黑龙江省绥化市2015年中考数学试题(word版,含答案)

合集下载

黑龙江绥化八中2015届中考一模数学试题

黑龙江绥化八中2015届中考一模数学试题
13.下列图形,既是轴对称图形,又是中心对称图形的是( )
A B C D
14.分式方程: – =0的解是( )
A x=-2 B x=2 C x=1 D x=2或x=1
15.一个几何体有一些大小相同的小正方体搭成,如图是它的
主视图和俯视图,那么搭成该几何体所需的小正方体的个数最
少是多少( )
A 6个 B 5个 C 4个 D 3个
A1B2C3D4
三、解答题(共66分)
19.(本题满分5分)
计算: -2Sin45°+(π-1)0-(- )-1
20.(本题满分6分)
某校240名学生参加“献爱心”义务捐款活动。要求每人捐4—7元,(捐款数为整数),活动结束后随机抽查了20名学生每人的捐款数,并分为4类:A类4元,B类5元,C类6元,D类7元,将各类的人数绘制成如图所示不完整的条形统计图,回答下列问题:
一个交点为A(3,0)另一个交点为B,且与y轴交于点C。1)求m的值;
2)求B点坐标;3)该二次函数图像上有点D(x,y)(x>0,y>0),
使S△ABD=S△ABC,求点D坐标
25.(本题满分8分)某商场计划购进两种服装共100件,这两种服装的进价、售价如表所示:
1)若商场预计进货用3500元,则这两种服装个购进多少件?
6,一个扇形的弧长是20CM,半径为5CM则这个扇形的面积是
7,如图,AB∥CD,E是CD上的一点,
BE,CF交于点F若∠B=45º,∠C=60º ,
则∠BFC=
8,某体育用品商店销售一件体育器材,标价为500元,按标价的8折销售
仍可获利120元,则这种器材每件标价比进价多元。
9,因式分解:a3-6a2+9a=

2015年黑龙江省中考数学试卷

2015年黑龙江省中考数学试卷

2015年黑龙江省中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为()A.5℃B.6℃C.7℃D.8℃2.用科学记数法表示927 000正确的是()A.9.27×106B.9.27×105C.9.27×104D.927×1033.下列计算正确的是()A.3a﹣2a=1 B.a2+a5=a7C.a2•a4=a6D.(ab)3=ab34.下列图形中,不是中心对称图形的是()A.B.C.D.5.在反比例函数的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1 D.k<16.如图的几何体是由一些小正方形组合而成的,则这个几何体的俯视图是()A.B.C.D.7.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD 的度数是()A.30°B.25°C.20°D.15°8.将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A.y=﹣2(x+1)2﹣1 B.y﹣2(x+1)2+3 C.y=﹣2(x﹣1)2+1 D.y=﹣2(x﹣1)2+3 9.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6B.4C.3D.310.早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y(单位:米)与小刚打完电话后的步行时间t(单位:分)之间的函数关系如图,下列四种说法:①打电话时,小刚和妈妈的距离为1250米;②打完电话后,经过23分钟小刚到达学校;③小刚和妈妈相遇后,妈妈回家的速度为150米/分;④小刚家与学校的距离为2550米.其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题(共10小题,每小题3分,共计30分)11.计算:=_________.12.在函数y=中,自变量x的取值范围是_________.13.把多项式3m2﹣6mn+3n2分解因式的结果是_________.14.不等式组的解集是_________.15.若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为_________.16.在一个不透明的口袋中,有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球记下标号后放回,再随机地摸取一个小球记下标号,则两次摸取的小球标号都是1的概率为_________.17.如图,在矩形ABCD中,AB=4,BC=6,若点P在AD边上,连接BP、PC,△BPC是以PB为腰的等腰三角形,则PB的长为_________.18.一个底面直径为10cm,母线长为15cm的圆锥,它的侧面展开图圆心角是_________度.19.如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC 的周长为12,则EC的长为_________.20.如图,在△ABC中,4AB=5AC,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H.若点H是AC的中点,则的值为_________.三、解答题21.先化简,再求代数式﹣的值,其中x=2cos45°+2,y=2.22.如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点;(2)请直接写出△AEF与四边形ABCD重叠部分的面积.23.君畅中学计划购买一些文具送给学生,为此学校决定围绕“在笔袋、圆规、直尺、钢笔四种文具中,你最需要的文具是什么?(必选且只选一种)”的问题,在全校满园内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据以上信息回答下列问题:(1)在这次调查中,最需要圆规的学生有多少名?并补全条形统计图;(2)如果全校有970名学生,请你估计全校学生中最需要钢笔的学生有多少名?24.快、慢两车分别从相距480千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1小时,然后以原速继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地(快车掉头的时间忽略不计),快、慢两车距乙地的路程y(千米)与所用时间x(小时)之间的函数图象如图,请结合图象信息解答下列问题:(1)直接写出慢车的行驶速度和a的值;(2)快车与慢车第一次相遇时,距离甲地的路程是多少千米?(3)两车出发后几小时相距的路程为200千米?请直接写出答案25.如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.(1)求∠ACB的度数;(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.26.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?27.如图,在平面直角坐标中,点O为坐标原点,直线y=﹣x+4与x轴交于点A,过点A的抛物线y=ax2+bx 与直线y=﹣x+4交于另一点B,且点B的横坐标为1.(1)求a,b的值;(2)点P是线段AB上一动点(点P不与点A、B重合),过点P作PM∥OB交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,过点P作PF⊥MC于点F,设PF的长为t,MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);28.如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,点C在y轴上,∠ACB=90°,OA、OB的长分别是一元二次方程x2﹣25x+144=0的两个根(OA<OB),点D是线段BC上的一个动点(不与点B、C重合),过点D作直线DE⊥OB,垂足为E.(1)求点C的坐标.(2)连接AD,当AD平分∠CAB时,求直线AD的解析式.(3)若点N在直线DE上,在坐标系平面内,是否存在这样的点M,使得C、B、N、M为顶点的四边形是正方形?若存在,请直接写出点M的坐标;若不存在,说明理由.。

黑龙江省中考数学真题试题(含答案)

黑龙江省中考数学真题试题(含答案)

1 黑龙江省中考数学真题试题一、单项选择题:每小题3分,共30分2015年齐齐哈尔市初中毕业考试数学试卷1.(3分)(2015•齐齐哈尔)下列各式正确的是()A A..﹣22=4B =4 B.. 20=0C =0 C..=±2 D.=±2 D. | | |﹣﹣|=2.(3分)(2015•齐齐哈尔)下列汉字或字母中既是中心对称图形又是轴对称图形的是()A A.. B B.. C C.. D D..3.(3分)(2015•齐齐哈尔)下列是某校教学活动小组学生的年龄情况:(2015•齐齐哈尔)下列是某校教学活动小组学生的年龄情况:131313,,1515,,1515,,1616,,1313,,1515,,1414,,1515(单位:岁)(单位:岁).这组数据的中位数和极差分别是() A A.. 15 15,,3 B 3 B.. 14 14,,15 C 15 C.. 16 16,,16 D 16 D.. 14 14,,34.(3分)(2015•齐齐哈尔)如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h 随注水时间t 变化规律的是()A A..B B.. C C.. D D..5.(3分)(2015•齐齐哈尔)如图,由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是()A A.. 5或6或7B 7 B.. 6或7C 7 C.. 6或7或8D 8 D.. 7或8或96.(3分)(2015•齐齐哈尔)如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB 与小圆有公共点,则弦AB 的取值范围是()A A.. 8≤AB≤10 B.8≤AB≤10 B. 8 8 8<AB≤10 C.<AB≤10 C.<AB≤10 C. 4≤AB≤5 D.4≤AB≤5 D. 4 4 4<AB≤5<AB≤5<AB≤57.(3分)(2015•齐齐哈尔)关于x 的分式方程=有解,则字母a 的取值范围是( )A A.. a=5或a=0B a=0 B.. a≠0 C.a≠0 C. a≠5 D.a≠5 D. a≠5且a≠0a≠08.(3分)(2015•齐齐哈尔)为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有(元,购买方案有( )A A.. 1种B B.. 2种C C.. 3种D D.. 4种9.(3分)(2015•齐齐哈尔)抛物线y=ax 2+bx+c +bx+c(a≠0)的对称轴为直线(a≠0)的对称轴为直线x=x=﹣﹣1,与x 轴的一个交点A 在点(﹣在点(﹣33,0)和(﹣)和(﹣22,0)之间,其部分图象如图,则下列结论:①4ac﹣)之间,其部分图象如图,则下列结论:①4ac﹣b b 2<0;②2a﹣②2a﹣b=0b=0b=0;;③a+b+c<③a+b+c<00;④点M (x 1,y 1)、N (x 2,y 2)在抛物线上,若x 1<x 2,则y 1≤y 2,其中正确结论的个数是(其中正确结论的个数是( )A A.. 1个B B.. 2个C C.. 3个D D.. 4个1010..(3分)(2015•齐齐哈尔)如图,在钝角△(2015•齐齐哈尔)如图,在钝角△ABC ABC 中,分别以AB 和AC 为斜边向△为斜边向△ABC ABC 的外侧作等腰直角三角形ABE 和等腰直角三角形ACF ACF,,EM 平分∠平分∠AEB AEB 交AB 于点M ,取BC 中点D ,AC 中点N ,连接DN DN、、DE DE、、DF DF..下列结论:①EM=DN;②S △CDN =S 四边形ABDN ;③DE=DF;④DE⊥④DE⊥DF DF DF..其中正确的结论的个数是(中正确的结论的个数是( )A A.. 1个B B.. 2个C C.. 3个D D.. 4个二、填空题:每小题3分,共30分1111..(3分)(2015•齐齐哈尔)日前从省教育厅获悉,为改善农村义务教育办学条件,促进教育公平,去年我省共接收163400名随迁子女就学,将163400用科学记数法表示为 .1212..(3分)(2015•齐齐哈尔)在函数y=+中,自变量x 的取值范围是的取值范围是 .1313..(3分)(2015•齐齐哈尔)如图,点B 、A 、D 、E 在同一直线上,在同一直线上,BD=AE BD=AE BD=AE,,BC BC∥∥EF EF,要使,要使△ABC ABC≌△≌△≌△DEF DEF DEF,则只需添加一个适当的条件是,则只需添加一个适当的条件是,则只需添加一个适当的条件是 .(只填一个即可)(只填一个即可)1414..(3分)(2015•齐齐哈尔)△ABC 的两边长分别为2和3,第三边的长是方程x 2﹣8x+15=0的根,则△的根,则△ABC ABC 的周长是的周长是 .1515..(3分)(2015•齐齐哈尔)如图,点A 是反比例函数图象上一点,过点A 作AB AB⊥⊥y 轴于点B ,点C 、D 在x 轴上,且BC BC∥∥AD AD,四边形,四边形ABCD 的面积为3,则这个反比例函数的解析式为 .1616..(3分)(2015•齐齐哈尔)底面周长为10πcm cm,,高为12cm 的圆锥的侧面积为的圆锥的侧面积为 .1717..(3分)(2015•齐齐哈尔)从点A (﹣(﹣22,3)、B (1,﹣,﹣66)、C (﹣(﹣22,﹣,﹣44)中任取一个点,在y=y=﹣﹣的图象上的概率是的图象上的概率是 .1818..(3分)(2015•齐齐哈尔)菱形ABCD 的对角线AC=6cm AC=6cm,,BD=4cm BD=4cm,,以AC 为边作正方形ACEF ACEF,,则BF 长为长为 .1919..(3分)(2015•齐齐哈尔)(2015•齐齐哈尔)BD BD 为等腰△为等腰△ABC ABC 的腰AC 上的高,上的高,BD=1BD=1BD=1,,tan tan∠∠ABD=,则CD 的长为的长为 .2020..(3分)(2015•齐齐哈尔)如图,正方形ABCB 1中,中,AB=1AB=1AB=1..AB 与直线l 的夹角为30°,延长CB 1交直线l 于点A 1,作正方形A 1B 1C 1B 2,延长C 1B 2交直线l 于点A 2,作正方形A 2B 2C 2B 3,延长C 2B 3交直线l 于点A 3,作正方形A 3B 3C 3D 4,…,依此规律,则A 2014A 2015= .三、解答题:满分60分2121..(5分)(2015•齐齐哈尔)先化简,再求值:÷(+1+1)),其中x 是的整数部分.部分.2222..(6分)(2015•齐齐哈尔)如图,在边上为1个单位长度的小正方形网格中:个单位长度的小正方形网格中:(1)画出△)画出△ABC ABC 向上平移6个单位长度,再向右平移5个单位长度后的△个单位长度后的△A A 1B 1C 1.(2)以点B 为位似中心,将△将△ABC ABC 放大为原来的2倍,得到△得到△A A 2B 2C 2,请在网格中画出△请在网格中画出△A A 2B 2C 2.(3)求△)求△CC CC 1C 2的面积.的面积.2323..(6分)(2015•齐齐哈尔)如图,在平面直角坐标系中,正方形OABC 的边长为4,顶点A 、C 分别在x 轴、轴、y y 轴的正半轴,抛物线y=y=﹣﹣x 2+bx+c 经过B 、C 两点,点D 为抛物线的顶点,连接AC AC、、BD BD、、CD CD..(1)求此抛物线的解析式.)求此抛物线的解析式.(2)求此抛物线顶点D 的坐标和四边形ABCD 的面积.的面积.2424..(7分)(2015•齐齐哈尔)(2015•齐齐哈尔)44月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的阅读兴趣,九年(读书活动,以提升青少年的阅读兴趣,九年(11)班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了两幅不完整统计图(每组包括最小值不包括最大值).九年(.九年(11)班每天阅读时间在0.5小时以内的学生占全班人数的8%8%.根据统计图解答.根据统计图解答下列问题:下列问题:(1)九年()九年(11)班有)班有 名学生;名学生;(2)补全直方图;)补全直方图; (3)除九年()除九年(11)班外,九年级其他班级每天阅读时间在1~1.5小时的学生有165人,请你补全扇形统计图;你补全扇形统计图;(4)求该年级每天阅读时间不少于1小时的学生有多少人?2525..(8分)(2015•齐齐哈尔)甲、乙两车分别从相距480km 的A 、B 两地相向而行,乙车比甲车先出发1小时,小时,并以各自的速度匀速行驶,途径并以各自的速度匀速行驶,途径C 地,甲车到达C 地停留1小时,小时,因有因有事按原路原速返回A 地.地.乙车从乙车从B 地直达A 地,两车同时到达A 地.甲、乙两车距各自出发地的路程y (千米)与甲车出发所用的时间x (小时)的关系如图,结合图象信息解答下列问题:问题:(1)乙车的速度是)乙车的速度是 千米千米//时,时,t= t= 小时;小时;(2)求甲车距它出发地的路程y 与它出发的时间x 的函数关系式,并写出自变量的取值范围;围;(3)直接写出乙车出发多长时间两车相距120千米.千米.2626..(8分)(2015•齐齐哈尔)如图1所示,在正方形ABCD 和正方形CGEF 中,点B 、C 、G 在同一条直线上,在同一条直线上,M M 是线段AE 的中点,的中点,DM DM 的延长线交EF 于点N ,连接FM FM,易证:,易证:,易证:DM=FM DM=FM DM=FM,,DM DM⊥⊥F M (无需写证明过程)(无需写证明过程)(1)如图2,当点B 、C 、F 在同一条直线上,在同一条直线上,DM DM 的延长线交EG 于点N ,其余条件不变,试探究线段DM 与FM 有怎样的关系?请写出猜想,并给予证明;有怎样的关系?请写出猜想,并给予证明;(2)如图3,当点E 、B 、C 在同一条直线上,在同一条直线上,DM DM 的延长线交CE 的延长线于点N ,其余条件不变,探究线段DM 与FM 有怎样的关系?请直接写出猜想.有怎样的关系?请直接写出猜想.2727..(10分)(2015•齐齐哈尔)母亲节前夕,某淘宝店主从厂家购进A 、B 两种礼盒,已知A 、B 两种礼盒的单价比为2:3,单价和为200元.元.(1)求A 、B 两种礼盒的单价分别是多少元?两种礼盒的单价分别是多少元?(2)该店主购进这两种礼盒恰好用去9600元,且购进A 种礼盒最多36个,个,B B 种礼盒的数量不超过A 种礼盒数量的2倍,共有几种进货方案?倍,共有几种进货方案?(3)根据市场行情,销售一个A 钟礼盒可获利10元,销售一个B 种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B 种礼盒,为爱心公益基金捐款m 元,每个A 种礼盒的利润不变,在(润不变,在(22)的条件下,要使礼盒全部售出后所有方案获利相同,)的条件下,要使礼盒全部售出后所有方案获利相同,m m 值是多少?此时店主获利多少元?主获利多少元?2828..(10分)(2015•齐齐哈尔)如图,在平面直角坐标系中,已知Rt Rt△△AOB 的两直角边OA OA、、OB 分别在x 轴的负半轴和y 轴的正半轴上,且OA OA、、OB 的长满足的长满足|OA |OA |OA﹣﹣8|+8|+((OB OB﹣﹣6)2=0=0,∠,∠ABO 的平分线交x 轴于点C 过点C 作AB 的垂线,垂足为点D ,交y 轴于点E .(1)求线段AB 的长;的长;(2)求直线CE 的解析式;的解析式;(3)若M 是射线BC 上的一个动点,在坐标平面内是否存在点P ,使以A 、B 、M 、P 为顶点的四边形是矩形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.的坐标;若不存在,请说明理由.黑龙江省中考数学试卷参考答案与试题解析一、单项选择题:每小题3分,共30分2015年齐齐哈尔市初中毕业考试数学试卷1.(3分)(2015•齐齐哈尔)下列各式正确的是((2015•齐齐哈尔)下列各式正确的是( ) A A.. ﹣22=4 B =4 B.. 20=0 C =0 C.. =±2 D.=±2 D. | | |﹣﹣|=考点: 算术平方根;有理数的乘方;实数的性质;零指数幂.算术平方根;有理数的乘方;实数的性质;零指数幂.分析: 根据有理数的乘方,任何非零数的零次幂等于1,算术平方根的定义,绝对值的性质对各选项分析判断即可得解.质对各选项分析判断即可得解. 解答: 解:解:A A 、﹣、﹣222=﹣4,故本选项错误;,故本选项错误; B 、20=1=1,故本选项错误;,故本选项错误;,故本选项错误;C 、=2=2,故本选项错误;,故本选项错误;,故本选项错误;D 、|﹣|=,故本选项正确.,故本选项正确.故选D .点评: 本题考查了算术平方根的定义,有理数的乘方,实数的性质,零指数幂的定义,是基础题,熟记概念与性质是解题的关键.基础题,熟记概念与性质是解题的关键.2.(3分)(2015•齐齐哈尔)下列汉字或字母中既是中心对称图形又是轴对称图形的是( )A A..B B..C C..D D..考点: 中心对称图形;轴对称图形.中心对称图形;轴对称图形.分析: 根据轴对称图形与中心对称图形的概念求解.根据轴对称图形与中心对称图形的概念求解.解答: 解:解:A A 、是轴对称图形,不是中心对称图形.故错误;、是轴对称图形,不是中心对称图形.故错误;B 、是轴对称图形,不是中心对称图形.故错误;、是轴对称图形,不是中心对称图形.故错误;C 、是轴对称图形,也是中心对称图形.故正确;、是轴对称图形,也是中心对称图形.故正确;D 、不是轴对称图形,是中心对称图形.故错误.、不是轴对称图形,是中心对称图形.故错误.故选C .点评: 本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.重合.3.(3分)(2015•齐齐哈尔)下列是某校教学活动小组学生的年龄情况:(2015•齐齐哈尔)下列是某校教学活动小组学生的年龄情况:131313,,1515,,1515,,1616,,1313,,1515,,1414,,1515(单位:岁)(单位:岁).这组数据的中位数和极差分别是(.这组数据的中位数和极差分别是( )A A.. 15 15,,3B 3 B.. 14 14,,15C 15 C.. 16 16,,16D 16 D.. 14 14,,3考点: 极差;中位数.极差;中位数.分析: 根据中位数与极差的定义分别求出即可解答.找中位数要把数据按从小到大的顺序排列,排列,位于最中间的一个数(或两个数的平均数)位于最中间的一个数(或两个数的平均数)位于最中间的一个数(或两个数的平均数)为中位数;为中位数;为中位数;极差就是这组数中最大值与最极差就是这组数中最大值与最小值的差.小值的差.解答: 解:按从小到大的顺序排列为:1313,,1313,,1414,,1515,,1515,,1515,,1515,,1616,,故中位数为(15+1515+15))÷2=15,÷2=15,极差为1616﹣﹣13=313=3..故选A .点评: 本题为统计题,考查中位数与极差的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,如果中位数的概念掌握得不好,不把数据按要求重新排列,不把数据按要求重新排列,不把数据按要求重新排列,就会出错.就会出错.极差是指一组数据中最大数据与最小数据的差.极差最大数据与最小数据的差.极差==最大值﹣最小值.最大值﹣最小值.4.(3分)(2015•齐齐哈尔)如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h 随注水时间t 变化规律的是(变化规律的是( )A A..B B..C C..D D..考点: 函数的图象.函数的图象.分析: 由于三个容器的高度相同,由于三个容器的高度相同,粗细不同,粗细不同,那么水面高度h 随时间t 变化而分三个阶段. 解答: 解:最下面的容器容器最小,用时最短,第二个容器最粗,那么第二个阶段的函数图象水面高度h 随时间t 的增大而增长缓慢,用时较长,最上面容器较粗,那么用时较短. 故选B .点评: 此题主要考查了函数图象,解决本题的关键是根据容器的高度相同,每部分的粗细不同得到用时的不同.不同得到用时的不同.5.(3分)(2015•齐齐哈尔)如图,由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是(视图,组成这个几何体的小正方体的个数是( )A A.. 5或6或7B 7 B.. 6或7C 7 C.. 6或7或8D 8 D.. 7或8或9考点: 由三视图判断几何体.由三视图判断几何体.分析: 首先根据几何体的左视图,可得这个几何体共有3层;然后从俯视图中可以看出最底层小正方体的个数及形状;底层小正方体的个数及形状;最后从左视图判断出第一层、最后从左视图判断出第一层、最后从左视图判断出第一层、第二层的个数,第二层的个数,进而求出组成这个几何体的小正方体的个数是多少即可.个几何体的小正方体的个数是多少即可.解答: 解:根据几何体的左视图,可得这个几何体共有3层,层,从俯视图可以可以看出最底层的个数是4个,个,(1)当第一层有1个小正方体,第二层有1个小正方体时,个小正方体时,组成这个几何体的小正方体的个数是:组成这个几何体的小正方体的个数是:1+1+4=61+1+4=6(个)(个); (2)当第一层有1个小正方体,第二层有2个小正方体时,个小正方体时,或当第一层有2个小正方体,第二层有1个小正方体时,个小正方体时,组成这个几何体的小正方体的个数是:组成这个几何体的小正方体的个数是: 1+2+4=71+2+4=7(个)(个); (3)当第一层有2个小正方体,第二层有2个小正方体时,个小正方体时,组成这个几何体的小正方体的个数是:组成这个几何体的小正方体的个数是:2+2+4=82+2+4=8(个)(个). 综上,可得综上,可得组成这个几何体的小正方体的个数是6或7或8.故选:故选:C C .点评: 此题主要考查了由三视图判断几何体,考查了空间想象能力,要熟练掌握,解答此题的关键是要明确:题的关键是要明确:由三视图想象几何体的形状,由三视图想象几何体的形状,由三视图想象几何体的形状,首先,首先,首先,应分别根据主视图、俯视图和左视应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.6.(3分)(2015•齐齐哈尔)如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB 与小圆有公共点,则弦AB 的取值范围是(的取值范围是( )A A.. 8≤AB≤10 B.8≤AB≤10 B. 8 8 8<AB≤10 C.<AB≤10 C.<AB≤10 C. 4≤AB≤5 D.4≤AB≤5 D. 4 4 4<AB≤5<AB≤5<AB≤5考点: 直线与圆的位置关系;勾股定理;垂径定理.直线与圆的位置关系;勾股定理;垂径定理.分析: 此题可以首先计算出当AB 与小圆相切的时候的弦长.连接过切点的半径和大圆的一条半径,根据勾股定理和垂径定理,得AB=8AB=8.若大圆的弦.若大圆的弦AB 与小圆有公共点,即相切或相交,此时AB≥8;又因为大圆最长的弦是直径1010,则,则8≤AB≤10.8≤AB≤10.解答: 解:当AB 与小圆相切,与小圆相切,∵大圆半径为5,小圆的半径为3,∴AB=2=8=8..∵大圆的弦AB 与小圆有公共点,即相切或相交,与小圆有公共点,即相切或相交,∴8≤AB≤10.∴8≤AB≤10.故选:故选:A A .点评: 本题综合考查了切线的性质、勾股定理和垂径定理.此题可以首先计算出和小圆相切时的弦长,再进一步分析有公共点时的弦长.切时的弦长,再进一步分析有公共点时的弦长.7.(3分)(2015•齐齐哈尔)关于x 的分式方程=有解,则字母a 的取值范围是( )A A.. a=5或a=0B a=0 B.. a≠0 C.a≠0 C. a≠5 D.a≠5 D. a≠5且a≠0a≠0考点: 分式方程的解.分式方程的解.分析: 先解关于x 的分式方程,求得x 的值,然后再依据“关于x 的分式方程=有解”,即x≠0且x≠2建立不等式即可求a 的取值范围.的取值范围.解答: 解:=, 去分母得:去分母得:55(x ﹣2)=ax =ax,,去括号得:去括号得:5x 5x 5x﹣﹣10=ax 10=ax,,移项,合并同类项得:移项,合并同类项得:(5﹣a )x=10x=10,,∵关于x 的分式方程=有解,有解,∴5﹣a≠0,x≠0且x≠2,x≠2,即a≠5,a≠5,系数化为1得:得:x=x=, ∴≠0且≠2,≠2, 即a≠5,a≠0,a≠5,a≠0,综上所述:关于x 的分式方程=有解,则字母a 的取值范围是a≠5,a≠0,a≠5,a≠0,故选:故选:D D .点评: 此题考查了求分式方程的解,由于我们的目的是求a 的取值范围,根据方程的解列出关于a 的不等式.另外,解答本题时,容易漏掉5﹣a≠0,这应引起同学们的足够重视.8.(3分)(2015•齐齐哈尔)为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有(元,购买方案有( )A A.. 1种B B.. 2种C C.. 3种D D.. 4种考点: 二元一次方程的应用.二元一次方程的应用.分析: 设毽子能买x 个,跳绳能买y 根,依据“某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元”列出方程,并解答.元”列出方程,并解答.解答: 解:设毽子能买x 个,跳绳能买y 根,根据题意可得:根,根据题意可得:3x+5y=353x+5y=35,,y=7y=7﹣﹣x ,∵x 、y 都是正整数,都是正整数,∴x=5时,时,y=4y=4y=4;;x=10时,时,y=1y=1y=1;;∴购买方案有2种.种.故选B .点评: 此题主要考查了二元一次方程的应用,根据题意得出正确等量关系是解题关键.此题主要考查了二元一次方程的应用,根据题意得出正确等量关系是解题关键.9.(3分)(2015•齐齐哈尔)抛物线y=ax 2+bx+c +bx+c(a≠0)的对称轴为直线(a≠0)的对称轴为直线x=x=﹣﹣1,与x 轴的一个交点A 在点(﹣在点(﹣33,0)和(﹣)和(﹣22,0)之间,其部分图象如图,则下列结论:①4ac﹣)之间,其部分图象如图,则下列结论:①4ac﹣b b 2<0;②2a﹣②2a﹣b=0b=0b=0;;③a+b+c<③a+b+c<00;④点M (x 1,y 1)、N (x 2,y 2)在抛物线上,若x 1<x 2,则y 1≤y 2,其中正确结论的个数是(其中正确结论的个数是( )A A.. 1个B B.. 2个C C.. 3个D D.. 4个考点: 二次函数图象与系数的关系.二次函数图象与系数的关系.分析: 根据函数与x 中轴的交点的个数,以及对称轴的解析式,函数值的符号的确定即可作出判断.作出判断. 解答: 解:函数与x 轴有两个交点,则b 2﹣4ac 4ac>>0,即4ac 4ac﹣﹣b 2<0,故①正确;,故①正确;函数的对称轴是x=x=﹣﹣1,即﹣=﹣1,则b=2a b=2a,,2a 2a﹣﹣b=0b=0,故②正确;,故②正确;,故②正确;当x=1时,函数对应的点在x 轴下方,则a+b+c a+b+c<<0,则③正确;,则③正确;则y 1和y 2的大小无法判断,则④错误.的大小无法判断,则④错误.故选C .点评: 本题考查了二次函数的性质,主要考查了利用图象求出a ,b ,c 的范围,以及特殊值的代入能得到特殊的式子.的式子.1010..(3分)(2015•齐齐哈尔)如图,在钝角△(2015•齐齐哈尔)如图,在钝角△ABC ABC 中,分别以AB 和AC 为斜边向△为斜边向△ABC ABC 的外侧作等腰直角三角形ABE 和等腰直角三角形ACF ACF,,EM 平分∠平分∠AEB AEB 交AB 于点M ,取BC 中点D ,AC 中点N ,连接DN DN、、DE DE、、DF DF..下列结论:①EM=DN;②S △CDN =S 四边形ABDN ;③DE=DF;④DE⊥④DE⊥DF DF DF..其中正确的结论的个数是(中正确的结论的个数是( )A A.. 1个B B.. 2个C C.. 3个D D.. 4个考点: 全等三角形的判定与性质;等腰直角三角形;三角形中位线定理.全等三角形的判定与性质;等腰直角三角形;三角形中位线定理.分析: ①首先根据D 是BC 中点,N 是AC 中点N ,可得DN 是△是△ABC ABC 的中位线,判断出DN=;然后判断出EM=,即可判断出EM=DN EM=DN;;②首先根据DN DN∥∥AB AB,可得△,可得△,可得△CDN CDN CDN∽∽ABC ABC;然后根据;然后根据DN=,可得S △CDN =S △ABC ,所以S △CDN =S 四边形ABDN ,据此判断即可.,据此判断即可.③首先连接MD MD、、FN FN,判断出,判断出DM=FN DM=FN,∠,∠,∠EMD=EMD=EMD=∠∠DNF DNF,然后根据全等三角形判定的方法,判断,然后根据全等三角形判定的方法,判断出△出△EMD EMD EMD≌△≌△≌△DNF DNF DNF,即可判断出,即可判断出DE=DF DE=DF..④首先判断出,DM=FA FA,,∠EMD=EMD=∠∠EAF EAF,,根据相似计三角形判定的方法,判断出△判断出△EMD EMD EMD∽△∠∽△∠∽△∠EAF EAF EAF,即可判断出∠,即可判断出∠,即可判断出∠MED=MED=MED=∠∠AEF AEF,然后根据∠,然后根据∠,然后根据∠MED+MED+MED+∠AED=45°,判断出∠∠AED=45°,判断出∠DEF=45°,再根据DE=DF DE=DF,判断出∠DFE=45°,∠EDF=90°,即可判断出,判断出∠DFE=45°,∠EDF=90°,即可判断出DE DE⊥⊥DF DF.. 解答: 解:∵解:∵D D 是BC 中点,中点,N N 是AC 中点,中点,∴DN 是△是△ABC ABC 的中位线,的中位线,∴DN DN∥∥AB AB,且,且DN=;∵三角形ABE 是等腰直角三角形,是等腰直角三角形,EM EM 平分∠平分∠AEB AEB 交AB 于点M ,∴M 是AB 的中点,的中点,∴EM=,又∵又∵DN=DN=,∴EM=DN EM=DN,,∴结论①正确;∴结论①正确;∵DN DN∥∥AB AB,,∴△∴△CDN CDN CDN∽∽ABC ABC,,∵DN=,∴S △CDN =S △ABC ,∴S △CDN =S 四边形ABDN ,∴结论②正确;∴结论②正确;如图1,连接MD MD、、FN FN,,,∵D 是BC 中点,中点,M M 是AB 中点,中点,∴DM 是△是△ABC ABC 的中位线,的中位线,∴DM DM∥∥AC AC,且,且DM=;∵三角形ACF 是等腰直角三角形,是等腰直角三角形,N N 是AC 的中点,的中点,∴FN=,又∵又∵DM=DM=,∴DM=FN DM=FN,,∵DM DM∥∥AC AC,,DN DN∥∥AB AB,, ∴四边形AMDN 是平行四边形,是平行四边形,∴∠∴∠AMD=AMD=AMD=∠∠AND AND,,又∵∠又∵∠EMA=EMA=EMA=∠FNA=90°,∠FNA=90°,∠FNA=90°,∴∠∴∠EMD=EMD=EMD=∠∠DNF DNF,,在△在△EMD EMD 和△和△DNF DNF 中,中,,∴△∴△EMD EMD EMD≌△≌△≌△DNF DNF DNF,,∴DE=DF DE=DF,,∴结论③正确;∴结论③正确;如图2,连接MD MD,,EF EF,,NF NF,,,∵三角形ABE 是等腰直角三角形,是等腰直角三角形,EM EM 平分∠平分∠AEB AEB AEB,,∴M 是AB 的中点,的中点,EM EM EM⊥⊥AB AB,,∴EM=MA EM=MA,∠EMA=90°,∠,∠EMA=90°,∠,∠EMA=90°,∠AEM=AEM=AEM=∠EAM=45°,∠EAM=45°,∠EAM=45°,∴,∵D 是BC 中点,中点,M M 是AB 中点,中点,∴DM 是△是△ABC ABC 的中位线,的中位线,∴DM DM∥∥AC AC,且,且DM=;∵三角形ACF 是等腰直角三角形,是等腰直角三角形,N N 是AC 的中点,的中点,∴FN=,∠FNA=90°,∠,∠FNA=90°,∠FAN=FAN=FAN=∠AFN=45°,∠AFN=45°,∠AFN=45°,又∵又∵DM=DM=,∴DM=FN=FA FA,,∵∠∵∠EMD=EMD=EMD=∠∠EMA+EMA+∠AMD=90°+∠∠AMD=90°+∠∠AMD=90°+∠AMD AMD AMD,,∠EAF=360°﹣∠∠EAF=360°﹣∠EAM EAM EAM﹣∠﹣∠﹣∠FAN FAN FAN﹣∠﹣∠﹣∠BAC BAC=360°﹣45°﹣45°﹣(180°﹣∠=360°﹣45°﹣45°﹣(180°﹣∠AMD AMD AMD))=90°+∠=90°+∠AMD AMD∴∠∴∠EMD=EMD=EMD=∠∠EAF EAF,,在△在△EMD EMD 和△∠和△∠EAF EAF 中,中,∴△∴△EMD EMD EMD∽△∠∽△∠∽△∠EAF EAF EAF,,∴∠∴∠MED=MED=MED=∠∠AEF AEF,,∵∠∵∠MED+MED+MED+∠AED=45°,∠AED=45°,∠AED=45°,∴∠∴∠AED+AED+AED+∠AEF=45°,∠AEF=45°,∠AEF=45°,即∠DEF=45°,即∠DEF=45°,又∵又∵DE=DF DE=DF DE=DF,,∴∠DFE=45°,∴∠DFE=45°,∴∠EDF=180°﹣45°﹣45°=90°,∴∠EDF=180°﹣45°﹣45°=90°,∴DE DE⊥⊥DF DF,,∴结论④正确.∴结论④正确.∴正确的结论有4个:①②③④.个:①②③④. 故选:故选:D D .点评: (1)此题主要考查了全等三角形的判定和性质的应用,此题主要考查了全等三角形的判定和性质的应用,以及相似三角形的判定和性以及相似三角形的判定和性质的应用,要熟练掌握.质的应用,要熟练掌握.(2)此题还考查了等腰直角三角形的性质和应用,此题还考查了等腰直角三角形的性质和应用,要熟练掌握,要熟练掌握,解答此题的关键是要明确:等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,斜边上中线、角平分线、斜边上的高,三线合一,等腰直角三角形斜边上的高为外接圆的半径R ,而高又为内切圆的直径.,而高又为内切圆的直径.(3)此题还考查了三角形中位线定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.角形的中位线平行于第三边,并且等于第三边的一半.二、填空题:每小题3分,共30分1111..(3分)(2015•齐齐哈尔)日前从省教育厅获悉,为改善农村义务教育办学条件,促进教育公平,去年我省共接收163400名随迁子女就学,将163400用科学记数法表示为用科学记数法表示为 1.634×105.考点: 科学记数法—表示较大的数.科学记数法—表示较大的数. 分析: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<1≤|a|<101010,,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,时,小数点移动了多少位,n n 的绝对值与小数点移动的位数相同.当原数绝对值>原数绝对值>11时,时,n n 是正数;当原数的绝对值<是正数;当原数的绝对值<11时,时,n n 是负数.是负数. 解答: 解:将163400用科学记数法表示为1.634×105, 故答案为:1.634×105. 点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<1≤|a|<101010,,n 为整数,表示时关键要正确确定a 的值以及n 的值.的值.1212..(3分)(2015•齐齐哈尔)在函数y=+中,自变量x 的取值范围是的取值范围是 x≥﹣x≥﹣33,且x≠0x≠0 .。

绥化市中考数学试卷及答案

绥化市中考数学试卷及答案

二○○八年绥化市初中毕业学业考试数 学 试 卷考生注意:1.考试时间120分钟2.全卷共三道大题,总分120分一、填空题(每空3分,满分33分)1.在抗震救灾过程中,共产党员充分发挥了先锋模范作用,截止5月28日17时,全国党员已缴纳特殊党费26.84亿元,用科学记数法表示为 元(结果保留两个有效数字). 2.函数31xy x -=-中,自变量x 的取值范围是 . 3.如图,BAC ABD ∠=∠,请你添加一个条件: ,使OC OD =(只添一个即可).4.如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm ,弧长是6πcm ,那么围成的圆锥的高度是 cm . 5.如图,某商场正在热销2008年北京奥运会的纪念品,小华买了一盒福娃和一枚奥运徽章,已知一盒福娃的价格比一枚奥运徽章的价格贵120元,则一盒福娃价格是 元.6.有一个正十二面体,12个面上分别写有1~12这12个整数,投掷这个正十二面体一次,向上一面的数字是3的倍数或4的倍数的概率是 .7.在半径为5cm 的圆中,两条平行弦的长度分别为6cm 和8cm ,则这两条弦之间的距离为 .8.一幅图案.在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是 .9.如图,矩形ABCD 中,3AB =cm ,6AD =cm ,点E 为AB 边上的任意一点,四边形EFGB 也是矩形,且2EF BE =,则AFC S =△ 2cm .D OC B A 第3题图 O B A 第4题图 5cmADCEF GB第9题图2341 6 5 第6题图一共花了170元 第5题图10.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是 .11.如图,菱形111AB C D 的边长为1,160B ∠=;作211AD B C ⊥于点2D ,以2AD 为一边,做第二个菱形222AB C D ,使260B ∠=;作322AD B C ⊥于点3D ,以3AD 为一边做第三个菱形333AB C D ,使360B ∠=;依此类推,这样做的第n个菱形n n n AB C D 的边n AD 的长是 . 二、选择题(每题3分,满分27分)12.下列各运算中,错误的个数是( )①01333-+=- ②523-= ③235(2)8a a = ④844a a a -÷=-A .1B .2C .3D .413.用电器的输出功率P 与通过的电流I 、用电器的电阻R 之间的关系是2P I R =,下面说法正确的是( ) A .P 为定值,I 与R 成反比例 B .P 为定值,2I 与R 成反比例 C .P 为定值,I 与R 成正比例D .P 为定值,2I 与R 成正比例14.为紧急安置100名地震灾民,需要同时搭建可容纳6人和4人的两种帐篷,则搭建方案共有( ) A .8种 B .9种 C .16种 D .17种 15.对于抛物线21(5)33y x =--+,下列说法正确的是( ) A .开口向下,顶点坐标(53), B .开口向上,顶点坐标(53), C .开口向下,顶点坐标(53)-,D .开口向上,顶点坐标(53)-,16.下列图案中是中心对称图形的是( )17.关于x 的分式方程15mx =-,下列说法正确的是( ) A .方程的解是5x m =+ B .5m >-时,方程的解是正数1D B 3第11题图AC 2B 2C 3D 3 B 1D 2C 1 A . B . C .D .第16题图C .5m <-时,方程的解为负数D .无法确定18.5月23日8时40分,哈尔滨铁路局一列满载着2400吨“爱心”大米的专列向四川灾区进发,途中除3次因更换车头等原因必须停车外,一路快速行驶,经过80小时到达成都.描述上述过程的大致图象是( )第18题图 19.已知5个正数12345a a a a a ,,,,的平均数是a ,且12345a a a a a >>>>,则数据123450a a a a a ,,,,,的平均数和中位数是( )A .3a a ,B .342a a a +, C .23562a a a +,D .34562a a a +,20.如图,将ABC △沿DE 折叠,使点A 与BC 边的中点F 重合,下列结论中:①EF AB∥且12EF AB =;②BAF CAF ∠=∠; ③12ADFE S AF DE =四边形;④2BDF FEC BAC ∠+∠=∠,正确的个数是( )A .1B .2C .3D .4三、解答题(满分60分) 21.(本小题满分5分)先化简:224226926a a a a a --÷++++,再任选一个你喜欢的数代入求值. 22.(本小题满分6分)如图,方格纸中每个小正方形的边长都是单位1.(1)平移已知直角三角形,使直角顶点与点O 重合,画出平移后的三角形. (2)将平移后的三角形绕点O 逆时针旋转90,画出旋转后的图形.第20题图t B. C . D .(3)在方格纸中任作一条直线作为对称轴,画出(1)和(2)所画图形的轴对称图形,得到一个美丽的图案.23.(本小题满分6分) 有一底角为60的直角梯形,上底长为10cm ,与底垂直的腰长为10cm ,以上底或与底垂直的腰为一边作三角形,使三角形的另一边长为15cm ,第三个顶点落在下底上.请计算所作的三角形的面积. 24.(本小题满分7分)A B C ,,三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表一和图一: 表一(1)请将表一和图一中的空缺部分补充完整.(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二(没有弃权票,每名学生只能推荐一个),请计算每人的得票数.(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4:3:3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.图二 9590 8580 7570 分数/分 图一竞选人 A B C武警战士乘一冲锋舟从A 地逆流而上,前往C 地营救受困群众,途经B 地时,由所携带的救生艇将B 地受困群众运回A 地,冲锋舟继续前进,到C 地接到群众后立刻返回A 地,途中曾与救生艇相遇.冲锋舟和救生艇距A 地的距离y (千米)和冲锋舟出发后所用时间x (分)之间的函数图象如图所示.假设营救群众的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.(1)请直接写出冲锋舟从A 地到C 地所用的时间. (2)求水流的速度.(3)冲锋舟将C 地群众安全送到A 地后,又立即去接应救生艇.已知救生艇与A 地的距离y (千米)和冲锋舟出发后所用时间x (分)之间的函数关系式为11112y x =-+,假设群众上下船的时间不计,求冲锋舟在距离A 地多远处与救生艇第二次相遇?26.(本小题满分8分)已知:正方形ABCD 中,45MAN ∠=,MAN ∠绕点A 顺时针旋转,它的两边分别交CB DC ,(或它们的延长线)于点M N ,. 当MAN ∠绕点A 旋转到BM DN =时(如图1),易证BM DN MN +=. (1)当MAN ∠绕点A 旋转到BM DN ≠时(如图2),线段BM DN ,和MN 之间有怎样的数量关系?写出猜想,并加以证明.(2)当MAN ∠绕点A 旋转到如图3的位置时,线段BM DN ,和MN 之间又有怎样的数量关系?请直接写出你的猜想.BBMBCNCNM CNM 图1图2图3A A A D D D x (分)某工厂计划为震区生产A B ,两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A 型桌椅(一桌两椅)需木料30.5m ,一套B 型桌椅(一桌三椅)需木料30.7m ,工厂现有库存木料3302m . (1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套A 型桌椅的生产成本为100元,运费2元;每套B 型桌椅的生产成本为120元,运费4元,求总费用y (元)与生产A 型桌椅x (套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费) (3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由. 28.(本小题满分10分) 如图,在平面直角坐标系中,点(30)C -,,点A B ,分别在x 轴,y轴的正半轴上,且满足10OA -=.(1)求点A ,点B 的坐标.(2)若点P 从C 点出发,以每秒1个单位的速度沿射线CB 运动,连结AP .设ABP △的面积为S ,点P 的运动时间为t 秒,求S 与t 的函数关系式,并写出自变量的取值范围. (3)在(2)的条件下,是否存在点P ,使以点A B P ,,为顶点的三角形与AOB △相似?若存在,请直接写出点P 的坐标;若不存在,请说明理由.x二○○八年黑龙江省绥化市初中毕业学业考试数学试卷参考答案及评分标准一、填空题,每空3分,满分33分(多答案题全对得3分,否则不得分) 1.92.710⨯2.3x ≤且1x ≠3.C D ∠=∠或ABC BAD ∠=∠或AC BD =或OAD OBC ∠=∠ 4.45.1456.127.1cm 或7cm 8.12 9.910.6或10或1211.12n -⎛ ⎝⎭二、选择题,每题3分,满分27分.12.C 13.B 14.A 15.A 16.B 17.C 18.D 19.D 20.B三、解答题,满分60分.21.解:224226926a a a a a --÷++++ 2(2)(2)2(3)2(3)2a a a a a +-+=++- ····································································· (1分)242633a a a a ++=-+++ ·················································································· (2分) 23a =+ ·································································································· (3分) n 取3-和2以外的任何数,计算正确都可给分. ············································ (5分) 22.平移正确,给2分;旋转正确,给2分;轴对称正确,给2分,计6分.23.解:当15BE =cm 时,ABE △的面积是250cm ; 当15CF =cm 时,BCF △的面积是275cm ;当15BE =cm 时,BCE △的面积是2cm .(每种情况,图给1分,计算结果正确1分,共6分) 24.解:(1)90;补充后的图如下(每项1分,计2分)(2)A :30035105⨯=% B :30040120⨯=% C :3002575⨯=%(方法对1分,计算结果全部正确1分,计2分)(3)A :854903105392.5433⨯+⨯+⨯=++(分)B :954803120398433⨯+⨯+⨯=++(分)C :90485375384433⨯+⨯+⨯=++(分)B 当选(方法对1分,计算结果全部正确1分,判断正确1分,计3分) 25.解:(1)24分钟 ················································································· (1分) (2)设水流速度为a 千米/分,冲锋舟速度为b 千米/分,根据题意得24()20(4424)()20b a a b -=⎧⎨-+=⎩ ·············································································· (3分) 解得1121112a b ⎧=⎪⎪⎨⎪=⎪⎩B9590 85 80 7570分数/分竞选人A B C答:水流速度是112千米/分. ······································································ (4分) (3)如图,因为冲锋舟和水流的速度不变,所以设线段a 所在直线的函数解析式为56y x b =+ ····························································································· (5分) 把(440),代入,得1103b =-∴线段a 所在直线的函数解析式为511063y x =- ············································ (6分)由11112511063y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩求出20523⎛⎫ ⎪⎝⎭,这一点的坐标 ·············································· (7分)∴冲锋舟在距离A 地203千米处与救生艇第二次相遇. ···································· (8分) 26.解:(1)BM DN MN +=成立. ························································· (2分)如图,把AND △绕点A 顺时针90,得到ABE △,则可证得E B M ,,三点共线(图形画正确) ···· (3分) 证明过程中,证得:EAM NAM ∠=∠ ···························· (4分)证得:AEM ANM △≌△ ························ (5分)ME MN ∴= ME BE BM DN BM =+=+DN BM MN ∴+= ·················································································· (6分) (2)DN BM MN -= ············································································· (8分) 27.解:(1)设生产A 型桌椅x 套,则生产B 型桌椅(500)x -套,由题意得0.50.7(500)30223(500)1250x x x x +⨯-⎧⎨+⨯-⎩≤≥ ···································································· (2分) 解得240250x ≤≤ ················································································· (3分) 因为x 是整数,所以有11种生产方案. ························································ (4分) (2)(1002)(1204)(500)2262000y x x x =+++⨯-=-+ ····························· (6分)220-<,y 随x 的增大而减少.x (分)B ME A C N D∴当250x =时,y 有最小值. ··································································· (7分) ∴当生产A 型桌椅250套、B 型桌椅250套时,总费用最少.此时min 222506200056500y =-⨯+=(元) ··············································· (8分) (3)有剩余木料,最多还可以解决8名同学的桌椅问题. ······························ (10分) 28.解:(1)2310OB OA --=230OB ∴-=,10OA -= ······································································· (1分) OB ∴=,1OA =点A ,点B分别在x 轴,y 轴的正半轴上(10)(0A B ∴,, ·················································································· (2分)(2)求得90ABC ∠= ············································································· (3分)(0(t t S t t ⎧<⎪=⎨->⎪⎩ ≤(每个解析式各1分,两个取值范围共1分) ················································ (6分)(3)1(30)P -,;21P ⎛-⎝;31P ⎛⎝;4(3P (每个1分,计4分) ··········································································································· (10分)注:本卷中所有题目,若由其它方法得出正确结论,酌情给分.。

最新黑龙江省绥化市中考数学试题(word版含答案)资料

最新黑龙江省绥化市中考数学试题(word版含答案)资料

二OO九年绥化市初中毕业学业考试数学试卷考生注意:l.考试时间 120分钟2.全卷共三道大题,总分120分一、填空题(每题3分,满分33分)1.函数y=中,自变量x的取值范围是.2.联合国环境规划署发布报告称:2008年尽管全球投资市场普遍疲软,但在中国等发展中国家的带动下,全球可持续投资再创历史新高,达1550亿美元,这个数用科学记数法可表示为美元.3.在英语句子“wish you success!”(祝你成功!)中任选一个字母,这个字母为“s”的概率是4.计算:= .5.反比例函数y=(m≠0)与一次函数y=kx+b(k≠O)的图象如图所示,请写出一条正确的结论:.6.如图,正方形ABCD的边长为3,以直线AB为轴,将正方形旋转一周,所得几何体的主视图的周长是.7.当x= 时,二次函数y=x2+2x-2有最小值.8.已知两圆的半径分别为5cm和4cm,圆心距是6cm,则这两个圆的位置关系是.10.用直角边分别为3和4的两个直角三角形拼成凸四边形,所得的四边形的周长是.11.如图,边长为1的菱形ABCD中,∠DAB=600,连结对角线AC,以AC为边作第二个菱形ACC l D l,使∠D1AC=600;连结AC1,再以AC1为边作第三个菱形AC l C2D2,使∠D2AC1=600;……,按此规律所作的第n个菱形的边长为.二、单项选择题(每题3分,满分27分)13.如图,平行线a、b被直线c所截,∠1=42038′,则∠2的度数为 ( ) A.137062′ B.137022′ C.47062′ D. 47022′14.下列运算正确的是 ( )A.a3·a2=a6B. (π-3.14)0=l C. ( )-1=-2 D.=±3 15.一组数据4,5,6,7,7,8的中位数和众数分别是 ( )A.7,7 B.7,6.5 C. 5.5, 7 D. 6.5, 716.一个水池接有甲、乙、丙三个水管,先打开甲,一段时间后再打开乙,水池注满水后关闭甲,同时打开丙,直到水池中的水排空.水池中的水量v(m3)与时间t(h)之间的函数关系如图,则关于三个水管每小时的水流量下列判断正确的是 ( )A.乙>甲 B.丙>甲 C.甲>乙 D.丙>乙18.一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,且每个房间都住满,租房方案有 ( )A.4种 B.3种 C.2种 D.1种19.梯形ABCD中,AD∥BC, AD=1,BC=4,∠C=700,∠B=400,则AB的长为 ( )A.2 B.3 C.4 D.5三、解答题(满分60分)21.(本小题满分5分)23.(本小题满分6分)在边长为4和6的矩形中作等腰三角形,使等腰三角形的一条边是矩形的长或宽,第三个顶点在矩形的边上,求所作三角形的面积.(注:形状相同的三角形按一种计算.)24.(本小题满分7分)为了解某地区30万电视观众对新闻、动画、娱乐三类节目的喜爱情况,根据老年人、成年人、青少年各年龄段实际人口的比例3:5:2,随机抽取一定数量的观众进行调查,得到如下统计图.(1)上面所用的调查方法是 (填“全面调查”或“抽样调查”);(2)写出折线统计图中A、B所代表的值;A::B: ;(3)求该地区喜爱娱乐类节目的成年人的人数.25.(本小题满分8分)邮递员小王从县城出发,骑自行车到A村投递,途中遇到县城中学的学生李明从A 村步行返校.小王在A村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计时间晚到1分钟.二人与县城间的距离S(千米)和小王从县城出发后所用的时间t(分)之间的函数关系如图,假设二人之间交流的时间忽略不计.(1)小王和李明第一次相遇时,距县城多少千米?直接写出答案.(2)求小王从县城出发到返回县城所用的时间.(3)李明从A村到县城共用多长时间?26.(本小题满分8分)如图l,在四边形A8CD中,AB=CD,E、F分别是BC、AD的中点,连结EF并延长,分别与BA、CD的延长线交于点M、N,则∠BME=∠CNE(不需证明).(温馨提示:在图1中,连结BD,取BD的中点H,连结HE、HF,根据三角形中位线定理,可证得HE=HF,从而∠HFE=∠HEF,再利用平行线的性质,可证得∠BME=∠CNE.)问题一:如图2,在四边形ADBC中,AB与CD相交于点O,AB=CD,E、F分别是BC、AD的中点,连结EF,分别交DC、AB于点M、N,判断△OMN的形状,请直接写出结论.问题二:如图3,在△ABC中,AC>AB,D点在AC上,AB=CD,E、F分别是BC、AD的中点,连结EF并延长,与BA的延长线交于点G,若∠EFC=600,连结GD,判断△AGD 的形状并证明.27.(本小题满分lO分)某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为lO万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?28.(本小题满分lO分)2009年绥化市初中毕业学业考试数学试卷参考答案及评分标准一、填空题(多答案题全部答对得3分,否则不得分)∴△AGF是等边三角形.…………………………………………………1分∴ AF=FD.∴ GF=FD.∴∠FGI=∠FDG=300∴∠AGD=900即△AGD是直角三角形………………………………………………………1分精品文档精品文档。

黑龙江绥化市中考数学试卷版及答案

黑龙江绥化市中考数学试卷版及答案

绥化市初中学业考试 数 学 试 卷一、单项选择题(每题3分,满分30分)1. 下列各式:①(-13 )—2=9;②(-2)0=1;③(a +b )2=a 2+b 2;④(-3ab 3)2=9a 2b 6;⑤3x 2-4x =-x ,其中计算正确的是( )A .①②③B .①②④C .③④⑤D .②④⑤ 解析: 答案:B 点评:2. 下列图形中不是轴对称图形的是( ) 解析: 答案:C 点评:3. 六月P 市连降大雨,某部队前往救援,乘车行进一段路程之后,由于道路受阻,汽车无法通行,部队短暂休整后决定步行前往,则能反映部队离开驻地的距离S (千米)与时间t (小时)之间的函数关系的大致图象是( ) 解析: 答案:A 点评:4. 方程(x -5)( x -6)=x -5的解是( )A .x =5B .x =5或x =6C .x =7D .x =5或x =7 解析: 答案:D 点评:5. “一方有难,八方支援”,当青海玉树发生地震后,全国人民积极开展捐款款物献爱A .15B .30C .50D .20 解析: 答案:B 点评:6. 已知函数y =1x的图象如图所示,当x ≥-1时,y 的取值范围是( )A .y <-1B .y ≤-1C .y ≤-1或y >0D .y <-1或y ≥0 解析: 答案:C点评:7.直角梯形ABCD中,AD∥BC,∠ABC=90o,∠C=60o,AD=DC=22,则BC的长为()A. 3 B.4 2 C.3 2 D.2 3解析:答案:C点评:8.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为6,sin B=13,则线段AC的长是()A.3 B.4 C.5 D.6解析:答案:B点评:9.现有球迷150人欲同时租用A、B、C三种型号客车去观看世界杯足球赛,其中A、B、C三种型号客车载客量分别为50人、30人、10人,要求每辆车必须满载,其中A型客车最多租两辆,则球迷们一次性到达赛场的租车方案有()A.3种 B.4种 C.5种 D.6种解析:答案:B点评:10.如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论要:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,其中正确结论的个数()A.1个 B.2个 C.3个 D.4个解析:答案:D点评:二、填空题(每题3分,满分30分)11.上海世博会永久地标建筑世博轴获“全球生态建筑奖”,该建筑占地面积约为104500平方米,这个数用科学记数法表示为_______________平方米.解析:答案:1.01×105点评:12.函数y=x-1x+2中,自变量x的取值范围是_______________.解析:答案:x≥1点评:13.如图所示,E、F是矩形ABCD对角线AC上的两点,试添加一个条件:_______________,使得△ADF≌△CBE.解析:答案:AF=CE或AE=CF或DF∥BE或∠ABE=∠CDF等点评:14.一个不透明的口袋中,装有红球6个,白球9个,黑球3个,这些球除颜色不同外没有任何区别,丙从中任意摸出一个球,要使摸到黑的概率为14,需要往这个口袋再放入同种黑球_______________个.解析:答案:2点评:15.抛物线y=x2-4x+m2与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是_______________.解析:答案:(3,0)点评:16.代数式3x2-4x-5的值为7,则x2-43x-5的值为_______________.解析:答案:-1点评:17.由一些完全相同的小正方体的搭成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是_______________.解析:答案:4或5(答对一值得1分,多答不得分)点评:18.Rt△ABC中,∠BAC=90o,AB=AC=2,以AC为一边,在△ABC外部作等腰直角三角形ACD,则线段B D的长为_______________.解析:答案:4或25或10(答对一值得1分,多答不得分)点评:19.已知关于x的分式方程a+2x+1=1的解是非正数,则a的取值范围是_______________.解析:答案:a≤-1且a≠-2点评:20.如图,在平面直角坐标系中,边长为1的正方形OA1B1C的对角线A1C和OB1交于点M1;以M1A1为对角线作第二个正方形A2A1B2 M1,对角线A1 M1和A2B2交于点M2;以M2A1为对角线作第三个正方形A3A1B3M2,对角线A1M2和A3B3交于点M3;……,依次类推,这样作的第n个正方形对角线交点的坐标为M n_______________.解析:答案:(1-12n ,12n )或另一书写形式(2n -12n ,12n )点评:三、解答题(满分60分)21.(本小题满分5分)先化简:(a - 2a —1a)÷ 1-a 2a 2+a,然后给a 选择一个你喜欢的数代入求值. 解析:答案:解:原式=a 2-2a +1a ÷ 1-a 2a 2+a…………………………1分=(a -1)2a×a (a +1) (1-a ) (a +1)……………………2分 =(1-a ) …………………………………………1分点评:(a 取—1,1,0以外的任何数,计算正确均可得分)……1分22.(本小题满分6分) 每个小方格都是边长为1个单位长度的小正方形,菱形OABC 在平面直角坐标系中的位置如图所示.(1)将菱形OABC 先向右平移4个单位,再向上平移2个单位,得到菱形OA 1B 1C 1,请画出菱形OA 1B 1C 1,并直接写出点B 1的坐标;(2)将菱形OABC 绕原点O 顺时针旋转90o ,得到菱形OA 2B 2C 2,请画出菱形OA 2B 2C 2,并求出点B 旋转到B 2的路径长.解析: 答案:(1)正确画出平移后图形…………………………1分B 1(8,6)………………………………………1分(2)正确画出旋转图形……………………………1分 OB =42+42=32=42……………………1分BB 2的弧长=90π×42180=22π…………………………2分点评:23.(本小题满分6分) .已知二次函数的图象经过点(0,3),(-3,0),(2, -5),且与x 轴交于A 、B 两点.(1)试确定此二次函数的解析式;(2)判断点P (-2,3)是否在这个二次函数的图象上?如果在,请求出△PAB 的面积;如果不在,试说明理由.解析: 答案:解:(1)设二次函数的解析式为y =ax 2+bx +c ∵二次函数的图象经过点(0,3),(-3,0),(2, -5) c =3∴ 9a —3b +c =0…………………………………………………2分4a +2b +c =-5b =800 5 k +b =550a =-1,b =-2,c =3,y =-x 2-2x +3 …………………………1分 (2)∵-(-2)2-2×(-2)+3=-4+4+3∴点P (-2,3)在这个二次函数的图象上…………………………1分 ∵-x 2-2x +3=0∴x 1=-3,x 2=1 ∴与轴的交点为:(-3,0),(1,0)…………1分 S △PAB =12 ×4×3=6 …………………………………………………1分点评:24.(本小题满分7分) .某区对参加2010年中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:(1)在频数分布表中,a 的值为__________,b 的值为__________,并将频数分布直方图补充完整;(2)甲同学说“我的视力情况是此次抽样调查所得数据的中位数”,问甲同学的视力情况应在什么范围内?(3)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是__________,并根据上述信息估计全区初中毕业生中视力正常的学生有多少人?解析: 答案:(1)a =60,b =0.05 …………………………………………………………………1分 补全直方图 ………………………………………………………………………1分(2)甲同学的视力情况范围:4.6≤x ≤4.9…………………………………………1分(3)视力正常的人数占被统计人数的百分比是:60+10200×100%=35% ………1分 全区初中毕业生中视力正常的学生约有:5000×35%=1750(人) …………1分 点评:25.(本小题满分8分)因南方旱情严重,乙水库的蓄水量以每天相同的速度持续减少.为缓解旱情,北方甲水库立即以管道运输的方式给予以支援下图是两水库的蓄水量y (万米3)与时间x (天)之间的函数图象.在单位时间内,甲水库的放水量与乙水库的进水量相同(水在排放、接收以及输送过程中的损耗不计).通过分析图象回答下列问题:(1)甲水库每天的放水量是多少万立方米?(2)在第几天时甲水库输出的水开始注入乙水库?此时乙水库的蓄水量为多少万立方米?(3)求直线AD 的解析式. 解析:答案:解:(1)甲水库每天的放水量为(3000-1000)÷5=400(万米3/天)……………………1分(2)甲水库输出的水第10天时开始注入乙水库………………………………………1分设直线AB 的解析式为:y =kx +b ∵B (0,800),C (5,550)∴ ∴k =-50 b =800 ………………………………1分∴直线AB 的解析式为:y AB =-50x +800 ……………………………………1分当x =10时,y =300 ∴此时乙水库的蓄水量为300(万米3) ………………1分(3)∵甲水库单位时间的放水量与乙水库单位时间的进水量相同且损耗不计∴乙水库的进水时间为5天∵乙水库15天后的蓄水量为:300+(3000-1000) -50×5=2050(万米3) …1分设直线AB 的解析式为: y =k 1x +b 1 ∴k 1=350 b 1=-3200 1分∴直线AD 的解析式为:y AD =350x -3200 ……………………………………1分 点评:26.(本小题满分8分) .已知在Rt △ABC 中,∠ABC =90o ,∠A =30o ,点P 在AC 上,且∠MPN =90o .当点P 为线段AC 的中点,点M 、N 分别在线段AB 、BC 上时(如图1),过点P 作PE ⊥AB 于点E ,PF ⊥BC 于点F ,可证t △PME ∽t △PNF ,得出PN =3PM .(不需证明)当PC =2PA ,点M 、N 分别在线段AB 、BC 或其延长线上,如图2、图3这两种情况时,请写出线段PN 、PM 之间的数量关系,并任选取一给予证明. 解析:答案:解:如图2,如图3中都有结论:PN =6PM ……………………………2分 选如图2: 在Rt △ABC 中,过点P 作PE ⊥AB 于E ,PF ⊥BC 于点F∴四边形BFPE 是矩形 ∴∠EPF =90o , ∵∠EPM +∠MPF =∠FPN +∠MPF =90o可知∠EPM =∠FPN ∴△PFN ∽△PEM ……………………2分∴PF PE =PNPM…………………………………………………………1分 又∵Rt △AEP 和Rt △PFC 中:∠A =30o ,∠C =60o ∴PF =32 PC ,PE =12PA ……………………………………………1分 ∴PN PM =PF PE =3PC PA……………………………………………1分 ∵PC =2PA ∴PNPM= 6 即:PN =6PM ………………1分10000 若选如图3,其证明过程同上(其他方法如果正确,可参照给分) 点评:27.(本小题满分10分) .为了抓住世博会商机,某商店决定购进A 、B 两种世博会纪念品.若购进A 种纪念品10件,B 种纪念品5件,需要1000元;若购进A 种纪念品5件,B 种纪念品3件,需要550元.(1)求购进A 、B 两种纪念品每件各需多少元?(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑市场需求,要求购进A 种纪念品的数量不少于B 种纪念品数量的6倍,且不超过B 种纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?解析: 答案:解:(1种纪念品需要a 元,购进一件B 种纪念品需要b 元 0 1分………1分 50元,购进一件B 种纪念品需要100元 ………………1分(2x 个,购进B 种纪念品y 个………………………………2分 1分∵y 为正整数 ∴共有6种进货方案…………………………1分 (3)设总利润为W 元W =20x +30y =20(200-2 y )+30y=-10 y +4000 (20≤y ≤25) (2)分∵-10<0∴W 随y 的增大而减小∴当y =20时,W 有最大值 ……………………………………1分 W 最大=-10×20+4000=3800(元)∴当购进A 种纪念品160件,B 种纪念品20件时,可获最大利润,最大利润是3800元………………………………1分点评:28.(本小题满分10分) .如图,在平面直角坐标系中,函数y =2x +12的图象分别交x轴、y 轴于A 、B 两点.过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点.△ABP △AOB(1)求直线AM 的解析式;(2)试在直线AM 上找一点P ,使得S △ABP =S △AOB ,请直接写出点P 的坐标;(3)若点H 为坐标平面内任意一点,在坐标平面内是否存在这样的点H ,使以A 、B 、M 、H 为顶点的四边形是等腰梯形?若存在,请直接写出点H 的坐标;若不存在,请说明理由.解析:答案:解:(1)函数的解析式为y =2x +12 ∴A (-6,0),B (0,12) ………………1分∵点M 为线段OB 的中点 ∴M (0,6) ……………………………1分 设直线AM 的解析式为:y =kx +b......................................................2分 ∴k =1 b =6 ...............................................................1分 ∴直线AM 的解析式为:y =x +6 .............................................1分 (2)P 1(-18,-12),P 2(6,12) (2)分(3)H 1(-6,18),H 2(-12,0),H 3(-65 ,185)………………………………3分点评:。

2015年绥化市中考数学试卷及答案

2015年绥化市中考数学试卷及答案

x-2
2x +3
亠 2 >0 ;竺亠<0 等。那么如何求出它们的解集呢?
x 十 1 x -1
根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负。其字母表达式为:
a
a
(1)若 a>0 , b>0,则三 >0;若 a< 0 , b< 0,则三 >0;
b
b
a
a
(2) 若 a>0 , b< 0,则-< 0 ;若 a<0, b>0,则 < 0。
1

A.
B.
1
1
2
C.
D.-
4
5
4.石墨烯是现在世界3上最薄的纳米材料
,其理论厚度仅是 0.00000000034m ,这个数用科学记数法表示正确的是
()
9
A. 3.4 X 10 B. 0.34 X 10
9
」0
C. 3.4 X 10 D.
3.4 X 10
5.将一副三角尺按如图方式进行摆放 ,/ 1、/ 2 不一定互补的是(
y(升)与乙
器注水时间 x(分)之间的关系如图所示。
(1)求甲容器的进、出水速度。
(2 )甲容器进、出水管都关闭后,是否存在两容器的水量相等。若存在,求出此时的时间。
(3)若使两容器第 12 分钟时水量相等,则乙容器 6 分钟后进水速度应变为多少?
26.自学下面材料后,解答问题。
分母中含有未知数的不等式叫分式不等式。如:
形的四个顶点都落在该三角形的边上,求正方形落在
x 轴正半轴的顶点坐标。(6 分)
24. 如图,以线段 AB 为直径作 O O , CD 与 O O 相切于点 E ,交 AB 的延长线于点 D ,连接 BE,过点 O 作 OC // BE 交

历年黑龙江省绥化市中考数学试卷(含答案)

历年黑龙江省绥化市中考数学试卷(含答案)

2017年黑龙江省绥化市中考数学试卷一、选择题(每小题3分,共30分)1.(3分)如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB ∥CD的是()A.∠2=35° B.∠2=45°C.∠2=55°D.∠2=125°2.(3分)某企业的年收入约为700000元,数据“700000”用科学记数法可表示为()A.0.7×106B.7×105C.7×104D.70×1043.(3分)下列运算正确的是()A.3a+2a=5a2B.3a+3b=3abC.2a2bc﹣a2bc=a2bc D.a5﹣a2=a34.(3分)正方形的正投影不可能是()A.线段B.矩形C.正方形D.梯形5.(3分)不等式组的解集是()A.x≤4 B.2<x≤4 C.2≤x≤4 D.x>26.(3分)如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为()A.2:3 B.3:2 C.4:5 D.4:97.(3分)从一副洗匀的普通扑克牌中随机抽取一张,则抽出红桃的概率是()A.B.C.D.8.(3分)在同一平面直角坐标系中,直线y=4x+1与直线y=﹣x+b的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限9.(3分)某楼梯的侧面如图所示,已测得BC的长约为3.5米,∠BCA约为29°,则该楼梯的高度AB可表示为()A.3.5sin29°米B.3.5cos29°米C.3.5tan29°米D.米10.(3分)如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①=;②S△BCE=36;③S=12;④△AEF~△ACD,其中一定正确的是()△ABEA.①②③④B.①④C.②③④D.①②③二、填空题(每小题3分,共33分)11.(3分)﹣的绝对值是.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)一个多边形的内角和等于900°,则这个多边形是边形.14.(3分)因式分解:x2﹣9=.15.(3分)计算:(+)•=.16.(3分)一个扇形的半径为3cm,弧长为2πcm,则此扇形的面积为cm2(用含π的式子表示)17.(3分)在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,9,则这位选手五次射击环数的方差为.18.(3分)半径为2的圆内接正三角形,正四边形,正六边形的边心距之比为.19.(3分)已知反比例函数y=,当x>3时,y的取值范围是.20.(3分)在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=BC,则△ABC 的顶角的度数为.21.(3分)如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n个小三角形的面积为.三、解答题(本题共8小题,共57分)22.(5分)如图,A、B、C为某公园的三个景点,景点A和景点B之间有一条笔直的小路,现要在小路上建一个凉亭P,使景点B、景点C到凉亭P的距离之和等于景点B到景点A的距离,请用直尺和圆规在所给的图中作出点P.(不写作法和证明,只保留作图痕迹)23.(6分)某校为了解学生每天参加户外活动的情况,随机抽查了100名学生每天参加户外活动的时间情况,并将抽查结果绘制成如图所示的扇形统计图.请你根据图中提供的信息解答下列问题:(1)请直接写出图中a的值,并求出本次抽查中学生每天参加户外活动时间的中位数;(2)求本次抽查中学生每天参加户外活动的平均时间.24.(6分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣4=0(1)当m为何值时,方程有两个不相等的实数根?(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.25.(6分)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?26.(7分)如图,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE 于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.(1)求证:CD与⊙O相切;(2)若BF=24,OE=5,求tan∠ABC的值.27.(8分)一辆轿车从甲城驶往乙城,同时一辆卡车从乙城驶往甲城,两车沿相同路线匀速行驶,轿车到达乙城停留一段时间后,按原路原速返回甲城;卡车到达甲城比轿车返回甲城早0.5小时,轿车比卡车每小时多行驶60千米,两车到达甲城后均停止行驶,两车之间的路程y(千米)与轿车行驶时间t(小时)的函数图象如图所示,请结合图象提供的信息解答下列问题:(1)请直接写出甲城和乙城之间的路程,并求出轿车和卡车的速度;(2)求轿车在乙城停留的时间,并直接写出点D的坐标;(3)请直接写出轿车从乙城返回甲城过程中离甲城的路程s(千米)与轿车行驶时间t(小时)之间的函数关系式(不要求写出自变量的取值范围).28.(9分)如图,在矩形ABCD中,E为AB边上一点,EC平分∠DEB,F为CE 的中点,连接AF,BF,过点E作EH∥BC分别交AF,CD于G,H两点.(1)求证:DE=DC;(2)求证:AF⊥BF;(3)当AF•GF=28时,请直接写出CE的长.29.(10分)在平面直角坐标系中,直线y=﹣x+1交y轴于点B,交x轴于点A,抛物线y=﹣x2+bx+c经过点B,与直线y=﹣x+1交于点C(4,﹣2).(1)求抛物线的解析式;(2)如图,横坐标为m的点M在直线BC上方的抛物线上,过点M作ME∥y 轴交直线BC于点E,以ME为直径的圆交直线BC于另一点D,当点E在x轴上时,求△DEM的周长.(3)将△AOB绕坐标平面内的某一点按顺时针方向旋转90°,得到△A1O1B1,点A,O,B的对应点分别是点A1,O1,B1,若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的坐标.2017年黑龙江省绥化市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017•绥化)如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB∥CD的是()A.∠2=35° B.∠2=45°C.∠2=55°D.∠2=125°【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、由∠3=∠2=35°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;B、由∠3=∠2=45°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;C、由∠3=∠2=55°,∠1=55°推知∠1=∠3,故能判定AB∥CD,故本选项正确;D、由∠3=∠2=125°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;故选:C.【点评】本题考查了平行线的判定定理,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.2.(3分)(2017•绥化)某企业的年收入约为700000元,数据“700000”用科学记数法可表示为()A.0.7×106B.7×105C.7×104D.70×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:数据“700000”用科学记数法可表示为7×105.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•绥化)下列运算正确的是()A.3a+2a=5a2B.3a+3b=3abC.2a2bc﹣a2bc=a2bc D.a5﹣a2=a3【分析】分别对每一个选项进行合并同类项,即可解题.【解答】解:A、3a+2a=5a,A选项错误;B、3a+3b=3(a+b),B选项错误;C、2a2bc﹣a2bc=a2bc,C选项正确;D、a5﹣a2=a2(a3﹣1),D选项错误;故选C.【点评】本题考查了合并同类项,合并同类项就是利用乘法分配律,熟练运用是解题的关键.4.(3分)(2017•绥化)正方形的正投影不可能是()A.线段B.矩形C.正方形D.梯形【分析】根据平行投影的特点:在同一时刻,平行物体的投影仍旧平行,即可得出答案.【解答】解:在同一时刻,平行物体的投影仍旧平行.得到的应是平行四边形或特殊的平行四边形或线段.故正方形纸板ABCD的正投影不可能是梯形,故选:D.【点评】此题主要考查了平行投影的性质,利用太阳光线是平行的,那么对边平行的图形得到的投影依旧平行是解题关键.5.(3分)(2017•绥化)不等式组的解集是()A.x≤4 B.2<x≤4 C.2≤x≤4 D.x>2【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣1≤3,得:x≤4,解不等式x+1>3,得:x>2,∴不等式组的解集为2<x≤4,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.(3分)(2017•绥化)如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为()A.2:3 B.3:2 C.4:5 D.4:9【分析】先求出位似比,根据位似比等于相似比,再由相似三角形的面积比等于相似比的平方即可.【解答】解:由位似变换的性质可知,A′B′∥AB,A′C′∥AC,∴△A′B′C′∽△ABC.∵△A'B'C'与△ABC的面积的比4:9,∴△A'B'C'与△ABC的相似比为2:3,∴=故选:A.【点评】本题考查的是位似变换的概念和性质,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.7.(3分)(2017•绥化)从一副洗匀的普通扑克牌中随机抽取一张,则抽出红桃的概率是()A.B.C.D.【分析】让红桃的张数除以扑克牌的总张数即为所求的概率.【解答】解:∵一副扑克牌共54张,其中红桃13张,∴随机抽出一张牌得到红桃的概率是.故选B.【点评】本题考查的是随机事件概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.(3分)(2017•绥化)在同一平面直角坐标系中,直线y=4x+1与直线y=﹣x+b 的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的性质确定两条直线所经过的象限可得结果.【解答】解:直线y=4x+1过一、二、三象限;当b>0时,直线y=﹣x+b过一、二、四象限,两直线交点可能在一或二象限;当b<0时,直线y=﹣x+b过二、三、四象限,两直线交点可能在二或三象限;综上所述,直线y=4x+1与直线y=﹣x+b的交点不可能在第四象限,故选D.【点评】本题主要考查了两直线相交问题,熟记一次函数图象与系数的关系是解答此题的关键.9.(3分)(2017•绥化)某楼梯的侧面如图所示,已测得BC的长约为3.5米,∠BCA约为29°,则该楼梯的高度AB可表示为()A.3.5sin29°米B.3.5cos29°米C.3.5tan29°米D.米【分析】由sin∠ACB=得AB=BCsin∠ACB=3.5sin29°.【解答】解:在Rt△ABC中,∵sin∠ACB=,∴AB=BCsin∠ACB=3.5sin29°,故选:A.【点评】本题主要考查解直角三角形的应用,熟练掌握正弦函数的定义是解题的关键.10.(3分)(2017•绥化)如图,在▱ABCD中,AC,BD相交于点O,点E是OA 的中点,连接BE并延长交AD于点F,已知S=4,则下列结论:①=;②△AEFS△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是()A.①②③④B.①④C.②③④D.①②③【分析】根据平行四边形的性质得到AE=CE,根据相似三角形的性质得到==,等量代换得到AF=AD,于是得到=;故①正确;根据相似三角形的性质得到S=36;故②正确;根据三角形的面积公式得到S△ABE=12,故③△BCE正确;由于△AEF与△ADC只有一个角相等,于是得到△AEF与△ACD不一定相似,故④错误.【解答】解:∵在▱ABCD中,AO=AC,∵点E是OA的中点,∴AE=CE,∵AD∥BC,∴△AFE∽△CBE,∴==,∵AD=BC,∴AF=AD,∴=;故①正确;=4,=()2=,∵S△AEF∴S=36;故②正确;△BCE∵==,∴=,=12,故③正确;∴S△ABE∵BF不平行于CD,∴△AEF与△ADC只有一个角相等,∴△AEF与△ACD不一定相似,故④错误,故选D.【点评】本题考查了相似三角形的判定和性质,平行四边形的性质,熟练掌握相似三角形的判定和性质是解题的关键.二、填空题(每小题3分,共33分)11.(3分)(2017•绥化)﹣的绝对值是.【分析】根据绝对值的性质求解.【解答】解:根据负数的绝对值等于它的相反数,得||=.【点评】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.(3分)(2017•绥化)函数y=中,自变量x的取值范围是x≤2.【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≥0,解得:x≤2.故答案是:x≤2.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.(3分)(2017•绥化)一个多边形的内角和等于900°,则这个多边形是七边形.【分析】根据多边形的内角和,可得答案.【解答】解:设多边形为n边形,由题意,得(n﹣2)•180°=900,解得n=7,故答案为:七.【点评】本题考查了多边形的内角与外角,利用多边形的内角和公式是解题关键.14.(3分)(2017•绥化)因式分解:x2﹣9=(x+3)(x﹣3).【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.15.(3分)(2017•绥化)计算:(+)•=.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=×=故答案为:【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型16.(3分)(2017•绥化)一个扇形的半径为3cm,弧长为2πcm,则此扇形的面积为3πcm2(用含π的式子表示)【分析】利用扇形面积公式计算即可得到结果.【解答】解:根据题意得:S=Rl=×2π×3=3π,则此扇形的面积为3πcm2,故答案为:3π【点评】此题考查了扇形面积的计算,以及弧长的计算,熟练掌握扇形面积公式是解本题的关键.17.(3分)(2017•绥化)在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,9,则这位选手五次射击环数的方差为2.【分析】运用方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],代入数据求出即可.【解答】解:五次射击的平均成绩为=(5+7+8+6+9)=7,方差S2=[(5﹣7)2+(8﹣7)2+(7﹣7)2+(6﹣7)2+(9﹣7)2]=2.故答案为:2.【点评】本题考查了方差的定义.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.(3分)(2017•绥化)半径为2的圆内接正三角形,正四边形,正六边形的边心距之比为1::.【分析】根据题意可以求得半径为2的圆内接正三角形,正四边形,正六边形的边心距,从而可以求得它们的比值.【解答】解:由题意可得,正三角形的边心距是:2×sin30°=2×=1,正四边形的边心距是:2×sin45°=2×,正六边形的边心距是:2×sin60°=2×,∴半径为2的圆内接正三角形,正四边形,正六边形的边心距之比为:1::,故答案为:1::.【点评】本题考查正多边形和圆,解答本题的关键是明确题意,求出相应的图形的边心距.19.(3分)(2017•绥化)已知反比例函数y=,当x>3时,y的取值范围是0<y<2.【分析】根据反比例函数的性质可以得到反比例函数y=,当x>3时,y的取值范围.【解答】解:∵y=,6>0,∴当x>0时,y随x的增大而减小,当x=3时,y=2,∴当x>3时,y的取值范围是0<y<2,故答案为:0<y<2.【点评】本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.20.(3分)(2017•绥化)在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=BC,则△ABC的顶角的度数为30°或150°或90°.【分析】分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可.【解答】解:①BC为腰,∵AD⊥BC于点D,AD=BC,∴∠ACD=30°,如图1,AD在△ABC内部时,顶角∠C=30°,如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,②BC为底,如图3,∵AD⊥BC于点D,AD=BC,∴AD=BD=CD,∴∠B=∠BAD,∠C=∠CAD,∴∠BAD+∠CAD=×180°=90°,∴顶角∠BAC=90°,综上所述,等腰三角形ABC的顶角度数为30°或150°或90°.故答案为:30°或150°或90°.【点评】本题考查了含30°交点直角三角形的性质,等腰三角形的性质,分类讨论是解题的关键.21.(3分)(2017•绥化)如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n个小三角形的面积为.【分析】记原来三角形的面积为s,第一个小三角形的面积为s1,第二个小三角形的面积为s2,…,求出s1,s2,s3,探究规律后即可解决问题.【解答】解:记原来三角形的面积为s,第一个小三角形的面积为s1,第二个小三角形的面积为s2,…,∵s1=•s=•s,s2=•s=•s,s3=•s,∴s n=•s=••2•2=,故答案为.【点评】本题考查三角形的中位线定理,三角形的面积等知识,解题的关键是循环从特殊到一般的探究方法,寻找规律,利用规律即可解决问题.三、解答题(本题共8小题,共57分)22.(5分)(2017•绥化)如图,A、B、C为某公园的三个景点,景点A和景点B 之间有一条笔直的小路,现要在小路上建一个凉亭P,使景点B、景点C到凉亭P的距离之和等于景点B到景点A的距离,请用直尺和圆规在所给的图中作出点P.(不写作法和证明,只保留作图痕迹)【分析】如图,连接AC,作线段AC的垂直平分线MN,直线MN交AB于P.点P即为所求的点.【解答】解:如图,连接AC,作线段AC的垂直平分线MN,直线MN交AB于P.点P即为所求的点.理由:∵MN垂直平分线段AC,∴PA=PC,∴PC+PB=PA+PB=AB.【点评】本题考查基本作图、线段的垂直平分线的性质等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.23.(6分)(2017•绥化)某校为了解学生每天参加户外活动的情况,随机抽查了100名学生每天参加户外活动的时间情况,并将抽查结果绘制成如图所示的扇形统计图.请你根据图中提供的信息解答下列问题:(1)请直接写出图中a的值,并求出本次抽查中学生每天参加户外活动时间的中位数;(2)求本次抽查中学生每天参加户外活动的平均时间.【分析】(1)用1减去其它组的百分比即可求得a的值,然后求得各组的人数,根据中位数定义求得中位数;(2)利用加权平均数公式即可求解.【解答】解:(1)a=1﹣15%﹣25%﹣40%=20%.100×20%=20(人),100×40%=40(人),100×25%=25(人),100×15%=15(人).则本次抽查中学生每天参加活动时间的中位数是1;(2)=1.175(小时).答:本次抽查中学生每天参加户外活动的平均时间是1.175小时.【点评】本题考查读扇形统计图获取信息的能力,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.24.(6分)(2017•绥化)已知关于x的一元二次方程x2+(2m+1)x+m2﹣4=0(1)当m为何值时,方程有两个不相等的实数根?(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.【分析】(1)根据方程的系数结合根的判别式,即可得出△=4m+17>0,解之即可得出结论;(2)设方程的两根分别为a、b,根据根与系数的关系结合菱形的性质,即可得出关于m的一元二次方程,解之即可得出m的值,再根据a+b=﹣2m﹣1>0,即可确定m的值.【解答】解:(1)∵方程x2+(2m+1)x+m2﹣4=0有两个不相等的实数根,∴△=(2m+1)2﹣4(m2﹣4)=4m+17>0,解得:m>﹣.∴当m>﹣时,方程有两个不相等的实数根.(2)设方程的两根分别为a、b,根据题意得:a+b=﹣2m﹣1,ab=m2﹣4.∵2a、2b为边长为5的菱形的两条对角线的长,∴a2+b2=(a+b)2﹣2ab=(﹣2m﹣1)2﹣2(m2﹣4)=2m2+4m+9=52=25,解得:m=﹣4或m=2.∵a>0,b>0,∴a+b=﹣2m﹣1>0,∴m=﹣4.若边长为5的菱形的两条对角线的长分别为方程两根的2倍,则m的值为﹣4.【点评】本题考查了根的判别式、根与系数的关系、菱形的性质以及解一元二次方程,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=4m+17>0;(2)根据根与系数的关系结合菱形的性质,找出关于m的一元二次方程.25.(6分)(2017•绥化)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?【分析】(1)可设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,则可表示出修路所用的时间,可列分式方程,求解即可;(2)设甲修路a天,则可表示出乙修路的天数,从而可表示出两个工程队修路的总费用,由题意可列不等式,求解即可.【解答】解:(1)设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,根据题意,可列方程:1.5×=,解得x=1.5,经检验x=1.5是原方程的解,且x﹣0.5=1,答:甲每天修路1.5千米,则乙每天修路1千米;(2)设甲修路a天,则乙需要修(15﹣1.5a)千米,∴乙需要修路=15﹣1.5a(天),由题意可得0.5a+0.4(15﹣1.5a)≤5.2,解得a≥8,答:甲工程队至少修路8天.【点评】本题主要考查分式方程及一元一次不等式的应用,找出题目中的等量(或不等)关系是解题的关键,注意分式方程需要检验.26.(7分)(2017•绥化)如图,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC 的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.(1)求证:CD与⊙O相切;(2)若BF=24,OE=5,求tan∠ABC的值.【分析】(1)过点O作OG⊥DC,垂足为G.先证明∠OAD=90°,从而得到∠OAD=∠OGD=90°,然后利用AAS可证明△ADO≌△GDO,则OA=OG=r,则DC是⊙O 的切线;(2)连接OF,依据垂径定理可知BE=EF=12,在Rt△OEF中,依据勾股定理可知求得OF=13,然后可得到AE的长,最后在Rt△ABE中,利用锐角三角函数的定义求解即可.【解答】解:(1)过点O作OG⊥DC,垂足为G.∵AD∥BC,AE⊥BC于E,∴OA⊥AD.∴∠OAD=∠OGD=90°.在△ADO和△GDO中,∴△ADO≌△GDO.∴OA=OG.∴DC是⊙O的切线.(2)如图所示:连接OF.∵OA⊥BC,∴BE=EF=BF=12.在Rt△OEF中,OE=5,EF=12,∴OF==13.∴AE=OA+OE=13+5=18.∴tan∠ABC==.【点评】本题主要考查的是切线的判定、垂径定理、勾股定理的应用、锐角三角函数的定义,掌握本题的辅助线的作法是解题的关键.27.(8分)(2017•绥化)一辆轿车从甲城驶往乙城,同时一辆卡车从乙城驶往甲城,两车沿相同路线匀速行驶,轿车到达乙城停留一段时间后,按原路原速返回甲城;卡车到达甲城比轿车返回甲城早0.5小时,轿车比卡车每小时多行驶60千米,两车到达甲城后均停止行驶,两车之间的路程y(千米)与轿车行驶时间t(小时)的函数图象如图所示,请结合图象提供的信息解答下列问题:(1)请直接写出甲城和乙城之间的路程,并求出轿车和卡车的速度;(2)求轿车在乙城停留的时间,并直接写出点D的坐标;(3)请直接写出轿车从乙城返回甲城过程中离甲城的路程s(千米)与轿车行驶时间t(小时)之间的函数关系式(不要求写出自变量的取值范围).【分析】(1)根据图象可知甲城和乙城之间的路程为180千米,设卡车的速度为x千米/时,则轿车的速度为(x+60)千米/时,由B(1,0)可得x+(x+60)=180可得结果;(2)根据(1)中所得速度可得卡车和轿车全程所用的时间,利用卡车所用的总时间减去轿车来回所用时间可得结论;(3)根据s=180﹣120×(t﹣0.5﹣0.5)可得结果.【解答】解:(1)甲城和乙城之间的路程为180千米,设卡车的速度为x千米/时,则轿车的速度为(x+60)千米/时,由B(1,0)得,x+(x+60)=180解得x=60,∴x+60=120,∴轿车和卡车的速度分别为120千米/时和60千米/时;(2)卡车到达甲城需180÷60=3(小时)轿车从甲城到乙城需180÷120=1.5(小时)3+0.5﹣1.5×2=0.5(小时)∴轿车在乙城停留了0.5小时,点D的坐标为(2,120);(3)s=180﹣120×(t﹣1.5﹣0.5)=﹣120t+420.【点评】此题主要考查了一次函数的应用以及待定系数法求一次函数解析式等知识,利用数形结合得出函数解析式是解题关键.28.(9分)(2017•绥化)如图,在矩形ABCD中,E为AB边上一点,EC平分∠DEB,F为CE的中点,连接AF,BF,过点E作EH∥BC分别交AF,CD于G,H 两点.(1)求证:DE=DC;(2)求证:AF⊥BF;(3)当AF•GF=28时,请直接写出CE的长.【分析】(1)根据平行线的性质以及角平分线的定义,即可得到∠DCE=∠DEC,进而得出DE=DC;(2)连接DF,根据等腰三角形的性质得出∠DFC=90°,再根据直角三角形斜边上中线的性质得出BF=CF=EF=EC,再根据SAS判定△ABF≌△DCF,即可得出∠AFB=∠DFC=90°,据此可得AF⊥BF;(3)根据等角的余角相等可得∠BAF=∠FEH,再根据公共角∠EFG=∠AFE,即可判定△EFG∽△AFE,进而得出EF2=AF•GF=28,求得EF=2,即可得到CE=2EF=4.【解答】解:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠DCE=∠CEB,∵EC平分∠DEB,∴∠DEC=∠CEB,∴∠DCE=∠DEC,∴DE=DC;(2)如图,连接DF,∵DE=DC,F为CE的中点,∴DF⊥EC,∴∠DFC=90°,在矩形ABCD中,AB=DC,∠ABC=90°,∴BF=CF=EF=EC,∴∠ABF=∠CEB,∵∠DCE=∠CEB,∴∠ABF=∠DCF,在△ABF和△DCF中,,∴△ABF≌△DCF(SAS),∴∠AFB=∠DFC=90°,∴AF⊥BF;(3)CE=4.理由如下:∵AF⊥BF,∴∠BAF+∠ABF=90°,∵EH∥BC,∠ABC=90°,∴∠BEH=90°,∴∠FEH+∠CEB=90°,∵∠ABF=∠CEB,∴∠BAF=∠FEH,∵∠EFG=∠AFE,∴△EFG∽△AFE,∴=,即EF2=AF•GF,∵AF•GF=28,∴EF=2,∴CE=2EF=4.【点评】本题属于四边形综合题,主要考查了矩形的性质、全等三角形的判定与性质、相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质的综合应用,解决问题的关键是作辅助线,构造全等三角形.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.29.(10分)(2017•绥化)在平面直角坐标系中,直线y=﹣x+1交y轴于点B,交x轴于点A,抛物线y=﹣x2+bx+c经过点B,与直线y=﹣x+1交于点C(4,﹣2).(1)求抛物线的解析式;(2)如图,横坐标为m的点M在直线BC上方的抛物线上,过点M作ME∥y轴交直线BC于点E,以ME为直径的圆交直线BC于另一点D,当点E在x轴上时,求△DEM的周长.(3)将△AOB绕坐标平面内的某一点按顺时针方向旋转90°,得到△A1O1B1,点A,O,B的对应点分别是点A1,O1,B1,若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的坐标.【分析】(1)利用待定系数法求抛物线的解析式;(2)如图1,A与E重合,根据直线y=﹣x+1求得与x轴交点坐标可得OA的长,由勾股定理得AB的长,利用等角的三角函数得:sin∠ABO=,cos∠ABO==,则可得DE和DM的长,根据M的横坐标代入抛物线的解析式可得纵坐标,即ME的长,相加得△DEM的周长;(3)由旋转可知:O1A1⊥x轴,O1B1⊥y轴,设点A1的横坐标为x,则点B1的横坐标为x+1,所以点O1,A1不可能同时落在抛物线上,分以下两种情况:①如图2,当点O1,B1同时落在抛物线上时,根据点O1,B1的纵坐标相等列方程可得结论;②如图3,当点A1,B1同时落在抛物线上时,根据点B1的纵坐标比点A1的纵坐标大,列方程可得结论.【解答】解:(1)∵直线y=﹣x+1交y轴于点B,∴B(0,1),∵抛物线y=﹣x2+bx+c经过点B和点C(4,﹣2).∴,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绥化市2015年中考数学试题
一.选择题
1.下列图案中 ,既是中心对称又是轴对称图形的个数有( )
A. 1个
B. 2个
C. 3个
D. 4个
2.左下图是一些完全相同的小正方体搭成的几何体的三视图 。

这个几何体只能是( )
3.从长度分别为1、3、5、7的四条线段中任选三条作边 ,能构成三角形的概率为( ) A.
21 B. 31 C. 41 D.5
1 4.石墨烯是现在世界上最薄的纳米材料 ,其理论厚度仅是0.00000000034m ,这个数用科学记数法表示正确
的是( )
A. 3.4×10
9
- B. 0.34×10
9
- C. 3.4×10
10
- D. 3.4×10
11
-
5.将一副三角尺按如图方式进行摆放 ,∠1、∠2不一定互补的是( )
6.在实数0 、π 、
7
22
、2 、9 - 中 ,无理数的个数有( ) A. 1个 B. 2个 C. 3个 D. 4个 7.如图,反比例函数y=
x
k
(x <0)的图象经过点P ,则k 的值为( ) A. -6 B. -5 C. 6 D. 5 8.关于x 的不等式组⎩

⎧1a
x >>x 的解集为x >1 ,则a 的取值范围是( ) A. a >1 B. a <1 C. a ≥1 D. a ≤1
9.如图 ,在矩形ABCD 中 ,AB=10 , BC=5 . 若点M 、N 分别是线段ACAB 上的两个动点 ,则BM+MN
的最小值为( )
A. 10
B. 8
C. 53
D. 6
10.如图□ABCD 的对角线ACBD 交于点O ,平分∠BAD 交BC 于点E ,且∠ADC=600,AB=
2
1
BC ,连接OE .下列
结论:①∠CAD=300 ② S □ABCD=AB •AC ③ OB=AB ④ OE=4
1
BC 成立的个数有( )
A. 1个
B. 2个
C. 3个
D. 4个
二、填空题(每题3分 ,满分33分)
11.计算:=⎪⎭

⎝⎛2
-21-4-3_________.
12. 在函数y=
2x 2
x 1)(-++中 ,自变量x 的取值范围是____________. 13. 点A (-3 ,2)关于x 轴的对称点A '的坐标为__________.
14. 若代数式6
26
5x 2-+-x x 的值等于0 ,则x=_________.
15. 若关于x 的一元二次方程ax 2
+2x-1=0无解 ,则a 的取值范围是____________.
16. 把二次函数y=2x 2
的图象向左平移1个单位长度 ,再向下平移2个单位长度 ,平移后抛物线的解析式为_____________.
17.在2015年的体育考试中某校6名学生的体育成绩统计如图所示 ,这组数据的中位数是________. 18. 如图正方形ABCD 的对角线相交于点O ,△CEF 是正三角形,则∠CEF=__________.
19. 如图 ,将一块含300角的直角三角版和半圆量角器按如图的方式摆放 ,使斜边与半圆相切。

若半径OA=2 ,则图中阴影部分的面积为____________.(结果保留π)
20.填在下面各正方形中的四个数之间都有一定的规律 ,按此规律得出a+b+c=__________.
21.在矩形ABCD 中 ,AB=4 , BC=3 , 点P 在AB 上。

若将△DAP 沿DP 折叠 ,使点A 落在矩形对角线上的A '处 ,则AP 的长为__________.
三.解答题(满分57分) 22.先化简 ,再求值。

x x x x x x x 444122x 2
2-÷⎪⎭

⎝⎛+----+ , 其中 x=tan600
+2 .(6分) 23. 在平面直角坐标系xoy 中 ,直线y=-x+3 与x 轴、y 轴分别教育A 、B ,在△AOB 内部作正方形,使正方形的四个顶点都落在该三角形的边上,求正方形落在x 轴正半轴的顶点坐标。

(6分)
24.如图 ,以线段AB 为直径作⊙O ,CD 与⊙O 相切于点E ,交AB 的延长线于点D , 连接BE ,过点O 作OC ∥BE 交切线DE 于点C ,连接AC .
(1)求证:AC 是⊙O 的切线 ; (2)若BD=OB=4 ,求弦AE 的长。

25.现有甲、乙两个容器,分别装有进水管和出水管 ,两容器的进出水速度不变,先打开乙容器的进水管,2分钟时再打开甲容器的进水管 ,又过2分钟关闭甲容器的进水管,再过4分钟同时打开甲容器的进、出水管。

直到12分钟时,同时关闭两容器的进出水管。

打开和关闭水管的时间忽略不计。

容器中的水量y(升)与乙容器注水时间x(分)之间的关系如图所示。

(1)求甲容器的进、出水速度。

(2)甲容器进、出水管都关闭后,是否存在两容器的水量相等。

若存在,求出此时的时间。

(3)若使两容器第12分钟时水量相等,则乙容器6分钟后进水速度应变为多少?
26.自学下面材料后,解答问题。

分母中含有未知数的不等式叫分式不等式。

如:01
-x 3
x 2 01x 2-x <;>++等 。

那么如何求出它们的解集呢?
根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负。

其字母表达式为:
(1)若a >0 ,b >0 ,则
b a >0;若a <0 ,b <0,则b a
>0; (2)若a >0 ,b <0 ,则b a <0 ;若a <0,b >0 ,则b
a
<0。

反之:(1)若b a
>0则⎩

⎧⎩⎨⎧0b 0a 0b 0a <<或>> (2)若b
a
<0 ,则__________或_____________. 根据上述规律,求不等式
01
2
x >+-x 的解集。

27.某苹果生产基地,用30名工人进行采摘或加工苹果 ,每名工人只能做其中一项工作。

苹果的销售方
式有两种:一种是可以直接出售;另一种是可以将采摘的苹果加工成罐头出售。

直接出售每吨获利4000元;加工成罐头出售每吨获利10000元。

采摘的工人每人可以采摘苹果0.4吨 ;加工罐头的工人每人可加工0.3吨。

设有x 名工人进行苹果采摘 ,全部售出后 ,总利润为y 元 。

(1)求y 与x 的函数关系式。

(2)如何分配工人才能活力最大
28.如图1,在正方形ABCD 中,延长BC 至M ,使BM=DN ,连接MN 交BD 延长线于点E.(1)求证:
BD+2DE=2BM .(2)如图2 ,连接BN 交AD 于点F ,连接MF 交BD 于点G.若AF:FD=1:2 ,且CM=2,则线段DG=_______.
29.如图,已知抛物线y=ax2+bx+c与x轴交于点A、B ,与直线AC:y=-x-6交y轴于点C、D,点D是抛
物线
的顶点,且横坐标为-2.
(1)求出抛物线的解析式。

(2)判断△ACD的形状,并说明理由。

(3)直线AD交y轴于点F ,在线段AD上是否存在一点P ,使∠ADC=∠PCF .若存在,直接写出点P的坐标;若不存在,说明理由。

相关文档
最新文档