cos 10° D .sin 168°<cos 10°<sin 11°解析:选C ∵sin 168°=sin(180°-12°)=sin 12°, cos 10°=sin(90°-10°)=sin 80°,又∵y =sin x 在⎣⎢⎡⎦⎥⎤0,π2上是增加的,∴sin 11°<sin 12°<sin 80°,即sin 11°<sin 168°<cos 10°.4.定义在R 上的函数f (x )既是偶函数又是周期函数.若f (x )的最小正周期是π,且当x ∈⎣⎡⎦⎤0,π2时,f (x )=sin x ,则f ⎝⎛⎭⎫5π3的值为( )A .-12 B.12 C .-32 D.32解析:选D ∵f (x )的最小正周期为π, ∴f (5π3)=f (-π3)=f (π3)=sin π3=32. 二、填空题5.y =a +b sin x 的最大值是32,最小值是-12,则a =________,b =________.解析:由⎩⎨⎧a +|b |=32,a -|b |=-12,得a =12,b =±1.答案:12±16.函数y =11+sin x 的定义域是________.解析:要使11+sin x有意义,则有1+sin x ≠0.∴x ≠-π2+2k π,k ∈Z 答案:{x |x ≠-π2+2k π,k ∈Z }. 7.函数f (x )=x 3+sin x +1,(x ∈R ).若f (a )=2,则f (-a )的值为________.解析:∵f (a )=2,∴a 3+sin a +1=2.∴a 3+sin a =1.∴f (-a )=(-a )3+sin (-a )+1=-(a 3+sin a )+1=-1+1=0.答案:08.函数f (x )=3sin x -x 的零点个数为________.解析:由f (x )=0得sin x =x 3画出y =sin x 和y =x 3的图像如右图,可知有3个交点,则f (x )=3sin x -x 有3个零点.答案:3三、解答题9.求函数y =2sin(x +π3),x ∈⎣⎡⎦⎤0,π2的值域. 解:∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴x +π3∈⎣⎢⎡⎦⎥⎤π3,5π6. 则当x +π3=π2,即x =π6时,y 最大为2, 当x +π3=5π6即x =π2时,y 最小为1. ∴函数y =2sin(x +π3),x ∈⎣⎢⎡⎦⎥⎤0,π2的值域是[1,2]. 10.已知函数y =12sin x +12|sin x |. (1)画出这个函数的图像;(2)这个函数是周期函数吗?如果是,求出它的最小正周期;(3)指出这个函数的单调增区间.解:(1)y =12sin x +12|sin x |=⎩⎪⎨⎪⎧sin x ,x ∈[2k π,2k π+π](k ∈Z )0,x ∈[2k π-π,2k π)(k ∈Z ).其图像如图所示.(2)由图像知函数是周期函数,且函数的最小正周期是2π.(3)由图像知函数的单调增区间为⎣⎢⎡⎦⎥⎤2k π,2k π+π2(k ∈Z ).。
高中数学必修四第一章第5节正弦函数的性质
跟踪演练 3 比较下列各组数的大小. (1)cos 870° ,cos
37 49 890° ;(2)sin - 6 π ,sin π. 3
解 (1)cos 870° =cos(2×360° +150° ) =cos 150° =-sin 60° , cos 890° =cos(2×360° +170° )=cos 170° =-sin 80° , ∵sin 60° <sin 80° ,∴-sin 60° >-sin 80° ,即 cos 870° >cos 890° .
区间的基本思想是整体换元思想,即将ωx+ φ视为一个整 体.若x的系数为负,通常利用诱导公式化为正数再求 解.有时还应兼顾函数的定义域.
跟踪演练 4 求函数 答
1 π y=sin-2x+3的单调递增区间?
1 1 π π y=sin-2x+3=-sin2x-3.
π 1 π 3 5 11 令 2kπ+ ≤ x- ≤2kπ+ π,k∈Z.∴4kπ+ π≤x≤4kπ+ π, 2 2 3 2 3 3 k∈Z. ∴函数 ∈Z,
1 π 5 11 y=sin2x-3的单调递减区间是4kπ+3π,4kπ+ 3 π, k
即函数
1 π y=sin-2x+3的单调递增区间是
跟踪演练 1 求下列函数的周期.
3 1 2 π (1)y=cos2π-3x;(2)y=sin-2x+3.
2 2π 解 (1)y=-sin3x,T= 2 =3π. 3
1 π 2π 1 (2)y=sin2x-3,T= 1 ×2=2π.
例4 解
求函数
1 π y=1+sin-2x+4, x∈[-4π, 4π]的单调减区间.
高中数学正弦型曲线教案
高中数学正弦型曲线教案
一、教学目标
1. 了解正弦函数的定义及性质。
2. 掌握正弦函数的图像特征。
3. 能够利用正弦函数解决实际问题。
二、教学重点和难点
1. 正弦函数的定义及性质。
2. 正弦函数的图像特征。
三、教学准备
1. 教材课本及教辅材料。
2. 教学投影仪及相关幻灯片。
四、教学步骤
1. 引入:介绍正弦函数的定义及性质,引导学生了解正弦函数的基本概念。
2. 讲解:讲解正弦函数的图像特征,包括振幅、周期、相位等概念。
3. 实例演练:通过例题演练,让学生掌握正弦函数的应用方法。
4. 课堂练习:让学生进行课堂练习,加深对正弦函数的理解。
5. 拓展应用:引导学生将正弦函数应用于实际问题中,加深对正弦函数的理解。
五、教学反馈
1. 对学生进行课堂讨论,让学生分享自己的理解和体会。
2. 收集学生反馈意见,及时调整教学方式。
六、教学延伸
1. 鼓励学生研究正弦函数的更深层次的知识,拓展数学思维。
2. 引导学生自主学习,探索正弦函数的更多应用场景。
七、课后作业
1. 完成课后习题,巩固所学知识。
2. 拓展阅读相关教材,加深对正弦函数的理解。
八、教学总结
1. 总结本节课的重点内容,引导学生对学习进行反思和总结。
2. 展望下节课内容,激发学生学习兴趣。
以上是本节课的教案范本,希望能对你的教学有所帮助。
祝教学顺利!。
高中数学必修4北师大版1.5正弦函数的性质与图象教案(2)
1.5.1 1.5.2 从单位圆看正弦函数性质与正弦函数图象 教学过程:
一、新旧知识连接:
根据单位圆中的正弦线回答正弦函数的性质
二、我能自学:
①描点法能绘正弦函数图象吗?(无法精确求正弦值)引入等份单位圆法绘正弦图,等分第一象限法可以吗?(根据对称性特点可以简化过程);
②观察正弦函数特点,注意正弦线与正弦函数图象关系,拐点的特征,引入五点法描图; ③利用范例巩固五点法绘图的基本步骤; ④利用正弦函数图象归纳正弦函数的性质(能否利用正弦线观察正弦函数性质)注意二者的区别。
三.范例分析
例1.设sinx=t-3,x ∈R ,求t 的取值范围。
例2.用五点法画出下列函数在区间[0,2]π上的简图,并分析相关性质。
(1)sin y x =- (2)1sin y x =+ (3) 2sin 1y x =-
例3求函数y =sin 2x -3sin x 的最大值
四、巩固练习:
3.已知|x |≤4
π,求函数2sin sin y x x =+的最小值
5.归纳小结
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及的主要数学思想方法有哪些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
1sin y x
=
1、的定义域值域.23sin 26
y x π
=+、()最小正周期为。
高中数学新北师大版精品教案《北师大版高中数学必修4 5 正弦函数的性质与图像》
教学设计中学数学正弦函数的图像教学过程设计与分析展示画法,学生边听边画。
(1)等分; (2)做垂线段; (3)平移; (4)连线。
得到]2,0[,sin π∈=x x y 的图像。
因为正弦函数是周期函数,所以xy sin =在)]()1(2,2[Z k k k ∈+ππ上与在区间]2,0[π上的的函数图像形状完全一样,位置不同。
于是我们只要将]2,0[,sin π∈=x x y 的图像左、右平移(每次平移π2个单位长度),就可以得到正弦函数R x x y ∈= ,sin 的图像如图所示。
正弦函数的图像叫作正弦函数。
4、五点法作图由上图,我们不难发现,在函数]2,0[,sin π∈=x x y 的图像上,起着关键作用的有以下五个点:)0,2()1,23()0,()1,2()0,0(ππππ -。
描出这五个点后,函数]2,0[,sin π∈=x x y 的图像就基本上确定了。
因此,在精度要求不高的情况下,我们常常先画出这五个关键点,然后用光滑的曲线连接起来,就可以得到这个函数的简图。
我们把这种画法叫做“五点法”。
(三)、应用举例 用五点法画出下列函数在区间]2,0[π上的简图: x y sin )1(-= 动手总结作图步骤学生观察、分析图像,并动手画出R x x y ∈=,sin 的图像学生观察图像,思考问题学生动手画图,一名学生黑板板演,并总结出五点法画图的步骤手,自主探究通过学生动手及多媒体的应用,突破几何法画图这一难点,渗透抽象到具体的思想和数形结合的方法培养学生利用已有知识,解决未知知识的能力,在画R x x y ∈=,sin 的图像的同时,注意观察学生的画图过程,利用多媒体,使图像更加直观引导学生说出五个点的坐标,并给评价和补充,让学生动手,进一步强化正弦函数的图像,可以让学生体会五点的优越性三、 板书设计课题1、画图方法2、五点3、五点法画图学生练习、展示四、教学反思回归整个教学过程,有感想,有体会,但更多的收获。
高中数学新北师大版精品教案《5.2正弦函数的性质》
课堂教学设计
知 当)(22
Z k k x ∈+-=ππ时,1min -=y
(3)周期性:最小正周期是π2
教师引导 学生回答 加深对知识的
理解
(4)单调性
对于周期函数,只要我们把握了它在一个周期内的情况,那么就可以推广至整个定义域内的单调性如图:
教师:当角x 由2
π
-
增加到
2
π
时,x sin 的值是单调增加
的,由-1增加
到1,当角x 由
2π增加到23π时,x sin 的值是减少的,由1减少到-1 因此,正弦函数在区间⎥⎦⎤⎢⎣⎡-2,2ππ
上是增加的,在区间⎥⎦
⎤
⎢⎣⎡23,2
ππ上是减少的 再添加周期
通过观察几何画板演示图,学生归纳总结 方便学生归纳;同时注意:具有相同单调性的
区间不能用并集符号
活动二:分小组实践交流,完成课堂
教师巡视,引小组交流,得出通过类比,加深
学生对正余弦
附件1 【课堂任务单一】单位圆与正弦函数、余弦函数的基本性质:
【课堂任务单二】
知识拓展:
1.求函数)2
1
lg(cos -=x y 的定义域
2.求函数R x x y ∈-=,2sin 3的最值,以及取得最值时的x 的取值范围 附件 2 小组实践。
高二数学必修4(B版)_《正弦函数的图象与性质(第2课时)》教学教案2
1.3.1 正弦函数的图像与性质
学习目标:
1.理解正弦函数的定义域、值域、最值、周期性、奇偶性的意义;
2.会求简单函数的定义域、值域、最小正周期和单调区间;
学习重点:正、余弦函数的性质
学习难点:正、余弦函数性质的理解与应用
授课类型:新授课
课时安排:1课时
教具:多媒体、实物投影仪
学习方法与学习指导策略建议:讲正弦函数的性质时,要从多方面讲解,一方面要用正弦函数的定义,从理论上分析推导;用诱导公式证明正弦函数是周期函数,且周期为πk2,0
Z
k且等等。
另一方面要观察图形,使学生对这些性质有
∈k
≠
直观印象。
教师在讲课时,可充分利用多媒体设备,让学生观察、理解、记忆。
北师大版数学高二必修4讲义 1.5.2正弦函数的性质
5.2正弦函数的性质内容要求 1.理解正弦函数y=sin x,x∈R的性质(重点).2.掌握正弦函数性质的应用(难点).知识点1正弦函数的性质函数正弦函数y=sin x,x∈R图像定义域R值域[-1,1]最值当x=π2+2kπ(k∈Z)时,y max=1;当x=-π2+2kπ(k∈Z)时,y min=-1周期性是周期函数,周期为2kπ(k∈Z,k≠0),2π是它的最小正周期奇偶性奇函数,图像关于原点对称单调性在[-π2+2kπ,π2+2kπ](k∈Z)上是增函数;在[π2+2kπ,3π2+2kπ](k∈Z)上是减函数对称轴x=π2+kπ,k∈Z 对称中心(kπ,0),k∈Z(正确的打“√”,错误的打“×”)(1)函数y=sin(-x)为奇函数(√).(2)函数y=sin x,x∈[-π6,5π6]的值域是[-12,12](×).(3)函数y=sin x在[2kπ-π2,2kπ](k∈Z)上是单调递增的(√).(4)函数y=sin x在第一象限内是递增的(×).题型一与正弦函数有关的值域问题【例1】 求下列函数的值域: (1)y =sin(2x -π3),x ∈[0,π2]; (2)y =-2sin 2x +5sin x -2.解 (1)∵0≤x ≤π2,∴0≤2x ≤π,-π3≤2x -π3≤2π3,令2x -π3=t ,则原式转化为y =sin t ,t ∈[-π3,2π3].由y =sin t 的图像知-32≤y ≤1, ∴原函数的值域为[-32,1].(2)y =-2sin 2x +5sin x -2=-2(sin x -54)2+98. ∵-1≤sin x ≤1,∴y min =-2×(-1)2+5×(-1)-2=-9, y max =-2×12+5×1-2=1.故函数y =-2sin 2x +5sin x -2的值域是[-9,1].规律方法 1.求定义域时,常利用数形结合,根据正弦曲线写出相应方程或不等式的解集.注意灵活选择一个周期的图像.2.求值域时,注意:(1)利用sin x 的有界性;(2)利用y =sin x 的单调性. 【训练1】 (1)函数y =2sin x +1⎝ ⎛⎭⎪⎫π4≤x ≤3π4的值域是( ) A .[1+3,3] B .[1+2,3] C .[1-2,1+2]D .[-1,3](2)设函数y =sin x 的定义域为[a ,b ],值域为⎣⎢⎡⎦⎥⎤-1,12,则以下四个结论正确的是________(填序号). ①b -a 的最小值为2π3; ②b -a 的最大值为4π3;③a 不可能等于2k π-π6(k ∈Z ); ④b 不可能等于2k π-π6(k ∈Z ).解析 (1)画出函数y =2sin x +1(π4≤x ≤3π4)的图像如图所示,当x =π4或x =3π4时,最小值为1+2;当x =π2,最大值为3.(2)由图像知,b -a 的最大值为4π3(如a =-7π6,b =π6);在b -a 取最大值的情况下,固定左(或右)端点,移动右(或左)端点,必须保证取-1的最小值点在[a ,b ]内,所以b -a 的最小值为2π3,b 可能等于2k π-π6(k ∈Z ).若a =2k π-π6(k ∈Z ),则由图像可知函数的最大值为12的情况下,最小值不可能为-1.所以a 不可能等于2k π-π6(k ∈Z ).答案 (1)B (2)①②③题型二 正弦函数的周期性与奇偶性 【例2】 求下列函数的周期: (1)y =sin 12x ; (2)y =|sin x |.解 (1)∵sin ⎣⎢⎡⎦⎥⎤12(x +4π)=sin ⎝ ⎛⎭⎪⎫12x +2π=sin 12x ,∴sin 12x 的周期是4π.(2)作出y =|sin x |的图像,如图.故周期为π.规律方法 1.求正弦函数的周期时要注意结合图像判断,不要盲目套用结论.2.函数y=sin x为奇函数时其定义域必须关于原点对称,否则不具有奇偶性.如y=sin x,x∈[0,2π]是非奇非偶函数.【训练2】判断下列函数的奇偶性:(1)f(x)=x sin x;(2)f(x)=|sin x|+1.解(1)∵x∈R,且关于原点对称,又f(-x)=-x sin(-x)=x sin x=f(x),∴f(x)为偶函数.(2)∵x∈R,且关于原点对称,又f(-x)=|sin(-x)|+1=f(x),∴f(x)为偶函数.方向1利用正弦函数的单调性比较大小【例3-1】利用三角函数的单调性,比较下列各组数的大小.(1)sin 196°与cos 156°;(2)sin 1,sin 2,sin 3.解(1)sin 196°=sin(180°+16°)=-sin 16°,cos 156°=cos(180°-24°)=-cos 24°=-sin 66°,∵0°<16°<66°<90°,∴sin 16°<sin 66°.从而-sin 16°>-sin 66°,即sin 196°>cos 156°.(2)∵1<π2<2<3<π,sin(π-2)=sin 2,sin(π-3)=sin 3. 0<π-3<1<π-2<π2且y =sin x 在⎝ ⎛⎭⎪⎫0,π2上递增,∴sin(π-3)<sin 1<sin(π-2),即sin 3<sin 1<sin 2. 方向2 求函数的单调区间【例3-2】 求函数y =-sin x +3的单调区间. 解 ∵y =-sin x +3与y =sin x 的增减性相反.而y =sin x 的增区间是⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ),减区间是⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2(k∈Z ).∴函数y =-sin x +3的单调增区间是⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2(k ∈Z ),单调减区间为⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ). 方向3 求复合函数的单调区间【例3-3】 求函数y =log 12sin x 的单调递增区间.解 由sin x >0得2k π<x <2k π+π,k ∈Z , ∵0<12<1,∴函数y =log 12sin x 的递增区间即为u =sin x >0的递减区间.∴2k π+π2≤x <2k π+π,k ∈Z . 故函数y =log 12sin x 的递增区间即为⎣⎢⎡⎭⎪⎫2k π+π2,2k π+π(k ∈Z ). 规律方法 1.用正弦函数的单调性来比较大小时,应先将异名化同名,再将不是同一单调区间的角用诱导公式转化到同一单调区间,再利用单调性来比较大小.2.求正弦函数的单调区间有二种方法:一是利用y =sin x 的单调区间,进行代换,解不等式;二是画图像,从图像上观察,注意定义域,单调区间不能随便并起来.课堂达标1.函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6的一个递减区间是( )A.⎣⎢⎡⎦⎥⎤-π2,π2 B .[-π,0] C.⎣⎢⎡⎦⎥⎤-23π,23π D.⎣⎢⎡⎦⎥⎤π2,23π 解析 由π2≤x +π6≤32π, 解得π3≤x ≤43π.故选D. 答案 D2.下列函数中是奇函数的是( ) A .y =-|sin x | B .y =sin(-|x |) C .y =sin |x |D .y =x sin |x | 解析 利用定义,显然y =x sin |x |是奇函数. 答案 D3.若函数f (x )=sin 2x +a -1是奇函数,则a =________. 解析 由奇函数的定义f (-x )=-f (x )得a =1. 答案 14.函数y =|sin x |的值域是________.解析 作出函数y =|sin x |的图像(图像略)可知. 答案 [0,1]5.求函数y =3-2sin 12x 的最值及取到最值时的自变量x 的集合. 解 ∵-1≤sin 12 x ≤1,∴当sin 12x =-1,12x =2k π-π2,k ∈Z , 即x =4k π-π,k ∈Z ,y max =5,此时自变量x 的集合为{x |x =4k π-π,k ∈Z }; 当sin 12x =1,12x =2k π+π2,k ∈Z , 即x =4k π+π,k ∈Z 时,y min =1,此时自变量x 的集合为{x |x =4k π+π,k ∈Z }.课堂小结1.求正弦函数在给定区间[a ,b ]上的值域时,要注意结合图像判断在[a ,b ]上的单调性及有界性.2.利用正弦函数的单调性比较函数值的大小时,需利用诱导公式将角转化到正弦函数的同一个单调区间内. 3.观察正弦曲线不难发现:(1)正弦曲线是中心对称图形,对称中心的坐标为(k π,0)(k ∈Z ),即正弦曲线和x 轴的交点,原点是其中的一个.(2)正弦曲线是轴对称图形,对称轴方程是x =k π+π2(k ∈Z );正弦曲线的对称轴一定过正弦曲线的最高点或最低点.基础过关1.函数y =cos ⎝ ⎛⎭⎪⎫x +π2(x ∈R )是( )A .奇函数B .偶函数C .非奇非偶函数D .无法确定解析 y =cos ⎝ ⎛⎭⎪⎫x +π2=-sin x .答案 A2.函数f (x )=|sin x |的一个递增区间是( ) A.⎝ ⎛⎭⎪⎫-π4,π4 B.⎝ ⎛⎭⎪⎫π4,3π4C.⎝ ⎛⎭⎪⎫π,3π2 D.⎝ ⎛⎭⎪⎫3π2,2π 解析 画出函数f (x )=|sin x |的图像如图所示,由图像可知⎝ ⎛⎭⎪⎫π,3π2是函数f (x )= |sin x |的一个递增区间.答案 C3.设M 和m 分别是函数y =13sin x -1的最大值和最小值,则M +m =( ) A.23 B .-23 C .-43D .-2解析 ∵M =13-1,m =-13-1, ∴M +m =-2. 答案 D4.函数y =-2sin x 的定义域是________,单调递减区间是________. 解析 ∵-2sin x ≥0,sin x ≤0, ∴2k π-π≤x ≤2k π,k ∈Z ,即函数的定义域是[2k π-π,2k π](k ∈Z ). ∵y =-2sin x 与y =sin x 的单调性相反,∴函数的单调递减区间为⎣⎢⎡⎦⎥⎤2k π-π2,2k π(k ∈Z ).答案 [2k π-π,2k π](k ∈Z ) ⎣⎢⎡⎦⎥⎤2k π-π2,2k π(k ∈Z )5.设a =cos 29°,b =sin 144°,c =sin 50°,则a ,b ,c 的大小关系为________. 解析 a =cos 29°=sin 61°,b =sin 144°=sin 36°,c =sin 50°,由正弦函数的单调性可知sin 36°<sin 50°<sin 61°,即b <c <a . 答案 b <c <a6.不求值,比较下列各组中两个三角函数值的大小: (1)sin 25π18与sin 13π9; (2)sin ⎝ ⎛⎭⎪⎫-547π与sin ⎝ ⎛⎭⎪⎫-638π. 解 (1)因为π<25π18<13π9<3π2,且y =sin x 在⎝ ⎛⎭⎪⎫π,3π2上是减少的,所以sin 25π18>sin 13π9.(2)sin ⎝ ⎛⎭⎪⎫-547π=sin ⎝ ⎛⎭⎪⎫-567π+27π =sin ⎝ ⎛⎭⎪⎫-8π+27π=sin 27π,sin ⎝ ⎛⎭⎪⎫-638π=sin ⎝ ⎛⎭⎪⎫-8π+π8=sin π8, 因为π2>27π>π8>0,且y =sin x 在⎝ ⎛⎭⎪⎫0,π2上是增加的,所以sin 27π>sin π8,即sin ⎝ ⎛⎭⎪⎫-547π>sin ⎝ ⎛⎭⎪⎫-638π. 7.设|x |≤π4,求函数f (x )=1-sin 2 x +sin x 的最小值. 解 f (x )=1-sin 2x +sin x =-⎝ ⎛⎭⎪⎫sin x -122+54.∵|x |≤π4,∴-22≤sin x ≤22. ∴当sin x =-22时,f (x )min =1-22.能力提升8.下列不等式中成立的是( ) A .sin ⎝ ⎛⎭⎪⎫-π8<sin ⎝ ⎛⎭⎪⎫-π10B .sin ⎝ ⎛⎭⎪⎫-215π<sin ⎝ ⎛⎭⎪⎫-174πC .sin 3>sin 2D .sin 75π>sin ⎝ ⎛⎭⎪⎫-25π解析 y =sin x 在⎣⎢⎡⎦⎥⎤-π2,π2上为增函数,而-π8<-π10,故sin ⎝ ⎛⎭⎪⎫-π8<sin ⎝ ⎛⎭⎪⎫-π10,故选A. 答案 A9.设函数f (x )=sin |x |,则f (x )( ) A .在区间⎣⎢⎡⎦⎥⎤23π,76π上是减函数B .是周期为2π的周期函数C .在区间⎣⎢⎡⎦⎥⎤-π2,0上为增函数D .对称中心为(k π,0),k ∈Z解析 由图易知,f (x )在⎣⎢⎡⎦⎥⎤23π,76π上是减函数.答案 A10.若方程sin x =1-a 2在x ∈⎣⎢⎡⎦⎥⎤π3,π上有两个不同的实根,则a 的取值范围是________.解析 在同一坐标系中作出函数y =sin x ,x ∈⎣⎢⎡⎦⎥⎤π3,π的图像(图略),易知,当32≤1-a2<1,即-1<a ≤1-3时,两图像有两个不同的交点,即方程sin x =1-a 2在x ∈⎣⎢⎡⎦⎥⎤π3,π上有两个不同的实根.答案 (-1,1-3]11.函数f (x )=2sin 2x +2sin x -12,x ∈[π6,56π]的值域是________.解析 令t =sin x ,y =f (t ),∵x ∈[π6,5π6],∴12≤sin x ≤1,即12≤t ≤1.∴y =2t 2+2t -12=2(t +12)2-1,∴1≤y ≤72,∴函数f (x )的值域为[1,72].答案 [1,72]12.已知函数f (x )=2a sin ⎝ ⎛⎭⎪⎫2x -π3+b 的定义域为⎣⎢⎡⎦⎥⎤0,π2,最大值为1,最小值为-5,求a 和b 的值.解 ∵0≤x ≤π2,∴-π3≤2x -π3≤23π, ∴-32≤sin ⎝ ⎛⎭⎪⎫2x -π3≤1,易知a ≠0. 当a >0时,f (x )max =2a +b =1,f (x )min =-3a +b =-5.由⎩⎪⎨⎪⎧ 2a +b =1,-3a +b =-5,解得⎩⎪⎨⎪⎧ a =12-63,b =-23+12 3.当a <0时,f (x )max =-3a +b =1,f (x )min =2a +b =-5.由⎩⎪⎨⎪⎧ -3a +b =1,2a +b =-5,解得⎩⎪⎨⎪⎧a =-12+63,b =19-12 3.13.(选做题)已知函数f (x )=|sin x -a |,a ∈R .(1)试讨论函数f (x )的奇偶性.(2)求当f (x )取得最大值时,自变量x 的取值范围.解 (1)当a =0时,f (x )是偶函数;当a ≠0时,f (x )是非奇非偶函数.(2)当a >0且sin x =-1时,f (x )取得最大值,这时x 的取值范围为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =2k π-π2,k ∈Z ; 当a <0且sin x =1时,f (x )取得最大值,这时x 的取值范围为⎩⎨⎧⎭⎬⎫x |x =2k π+π2,k ∈Z ; 当a =0且sin x =±1时,f (x )取得最大值,这时x 的取值范围为⎩⎨⎧⎭⎬⎫x |x =k π+π2,k ∈Z .。
数学必修四北师大版 1.5 正弦函数的性质与图象教学设计
数学必修四北师大版 1.5 正弦函数的性质与图象教学设计
《§5.2正弦函数的性质》教学设计一、教学目标
知识与技能:会利用正弦函数的图像进一步研究和理解正弦函数的性质,会求正弦函数的单调区间和最值。
过程与方法:通过主动思考,主动发现,亲历知识的形成过程,使学生对正弦函数的性质有深刻的理解,培养学生的观察、分析、归纳和表达
能力以及数形结合和化归转化的数学思想方法
情感态度与价值观:通过运用数形结合思想方法,让学生体会(数学)问题从抽象到形象的转化过程,体会数学之美,从而激发学习数学的兴
趣。
二、教学重点和难点
教学重点:正弦函数的性质
教学难点:(1)正弦函数的单调区间和对称性的理解
(2)正弦函数的应用
三、教学方法和手段
教学方法:自主合作探究式
教学手段:多媒体辅助教学
四、教学过程
(一)创设情境(预计2分钟)
在上一次课中,我们已经学习了正弦函数的y=sinx在R上图像,下面请同学们根据图像一起讨论一下它具有哪些性质?
(二)自学探究(预计13分钟)
活动:让学生一边看课件,一边仔细观察正弦曲线的图像,思考以下几个问题:1、填一填:
函数y=sinx
函数
图像
定义域。
2020-2021学年数学北师大版必修4教学教案:1.5.2 正弦函数的图像
1.5.2 正弦函数的图像一、教材分析《正弦函数的图象》是北师大版必修4第一章第五节的第一课时。
本小节所研究的正弦函数的图象既是对前面所学知识的巩固和深化,也为后面学习余弦函数,正切函数,尤其是正弦型函数打基础.本节重点是“五点法”作正弦函数的简图.难点是“几何法”作图即利用正弦函数的定义画出正弦函数的图象. 二、学情分析学生已经学习了一次二次函数及指对函数,对研究函数的流程已经有了一定的认识,对函数图像的画法已经熟悉,初步掌握利用列表描点法画图的技巧。
但对几何作图方法即利用正弦函数的定义作出正弦函数的图象掌握起来有一定难度,特别是对这种作图方式的深刻理解需要教师的步步引导.三、教学设计构思首先回顾正弦函数的定义,为后面的几何作法做了铺垫。
通过有层次性的设置问题来引发学生的思考,培养学生发现问题,解决问题的能力。
再通过学生自主实践画出函数图象,培养学生的动手实践能力,提高学生自主探索和合作学习的能力.四、教法分析1.使用现代信息技术本节课的特点是逻辑推理少,而直观展示多。
想突出重点,突破难点,仅靠粉笔、黑板、ppt是不够的。
根据本节的特点,借助于电子白板和几何画板及媒体材料使学生亲临作图现场,获得直观感受。
2.问题式教学设置递进式问题,引发学生思考,培养他们自主解决问题的能力。
五、目标分析1.知识与技能:了解正弦曲线的画法,能利用描点法特别是“五点法”作出正弦函数y=sinx的图像。
2.过程与方法:通过探究正弦函数y=sinx 图像的画法过程,使学生体会数形结合的思想方法3.情感、态度与价值观:通过作正弦函数图像渗透数形结合思想,培养学生用运动变化的观点来认识事物。
通过动手实践画图的过程,加深对正弦函数图像的认识。
六、教学重难点重点:用五点法作出正弦函数图像.难点:理解几何法画正弦函数图像.的方法.七、教学过程(一)复习回顾问题1.正弦函数的定义是什么?问题2.函数图像的画法有几个,是什么?(二)新知探究前面我们学习了正弦函数的定义,我们知道研究函数的方法是得到函数的定义后,画函数图像,结合图像研究性质,然后利用函数的图像和性质解决问题,正弦函数也一样,今天我们来探究一下正弦函数的图像是怎样的1、用描点法画出正弦函数y=sinx x∈[0,2π]的图像问题3.描点法的步骤是什么?问题4.描什么点?问题5.将一个周期等分得到的角作为自变量行吗?描点法步骤:列表,描点,连线用以前的描点方法能精确作出点生:不能π师:有正弦函数的定义知道点的纵坐标就是角的终边与单位圆交点的纵坐标。
数学:一-4.3《正弦函数》教案(北师大版必修4)
单位圆与诱导公式一、教学目标:1、知识与技能(1)进一步熟悉单位圆中的正弦线;(2)理解正弦诱导公式的推导过程;(3)掌握正弦诱导公式的运用;(4)能了解诱导公式之间的关系,能相互推导;(5)理解并掌握正弦函数的定义域、值域、周期性、最大(小)值、单调性、奇偶性;(6)能熟练运用正弦函数的性质解题。
2、过程与方法通过正弦线表示α,-α,π-α,π+α,2π-α,从而体会各正弦线之间的关系;或从正弦函数的图像中找出α,-α,π-α,π+α,2π-α,让学生从中发现正弦函数的诱导公式;通过正弦函数在R上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。
3、情感态度与价值观通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。
二、教学重、难点重点: 正弦函数的诱导公式,正弦函数的性质。
难点: 诱导公式的灵活运用,正弦函数的性质应用。
三、学法与教学用具在上一节课的基础上,运用单位圆中正弦线或正弦函数图像中角的关系,引发学生探索出正弦函数的诱导公式;通过例题和练习掌握诱导公式在解题中的作用;在正弦函数的图像中,直观判断出正弦函数的性质,并能上升到理性认识;理解掌握正弦函数的性质;以学生的自主学习和合作探究式学习为主。
教学用具:投影机、三角板第一课时正弦函数诱导公式一、教学思路【创设情境,揭示课题】在上一节课中,我们已经学习了任意角的正弦函数定义,以及终边相同的角的正弦函数值也相等,即sin(2kπ+α)=sinα(k∈Z),这一公式体现了求任意角的正弦函数值转化为求0°~360°的角的正弦函数值。
如果还能把0°~360°间的角转化为锐角的正弦函数,那么任意角的正弦函数就可以查表求出。
这就是我们这一节课要解决的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.3正弦函数的性质
一、 教学思路
【创设情境,揭示课题】
同学们,我们在数学一中已经学过函数,并掌握了讨论一个函数性质的几个角度,你还记得有哪些吗?在上一次课中,我们已经学习了正弦函数的y =sinx 在R 上图像,下面请同学们根据图像一起讨论一下它具有哪些性质?
【探究新知】
让学生一边看投影,一边仔细观察正弦曲线的图像,并思考以下几个问题:
(1) 正弦函数的定义域是什么?
(2) 正弦函数的值域是什么?
(3) 它的最值情况如何?
(4) 它的正负值区间如何分?
(5) ƒ(x)=0的解集是多少?
师生一起归纳得出:
1. 定义域:y=sinx 的定义域为R
2. 值域:引导回忆单位圆中的正弦函数线,结论:|sinx|≤1(有界性) 再看正弦函数线(图象)验证上述结论,所以y =sinx 的值域为[-1,1]
3.最值:1︒对于y =sinx 当且仅当x =2k π+
2π ,k ∈Z 时 y max =1 当且仅当时x =2k π-2
π, k ∈Z 时 y min =-1 2︒当2k π<x <(2k+1)π (k ∈Z)时 y =sinx >0
当(2k-1)π<x <2k π (k ∈Z)时 y =sinx <0
4.周期性:(观察图象) 1︒正弦函数的图象是有规律不断重复出现的;
2︒规律是:每隔2π重复出现一次(或者说每隔2k π,k ∈Z 重复出现)
3︒这个规律由诱导公式sin(2k π+x)=sinx 也可以说明
结论:y =sinx 的最小正周期为2π
5.奇偶性
sin(-x)=-sinx (x ∈R)
y =sinx (x ∈R)是奇函数
6.单调性
增区间为[-
2+2kπ, 2
+2kπ](k ∈Z ),其值从-1增至1; 减区间为[2π+2kπ, 23π+2kπ](k ∈Z ),其值从1减至-1。
【巩固深化,发展思维】
1. 例题讲评
例1.利用五点法画出函数y =sinx -1的简图,根据函数图像和解析式讨论它的性质。
解:(略,见教材P27)
2.课堂练习
二、归纳整理,整体认识
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及的主要数学思想方法有哪些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
三、布置作业:
四、课后反思。