《工程材料力学性能》课后答案课件.doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《工程材料力学性能》(第二版)课后答案
第一章材料单向静拉伸载荷下的力学性能
一、解释下列名词
滞弹性:在外加载荷作用下,应变落后于应力现象。
静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。
弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料
能够完全弹性恢复的最高应力。
比例极限:应力—应变曲线上符合线性关系的最高应力。
包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限
(ζP)或屈服强度(ζS)增加;反向加载时弹性极限(ζP)或屈服
强度(ζS)降低的现象。
解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。
解理面:在解理断裂中具有低指数,表面能低的晶体学平面。
韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明
显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为
结晶状)。
静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力
韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳
配合。
二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学姓能?
答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而
材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。改变材料的成分和组织会对材料的
强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。
三、什么是包辛格效应,如何解释,它有什么实际意义?
答案:包辛格效应就是指原先经过变形,然后在反向加载时弹性极限或
屈服强度降低的现象。特别是弹性极限在反向加载时几乎下降到零,这说明
在反向加载时塑性变形立即开始了。
包辛格效应可以用位错理论解释。第一,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,这背应力反作用于
位错源,当背应力(取决于塞积时产生的应力集中)足够大时,可使位错源停止开动。背应力是一种长程(晶粒或位错胞尺寸范围)内应力,是金属基体平均内应力的度量。因为预变形时位错运动的方向和背应力的方向相反,而当
反向加载时位错运动的方向与原来的方向相反了,和背应力方向一致,背应
力帮助位错运动,塑性变形容易了,于是,经过预变形再反向加载,其屈服
强度就降低了。这一般被认为是产生包辛格效应的主要原因。其次,在反向
加载时,在滑移面上产生的位错与预变形的位错异号,要引起异号位错消毁,这也会引起材料的软化,屈服强度的降低。
实际意义:在工程应用上,首先是材料加工成型工艺需要考虑包辛格效应。其次,包辛格效应大的材料,内应力较大。另外包辛格效应和材料的疲
劳强度也有密切关系,在高周疲劳中,包辛格效应小的疲劳寿命高,而包辛
格效应大的,由于疲劳软化也较严重,对高周疲劳寿命不利。
可以从河流花样的反“河流”方向去寻找裂纹源。
解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。
5.影响屈服强度的因素
与以下三个方面相联系的因素都会影响到屈服强度
位错增值和运动
晶粒、晶界、第二相等
外界影响位错运动的因素
主要从内因和外因两个方面考虑
(一)影响屈服强度的内因素
1.金属本性和晶格类型(结合键、晶体结构)
单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运
动所受到的阻力(晶格阻力--派拉力、位错运动交互作用产生的阻力)决
定。
派拉力:
位错交互作用力
(a是与晶体本性、位错结构分布相关的比例系数,L 是位错间距。)2.晶粒大小和亚结构
晶粒小→晶界多(阻碍位错运动)→位错塞积→提供应力→位错开动→产生宏观塑性变形。
晶粒减小将增加位错运动阻碍的数目,减小晶粒内位错塞积群的长度,使屈
服强度降低(细晶强化)。
屈服强度与晶粒大小的关系:
霍尔-派奇(Hall-Petch) ζs= ζi+kyd-1/2
3.溶质元素
加入溶质原子→(间隙或置换型)固溶体→(溶质原子与溶剂原子半径不一
样)产生晶格畸变→产生畸变应力场→与位错应力场交互运动→使位错受阻→提高屈服强度(固溶强化)。
4.第二相(弥散强化,沉淀强化)
不可变形第二相
提高位错线张力→绕过第二相→留下位错环→两质点间距变小→流变应力增大。
不可变形第二相
位错切过(产生界面能),使之与机体一起产生变形,提高了屈服强度。
弥散强化:
第二相质点弥散分布在基体中起到的强化作用。
沉淀强化:
第二相质点经过固溶后沉淀析出起到的强化作用。
(二)影响屈服强度的外因素
1.温度
一般的规律是温度升高,屈服强度降低。
原因:派拉力属于短程力,对温度十分敏感。
2.应变速率
应变速率大,强度增加。
ζε,t= C1(ε)m
3.应力状态
切应力分量越大,越有利于塑性变形,屈服强度越低。
缺口效应:试样中“缺口”的存在,使得试样的应力状态发生变化,从而影响材料的力学性能的现象。
9.细晶强化能强化金属又不降低塑性。
10.韧性断裂与脆性断裂的区别。为什么脆性断裂更加危险?
韧性断裂:是断裂前产生明显宏观塑性变形的断裂
特征:
断裂面一般平行于最大切应力与主应力成45 度角。
断口成纤维状(塑变中微裂纹扩展和连接),灰暗色(反光能力弱)。
断口三要素:
纤维区、放射区、剪切唇这三个区域的比例关系与材料韧断性能有关。
塑性好,放射线粗大
塑性差,放射线变细乃至消失。