高中数学 课时分层作业19 空间向量与垂直关系 新人教A版选修2-1

合集下载

人教A版数学选修2-1空间向量与垂直关系练习及答案

人教A版数学选修2-1空间向量与垂直关系练习及答案

空间向量与垂直关系1.若直线l 的方向向量a =(1,0,2),平面α的法向量为u =(-2,0,-4),则( ).A .l ∥αB .l ⊥αC .l ⊂αD .l 与α斜交2.若a =(2,-1,0),b =(3,-4,7),且(λa +b )⊥a ,则λ的值是( ).A .0B .1C .-2D .23.若平面α、β的法向量分别为a =(-1,2,4),b =(x ,-1,-2),并且α⊥β,则x 的值为( ).A .10 B .-10 C.12 D .-124.在正方体ABCD —A 1B 1C 1D 1中,若E 为A 1C 1的中点,则直线CE 垂直于( ).A .ACB .BDC .A 1D D .A 1A5.向量a =(-1,2,-4),b =(2,-2,3)是平面α内的两个不共线的向量,直线l 的一个方向向量m =(2,3,1),则l 与α是否垂直?______(填“是”或“否”).6.三棱锥被平行于底面ABC 的平面所截得的几何体如图所示,截面为A 1B 1C 1,∠BAC =90°, A1A ⊥平面ABC .A 1A =3,AB =AC =2A 1C 1=2,D 为BC 中点.证明:平面A 1AD ⊥平面BCC 1B 1.7.(创新拓展)如图所示,矩形ABCD 的边AB =a ,BC =2,P A ⊥平面ABCD ,P A=2,现有数据:a =32;a =1;a =2;a =3;a =4. 若在BC 边上存在点Q ,使PQ ⊥QD ,则a 可以取所给数据中的哪些值?并说明理由.空间向量与垂直关系答案1.若直线l 的方向向量a =(1,0,2),平面α的法向量为u =(-2,0,-4),则( B ).A .l ∥αB .l ⊥αC .l ⊂αD .l 与α斜交2.若a =(2,-1,0),b =(3,-4,7),且(λa +b )⊥a ,则λ的值是( C ).A .0B .1C .-2D .23.若平面α、β的法向量分别为a =(-1,2,4),b =(x ,-1,-2),并且α⊥β,则x 的值为( B ).A .10 B .-10 C.12 D .-124.在正方体ABCD —A 1B 1C 1D 1中,若E 为A 1C 1的中点,则直线CE 垂直于( B ).A .ACB .BDC .A 1D D .A 1A5.向量a =(-1,2,-4),b =(2,-2,3)是平面α内的两个不共线的向量,直线l 的一个方向向量m =(2,3,1),则l 与α是否垂直?______(填“是”或“否”). 否6.三棱锥被平行于底面ABC 的平面所截得的几何体如图所示,截面为A 1B 1C 1,∠BAC =90°,A 1A ⊥平面ABC .A 1A =3,AB =AC =2A 1C 1=2,D 为BC 中点.证明:平面A 1AD ⊥平面BCC 1B 1.证明 法一 如图,建立空间直角坐标系.则A (0,0,0),B (2,0,0),C (0,2,0),A 1(0,0,3),C 1(0,1,3),∵D 为BC 的中点,∴D 点坐标为(1,1,0),∴BC →=(-2,2,0),AD →=(1,1,0),AA 1→=(0,0,3),∵BC →·AD →=-2+2+0=0,BC →·AA 1→=0+0+0=0,∴BC →⊥AD →,BC →⊥AA 1→,∴BC ⊥AD ,BC ⊥AA 1,又AD ∩AA 1=A ,∴BC ⊥平面ADA 1,而BC ⊂平面BCC 1B 1,∴平面A 1AD ⊥平面BCC 1B 1.法二 同法一,得AA 1→=(0,0,3),AD →=(1,1,0),BC →=(-2,2,0),CC 1→=(0,-1,3),设平面A 1AD 的法向量n 1=(x 1,y 1,z 1),平面BCC 1B 1的法向量为n 2=(x 2,y 2,z 2).由⎩⎪⎨⎪⎧n 1·AA 1→=0,n 1·AD →=0,得⎩⎨⎧3z 1=0,x 1+y 1=0.令y 1=-1得x 1=1,z 1=0,∴n 1=(1,-1,0).由⎩⎪⎨⎪⎧n 2·BC →=0,n 2·CC 1→=0,得⎩⎨⎧-2x 2+2y 2=0,-y 2+3z 2=0. 令y 2=1,得x 2=1,z 2=33, ∴n 2=(1,1,33). ∴n 1·n 2=1-1+0=0,∴n 1⊥n 2.∴平面A 1AD ⊥平面BCC 1B 1.7.(创新拓展)如图所示,矩形ABCD 的边AB =a ,BC =2,P A ⊥平面ABCD ,P A =2,现有数据:a =32;a =1;a =2;a =3;a =4.若在BC 边上存在点Q ,使PQ ⊥QD ,则a 可以取所给数据中的哪些值?并说明理由.解 建立如图所示的空间直角坐标系,则A (0,0,0),P (0,0,2),D (0,2,0).设Q (a ,x ,0)(BQ =x ,0≤x ≤2),于是PQ →=(a ,x ,-2),QD →=(-a ,2-x ,0).由PQ ⊥QD 得PQ →·QD →=-a 2+x (2-x )-2×0=0,即x 2-2x +a 2=0,此方程有解,Δ≥0,∴0<a ≤1.当a =32时,方程的解为x =32或x =12,满足0≤x ≤2. 当a =1时,方程的解为x =1,满足0≤x ≤2.因此满足条件的a 的取值为a =32或a =1.。

高中数学 3.2.2用向量方法解决垂直问题课后习题 新人教A版高二选修2-1数学试题

高中数学 3.2.2用向量方法解决垂直问题课后习题 新人教A版高二选修2-1数学试题

第二课时用向量方法解决垂直问题课时演练·促提升A组1.若直线l的方向向量为(2,1,m),平面α的法向量为,且l⊥α,则m的值为()A.1B.2C.4D.-4解析:∵l⊥α,∴l的方向向量与平面α的法向量共线.∴(2,1,m)=λ,解得m=4.答案:C2.已知平面α内有一个点M(1,-1,2),它的一个法向量为n=(6,-3,6),则下列点P中,在平面α内的是()A.P(2,3,3)B.P(-2,0,1)C.P(-4,4,0)D.P(3,-3,4)解析:因为n=(6,-3,6)是平面α的一个法向量,所以它应该和平面α内的任意一个向量垂直,只有在选项A中,=(2,3,3)-(1,-1,2)=(1,4,1),·n=(1,4,1)·(6,-3,6)=0,所以点P在平面α内.答案:A3.在菱形ABCD中,若是平面ABCD的法向量,则以下等式中可能不成立的是()A.=0B.=0C.=0D.=0解析:∵PA⊥平面ABCD,∴BD⊥PA.又∵AC⊥BD,∴PC⊥BD.故选项B正确,选项A和D显然成立.故选C.答案:C4.如图,设a为正方体ABCD-A1B1C1D1的三个顶点确定的平面A1BD的一个法向量,则()A.a∥B.a⊥C.a与相交但不垂直D.a与不共面解析:由于AC1⊥平面A1BD,即也是平面A1BD的一个法向量,因此必有a∥.答案:A5.平面α与平面β的法向量分别是m,n,直线l的方向向量是a,给出下列论断:①m∥n⇒α∥β;②m⊥n⇒α⊥β;③a⊥m⇒l∥α;④a∥m⇒l⊥α.其中正确的论断为(把你认为正确论断的序号填在横线上).解析:①中α与β还有可能重合;②④正确;③中l有可能在α内.答案:②④6.若正三棱锥P-ABC侧面互相垂直,则棱锥的高与底面边长之比为.解析:设高为h,底边长为1,建立如图所示的空间直角坐标系,则点P(0,0,h),A,B,C,得平面PAB,PAC的法向量分别为,则3-9+=0,解得h=.故高与底面边长之比为∶6.答案:∶67.如图,已知在直三棱柱ABC-A1B1C1中,AC⊥BC,D为AB的中点,AC=BC=BB1.求证:(1)BC1⊥AB1;(2)BC1∥平面CA1D.证明:如图,以C1点为原点,分别以C1A1,C1B1,C1C所在直线为x轴、y轴、z轴建立空间直角坐标系.设AC=BC=BB1=2,则A(2,0,2),B(0,2,2),C(0,0,2),A1(2,0,0),B1(0,2,0),C1(0,0,0),D(1,1,2).(1)由于=(0,-2,-2),=(-2,2,-2),因此=0-4+4=0,因此,故BC1⊥AB1.(2)取A1C的中点E,连接DE,由于E(1,0,1),所以=(0,1,1),又=(0,-2,-2),所以=-.又ED和BC1不共线,所以ED∥BC1.又DE⊂平面CA1D,BC1⊄平面CA1D,故BC1∥平面CA1D.8.如图,正方形ABCD和四边形ACEF所在平面互相垂直,CE⊥AC,EF∥AC,AB=,CE=EF=1.求证:(1)AF∥平面BDE;(2)CF⊥平面BDE.证明:(1)设AC与BD交于点G.∵EF∥AG,且EF=1,AG=AC=1,∴四边形AGEF为平行四边形,∴AF∥EG.∵EG⊂平面BDE,AF⊄平面BDE,∴AF∥平面BDE.(2)连接FG.∵正方形ABCD和四边形ACEF所在平面互相垂直,且CE⊥AC,∴CE⊥平面ABCD.如图,以C为原点,CD,CB,CE所在直线为x轴、y轴、z轴,建立空间直角坐标系,则C(0,0,0),A(,0),B(0,,0),D(,0,0),E(0,0,1),F,∴=(0,-,1),=(-,0,1),∴=0-1+1=0,=-1+0+1=0.∴,∴CF⊥BE,CF⊥DE.又∵BE∩DE=E,∴CF⊥平面BDE.9.在正方体ABCD-A1B1C1D1中,E是棱BC的中点,试在棱CC1上求一点P,使得平面A1B1P⊥平面C1DE.解:如图,以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系.设正方体的棱长为1,P(0,1,a),则A1(1,0,1),B1(1,1,1),E,C1(0,1,1),=(0,1,0),=(-1,1,a-1),=(0,1,1).设平面A1B1P的一个法向量为n1=(x1,y1,z1),则令z1=1,得x1=a-1,∴n1=(a-1,0,1).设平面C1DE的一个法向量为n2=(x2,y2,z2),则令y2=1,得x2=-2,z2=-1,∴n2=(-2,1,-1).∵平面A1B1P⊥平面C1DE,∴n1⊥n2,即n1·n2=0.∴-2(a-1)+0+(-1)=0,∴a=.故P.B组1.如图,PA⊥平面ABCD,四边形ABCD为正方形,E是CD的中点,F是AD上一点,当BF⊥PE时,AF∶FD 的值为()A.1∶2B.1∶1C.3∶1D.2∶1解析:建立如图所示的空间直角坐标系.设正方形边长为1,PA=a,则B(1,0,0),E,P(0,0,a).设点F的坐标为(0,y,0),则=(-1,y,0),.∵BF⊥PE,∴=(-1)×+y=0.解得y=,即点F的坐标为.∴F为AD的中点.∴AF∶FD=1∶1.答案:B2.如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD,则平面PQC与平面DCQ的位置关系为()A.平行B.垂直C.相交但不垂直D.位置关系不确定解析:由已知可得PD⊥DC,PD⊥DA,DC⊥DA,如图,以D为原点,建立空间直角坐标系, 设QA=1,则D(0,0,0),C(0,0,1),Q(1,1,0),P(0,2,0).故=(1,1,0),=(0,0,1),=(1,-1,0).故=0,=0,即,故PQ⊥平面DCQ,平面PQC⊥平面DCQ.答案:B3.如图,在直三棱柱ABC-A1B1C1中,底面是以∠ABC为直角的等腰三角形,AC=2a,BB1=3a,D是A1C1的中点,点E在棱AA1上,要使CE⊥平面B1DE,则AE=.解析:建立如图所示的坐标系,则B1(0,0,3a),D,C(0,a,0).设点E的坐标为(a,0,z),则=(a,-a,z),=(a,0,z-3a),,故=0.故要使CE⊥平面B1DE,则需,即=0,故2a2+z2-3az=0,解得z=a或2a.答案:a或2a4.如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1=.求证:A1C⊥平面BB1D1D.证明:由题设易知OA,OB,OA1两两垂直,以O为原点建立空间直角坐标系,如图.∵AB=AA1=,∴OA=OB=OA1=1.∴A(1,0,0),B(0,1,0),C(-1,0,0),D(0,-1,0),A1(0,0,1).由,易得B1(-1,1,1).∵=(-1,0,-1),=(0,-2,0),=(-1,0,1),∴=0,=0.∴A1C⊥BD,A1C⊥BB1.∴A1C⊥平面BB1D1D.5.如图,在四棱锥P-ABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°的角.求证:(1)CM∥平面PAD;(2)平面PAB⊥平面PAD.证明:以C为坐标原点,CB为x轴,CD为y轴,CP为z轴建立如图所示的空间直角坐标系Cxyz.∵PC⊥平面ABCD,∴∠PBC为PB与平面ABCD所成的角,∴∠PBC=30°.∵PC=2,∴BC=2,PB=4.∴D(0,1,0),B(2,0,0),A(2,4,0),P(0,0,2),M,∴=(0,-1,2),=(2,3,0),.(1)设n=(x,y,z)为平面PAD的一个法向量,由令y=2,得n=(-,2,1).∵n·=-+2×0+1×=0,∴n⊥.又CM⊄平面PAD,∴CM∥平面PAD.(2)如图,取AP的中点E,连接BE,则E(,2,1),=(-,2,1).∵PB=AB,∴BE⊥PA.又∵=(-,2,1)·(2,3,0)=0,∴.∴BE⊥DA.又∵PA∩DA=A,∴BE⊥平面PAD.∵BE⊂平面PAB,∴平面PAB⊥平面PAD.6.如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,AA1=b,点E,F分别在棱BB1,CC1上,且BE=BB1,C1F=CC1.设λ=.当平面AEF⊥平面A1EF时,求λ的值.解:建立如图所示的空间直角坐标系Axyz.则由题意可知A(0,0,0),E,F,故.设平面AEF的法向量为n1=(x,y,z),则n1·=0且n1·=0,即ax+=0且ay+=0.令z=1,得x=-,y=-.故n1=.同理可得平面A1EF的一个法向量为n2=.∵平面AEF⊥平面A1EF,∴n1·n2=0.∴-+1=0,解得λ=(负值舍去).∴当平面AEF⊥平面A1EF时,λ=.。

2019人教A版高中数学选修2-1课件:第三章3-2第2课时空间向量与垂直关系

2019人教A版高中数学选修2-1课件:第三章3-2第2课时空间向量与垂直关系

[变式训练]如图,△ABC 中,AC=BC,D 为 AB 边 中点,PO⊥平面 ABC,垂足 O 在 CD 上,求证:AB⊥ PC. → → → 证明:设CA=a,CB=b,OP=v. 由条件知,v 是平面 ABC 的法向量, 所以 v· a=0,v· b=0,
因为 D 为 AB 的中点, → 1 所以CD= (a+b), 2 因为 O 在 CD 上, → → λ 所以存在实数 λ,使CO=λCD= (a+b), 2 因为 CA=CB,所以|a|=|b|,
1 1 1 → - a+ b+ c= 所以 AB1·MN=(a+c)· 2 2 4
1 1 1 - + cos 60°+ =0. 2 2 4 → ⊥MN → ,所以 AB ⊥MN. 所以AB 1 1
法二(坐标法). 设 AB 中点为 O,作 OO1∥AA1. 以 O 为坐标原点,OB 为 x 轴,OC 为 y 轴,
1 M , 4
3 ,0. 4
1 3 1 → → =(1,0,1), 所以MN=- , , ,AB 1 4 4 4
→ ·AB → =-1+0+1=0. 所以MN 1 4 4 → ⊥AB → ,所以 AB ⊥用空间向量判断空间两直线垂直的方法 1. 基向量法: (1)取三个不共线的已知向量(通常是它 们的模及其两两夹角为已知)为空间的一个基底; (2)把两直线的方向向量用基底表示;
2.空间中直线、平面垂直关系的证明方法 (1)线线垂直.
(2)线面垂直. 方法一:根据线面垂直的判定定理转化为线线垂直; 方法二:证明直线的方向向量与平面的法向量平行. (3)面面垂直. 方法一:根据判定定理证明线面垂直; 方法二:证明两个平面的法向量垂直.
1.若平面α,β 的法向量分别为a=(-1,2,4),b =(x,-1,-2),并且α⊥β,则x的值为( A.10 B.-10 1 C. 2 ) 1 D.- 2

人教A版高中数学选修2-1课件3.2第2课时空间向量与垂直关系

人教A版高中数学选修2-1课件3.2第2课时空间向量与垂直关系

2.如图所示,在正方体ABCD-A1B1C1D1中,O为AC与BD的 交点,G为CC1的中点,求证:A1O⊥平面GBD.
证明: 证法一:设A→1B1=a,A→1D1=b,A→1A=c. 则a·b=0,b·c=0,a·c=0. 而A→1O=A→1A+A→O=A→1A+12(A→B+A→D) =c+12(a+b), B→D=A→D-A→B=b-a, O→G=O→C+C→G=12(A→B+A→D)+12C→C1 =12(a+b)-12c,
三棱锥被平行于底面 ABC 的平面所截得的几何体如图 所示,截面为 A1B1C1,∠BAC=90°,A1A⊥平面 ABC,A1A= 3, AB=AC=2A1C1=2,D 为 BC 中点.
解答本题可证明B→C垂直于平面A1AD内的两个不共线向量 A→A1和A→D或求两平面的法向量,再证明两个法向量互相垂直.
则nn11··AA→A→C1==00, ⇒z-1=2x01,+2y1=0.
令x1=1,得y1=1,∴n1=(1,1,0).
设平面AEC1的法向量为n2=(x2,y2,z2),
则nn22··AA→C→E1==00,, ⇒z-2=2x42x+2,2y2+z2=0
令x2=1,则n2=(1,-1,4),n1·n2=1-1=0, 即平面AEC1⊥平面AA1C1C.
空间中的垂直关系及其向量证明方法 (1)线线垂直 ①证明两直线的方向向量垂直. ②证明两直线所成角为90°. ③先证明线面垂直,利用线面垂直的性质. (2)线面垂直 ①证明直线的方向向量与平面的法向量平行. ②证明直线的方向向量与平面内两个不共线向量垂直. ③先证明面面垂直,利用面面垂直的性质.
求证:AB1⊥MN.
解答本题可先选基向量,证明A→B1·M→N=0或先建系,再证 明A→B1·M→N=0.

高中数学人教A版选修2-1习题:第三章3.2第2课时空间向量与垂直关系 Word版含答案

高中数学人教A版选修2-1习题:第三章3.2第2课时空间向量与垂直关系 Word版含答案

第三章 空间向量与立体几何 3.2 立体几何中的向量方法 第2课时 空间向量与垂直关系A 级 基础巩固一、选择题1.若直线l 的方向向量a =(1,0,2),平面α的法向量为u =(-2,0,-4),则( ) A .l ∥α B .l ⊥α C .l ⊂αD .l 与α斜交解析:所以u =-2a ,所以a ∥u ,所以l ⊥α. 答案:B2.在菱形ABCD 中,若PA →是平面ABCD 的法向量,则以下等式中可能不成立的是( ) A.PA →·AB →=0 B.PC →·BD →=0 C.PC →·AB →=0D.PA →·CD →=0解析:因为PA ⊥平面ABCD , 所以BD ⊥PA .又AC ⊥BD ,所以BD ⊥平面PAC , 所以PC ⊥BD .故选项B 正确,选项A 和D 显然成立, 故选C. 答案: C3.若平面α、β的法向量分别为a =(-1,2,4),b =(x ,-1,-2),并且α⊥β,则x 的值为( )A .10B .-10 C.12D .-12解析:因为α⊥β,则它们的法向量也互相垂直, 所以a ·b =(-1,2,4)×(x ,-1,-2)=0, 解得x =-10. 答案:B4.设直线l 的方向向量为a ,平面α的法向量为b ,若a ·b =0,则( ) A .l ∥αB .l ⊂αC .l ⊥αD .l ⊂α或l ∥α解析:因为a ·b =0, 所以a ⊥b ,故选D. 答案:D5.已知A (3,0,-1),B (0,-2,-6),C (2,4,-2),则△ABC 是( ) A .等边三角形 B .等腰三角形 C .直角三角形D .等腰直角三角形解析:AB →=(-3,-2,-5),AC →=(-1,4,-1),则AB →·AC →=-3×(-1)-2×4+5=0.所以AB →⊥AC →,故△ABC 为直角三角形.又|AB →|≠|AC →|,故选C.答案:C 二、填空题6.若l 的方向向量为(2,1,m ),平面α的法向量为⎝ ⎛⎭⎪⎫1,12,2,且l ⊥α,则m =________.解析:由l ⊥α得,21=112=m2,即m =4.答案:47.平面α,β的法向量分别为(-1,2,4),(x ,-1,-2),并且α⊥β,则x 的值为________.解析:因为α⊥β,所以它们的法向量也互相垂直, 则有-x -2-8=0,所以x =-10. 答案:-108.在直角坐标系O -xyz 中,已知点P (2cos x +1,2cos 2x +2,0)和点Q (cos x ,-1,3),其中x ∈[0,π],若直线OP 与直线OQ 垂直,则x 的值为________.解析:由OP ⊥OQ ,得OP →·OQ →=0,即(2cos x +1)·cos x +(2cos 2x +2)·(-1)=0.所以cos x =0或cos x =12.因为x ∈[0,π],所以x =π2或π3.答案:π2或π3三、解答题9.在正方体ABCD ­A 1B 1C 1D 1中,P 为DD 1的中点,O 为底面ABCD 的中心,求证:OB 1⊥平面PAC .证明:如图,建立空间直角坐标系,不妨设正方体棱长为2,则A (2,0,0),P (0,0,1),C (0,2,0),B 1(2,2,2),O (1,1,0).于是OB 1→=(1,1,2),AC →=(-2,2,0),AP →=(-2,0,1), 由于OB 1→·AC →=-2+2+0=0 及OB 1→·AP →=-2+0+2=0. 所以OB 1→⊥AC →,OB 1→⊥AP →, 所以OB 1⊥AC ,OB 1⊥AP .又AC ∩AP =A ,所以OB 1⊥平面PAC .10.三棱锥被平行于底面ABC 的平面所截得的几何体如图所示,截面为A 1B 1C 1,∠BAC =90°,A 1A ⊥平面ABC ,A 1A =3, AB =AC =2A 1C 1=2,D 为BC 中点.证明:平面A 1AD ⊥平面BCC 1B 1.证明:法一:如图,建立空间直角坐标系,则A (0,0,0),B (2,0,0),C (0,2,0),A 1(0,0,3),C 1(0,1,3),因为D 为BC 的中点, 所以D 点坐标为(1,1,0), 所以BC →=(-2,2,0), AD →=(1,1,0),AA 1→=(0,0,3),因为BC →·AD →=-2+2+0=0,BC →·AA 1→=0+0+0=0, 所以BC →⊥AD →,BC →⊥AA 1→,所以BC ⊥AD ,BC ⊥AA 1, 又AD ∩AA 1=A ,所以BC ⊥平面ADA 1, 而BC ⊂平面BCC 1B 1, 所以平面A 1AD ⊥平面BCC 1B 1. 法二:同法一,得AA 1→=(0,0,3),AD →=(1,1,0),BC →=(-2,2,0),CC 1→=(0,-1,3),设平面A 1AD 的法向量n 1=(x 1,y 1,z 1), 平面BCC 1B 1的法向量为n 2=(x 2,y 2,z 2). 由⎩⎨⎧n 1·AA 1→=0,n 1·AD →=0得⎩⎨⎧3z 1=0,x 1+y 1=0.令y 1=-1得x 1=1,z 1=0, 所以n 1=(1,-1,0).由⎩⎨⎧n 2·BC →=0,n 2·CC 1→=0,解⎩⎨⎧-2x 2+2y 2=0,-y 2+3z 2=0.令y 2=1,得x 2=1, z 2=33, 所以n 2=⎝ ⎛⎭⎪⎫1,1,33. 所以n 1·n 2=1-1+0=0,所以n 1⊥n 2. 所以平面A 1AD ⊥平面BCC 1B 1.B 级 能力提升1.在正方体ABCD ­A 1B 1C 1D 1中,若E 为A 1C 1的中点,则直线CE 垂直于( ) A .AC B .BD C .A 1D D .A 1A答案:B2.已知点A ,B ,C 的坐标分别为(0,1,0),(-1,0,1),(2,1,1),点P 的坐标为(x ,0,z ),若PA →⊥AB →,PA →⊥AC →,则点P 的坐标为________.解析:因为AB →=(-1,-1,1), AC →=(2,0,1),PA →=(-x ,1,-z ),由PA →·AB →=0,PA →·AC →=0,得⎩⎪⎨⎪⎧x -1-z =0,-2x -z =0,则x =13,z =-23,所以P ⎝ ⎛⎭⎪⎫13,0,-23.答案:⎝ ⎛⎭⎪⎫13,0,-233.在正方体ABCD ­A 1B 1C 1D 1中,E 是棱BC 的中点,试在棱CC 1上求一点P ,使得平面A 1B 1P ⊥平面C 1DE .解:如图,以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.设正方体的棱长为1,P (0,1,a ),则A 1(1,0,1),B 1(1,1,1),E ⎝ ⎛⎭⎪⎫12,1,0,C 1(0,1,1),A 1B 1→=(0,1,0),A 1P →=(-1,1,a -1),DE →=⎝ ⎛⎭⎪⎫12,1,0,DC 1→=(0,1,1).设平面A 1B 1P 的一个法向量为 n 1=(x 1,y 1,z 1),则⎩⎨⎧n 1·A 1B 1→=0,n 1·A 1P →=0,⇒⎩⎪⎨⎪⎧y 1=0,-x 1+y 1+(a -1)z 1=0, 所以x 1=(a -1) z 1,y 1=0. 令z 1=1,得x 1=a -1, 所以n 1=(a -1,0,1).设平面C 1DE 的一个法向量为n 2=(x 2,y 2,z 2), 则⎩⎨⎧n 2·DE →=0,n 2·DC 1→=0,⇒⎩⎪⎨⎪⎧12x 2+y 2=0,y 2+z 2=0,⇒⎩⎪⎨⎪⎧x 2=-2y 2,z 2=-y 2.令y 2=1,得x 2=-2,z 2=-1, 所以n 2=(-2,1,-1). 因为平面A 1B 1P ⊥平面C 1DE ,所以n 1·n 2=0,即-2(a -1)-1=0,得a =12.所以当P 为CC 1的中点时,平面A 1B 1P ⊥平面C 1DE .。

高中数学3.2立体几何中的向量方法(二)空间向量与垂直关系课时作业新人教A版选修2-1

高中数学3.2立体几何中的向量方法(二)空间向量与垂直关系课时作业新人教A版选修2-1

§3.2 立体几何中的向量方法(二)——空间向量与垂直关系课时目1. 能利用平面法向量证明两个平面垂直.2. 能利用直线的方向向量和平面的法向量判定并证明空间中的垂直关系.一、选择题1. 设直线l i ,丨2的方向向量分别为 a = (1,2 , - 2), b = ( — 2,3 , m ),若l i 丄丨2,贝卩m 等于 ( ) A . 1B . 2C . 3D . 42 .已知 A (3,0 , — 1) , B (0,— 2, — 6) , C (2,4 , — 2),则△ ABC 是 ( )A .等边三角形B •等腰三角形 C.直角三角形D•等腰直角三角形6.如图所示,在正方体ABC —ABCD 中,E 是上底面中心,则AC 与CE 的位置关系是( )A .平行 B•相交 C.相交且垂直D.以上都不是二、 填空题7. ______________________________ 已知直线l 与平面a 垂直,直线I 的一个方向向量为 U = (1 ,- 3, Z ),向量V = (3 , —2,1)与平面a 平行,则Z= . &已知a = (0,1,1), b = (1,1,0) , C = (1,0,1)分别是平面 a ,卩,Y 的法向量,贝U a ,卩,丫三个平面中互相垂直的有 __________ 对. 9. 下列命题中:① 若u , V 分别是平面a ,卩的法向量,贝U a 丄卩?U ・v = 0; ② 若U 是平面a 的法向量且向量a 与a 共面,则u ・a = 0; ③ 若两个平面的法向量不垂直,则这两个平面一定不垂直. 正确的命题序号是 __________ .(填写所有正确的序号) 三、 解答题10. 已知正三棱柱 ABC-ABC 的各棱长都为1, M 是底面上 BC 边的中点,N 是侧棱 CC1上的点,且 CN= [CC.求证:AB 丄MN3.若直线 l 的方向向量为 a = (1,0,2),平面A . I // aB .I 丄aC . l ?aD . l 与 a 斜交4. 平面 a 的一个法向量为 (1,2,0),平面卩 平面卩 的位置关系是 ( )A . 平行 B.相交但不垂直 C . 垂直D.不能确定5. 设直线I 1的方向向量为a = (1 , — 2,2), 关系是 ( )A . 平行B .垂直C 相交不垂直D.不确定a 的法向量为n = ( — 2,0 , — 4),则( )的一个法向量为(2 , — 1,0),贝U 平面a 与12的方向向量为b = (2,3,2),贝U I 1与12的11. 已知ABC-ABC是各条棱长均为a的正三棱柱,D是侧棱CC的中点,求证:平面ABD丄平面ABBA1.能力提升12.如图,在四面体ABO(中,OCL OA OCL OB / AOB= 120°,且OA OB= OC= 1.设P为AC的中点,Q在AB上且AB= 3AQ证明:PQLOA13•如图,四棱锥P— ABCDK底面ABC[为矩形,PAL底面ABCD PA= AB={2,点E是棱PB的中点•证明:AE!平面PBC§ 3.2 立体几何中的向量方法(二)――空间向量与垂直关系知识梳理1. a 丄b a //u u 丄v2.作业设计1. B [ T l 1丄|2,.・.a丄b,.・.a •b = (1,2 , -2) - ( —2,3 , m) =- 2+ 6-2m^0,二m^2. ]2. C [ T AB= ( - 3,- 2, - 5) , XC= ( - 1,4 , - 1) , BC= (2,6,4),二XB- X C= 0AB丄AC且|爲AC工|丽,•••△ ABC为直角三角形.]3. B [T n = —2a,「. n// a,「. l 丄a .]4. C [T (1,2,0) - (2 , - 1,0) = 0,「.两法向量垂直,从而两平面也垂直. ]5. B [ T a -b = 2x 1 —2x 3+ 2x 2= 0, • a Xb,2,•'•I 1 丄 I 2.] 6. C [可以建立空间直角坐标系,通过 AC 与6E 的关系判断.]7. — 9解析 •/ I 丄%,••• U 丄V ,•- (1 , — 3, z ) • (3 , — 2,1) = 0,即 3+ 6 + z = 0, • z =— 9.8. 0解析 •/ a -b = (0,1,1)• (1,1,0) = 1工0,a ・c = (0, 1,1) • (1,0,1) = 1工0,b ・c = (1,1,0) • (1,0,1) = 1工 0. • a , b , c 中任意两个都不垂直,即a 、卩、丫中任意两个都不垂直.9. ①②③ 10. 证明• AB 丄M N 即AB 丄MN如图,以平面 2 ,4,ABC 内垂直于AC 的直线为x 轴,A G AA 所在直线为y 轴、z 轴,则A (0,0,0),12 , 1 33 ,• AB =亚1 ,N O ,1, 4.工1 14 , 4 , 412 ,T T 31 1• AB • MN= —;+;+ ;= 0 ,1 , MN=11 .证明2,如图,取AB1 的中点M,则3M= D C+ C A A M又A M= DG+ G~B I + B M,两式相加得2DM= C B+CB I=CA+ C Bb b b b b由于2D M- AA= (CA^CB • AA = 0, (c b B-c b A)=|C b B|2-|C b A|2=0.•••DML AA, DML AB AA Q AB= A •••DML平面ABBA,而 DM 平面ABD. •••平面ABD!平面ABBA.12.证明取O为坐标原点,以OA OC所在的直线为x轴,z轴,建立空间直角坐标系Oxyz(如图所示) .设A(1,0,0) ,C(0,0,1) ,故 P QL C A ,I 卩 PQL OA13.证明 如图所示,以A 为坐标原点,射线 AB AD AP 分别为x 轴、y 轴、z 轴的正半轴, 建立空间直角B - 2 © 0.2, 2,1••• P 为 AC 中点,• P 2,0,T 3 3•- AB= - 2,丐,0 ,又由已知,可得 AQ = 1A B = 3v,_3 ~6 ,1 —2 又 &o= O A + A Q = 2, ••• Pg OQb OP= 0, ••• PQ - &= 0,上6 -(1,0,0) = 0,坐标系Axyz.设D(0 , a,0),则B .2, 0,0) , Q 2, a,0),P(0,0 , 2),曰# 0 , * .于是AE= (# , 0 , #) , Bc= (0 , a,0), PC= ( .2 , a , —2),贝UAE- BC= 0 , AE- PC= 0.所以AE丄BC AE丄PC又因为B6 PC= C,所以AEL平面PBC。

高中数学 3.2.2空间向量与垂直关系课件 新人教A版选修2-1

高中数学 3.2.2空间向量与垂直关系课件 新人教A版选修2-1
例1 如图所示,长方体ABCDA1B1C1D1中,AB=AD= 1,AA1=2,点P为DD1的中点,求证:直线PB1⊥平面 PAC.
栏 目 链 接
完整版ppt
9
证明:依题设,以 D 为坐标原点,如图所示,建立空间直角坐标系
Dxyz,则 C(1,0,0),P(0,0,1),A(0,1,0),B1(1,1,2),
于是C→A=(-1,1,0),C→P=(-1,0,1),P→B1=(1,1,1),
∴C→A·P→B1=(-1,1,0)·(1,1,1)=0,
C→P·P→B1=(-1,0,1)·(1,1,1)=0,
栏 目
故C→P⊥P→B1,C→A⊥P→B1,即 PB1⊥CP,PB1⊥CA,
链 接
又 CP∩CA=C,且 CP⊂平面 PAC,CA⊂平面 PAC.
栏 目 链 接
完整版ppt
11
证明:方法一 设A→B=a,A→D=c,A→A1=b, 则E→F=E→B1+B→1F=12(B→B1+B→1D1)=12(A→A1+B→D)= 21(A→A1+A→D-A→B)=12(-a+b+c). 因为A→B1=A→B+A→A1=a+b, 所以E→F·A→B1=21(-a+b+c)·(a+b) =21(b2-a2+c·a+c·b)=21(|b|2-|a|2+0+0)=0. 所以E→F⊥A→B1,即 EF⊥AB1.同理,EF⊥B1C. 又 AB1∩B1C=B1,所以 EF⊥平面 B1AC.
B121,0,1,∵M 为 BC 中点,


∴M14, 43,0,∴M→N=-14, 43,14,A→B1=(1,0,1),
链 接
∴M→N·A→B1=-41+0+41=0,∴M→N⊥A→B1,∴AB1⊥MN.

人教版高中数学选修2-1《空间向量与垂直关系》

人教版高中数学选修2-1《空间向量与垂直关系》

1 3 ∵M 为 BC 中点,∴ M(4, 4 ,0). 1 3 1 → → ∴MN =(-4, 4 ,4),AB1 =(1,0,1). 1 1 → → ∴MN ·AB1 =- +0+ =0. 4 4 → → ∴MN ⊥AB1 ,∴AB1⊥MN.
题型二
利用空间向量证明线面垂直
例2
如图, 正四棱柱 ABCD- A1B1C1D1 中,
AA1=2AB=4,点 E 在 CC1 上且 C1E=3EC. 证明:A1C⊥平面 BED.
【解析】
以 D 为坐标原点,射线 DA 为 x 轴的正半轴,射
线 DC 为 y 轴的正半轴,射线 DD1 为 z 轴的正半轴,建立如图所 示的空间直角坐标系 D-xyz.
依题设 B(2,2,0),C(0,2,0),E(0,2,1),A1(2,0,4). → =(0,2,1),DB → =(2,2,0),A → → DE C = ( - 2 , 2 ,- 4) , DA 1 1 =(2,0,4). → → =0,A → → =0, 因为A C · DB C · DE 1 1 故 A1C⊥BD, A1C⊥DE. 又 BD∩DE=D, 所以 A1C⊥平面 BED.
三、面面垂直 若平面 α 的法向量 u=(a1,b1,c1),平面 β 的法向量 v=(a2, b2,c2),则 α⊥β⇔________⇔________⇔________.
【答案】 u⊥v u· v=0 a1a2+b1b2+c1c2=0
题型一
利用空间向量证明线线垂直
例 1
已知正三棱柱 ABC- A1B1C1 的各棱
→ =0,即 设平面 BEF 的法向量 n=(x, y, z),∴n· EF 3 3 (x, y,z)· (- 4 a, 4 a,0)=0,∴x= y. 3 a 3 a → 由 n· BF=0,即(x,y,z)· (0, 2 a,2 )=0,有 2 ay+2 z=0, ∴z=- 3y. 取 y=1,得 n=(1,1,- 3). 3 3 → →. ∵n· CD=(1,1,- 3)· (- 2 a, 2 a,0)=0,∴n⊥ CD ∴平面 BEF⊥平面 ABC.

高中数学第三章空间向量与立体几何 空间向量与平行、垂直的关系练习(含解析)新人教A版选修2-1

高中数学第三章空间向量与立体几何 空间向量与平行、垂直的关系练习(含解析)新人教A版选修2-1

第1课时 空间向量与平行、垂直的关系[学生用书P141(单独成册)][A 基础达标]1.若n =(2,-3,1)是平面α的一个法向量,则下列向量中能作为平面α的法向量的是( )A .(0,-3,1)B .(2,0,1)C .(-2,-3,1)D .(-2,3,-1)解析:选D.问题即求与n 共线的一个向量.即n =(2,-3,1)=-(-2,3,-1). 2.已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的一个法向量是( ) A .(1,1,-1) B .(1,-1,1) C .(-1,1,1)D .(-1,-1,-1)解析:选D.AB →=(-1,1,0),AC →=(-1,0,1).设平面ABC 的一个法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧-x +y =0,-x +z =0,取x =-1,则y =-1,z =-1.故平面ABC 的一个法向量是(-1,-1,-1).3.若平面α,β的一个法向量分别为m =⎝ ⎛⎭⎪⎫-16,13,-1,n =⎝ ⎛⎭⎪⎫12,-1,3,则( )A .α∥βB .α⊥βC .α与β相交但不垂直D .α∥β或α与β重合解析:选D.因为n =-3m ,所以m ∥n ,所以α∥β或α与β重合.4.已知平面α内有一点A (2,-1,2),α的一个法向量为n =(3,1,2),则下列点P 中,在平面α内的是( )A .(1,-1,1)B .⎝ ⎛⎭⎪⎫1,3,32C.⎝⎛⎭⎪⎫1,-3,32D .⎝⎛⎭⎪⎫-1,3,-32解析:选B.要判断点P 是否在平面α内,只需判断向量PA →与平面α的法向量n 是否垂直,即PA →·n 是否为0,因此,要对各个选项进行检验. 对于选项A ,PA →=(1,0,1),则PA →·n =(1,0,1)·(3,1,2)=5≠0,故排除A ; 对于选项B ,PA →=⎝⎛⎭⎪⎫1,-4,12,则PA →·n =⎝ ⎛⎭⎪⎫1,-4,12·(3,1,2)=0,故B 正确;同理可排除C ,D.故选B.5.如图,PA ⊥平面ABCD ,四边形ABCD 为正方形,E 是CD 的中点,F 是AD 上一点,当BF ⊥PE 时,AF ∶FD 的值为( )A .1∶2B .1∶1C .3∶1D .2∶1解析:选B.建立如图所示的空间直角坐标系,设正方形的边长为1,PA =a ,则B (1,0,0),E ⎝ ⎛⎭⎪⎫12,1,0,P (0,0,a ).设点F 的坐标为(0,y ,0),则BF →=(-1,y ,0),PE →=⎝ ⎛⎭⎪⎫12,1,-a .因为BF ⊥PE , 所以BF →·PE →=0,解得y =12,即点F 的坐标为⎝ ⎛⎭⎪⎫0,12,0, 所以F 为AD 的中点, 所以AF ∶FD =1∶1.6.已知平面α的一个法向量a =(x ,1,-2),平面β的一个法向量b =⎝ ⎛⎭⎪⎫-1,y ,12,若α⊥β,则x -y =________.解析:因为α⊥β,所以a ⊥b ,所以-x +y -1=0,得x -y =-1. 答案:-17.已知点P 是平行四边形ABCD 所在平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).给出下列结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的一个法向量.其中正确的是________(填序号).解析:AB →·AP →=2×(-1)+(-1)×2+(-4)×(-1)=-2-2+4=0,则AB →⊥AP →,则AB ⊥AP .AD →·AP →=4×(-1)+2×2+0=0,则AP →⊥AD →,则AP ⊥AD .又AB ∩AD =A ,所以AP ⊥平面ABCD ,故AP →是平面ABCD 的一个法向量.答案:①②③8.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP →⊥平面ABC ,则BP →=________.解析:因为AB →⊥BC →,所以AB →·BC →=0, 所以3+5-2z =0, 所以z =4.因为BP →=(x -1,y ,-3),且BP →⊥平面ABC , 所以⎩⎪⎨⎪⎧BP →·AB →=0,BP →·BC →=0,即⎩⎪⎨⎪⎧x -1+5y +6=0,3x -3+y -12=0,解得⎩⎪⎨⎪⎧x =407,y =-157, 故BP →=⎝ ⎛⎭⎪⎫337,-157,-3.答案:⎝⎛⎭⎪⎫337,-157,-39.如图,在三棱柱ABC ­A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,E ,F 分别为A 1C 1和BC 的中点.求证:(1)平面ABE ⊥平面B 1BCC 1; (2)C 1F ∥平面ABE .证明:如图,以B 为坐标原点,分别以BC ,BA ,BB 1所在直线为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系.设BC =a ,AB =b ,BB 1=c ,则B (0,0,0),A (0,b ,0),C 1(a ,0,c ),F ⎝ ⎛⎭⎪⎫a 2,0,0,E ⎝ ⎛⎭⎪⎫a 2,b 2,c .(1)AB →=(0,-b ,0),AE →=⎝ ⎛⎭⎪⎫a2,-b 2,c .设平面ABE 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AE →=0,即⎩⎨⎧-by =0,a 2x +⎝ ⎛⎭⎪⎫-b 2y +cz =0,令x =2,则y =0,z =-a c,即n =⎝⎛⎭⎪⎫2,0,-a c . 又平面B 1BCC 1的一个法向量为n 1=(0,1,0). 因为n 1·n =2×0+0×1+⎝ ⎛⎭⎪⎫-a c ×0=0,所以平面ABE ⊥平面B 1BCC 1.(2)C 1F →=⎝ ⎛⎭⎪⎫-a 2,0,-c ,且n ·C 1F →=0,所以C 1F →∥平面ABE . 又因为C 1F ⊄平面ABE . 所以C 1F ∥平面ABE .10.如图,在四棱锥P ­ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 为PC 的中点,EF ⊥BP 于点F .求证:(1)PA ∥平面EDB ; (2)PB ⊥平面EFD .证明:由题意得,DA ,DC ,DP 两两垂直,所以以D 为坐标原点,DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系Dxyz ,如图,设DC =PD =1,则P (0,0,1),A (1,0,0),D (0,0,0),B (1,1,0),E ⎝ ⎛⎭⎪⎫0,12,12.所以PB →=(1,1,-1), DE →=⎝ ⎛⎭⎪⎫0,12,12,EB →=⎝⎛⎭⎪⎫1,12,-12,设F (x ,y ,z ),则PF →=(x ,y ,z -1),EF →=⎝⎛⎭⎪⎫x ,y -12,z -12.因为EF →⊥PB →,所以x +⎝ ⎛⎭⎪⎫y -12-⎝ ⎛⎭⎪⎫z -12=0, 即x +y -z =0. ①又因为PF →∥PB →,可设PF →=λPB →, 所以x =λ,y =λ,z -1=-λ. ② 由①②可知,x =13,y =13,z =23,所以EF →=⎝ ⎛⎭⎪⎫13,-16,16.(1)设n 1=(x 1,y 1,z 1)为平面EDB 的法向量, 则有⎩⎪⎨⎪⎧n 1·DE →=0,n 1·EB →=0,即⎩⎪⎨⎪⎧12y 1+12z 1=0,x 1+12y 1-12z 1=0,所以⎩⎪⎨⎪⎧x 1=z 1,y 1=-z 1.取z 1=-1,则n 1=(-1,1,-1).因为PA →=(1,0,-1),所以PA ·n 1=0. 又因为PA ⊄平面EDB ,所以PA ∥平面EDB . (2)设n 2=(x 2,y 2,z 2)为平面EFD 的法向量, 则有⎩⎪⎨⎪⎧n 2·EF →=0,n 2·DE →=0,即⎩⎪⎨⎪⎧13x 2-16y 2+16z 2=0,12y 2+12z 2=0,所以⎩⎪⎨⎪⎧x 2=-z 2,y 2=-z 2.取z 2=1,则n 2=(-1,-1,1).所以PB →∥n 2,所以PB ⊥平面EFD .[B 能力提升]11.在正方体ABCD ­A 1B 1C 1D 1中,M ,N 分别为A 1B ,AC 的中点,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .不能确定解析:选B.建系如图,设正方体的棱长为2,则A (2,2,2),A 1(2,2,0),C (0,0,2),B (2,0,2),所以M (2,1,1),N (1,1,2),所以MN →=(-1,0,1).又平面BB 1C 1C 的一个法向量为n =(0,1,0), 因为MN →·n =-1×0+0×1+1×0=0, 所以MN →⊥n ,又因为MN ⊄平面BB 1C 1C , 所以MN ∥平面BB 1C 1C .故选B.12.如图,在正四棱柱ABCD ­A 1B 1C 1D 1中,底面边长为22,侧棱长为4,E ,F 分别是棱AB ,BC 的中点.求证:平面B 1EF ⊥平面BDD 1B 1.证明:由题意得,DA ,DC ,DD 1两两垂直,所以以D 为坐标原点,DA ,DC ,DD 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系如图,由题意,知D (0,0,0),A (22,0,0),C (0,22,0),B 1(22,22,4),E (22,2,0),F (2,22,0),则B 1E →=(0,-2,-4),EF →=(-2,2,0).设平面B 1EF 的法向量为n =(x ,y ,z ),则n ·B 1E →=-2y -4z =0,n ·EF →=-2x +2y =0,得x =y ,z =-24y ,令y =1,得n =⎝ ⎛⎭⎪⎫1,1,-24. 又平面BDD 1B 1的一个法向量为AC →=(-22,22,0), 而n ·AC →=1×(-22)+1×22+⎝ ⎛⎭⎪⎫-24×0=0,即n ⊥AC →,所以平面B 1EF ⊥平面BDD 1B 1.13.(选做题)如图所示,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠BCD =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.(1)求证:CM ∥平面PAD ; (2)求证:平面PAB ⊥平面PAD . 证明:由题意得CB ,CD ,CP 两两垂直,所以以点C 为坐标原点,CB 所在直线为x 轴,CD 所在直线为y 轴,CP 所在直线为z 轴建立如图所示的空间直角坐标系Cxyz ,因为PC ⊥平面ABCD ,所以∠PBC 为PB 与平面ABCD 所成的角,所以∠PBC =30°.因为PC =2,所以BC =23,PB =4.所以D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2),M ⎝ ⎛⎭⎪⎫32,0,32.所以DP →=(0,-1,2),DA →=(23,3,0),CM →=⎝ ⎛⎭⎪⎫32,0,32.(1)令n =(x ,y ,z )为平面PAD 的法向量,则⎩⎪⎨⎪⎧DP →·n =0,DA →·n =0,即⎩⎨⎧-y +2z =0,23x +3y =0,所以⎩⎪⎨⎪⎧z =12y ,x =-32y ,令y =2,得n =(-3,2,1).因为n ·CM →=-3×32+2×0+1×32=0,所以n ⊥CM →,又CM ⊄平面PAD , 所以CM ∥平面PAD .(2)取AP 的中点E ,则E (3,2,1),BE →=(-3,2,1).因为PB =AB ,所以BE ⊥PA .又因为BE →·DA →=(-3,2,1)·(23,3,0)=0. 所以BE →⊥DA →,所以BE ⊥DA , 又因为PA ∩DA =A , 所以BE ⊥平面PAD , 又因为BE ⊂平面PAB , 所以平面PAB ⊥平面PAD .。

2019高中数学 课时分层作业19 空间向量与垂直关系 新人教A版选修2-1

2019高中数学 课时分层作业19 空间向量与垂直关系 新人教A版选修2-1

课时分层作业(十九) 空间向量与垂直关系(建议用时:40分钟)[基础达标练]一、选择题1.已知平面α的法向量为a =(1,2,-2),平面β的法向量为b =(-2,-4,k ),若α⊥β,则k =( )A .4B .-4C .5D .-5 D [∵α⊥β,∴a ⊥b ,∴a ·b =-2-8-2k =0. ∴k =-5.]2.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为( )A .337,-157,4B .407,-157,4C .407,-2,4D .4,407,-15B [∵AB →⊥BC →,∴AB →·BC →=0,即3+5-2z =0,得z =4, 又BP ⊥平面ABC ,∴BP →⊥AB →,BP →⊥BC →,则⎩⎪⎨⎪⎧(x -1)+5y +6=0,3(x -1)+y -12=0,解得⎩⎪⎨⎪⎧x =407,y =-157.]3.在菱形ABCD 中,若PA →是平面ABCD 的法向量,则以下等式中可能不成立的是( )【导学号:46342170】A .PA →⊥AB → B .PA →⊥CD →C .PC →⊥BD →D .PC →⊥AB →D [由题意知PA ⊥平面ABCD ,所以PA 与平面上的线AB ,CD 都垂直,A ,B 正确;又因为菱形的对角线互相垂直,可推得对角线BD ⊥平面PAC ,故PC ⊥BD ,C 选项正确.]4.已知点A (1,0,0),B (0,1,0),C (0,0,1),点D 满足条件:DB ⊥AC ,DC ⊥AB ,AD =BC ,则点D 的坐标为( )A .(1,1,1)B .(-1,-1,-1)或⎝ ⎛⎭⎪⎫13,13,13C .⎝ ⎛⎭⎪⎫13,13,13 D .(1,1,1)或⎝ ⎛⎭⎪⎫-13,-13,-13D [设D (x ,y ,z ),则BD →=(x ,y -1,z ),CD →=(x ,y ,z -1),AD →=(x -1,y ,z ),AC →=(-1,0,1),AB →=(-1,1,0), BC →=(0,-1,1).又DB ⊥AC ⇔-x +z =0 ①,DC ⊥AB ⇔-x +y =0 ②, AD =BC ⇔(x -1)2+y 2+z 2=2 ③,联立①②③得x =y =z =1或x =y =z =-13,所以点D 的坐标为(1,1,1)或⎝ ⎛⎭⎪⎫-13,-13,-13.故选D .] 5.如图3­2­14所示,在正方体ABCD ­A 1B 1C 1D 1中,E ,F 分别在A 1D ,AC 上,且A 1E =23A 1D ,AF =13AC ,则( )图3­2­14A .EF 至多与A 1D ,AC 之一垂直B .EF ⊥A 1D ,EF ⊥AC C .EF 与BD 1相交 D .EF 与BD 1异面B [建立分别以DA ,DC ,DD 1所在直线为x ,y ,z 轴的空间直角坐标系(图略),不妨设正方体的棱长为1,则DA 1→=(1,0,1),AC →=(0,1,0)-(1,0,0)=(-1,1,0),E ⎝ ⎛⎭⎪⎫13,0,13,F ⎝ ⎛⎭⎪⎫23,13,0,EF →=⎝⎛⎭⎪⎫13,13,-13,∴EF →·DA 1→=0,EF →·AC →=0, ∴EF ⊥A 1D ,EF ⊥AC .] 二、填空题6.已知点P 是平行四边形ABCD 所在平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).给出下列结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的一个法向量.其中正确的是________(填序号).①②③ [AB →·AP →=2×(-1)+(-1)×2+(-4)×(-1)=-2-2+4=0,则AB →⊥AP →,则AB ⊥AP .AD →·AP →=4×(-1)+2×2+0=0,则AP →⊥AD →,则AP ⊥AD .又AB ∩AD =A ,∴AP ⊥平面ABCD ,故AP →是平面ABCD 的一个法向量.]7.已知a =(0,1,1),b =(1,1,0),c =(1,0,1)分别是平面α,β,γ的法向量,则α,β,γ三个平面中互相垂直的有________对.【导学号:46342171】0 [∵a ·b =(0,1,1)·(1,1,0)=1≠0,a ·c =(0,1,1)·(1,0,1)=1≠0,b ·c =(1,1,0)·(1,0,1)=1≠0,∴a ,b ,c 中任意两个都不垂直,即α,β,γ中任意两个都不垂直.]8.已知空间三点A (-1,1,1),B (0,0,1),C (1,2,-3),若直线AB 上存在一点M ,满足CM ⊥AB ,则点M 的坐标为________.⎝ ⎛⎭⎪⎫-12,12,1 [设M (x ,y ,z ),∵AB→=(1,-1,0),BM →=(x ,y ,z -1),CM →=(x -1,y -2,z +3),由题意,得⎩⎪⎨⎪⎧x -1-(y -2)=0x =-yz -1=0,∴x =-12,y =12,z =1,∴点M 的坐标为⎝ ⎛⎭⎪⎫-12,12,1.]三、解答题9.如图3­2­15,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB =2,AF =1,M 是线段EF 的中点.求证:AM ⊥平面BDF .图3­2­15[证明] 以C 为坐标原点,建立如图所示的空间直角坐标系,则A (2,2,0),B (0,2,0),D (2,0,0),F (2,2,1),M ⎝⎛⎭⎪⎫22,22,1.所以AM →=⎝ ⎛⎭⎪⎫-22,-22,1,DF →=(0, 2,1),BD →=(2,-2,0).设n =(x ,y ,z )是平面BDF 的法向量, 则n ⊥BD →,n ⊥DF →,所以⎩⎪⎨⎪⎧n ·BD →=2x -2y =0,n ·DF →=2y +z =0⇒⎩⎨⎧x =y ,z =-2y ,取y =1,得x =1,z =- 2. 则n =(1,1,-2). 因为AM →=⎝ ⎛⎭⎪⎫-22,-22,1.所以n =- 2 AM →,得n 与AM →共线. 所以AM ⊥平面BDF .10.如图3­2­16所示,△ABC 是一个正三角形,EC ⊥平面ABC ,BD ∥CE ,且CE =CA =2BD .图3­2­16求证:平面DEA ⊥平面ECA .[证明] 建立如图所示的空间直角坐标系Cxyz ,不妨设CA =2,则CE =2,BD =1,C (0,0,0),A (3,1,0),B (0,2,0),E (0,0,2),D (0,2,1).所以EA →=(3,1,-2),CE →=(0,0,2),ED →=(0,2,-1).分别设平面CEA 与平面DEA 的法向量是n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n 1·EA →=0,n 1·CE →=0,即⎩⎨⎧3x 1+y 1-2z 1=0,2z 1=0,解得⎩⎨⎧y 1=-3x 1,z 1=0,⎩⎪⎨⎪⎧n 2·EA →=0,n 2·ED →=0,即⎩⎨⎧3x 2+y 2-2z 2=0,2y 2-z 2=0,解得⎩⎨⎧x 2=3y 2,z 2=2y 2.不妨取n 1=(1,-3,0),n 2=(3,1,2),因为n 1·n 2=0,所以n 1⊥n 2. 所以平面DEA ⊥平面ECA .[能力提升练]1.两平面α,β的法向量分别为μ=(3,-1,z ),v =(-2,-y ,1),若α⊥β,则y +z 的值是( )A .-3B .6C .-6D .-12B [∵μ=(3,-1,z ),v =(-2,-y,1)分别为α,β的法向量且α⊥β, ∴μ⊥v , 即μ·v =0, -6+y +z =0 ∴y +z =6.]2.如图3­2­17,在三棱柱ABC ­A 1B 1C 1中,侧棱AA 1⊥底面A 1B 1C 1,∠BAC =90°,AB =AC =AA 1=1,D 是棱CC 1的中点,P 是AD 的延长线与A 1C 1的延长线的交点.若点Q 在线段B 1P上,则下列结论正确的是( )图3­2­17A .当点Q 为线段B 1P 的中点时,DQ ⊥平面A 1BD B .当点Q 为线段B 1P 的三等分点时,DQ ⊥平面A 1BDC .在线段B 1P 的延长线上,存在一点Q ,使得DQ ⊥平面A 1BD D .不存在DQ 与平面A 1BD 垂直D [以A 1为原点,A 1B 1,A 1C 1,A 1A 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系(图略),则由已知得A 1(0,0,0),B 1(1,0,0),C 1(0,1,0),B (1,0,1),D ⎝⎛⎭⎪⎫0,1,12,P (0,2,0),A 1B →=(1,0,1),A 1D →=⎝⎛⎭⎪⎫0,1,12,B 1P →=(-1,2,0),DB 1→=⎝⎛⎭⎪⎫1,-1,-12.设平面A 1BD 的法向量为n =(x ,y ,z ),则⎩⎨⎧n ·A1B →=x +z =0,n ·A 1D →=y +12z =0,取z =-2,则x =2,y =1,所以平面A 1BD 的一个法向量为n =(2,1,-2).假设DQ ⊥平面A 1BD ,且B 1Q →=λB 1P →=λ(-1,2,0)=(-λ,2λ,0),则DQ →=DB 1→+B 1Q →=⎝ ⎛⎭⎪⎫1-λ,-1+2λ,-12,因为DQ →也是平面A 1BD 的法向量,所以n =(2,1,-2)与DQ →=⎝ ⎛⎭⎪⎫1-λ,-1+2λ,-12共线,于是有1-λ2=-1+2λ1=-12-2=14成立,但此方程关于λ无解.故不存在DQ 与平面A 1BD 垂直,故选D .] 3.如图3­2­18,四棱锥P ­ABCD 的底面ABCD 是边长为1的正方形,PD ⊥底面ABCD ,且PD =1,若E ,F 分别为PB ,AD 中点,则直线EF 与平面PBC 的位置关系是________.【导学号:46342173】图3­2­18垂直 [以D 为原点,DA ,DC ,DP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系(图略),则E ⎝ ⎛⎭⎪⎫12,12,12,F ⎝ ⎛⎭⎪⎫12,0,0,∴EF →=⎝ ⎛⎭⎪⎫0,-12,-12,平面PBC 的一个法向量n =(0,1,1),∵EF →=-12n ,∴EF →∥n , ∴EF ⊥平面PBC .]4.设A 是空间任意一点,n 是空间任意一个非零向量,则适合条件AM →·n =0的点M 的轨迹是________.过点A 且与向量n 垂直的平面 [∵AM →·n =0,∴AM →⊥n 或AM →=0,∴点M 在过点A 且与向量n 垂直的平面上.]5.如图3­2­19,在四棱锥P ­ABCD 中,底面ABCD 为直角梯形,且AD ∥BC ,∠ABC =∠PAD =90°,侧面PAD ⊥底面ABCD .若PA =AB =BC =12AD .图3­2­19(1)求证:CD ⊥平面PAC ;(2)侧棱PA 上是否存在点E ,使得BE ∥平面PCD ?若存在,指出点E 的位置并证明,若不存在,请说明理由.[解] 因为∠PAD =90°,所以PA ⊥AD .又因为侧面PAD ⊥底面ABCD ,且侧面PAD ∩底面ABCD =AD ,所以PA ⊥底面ABCD .又因为∠BAD =90°,所以AB ,AD ,AP 两两垂直.分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.设AD =2,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,1). (1)证明:AP →=(0,0,1),AC →=(1,1,0),CD →=(-1,1,0), 可得AP →·CD →=0,AC →·CD →=0,所以AP ⊥CD ,AC ⊥CD . 又因为AP ∩AC =A ,所以CD ⊥平面PAC .(2)设侧棱PA 的中点是E ,则E ⎝ ⎛⎭⎪⎫0,0,12,BE →=⎝ ⎛⎭⎪⎫-1,0,12. 设平面PCD 的法向量是n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·CD →=0,n ·PD →=0,因为CD →=(-1,1,0),PD →=(0,2,-1),所以⎩⎪⎨⎪⎧-x +y =0,2y -z =0,取x =1,则y =1,z =2,所以平面PCD 的一个法向量为n =(1,1,2).所以n ·BE →=(1,1,2)·⎝ ⎛⎭⎪⎫-1,0,12=0,所以n ⊥BE →.因为BE ⊄平面PCD ,所以BE ∥平面PCD . 综上所述,当E 为PA 的中点时,BE ∥平面PCD .。

2018年秋高中数学 课时分层作业19 空间向量与垂直关系 新人教A版选修2-1

2018年秋高中数学 课时分层作业19 空间向量与垂直关系 新人教A版选修2-1

课时分层作业(十九) 空间向量与垂直关系(建议用时:40分钟)[基础达标练]一、选择题1.已知平面α的法向量为a =(1,2,-2),平面β的法向量为b =(-2,-4,k ),若α⊥β,则k =( )A .4B .-4C .5D .-5 D [∵α⊥β,∴a ⊥b ,∴a ·b =-2-8-2k =0. ∴k =-5.]2.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为( )A .337,-157,4B .407,-157,4C .407,-2,4D .4,407,-15B [∵AB →⊥BC →,∴AB →·BC →=0,即3+5-2z =0,得z =4, 又BP ⊥平面ABC ,∴BP →⊥AB →,BP →⊥BC →,则⎩⎪⎨⎪⎧(x -1)+5y +6=0,3(x -1)+y -12=0,解得⎩⎪⎨⎪⎧x =407,y =-157.]3.在菱形ABCD 中,若PA →是平面ABCD 的法向量,则以下等式中可能不成立的是( )【导学号:46342170】A .PA →⊥AB → B .PA →⊥CD →C .PC →⊥BD →D .PC →⊥AB →D [由题意知PA ⊥平面ABCD ,所以PA 与平面上的线AB ,CD 都垂直,A ,B 正确;又因为菱形的对角线互相垂直,可推得对角线BD ⊥平面PAC ,故PC ⊥BD ,C 选项正确.]4.已知点A (1,0,0),B (0,1,0),C (0,0,1),点D 满足条件:DB ⊥AC ,DC ⊥AB ,AD =BC ,则点D 的坐标为( )A .(1,1,1)B .(-1,-1,-1)或⎝ ⎛⎭⎪⎫13,13,13C .⎝ ⎛⎭⎪⎫13,13,13 D .(1,1,1)或⎝ ⎛⎭⎪⎫-13,-13,-13D [设D (x ,y ,z ),则BD →=(x ,y -1,z ),CD →=(x ,y ,z -1),AD →=(x -1,y ,z ),AC →=(-1,0,1),AB →=(-1,1,0), BC →=(0,-1,1).又DB ⊥AC ⇔-x +z =0 ①,DC ⊥AB ⇔-x +y =0 ②, AD =BC ⇔(x -1)2+y 2+z 2=2 ③,联立①②③得x =y =z =1或x =y =z =-13,所以点D 的坐标为(1,1,1)或⎝ ⎛⎭⎪⎫-13,-13,-13.故选D .] 5.如图3­2­14所示,在正方体ABCD ­A 1B 1C 1D 1中,E ,F 分别在A 1D ,AC 上,且A 1E =23A 1D ,AF =13AC ,则( )图3­2­14A .EF 至多与A 1D ,AC 之一垂直B .EF ⊥A 1D ,EF ⊥AC C .EF 与BD 1相交 D .EF 与BD 1异面B [建立分别以DA ,DC ,DD 1所在直线为x ,y ,z 轴的空间直角坐标系(图略),不妨设正方体的棱长为1,则DA 1→=(1,0,1),AC →=(0,1,0)-(1,0,0)=(-1,1,0),E ⎝ ⎛⎭⎪⎫13,0,13,F ⎝ ⎛⎭⎪⎫23,13,0,EF →=⎝⎛⎭⎪⎫13,13,-13,∴EF →·DA 1→=0,EF →·AC →=0, ∴EF ⊥A 1D ,EF ⊥AC .] 二、填空题6.已知点P 是平行四边形ABCD 所在平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).给出下列结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的一个法向量.其中正确的是________(填序号).①②③ [AB →·AP →=2×(-1)+(-1)×2+(-4)×(-1)=-2-2+4=0,则AB →⊥AP →,则AB ⊥AP .AD →·AP →=4×(-1)+2×2+0=0,则AP →⊥AD →,则AP ⊥AD .又AB ∩AD =A ,∴AP ⊥平面ABCD ,故AP →是平面ABCD 的一个法向量.]7.已知a =(0,1,1),b =(1,1,0),c =(1,0,1)分别是平面α,β,γ的法向量,则α,β,γ三个平面中互相垂直的有________对.【导学号:46342171】0 [∵a ·b =(0,1,1)·(1,1,0)=1≠0,a ·c =(0,1,1)·(1,0,1)=1≠0,b ·c =(1,1,0)·(1,0,1)=1≠0,∴a ,b ,c 中任意两个都不垂直,即α,β,γ中任意两个都不垂直.]8.已知空间三点A (-1,1,1),B (0,0,1),C (1,2,-3),若直线AB 上存在一点M ,满足CM ⊥AB ,则点M 的坐标为________.⎝ ⎛⎭⎪⎫-12,12,1 [设M (x ,y ,z ),∵AB→=(1,-1,0),BM →=(x ,y ,z -1),CM →=(x -1,y -2,z +3),由题意,得⎩⎪⎨⎪⎧x -1-(y -2)=0x =-yz -1=0,∴x =-12,y =12,z =1,∴点M 的坐标为⎝ ⎛⎭⎪⎫-12,12,1.]三、解答题9.如图3­2­15,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB =2,AF =1,M 是线段EF 的中点.求证:AM ⊥平面BDF .图3­2­15[证明] 以C 为坐标原点,建立如图所示的空间直角坐标系,则A (2,2,0),B (0,2,0),D (2,0,0),F (2,2,1),M ⎝⎛⎭⎪⎫22,22,1.所以AM →=⎝ ⎛⎭⎪⎫-22,-22,1,DF →=(0, 2,1),BD →=(2,-2,0).设n =(x ,y ,z )是平面BDF 的法向量, 则n ⊥BD →,n ⊥DF →,所以⎩⎪⎨⎪⎧n ·BD →=2x -2y =0,n ·DF →=2y +z =0⇒⎩⎨⎧x =y ,z =-2y ,取y =1,得x =1,z =- 2. 则n =(1,1,-2). 因为AM →=⎝ ⎛⎭⎪⎫-22,-22,1.所以n =- 2 AM →,得n 与AM →共线. 所以AM ⊥平面BDF .10.如图3­2­16所示,△ABC 是一个正三角形,EC ⊥平面ABC ,BD ∥CE ,且CE =CA =2BD .图3­2­16求证:平面DEA ⊥平面ECA .[证明] 建立如图所示的空间直角坐标系Cxyz ,不妨设CA =2,则CE =2,BD =1,C (0,0,0),A (3,1,0),B (0,2,0),E (0,0,2),D (0,2,1).所以EA →=(3,1,-2),CE →=(0,0,2),ED →=(0,2,-1).分别设平面CEA 与平面DEA 的法向量是n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n 1·EA →=0,n 1·CE →=0,即⎩⎨⎧3x 1+y 1-2z 1=0,2z 1=0,解得⎩⎨⎧y 1=-3x 1,z 1=0,⎩⎪⎨⎪⎧n 2·EA →=0,n 2·ED →=0,即⎩⎨⎧3x 2+y 2-2z 2=0,2y 2-z 2=0,解得⎩⎨⎧x 2=3y 2,z 2=2y 2.不妨取n 1=(1,-3,0),n 2=(3,1,2),因为n 1·n 2=0,所以n 1⊥n 2. 所以平面DEA ⊥平面ECA .[能力提升练]1.两平面α,β的法向量分别为μ=(3,-1,z ),v =(-2,-y ,1),若α⊥β,则y +z 的值是( )A .-3B .6C .-6D .-12B [∵μ=(3,-1,z ),v =(-2,-y,1)分别为α,β的法向量且α⊥β, ∴μ⊥v , 即μ·v =0, -6+y +z =0 ∴y +z =6.]2.如图3­2­17,在三棱柱ABC ­A 1B 1C 1中,侧棱AA 1⊥底面A 1B 1C 1,∠BAC =90°,AB =AC =AA 1=1,D 是棱CC 1的中点,P 是AD 的延长线与A 1C 1的延长线的交点.若点Q 在线段B 1P上,则下列结论正确的是( )图3­2­17A .当点Q 为线段B 1P 的中点时,DQ ⊥平面A 1BD B .当点Q 为线段B 1P 的三等分点时,DQ ⊥平面A 1BDC .在线段B 1P 的延长线上,存在一点Q ,使得DQ ⊥平面A 1BD D .不存在DQ 与平面A 1BD 垂直D [以A 1为原点,A 1B 1,A 1C 1,A 1A 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系(图略),则由已知得A 1(0,0,0),B 1(1,0,0),C 1(0,1,0),B (1,0,1),D ⎝⎛⎭⎪⎫0,1,12,P (0,2,0),A 1B →=(1,0,1),A 1D →=⎝⎛⎭⎪⎫0,1,12,B 1P →=(-1,2,0),DB 1→=⎝⎛⎭⎪⎫1,-1,-12.设平面A 1BD 的法向量为n =(x ,y ,z ),则⎩⎨⎧n ·A1B →=x +z =0,n ·A 1D →=y +12z =0,取z =-2,则x =2,y =1,所以平面A 1BD 的一个法向量为n =(2,1,-2).假设DQ ⊥平面A 1BD ,且B 1Q →=λB 1P →=λ(-1,2,0)=(-λ,2λ,0),则DQ →=DB 1→+B 1Q →=⎝ ⎛⎭⎪⎫1-λ,-1+2λ,-12,因为DQ →也是平面A 1BD 的法向量,所以n =(2,1,-2)与DQ →=⎝ ⎛⎭⎪⎫1-λ,-1+2λ,-12共线,于是有1-λ2=-1+2λ1=-12-2=14成立,但此方程关于λ无解.故不存在DQ 与平面A 1BD 垂直,故选D .] 3.如图3­2­18,四棱锥P ­ABCD 的底面ABCD 是边长为1的正方形,PD ⊥底面ABCD ,且PD =1,若E ,F 分别为PB ,AD 中点,则直线EF 与平面PBC 的位置关系是________.【导学号:46342173】图3­2­18垂直 [以D 为原点,DA ,DC ,DP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系(图略),则E ⎝ ⎛⎭⎪⎫12,12,12,F ⎝ ⎛⎭⎪⎫12,0,0,∴EF →=⎝ ⎛⎭⎪⎫0,-12,-12,平面PBC 的一个法向量n =(0,1,1),∵EF →=-12n ,∴EF →∥n , ∴EF ⊥平面PBC .]4.设A 是空间任意一点,n 是空间任意一个非零向量,则适合条件AM →·n =0的点M 的轨迹是________.过点A 且与向量n 垂直的平面 [∵AM →·n =0,∴AM →⊥n 或AM →=0,∴点M 在过点A 且与向量n 垂直的平面上.]5.如图3­2­19,在四棱锥P ­ABCD 中,底面ABCD 为直角梯形,且AD ∥BC ,∠ABC =∠PAD =90°,侧面PAD ⊥底面ABCD .若PA =AB =BC =12AD .图3­2­19(1)求证:CD ⊥平面PAC ;(2)侧棱PA 上是否存在点E ,使得BE ∥平面PCD ?若存在,指出点E 的位置并证明,若不存在,请说明理由.[解] 因为∠PAD =90°,所以PA ⊥AD .又因为侧面PAD ⊥底面ABCD ,且侧面PAD ∩底面ABCD =AD ,所以PA ⊥底面ABCD .又因为∠BAD =90°,所以AB ,AD ,AP 两两垂直.分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.设AD =2,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,1). (1)证明:AP →=(0,0,1),AC →=(1,1,0),CD →=(-1,1,0), 可得AP →·CD →=0,AC →·CD →=0,所以AP ⊥CD ,AC ⊥CD . 又因为AP ∩AC =A ,所以CD ⊥平面PAC .(2)设侧棱PA 的中点是E ,则E ⎝ ⎛⎭⎪⎫0,0,12,BE →=⎝ ⎛⎭⎪⎫-1,0,12. 设平面PCD 的法向量是n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·CD →=0,n ·PD →=0,因为CD →=(-1,1,0),PD →=(0,2,-1),所以⎩⎪⎨⎪⎧-x +y =0,2y -z =0,取x =1,则y =1,z =2,所以平面PCD 的一个法向量为n =(1,1,2).所以n ·BE →=(1,1,2)·⎝ ⎛⎭⎪⎫-1,0,12=0,所以n ⊥BE →.因为BE ⊄平面PCD ,所以BE ∥平面PCD . 综上所述,当E 为PA 的中点时,BE ∥平面PCD .。

人教新课标版数学高二选修2-1课时作业19空间向量与垂直关系

人教新课标版数学高二选修2-1课时作业19空间向量与垂直关系

一、选择题1.(2013·东营高二检测)已知平面α的法向量为a =(1,2,-2).平面β的法向量为b =(-2,-4,k ),若α⊥β,则k =( )A .4B .-4C .5D .-5【解析】 ∵α⊥β,∴a ⊥b ,∴a ·b =-2-8-2k =0∴k =-5.【答案】 D2.(2012·青岛高二检测)在菱形ABCD 中,若PA →是平面ABCD 的法向量,则以下等式中可能不成立的是( )A.PA →⊥AB → B .PA →⊥CD →C.PC →⊥BD →D.PC →⊥AB →【解析】 由题意知PA ⊥平面ABCD ,所以PA 与平面上的线AB 、CD 都垂直,A 、B 正确;又因为菱形的对角线互相垂直,可推得对角线BD ⊥平面PAC ,故PC ⊥BD ,C 选项正确.【答案】 D3.已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量为n =(-1,-1,-1),且β与α不重合,则( )A .α∥βB .α⊥βC .α与β相交不垂直D .以上都不对【解析】 AB →=(0,1,-1),AC →=(1,0,-1),∴n ·AB →=0,n ·AC→=0,∴n ⊥AB →,n ⊥AC →,故n 也是α的一个法向量,又∵α与β不重合,∴α∥β.【答案】 A4.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为( )A.337,-157,4B.407,-157,4C.407,-2,4 D .4,407,-15【解析】 ∵AB →⊥BC →,∴AB →·BC →=0,即3+5-2z =0,得z =4,又BP ⊥平面ABC ,∴BP →⊥AB →,BP →⊥BC →,则⎩⎨⎧ (x -1)+5y +6=0,3(x -1)+y -12=0,解得⎩⎪⎨⎪⎧ x =407,y =-157.【答案】 B 5.平面上有四个互异的点A ,B ,C ,D ,已知(DB →+DC →-2DA →)·(AB→-AC →)=0,则△ABC 的形状是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形【解析】 (DB →+DC →-2DA →)·(AB →-AC →)=(DB →-DA →+DC →-DA →)·CB →=(AB →+AC →)·CB →=0,故△ABC 为等腰三角形.【答案】 B二、填空题6.直线l 1与l 2的方向向量分别为a 1,a 2,若a 1⊥a 2,则l 1与l 2的位置关系为________.【解析】 两直线的方向向量垂直,这两条直线也垂直.【答案】 垂直7.(2013·吉林高二检测)已知直线l 与平面α垂直,直线l 的一个方向向量u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z =________.【解析】 由题意知u ⊥v ,∴u ·v =3+6+z =0,∴z =-9.【答案】 -98.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.【解析】 ∵AB →·AP →=0,AD →·AP →=0,∴AB ⊥AP ,AD ⊥AP ,则①②正确.又AB →与AD →不平行,∴AP →是平面ABCD 的法向量,则③正确.由于BD →=AD →-AB →=(2,3,4),AP →=(-1,2,-1),∴BD →与AP →不平行,故④错误.【答案】 ①②③三、解答题图3-2-159.如图3-2-15,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB =2,AF =1,M 是线段EF 的中点.求证:AM ⊥平面BDF .【证明】 以C 为坐标原点,建立如图所示的空间直角坐标系,则A (2,2,0),B (0,2,0),D (2,0,0),F (2,2,1),M (22,22,1).所以AM →=(-22,-22,1),DF →=(0,2,1),BD →=(2,-2,0).设n =(x ,y ,z )是平面BDF 的法向量,则n ⊥BD →,n ⊥DF →, 所以⎩⎪⎨⎪⎧ n ·BD →=2x -2y =0,n ·DF →=2y +z =0⇒⎩⎨⎧ x =y ,z =-2y ,取y=1,得x=1,z=- 2. 则n=(1,1,-2).因为AM→=(-22,-22,1).所以n=- 2 AM→,得n与AM→共线.所以AM⊥平面BDF.图3-2-1610.在四面体ABCD中,AB⊥面BCD,BC=CD,∠BCD=90°,∠ADB=30°,E、F分别是AC、AD的中点,求证:平面BEF⊥平面ABC.【证明】建立如图所示空间直角坐标系,取A(0,0,a),由∠ADB =30°,可得D(0,3a,0),C(32a,32a,0),B(0,0,0),E(34a,34a,a2),F(0,32a,a2),∴EF→=(-34a,34a,0),BA→=(0,0,a),BC →=(32a ,32a,0),∴EF →·BA →=0,EF →·BC →=0,∴EF ⊥AB ,EF ⊥BC ,∴EF ⊥面ABC ,又EF ⊂面BEF ,∴面BEF ⊥面ABC .11.在正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1上的动点,(1)求证:A 1E ⊥BD ;(2)若平面A 1BD ⊥平面EBD ,试确定E 点的位置.【解】 (1)证明 分别以DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系,设正方体棱长为a .依题意可得,A (a,0,0),B (a ,a,0),C (0,a,0),A 1(a,0,a ),C 1(0,a ,a ).设E (0,a ,e ).A 1E →=(-a ,a ,e -a ),又BD →=(-a ,-a,0), ∴A 1E →·BD →=a 2-a 2=0.∴A 1E →⊥BD →,即A 1E ⊥BD .(2)E 为CC 1的中点,证明如下:设BD 的中点为O ,连结A 1O ,OE .则O (a 2,a 2,0),OE →=(-a 2,a 2,e ),OA 1→=(a 2,-a 2,a ). ∵A 1B =A 1D ,O 为BD 中点,∴A 1O ⊥BD .又平面A 1BD ⊥平面EBD ,∴A 1O ⊥平面EBD .∴A 1O ⊥OE .又BD →=(-a ,-a,0),则OA 1→·BD →=0,OA 1→·OE →=0,即⎩⎪⎨⎪⎧ -a 22+a 22=0-a 24-a 24+ae =0,∴e =a 2.∴当E 为CC 1的中点时,能使平面A 1BD ⊥平面EBD .。

2019-2020学年高中数学课时作业空间向量与平行垂直关系新人教A版选修

2019-2020学年高中数学课时作业空间向量与平行垂直关系新人教A版选修
∵AD⊥平面SAB.∴ =(1,0,0)是平面SAB的一个法向量.
设平面SCD的法向量为n=(1.y.z).
则n· =(1.y.z)·(1,2,0)=1+2y=0.∴y=- .
又n· =(1.y.z)·(-1,0,2)=-1+2z=0.∴z= .
∴n= 即为平面SCD的一个法向量.
10.如图所示.在直三棱柱ABC-A1B1C1中.∠ABC=90°.BC=1=4.EB1=1.D.F.G分别为CC1.B1C1.A1C1的中点.
由题意知SO⊥平面ABCD.
以O为坐标原点.
. . 分别为x轴.y轴.z轴正方向.建立空间直角坐标系如图.
设底面边长为a.则高SO= a.
于是S .D .B .C .
= .
= .
则 · =0.
故OC⊥SD.从而AC⊥SD.
(2)棱SC上存在一点E使BE∥平面PAC.
理由如下:
由已知条件知 是平面PAC的一个法向量.
解析:由l1⊥l2知.a·b=0.即1×(-2)+2×3+(-2)×m=0.解得m=2.
答案:2
7.若A .B .C 是平面α内三点.设平面α的法向量为a=(x.y.z).则x∶y∶z=________.
解析: = . = .

得 解得
则x∶y∶z= y∶y∶ =2∶3∶(-4).
答案:2∶3∶(-4)
8.已知点P是平行四边形ABCD所在的平面外一点.如果 =(2.-1.-4). =(4,2,0). =(-1,2.-1).对于结论:①AP⊥AB;②AP⊥AD;③ 是平面ABCD的法向量;④ ∥ .其中正确的是________(填序号).
解析:由于 · =-1×2+(-1)×2+(-4)×(-1)=0. · =4×(-1)+2×2+0×(-1)=0.

2014-2015学年高中数学 3.2.2空间向量与垂直关系课时作业 新人教A版选修2-1

2014-2015学年高中数学 3.2.2空间向量与垂直关系课时作业 新人教A版选修2-1

空间向量与垂直关系(30分钟50分)一、选择题(每小题3分,共18分)1.若平面α,β的法向量分别为n1=(2,-3,5),n2=(-3,1,-4),则( )A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不正确【解析】选C.因为n1·n2=2×(-3)+(-3)×1+5×(-4)≠0,所以n1与n2不垂直,又≠≠,所以α与β相交但不垂直.2.(2014·青岛高二检测)如图所示,在正方体ABCD-A1B1C1D1中,O是底面正方形ABCD的中心,M是D1D的中点,N 是A1B1的中点,则直线NO,AM的位置关系是( )A.平行B.相交C.异面垂直D.异面不垂直【解析】选C.建立坐标系如图,设正方体的棱长为2,则A(2,0,0),M(0,0,1),O(1,1,0),N(2,1,2),=(-1,0,-2),=(-2,0,1),·=0,则直线NO,AM的位置关系是异面垂直.3.(2014·丹东高二检测)已知平面α内有一个点A(2,-1,2),α的一个法向量为n=(3,1,2),则下列点P中,在平面α内的是( )A.(1,-1,1)B.C. D.【解析】选 B.对于选项A,=(1,0,1),则·n=(1,0,1)·(3,1,2)=5≠0,故排除A;对于选项B,=,则·n=·(3,1,2)=0,故B正确,验证可知C,D均不满足·n=0.4.在正方体ABCD-A1B1C1D1中,若E为A1C1的中点,则直线CE垂直于( )A.ACB.BDC.A1DD.A1A【解析】选B.如图所示,建立直角坐标系Dxyz,设AB=1,则D(0,0,0),A(1,0,0),B(1,1,0),C(0,1,0),A1(1,0,1),E(,,1),所以=(,-,1),=(-1,1,0),=(-1,-1,0),=(-1,0,-1),=(0,0,-1),所以·=0,所以⊥,即CE⊥BD.5.(2014·桂林高二检测)如图所示,正方体ABCD-A1B1C1D1中,E,F分别在A1D,AC上,且A1E=A1D,AF=AC,则( )A.EF至多与A1D,AC之一垂直B.EF⊥A1D,EF⊥ACC.EF与BD1相交D.EF与BD1异面【解析】选B.以D点为坐标原点,以DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,设正方体棱长为1,则A1(1,0,1),D(0,0,0),A(1,0,0),C(0,1,0),E,F,B(1,1,0), D1(0,0,1),=(-1,0,-1),=(-1,1,0),=,=(-1,-1,1),=-,·=·=0,从而EF∥BD1,EF⊥A1D,EF⊥AC.6.下列命题中,正确命题的个数为( )①若n1,n2分别是平面α,β的法向量,则n1∥n2⇔α∥β;②若n1,n2分别是平面α,β的法向量,则α⊥β⇔n1·n2=0;③若n是平面α的法向量,a与α共面,则n·a=0;④若两个平面的法向量不垂直,则这两个平面一定不垂直.A.1B.2C.3D.4【解析】选C.命题①中平面α,β可能平行,也可能重合;结合平面法向量的概念,易知命题②③④正确.二、填空题(每小题4分,共12分)7.若向量a=(-1,2,-4),b=(2,-2,3)是平面α内的两个不共线的向量,直线l的一个方向向量m=(2,3,1),则l与α的位置关系是(填“垂直”“平行”“相交但不垂直”).【解析】m·a=(2,3,1)·(-1,2,-4)=-2+6-4=0,m·b=(2,3,1)·(2,-2,3)=4-6+3=1≠0.所以l与α相交但不垂直.答案:相交但不垂直8.已知点A,B,C的坐标分别为(0,1,0),(-1,0,1),(2,1,1),点P的坐标为(x,0,z),若⊥,⊥,则点P的坐标为.【解析】因为=(-1,-1,1),=(2,0,1),=(-x,1,-z),由·=0, ·=0,得则x=,z=-,所以P.答案:9.(2014·长春高二检测)已知点P是平行四边形ABCD所在的平面外一点,如果=(2,-1,-4),=(4,2,0),=(-1,2,-1).对于结论:①AP⊥AB;②AP⊥AD;③是平面ABCD的法向量;④∥.其中正确的是.【解析】由于·=-1×2+(-1)×2+(-4)×(-1)=0,·=4×(-1)+2×2+0×(-1)=0,所以①②③正确.答案:①②③三、解答题(每小题10分,共20分)10.(2014·广州高二检测)用向量方法证明:如果两个相交平面与第三个平面垂直,则它们的交线也与第三个平面垂直.【解析】已知:如图,α∩β=l,α⊥γ,β⊥γ.求证:l⊥γ.证明:设平面α,β,γ的法向量分别为a,b,c,直线l的方向向量为e,则a·e=0,b·e=0.因为a,b与e不共面,故存在实数x,y,z,使c=x a+y b+z e.因为a⊥c,b⊥c,所以即因为α与β相交,所以a与b不共线,所以所以方程组有惟一解所以c=z e,即c∥e,从而有l⊥γ.11.(2014·上海高二检测)如图,长方体ABCD-A1B1C1D1中,AB=AA1=1,BC=,M是AD中点,N是B1C1中点.(1)求证:NA1∥CM.(2)求证:平面A1MCN⊥平面A1BD1.【证明】以D为原点,建立空间直角坐标系Dxyz.所以B(,1,0),A1(,0,1),D1(0,0,1),C(0,1,0),M,N.(1)=,=.所以=,所以NA1∥CM.(2)方法一:=(,1,-1),=(0,1,1),=,所以·=0+1-1=0,·=1-1+0=0,所以D1B⊥MN,D1B⊥CM,又MN∩CM=M,所以D1B⊥平面A1MCN,又D1B⊂平面A1BD1,所以平面A1MCN⊥平面A1BD1.方法二:=(,0,0),=(,1,-1),=(0,1,1),=.设平面A1MCN的法向量为n=(x,y,z),所以取n=(,1,-1).设平面A1BD1的法向量为m=(x1,y1,z1),所以取m=(0,1,1),因为n·m=(,1,-1)·(0,1,1)=0+1-1=0,所以n⊥m,所以平面A1MCN⊥平面A1BD1.【变式训练】在正三棱锥P-ABC中,三条侧棱两两互相垂直,G是△PAB的重心,E,F分别为BC,PB上的点,且BE∶EC=PF∶FB=1∶2.求证:平面GEF⊥平面PBC.【证明】如图,以三棱锥的顶点P为原点,以PA,PB,PC所在直线分别作为x轴,y轴,z轴建立空间直角坐标系.令PA=PB=PC=3,则A(3,0,0),B(0,3,0),C(0,0,3),E(0,2,1),F(0,1,0),G(1,1,0),P(0,0,0),于是=(3,0,0),=(1,0,0),故=3,所以PA∥FG.而PA⊥平面PBC,所以FG⊥平面PBC.又FG⊂平面EFG,所以平面EFG⊥平面PBC.【一题多解】如解析建立的空间直角坐标系,则E(0,2,1),F(0,1,0),G(1,1,0).所以=(0,-1,-1),=(1,-1,-1).设平面EFG的法向量是n=(x,y,z),则有n⊥,n⊥.所以令y=1,得z=-1,x=0,即n=(0,1,-1).显然=(3,0,0)是平面PBC的一个法向量.又n·=0,所以n⊥,即平面PBC的法向量与平面GEF的法向量互相垂直,所以平面GEF⊥平面PBC.(30分钟50分)一、选择题(每小题4分,共16分)1.已知A(3,0,-1),B(0,-2,-6),C(2,4,-2),则△ABC是( )A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形【解析】选C.=(-3,-2,-5),=(-1,4,-1),则·=-3×(-1)-2×4+5=0.所以⊥,故△ABC为直角三角形.又||≠||故选C.2.平面α的一个法向量n=(0,1,-1),如果直线l⊥平面α,则直线l的单位方向向量s=( )A.(0,1,-1)B.±C.(0,,-)D.±(0,,-)【解析】选B.直线l的方向向量平行于平面α的法向量,故直线l的单位方向向量是s=±.3.如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD,则平面PQC与平面DCQ的位置关系为( )A.平行B.垂直C.相交但不垂直D.位置关系不确定【解析】选B.如图,以D为坐标原点,线段DA的长为单位长度,射线DA为x轴的正半轴建立空间直角坐标系Dxyz.依题意有Q(1,1,0),C(0,0,1),P(0,2,0).则=(1,1,0),=(0,0,1),=(1,-1,0).因为·=0,·=0.所以PQ⊥DQ,PQ⊥DC.所以PQ⊥平面DCQ.又PQ⊂平面PQC,所以平面PQC⊥平面DCQ.4.如图,以等腰直角三角形斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出如下四个结论,①·≠0;②AB⊥DC;③BD⊥AC;④平面ADC的法向量和平面ABC的法向量互相垂直.其中正确的个数是( )A.1B.2C.3D.4【解析】选 B.建立以D为坐标原点,以DB,DC,DA所在直线为x,y,z轴的空间坐标系,设斜边BC=2,则B(1,0,0),C(0,1,0),A(0,0,1)则=(1,0,-1),=(0,1,-1),=(0,1,0), =(-1,0,0)从而有·=0+0+1=1,故①错误,·=0,故②正确,·=0,故③正确,易知平面ADC的一个法向量为向量=(-1,0,0),平面ABC的法向量设为n=(x,y,z),由·n=x-z=0,·n=y-z=0,令y=1,则x=1,z=1,故n=(1,1,1),·n=-1,故④错误.二、填空题(每小题5分,共10分)5.(2014·上海高二检测)在空间直角坐标系Oxyz中,已知点P(2cosx+1, 2cos2x+2,0)和点Q(cosx,-1,3),其中x∈[0,π].若直线OP与直线OQ垂直,则x的值为.【解析】由题意得⊥.所以cosx·(2cosx+1)-(2cos2x+2)=0.所以2cos2x-cosx=0.所以cosx=0或cosx=.又x∈[0,π],所以x=或x=.答案:或6.(2014·南京高二检测)已知向量b=(-2,1,1),点A(-3,-1,4),B(-2,-2,2).若在直线AB上,存在一点E,使得⊥b(O为原点)则E点的坐标为.【解题指南】先设点E在AB上的位置,利用垂直关系建立与E点坐标有关的方程,求出点E.【解析】=+=+t=(-3,-1,4)+t(1,-1,-2)=(-3+t,-1-t,4-2t),因⊥b,则·b=0,所以-2(-3+t)+(-1-t)+(4-2t)=0,解得t=,因此存在点E,使得⊥b,此时E点的坐标为. 答案:三、解答题(每小题12分,共24分)7.(2014·银川高二检测)已知正方体ABCD-A′B′C′D′中,点M,N分别在面对角线AD′和面对角线BD上,并且=.求证:MN⊥AD.【证明】设正方体棱长为1,==λ,=a,=b,=c,则=-= +-=+λ-λ=a+λ(b-a)-λ(b+c)=(1-λ)a-λc且a·b=0,a·c=0,b·c=0,所以·=b·[(1-λ)a-λc]=(1-λ)b·a-λb·c=0,所以⊥,所以MN⊥AD.【变式训练】在正方体ABCD-A1B1C1D1中,P为DD1的中点,M为四边形ABCD的中心.求证:对A1B1上任一点N,都有MN⊥AP.【证明】建立如图所示的空间直角坐标系Dxyz,设正方体的棱长为1,则A(1,0,0),P, M,N(1,y,1).所以=,=.所以·=(-1)×+0×+×1=0,所以⊥,即对A1B1上任意一点N都有MN⊥AP.8.(2014·广州高二检测)如图所示的长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,O为AC与BD 的交点,BB1=,M是线段B1D1的中点.(1)求证:BM∥平面D1AC.(2)求证:D1O⊥平面AB1C.【证明】(1)建立如图所示的空间直角坐标系,则点O(1,1,0),D1(0,0,),所以=(-1,-1,),又点B(2,2,0),M(1,1,),所以=(-1,-1,),所以=,又因为OD1与BM不共线,所以OD1∥BM.又OD1⊂平面D1AC,BM⊄平面D1AC,所以BM∥平面D1AC.(2)连接OB1.因为·=(-1,-1,)·(1,1,)=0,·= (-1,-1,)·(-2,2,0)=0,所以⊥,⊥,即OD1⊥OB1,OD1⊥AC,又OB1∩AC=O,所以D1O⊥平面AB1C.【变式训练】如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是BB1,D1B1的中点.求证:EF⊥平面B1AC.【解题指南】思路一:EF⊥AB1,EF⊥B1C得EF⊥平面B1AC;思路二:求平面B1AC的法向量n证明∥n从而EF⊥平面B1AC.【证明】设=a,=b,=c,则=+=(+)=(+)=(+-)=(-a+b+c).因为=+=a+b,所以·=(-a+b+c)·(a+b)=(b2-a2+c·a+c·b)=(|b|2-|a|2+0+0)=0.所以⊥,即EF⊥AB1.同理,EF⊥B1C.又AB1∩B1C=B1,所以EF⊥平面B1AC.【一题多解1】设正方体的棱长为2,以D为原点,以DA,DC,DD1所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,则A(2,0,0),C(0,2,0),B1(2,2,2),E(2,2,1),F(1,1,2).所以=(1,1,2)-(2,2,1)=(-1,-1,1),=(2,2,2)-(2,0,0)=(0,2,2),=(0,2,0)-(2,0,0)=(-2,2,0).所以·=(-1,-1,1)·(0,2,2)=(-1)×0+(-1)×2+1×2=0,·=(-1,-1,1)·(-2,2,0)=2-2+0=0,所以⊥,⊥,所以EF⊥AB1,EF⊥AC.又AB1∩AC=A,所以EF⊥平面B1AC.【一题多解2】同一题多解1得=(0,2,2),=(-2,2,0),=(-1,-1,1). 设平面B1AC的法向量n=(x,y,z),则·n=0,·n=0,即取x=1,则y=1,z=-1,所以n=(1,1,-1),所以=-n,所以∥n,所以EF⊥平面B1AC.。

高中数学人教A版选修2-1练习课件:3.2.2 空间向量与垂直关系

高中数学人教A版选修2-1练习课件:3.2.2 空间向量与垂直关系
第三页,编辑于星期日:二十三点 二十八分。
课堂对点训练
第四页,编辑于星期日:二十三点 二十八分。
知识点一
证明线线垂直
1.正方体ABCD—A1B1C1D1中,E为AC的中点.
第五页,编辑于星期日:二十三点 二十八分。
证明:BD1⊥EB1. 证明:以 D 为原点,DA、DC、DD1 所在直线分别为 x 轴、 y 轴、z 轴建立如图所示的空间直角坐标系 D-xyz,
3.2 立体几何中的向量方法
课时作业30 空间向量与垂直关系
第三章 空间向量与立体几何
第一页,编辑于星期日:二十三点 二十八分。
1 课堂对点训练 2 课后提升训练
第二页,编辑于星期日:二十三点 二十八分。
[目标导航] 1.能利用平面法向量证明两个平面垂直. 2.能利用直线的方向向量和平面的法向量判定并证明 空间中的垂直关系.
第七页,编辑于星期日:二十三点 二十八分。
知识点二
证明线面垂直
2.如图所示,正方体 ABCD—A1B1C1D1 中,M、N 分别 为 AB、B1C 的中点.试用向量法判断 MN 与平面 A1BD 的位 置关系.
第八页,编辑于星期日:二十三点 二十八分。
证明:设正方体的棱长为 1,以 D 为坐标原点,DA、DC、 DD1 所在直线分别为 x 轴、y 轴、z 轴建立空间直角坐标系 D -xyz,
第十一页,编辑于星期日:二பைடு நூலகம்三点 二十八分。
解:法一:如右图,建立空间直角坐标系, 则 A(0,0,0),B(2,0,0),C(0,2,0),A1(0,0, 3),C1(0,1, 3). ∵D 为 BC 的中点, ∴D 点坐标为(1,1,0). ∴A→D=(1,1,0),A→A1=(0,0, 3),B→C=(-2,2,0). ∴A→D·B→C=1×(-2)+1×2+0×0=0, A→A1·B→C=0×(-2)+0×2+ 3×0=0.

【红对勾】高中数学 3-2-2 空间向量与垂直关系课时作业 新人教A版选修2-1(1)

【红对勾】高中数学 3-2-2 空间向量与垂直关系课时作业 新人教A版选修2-1(1)

课时作业24 空间向量与垂直关系时刻:45分钟分值:100分一、选择题(每题6分,共36分)1.假设向量m同时垂直于向量a和b,向量n=λa+μb(λ,μ∈R,λ,μ≠0),那么( )A.m∥n B.m⊥nC.m与n既不平行也不垂直D.以上三种情形均有可能解析:m·n=m·(λa+μb)=λm·a+μm·b=0.答案:B2.已知平面α内的三点A(0,0,1)、B(0,1,0)、C(1,0,0),平面β的一个法向量为n=(-1,-1,-1),且β与α不重合,那么( )A.α∥βB.α⊥βC.α与β相交不垂直D.以上都不对解析:AB→=(0,1,-1),AC→=(1,0,-1),n·AB→=-1×0+(-1)×1+(-1)×(-1)=0,n·AC→=-1×1-1×0+(-1)×(-1)=0,∴n⊥AB→,n⊥AC→.∴n也为α的一个法向量.又α与β不重合,∴α∥β.答案:A3.在菱形ABCD中,假设PA→是平面ABCD的法向量,那么以劣等式中可能不成立的是( )A.PA→·AB→=0B.PC→·BD→=0C.PC→·AB→=0D.PA→·CD→=0解析:∵PA⊥平面ABCD,∴BD⊥PA.又AC⊥BD,∴PC⊥BD.应选项B正确,选项A和D显然成立.应选C.答案:C4.已知向量a,b是平面α内的两个不相等的非零向量,非零向量c在直线l上,那么c·a=0且c·b=0是l⊥α的( )A .充分没必要要条件B .必要不充分条件C .充要条件D .既不充分又没必要要条件解析:若c ·a =0且c ·b =0⇒/ l ⊥α,缘故是a 可能与b 共线,而l ⊥α那么必然有c ·a =0且c ·b =0成立.应选B.答案:B5.已知AB →=(1,5,-2),BC →=(3,1,z ),假设AB →⊥BC →,BP →=(x -1,y ,-3),且BP →⊥平面ABC ,那么BP→等于( )A .(337,-157,4)B .(337,-157,-3)C .(407,-157,4)D .(407,157,-3)解析:由AB →·BC →=0得3+5-2z =0,∴z =4.又BP →⊥平面ABC ,∴⎩⎨⎧ BP →·AB →=0BP →·BC →=0,即⎩⎪⎨⎪⎧ x -1+5y +6=03x -3+y -12=0.解得⎩⎪⎨⎪⎧x =407y =-157.答案:B6.在正方体ABCD -A 1B 1C 1D 1中,假设E 为A 1C 1的中点,那么直线CE 垂直于() A .AC B .BDC .A 1D D .A 1A图1解析:成立如图1坐标系,设正方体棱长为1,则A (1,0,0),B (1,1,0),C (0,1,0),D (0,0,0),A 1(1,0,1),E (12,12,1). ∴CE →=(12,12,1)-(0,1,0)=(12,-12,1). AC →=(-1,1,0),BD →=(-1,-1,0),A 1D →=(-1,0,-1),A 1A →=(0,0,-1).∵CE →·BD →=(12,-12,1)·(-1,-1,0) =-12+12+0=0. ∴CE →⊥BD →,∴CE ⊥BD .答案:B二、填空题(每题8分,共24分)7.已知A 、B 、C 三点的坐标别离为A (4,1,3),B (2,-5,1),C (3,7,λ),假设AB ⊥AC ,那么λ等于________.解析:∵AB →=(-2,-6,-2),AC →=(-1,6,λ-3),AB →·AC →=2-36-2(λ-3)=0,∴λ=-14.答案:-148.已知A ,B ,C 的坐标为(0,1,0),(-1,0,1),(2,1,1),点P 的坐标(x,0,z ),假设PA ⊥AB ,PA ⊥AC ,那么P 点坐标为________.解析:利用向量垂直的条件. 答案:⎝ ⎛⎭⎪⎫13,0,-23 9.已知点P 是平行四边形ABCD 所在的平面外一点,若是AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).关于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的选项是________.解析:由AP →·AB →=-2-2+4=0知AP ⊥AB ;由AP →·AD →=-4+4+0=0,知AP ⊥AD ,由①②知AP →是平面ABCD 的法向量,易知AP →不平行BD →,因此①②③正确.答案:①②③三、解答题(共40分)10.(10分)在正方体ABCD -A 1B 1C 1D 1中,E 、F 别离是BB 1、CD 的中点,求证:D 1F ⊥平面ADE . 图2证明:不妨设已知正方体的棱长为1个单位长度.以D 为坐标原点,成立如图2所示的空间直角坐标系,那么D (0,0,0),A (1,0,0),D 1(0,0,1),E (1,1,12),F (0,12,0), 因此D 1F →=(0,12,-1),AD →=(-1,0,0),AE →=(0,1,12). 因此D 1F →·AD →=0,D 1F →·AE →=0+12-12=0. 因此D 1F →⊥AD →且D 1F →⊥AE →,即D 1F ⊥AD ,D 1F ⊥AE .又AE ∩AD =A ,因此D 1F ⊥平面ADE .图311.(15分)已知正方形ABCD 和矩形ACEF 所在的平面相互垂直,AB =2,AF =1,M 是线段EF 的中点. 求证:AM ⊥平面BDF .图4证明:以C 为坐标原点,成立如图4所示的空间直角坐标系,那么A (2,2,0),B (0,2,0),D (2,0,0),F (2,2,1),M (22,22,1). 因此AM →=(-22,-22,1),DF →=(0,2,1),BD →=(2,-2,0).设n =(x ,y ,z )是平面BDF 的法向量,则n ⊥BD →,n ⊥DF →,因此⎩⎨⎧ n ·BD →=2x -2y =0n ·DF →=2y +z =0⇒⎩⎪⎨⎪⎧ x =y ,z =-2y ,取y =1, 得x =1,z =-2. 则n =(1,1,-2). 因为AM →=(-22,-22,1), 因此n =-2AM →,得n 与AM →共线.因此AM ⊥平面BDF .图512.(15分)如图5所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 别离是BB 1,DC 的中点.(1)证明平面AD 1F⊥平面ADE.(2)在AE 上求一点M ,使得A 1M⊥平面DAE.解:(1)不妨设正方体的棱长为1,以D 为坐标原点,别离以DA ,DC ,DD 1所在的直线为x 轴、y 轴、z轴成立如图6所示的空间直角坐标系,那么A(1,0,0),D 1(0,0,1),F(0,12,0),E(1,1,12),AD 1→=(-1,0,1),AF →=(-1,12,0),AD →=(-1,0,0),AE →=(0,1,12).设n 1,n 2别离为平面AD 1F ,平面ADE 的法向量.令n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2),图6∴AD 1→·n 1=(-1,0,1)·(x 1,y 1,z 1)=-x 1+z 1=0,AF →·n 1=(-1,12,0)·(x 1,y 1,z 1)=-x 1+12y 1=0, 令x 1=1,∴n 1=(1,2,1).又AD →·n 2=(-1,0,0)·(x 2,y 2,z 2)=-x 2=0,AE →·n 2=(0,1,12)·(x 2,y 2,z 2)=y 2+12z 2=0,令y 2=1, ∴n 2=(0,1,-2).∵n 1·n 2=(1,2,1)·(0,1,-2) =1×0+2×1+1×(-2)=0,∴平面AD 1F ⊥平面ADE .(2)由于点M 在AE 上,∴可设AM →=λAE →=λ(0,1,12)=(0,λ,12λ) 可得M (1,λ,12λ),又∵A 1(1,0,1),于是A 1M →=(0,λ,12λ-1) 要使A 1M ⊥平面DAE ,需A 1M ⊥AE ,∴A 1M →·AE →=(0,λ,12λ-1)·(0,1,12)=54λ-12=0, 得λ=25. 故当AM =25AE 时,即点M 的坐标为(1,25,15)时,A 1M ⊥平面DAE .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时分层作业(十九) 空间向量与垂直关系(建议用时:40分钟)[基础达标练]一、选择题1.已知平面α的法向量为a =(1,2,-2),平面β的法向量为b =(-2,-4,k ),若α⊥β,则k =( )A .4B .-4C .5D .-5 D [∵α⊥β,∴a ⊥b ,∴a ·b =-2-8-2k =0. ∴k =-5.]2.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为( )A .337,-157,4B .407,-157,4C .407,-2,4D .4,407,-15B [∵AB →⊥BC →,∴AB →·BC →=0,即3+5-2z =0,得z =4, 又BP ⊥平面ABC ,∴BP →⊥AB →,BP →⊥BC →,则⎩⎪⎨⎪⎧(x -1)+5y +6=0,3(x -1)+y -12=0,解得⎩⎪⎨⎪⎧x =407,y =-157.]3.在菱形ABCD 中,若PA →是平面ABCD 的法向量,则以下等式中可能不成立的是( )【导学号:46342170】A .PA →⊥AB → B .PA →⊥CD →C .PC →⊥BD →D .PC →⊥AB →D [由题意知PA ⊥平面ABCD ,所以PA 与平面上的线AB ,CD 都垂直,A ,B 正确;又因为菱形的对角线互相垂直,可推得对角线BD ⊥平面PAC ,故PC ⊥BD ,C 选项正确.]4.已知点A (1,0,0),B (0,1,0),C (0,0,1),点D 满足条件:DB ⊥AC ,DC ⊥AB ,AD =BC ,则点D 的坐标为( )A .(1,1,1)B .(-1,-1,-1)或⎝ ⎛⎭⎪⎫13,13,13C .⎝ ⎛⎭⎪⎫13,13,13 D .(1,1,1)或⎝ ⎛⎭⎪⎫-13,-13,-13D [设D (x ,y ,z ),则BD →=(x ,y -1,z ),CD →=(x ,y ,z -1),AD →=(x -1,y ,z ),AC →=(-1,0,1),AB →=(-1,1,0), BC →=(0,-1,1).又DB ⊥AC ⇔-x +z =0 ①,DC ⊥AB ⇔-x +y =0 ②, AD =BC ⇔(x -1)2+y 2+z 2=2 ③,联立①②③得x =y =z =1或x =y =z =-13,所以点D 的坐标为(1,1,1)或⎝ ⎛⎭⎪⎫-13,-13,-13.故选D .] 5.如图3­2­14所示,在正方体ABCD ­A 1B 1C 1D 1中,E ,F 分别在A 1D ,AC 上,且A 1E =23A 1D ,AF =13AC ,则( )图3­2­14A .EF 至多与A 1D ,AC 之一垂直B .EF ⊥A 1D ,EF ⊥AC C .EF 与BD 1相交 D .EF 与BD 1异面B [建立分别以DA ,DC ,DD 1所在直线为x ,y ,z 轴的空间直角坐标系(图略),不妨设正方体的棱长为1,则DA 1→=(1,0,1),AC →=(0,1,0)-(1,0,0)=(-1,1,0),E ⎝ ⎛⎭⎪⎫13,0,13,F ⎝ ⎛⎭⎪⎫23,13,0,EF →=⎝⎛⎭⎪⎫13,13,-13,∴EF →·DA 1→=0,EF →·AC →=0, ∴EF ⊥A 1D ,EF ⊥AC .] 二、填空题6.已知点P 是平行四边形ABCD 所在平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).给出下列结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的一个法向量.其中正确的是________(填序号).①②③ [AB →·AP →=2×(-1)+(-1)×2+(-4)×(-1)=-2-2+4=0,则AB →⊥AP →,则AB ⊥AP .AD →·AP →=4×(-1)+2×2+0=0,则AP →⊥AD →,则AP ⊥AD .又AB ∩AD =A ,∴AP ⊥平面ABCD ,故AP →是平面ABCD 的一个法向量.]7.已知a =(0,1,1),b =(1,1,0),c =(1,0,1)分别是平面α,β,γ的法向量,则α,β,γ三个平面中互相垂直的有________对.【导学号:46342171】0 [∵a ·b =(0,1,1)·(1,1,0)=1≠0,a ·c =(0,1,1)·(1,0,1)=1≠0,b ·c =(1,1,0)·(1,0,1)=1≠0,∴a ,b ,c 中任意两个都不垂直,即α,β,γ中任意两个都不垂直.]8.已知空间三点A (-1,1,1),B (0,0,1),C (1,2,-3),若直线AB 上存在一点M ,满足CM ⊥AB ,则点M 的坐标为________.⎝ ⎛⎭⎪⎫-12,12,1 [设M (x ,y ,z ),∵AB→=(1,-1,0),BM →=(x ,y ,z -1),CM →=(x -1,y -2,z +3),由题意,得⎩⎪⎨⎪⎧x -1-(y -2)=0x =-yz -1=0,∴x =-12,y =12,z =1,∴点M 的坐标为⎝ ⎛⎭⎪⎫-12,12,1.]三、解答题9.如图3­2­15,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB =2,AF =1,M 是线段EF 的中点.求证:AM ⊥平面BDF .图3­2­15[证明] 以C 为坐标原点,建立如图所示的空间直角坐标系,则A (2,2,0),B (0,2,0),D (2,0,0),F (2,2,1),M ⎝⎛⎭⎪⎫22,22,1.所以AM →=⎝ ⎛⎭⎪⎫-22,-22,1,DF →=(0, 2,1),BD →=(2,-2,0).设n =(x ,y ,z )是平面BDF 的法向量, 则n ⊥BD →,n ⊥DF →,所以⎩⎪⎨⎪⎧n ·BD →=2x -2y =0,n ·DF →=2y +z =0⇒⎩⎨⎧x =y ,z =-2y ,取y =1,得x =1,z =- 2. 则n =(1,1,-2). 因为AM →=⎝ ⎛⎭⎪⎫-22,-22,1.所以n =- 2 AM →,得n 与AM →共线. 所以AM ⊥平面BDF .10.如图3­2­16所示,△ABC 是一个正三角形,EC ⊥平面ABC ,BD ∥CE ,且CE =CA =2BD .图3­2­16求证:平面DEA ⊥平面ECA .[证明] 建立如图所示的空间直角坐标系Cxyz ,不妨设CA =2,则CE =2,BD =1,C (0,0,0),A (3,1,0),B (0,2,0),E (0,0,2),D (0,2,1).所以EA →=(3,1,-2),CE →=(0,0,2),ED →=(0,2,-1).分别设平面CEA 与平面DEA 的法向量是n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n 1·EA →=0,n 1·CE →=0,即⎩⎨⎧3x 1+y 1-2z 1=0,2z 1=0,解得⎩⎨⎧y 1=-3x 1,z 1=0,⎩⎪⎨⎪⎧n 2·EA →=0,n 2·ED →=0,即⎩⎨⎧3x 2+y 2-2z 2=0,2y 2-z 2=0,解得⎩⎨⎧x 2=3y 2,z 2=2y 2.不妨取n 1=(1,-3,0),n 2=(3,1,2),因为n 1·n 2=0,所以n 1⊥n 2. 所以平面DEA ⊥平面ECA .[能力提升练]1.两平面α,β的法向量分别为μ=(3,-1,z ),v =(-2,-y ,1),若α⊥β,则y +z 的值是( )A .-3B .6C .-6D .-12B [∵μ=(3,-1,z ),v =(-2,-y,1)分别为α,β的法向量且α⊥β, ∴μ⊥v , 即μ·v =0, -6+y +z =0 ∴y +z =6.]2.如图3­2­17,在三棱柱ABC ­A 1B 1C 1中,侧棱AA 1⊥底面A 1B 1C 1,∠BAC =90°,AB =AC =AA 1=1,D 是棱CC 1的中点,P 是AD 的延长线与A 1C 1的延长线的交点.若点Q 在线段B 1P 上,则下列结论正确的是( )图3­2­17A .当点Q 为线段B 1P 的中点时,DQ ⊥平面A 1BD B .当点Q 为线段B 1P 的三等分点时,DQ ⊥平面A 1BDC .在线段B 1P 的延长线上,存在一点Q ,使得DQ ⊥平面A 1BD D .不存在DQ 与平面A 1BD 垂直D [以A 1为原点,A 1B 1,A 1C 1,A 1A 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系(图略),则由已知得A 1(0,0,0),B 1(1,0,0),C 1(0,1,0),B (1,0,1),D ⎝⎛⎭⎪⎫0,1,12,P (0,2,0),A 1B →=(1,0,1),A 1D →=⎝⎛⎭⎪⎫0,1,12,B 1P →=(-1,2,0),DB 1→=⎝⎛⎭⎪⎫1,-1,-12.设平面A 1BD 的法向量为n =(x ,y ,z ),则⎩⎨⎧n ·A1B →=x +z =0,n ·A 1D →=y +12z =0,取z =-2,则x =2,y =1,所以平面A 1BD 的一个法向量为n =(2,1,-2).假设DQ ⊥平面A 1BD ,且B 1Q →=λB 1P →=λ(-1,2,0)=(-λ,2λ,0),则DQ →=DB 1→+B 1Q →=⎝⎛⎭⎪⎫1-λ,-1+2λ,-12,因为DQ →也是平面A 1BD 的法向量,所以n =(2,1,-2)与DQ →=⎝ ⎛⎭⎪⎫1-λ,-1+2λ,-12共线,于是有1-λ2=-1+2λ1=-12-2=14成立,但此方程关于λ无解.故不存在DQ 与平面A 1BD 垂直,故选D .] 3.如图3­2­18,四棱锥P ­ABCD 的底面ABCD 是边长为1的正方形,PD ⊥底面ABCD ,且PD =1,若E ,F 分别为PB ,AD 中点,则直线EF 与平面PBC 的位置关系是________. 【导学号:46342173】图3­2­18垂直 [以D 为原点,DA ,DC ,DP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系(图略),则E ⎝ ⎛⎭⎪⎫12,12,12,F ⎝ ⎛⎭⎪⎫12,0,0,∴EF →=⎝ ⎛⎭⎪⎫0,-12,-12,平面PBC 的一个法向量n =(0,1,1),∵EF →=-12n ,∴EF →∥n , ∴EF ⊥平面PBC .]4.设A 是空间任意一点,n 是空间任意一个非零向量,则适合条件AM →·n =0的点M 的轨迹是________.过点A 且与向量n 垂直的平面 [∵AM →·n =0,∴AM →⊥n 或AM →=0,∴点M 在过点A 且与向量n 垂直的平面上.]5.如图3­2­19,在四棱锥P ­ABCD 中,底面ABCD 为直角梯形,且AD ∥BC ,∠ABC =∠PAD =90°,侧面PAD ⊥底面ABCD .若PA =AB =BC =12AD .图3­2­19(1)求证:CD ⊥平面PAC ;(2)侧棱PA 上是否存在点E ,使得BE ∥平面PCD ?若存在,指出点E 的位置并证明,若不存在,请说明理由.[解] 因为∠PAD =90°,所以PA ⊥AD .又因为侧面PAD ⊥底面ABCD ,且侧面PAD ∩底面ABCD =AD ,所以PA ⊥底面ABCD .又因为∠BAD =90°,所以AB ,AD ,AP 两两垂直.分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.设AD =2,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,1). (1)证明:AP →=(0,0,1),AC →=(1,1,0),CD →=(-1,1,0), 可得AP →·CD →=0,AC →·CD →=0,所以AP ⊥CD ,AC ⊥CD . 又因为AP ∩AC =A ,所以CD ⊥平面PAC .(2)设侧棱PA 的中点是E ,则E ⎝ ⎛⎭⎪⎫0,0,12,BE →=⎝ ⎛⎭⎪⎫-1,0,12. 设平面PCD 的法向量是n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·CD →=0,n ·PD →=0,因为CD →=(-1,1,0),PD →=(0,2,-1),所以⎩⎪⎨⎪⎧-x +y =0,2y -z =0,取x =1,则y =1,z =2,所以平面PCD 的一个法向量为n =(1,1,2).所以n ·BE →=(1,1,2)·⎝ ⎛⎭⎪⎫-1,0,12=0,所以n ⊥BE →.因为BE ⊄平面PCD ,所以BE ∥平面PCD . 综上所述,当E 为PA 的中点时,BE ∥平面PCD .。

相关文档
最新文档