【小初高学习]2017-2018学年高考物理 精做21 带电粒子在电场中的加速、偏转问题大题精做 新
【小初高学习]2017年高考物理(热点+题型全突破)专题4.6 竖直面内的圆周运动问题(含解析)
专题4.6 竖直面内的圆周运动问题1. 轻绳模型绳或光滑圆轨道的内侧,如图所示,它的特点是:在运动到最高点时均没有物体支撑着小球。
下面讨论小球(质量为m )在竖直平面内做圆周运动(半径为R )通过最高点时的情况:(1) 临界条件小球到达最高点时受到绳子的拉力恰好等于零,这时小球做圆周运动所需要的向心力仅由小球的重力来提供。
根据牛顿第二定律得,mg =m v 2临界R,即v 临界=Rg .这个速度可理解为小球恰好通过最高点或恰好通不过最高点时的速度,也可认为是小球通过最高点时的最小速度,通常叫临界速度。
(2) 小球能通过最高点的条件:当v >Rg 时,小球能通过最高点,这时绳子对球有作用力,为拉力。
当v =Rg 时,小球刚好能通过最高点,此时绳子对球不产生作用力。
(3) 小球不能通过最高点的条件:当v <Rg 时,小球不能通过最高点,实际上小球还没有到达最高点就已经脱离了轨道。
(如图)2. 轻杆模型杆和光滑管道,如图所示,它的特点是:在运动到最高点时有物体支撑着小球。
下面讨论小球(质量为m )在竖直平面内做圆周运动(半径为R )通过最高点时的情况:(1) 临界条件由于硬杆的支撑作用,小球恰能到达最高点的临界速度是:v 临界=0。
此时,硬杆对物体的支持力恰等于小球的重力mg。
(2) 如上图所示的小球通过最高点时,硬杆对小球的弹力情况为:当v=0时,硬杆对小球有竖直向上的支持力F N,其大小等于小球的重力,即F N=mg.当0<v<Rg时,杆对小球的支持力竖直向上,大小随速度的增加而减小,其取值范围为0<F N<mg.当v=Rg时,F N=0.这时小球的重力恰好提供小球做圆周运动的向心力。
当v>Rg时,硬杆对小球有指向圆心(即方向向下)的拉力,其大小随速度的增大而增大。
3. 两种模型分析比较如下:轻杆模型均是没有支撑的小球均是有支撑的小球4. 分析物体在竖直平面内做圆周运动时的易错易混点(1)绳模型和杆模型过最高点的临界条件不同,其原因是绳不能有支撑力,而杆可有支撑力。
高中物理带电粒子在电场中的运动题20套(带答案)
高中物理带电粒子在电场中的运动题20套(带答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,xOy平面处于匀强磁场中,磁感应强度大小为B,方向垂直纸面向外.点P — L,0处有一粒子源,可向各个方向发射速率不同、电荷量为q、质量为m的带负电3粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x轴正向通过点Q (0, -L),求其速率V1;(2)若撤去第一象限的磁场,在其中加沿y轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率V1沿x轴正向通过点Q,求匀强电场的电场强度E以及粒子2的发射速率V2;(3)若在xOy平面内加沿y轴正向的匀强电场E。
,粒子3以速率V3沿y轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解.222.BLq (3) J E°v2且【答案】(1) 2BLq⑵3m 9m 1 B v B【解析】【详解】2(1)粒子1在一、二、三做匀速圆周运动,则qvi B m"r12 . 2.3 .由几何憨可知:r1 L r1 ——L得到:V i 2BL q 3m(2)粒子2在第一象限中类斜劈运动,有:在第二、三象限中原圆周运动,由几何关系:又 v 2 V i 22Eh,得到:V 22痴BLq9m(3)如图所示,将 V 3分解成水平向右和 v 和斜向的V ,则qvB而 V V 2 V 2所以,运动过程中粒子的最小速率为2.如图所示,竖直面内有水平线 MN 与竖直线PQ 交于P 点,O 在水平线MN 上,OP 间距为d, 一质量为 m 、电量为q 的带正电粒子,从 。
处以大小为V o 、方向与水平线夹角为 0= 60o 的速度,进入大小为 日的匀强电场中,电场方向与竖直方向夹角为0= 60o,粒子到达PQ 线上的A 点时,其动能为在 。
带电粒子在电场中的运动经典例题
带电粒子在电场中的运动一、带电粒子在电场中做偏转运动1. 如图所示,在平行板电容器之间有匀强电场,一带电粒子(重力不计)以速度v 0垂直电场线射人电场,经过时间t l 穿越电场,粒子的动能由E k 增加到2E k ; 若这个带电粒子以速度32 v 0 垂直进人该电场,经过时间t 2穿越电场。
求:( l )带电粒子两次穿越电场的时间之比t 1:t 2; ( 2 )带电粒子第二次穿出电场时的动能。
2.如图所示的真空管中,质量为m ,电量为e 的电子从灯丝F发出,经过电压U1加速后沿中心线射入相距为d 的两平行金属板B、C间的匀强电场中,通过电场后打到荧光屏上,设B、C间电压为U2,B、C板长为l 1,平行金属板右端到荧光屏的距离为l 2,求: ⑴电子离开匀强电场时的速度与进入时速度间的夹角. ⑵电子打到荧光屏上的位置偏离屏中心距离.解析:电子在真空管中的运动过分为三段,从F发出在电压U1作用下的加速运动;进入平行金属板B、C间的匀强电场中做类平抛运动;飞离匀强电场到荧光屏间的匀速直线运动. ⑴设电子经电压U1加速后的速度为v 1,根据动能定理有: 21121mv eU =电子进入B、C间的匀强电场中,在水平方向以v 1的速度做匀速直线运动,竖直方向受电场力的作用做初速度为零的加速运动,其加速度为: dmeU m eE a 2==电子通过匀强电场的时间11v l t =电子离开匀强电场时竖直方向的速度v y 为:112mdv l eU at v y == 电子离开电场时速度v 2与进入电场时的速度v 1夹角为α(如图5)则d U l U mdv l eU v v tg y 112211212===α ∴dU l U arctg1122=α ⑵电子通过匀强电场时偏离中心线的位移v 0图 5dU l U v l dm eU at y 1212212122142121=•== 电子离开电场后,做匀速直线运动射到荧光屏上,竖直方向的位移 dU l l U tg l y 1212222==α ∴电子打到荧光屏上时,偏离中心线的距离为 )2(22111221l l d U l U y y y +=+= 3. 在真空中存在空间范围足够大的、水平向右的匀强电场.若将一个质量为m 、带正电电量q 的小球在此电场中由静止释放,小球将沿与竖直方向夹角为︒37的直线运动。
高考物理带电粒子在电场中的运动真题汇编(含答案)含解析
高考物理带电粒子在电场中的运动真题汇编(含答案)含解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,EF 与GH 间为一无场区.无场区左侧A 、B 为相距为d 、板长为L 的水平放置的平行金属板,两板上加某一电压从而在板间形成一匀强电场,其中A 为正极板.无场区右侧为一点电荷Q 形成的电场,点电荷的位置O 为圆弧形细圆管CD 的圆心,圆弧半径为R ,圆心角为120°,O 、C 在两板间的中心线上,D 位于GH 上.一个质量为m 、电荷量为q 的带正电粒子以初速度v 0沿两板间的中心线射入匀强电场,粒子出匀强电场经无场区后恰能进入细圆管,并做与管壁无相互挤压的匀速圆周运动.(不计粒子的重力、管的粗细)求:(1)O 处点电荷的电性和电荷量; (2)两金属板间所加的电压.【答案】(1)负电,2043mv R kq ;(2) 2033mdv qL【解析】(1)粒子进入圆管后受到点电荷Q 的库仑力作匀速圆周运动,粒子带正电,则知O 处点电荷带负电.由几何关系知,粒子在D 点速度方向与水平方向夹角为30°,进入D 点时速度为:0023303v v v cos ==︒ …①在细圆管中做与管壁无相互挤压的匀速圆周运动,故Q 带负电且满足22Qq v k mR R =…② 由①②得:2043mv RQ kq=(2)粒子射出电场时速度方向与水平方向成30° tan 30°=0y v v …③v y =at…④qUa md=…⑤ 0Lt v =…⑥ 由③④⑤⑥得:22003033mdv tan mdv U qL qL︒==2.在如图甲所示的直角坐标系中,两平行极板MN 垂直于y 轴,N 板在x 轴上且其左端与坐标原点O 重合,极板长度l =0.08m ,板间距离d =0.09m ,两板间加上如图乙所示的周期性变化电压,两板间电场可看作匀强电场.在y 轴上(0,d /2)处有一粒子源,垂直于y 轴连续不断向x 轴正方向发射相同的带正电的粒子,粒子比荷为qm=5×107C /kg ,速度为v 0=8×105m/s .t =0时刻射入板间的粒子恰好经N 板右边缘打在x 轴上.不计粒子重力及粒子间的相互作用,求:(1)电压U 0的大小;(2)若沿x 轴水平放置一荧光屏,要使粒子全部打在荧光屏上,求荧光屏的最小长度; (3)若在第四象限加一个与x 轴相切的圆形匀强磁场,半径为r =0.03m ,切点A 的坐标为(0.12m ,0),磁场的磁感应强度大小B =23T ,方向垂直于坐标平面向里.求粒子出磁场后与x 轴交点坐标的范围.【答案】(1)40 2.1610V U =⨯ (2)0.04m x ∆= (3)0.1425m x ≥【解析】 【分析】 【详解】(1)对于t =0时刻射入极板间的粒子:0l v T = 7110T s -=⨯211()22T y a =2y T v a= 22yT y v = 122dy y =+ Eq ma =U E d=解得:40 2.1610V U =⨯(2)2Tt nT =+时刻射出的粒子打在x 轴上水平位移最大:032A T x v = 所放荧光屏的最小长度A x x l ∆=-即:0.04x m ∆= (3)不同时刻射出极板的粒子沿垂直于极板方向的速度均为v y . 速度偏转角的正切值均为:0tan y v v β=37β=ocos37v v=o 6110m/s v =⨯即:所有的粒子射出极板时速度的大小和方向均相同.2v qvB m R=0.03m R r ==由分析得,如图所示,所有粒子在磁场中运动后发生磁聚焦由磁场中的一点B 离开磁场.由几何关系,恰好经N 板右边缘的粒子经x 轴后沿磁场圆半径方向射入磁场,一定沿磁场圆半径方向射出磁场;从x 轴射出点的横坐标:tan 53C A Rx x ︒=+0.1425m C x =.由几何关系,过A 点的粒子经x 轴后进入磁场由B 点沿x 轴正向运动. 综上所述,粒子经过磁场后第二次打在x 轴上的范围为:0.1425m x ≥3.如图所示,在空间坐标系x <0区域中有竖直向上的匀强电场E 1,在一、四象限的正方形区域CDEF 内有方向如图所示的正交的匀强电场E 2和匀强磁场B ,已知CD =2L ,OC =L ,E 2 =4E 1。
高二物理选修3-1 带电粒子在电场中的运动专题精讲(知识点及练习题,含答案)
2121202/v qU m 2/qU m 专题 粒子在电容器中的运动专题一、带电粒子在电场中的加速(设粒子的质量为m ,电荷量为q )1.带电粒子的加速问题(设电压为U ) (1)一般处理思路——动能定理:如果只受电场力,则电荷动能的变化等于电场力做的功,即:qU = mv 2 - mv 02。
如果初速度为零,则:v = ;如果初速度不为零则:v = 。
(2)如果电场是匀强的,则还可以用牛顿第二定律进行定量分析:粒子的加速度为a =qE /m ,如果初速度方向与电场力方向相同,则带电粒子做匀加速直线运动,由公式v 2-v 02=2ax 得:v 2=v 02+2qEd /m ,而Ed =U ,所以v =(v 02+2qEd /m )1/2。
2.带电粒子在匀强电场中的偏转(只限于初速度方向与电场方向垂直的情况且不计重力)(1)运动性质:匀变速曲线运动,与平抛运动类似,运动轨迹是抛物线。
(2)分析方法:应用运动的合成与分解原理分析。
(3)规律:设粒子以初速度v 0垂直电场方向进入某个存在理想 边界的匀强电场中,如果该电场是由一对带等量异种电荷的平行金属板产生,板间电压为U ,板间距离为d ,极板长度为l ,则:①板间电场强度为E =U /d ,②粒子受到的电场力为F =qU /d ,③粒子运动的加速度为a =qU /(md ),④粒子通过板间电场的时间为t =l /v 0,⑤通过极板时粒子在电场力方向发生的位移(偏移量)为y = at 2/2 = qUl 2/(m v 02d ), ⑥通过极板时粒子在电场力方向的分速度为v y = at = qUl /(mv 0d ),⑦通过极板时粒子速度方向与初速度方向的夹角(偏向角)为α= arctan(v y /v 0)= arctan[qUl /(mv 02d )], ⑧出射点速度方向反向延长线与入射点初速度方向延长线的交点位于极板中垂线上。
⑨出电场后,粒子继续沿射出方向匀速运动,打在到极板距离为L 的垂直荧屏上,总的偏移量为: Y = y+L tan α=(L+l /2) tan α。
微型专题03 带电粒子在电场中的运动(四种题型)(课件)(共33张PPT)
面方向的偏转距离Δy;
(2)分析物理量的数量级,是解决物理问题的常用方法.在解决(1)问时忽略了电子所
受重力,请利用下列数据分析说明其原因.已知U=2.0×102 V,d=4.0×10-2 m,m
=9.1×10-31 kg,e=1.6×10-19 C,g=10 m/s2.
新教材 新高考
1
解析(1)根据动能定理,有 eU0= mv02,
里的最高点不一定是几何最高点,而应是物理最高点.几何最高点是图形
中所画圆的最上端,是符合人眼视觉习惯的最高点.而物理最高点是物体
在圆周运动过程中速度最小(称为临界速度)的点.
新教材 新高考
例4.如图所示,半径为r的绝缘光滑圆环固定在竖直平面内,环上套有一质量为m、带
电荷量为+q的珠子,现在圆环平面内加一个匀强电场,使珠子由最高点A从静止开始
仍沿水平方向并恰好从B板边缘水平飞出(g取10 m/s2,sin 37°=0.6,cos
37°=0.8)。求:
(1)液滴的质量;
(2)液滴飞出时的速度。
新教材 新高考
答案:(1)8×10-8 kg
7
(2) 2 m/s
解析:(1)根据题意画出带电液滴的受力图如图所示,可得
qEcos α=mg
E=
暗示以外,一般都不考虑重力。(但并不能忽略质量)
2.带电微粒:如带电小球、液滴、尘埃等。除非有说
明或明确的暗示以外,一般都考虑重力。
注意:某些带电体是否考虑重力,要根据题目暗示或运动状态来判定
新教材 新高考
带电粒子在匀强电场中运动状态:
静止
平衡(F合=0)
匀速直线运动
匀变速运动
(F合≠0)
匀变速直线运动—加速、减速
【小初高学习]2018年高考物理一轮复习 专题六 带电粒子(带电体)在电场中运动的综合问题精讲深剖
专题六带电粒子(带电体)在电场中运动的综合问题【专题解读】1.本专题是动力学和能量观点在带电粒子(带电体)在电场中运动的综合运用,高考常以计算题出现.2.学好本专题,可以加深对动力学和能量知识的理解,能灵活应用受力分析、运动分析特别是曲线运动(平抛运动、圆周运动)的方法与技巧,熟练应用能量观点解题.3.用到的知识:受力分析、运动分析、能量观点.考向一示波管的工作原理1.如果在偏转电极XX′和YY′之间都没有加电压,则电子枪射出的电子束沿直线运动,打在荧光屏中心,在那里产生一个亮斑.2.YY′上加的是待显示的信号电压.XX′上是机器自身产生的锯齿形电压,叫做扫描电压,若所加扫描电压和信号电压的周期相同,就可以在荧光屏上得到待测信号在一个周期内随时间变化的稳定图象. (如图1)图1【例1】如图2所示为一真空示波管的示意图,电子从灯丝K发出(初速度可忽略不计),经灯丝与A板间的电压U1加速,从A板中心孔沿中心线KO射出,然后进入两块平行金属板M、N 形成的偏转电场中(偏转电场可视为匀强电场),电子进入M、N间电场时的速度与电场方向垂直,电子经过电场后打在荧光屏上的P点.已知M、N两板间的电压为U2,两板间的距离为d,板长为L,电子的质量为m,电荷量为e,不计电子受到的重力及它们之间的相互作用力.(1)求电子穿过A板时速度的大小;(2)求电子从偏转电场射出时的侧移量;(3)若要使电子打在荧光屏上P点的上方,可采取哪些措施?关键词①偏转电场可视为匀强电场;②速度与电场垂直;③不计重力【答案】(1) 2eU1m(2)U2L24U1d(3)减小U1或增大U2阶梯练习1.(多选)示波管是示波器的核心部件,它由电子枪、偏转电极和荧光屏组成,如图1所示.如果在荧光屏上P点出现亮斑,那么示波管中的( )A.极板X应带正电B.极板X′应带正电C.极板Y应带正电D.极板Y′应带正电【答案】AC【解析】根据亮斑的位置,电子水平方向偏向X,竖直方向偏向Y,电子受到电场力作用发生偏转,因此极板X、极板Y均应带正电.2.图3(a)为示波管的原理图.如果在电极YY′之间所加的电压按图(b)所示的规律变化,在电极XX′之间所加的电压按图(c)所示的规律变化,则在荧光屏上会看到图形是( )(a)图3【答案】B【解析】电子在示波管内的运动速度很快,所以可以认为它在两电极板之间运动时两板间的电压是不变的(瞬时值).所以当U y 最大时,电子会在纵轴方向上运动最大的距离.U x 同理比如说,当t =0时,U y=0,U x 为负向最大,所以电子在纵轴方向上位移为0,在x 轴方向上位移达到负向最大值.(原点在虚线交点处)所以B 。
知识讲解_带电粒子在电场中的综合计算(提高)
带电物体在电场中的综合计算编稿:周军审稿:隋伟【学习目标】1、进一步强化对静电场的认识,理解静电场力的性质和能的性质;2、能够熟练地解决带电粒子在恒定的电场以及一些变化的电场中的加速和偏转问题;3、能够熟练地解决带电物体在静电场和重力场所构成的复合场中的运动问题.【要点梳理】知识点一:带电粒子在电场中的加速运动要点诠释:(1)带电粒子在任何静电场中的加速问题,都可以运用动能定理解决,即带电粒子在电场中通过电势差为U AB 的两点时动能的变化是k E ∆,则21222121mv mv E qU k AB -=∆= (2)带电粒子在静电场和重力场的复合场中的加速,同样可以运用动能定理解决,即21222121mv mv E qU mgh W k AB AB -=∆=++(W 为重力和电场力以外的其它力的功) (3)带电粒子在恒定场中运动的计算方法带电粒子在恒力场中受到恒力的作用,除了可以用动能定理解决外还可以由牛顿第二定律以及匀变速直线运动的公式进行计算.知识点二:带电粒子在偏转电场中的运动问题(定量计算通常是在匀强电场中,并且大多数情况是初速度方向与电场线方向垂直)要点诠释:(1)运动性质:受到恒力的作用,初速度与电场力垂直,做类平抛运动.(2)常用的关系:,,粒子的加速度:偏转电场强度:mdqU a d U E ==0v L t =时间:粒子在偏转电场中运动(U 为偏转电压,d 为两平行金属板间的距离或沿着电场线方向运动的距离,L 为偏转电场的宽度(或者是平行板的长度),v 0为经加速电场后粒子进入偏转电场时的初速度.)带电粒子离开电场时:沿电场线方向的速度 0mdv qUL at v y ==; 垂直电场线方向的速度 0v v x = 合速度大小是:22y x v v v += 方向是:20tan mdv qUL v v x y ==θ 离开电场时沿电场线方向发生的位移2220122qUL y at mdv == 知识点三:带电微粒或者带电物体在静电场和重力场的复合场中运动时的能量守恒要点诠释:(1)带电物体只受重力和静电场力作用时,电势能、重力势能以及动能相互转化,总能量守恒,即(恒定值)电重K E K =++P P E E(2)带电物体除受重力和静电场力作用外,如果还受到其它力的作用时,电势能、重力势能以及动能之和发生变化,此变化量等于其它力的功,这类问题通常用动能定理来解决.【典型例题】类型一、带电粒子在匀强电场中的加速例1、如图所示,平行板电容器两极板间有场强为E 的匀强电场,且带正电的极板接地.一质量为m 、电荷量为+q 的带电粒子(不计算重力)从x 轴上坐标为x 0处静止释放.(1)求该粒子在x 0处的电势能E px0;(2)试从牛顿第二定律出发,证明该带电粒子在极板间运动过程中,其动能与电势能之和保持不变.【思路点拨】带电粒子在某点的电势能等于电场力将该带电粒子从零势能处移动到该点做的负功(做正功电势能减小做负功电势能增加),可求出该粒子在x 0处的电势能;运用运动学、动力学结合动能定理,均可证明动能与电势能之和保持不变。
物理带电粒子在电场中的运动题20套(带答案)及解析
物理带电粒子在电场中的运动题20套(带答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。
y 轴右侧存在一个匀强电场,方向沿y 轴正方向,电场区域宽度l =0.1m 。
现从坐标为(﹣0.2m ,﹣0.2m )的P 点发射出质量m =2.0×10﹣9kg 、带电荷量q =5.0×10﹣5C 的带正电粒子,沿y 轴正方向射入匀强磁场,速度大小v 0=5.0×103m/s (粒子重力不计)。
(1)带电粒子从坐标为(0.1m ,0.05m )的点射出电场,求该电场强度;(2)为了使该带电粒子能从坐标为(0.1m ,﹣0.05m )的点回到电场,可在紧邻电场的右侧区域内加匀强磁场,试求所加匀强磁场的磁感应强度大小和方向。
【答案】(1)1.0×104N/C (2)4T ,方向垂直纸面向外 【解析】 【详解】解:(1)带正电粒子在磁场中做匀速圆周运动,根据洛伦兹力提供向心力有:200v qv B m r=可得:r =0.20m =R根据几何关系可以知道,带电粒子恰从O 点沿x 轴进入电场,带电粒子做类平抛运动,设粒子到达电场边缘时,竖直方向的位移为y 根据类平抛规律可得:2012l v t y at ==, 根据牛顿第二定律可得:Eq ma = 联立可得:41.010E =⨯N/C(2)粒子飞离电场时,沿电场方向速度:305.010y qE lv at m v ===⨯g m/s=0v 粒子射出电场时速度:02=v v根据几何关系可知,粒子在B '区域磁场中做圆周运动半径:2r y '=根据洛伦兹力提供向心力可得: 2v qvB m r'='联立可得所加匀强磁场的磁感应强度大小:4mvB qr'=='T 根据左手定则可知所加磁场方向垂直纸面向外。
【小初高学习]2017-2018学年高中化学 每日一题 胶体的性质与应用 新人教版
胶体的性质与应用高考频度:★★★☆☆难易程度:★★☆☆☆典例在线(双选)关于胶体和溶液的区别,下列叙述中错误的是A.FeCl3溶液与Fe(OH)3胶体的外观都是澄清、透明、均匀的B.溶液中溶质粒子能通过滤纸;胶体中分散质粒子不能通过滤纸C.光束通过淀粉溶液时,可以看到一条光亮的“通路”;光束通过蔗糖溶液时,则看不到一条光亮的“通路”D.溶液最稳定,放置后不会生成沉淀;胶体很不稳定,放置后很快会生成沉淀【答案】BD【解析】A 项,FeCl3溶液与 Fe(OH)3胶体均为澄清、透明、均匀的分散系;B项,溶液中溶质粒子和胶体中分散质粒子均能通过滤纸;C项,蔗糖溶液不具有丁达尔效应,而淀粉溶液具有丁达尔效应;D项,溶液最稳定,胶体属于介稳体系。
解题必备一、溶液、胶体、浊液三类分散系的比较二、分散系的判定1.胶体的判定胶体与其他分散系的本质区别在于胶体粒子的直径在 1~100 nm之间,这是胶体的本质特征,也是胶体区别于其他分散系的依据,同时也决定了胶体的性质;解答有关胶体的试题既要熟悉常见的胶体,如Fe(OH)3胶体、土壤胶体、豆浆、蛋白质溶液(实际是胶体)等,也要掌握并能利用胶体的性质分析具体问题,如丁达尔效应、胶体的聚沉方法等。
2.区分胶体和溶液的方法(1)区分胶体和溶液可以从如下两个方面考虑。
①根据分散质微粒直径的大小来区分。
分散质微粒直径在1~100 nm之间的分散系为胶体,小于1 nm的分散系为溶液。
②根据有无丁达尔效应来区分。
胶体粒子对光有散射作用,因而胶体具有丁达尔效应;溶液中的阴阳离子对光的散射作用极其微弱,因而溶液无丁达尔效应。
(2)下列两个方面不能用来区分胶体和溶液。
①是否均一、透明。
因为胶体和溶液通常都是均一、透明的分散系。
②是否能通过滤纸。
因为胶体和溶液的分散质粒子均能通过滤纸。
三、胶体的性质及其应用易混易错胶体本质特征和性质的易错点(1)胶体的本质是胶体粒子的直径介于1~100 nm之间的分散系,并不是颗粒直径介于1~100 nm之间的物质就是胶体,如果是单一物质就不是胶体。
近3年(2017,2018,2019)河北省高考物理试卷以及答案(word解析版)
河北省2017年高考物理试卷一、选择题:本大题共8小题,每小题6分.在每小题给出的四个选项中,第1~5题只有一项是符合题目要求,第6~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分.有选错的得0分.1.(6分)将质量为1.00kg 的模型火箭点火升空,50g 燃烧的燃气以大小为600m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( )A .30kg•m/sB .5.7×102kg•m/sC .6.0×102kg•m/sD .6.3×102kg•m/s2.(6分)发球机从同一高度向正前方依次水平射出两个速度不同的乒乓球(忽略空气的影响)。
速度较大的球越过球网,速度较小的球没有越过球网;其原因是( )A .速度较小的球下降相同距离所用的时间较多B .速度较小的球在下降相同距离时在竖直方向上的速度较大C .速度较大的球通过同一水平距离所用的时间较少D .速度较大的球在相同时间间隔内下降的距离较大3.(6分)如图,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里。
三个带正电的微粒a ,b ,c 电荷量相等,质量分别为m a ,m b ,m c .已知在该区域内,a 在纸面内做匀速圆周运动,b 在纸面内向右做匀速直线运动,c 在纸面内向左做匀速直线运动。
下列选项正确的是( )A .m a >m b >m cB .m b >m a >m cC .m c >m a >m bD .m c >m b >m a4.(6分)大科学工程“人造太阳”主要是将氘核聚变反应释放的能量用来发电,氘核聚变反应方程是:H +H→He +n ,已知H 的质量为2.0136u ,He 的质量为3.0150u ,n 的质量为1.0087u ,1u=931MeV/c 2.氘核聚变反应中释放的核能约为( )A .3.7MeVB .3.3MeVC .2.7MeVD .0.93MeV5.(6分)扫描隧道显微镜(STM )可用来探测样品表面原子尺寸上的形貌,为了有效隔离外界震动对STM 的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小震动,如图所示,无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及其左右震动的衰减最有效的方案是()A. B.C.D.6.(6分)如图,三根相互平行的固定长直导线L1、L2和L3两两等距,均通有电流I,L1中电流方向与L2中的相同,与L3中的相反。
【小初高学习]2017年高考物理 专题集锦(二)平行板电容器的动态问题考点归纳
平行板电容器的动态问题考点归纳在两个相距很近的平行金属板中间夹上一层绝缘物质——电介质(空气也是一种电介质),就组成了一个最简单的电容器,叫作平行板电容器。
我们知道平行板电容器的表达式有定义式Q C U =和决定式4r S C kdεπ=电容器间的电场强度的表达式为对于平行板电容器,如果一个物理量发生了变化,往往会引起其他物理量发生变化,即发生动态变化。
平行板电容器的动态变化问题主要包括电容器始终与电源相连接和电容器充好电后与电源断开两种情况。
两种动态问题的部分情况和所涉考点如下表所示。
一、电容器始终与电源相连接【例1】如图1所示为一个由电源、电流计、平行板电容器、开关S 和导线等组成的电路,平行板电容器水平放置,下极板接地。
开关S 闭合,待电路稳定后,板间P 点有个液滴刚好处于静止状态。
当上极板向上移动一小段距离时,请回答下列问题:(1)电流计中有没有电流流过,有的话方向如何?【解析】电容器两端电压U 不变,由于两极板距离d 的增大导致电容C 减小,根据Q=CU 可知两极板带电量减小,所以电容器放电,电流由b 向a 流过电流计。
(2)液滴动不动,动的话将向哪个方向运动?【解析】电容器两端电压U 不变,两极板距离d 增大,根据U E d=可知电场强度减小,液滴受到的电场力F 减小,所以向下运动。
(3)P 点的电势将发生什么变化? 【解析】因为下极板接地,所以电势为0,则P PO U ϕ'=,假设PO ’的距离为h ,所以P Eh ϕ=,第(2)问已经得出电场强度E 减小,所以P ϕ减小。
(4)若将电流计换成一个二极管,如图2所示,则液滴动不动,动的话向哪个方向移动?【解析】由第(1)问可知,电容器电荷量理应减小,对外放电,但是二极管具有单向导电性,不允许电流自右向左流过.所以电容器带电量不变,根据4r U Q kQ E d Cd Sπε===可知,电场强度不变,液滴受力不受影响,保持不动。
2017_2018学年高考物理小题狂刷专题30带电粒子在电场中的加速、偏转问题新人教版
狂刷30 带电粒子在电场中的加速、偏转问题1.如图所示,一价氢离子(11H)和二价氦离子(42He)的混合体,经同一加速电场U1同时加速后,垂直射入同一偏转U2电场中,偏转后,打在同一荧光屏上,(不计它们之间的作用力和重力)则它们A.同时到达屏上同一点 B.先后到达屏上同一点C.同时到达屏上不同点 D.先后到达屏上不同点【答案】B【名师点睛】解决本题的关键知道带电粒子在加速电场和偏转电场中的运动情况,知道从静止开始经过同一加速电场加速,垂直打入偏转电场,运动轨迹相同。
做选择题时,这个结论可直接运用,节省时间。
2.如图甲所示,两平行金属板竖直放置,左极板接地,中间有小孔,右极板电势随时间变化的规律如图乙所示,电子原来静止在左极板小孔处。
(不计重力作用)下列说法中正确的是A .从t =0时刻释放电子,电子可能在两板间振动B .从t =T /2时刻释放电子,电子将始终向右运动,直到打到右极板上C .从t =T /4时刻释放电子,电子可能在两板间振动,也可能打到右极板上D .从t =3T/8时刻释放电子,电子必将打到左极板上 【答案】C3.如图所示,质子(11H )和α粒子(42He ),以相同的初速度垂直射入偏转电场(粒子不计重力),则这两个粒子射出电场时的侧位移y 之比为A .1:1B .1:2C .2:1D .1:4【答案】C【解析】质子和α粒子垂直射入偏转电场都做类平抛运动,电场强度为E ,速度为v ,根据牛顿第二定律可得粒子加速度为:qEa m=,可得粒子射出电场时的侧位移y 的表达式为:212y at =,在水平方向匀速运动:L vt =,联立可得:222qEL y mv =,由此可知,质子和α粒子电荷量之比为1:2,质量之比为1:4,由此可得:侧位移y 之比为2:1。
所以C 正确,ABD 错误。
4.如图,正电荷从O 点沿箭头方向射入竖直向的匀强电场,电荷重力不计,其运动轨迹可能为A .OPB .OO'C .OQD .OS【答案】A【名师点睛】当受到的合力与速度方向不在一条直线上时,物体就做曲线运动,而曲线运动总是弯向受到合力的方向--这是由牛顿第二定律决定的,合力方向决定加速度的方向。
2020年高考物理专题复习:带电粒子在电场中的加速和偏转精讲
2020年高考物理专题复习:带电粒子在电场中的加速和偏转精讲一、带电粒子(或带电体)在电场中的直线运动1. 带电粒子在电场中运动时重力的处理(1)基本粒子:如电子、质子,α粒子、离子等,除有说明或明确的暗示以外,一般都不考虑重力(但并不忽略质量);(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力。
2. 带电粒子在电场中平衡的解题步骤:(1)选取研究对象;(2)进行受力分析,注意电场力的方向特点;(3)由平衡条件列方程求解。
3. 解决带电粒子在电场中的直线运动问题的两种思路:(1)根据带电粒子受到的电场力,用牛顿第二定律求出加速度,结合运动学公式确定带电粒子的运动情况。
此方法只适用于匀强电场;(2)根据电场力对带电粒子所做的功等于带电粒子动能的变化求解。
此方法既适用于匀强电场,也适用于非匀强电场。
二、带电粒子在电场中的偏转1. 带电粒子在匀强电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场。
(2)运动性质:匀变速曲线运动。
(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动。
(4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎪⎪⎩⎪⎪⎨⎧====qU mdy t t md qU at y b v t a 2,221:.1:.220不能飞出电容器能飞出电容器 ②沿电场力方向,做匀加速直线运动⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=======200222tan :221::mdv Uql v v mdv Uql at y md Uq m qE m F a y θ离开电场时的偏转角离开电场时的偏移量加速度 2. 带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的;(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为2l。
带电粒子(带电体)在电场中的运动问题(解析版)-2023年高考物理压轴题专项训练(新高考专用)
压轴题05带电粒子(带电体)在电场中的运动问题目录一,考向分析 (1)二.题型及要领归纳 (2)热点题型一优化场区分布创新考察电偏转 (2)热点题型二利用交变电场考带电粒子在运动的多过程问题 (6)热点题型三借助电子仪器考带电粒子运动的应用问题 (10)热点题型四带电粒子(带电体)在电场和重力场作用下的抛体运动 (14)热点题型五带电粒子(带电体)在电场和重力场作用下的圆周运动 (16)三.压轴题速练 (19)一,考向分析1.本专题主要讲解带电粒子(带电体)在电场中运动时动力学和能量观点的综合运用,高考常以计算题出现。
2.学好本专题,可以加深对动力学和能量知识的理解,能灵活应用受力分析、运动分析(特别是平抛运动、圆周运动等曲线运动)的方法与技巧,熟练应用能量观点解题。
3.用到的知识:受力分析、运动分析、能量观点。
4.带电粒子在电场中的运动(1)分析方法:先分析受力情况,再分析运动状态和运动过程(平衡、加速或减速,轨迹是直线还是曲线),然后选用恰当的规律如牛顿运动定律、运动学公式、动能定理、能量守恒定律解题。
(2)受力特点:在讨论带电粒子或其他带电体的静止与运动问题时,重力是否要考虑,关键看重力与其他力相比较是否能忽略。
一般来说,除明显暗示外,带电小球、液滴的重力不能忽略,电子、质子等带电粒子的重力可以忽略,一般可根据微粒的运动状态判断是否考虑重力作用。
5.用能量观点处理带电体的运动对于受变力作用的带电体的运动,必须借助能量观点来处理。
即使都是恒力作用的问题,用能量观点处理也常常更简捷。
具体方法有:(1)用动能定理处理思维顺序一般为:①弄清研究对象,明确所研究的物理过程。
②分析物体在所研究过程中的受力情况,弄清哪些力做功,做正功还是负功。
③弄清所研究过程的始、末状态(主要指动能)。
④根据W=ΔE k列出方程求解。
(2)用包括电势能和内能在内的能量守恒定律处理列式的方法常有两种:①利用初、末状态的能量相等(即E1=E2)列方程。
高考物理 母题题源系列 专题09 带电粒子在电场中的运动(含解析)
专题09 带电粒子在电场中的运动【母题来源一】 2017年全国卷一 【母题原题】真空中存在电场强度大小为E 1的匀强电场,一带电油滴在该电场中竖直向上做匀速直线运动,速度大小为v 0。
在油滴处于位置A 时,将电场强度的大小突然增大到某值,但保持其方向不变。
持续一段时间t 1后,又突然将电场反向,但保持其大小不变;再持续同样一段时间后,油滴运动到B 点。
重力加速度大小为g 。
(1)求油滴运动到B 点时的速度。
(2)求增大后的电场强度的大小;为保证后来的电场强度比原来的大,试给出相应的t 1和v 0应满足的条件。
已知不存在电场时,油滴以初速度v 0做竖直上抛运动的最大高度恰好等于B 、A 两点间距离的两倍。
【答案】(1)2012v v gt =- (2)00221111[22()]4v v E E gt gt =-+011)v t g >+油滴在时刻t 2=2t 1的速度为 2121v v a t =-④由①②③④式得 2012v v gt =-⑤(2)由题意,在t =0时刻前有 1qE mg =⑥油滴从t =0到时刻t 1的位移为 21011112s v t a t =+⑦油滴在从时刻t 1到时刻t 2=2t 1的时间间隔内的位移为 22112112s v t a t =-⑧由题给条件有202(2)v g h =⑨ 式中h 是B 、A 两点之间的距离。
若B 点在A 点之上,依题意有 12s s h +=⑩才是可能的:条件⑬式和⑭式分别对应于20v >和20v <两种情形。
若B 在A 点之下,依题意有 21x x h +=-⑮由①②③⑥⑦⑧⑨⑮式得 00221111[22()]4v v E E gt gt =--⑯为使21E E >,应有 00211122()14v v gt gt -->⑰即011)v t g>+⑱ 另一解为负,不符合题意,已舍去。
【名师点睛】本题考查牛顿第二定律及匀变速直线运动的规律。
广东省深圳市2017-2018学年人教版高二物理选修3-1大题强化:带电粒子在电场中的运动(word
带电粒子在电场中的运动1、如图所示,水平绝缘光滑轨道AB的B端与处于竖直平面内的四分之一圆弧形粗糙绝缘轨道BC平滑连接,圆弧的半径R=0.40 m。
在轨道所在空间存在水平向右的匀强电场,电场强度E=1.0×l04 N/C。
现有一质量m=0.l0 kg,电荷量q=8.0×l0–5 C的带电体(可视为质点)放在水平轨道上与B端距离s=1.0 m的位置,由于受到电场力的作用带电体由静止开始运动,当运动到圆弧形轨道的C端时,速度恰好为零。
试求此过程中取g=l0 m/s2):(1)带电体在水平轨道上运动的加速度大小及运动到B端时的速度大小;(2)带电体运动到圆弧形轨道的B端时对圆弧轨道的压力大小;(3)带电体沿圆弧形轨道运动过程中,电场力和摩擦力对带电体所做的功各是多少。
2、飞行时间质谱仪可以对气体分子进行分析。
飞行时间质谱仪主要由脉冲阀、激光器、加速电场、偏转电场和探测器组成,探测器可以在轨道上移动以捕获和观察带电粒子。
整个装置处于真空状态。
加速电场和偏转电场电压可以调节,只要测量出带电粒子的飞行时间,即可以测量出其比荷。
如图所示,脉冲阀P喷出微量气体,经激光照射产生不同价位的离子,自a板小孔进入a、b间的加速电场,从b板小孔射出,沿中线方向进入M、N板间的偏转控制区,到达探测器。
已知加速电场ab板间距为d,偏转电场极板M、N的长度为L1,宽度为L2。
不计离子重力及进入a板时的初速度。
(1)设离子的比荷为k(k=q/m),当a、b间的加速电压为U1,在M、N间加上适当的电压U2,试求离子进入偏转电场时的初速度v;以及探测器偏离开中线的距离y。
(2)当a、b间的电压为U1时,在M、N间加上适当的电压U2,离子从脉冲阀P喷出到到达探测器的全部飞行时间为t。
请推导出离子比荷k的表达式。
3、如图所示,带有等量异种电荷平行金属板M、N竖直放置,M、N两板间的距离d=0.5 m。
现将一质量m=1×10–2 kg、电荷量q=4×10–5 C的带电小球从两极板上方的A点以v0=4 m/s的初速度水平抛出,A点距离两板上端的高度h=0.2 m;之后小球恰好从靠近M板上端处进入两板间,沿直线运动碰到N板上的C点,该直线与曲线的末端相切。
高二物理暑假作业(十四)带电粒子在电场中的运动+
暑假作业(十四)带电粒子在电场中的运动一.知识梳理1.带电粒子在电场中的加速带电粒子沿与电场线平行的方向进入电场,带电粒子将做加(减)速运动.有两种分析方法:①用动力学观点分析:a =qE m ,E =Ud ,v 2-v 02=2ad .②用功能观点分析:粒子只受电场力作用,电场力做的功等于物体动能的变化.qU =12mv 2-12mv 022.带电粒子在匀强电场中的偏转处理方法:类似于平抛运动,应用运动的合成与分解的方法.①沿初速度方向做匀速直线运动,运动时间t =lv 0① 沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =Uqmd离开电场时的偏移量:y =12at 2=Uql 22mdv2离开电场时的偏转角:tan θ=v y v 0=Uql mdv2二.基础巩固1、如果不计重力的电子,只受电场力作用,那么,电子在电场中可能做 ( BCD ) A .匀速直线运动 B .匀加速直线运动C .匀变速曲线运动D .匀速圆周运动2.下面是某同学对电场中的一些概念及公式的理解,其中正确的是( D )A .根据电场强度的定义式E =Fq 可知,电场中某点的电场强度与检验电荷所带的电荷量成反比B .根据电容的定义式C =QU 可知,电容器的电容与其所带电荷量成正比,与两极板间的电压成反比C .根据真空中点电荷的电场强度公式E =k Qr 2可知,电场中某点的电场强度与场源电荷所带的电荷量无关D .根据电势差的定义式U AB =W ABq 可知,带电荷量为1 C 的正电荷,从A 点移动到B 点克服电场力做功为1 J ,则A 、B 两点间的电势差为-1 V3.如图所示,AB 是某点电荷电场中一条电场线,在电场线上P 处自由释放一个负检验电荷时,它沿直线向B 点处运动,对此现象下列判断正确的是(不计电荷重力)( D )A .电荷向B 做匀加速运动B .电荷向B 做加速度越来越小的运动C .电荷向B 做加速度越来越大的运动D .电荷向B 做加速运动,加速度的变化情况不能确定4.示波管是一种多功能电学仪器,它的工作原理可以等效成下列情况:如下图所示,真空室中电极K 发出电子(初速度不计),经过电压为U 1的加速电场后,由小孔S 沿水平金属板A 、B 间的中心线射入板中.金属板长为L ,相距为d ,当A 、B 间电压为U 2时电子偏离中心线飞出电场打到荧光屏上而显示亮点.已知电子的质量为m 、电荷量为e ,不计电子重力,下列情况中一定能使亮点偏离中心距离变大的是( B )A .U 1变大, U 2变大B .U 1变小,U 2变大C .U 1变大,U 2变小D .U 1变小,U 2变小5.一金属容器置于绝缘板上,带电小球用绝缘细线悬挂于容器中,容器内的电场线分布如图所示.容器内表面为等势面,A 、B 为容器内表面上的两点,下列说法正确的是 A .A 点的电场强度比B 点的大 B .小球表面的电势比容器内表面的低 C .B 点的电场强度方向与该处内表面垂直D .将检验电荷从A 点沿不同路径移到B 点,电场力所做的功不同【答案】C6.如图所示,平行板电容器带有等量异种电荷,与静电计相连,静电计金属外壳和电容器下极板都接地。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精做21 带电粒子在电场中的加速、偏转问题1.(2016·北京卷)如图所示,电子由静止开始经加速电场加速后,沿平行于版面的方向射入偏转电场,并从另一侧射出。
已知电子质量为m ,电荷量为e ,加速电场电压为0U 。
偏转电场可看作匀强电场,极板间电压为U ,极板长度为L ,板间距为d 。
(1)忽略电子所受重力,求电子射入偏转电场时的初速度v 0和从电场射出时沿垂直板面方向的偏转距离Δy ;(2)分析物理量的数量级,是解决物理问题的常用方法。
在解决(1)问时忽略了电子所受重力,请利用下列数据分析说明其原因。
已知22.010V U =⨯,24.010m d -=⨯,319.110kg m -=⨯,191.610C e -=⨯,210m/s g =。
(3)极板间既有静电场也有重力场。
电势反映了静电场各点的能的性质,请写出电势ϕ的定义式。
类比电势的定义方法,在重力场中建立“重力势”G ϕ的概念,并简要说明电势和“重力势”的共同特点。
【答案】(1)204UL y U d∆= (2)由于F G 远大于,因此不需要考虑电子所受重力 (3)电势ϕ和重力势G ϕ都是反映场的能的性质的物理量,仅由场自身的因素决定 【解析】(1)根据功和能的关系,有20012eU mv =电子射入偏转电场的初速度0v =在偏转电场中,电子的运动时间0L t v ∆==偏转距离2201()24UL y a t U d∆=∆=(3)电场中某点电势ϕ定义为电荷在该点的电势能p E 与其电荷量q 的比值,即p E q=ϕ由于重力做功与路径无关,可以类比静电场电势的定义,将重力场中物体在某点的重力势能G E 与其质量m 的比值,叫做“重力势”,即GG E mϕ=电势ϕ和重力势G ϕ都是反映场的能的性质的物理量,仅由场自身的因素决定【方法技巧】带电粒子在电场中偏转问题,首先要对带电粒子在这两种情况下进行正确的受力分析,确定粒子的运动类型。
解决带电粒子垂直射入电场的类型的题,应用平抛运动的规律进行求解。
此类型的题要注意是否要考虑带电粒子的重力,原则是:除有说明或暗示外,对基本粒子(例如电子,质子、α粒子、离子等)一般不考虑重力;对带电微粒(如液滴、油滴、小球、尘埃等)一般要考虑重力。
2.(2015·新课标全国Ⅱ卷)如图所示,一质量为m 、电荷量为q (q >0)的粒子在匀强电场中运动,A 、B 为其运动轨迹上的两点。
已知该粒子在A 点的速度大小为v 0,方向与电场方向的夹角为60°;它运动到B 点时速度方向与电场方向的夹角为30°。
不计重力。
求A 、B 两点间的电势差。
【答案】qmv U AB20=【解析】设带电粒子在B 点的速度大小为v B ,粒子在垂直于电场方向的速度分量不变 即v B sin 30°=v 0sin 60° 由此得03v v B =设A 、B 两点间的电热差为U AB ,由动能定理有:222121A B AB mv mv qU -= 解得qmv U AB20=3.(2015·安徽卷)在xOy 平面内,有沿y 轴负方向的匀强电场,场强大小为E (图中未画出),由A 点斜射出一质量为m ,带电荷量为+q 的粒子,B 和C 是粒子运动轨迹上的两点,如图所示,其中l 0为常数。
粒子所受重力忽略不计。
求:(1)粒子从A 到C 过程中电场力对它做的功; (2)粒子从A 到C 过程所经历的时间; (3)粒子经过C 点时的速率。
【答案】(1)03AC W qEl = (2)t =(3)C v 【解析】(1)0()3AC A C W qE y y qEl =-=(3)粒子在DC 段做平抛运动,于是有 02(2)Cx l v T =,(2)Cx v a T =C v =【规律总结】电场力做功与路径无关;抛体运动用正交分解法分解到水平和竖直两个方向来做,加上电场就是多了个电场力,再由牛顿第二定律求加速度;平抛运动就是水平和竖直两个方向,先分解再合成。
4.如图所示,虚线MN 左侧有一场强为E 1=E 的匀强电场,在两条平行的虚线MN 和PQ 之间存在着宽为L 、电场强度为E 2=2E 的匀强电场,在虚线PQ 右侧相距为L 处有一与电场E 2平行的屏。
现将一电子(电荷量为e ,质量为m )无初速度地放入电场E 1中的A 点,最后电子打在右侧的屏上,AO 连线与屏垂直,垂足为O ,电子重力忽略不计。
求:(1)电子从释放到打到屏上所用的时间;(2)电子刚射出电场E 2时的速度方向与AO 连线夹角θ的正切值tan θ; (3)电子打到屏上的点P′到点O 的距离y 。
【答案】(1)t =(2)tan 2θ= (3)3y L = 【解析】(1)电子在电场1E 中做初速度为零的匀加速直线运动,设加速度为1a ,时间为1t ,由牛顿第211122a t L =电子进入电场2E 时的速度为:111v a t =③进入电场2E 到屏水平方向做匀速直线运动,时间为:122Lt v =④电子从释放到打到屏上所用的时间为:12t t t =+⑤联立①→⑤求解得:t =(2)设粒子射出电场2E 时平行电场方向的速度为y v ,由牛顿第二定律得:电子进入电场2E 时的加速度为:222m E e a m Ee==⑥23y v a t =⑦13t L v =⑧ 电子刚射出电场E 2时的速度方向与AO联立①②③⑥⑦⑧⑨得:tan 2θ=⑩(3)带电粒子在电场中的运动轨迹如图所示:设电子打到屏上的点P 到O 点的距离y联立⑩⑪得:3y L =【名师点睛】本题考查带电粒子在电场中的加速和偏转,明确受力情况,根据力与运动关系找出运动规律即可求解。
5.如图所示,两平行金属板A 、B 长L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一不计重力的带正电的粒子电荷量q =10–10 C ,质量m =10–20 kg ,沿电场中心线RD 垂直电场线飞入电场,初速度v 0=2×106 m/s ,粒子飞出平行板电场后可进入界面MN 、PS 间的无电场区域。
已知两界面MN 、PS 相距为12 cm ,D 是中心线RD 与界面PS 的交点。
(1)粒子穿过MN 时偏离中心线RD 的距离以及速度大小?(2)粒子到达PS 界面时离D 点的距离为多少?(3)设O 为RD 延长线上的某一点,我们可以在O 点固定一负点电荷,使粒子恰好可以绕O 点做匀速圆周运动,求在O 点固定的负点电荷的电量为多少?(静电力常数k =9.0×109 N·m 2/C 2,保留两位有效数字)【答案】(1)0.03m y = 62.510m/s v =⨯ (2)0.12m Y = (3)8110C Q -=⨯【解析】(1)粒子进入A 、B 后应做类平抛运动,设在A 、B 板间运动时加速度大小为a ,时间为t 1,在MN 界面处速度为v ,沿MN 的分速度为v y ,偏转位移为y ,v 与水平夹角为α,运动轨迹如图则:10t v l =①21121at y =② dmqU a AB =③ 1at v Y =④tan v v Y=α⑤ 由以上各式,代入数据求得:0.03m y = ,61.510m/s Y v =⨯,43tan =α故粒子通过MN(3)粒子穿过界面PS 后将绕电荷Q 做匀速圆周运动,设圆周运动的半径为r ,由几何关系得:rYv v =0,即0.15m r =由r v m rqQ k 22=【名师点睛】(1)由类平抛知识,带入数值便可求出偏离RD 的距离;带电粒子在离开电场后将做匀速直线运动,求出时间即可知道aD 的距离;(2)库仑力提供向心力,根据牛顿第二定律联合即可求得电量及其电性。
6.如图所示,质量为m ,电荷量为e 的电子,从A 点以速度v 0垂直于电场方向射入一个电场强度为E 的匀强电场中,从B 点射出电场时的速度方向与电场线成120°角,电子重力不计。
求:(1)电子在电场中的加速度大小a 及电子在B 点的速度大小v B ? (2)A 、B 两点间的电势差U AB ? (3)电子从A 运动到B 的时间t AB ?【答案】(1)a =qE m v B 0 (2)U AB =206mv e (3)t AB 【解析】(1)电子在电场中受电场力作用,根据牛顿第二定律可得a =qEm① 将电子在B 点的速度分解可知(如图)v B ═00cos30v =︒ ②(2)由动能定理可知:eU AB =12mv B 2﹣12mv 02③ 解②、③式得U AB =26mv e(3)设电子在B 点沿电场方向的速度大小为v y ,则有v y =v 0tan 30° ④ v y =at AB ⑤解①④⑤式得t AB =3eE7.如图所示,在竖直放置的铅屏A 的右表面上贴着β射线放射源P ,已知射线实质为高速电子流,放射源放出粒子的速度v 0=1.0710⨯m/s 。
足够大的荧光屏M 与铅屏A 平行放置,相距d =0.02 m ,其间有水平向左的匀强电场,电场强度大小E =2.5410⨯N/C 。
已知电子电量e =1.61910-⨯C ,电子质量取m =9.0⨯3110-kg 。
求:(1)电子到达荧光屏M 上的动能; (2)荧光屏上的发光面积。
【答案】(1)E k =1.25⨯10-16 J (2)S =2.83⨯10-3 m 2 【解析】(1)由动能定理得eEd = E k -2021mv E k =()231719.010 1.0102-⨯⨯⨯⨯ J +19421.6102.510210--⨯⨯⨯⨯⨯ J =1.25⨯10-16J在荧光屏上观察到的范围是半径为3.0×10-2 m 的圆,圆面积S =πr 2=2.83⨯10-3 m 28.如图所示,水平绝缘光滑轨道AB的B端与处于竖直平面内的四分之一圆弧形粗糙绝缘轨道BC平滑连接,圆弧的半径R=0.40 m。
在轨道所在空间存在水平向右的匀强电场,电场强度E=1.0×l04 N/C。
现有一质量m=0.l0 kg,电荷量q=8.0×l0–5 C的带电体(可视为质点)放在水平轨道上与B端距离s=1.0 m的位置,由于受到电场力的作用带电体由静止开始运动,当运动到圆弧形轨道的C端时,速度恰好为零。
试求此过程中取g=l0 m/s2):(1)带电体在水平轨道上运动的加速度大小及运动到B端时的速度大小;(2)带电体运动到圆弧形轨道的B端时对圆弧轨道的压力大小;(3)带电体沿圆弧形轨道运动过程中,电场力和摩擦力对带电体所做的功各是多少。
【答案】(1)a=8 m/s2 v B=4.0 m/s (2)N=5.0 N (3)W电=0.32 J W摩=–0.72 J【解析】(1)设带电体在水平桌面上运动的加速度大小为a根据牛顿第二定律有qE=ma,解得a=qEm=8 m/s2设带电体运动到B端的速度大小为v B,则v B2=2as,解得v B(2)设带电体运动到圆轨道B端时受到轨道的支持力为N,根据牛顿第二定律有N–mg=2BmvR,解得N=mg+2BmvR=5.0 N根据牛顿第三定律可知,带电体对圆轨道B端的压力大小N′=N=5.0 N(3)因电场力做功与路径无关,所以带电体沿圆弧形轨道运动过程中电场力所做的功W电=qER=0.32 J设带电体沿圆弧形轨道运动过程中摩擦力所做的功为W摩,对此过程根据动能定理有W电+W摩–mgR=0–22Bmv,解得W摩=–0.72 J9.如图所示,有一电子(电量用e表示)经电压U0加速后,进入两板间距为d,电压为U的平行金属板间。