【精品】2017年福建省莆田二十四中高一上学期期中数学试卷

合集下载

高一数学必修1期中考试测试题及答案(最新整理)

高一数学必修1期中考试测试题及答案(最新整理)

高一数学必修一期中考试试卷一、选择题(共10道小题,每道题5分,共50分.请将正确答案填涂在答题卡上)1.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},则A∩(C U B)等于( )A .{4,5} B.{2,4,5,7} C.{1,6} D.{3}2. 函数的定义域为 ( )()lg(31)f x x =-A .RB .C .D .1(,)3-∞1[,)3+∞1(,)3+∞3.如果二次函数的图象的对称轴是,并且通过点,则( )21y ax bx =++1x =(1,7)A -A .a =2,b = 4B .a =2,b = -4C .a =-2,b = 4D .a =-2,b = -44.函数的大致图象是()||2x y =5,则()(01)b a a =>≠且A .B .C .D .2log 1a b =1log 2ab =12log a b =12log b a=6、三个数,之间的大小关系是( )23.0=a 3.022,3.0log ==c b A. ﹤﹤B. ﹤﹤C. ﹤﹤D.﹤﹤a c b a b c b a c b c a7.下列说法中,正确的是()A .对任意x ∈R ,都有3x >2x ;B .y =()-x 是R 上的增函数;3C .若x ∈R 且,则;0x ≠222log 2log x x =D .在同一坐标系中,y =2x 与的图象关于直线对称.2log y x =y x =8.如果函数在区间(-∞,4]上是减函数,那么实数a 的取值范围是2(1)2y x a x =+-+( )A .a ≥9B .a ≤-3C .a ≥5D .a ≤-79.若函数()f x 为定义在R 上的奇函数,且在(0,)+∞内是增函数,又(2)f 0=,则不等式的解集为0)(<x xf A .(2,0)(2,)-+∞ B .(,2)(0,2)-∞- C .(,2)(2,)-∞-+∞D .)2,0()0,2( -10.已知函数定义域是,则的定义域是( )y f x =+()1[]-23,y f x =-()21 A .B. C. D. [052,[]-14,[]-55,[]-37,二、填空题(共5道小题,每道题5分,共25分。

2017-2018学年福建省莆田二十四中七年级(上)期中数学试卷(解析版)

2017-2018学年福建省莆田二十四中七年级(上)期中数学试卷(解析版)

2017-2018学年福建省莆田二十四中七年级(上)期中数学试卷一、选择题1.(5分)下列语句中正确的是()A.0既没有倒数又没有相反数B.倒数等于本身的数只有±1C.相反数等于本身的数有无数个D.绝对值等于本身的数有有限个2.(5分)如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>03.(5分)计算()2003×1.52002×(﹣1)2004的结果是()A.B.C.﹣ D.﹣4.(5分)某公司开发一个新的项目,总投入约11500000000元,11500000000元用科学记数法表示为()A.1.15×1010B.0.115×1011C.1.15×1011D.1.15×1095.(5分)在①﹣3x2y与xy2,②xy与yx,③4abc与5ab,④52与25中,是同类项的组数为()A.1 B.2 C.3 D.46.(5分)下列方程中变形正确的是()①3x+6=0变形为x+2=0;②2x+8=5﹣3x变形为x=3;③=4去分母的3x+2x=24;④(x+2)﹣2(x﹣1)=0去括号得x+2﹣2x﹣2=0.A.①③B.①②③C.①④D.①③④7.(5分)已知代数式﹣5a m﹣1b6和是同类项,则m﹣n的值是()A.1 B.﹣1 C.﹣2 D.﹣38.(5分)若a﹣b=2,a﹣c=1,则(2a﹣b﹣c)2+(c﹣a)2的值是()A.9 B.10 C.2 D.19.(5分)若m﹣n=﹣1,则(m﹣n)2﹣2m+2n的值是()A.3 B.2 C.1 D.﹣110.(5分)对于任意的正整数n,能整除代数式(3n+1)(3n﹣1)﹣(3﹣n)(3+n)的整数是()A.3 B.6 C.10 D.9二、填空题11.(5分)已知点A和点B在同一数轴上,点A表示数﹣1,又点B和点A相距2个单位长度,则点B表示的数是.12.(5分)用“>”或“<”填空:﹣|﹣| ﹣(﹣).13.(5分)若x2+3x+5的值为7,则﹣x2﹣3x﹣2的值是.14.(5分)定义一种新的运算:x*y=,如:3*1==,则(2*3)*2=.15.(5分)已知a2+b2=6,ab=﹣2,则代数式(4a2+3ab﹣b2)﹣(7a2﹣5ab+2b2)的值为.16.(5分)观察下列运算过程:S=1+3+32+33+…+32012+32013①,①×3得3S=3+32+33+…+32013+32014②,②﹣①得2S=32014﹣1,S=.运用上面计算方法计算:1+5+52+53+…+52013=.三、计算题17.(12分)计算:(1);(2).18.(12分)解方程(1)3(x﹣2)+1=x﹣(2x﹣1)(2)x+=1﹣.四、解答题19.(8分)已知a,b互为相反数,c,d互为倒数,|x|=2,|y|=1且x<y,计算(a+b)x2+的值.20.(8分)先化简,再求值:2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y,其中x=﹣2,y=2.21.(8分)已知A=2x2+3ax﹣2x﹣1,B=﹣x2+ax﹣1,且2A+B的值不含x项,求a的值.22.(10分)小王在解关于x的方程3a﹣2x=15时,误将﹣2x看作2x,得方程的解x=3,(1)求a的值;(2)求此方程正确的解;(3)若当y=a时,代数式my3+ny+1的值为5,求当y=﹣a时,代数式my3+ny+1的值.23.(12分)已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题(1)请直接写出a、b、c的值.a=,b=,c=(2)a、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+5|(请写出化简过程)(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.2017-2018学年福建省莆田二十四中七年级(上)期中数学试卷参考答案与试题解析一、选择题1.(5分)下列语句中正确的是()A.0既没有倒数又没有相反数B.倒数等于本身的数只有±1C.相反数等于本身的数有无数个D.绝对值等于本身的数有有限个【解答】解:A、0没有倒数有相反数,故错误;B、正确;C、相反数等于本身的数有1个,是0,故错误;D、绝对值等于本身的数是0和正数,故错误;故选:B.2.(5分)如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>0【解答】解:A、∵b<﹣1<0<a<1,∴|b|>|a|,∴a+b<0,故选项A错误;B、∵b<﹣1<0<a<1,∴ab<0,故选项B错误;C、∵b<﹣1<0<a<1,∴a﹣b>0,故选项C正确;D、∵b<﹣1<0<a<1,∴|a|﹣|b|<0,故选项D错误.故选:C.3.(5分)计算()2003×1.52002×(﹣1)2004的结果是()A.B.C.﹣ D.﹣【解答】解:()2003×1.52002×(﹣1)2004=×[()2002×1.52002]×(﹣1)2004=×(×)2002=×1=.故选:A.4.(5分)某公司开发一个新的项目,总投入约11500000000元,11500000000元用科学记数法表示为()A.1.15×1010B.0.115×1011C.1.15×1011D.1.15×109【解答】解:将11500000000用科学记数法表示为:1.15×1010.故选:A.5.(5分)在①﹣3x2y与xy2,②xy与yx,③4abc与5ab,④52与25中,是同类项的组数为()A.1 B.2 C.3 D.4【解答】解:①﹣3x2y与xy2不是同类项;②xy与yx是同类项;③4abc与5ab不是同类项;④52与25是同类项;综上所述,是同类项的有②④共2个.故选:B.6.(5分)下列方程中变形正确的是()①3x+6=0变形为x+2=0;②2x+8=5﹣3x变形为x=3;③=4去分母的3x+2x=24;④(x+2)﹣2(x﹣1)=0去括号得x+2﹣2x﹣2=0.A.①③B.①②③C.①④D.①③④【解答】解:①3x+6=0变形为x+2=0,正确;②2x+8=5﹣3x变形为5x=﹣3,故此选项错误;③=4去分母的3x+2x=24,正确;④(x+2)﹣2(x﹣1)=0去括号得x+2﹣2x+2=0,故此选项错误.故选:A.7.(5分)已知代数式﹣5a m﹣1b6和是同类项,则m﹣n的值是()A.1 B.﹣1 C.﹣2 D.﹣3【解答】解:根据题意得:,解得:,则m﹣n=2﹣3=﹣1.故选:B.8.(5分)若a﹣b=2,a﹣c=1,则(2a﹣b﹣c)2+(c﹣a)2的值是()A.9 B.10 C.2 D.1【解答】解:(2a﹣b﹣c)2+(c﹣a)2,=(a﹣b+a﹣c)2+(a﹣c)2,=(2+1)2+12,=10.故选:B.9.(5分)若m﹣n=﹣1,则(m﹣n)2﹣2m+2n的值是()A.3 B.2 C.1 D.﹣1【解答】解:∵m﹣n=﹣1,∴(m﹣n)2﹣2m+2n=(m﹣n)2﹣2(m﹣n)=1+2=3.故选:A.10.(5分)对于任意的正整数n,能整除代数式(3n+1)(3n﹣1)﹣(3﹣n)(3+n)的整数是()A.3 B.6 C.10 D.9【解答】解:解:(3n+1)(3n﹣1)﹣(3﹣n)(3+n)=9n2﹣1﹣(9﹣n2)=10n2﹣10=10(n2﹣1),10能整除(3n+1)(3n﹣1)﹣(3﹣n)(3+n),故选:C.二、填空题11.(5分)已知点A和点B在同一数轴上,点A表示数﹣1,又点B和点A相距2个单位长度,则点B表示的数是﹣3或1.【解答】解:当点B在点A左侧,相距2个单位长度时,点B表示﹣1﹣2=﹣3,当点B在点A右侧,相距2个单位长度时,点B表示﹣1+2=1,故答案为:﹣3或1.12.(5分)用“>”或“<”填空:﹣|﹣| <﹣(﹣).【解答】解:∵﹣|﹣|=﹣<0,﹣(﹣)=>0,∴﹣<,即﹣|﹣|<﹣(﹣).故答案为:<.13.(5分)若x2+3x+5的值为7,则﹣x2﹣3x﹣2的值是﹣4.【解答】解:∵x2+3x+5=7,∴x2+3x=2,∴﹣x2﹣3x﹣2=﹣(x2+3x)﹣2=﹣2﹣2=﹣4.故答案为:﹣4.14.(5分)定义一种新的运算:x*y=,如:3*1==,则(2*3)*2= 2.【解答】解:根据题中的新定义得:(2*3)*2=()*2=4*2==2,故答案为:215.(5分)已知a2+b2=6,ab=﹣2,则代数式(4a2+3ab﹣b2)﹣(7a2﹣5ab+2b2)的值为34.【解答】解:原式=4a2+3ab﹣b2﹣7a2+5ab﹣2b2=﹣3a2+8ab﹣3b2=﹣3(a2+b2)+8ab,当a2+b2=6,ab=﹣2,原式=﹣3×6﹣8×2=﹣18﹣16=﹣34.故答案为34.16.(5分)观察下列运算过程:S=1+3+32+33+…+32012+32013①,①×3得3S=3+32+33+…+32013+32014②,②﹣①得2S=32014﹣1,S=.运用上面计算方法计算:1+5+52+53+…+52013=.【解答】解:设S=1+5+52+53+…+52013 ①,则5S=5+52+53+54…+52014②,②﹣①得:4S=52014﹣1,所以S=.故答案为.三、计算题17.(12分)计算:(1);(2).【解答】解:(1)原式=﹣24+27﹣15=﹣12;(2)原式=×(﹣9×﹣8)=×(﹣12)=﹣18.18.(12分)解方程(1)3(x﹣2)+1=x﹣(2x﹣1)(2)x+=1﹣.【解答】解:(1)3x﹣6+1=x﹣2x+1,3x﹣x+2x=1﹣1+6,4x=6,x=;(2)6x+3(x﹣1)=6﹣2(x+2),6x+3x﹣3=6﹣2x﹣4,6x+3x+2x=6﹣4+3,11x=5,x=.四、解答题19.(8分)已知a,b互为相反数,c,d互为倒数,|x|=2,|y|=1且x<y,计算(a+b)x2+的值.【解答】解:∵a,b互为相反数,c,d互为倒数,|x|=2,|y|=1且x<y,∴a+b=0,cd=1,x=﹣2,y=±1,∴当x=﹣2,y=1时,(a+b)x2+=0×(﹣2)2+=0﹣=;当x=﹣2,y=﹣1时,(a+b)x2+=0×(﹣2)2+=﹣1.20.(8分)先化简,再求值:2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y,其中x=﹣2,y=2.【解答】解:原式=2x2y+2xy2﹣2x2y+2x﹣2xy2﹣2y=2x﹣2y,当x=﹣2,y=2时,原式=﹣4﹣4=﹣8.21.(8分)已知A=2x2+3ax﹣2x﹣1,B=﹣x2+ax﹣1,且2A+B的值不含x项,求a的值.【解答】解:∵A=2x2+3ax﹣2x﹣1,B=﹣x2+ax﹣1,∴2A+B=2(2x2+3ax﹣2x﹣1)+(﹣x2+ax﹣1)=4x2+6ax﹣4x﹣2﹣x2+ax﹣1=3x2+(7a﹣4)x﹣3,∵2A+B的值不含x项,∴7a﹣4=0,解得,a=.22.(10分)小王在解关于x的方程3a﹣2x=15时,误将﹣2x看作2x,得方程的解x=3,(1)求a的值;(2)求此方程正确的解;(3)若当y=a时,代数式my3+ny+1的值为5,求当y=﹣a时,代数式my3+ny+1的值.【解答】解:(1)把x=3代入3a+2x=15得3a+6=15,解得:a=3;(2)把a=3代入方程得:9﹣2x=15,解得:x=﹣3;(3)把y=a=3代入my3+ny+1得27m+3n+1=5,则27m+3n=4,当y=﹣a=﹣3时,my3+ny+1=﹣27m﹣3n+1=﹣(27m+3n)+1=﹣4+1=﹣3.23.(12分)已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题(1)请直接写出a、b、c的值.a=﹣1,b=1,c=5(2)a、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+5|(请写出化简过程)(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【解答】解:(1)∵b是最小的正整数,∴b=1.根据题意得:c﹣5=0且a+b=0,∴a=﹣1,b=1,c=5.故答案是:﹣1;1;5;(2)当0≤x≤1时,x+1>0,x﹣1≤0,x+5>0,则:|x+1|﹣|x﹣1|+2|x+5|=x+1﹣(1﹣x)+2(x+5)=x+1﹣1+x+2x+10=4x+10;当1<x≤2时,x+1>0,x﹣1>0,x+5>0.∴|x+1|﹣|x﹣1|+2|x+5|=x+1﹣(x﹣1)+2(x+5)=x+1﹣x+1+2x+10=2x+12;(3)不变.理由如下:t秒时,点A对应的数为﹣1﹣t,点B对应的数为2t+1,点C对应的数为5t+5.∴BC=(5t+5)﹣(2t+1)=3t+4,AB=(2t+1)﹣(﹣1﹣t)=3t+2,∴BC﹣AB=(3t+4)﹣(3t+2)=2,即BC﹣AB的不随着时间t的变化而改变.(另解)∵点A以每秒1个单位长度的速度向左运动,点B每秒2个单位长度向右运动,∴A、B之间的距离每秒钟增加3个单位长度;∵点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴B、C之间的距离每秒钟增加3个单位长度.又∵BC﹣AB=2,∴BC﹣AB的值不随着时间t的变化而改变.。

福建省莆田二十四中2014-2015学年高一上学期期中考试语文 Word版缺答案

福建省莆田二十四中2014-2015学年高一上学期期中考试语文 Word版缺答案

福建莆田二十四中2014-2015上学期期中考高一语文试卷总分:150分时间:150分钟一、古代诗文阅读(39分)(一)默写常见的名句名篇(6分)1.(),忆往昔峥嵘岁月稠。

(毛泽东《沁园春长沙》)2.像我一样地默默彳亍着,()。

(戴望舒《雨巷》)3.但我不能放歌,();(徐志摩《再别康桥》)4.(),皆白衣冠以送之。

(《荆轲刺秦王》)5.真的猛士,敢于直面惨淡的人生,()。

(鲁迅的《记念刘和珍君》) 6.惨象,已使我目不忍视了;()。

(鲁迅的《记念刘和珍君》)(二)文言文阅读(27分)1、阅读下面语段,回答问题。

(18分)沛公旦日从百余骑来见项王,至鸿门,谢曰:“臣与将军戮力而攻秦,将军战河北,臣战河南,然不自意能先入关破秦,得复见将军于此。

今者有小人之言,令将军与臣有郤。

”项王曰:“此沛公左司马曹无伤言之。

不然,籍何以至此?”项王即日因留沛公与饮。

项王、项伯东向坐;亚父南向坐——亚父者,范增也;沛公北向坐;张良西向侍。

范增数目项王,举所佩玉玦以示之者三,项王默然不应。

范增起,出召项庄,谓曰:“君王为人不忍。

若入前为寿,寿毕,请以剑舞,因击沛公于坐,杀之。

不者,若属皆且为所虏!”庄则入为寿。

寿毕,曰:“君王与沛公饮,军中无以为乐,请以剑舞。

”项王曰:“诺。

”项庄拔剑起舞。

项伯亦拔剑起舞,常以身翼蔽沛公,庄不得击。

于是张良至军门见樊哙。

樊哙曰:“今日之事何如?”良曰:“甚急!今者项庄拔剑舞,其意常在沛公也。

”哙曰:“此迫矣!臣请入,与之同命。

”哙即带剑拥盾入军门。

交戟之卫士欲止不内。

樊哙侧其盾以撞,卫士仆地。

哙遂入,披帷西向立,瞋目视项王,头发上指,目眦尽裂。

项王按剑而跽曰:“客何为者?”张良曰:“沛公之参乘樊哙者也。

”项王曰:“壮士!——赐之卮酒。

”则与斗卮酒。

哙拜谢,起,立而饮之。

项王曰:“赐之彘肩。

”则与一生彘肩。

樊哙覆其盾于地,加彘肩上,拔剑切而啖之。

项王曰:“壮士!能复饮乎?”樊哙曰:“臣死且不避,卮酒安足辞!夫秦王有虎狼之心,杀人如不能举,刑人如恐不胜,天下皆叛之。

福建省莆田市第二十四中学2024-2025学年高一下学期期中考试语文试题(无答案)

福建省莆田市第二十四中学2024-2025学年高一下学期期中考试语文试题(无答案)

2024-2025学年度莆田二十四中高一语文期中考试卷一、选择题1.下列词语中加点字的读音,正确的一项是(2分)()A.湍.急赝.品凋.零宣.闹B.信.手嘈.杂沟壑.悯.然C.阁.楼萧.瑟收敛.缭.倒D.吸取..镶.嵌杜娟.环佩.2.下列各句中不含通假字的一项是(2分)()A.涂有饿莩而不知发B.君臣固守以窥周室C.颁白者不负戴于道路矣D.合从缔交,相与为一3.对下列加点实词的说明,全都正确的一项是(2分)()A.数.罟不入洿池(细密)B.非我也,兵.也(士兵)铸以为金.人十二(铜)声非加疾.也(强)C.假舟楫者,非能水也。

而绝.江河(断绝)D.内立法度,务.耕织(致力)故不积跬.步(古代指跨出一脚)伏尸百万流血漂橹.(船浆)4.下列句式属于定语后置句的一项是(2分)()A.身死人手,为天下笑者,何也B.谨庠序之教,申之以孝悌之义C.句读之不知,惑之不解D.蚓无爪牙之利,筋骨之强5.列句子中,加线的词语运用恰当的一项是(2分)()A. 今年我国南方先是持续大旱,江河湖泊几乎见底,而现在又是大涝,一段时间以来,南方各省暴雨连连,江河满溢,积水成渊,洪涝灾难频现。

B. 在刚刚结束的“2024—海上联合”中俄联合海上军演中,中国的“022”轻型隐身导弹艇的上佳表现,引发了世界的关注,它的隐身性能和机动敏捷的打击实力,不但赶上了世界同类舰艇,而且大有青出于蓝的势头。

C. 我对他那种锲而不舍的工作热忱和集思广益的民主作风,始终是特别敬佩的,正是有了他的这种热忱和作风,我们这个团队才能立于不败之地。

D. 今年,正在西瓜上市的季节,江苏却出现“瓜裂裂”现象,大面积的西瓜因为不恰当地运用了膨大剂,导致西瓜一个个的“爆炸”,这种“瓜裂裂”现象,不能不叫人叹为观止。

第 1 页6下列各句中,没有语病的一句是()(2分)A.俄罗斯总统普京欢迎土耳其重回俄罗斯怀抱,两国首脑对于加强两国能源领域合作实行了会谈。

B.为平稳有序地度过目前电力惊慌阶段,山西省将接着依据“保民生,保重点,保稳定”“先错峰,后避峰,再限电”,优先保障城乡居民生活用电和供热。

高一数学上学期期中考试试题及参考答案(AP班)

高一数学上学期期中考试试题及参考答案(AP班)

高一数学上学期期中考试试题及参考答案(AP班)高一年级上学期期中考试数学试卷说明:本试卷共150分,考试时间120分钟。

一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设集合S ={1,3,5},T ={3,6},则S T 等于A. φB. {3}C.{1,3,5,6}D. R2. 函数f (x )=x -12的定义域是A. (-∞,1)B. (]1,∞-C. RD. (-∞,1)()∞+,13. 下列函数中在其定义域上是偶函数的是A. y =2xB. y =x 3C. y =x 21D. y =x 2-4. 下列函数中,在区间(0,+∞)上是增函数的是A. y =-x 2B. y = x 2-2C. y =221??? ?? D. y =log 2x 1 5. 已知函数f (x )=x +1,x ∈R,则下列各式成立的是A. f (x )+f (-x )=2B. f (x )f (-x )=2C. f (x )=f (-x )D. –f (x )=f (-x )6. 设函数f (x )=a x -(a>0),且f (2)=4,则A. f (-1)>f (-2)B. f (1)>f (2)C. f (2)<="">D.f (-3)>f (-2)7. 已知a =log 20.3,b =23.0,c =0.32.0,则a ,b ,c 三者的大小关系是A. a>b>cB. b>a>cC. b>c>aD. c>b>a8. 函数f (x )=log a (x -2)+3,a>0,a ≠1的图像过点(4,27),则a 的值为 A. 22 B. 2 C. 4 D. 21 9. 当0<a</aB. log a 0.1> log a 0.2C. a 2D. log a 2< log a 310. A semipro baseball league has teams with 21 players each. League rules state that a player must be paid at least $15,000,and that the total of all players’ salaries for each team cannot exceed $700,000. What is the maximum possible salary ,in dollars ,for a single player ?A. 270,000B. 385,000C. 400,000D. 430,000E.700,000二、填空题:本大题共8小题,每小题4分,共32分。

福建省莆田第二十四中学2020-2021学年高一上学期周练(10)数学试题

福建省莆田第二十四中学2020-2021学年高一上学期周练(10)数学试题

莆田第二十四中学2020-2021学年上学期高一数学周练(10)第二章检测卷一、单选题1.在如图所示的锐角三角形空地中, 欲建一个面积不小于300m 2的内接矩形花园(阴影部分), 则其边长x(单位m)的取值范围是 ( )A .[15,20]B .[12,25]C .[10,30]D .[20,30]2.已知正实数x ,y 满足22x y xy +=.则x y +的最小值为( )A .4BCD 323.设x ∈R ,则“250x x -<”是“|1|1x -<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件 4.已知不等式()19a x y x y ⎛⎫++ ⎪⎝⎭≥对任意实数x 、y 恒成立,则实数a 的最小值为( ) A .8B .6C .4D .25.若,,a b c ∈R 且a b >,则下列不等式中一定成立的是( ) A .ac bc >B .2()0a b c ->C .11a b<D .22a b -<-6.一元二次不等式220ax bx ++>的解集是11,23⎛⎫- ⎪⎝⎭,则+a b 的值是( ) A .10B .-10C .14D .-147.已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<8.对任意实数x ,不等式()()222240a x a x -+--<恒成立,则a 的取值范围是( ). A .22a -<≤B .22a -≤≤C .2a <-或2a ≥D .2a ≤-或2a ≥9.设,,a b c 为实数,且0a b <<,则下列不等式正确的是( ) A .11a b< B .22ac bc <C .b a a b> D .22a ab b >>10.我国的烟花名目繁多,其中“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h (单位:m )与时间t (单位:s )之间的关系为2() 4.914.717h t t t =-++,那么烟花冲出后在爆裂的最佳时刻距地面高度约为( )A .26米B .28米C .30米D .32米11.若实数a ,b 满足0ab >,则22112a b ab+++的最小值为( ) A .2B .3C .4D .512.某产品的总成本y(万元)与产量x(台)之间的函数关系是y=3000+20X-0.12x (0<x<240,xN),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是( ) A .100台B .120台C .150台D .180台13.若0,0a b >>,则“4a b +≤”是 “4ab ≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件二、多选题14.下列表达式的最小值为2的有( ) A .当1ab =时,+a b B .当1ab =时,b aa b+C .223a a -+D15.对于实数,,a b c ,下列说法正确的是( ) A .若0a b >>,则11a b<B .若a b >,则22ac bc ≥C .若0a b >>,则2ab a <D .若c a b >>,则a b c a c b>--三、填空题 16.若110a b <<,则下列结论中:①11a b ab <+;②3a b +>;③11a b a b->-;④22ln ln a b >.所有正确结论的序号是______. 17.已知54ππαβ<+<,3ππαβ-<-<-,则2αβ-的取值范围是______.四、解答题18.相等关系和不等关系之间具有对应关系:即只要将一个相等关系的命题中的等号改为不等号就可得到一个相应的不等关系的命题.请你用类比的方法探索相等关系和不等关系的对应性质,仿照下表列出尽可能多的有关对应关系的命题;指出所列的对应不等关系的命题是否正确,并说明理由.19.解下列不等式 (1)2230x x -+-<; (2)23520x x +-->.五、双空题20.若关于x 的不等式2260tx x t -+<的解集为{|x x a <或1}x >,则a =_____,t =_____.。

高中数学必修一期中检测试卷 (2)

高中数学必修一期中检测试卷 (2)

期中检测试卷(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知全集U ={1,2,3,4,5,6,7,8},集合A ={2,3,5,6},集合B ={1,3,4,6,7},则集合 A ∩(∁U B )等于( ) A .{2,5} B .{3,6} C .{2,5,6}D .{2,3,5,6,8}考点 交并补集的综合问题 题点 有限集合的交并补运算 答案 A解析 根据补集的定义可得∁U B ={2,5,8}, 所以A ∩(∁U B )={2,5},故选A. 2.不等式3x -12-x≥1的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪34≤x ≤2 B.⎩⎨⎧⎭⎬⎫x ⎪⎪34≤x <2 C.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤34或x >2 D .{x |x <2}答案 B解析 3x -12-x ≥1⇔3x -12-x -1≥0⇔4x -32-x ≥0⇔x -34x -2≤0⇔⎩⎪⎨⎪⎧⎝⎛⎭⎫x -34(x -2)≤0,x -2≠0 解得34≤x <2.故选B.3.“x =1”是“x 2-2x +1=0”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分又不必要条件答案 A解析 因为x 2-2x +1=0有两个相等的实数根为x =1, 所以“x =1”是“x 2-2x +1=0”的充要条件.4.命题“∃x ∈R,1<f (x )≤2”的否定形式是( ) A .∀x ∈R,1<f (x )≤2 B .∃x ∈R,1<f (x )≤2 C .∃x ∈R ,f (x )≤1或f (x )>2 D .∀x ∈R ,f (x )≤1或f (x )>2 答案 D解析 根据存在量词命题的否定是全称量词命题可知原命题的否定形式为“∀x ∈R ,f (x )≤1或f (x )>2”.5.若a ,b ,c 为实数,则下列命题错误的是( ) A .若ac 2>bc 2,则a >b B .若a <b <0,则a 2<b 2 C .若a >b >0,则1a <1bD .若a <b <0,c >d >0,则ac <bd 答案 B解析 对于A ,若ac 2>bc 2,则a >b ,故正确;对于B ,根据不等式的性质,若a <b <0,则a 2>b 2,故错误; 对于C ,若a >b >0,则a ab >b ab ,即1b >1a ,故正确;对于D ,若a <b <0,c >d >0,则ac <bd ,故正确.故选B.6.不等式ax 2+2ax +1≤0的解集为∅,则实数a 的取值范围是( ) A .(0,1) B .[0,1]C .[0,1)D .(-∞,0]∪[1,+∞)答案 C解析 由题意知,不等式ax 2+2ax +1>0恒成立, 当a =0时,1>0,不等式恒成立,当a ≠0时,则⎩⎪⎨⎪⎧a >0,Δ<0,解得0<a <1,综上有0≤a <1,故选C.7.函数f (x )=2x +8x -1(x >1),则f (x )的最小值为( )A .8B .6C .4D .10答案 D解析 f (x )=2(x -1)+8x -1+2≥22(x -1)·8x -1+2=10,当且仅当2(x -1)=8x -1,即x =3时取等号,所以当x =3时,f (x )min =10,故选D.8.若奇函数f (x )在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则2f (-6)+f (-3)的值为( )A .10B .-10C .-15D .15 答案 C解析 ∵f (x )在[3,6]上为增函数, ∴f (6)=8,f (3)=-1,∴2f (-6)+f (-3)=-2f (6)-f (3)=-15.9.定义在R 上的奇函数f (x ),满足f ⎝⎛⎭⎫12=0,且在(0,+∞)上单调递减,则xf (x )>0的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12或x >12 B.⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <12或-12<x <0 C.⎩⎨⎧⎭⎬⎫x ⎪⎪ 0<x <12或x <-12 D.⎩⎨⎧⎭⎬⎫x ⎪⎪ -12<x <0或x >12 答案 B解析 y =f (x )的草图如图,xf (x )>0的解集为⎝⎛⎭⎫-12,0∪⎝⎛⎭⎫0,12.10.已知正方形ABCD 的边长为4,动点P 从B 点开始沿折线BCDA 向A 点运动.设点P 运动的路程为x ,△ABP 的面积为S ,则函数S =f (x )的图象是( )答案 D解析 依题意可知,当0≤x ≤4时,f (x )=2x ; 当4<x ≤8时,f (x )=8;当8<x ≤12时,f (x )=24-2x ,观察四个选项知选D. 11.函数f (x )=1+x2+x (x >0)的值域是( )A .(-∞,1)B .(1,+∞) C.⎝⎛⎭⎫12,1 D.⎝⎛⎭⎫0,12 答案 C解析 ∵f (x )=1+x 2+x =x +2-1x +2=1-1x +2在(0,+∞)上为增函数,∴f (x )∈⎝⎛⎭⎫12,1.12.设非空数集M 同时满足条件:①M 中不含元素-1,0,1;②若a ∈M ,则1+a 1-a ∈M .则下列结论正确的是( )A .集合M 中至多有2个元素B .集合M 中至多有3个元素C .集合M 中有且仅有4个元素D .集合M 中至少有4个元素 答案 D解析 因为a ∈M ,1+a1-a ∈M ,所以1+1+a 1-a 1-1+a1-a =-1a ∈M ,所以1+1-a 1-1-a =a -1a +1∈M ,又因为1+a -1a +11-a -1a +1=a ,所以集合M 中必同时含有a ,-1a ,1+a 1-a ,a -1a +1这4个元素,由a 的不确定性可知,集合M 中至少有4个元素. 二、填空题(本大题共4小题,每小题5分,共20分)13.已知集合A ={1,2},B ={a ,a 2+3},若A ∩B ={1},则实数a 的值为________. 答案 1解析 由A ∩B ={1}知,1∈B , 又因为a 2+3≥3,所以a =1.14.有下列三个命题:①∀x ∈R,2x 2-3x +4>0;②∀x ∈{1,-1,0},2x +1>0;③∃x ∈N *,x 为29的约数.其中真命题为________.(填序号) 答案 ①③解析 对于①,这是全称量词命题, 因为Δ=(-3)2-4×2×4<0,所以2x 2-3x +4>0恒成立,故①为真命题; 对于②,这是全称量词命题,因为当x =-1时,2x +1>0不成立,故②为假命题;对于③,这是存在量词命题,当x =1时,x 为29的约数成立,所以③为真命题.15.正数a ,b 满足1a +9b =1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是________. 答案 [6,+∞)解析 因为a >0,b >0,1a +9b=1,所以a +b =(a +b )·⎝⎛⎭⎫1a +9b =10+b a +9a b≥10+29=16,当且仅当b a =9ab 即a =4,b =12时,等号成立,由题意,得16≥-x 2+4x +18-m , 即x 2-4x -2≥-m 对任意实数x 恒成立. 又设f (x )=x 2-4x -2=(x -2)2-6, 所以f (x )的最小值为-6, 所以-6≥-m ,即m ≥6.16.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值,则函数f (x )=min{4x +1,x +4,-x +8}的最大值是________. 答案 6解析 在同一平面直角坐标系中分别作出函数y =4x +1,y =x +4,y =-x +8的图象后,取位于下方的部分得函数f (x )=min{4x +1,x +4,-x +8}的图象,如图所示,不难看出函数f (x )在x =2时取得最大值,最大值为6.三、解答题(本大题共6小题,共70分)17.(10分)设A ={x |2x 2+ax +2=0},B ={x |x 2+3x +2a =0},且A ∩B ={2}. (1)求a 的值及集合A ,B ;(2)设全集U =A ∪B ,求(∁U A )∪(∁U B ).解 (1)由交集的概念易得2是方程2x 2+ax +2=0和x 2+3x +2a =0的公共解,则a =-5,此时A =⎩⎨⎧⎭⎬⎫12,2,B ={-5,2}.(2)由并集的概念易得U =A ∪B =⎩⎨⎧⎭⎬⎫-5,12,2.由补集的概念易得∁U A ={-5},∁U B =⎩⎨⎧⎭⎬⎫12.所以(∁U A )∪(∁U B )=⎩⎨⎧⎭⎬⎫-5,12.18.(12分)设p :实数x 满足x 2-4ax +3a 2<0,其中a ≠0,q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0,若p 是q 的必要不充分条件,求实数a 的取值范围.解 解不等式组⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0,得2<x ≤3,∴q :2<x ≤3,当a >0时,不等式x 2-4ax +3a 2<0的解集为{x |a <x <3a }, ∴p :a <x <3a .∵p 是q 的必要不充分条件,∴⎩⎪⎨⎪⎧a ≤2,3a >3,解得1<a ≤2. 当a <0时,不等式x 2-4ax +3a 2<0的解集为{x |3a <x <a }, ∴p :3a <x <a .∴⎩⎪⎨⎪⎧3a ≤2,a >3,此时无解.综上所述,a 的取值范围是(1,2].19.(12分)已知关于x 的不等式ax 2-3x +2>0的解集为{x |x <1或x >b }. (1)求a ,b 的值;(2)解关于x 的不等式:ax 2-(ac +b )x +bx <0.解 (1)∵不等式ax 2-3x +2>0的解集为{x |x <1或x >b }, ∴a >0,且方程ax 2-3x +2=0的两个根是1和b .由根与系数的关系,得⎩⎨⎧1+b =3a,1·b =2a ,解得a =1,b =2.(2)∵a =1,b =2,∴ax 2-(ac +b )x +bx <0,即x 2-(c +2)x +2x <0, 即x (x -c )<0.∴当c >0时,解得0<x <c ; 当c =0时,不等式无解; 当c <0时,解得c <x <0.综上,当c >0时,不等式的解集是(0,c ); 当c =0时,不等式的解集是∅; 当c <0时,不等式的解集是(c,0).20.(12分)为迎接2019年“双十一”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量p 万件与促销费用x 万元满足:p =3-2x +1(其中0≤x ≤a ,a 为正常数).已知生产该产品还需投入成本(10+2p )万元(不含促销费用),产品的销售价格定为⎝⎛⎭⎫4+20p 元/件,假定厂家的生产能力完全能满足市场的销售需求.(1)将该产品的利润y 万元表示为促销费用x 万元的函数;(2)促销费用投入多少万元时,厂家的利润最大?并求出最大利润的值. 解 (1)由题意知,y =⎝⎛⎭⎫4+20p p -x -(10+2p ), 将p =3-2x +1代入化简得y =16-4x +1-x (0≤x ≤a ).(2)当a ≥1时,y =17-⎝ ⎛⎭⎪⎫4x +1+x +1≤17-24x +1×(x +1)=13, 当且仅当4x +1=x +1,即x =1时,上式取等号.当0<a <1时,y =16-4x +1-x 在(0,1)上单调递增,所以当x =a 时,y 取最大值为16-4a +1-a .所以当a ≥1时,促销费用投入1万元时,厂家的利润最大为13万元.当0<a <1时,促销费用投入a 万元时,厂家的利润最大为16-4a +1-a .21.(12分)设f (x )为定义在R 上的偶函数,当x ≥0时,f (x )=-(x -2)2+2. (1)求函数f (x )在R 上的解析式; (2)在直角坐标系中画出函数f (x )的图象;(3)若方程f (x )-k =0有四个解,求实数k 的取值范围. 解 (1)若x <0,则-x >0,f (x )=f (-x )=-(-x -2)2+2=-(x +2)2+2,则f (x )=⎩⎪⎨⎪⎧-(x -2)2+2,x ≥0,-(x +2)2+2,x <0.(2)图象如图所示,(3)由于方程f (x )-k =0的解就是函数y =f (x )的图象与直线y =k 的交点的横坐标,观察函数y =f (x )图象与直线y =k 的交点情况可知,当-2<k <2时,函数y =f (x )图象与直线y =k 有四个交点,即方程f (x )-k =0有四个解.即实数k 的取值范围为(-2,2).22.(12分)已知函数f (x )=2x +b ,g (x )=x 2+bx +c (b ,c ∈R ),h (x )=g (x )f (x ).对任意的x ∈R ,恒有f (x )≤g (x )成立.(1)如果h (x )为奇函数,求b ,c 满足的条件;(2)在(1)的条件下,若h (x )在[2,+∞)上为增函数,求实数c 的取值范围. 解 (1)设h (x )=g (x )f (x )的定义域为D ,因为h (x )为奇函数,所以对任意x ∈D ,h (-x )=-h (x )成立,解得b =0. 因为对任意的x ∈R ,恒有f (x )≤g (x )成立, 所以对任意的x ∈R ,恒有2x +b ≤x 2+bx +c , 即x 2+(b -2)x +c -b ≥0对任意的x ∈R 恒成立.由(b -2)2-4(c -b )≤0,得c ≥b 24+1,即c ≥1.于是b ,c 满足的条件为b =0,c ≥1.(2)当b =0时,h (x )=g (x )f (x )=x 2+c 2x =12x +c2x (c ≥1).因为h (x )在[2,+∞)上为增函数, 所以任取x 1,x 2∈[2,+∞),且x 1<x 2, h (x 2)-h (x 1)=12(x 2-x 1)⎝⎛⎭⎫1-c x 1x 2>0恒成立, 即任取x 1,x 2∈[2,+∞),且x 1<x 2,1-cx 1x 2>0恒成立,也就是c <x 1x 2恒成立,所以c ≤4,综合(1),得实数c 的取值范围是[1,4].。

高中高一数学上学期期中试卷(创新班,含解析)-人教版高一全册数学试题

高中高一数学上学期期中试卷(创新班,含解析)-人教版高一全册数学试题

2015-2016学年某某省某某市桐乡高中高一(上)期中数学试卷(创新班)一.选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若角600°的终边上有一点(﹣4,a),则a的值是()A.B.C.D.2.已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量为()A.B.C.D.3.设向量=(cosα,),若的模长为,则cos2α等于()A.﹣B.﹣C.D.4.平面向量与的夹角为,若,,则=()A.B.C.4 D.125.函数y=xcosx+sinx的图象大致为()A.B.C.D.6.为了得到g(x)=cos2x的图象,则需将函数的图象()A.向右平移单位B.向左平移单位C.向右平移单位D.向左平移单位7.在△ABC中,∠A=90°,AB=1,AC=2.设点P,Q满足,,λ∈R.若=﹣2,则λ=()A.B.C.D.28.若sin2α=,sin(β﹣α)=,且α∈[,π],β∈[π,],则α+β的值是()A.B.C.或D.或二.填空题(本大题共7小题,第9-11小题每空3分,第12小题每空2分,第13-15小题每空4分,共36分).9.已知向量=(3,1),=(1,3),=(k,2),当∥时,k=;当(﹣)⊥,则k=.10.已知α为第二象限的角,sinα=,则=,tan2α=.11.E,F是等腰直角△ABC斜边AB上的三等分点,则tan∠ECF=,cos∠BCF=.12.函数y=的图象如图,则k=,ω=,φ=.13.设f(x)=asin2x+bcos2x,其中a,b∈R,ab≠0.若对一切x∈R 恒成立,则①;②;③f(x)既不是奇函数也不是偶函数;④f(x)的单调递增区间是;⑤存在经过点(a,b)的直线与函数f(x)的图象不相交.以上结论正确的是(写出所有正确结论的编号).14.已知,, =,则在上的投影的取值X围.15.已知,∠APB=60°,则的取值X围是.三.解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.已知向量,(1)当∥时,求2cos2x﹣sin2x的值;(2)求在上的值域.17.已知函数f(x)=sin(ωx+ϕ)(ω>0,0≤ϕ≤π)为偶函数,其图象上相邻的两个最高点之间的距离为2π.(Ⅰ)求f(x)的解析式;(Ⅱ)若,求的值.18.已知函数f(x)=sin2(x+)﹣cos2x﹣(x∈R).(1)求函数f(x)最小值和最小正周期;(2)若A为锐角,且向量=(1,5)与向量=(1,f(﹣A))垂直,求cos2A.19.已知向量=(co sα,sinα),=(cosx,sinx),=(sinx+2sinα,cosx+2cosα),其中0<α<x<π.(1)若,求函数f(x)=•的最小值及相应x的值;(2)若与的夹角为,且⊥,求tan2α的值.20.定义向量的“相伴函数”为f(x)=asinx+bcosx;函数f(x)=asinx+bcosx 的“相伴向量”为(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.(1)设,试判断g(x)是否属于S,并说明理由;(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;(3)已知M(a,b)是函数的图象上一动点,向量的“相伴函数”f(x)在x=x0处取得最大值.当点M运动时,求tan2x0的取值X围.2015-2016学年某某省某某市桐乡高中高一(上)期中数学试卷(创新班)参考答案与试题解析一.选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若角600°的终边上有一点(﹣4,a),则a的值是()A.B.C.D.【考点】运用诱导公式化简求值;任意角的三角函数的定义.【专题】计算题.【分析】先利用诱导公式使tan600°=tan60°,进而根据求得答案.【解答】解:∵,∴.故选A【点评】本题主要考查了用诱导公式化简求值的问题.属基础题.2.已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量为()A.B.C.D.【考点】平行向量与共线向量;单位向量.【专题】平面向量及应用.【分析】由条件求得=(3,﹣4),||=5,再根据与向量同方向的单位向量为求得结果.【解答】解:∵已知点A(1,3),B(4,﹣1),∴=(4,﹣1)﹣(1,3)=(3,﹣4),||==5,则与向量同方向的单位向量为=,故选A.【点评】本题主要考查单位向量的定义和求法,属于基础题.3.设向量=(cosα,),若的模长为,则cos2α等于()A.﹣B.﹣C.D.【考点】二倍角的余弦.【专题】三角函数的求值.【分析】由||==,求得cos2α=,再利用二倍角的余弦公式求得cos2α=2cos2α﹣1的值.【解答】解:由题意可得||==,∴cos2α=.∴cos2α=2cos2α﹣1=﹣,故选:A.【点评】本题主要考查求向量的模,二倍角的余弦公式的应用,属于基础题.4.平面向量与的夹角为,若,,则=()A.B.C.4 D.12【考点】向量的模;平面向量数量积的运算.【专题】平面向量及应用.【分析】分析由向量,求出向量,要求,先求其平方,展开后代入数量积公式,最后开方即可.【解答】解:由=(2,0),所以=,所以====12.所以.故选B.【点评】点评本题考查了向量的模及向量的数量积运算,考查了数学转化思想,解答此题的关键是运用.5.函数y=xcosx+sinx的图象大致为()A.B.C.D.【考点】函数的图象.【专题】函数的性质及应用.【分析】给出的函数是奇函数,奇函数图象关于原点中心对称,由此排除B,然后利用区特值排除A和C,则答案可求.【解答】解:因为函数y=xcosx+sinx为奇函数,所以排除选项B,由当x=时,,当x=π时,y=π×cosπ+sinπ=﹣π<0.由此可排除选项A和选项C.故正确的选项为D.故选D.【点评】本题考查了函数的图象,考查了函数的性质,考查了函数的值,是基础题.6.为了得到g(x)=cos2x的图象,则需将函数的图象()A.向右平移单位B.向左平移单位C.向右平移单位D.向左平移单位【考点】函数y=Asin(ωx+φ)的图象变换.【专题】计算题;数形结合;分析法;三角函数的求值;三角函数的图像与性质.【分析】由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.【解答】解:∵y=sin(﹣2x+)=cos[﹣(﹣2x+)]=cos(2x+)=cos[2(x+)],∴将函数y=sin(﹣2x+)图象上所有的点向右平移个单位,即可得到g(x)=cos2x的图象.故选:A.【点评】本题主要考查诱导公式、函数y=Asin(ωx+φ)的图象变换规律,属于基础题.7.在△ABC中,∠A=90°,AB=1,AC=2.设点P,Q满足,,λ∈R.若=﹣2,则λ=()A.B.C.D.2【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】由题意可得=0,根据=﹣(1﹣λ)﹣λ=(λ﹣1)4﹣λ×1=﹣2,求得λ的值.【解答】解:由题意可得=0,由于=()•()=[﹣]•[﹣]=0﹣(1﹣λ)﹣λ+0=(λ﹣1)4﹣λ×1=﹣2,解得λ=,故选B.【点评】本题主要考查两个向量垂直的性质,两个向量的加减法的法则,以及其几何意义,两个向量的数量积的运算,属于中档题.8.若sin2α=,sin(β﹣α)=,且α∈[,π],β∈[π,],则α+β的值是()A.B.C.或D.或【考点】两角和与差的正弦函数;二倍角的正弦.【专题】三角函数的求值.【分析】依题意,可求得α∈[,],2α∈[,π],进一步可知β﹣α∈[,π],于是可求得cos(β﹣α)与cos2α的值,再利用两角和的余弦及余弦函数的单调性即可求得答案.【解答】解:∵α∈[,π],β∈[π,],∴2α∈[,2π],又sin2α=>0,∴2α∈[,π],cos2α=﹣=﹣;又sin(β﹣α)=,β﹣α∈[,π],∴cos(β﹣α)=﹣=﹣,∴cos(α+β)=cos[2α+(β﹣α)]=cos2αcos(β﹣α)﹣s in2αsin(β﹣α)=﹣×(﹣)﹣×=.又α∈[,],β∈[π,],∴(α+β)∈[,2π],∴α+β=,故选:A.【点评】本题考查同角三角函数间的关系式的应用,着重考查两角和的余弦与二倍角的正弦,考查转化思想与综合运算能力,属于难题.二.填空题(本大题共7小题,第9-11小题每空3分,第12小题每空2分,第13-15小题每空4分,共36分).9.已知向量=(3,1),=(1,3),=(k,2),当∥时,k=;当(﹣)⊥,则k= 0 .【考点】数量积判断两个平面向量的垂直关系;平行向量与共线向量.【专题】计算题;转化思想;综合法;平面向量及应用.【分析】利用向量的坐标运算和向量平行、垂直的性质求解即可.【解答】解:∵向量=(3,1),=(1,3),=(k,2),∵∥,∴,解得k=.∵向量=(3,1),=(1,3),=(k,2),∴=(3﹣k,﹣1),∵(﹣)⊥,∴(3﹣k)•1+(﹣1)•3=0,解得k=0.故答案为:,0.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意向量平行和向量垂直的性质的合理运用.10.已知α为第二象限的角,sinα=,则= 3 ,tan2α=.【考点】二倍角的正切.【专题】计算题;转化思想;分析法;三角函数的求值.【分析】先由已知求得的X围,求出tanα的值,再由正切函数的二倍角公式可得答案.【解答】解:∵α为第二象限的角,∴可得:∈(kπ,k),k∈Z,∴tan>0,又∵sinα=,∴cosα=﹣,tanα==﹣,∴tanα=﹣=,整理可得:3tan2﹣8tan﹣3=0,解得:tan=3或﹣(舍去).tan2α==.故答案为:3,.【点评】本小题主要考查三角函数值符号的判断、同角三角函数关系、和角的正切公式,同时考查了基本运算能力及等价变换的解题技能.11.E,F是等腰直角△ABC斜边AB上的三等分点,则tan∠ECF=,cos∠BCF=.【考点】三角形中的几何计算.【专题】计算题;转化思想;综合法;解三角形.【分析】取AB中点D,连接CD,设AB=6,则AC=BC=3,由余弦定理求出CE=CF=,再由余弦定理得cos∠ECF,由此能求出tan∠ECF.由半角公式求出c os∠DCF,sin∠DCF,再由cos∠BCF=cos(45°﹣∠DCF),能求出结果.【解答】解:取AB中点D,连接CD,设AB=6,则AC=BC=3,由余弦定理可知cos45°===,解得CE=CF=,再由余弦定理得cos∠ECF===,∴sin,∴tan∠ECF==.cos∠DCF=cos==,sin∠DCF=sin==,cos∠BCF=cos(45°﹣∠DCF)=cos45°cos∠DCF+sin45°sin∠DCF=()=.故答案为:,.【点评】本题考查角的正切值、余弦值的求法,是中档题,解题时要认真审题,注意正弦定理、余弦定理、半角公式的合理运用.12.函数y=的图象如图,则k=,ω=,φ=.【考点】函数的图象.【专题】计算题;数形结合;函数的性质及应用.【分析】由直线y=kx+1过点(﹣2,0)得k=;可确定=﹣=π,从而确定ω=,再代入点求φ即可.【解答】解:∵直线y=kx+1过点(﹣2,0),∴k=;∵=﹣=π,∴T=4π,∴ω==,(,﹣2)代入y=2sin(x+φ)得,sin(+φ)=﹣1,解得,φ=;故答案为:,,.【点评】本题考查了分段函数及数形结合的思想应用.13.设f(x)=asin2x+bcos2x,其中a,b∈R,ab≠0.若对一切x∈R 恒成立,则①;②;③f(x)既不是奇函数也不是偶函数;④f(x)的单调递增区间是;⑤存在经过点(a,b)的直线与函数f(x)的图象不相交.以上结论正确的是①②③(写出所有正确结论的编号).【考点】两角和与差的正弦函数;正弦函数的单调性.【专题】计算题.【分析】先化简f(x)的解析式,利用已知条件中的不等式恒成立,得到是三角函数的最大值,得到x=是三角函数的对称轴,将其代入整体角令整体角等于kπ+求出辅助角θ,再通过整体处理的思想研究函数的性质.【解答】解:∵f(x)=asin2x+bcos2x=sin(2x+θ)∵∴2×+θ=kπ+∴θ=kπ+∴f(x)═sin(2x+kπ+)=±sin(2x+)对于①=±sin(2×+)=0,故①对对于②,=sin(),|f()|=sin(),∴,故②正确.对于③,f(x)不是奇函数也不是偶函数对于④,由于f(x)的解析式中有±,故单调性分情况讨论,故④不对对于⑤∵要使经过点(a,b)的直线与函数f(x)的图象不相交,则此直线须与横轴平行,且|b|>,此时平方得b2>a2+b2这不可能,矛盾,∴不存在经过点(a,b)的直线于函数f(x)的图象不相交故⑤错故答案为:①②③.【点评】本题考查三角函数的对称轴过三角函数的最值点、考查研究三角函数的性质常用整体处理的思想方法.14.已知,, =,则在上的投影的取值X围.【考点】平面向量数量积的运算.【专题】综合题;分类讨论;转化思想;向量法;平面向量及应用.【分析】由已知求出,再求出,代入投影公式,转化为关于t的函数,利用换元法结合配方法求得在上的投影的取值X围.【解答】解:∵=,且,,∴===.==4﹣2t+t2.∴在上的投影等于=.令4﹣t=m,则t=4﹣m,t2=16﹣8m+m2.∴上式=f(m)=.当m=0时,f(m)=0;当m>0时,f(m)==∈(0,1];当m<0时,f(m)=﹣=﹣∈(,0).综上,在上的投影的X围为(﹣,1].故答案为:(﹣,1].【点评】本题考查向量在几何中的应用,综合考查向量的线性运算,向量的数量积的运算及数量积公式,熟练掌握向量在向量上的投影是解题的关键,是中档题.15.已知,∠APB=60°,则的取值X围是.【考点】平面向量数量积的运算.【专题】计算题;运动思想;数形结合法;平面向量及应用.【分析】由题意画出图形,取AB中点C,把问题转化为求的取值X围解决.【解答】解:如图,,∠APB=60°,取AB的中点C,连接PC,则===.由图可知,P为图中优弧上的点(不含A、B).∴(PC⊥AB时最大),∴的取值X围是(0,].故答案为:(0,].【点评】本题考查平面向量的数量积运算,由题意画出图形是解答该题的关键,是中档题.三.解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.已知向量,(1)当∥时,求2cos2x﹣sin2x的值;(2)求在上的值域.【考点】正弦函数的定义域和值域;三角函数的恒等变换及化简求值.【专题】计算题.【分析】(1)利用向量平行的坐标运算,同角三角函数间的关系,得到tanx的值,然后化简2cos2x﹣sin2x即可(2)先表示出在=(sin2x+),再根据x的X围求出函数f(x)的最大值及最小值.【解答】解:(1)∵∥,∴,∴,(3分)∴.(6分)(2)∵,∴,(8分)∵,∴,∴,(10分)∴,(12分)∴函数f(x)的值域为.(13分)【点评】本题主要考查平面向量的坐标运算.考查平面向量时经常和三角函数放到一起做小综合题.是高考的热点问题.17.已知函数f(x)=sin(ωx+ϕ)(ω>0,0≤ϕ≤π)为偶函数,其图象上相邻的两个最高点之间的距离为2π.(Ⅰ)求f(x)的解析式;(Ⅱ)若,求的值.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】计算题.【分析】(Ⅰ)函数f(x)=sin(ωx+ϕ)(ω>0,0≤ϕ≤π)为偶函数,其图象上相邻的两个最高点之间的距离为2π,确定函数的周期,求出ω,确定ϕ的值,求出f(x)的解析式;(Ⅱ)若,求出,,利用诱导公式化简,然后再用二倍角公式求出它的值.【解答】解:(Ⅰ)∵图象上相邻的两个最高点之间的距离为2π,∴T=2π,则.∴f(x)=sin(x+ϕ).(2分)∵f(x)是偶函数,∴,又0≤ϕ≤π,∴.则 f(x)=cosx.(5分)(Ⅱ)由已知得,∴.则.(8分)∴.(12分)【点评】本题是中档题,考查函数解析式的求法,诱导公式和二倍角的应用,考查计算能力,根据角的X围求出三角函数值是本题的解题依据.18.已知函数f(x)=sin2(x+)﹣cos2x﹣(x∈R).(1)求函数f(x)最小值和最小正周期;(2)若A为锐角,且向量=(1,5)与向量=(1,f(﹣A))垂直,求cos2A.【考点】二倍角的余弦;平面向量的综合题.【专题】解三角形.【分析】(1)根据二倍角的余弦公式变形、两角差的正弦公式化简解析式,由正弦函数的周期、最值求出结果;(2)根据向量垂直的条件列出方程,代入f(x)由诱导公式化简求出,由三角函数值的符号、角A的X围求出的X围,由平方关系求出的值,利用两角差的余弦函数、特殊角的三角函数值求出cos2A的值.【解答】解:(1)由题意得,f(x)=﹣﹣=cos2x﹣1=,∴函数f(x)最小值是﹣2,最小正周期T==π;(2)∵向量=(1,5)与向量=(1,f(﹣A))垂直,∴1+5f(﹣A)=0,则1+5[]=0,∴=>0,∵A为锐角,∴,则,∴==,则cos2A=cos[()﹣]=+=×+=.【点评】本题考查二倍角的余弦公式变形,两角差的正弦、余弦公式,向量垂直的条件,以及正弦函数的性质等,注意角的X围,属于中档题.19.已知向量=(cosα,sinα),=(cosx,sinx),=(sinx+2sinα,cosx+2cosα),其中0<α<x<π.(1)若,求函数f(x)=•的最小值及相应x的值;(2)若与的夹角为,且⊥,求tan2α的值.【考点】平面向量的坐标运算.【分析】(1)根据向量点乘表示出函数f(x)的解析式后令t=sinx+cosx转化为二次函数解题.(2)根据向量a与b的夹角为确定,再由a⊥c可知向量a点乘向量c等于0整理可得sin(x+α)+2sin2α=0,再将代入即可得到答案.【解答】解:(1)∵=(cosx,sinx),=(sinx+2sinα,cosx+2cosα),,∴f(x)=•=cosxsinx+2cosxsinα+sinxcosx+2sinxcosα=.令t=sinx+cosx(0<x<π),则t=,则2sinxcosx=t2﹣1,且﹣1<t<.则,﹣1<t<.∴时,,此时.由于<x<π,故.所以函数f(x)的最小值为,相应x的值为;(2)∵与的夹角为,∴.∵0<α<x<π,∴0<x﹣α<π,∴.∵⊥,∴cosα(sinx+2sinα)+sinα(cosx+2cosα)=0.∴sin(x+α)+2sin2α=0,.∴,∴.【点评】本题主要考查平面向量的坐标运算和数量积运算.向量一般和三角函数放在一起进行考查,这种题型是高考的热点,每年必考.20.定义向量的“相伴函数”为f(x)=asinx+bcosx;函数f(x)=asinx+bcosx 的“相伴向量”为(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.(1)设,试判断g(x)是否属于S,并说明理由;(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;(3)已知M(a,b)是函数的图象上一动点,向量的“相伴函数”f(x)在x=x0处取得最大值.当点M运动时,求tan2x0的取值X围.【考点】两角和与差的正弦函数.【专题】计算题;压轴题;新定义;三角函数的求值;三角函数的图像与性质.【分析】(1)先利用诱导公式对其化简,再结合定义即可得到证明;(2)先根据定义求出其相伴向量,再代入模长计算公式即可;(3)先根据定义得到函数f(x)取得最大值时对应的自变量x0;再结合几何意义及基本不等式求出的X围,最后利用二倍角的正切公式及正切函数的单调性即可得到结论.【解答】(本题满分15分)解:(1)因为:,g(x)的相伴向量为(4,3),所以:g(x)∈S;(3分)(2)∵h(x)=cos(x+α)+2cosx=﹣sinαsinx+(cosα+2)cosx,∴h(x)的“相伴向量”为,.(7分)(3)的“相伴函数”,其中,当时,f(x)取得最大值,故,∴,∴,又M(a,b)是满足,所以,令,∴,m>2∵在(1,+∞)上单调递减,∴(15分)【点评】本体主要在新定义下考查平面向量的基本运算性质以及三角函数的有关知识.是对基础知识的综合考查,需要有比较扎实的基本功.。

福建省莆田市第二十四中学2023-2024学年化学九年级第一学期期中监测试题含解析

福建省莆田市第二十四中学2023-2024学年化学九年级第一学期期中监测试题含解析

福建省莆田市第二十四中学2023-2024学年化学九年级第一学期期中监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、单选题(本大题共10小题,共20分)1.一种铁原子的原子核内有26 个质子和30 个中子,该原子的核外电子数为A.4 B.26 C.30 D.562.六安是一座富有悠久历史文化的城市,勤劳智慧的六安人民在生产生活中创造了无数的瑰宝,下列工艺中发生化学变化的是()A.采摘茶叶B.煎蒿子粑粑C.板栗切口D.葛根磨粉3.交警常用“司机饮酒检测仪”检查司机是否酒后驾车,因为酒中的乙醇分子可以使橙红色的重铬酸钾变为绿色的硫酸铬。

硫酸铬[Cr2(SO4)3]中Cr元素的化合价为A.+3 B.+5 C.+6 D.+74.下列实验指定容器中的水,其解释没有体现水的主要作用的是()A.集气瓶中的水:吸收反应放出的热量B.量筒中水:通过量筒中水的体积的变化得出发生反应的O2的体积C.集气瓶中的水:防止集气瓶底炸裂D.集气瓶中的水:水先将集气瓶内的空气排净,便于观察O2何时收集满5.决定元素种类的是A.中子数B.质子数C.核外电子数D.最外层电子数6.下列实验操作中,正确的是:A.A B.B C.C D.D7.建立分类的观点是学习化学的重要方法。

下列选项符合图示从属关系的是()A B C DX 化合反应金属物理变化化合物Y 分解反应单质化学变化混合物A.A B.B C.C D.D8.下图是用来测定空气中氧气含量的装置,下列有关该实验的说法正确的是A.红磷燃烧时产生大量白色烟雾B.由此实验可推测氮气难溶于水C.燃烧匙中的红磷可换成细铁丝D.红磷量不足导致测定结果偏大9.下列关于过滤操作中的叙述正确的是A.滤纸的边缘不能低于漏斗口B.液面不能低于滤纸边缘C.让液体沿玻璃棒缓缓向漏斗中倾倒D.漏斗下端口要对准烧杯中心位置10.下列关于空气的说法中,不正确的是A.工业上采用分离液态空气法获得氧气B.空气中各种成分的含量是固定不变的C.空气中氮气体积约占空气体积的78%D.空气中的氧气主要来源于绿色植物的光合作用二、填空题(本大题共1小题,共4分)11.为保证长时间潜航,在潜艇里要配备氧气的再生装置,在以下几种制氧气的方法:a、加热高锰酸钾;b、电解水;c、常温下过氧化钠与二氧化碳反应生成碳酸钠和氧气。

福建省莆田市2023-2024学年高一上学期期末数学试题

福建省莆田市2023-2024学年高一上学期期末数学试题


14.已知a
Î
æ çè
π 2

ö ÷ø
, sina
=
3 5
,则 cosπ(
-a) =
.
15.已知
m
>
0,
n
>
0

m
+
n
=
3
,则
3 m
+
6 n
的最小值为
.
16.已知函数
f
(x)
=
ìlnx, íîex +
x> 1, x
0 £
0
,且函数
g
(
x)
=
f
(x) - m 恰有两个不同的零点,则实
数 m 的取值范围是
A
点的横坐标为
-
3 5

所以
cos
a
=
-
3 5
.
故选: C . 2.A 【分析】由对数函数、指数函数单调性即可比较大小.
【详解】由题意得 a = log3 2 < log3 3 = 1 = 30 < b = 30.1 < c = 30.2 . 故选:A. 3.D 【分析】根据函数的单调性,结合零点存在性定理,即可判断选项.
故选:B 7.A 【分析】由题命题“ "m Î R , A Ç B = Æ ”为真命题,进而分 A = Æ 和 A ¹ Æ 两种情况讨 论求解即可. 【详解】解:因为命题“ $m Î R , A Ç B ¹ Æ ”为假命题, 所以,命题“ "m Î R , A Ç B = Æ ”为真命题,
答案第21 页,共22 页
2 lg 2
´

2023-2024学年安徽省高一(上)期中数学试卷【答案版】

2023-2024学年安徽省高一(上)期中数学试卷【答案版】

2023-2024学年安徽省高一(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合M ={﹣1,0,1},集合N ={x ∈R |x 2=2x },则M ∩N =( ) A .{0,1}B .{﹣1,0}C .{0}D .∅2.已知命题p :∃x ∈R ,4x >x 4,则¬p 是( ) A .∃x ∈R ,4x ≤x 4 B .∀x ∈R ,4x <x 4C .∀x ∈R ,4x >x 4D .∀x ∈R ,4x ≤x 43.若α是β的必要不充分条件,γ是β的充要条件,则γ是α的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件4.已知幂函数f (x )=x α(α∈Z ),具有如下性质:f 2(1)+f 2(﹣1)=2[f (1)+f (﹣1)﹣1],则f (x )是( ) A .奇函数B .偶函数C .既是奇函数又是偶函数D .是非奇非偶函数5.函数f(x)={x +3,x ≤0√x ,x >0,且f (a ﹣3)=f (a +2)(a ∈R ),则f (a )=( )A .2B .1C .√2D .06.已知实数a ,b ,c 满足3×2a ﹣2b +1=0,且a =c +x 2﹣x +1(x ∈R ),则a ,b ,c 的大小关系是( ) A .a >b >cB .b >a >cC .a >c >bD .c >b >a7.水池有两个相同的进水口和一个出水口,每个口进出的速度如图甲乙所示.某天零点到六点该水池的蓄水量如图丙所示(至少打开一个水口).给出以下三个论断:①零点到三点只进水不出水;②三点到四点不进水只出水;③四点到六点不进水也不出水.其中正确论断的序号是( )A .①②B .②③C .①③D .①8.设函数f(x)=√ax 2+bx +c (a ,b ,c ∈R ,且a <0)的定义域为D ,若所有点(s ,f (t ))(s ,t ∈D )构成一个正方形区域,则a =( ) A .﹣4B .﹣5C .﹣6D .﹣8二、选择题:本题共4小题,每小题5分,共20分。

高一上学期期中考试数学试卷含答案(共3套,新课标版)

高一上学期期中考试数学试卷含答案(共3套,新课标版)

高一级第一学期期中调研考试数学考生注意:1.本试卷分选择题和非选择题两部分。

满分150分,考试时间120分钟。

2.考生作答时,请将答案答在答题卡上。

选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题....区域书写的答案无效.........,在试题卷....、草稿纸上作答无效........。

3.本卷命题范围:新人教版必修第一册第一章~第四章。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若集合{123}A =,,,{}223B x x x =->,则A B =A .{12},B .∅C .{23},D .{1}2.命题“R x ∃∈,||0x ”的否定是A .R x ∀∈,||0x ≥B .R x ∃∈,||0x <C .R x ∀∈,||0x <D .R x ∃∉,||0x <3.若a b >,则下列不等式中成立的是 A .11<a bB .33a b >C .22a b >D .a b >4.函数y =的定义域为 A .(12)-,B .(02),C .[12)-,D .(12]-,5.某企业一个月生产某种商品x 万件时的生产成本为2()410C x x x =++(万元)。

一万件售价是30万元,若商品能全部卖出,则该企业一个月生产该商品的最大利润为 A .139万元B .149万元C .159万元D .169万元6.已知集合2{Z |Z}1A x x =∈∈-,则集合A 的真子集的个数为 A .13B .14C .15D .167.若0.33a =,3log 0.3b =,13log 3c =,则a ,b ,c 的大小关系为 A .b c a <<B .c a b <<C .a b c <<D .b a c <<8.若函数()f x 是奇函数,且在定义域R 上是减函数,(2)3f -=,则满足3(3)3f x -<-<的实数x 的取值范围是 A .(15),B .(24),C .(36),D .(25),二、选择题:本题共4小题,每小题5分,共20分。

福建省莆田第二十四中学2024_2025学年高一生物下学期期中测试试题

福建省莆田第二十四中学2024_2025学年高一生物下学期期中测试试题

福建省莆田其次十四中学2024-2025学年高一生物下学期期中测试试题本卷满分100分,考试时间90分钟。

留意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(共30题,每题2分)1.下列关于孟德尔豌豆杂交试验基于遗传基本规律的叙述,正确的是()A. 若用玉米验证孟德尔分别定律,则必需选用纯合子作为亲本B. 孟德尔通过一对相对性状的杂交试验发觉的等位基因C. 形成配子时限制不同性状的基因先分别后组合,分别和组合是互不干扰的D. 基因型为AaBb个体自交,后代出现比例为9:6:1的条件是两对基因独立遗传2.无尾猫是一种欣赏猫.猫的无尾、有尾是一对相对性状,按分别定律遗传.为了选育纯种的无尾猫,让无尾猫自交多代,但发觉每一代中总会出现约的有尾猫,其余均为无尾猫.由此推断正确的是()①猫的有尾性状是由显性遗传因子限制的②自交后代出现有尾猫是性状分别的结果③自交后代无尾猫中既有杂合子又有纯合子④无尾猫与有尾猫杂交后代中无尾猫约占.A. ①②B. ②③C. ②④D. ①④3.在家蚕遗传中,蚁蚕(刚孵化的蚕)体色的黑色与淡赤色是相对性状,黄茧和白茧是相对性状(限制这两对性状的基因自由组合),两个杂交组合得到的子代(足够多)数量比见下表,以下叙述中错误的是( )黄茧黑蚁白茧黑蚁黄茧淡赤蚁白茧淡赤蚁组合一9 3 3 1组合二0 1 0 1A.黑色对淡赤色为显性,黄茧对白茧为显性B.组合一中两个亲本的基因型和表现型都相同C.组合二中亲本的基因型和子代的基因型相同D.组合一和组合二的子代中淡赤蚁白茧的基因型不完全相同4.育种工作者选用纯合的家兔,进行如下图所示杂交试验。

下列有关说法正确的是( )A.家兔的体色是由一对基因确定的B.限制家兔体色的基因不符合孟德尔遗传定律C.F2灰色家兔中基因型有3种D.F2表现型为白色的家兔中,与亲本基因型相同的占1/45.下列关于遗传问题的叙述中,不正确的是()A. 红花与白花杂交,F1代全为红花,否定了融合遗传B. 纯合子与纯合子杂交,后代肯定是纯合子C. 纯合黄色圆粒豌豆与绿色皱粒豌豆杂交的F2中将出现的新的性状D. YyRr产生的配子类型及比例不肯定是YR:Yr:yR:yr=1:1:1:16.很多生物体的隐性等位基因很不稳定,以较高的频率逆转为野生型。

福建省莆田二十四中高一下学期期中考试试卷语文.doc

福建省莆田二十四中高一下学期期中考试试卷语文.doc

福建省莆田二十四中高一下学期期中考试试卷语文补写出下列名句名篇中的空缺部分。

(1)寒衣处处催刀尺,&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;。

(杜甫《秋兴八首》)(2)&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;,此时无声胜有声。

(白居易《琵琶行》)(3)庄生晓梦迷蝴蝶,&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0 ;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;。

(李商隐《锦瑟》)(4)扪参历井仰胁息,&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0 ;&#xa0;&#xa0;&#xa0;&#xa0;。

(李白《蜀道难》)(5)故木受绳则直,&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0 ;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;。

(荀子《劝学》)(6)&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;,申之以孝悌之义,颁白者不负戴于道路矣。

2023-2024学年福建省莆田市莆田第一中学高一上学期期末考试数学试题

2023-2024学年福建省莆田市莆田第一中学高一上学期期末考试数学试题

2023-2024学年福建省莆田市莆田第一中学高一上学期期末考试数学试题1.已知集合,则()A.B.C.D.2.已知函数,则()A.1B.0C.D.3.已知,,则“”是“”的().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.函数f(x)=,的图象大致是()A.B.C.D.5.《周髀算经》中给出的弦图是由四个全等的直角三角形和中间一个小正方形拼成的一个大的正方形,若下图中所示的角为(),且小正方形与大正方形面积之比为,则的值为()A.B.C.D.6.已知外接圆圆心为,半径为1,,且,则向量在向量上的投影向量为()A.B.C.D.7.已知函数,,设函数,则下列说法错误的是()A.是偶函数B.函数有两个零点C.在区间上单调递减D.有最大值,没有最小值8.如果一个方程或不等式中出现两个变量,适当变形后,可使得两边结构相同,此时可构造函数,利用函数的单调性把方程或不等式化简.利用上述方法解决问题:已知实数,,则()A.B.C.D.9.若函数的图象为如图所示的曲线m和线段n,曲线m与直线l无限接近,但永不相交,则下列说法正确的是()A.的定义域为B.的值域为C.在的定义域内任取一个值,总有唯一的y值与之对应D.在的值域内任取一个值,总有唯一的x值与之对应10.已知平面四边形,则下列命题正确的是()A.若,则四边形是梯形B.若,则四边形是菱形C.若,则四边形是平行四边形D.若且,则四边形是矩形11.已知函数(),则下列说法正确的是()A.若,则是的对称中心B.若恒成立,则的最小值为2C.若在上单调递增,则D.若在上恰有2个零点,则12.已知函数的定义域为,是奇函数,是偶函数,且当时,,则下列选项正确的是()A.的图象关于直线对称B.C.关于点对称D.关于点对称13.已知弧度数为的圆心角所对的弦长为2,则这个圆心角所对的弧长是__________.14.已知,则的最小值为______.15.如图所示,在平面直角坐标系中,动点、从点出发在单位圆上运动,点按逆时针方向每秒钟转弧度,点按顺时针方向每秒钟转弧度,则、两点在第1804次相遇时,点的坐标是______.16.如图,在平面直角坐标系中,已知曲线依次为的图象,其中为常数,,点是曲线上位于第一象限的点,过分别作轴、轴的平行线交曲线分别于点B、D,过点B作轴的平行线交曲线于点,若四边形为矩形,则的值是________.17.已知,,且.(1)求与的夹角;(2)若,求实数的值.18.已知函数(1)当,求的最大值以及取得最大值时的集合.(2)先将函数图象上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数的图象,求当时,使成立的的取值集合.19.已知函数.(1)若,求的值;(2)若对于恒成立,求实数的取值范围.20.已知角为锐角,,且满足,(1)证明:;(2)求.21.中国茶文化博大精深,茶水的口感与茶叶类型和水的温度有关.经验表明,某种乌龙茶用100℃的水泡制,等到茶水温度降至60℃时再饮用,可以产生最佳口感.某实验小组为探究在室温下,刚泡好的茶水达到最佳饮用口感的放置时间,每隔测量一次茶水温度,得到茶水温度随时间变化的如下数据:时间/min012345水温/℃100.0092.0084.8078.3772.5367.27设茶水温度从100℃开始,经过后的温度为,现给出以下三种函数模型:①(,);②(,,);③(,,).(1)从上述三种函数模型中选出你认为最符合实际的函数模型,简单叙述理由,并利用前的数据求出相应的解析式;(2)根据(1)中所求函数模型,求刚泡好的乌龙茶达到最佳饮用口感的放置时间(精确到0.01);(3)考虑到茶水温度降至室温就不能再降的事实,试判断进行实验时的室温为多少℃,并说明理由.(参考数据:,.)22.小颖同学在学习探究活动中,定义了一种运等“”:对于任意实数a,b,都有,通过研究发现新运算满足交换律:.小颖提出了两个猜想:,,,①;②.(1)请你任选其中一个猜想,判断其正确与否,若正确,进行证明;若错误,请说明理由;(注:两个猜想都判断、证明或说明理由,仅按第一解答给分)(2)设且,,当时,若函数在区间上的值域为,求的取值范围.。

福建省莆田市第二十四中学2017-2018学年八年级下学期期中考试英语试题(无答案)

福建省莆田市第二十四中学2017-2018学年八年级下学期期中考试英语试题(无答案)

2019-2019学年下学期八年级期中英语试卷(时间:120分钟;满分150分)第一部分 听力(满分30分)第一节 听句子听下面五个句子,从每小题所给的三幅图中选出与句子内容相符的选项。

(每小题读两遍) 第二节 听对话听下面七段对话,从每小题所给的A 、B 、C 三个选项中选出正确答案。

(每段对话读两遍)听第1段对话,回答第6小题。

( )6. Why is Frank crying?A. Because he fails the exam.B. Because he has no friends here.C. Because he misses his family. 听第2段对话,回答第7小题。

( )7. What is Cindy worried about?A. She is worried about the coming exam.B. She is worried about becoming fatter.C. She is worried about her study. 听第3段对话,回答第8小题。

( )8. How much does a single room cost?A.¥180B.¥360C.¥720听第4段对话,回答第9小题。

( )9. What sport does Susan like best in fall?A. Going cyclingB. Going climbingC. Going swimming听第5段对话,回答第10、11小题。

( )10. Which park do they decide to go to?A. Zhongshan ParkB. Xingfu ParkC. Beihai Park( )11. How will they go there?A. By bikeB. By carC. On foot听第6段长对话,回答第12、13小题。

高一数学上学期期中考试试卷含答案(共5套)

高一数学上学期期中考试试卷含答案(共5套)

高一年级第一学期数学期中考试卷本试卷共4页,22小题,满分150分。

考试用时120分钟。

第一部分 选择题(共60分)一、单选题(本大题共8小题,每小题5分,满分40分)1.设集合{}1,2,3,4A =,{}1,0,2,3B =-,{}12C x R x =∈-≤<,则()A B C =( )A .{}1,1-B .{}0,1C .{}1,0,1-D .{}2,3,42.已知集合A={x∈N|x 2+2x ﹣3≤0},则集合A 的真子集个数为 ( )A .3B .4C .31D .323.下列命题为真命题的是( )A .x Z ∃∈,143x <<B .x Z ∃∈,1510x +=C .x R ∀∈,210x -=D .x R ∀∈,220x x ++>4.设x ∈R ,则“12x <<”是“|2|1x -<”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.已知函数()f x =m 的取值范围是( )A .04m <≤B .01m ≤≤C .4m ≥D .04m ≤≤6.已知实数m , n 满足22m n +=,其中0mn >,则12m n +的最小值为( ) A .4 B .6 C .8 D .127.若函数()()g x xf x =的定义域为R ,图象关于原点对称,在(,0)-∞上是减函数,且,()00f =,(2)0=g ,则使得()0f x <的x 的取值范围是( )A .(﹣∞,2)B .(2,+∞)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,2)8.定义在R 上的偶函数()f x 满足:对任意的[)()1212,0,x x x x ∈+∞≠,有()()21210f x f x x x -<-,已知 2.7e ≈,则()2f -、()f e 、()3f -的大小关系为( )A .()()()32f e f f <-<-B .()()()23f f e f -<<-C .()()()32f f f e -<-<D .()()()32f f e f -<<- 二、多选题(本大题共4小题,每小题5分,漏选3分,错选0分,满分20分)9.已知A B ⊆,A C ⊆,{}2,0,1,8B =,{}1,9,3,8C =,则A 可以是( )A .{}1,8B .{}2,3C .{}1D .{}210.下列各选项给出的两个函数中,表示相同函数的有( )A .()f x x =与()g x =B .()|1|f t t =-与()|1|g x x =-C .2()f x x =与2()g x x =D .21()1x f x x +=-与1()1g x x =- 11.已知函数()22,1,12x x f x x x +≤-⎧=⎨-<<⎩,关于函数()f x 的结论正确的是( ) A .()f x 的定义域为RB .()f x 的值域为(,4)-∞C .若()3f x =,则xD .()1f x <的解集为(1,1)-12.若函数()22,14,1x a x f x ax x ⎧-+≤-=⎨+>-⎩在R 上是单调函数,则a 的取值可能是( ) A .0B .1C .32D .3第二部分 非选择题(共90分)三、填空题(本大题共3小题,每小题5分, 共15分)13.已知2()1,()1f x x g x x =+=+,则((2))g f =_________.14.设集合22{2,3,1},{,2,1}M a N a a a =+=++-且{}2M N =,则a 值是_________.15.如果函数()2x 23f ax x =+-在区间(),4-∞上是单调递增的,则实数a 的取值范围是______.四、双空题(本大题共1小题,第一空3分,第二空2分, 共5分)16.函数()2x f x x =+在区间[]2,4上的最大值为________,最小值为_________五、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤)17.(本小题10分)已知函数()233f x x x =+-A ,()222g x x x =-+的值域为B . (Ⅰ)求A 、B ; (Ⅱ)求()R AB .18.(本小题12分)已知集合{|02}A x x =≤≤,{|32}B x a x a =≤≤-.(1)若()U A B R ⋃=,求a 的取值范围; (2)若A B B ≠,求a 的取值范围.19.(本小题12分)已知函数23,[1,2](){3,(2,5]x x f x x x -∈-=-∈. (1)在如图给定的直角坐标系内画出()f x 的图象;(2)写出()f x 的单调递增区间及值域;(3)求不等式()1f x >的解集.20.(本小题12分)已知函数()f x =21ax b x ++是定义在(-1,1)上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)确定函数()f x 的解析式;(2)用定义证明()f x 在(-1,1)上是增函数;(3)解不等式:(1)()0f t f t -+<.21.(本小题12分)某工厂生产某种产品的年固定成本为200万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,21()103C x x x =+(万元).当年产量不小于80千件时,10000()511450C x x x=+-(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润()L x (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?22.(本小题12分)已知二次函数()f x 满足(1)()21f x f x x +-=-+,且(2)15f =.(1)求函数()f x 的解析式;(2) 令()(22)()g x m x f x =--,求函数()g x 在x ∈[0,2]上的最小值.参考答案1.C【详解】由{}1,2,3,4A =,{}1,0,2,3B =-,则{}1,0,1,2,3,4AB =- 又{}12C x R x =∈-≤<,所以(){}1,0,1AB C =-故选:C2.A 由题集合{}2{|230}{|31}01A x N x x x N x =∈+-≤=∈-≤≤=, , ∴集合A 的真子集个数为2213-= .故选A .【点睛】本题考查集合真子集的个数的求法,考查真子集等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.3.D求解不等式判断A ;方程的解判断B ;反例判断C ;二次函数的性质判断D ;【详解】解:143x <<,可得1344x <<,所以不存在x ∈Z ,143x <<,所以A 不正确; 1510x +=,解得115x =-,所以不存在x ∈Z ,1510x +=,所以B 不正确; 0x =,210x -≠,所以x R ∀∈,210x -=不正确,所以C 不正确;x ∈R ,2217720244y x x x ⎛⎫=++=++≥> ⎪⎝⎭,所以D 正确;故选:D .【点睛】本题主要考查命题的真假的判断,考查不等式的解法以及方程的解,属于基础题.4.A【解析】【分析】先解不等式,再根据两个解集包含关系得结果.【详解】 21121,13x x x -<∴-<-<<<,又1,2()1,3,所以“12x <<”是“21x -<”的充分不必要条件,选A.【点睛】充分、必要条件的三种判断方法. 1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 5.D【解析】试题分析:因为函数()f x =的定义域是一切实数,所以当0m =时,函数1f x 对定义域上的一切实数恒成立;当0m >时,则240m m ∆=-≤,解得04m <≤,综上所述,可知实数m 的取值范围是04m ≤≤,故选D.考点:函数的定义域.6.A【解析】实数m ,n 满足22m n +=,其中0mn >12112141(2)()(4)(44222n m m n m n m n m n ∴+=++=++≥+=,当且仅当422,n m m n m n =+=,即22n m ==时取等号.12m n∴+的最小值是4.所以A 选项是正确的. 点睛:本题主要考查基本不等式求最值,在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.解决本题的关键是巧妙地将已知条件22m n +=化为1,即112112(2)1,(2)()22m n m n m n m n+=∴+=++. 7.C【解析】【分析】根据函数的图象关于原点对称,可得知函数()g x 在()0,∞+上是减函数,即可利用其单调性在(,0)-∞和()0,∞+上解不等式即可.【详解】函数()()g x xf x =的定义域为R ,图象关于原点对称,在(,0)-∞上是减函数,且()20g =,所以函数()g x 在()0,∞+上是减函数.当0x =时,()00f =,显然0x =不是()0f x <的解.当()0,x ∈+∞时,()0f x <,即()()0g x xf x =<,而()20g =,所以()()20g x g <=,解得2x >;当(),0x ∈-∞时,()0f x <,即()()0g x xf x =>,而()()220g g -==,所以()()2g x g >-,解得2x <-.综上,()0f x <的x 的取值范围是(﹣∞,﹣2)∪(2,+∞).故选:C.【点睛】本题主要考查利用函数的性质解不等式,意在考查学生的转化能力和数学运算能力,属于基础题. 8.D【解析】【分析】由已知条件得出单调性,再由偶函数把自变量转化到同一单调区间上,由单调性得结论.【详解】因为对任意的[)()1212,0,x x x x ∈+∞≠,有()()21210f x f x x x -<-,所以当12x x <时,12()()f x f x >,所以()f x 在[0,)+∞上是减函数,又()f x 是偶函数,所以(3)(3)f f -=,(2)(2)f f -=,因为23e <<,所以(2)()(3)f f e f >>,即(2)()(3)f f e f ->>-.故选:D .【点睛】本题考查函数的单调性与奇偶性,解题方法是利用奇偶性化自变量为同一单调区间,利用单调性比较大小.9.AC【解析】【分析】推导出(){1A B C A ⊆⇒⊆,8},由此能求出结果.【详解】∵A B ⊆,A C ⊆,()A B C ∴⊆{}2,0,1,8B =,{}1,9,3,8C =,{}1,8A ∴⊆∴结合选项可知A ,C 均满足题意.【点睛】本题考查集合的求法,考查子集定义等基础知识,考查运算求解能力,是基础题.10.BC【解析】【分析】分别求出四个答案中两个函数的定义域和对应法则是否一致,若定义域和对应法则都一致即是相同函数.【详解】对于A :()g x x ==,两个函数的对应法则不一致,所以不是相同函数,故选项A 不正确; 对于B :()|1|f t t =-与()|1|g x x =-定义域和对应关系都相同,所以是相同函数,故选项B 正确; 对于C :2()f x x =与2()g x x =定义域都是R ,22()g x x x ==,所以两个函数是相同函数,故选项C 正确对于D :21()1x f x x +=-定义域是{}|1x x ≠±,1()1g x x =-定义域是{}|1x x ≠,两个函数定义域不同,所以不是相等函数,故故选项D 不正确;故选:BC【点睛】本题主要考查了判断两个函数是否为相同函数,判断的依据是两个函数的定义域和对应法则是否一致,属于基础题.11.BC【解析】【分析】根据分段函数的形式可求其定义域和值域,从而判断A 、 B 的正误,再分段求C 、D 中对应的方程的解和不等式的解后可判断C 、D 的正误.【详解】由题意知函数()f x 的定义域为(,2)-∞,故A 错误;当1x ≤-时,()f x 的取值范围是(,1]-∞当12x -<<时,()f x 的取值范围是[0,4),因此()f x 的值域为(,4)-∞,故B 正确;当1x ≤-时,23x +=,解得1x =(舍去),当12x -<<时,23x =,解得x =x =,故C 正确;当1x ≤-时,21x +<,解得1x <-,当12x -<<时,21x <,解得-11x -<<,因此()1f x <的解集为(,1)(1,1)-∞--,故D 错误.故选:BC .【点睛】 本题考查分段函数的性质,对于与分段函数相关的不等式或方程的解的问题,一般用分段讨论的方法,本题属于中档题.12.BC【解析】【分析】根据函数的单调性求出a 的取值范围,即可得到选项.【详解】当1x ≤-时,()22f x x a =-+为增函数, 所以当1x >-时,()4f x ax =+也为增函数,所以0124a a a >⎧⎨-+≤-+⎩,解得503a <≤. 故选:BC【点睛】此题考查根据分段函数的单调性求参数的取值范围,易错点在于忽略掉分段区间端点处的函数值辨析导致产生增根.13【解析】【分析】根据2()1,()f x x g x =+=(2)f ,再求((2))g f .【详解】因为(2)5f =,所以((2))(5)g f g ===【点睛】本题主要考查函数值的求法,属于基础题.14.-2或0【解析】【分析】由{}2M N =,可得{}2N ⊆,即可得到22a a +=或22a +=,分别求解可求出答案.【详解】由题意,{}2N ⊆,①若22a a +=,解得1a =或2a =-,当1a =时,集合M 中,212a +=,不符合集合的互异性,舍去;当2a =-时,{2,3,5},{2,0,1}M N ==-,符合题意.②若22a +=,解得0a =,{2,3,1},{0,2,1}M N ==-,符合题意.综上,a 的值是-2或0.故答案为:-2或0.【点睛】本题考查了交集的性质,考查了集合概念的理解,属于基础题.15.1,04⎡⎤-⎢⎥⎣⎦. 【解析】【分析】【详解】由题意得,当0a =时,函数()23f x x =-,满足题意,当0a ≠时,则0242a a<⎧⎪⎨-≥⎪⎩,解得104a -≤<, 综合得所求实数a 的取值范围为1,04⎡⎤-⎢⎥⎣⎦. 故答案为:1,04⎡⎤-⎢⎥⎣⎦. 16.23 12【解析】【分析】分离常数,将()f x 变形为212x -+,观察可得其单调性,根据单调性得函数最值. 【详解】 222()1222x x f x x x x +-===-+++,在[2,4]上,若x 越大,则2x +越大,22x 越小,22x -+越大,212x -+越大, 故函数()f x 在[2,4]上是增函数,min 21()(2)222f x f ∴===+, max 42()(4)423f x f ===+, 故答案为23;12. 【点睛】本题考查分式函数的单调性及最值,是基础题. 17.(Ⅰ)332A x x ⎧⎫=-≤<⎨⎬⎩⎭,{}1B y y =≥;(Ⅱ)()R 312A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭. 【解析】【分析】(Ⅰ)由函数式有意义求得定义域A ,根据二次函数性质可求得值域B ;(Ⅱ)根据集合运算的定义计算.【详解】(Ⅰ)由()f x =230,30,x x +≥⎧⎨->⎩ 解得332x -≤<. ()()2222111g x x x x =-+=-+≥,所以332A x x ⎧⎫=-≤<⎨⎬⎩⎭,{}1B y y =≥.(Ⅱ){}1B y y =<R ,所以()R 312A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭. 【点睛】本题考查求函数的定义域与值域,考查集合的综合运算,属于基础题.18.(1)1,2⎛⎤-∞ ⎥⎝⎦;(2)1,2a ⎡⎫+∞⎢⎣∈⎪⎭. 【解析】【分析】(1)先计算U A ,再利用数轴即可列出不等式组,解不等式组即可.(2)先求出AB B =时a 的取值范围,再求其补集即可.【详解】 (1)∵{}|02A x x =≤≤,∴{|0U A x x =<或}2x >,若()U A B R ⋃=,则320322a a a a -≥⎧⎪⎨⎪-≥⎩,即12a ≤∴实数a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. (2)若A B B =,则B A ⊆.当B =∅时,则32-<a a 得1,a >当B ≠∅时,若B A ⊆则0322a a ≥⎧⎨-≤⎩,得1,12a ⎡⎤∈⎢⎥⎣⎦,综上故a 的取值范围为1,2a ⎡⎫+∞⎢⎣∈⎪⎭, 故AB B ≠时的范围为1,2⎡⎫+∞⎪⎢⎣⎭的补集,即1,.2⎛⎫-∞ ⎪⎝⎭ 【点睛】本题主要考查了集合的交并补运算,属于中档题.19.(1)见解析(2)()f x 的单调递增区间[1,0],[2,5]-, 值域为[1,3]-;(3)[2)(1,5]-⋃【解析】【分析】(1)要利用描点法分别画出f(x)在区间[-1,2]和(2,5]内的图象.(2)再借助图象可求出其单调递增区间.并且求出值域.(3)由图象可观察出函数值大于1时对应的x 的取值集合.【详解】(1)(2)由图可知()f x 的单调递增区间[1,0],[2,5]-, 值域为[1,3]-;(3)令231x -=,解得2x =2-(舍去);令31x -=,解得2x =. 结合图象可知的解集为[2)(1,5]-⋃20.(1)()21x f x x =+;(2)证明见详解;(3)1|02t t ⎧⎫<<⎨⎬⎩⎭. 【解析】【分析】(1)由()f x 为奇函数且1225f ⎛⎫= ⎪⎝⎭求得参数值,即可得到()f x 的解析式; (2)根据定义法取-1<x 1<x 2<1,利用作差法12())0(f x f x -<即得证;(3)利用()f x 的增减性和奇偶性,列不等式求解即可【详解】(1)()f x 在(-1,1)上为奇函数,且1225f ⎛⎫= ⎪⎝⎭有(0)012()25f f =⎧⎪⎨=⎪⎩,解得10a b =⎧⎨=⎩,()f x =21x x +, 此时2()(),()1x f x f x f x x --==-∴+为奇函数, 故()f x =21x x+; (2)证明:任取-1<x 1<x 2<1, 则12122212()()11x x f x f x x x -=-++12122212()(1)(1)(1)x x x x x x --=++ 而122100,1x x x -<+>,且1211x x -<<,即1210x x ->,∴12())0(f x f x -<,()f x 在(-1,1)上是增函数.(3)(1)()()f t f t f t ,又()f x 在(-1,1)上是增函数∴-1<t -1<-t <1,解得0<t <12 ∴不等式的解集为1|02t t ⎧⎫<<⎨⎬⎩⎭【点睛】本题考查了利用函数奇偶性求解析式,结合奇函数中(0)0f =的性质,要注意验证;应用定义法证明单调性,注意先假设自变量大小关系再确定函数值的大小关系:函数值随自变量的增大而增大为增函数,反之为减函数;最后利用函数的奇偶性和单调性求解集21.(1)2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)100千件【解析】【分析】(1)根据题意,分080x <<,80x ≥两种情况,分别求出函数解析式,即可求出结果;(2)根据(1)中结果,根据二次函数性质,以及基本不等式,分别求出最值即可,属于常考题型.【详解】解(1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.051000x ⨯万元,依题意得: 当080x <<时,2211()(0.051000)102004020033⎛⎫=⨯-+-=-+- ⎪⎝⎭L x x x x x x . 当80x ≥时,10000()(0.051000)511450200L x x x x ⎛⎫=⨯-+-- ⎪⎝⎭ 100001250⎛⎫=-+ ⎪⎝⎭x x 所以2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)当080x <<时,21()(60)10003L x x =--+. 此时,当60x =时,()L x 取得最大值(60)1000L =万元.当80x ≥时,10000()125012502L x x x ⎛⎫=-+≤- ⎪⎝⎭ 12502001050=-=. 此时10000x x=,即100x =时,()L x 取得最大值1050万元. 由于10001050<,答:当年产量为100千件时,该厂在这一商品生产中所获利润最大, 最大利润为1050万元 【点睛】本题主要考查分段函数模型的应用,二次函数求最值,以及根据基本不等式求最值的问题,属于常考题型.22.(1)2()215f x x x =-++,(2)min2411,2()15,015,02m m g x m m m -->⎧⎪=-<⎨⎪--≤≤⎩【解析】试题分析:(1)据二次函数的形式设出f (x )的解析式,将已知条件代入,列出方程,令方程两边的对应系数相等解得.(2)函数g (x )的图象是开口朝上,且以x=m 为对称轴的抛物线,分当m ≤0时,当0<m <2时,当m ≥2时三种情况分别求出函数的最小值,可得答案.试题解析:(1)设二次函数一般式()2f x ax bx c =++(0a ≠),代入条件化简,根据恒等条件得22a =-,1a b +=,解得1a =-,2b =,再根据()215f =,求c .(2)①根据二次函数对称轴必在定义区间外得实数m 的取值范围;②根据对称轴与定义区间位置关系,分三种情况讨论函数最小值取法. 试题解析:(1)设二次函数()2f x ax bx c =++(0a ≠),则()()()()()22111221f x f x a x b x c ax bx c ax a b x +-=++++-++=++=-+∴22a =-,1a b +=,∴1a =-,2b = 又()215f =,∴15c =.∴()2215f x x x =-++(2)①∵()2215f x x x =-++∴()()()222215g x m x f x x mx =--=--.又()g x 在[]0,2x ∈上是单调函数,∴对称轴x m =在区间[]0,2的左侧或右侧,∴0m ≤或2m ≥ ②()2215g x x mx =--,[]0,2x ∈,对称轴x m =,当2m >时,()()min 24415411g x g m m ==--=--; 当0m <时,()()min 015g x g ==-;当02m ≤≤时,()()222min 21515g x g m m m m ==--=--综上所述,()min2411,215,015,02m m g x m m m -->⎧⎪=-<⎨⎪--≤≤⎩广东省深圳市高一上学期期中考试试卷数学试题时间:120分钟 分值:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{1}A x x =<∣,{}31x B x =<∣,则( )A .{0}AB x x =<∣ B .A B R =C .{1}A B x x =>∣D .AB =∅2.已知函数22,3()21,3x x x f x x x ⎧-≥=⎨+<⎩,则[(1)]f f =( )A .3B .4C .5D .63.设()f x 是定义在R 上的奇函数,当0x ≥时,2()2f x x x =-,则()1f -=( )A .3-B .1-C .1D .34.已知幂函数()f x 的图象过点2,2⎛ ⎝⎭,则()8f 的值为( )A .4B .8C .D .5.设函数331()f x x x=-,则()f x ( ) A .是奇函数,且在(0,)+∞单调递增 B .是奇函数,且在(0,)+∞单调递减C .是偶函数,且在(0,)+∞单调递增D .是偶函数,且在(0,)+∞单调递减6.已知3log 21x ⋅=,则4x=( )A .4B .6C .3log 24D .97.已知2log 0.3a =,0.12b =, 1.30.2c =,则a ,b ,c 的大小关系是( )A .a b c <<B .c a b <<C .b c a <<D .a c b <<8.函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩满足对任意12x x ≠都有()()12120f x f x x x ->-,则a 的取值范围是( )A .30a -≤<B .32a -≤≤-C .2a ≤-D .0a <二、选择题:本小题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9.下列各选项给出的两个函数中,表示相同函数的有( )A .()f x x =与()g x =B .()|1|f t t =-与()|1|g x x =-C.()f x =与 ()g x =-D .21()1x f x x -=+与()1g x x =-10.下列函数中,在其定义域内既是奇函数,又是增函数的是( )A .1y x=-B .1y x x=-C .3y x =D .||y x x =11.若函数()1(0,1)xf x a b a a =+->≠的图象经过第一、三、四象限,则一定有( )A .1a >B .01a <<C .0b >D .0b <12.下列结论不正确的是( )A .当0x >2≥B .当0x >2的最小值是2C .当0x <时,22145x x -+-的最小值是52D .设0x >,0y >,且2x y +=,则14x y +的最小值是92三、填空题(本大题共4小题,每小题5分,共20分)13.函数3()1f x x =+的定义域为_______. 14.函数32x y a-=+(0a >且1a ≠)恒过定点_______.15.定义运算:,,b a b a b a a b≥⎧⊗=⎨<⎩,则函数()33x xf x -=⊗的值域为_______.16.若函数()f x 为定义在R 上的奇函数,且在(0,)+∞内是增函数,又()20f =,则不等式()0xf x <的解集为_______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)计算:(1)1130121( 3.8)0.0022)27---⎛⎫+--+ ⎪⎝⎭;(2)2lg125lg 2lg500(lg 2)++.18.(本小题满分12分)已知函数1()2x f x x +=-,[3,7]x ∈. (1)判断函数()f x 的单调性,并用定义加以证明;(2)求函数()f x 的最大值和最小值. 19.(本小题满分12分)设集合{}2230A x x x =+-<∣,集合{1}B xx a =+<‖∣. (1)若3a =,求AB ;(2)设命题:p x A ∈,命题:q x B ∈,若p 是q 成立的必要条件,求实数a 的取值范围. 20.(本小题满分12分)已知()f x 是R 上的奇函数,且当0x >时,2()243f x x x =-++.(1)求()f x 的表达式;(2)画出()f x 的图象,并指出()f x 的单调区间.21.(本小题满分12分)某制造商为拓展业务,计划引进一设备生产一种新型体育器材.通过市场分析,每月需投入固定成本3000元,生产x 台需另投入成本()C x 元,且210400,030()10008049000,30x x x C x x x x ⎧+<<⎪=⎨+-≥⎪⎩,若每台售价800元,且当月生产的体育器材该月内能全部售完.(1)求制造商由该设备所获的月利润()L x 关于月产量x 台的函数关系式;(利润=销售额-成本) (2)当月产量为多少台时,制造商由该设备所获的月利润最大?并求出最大月利润.22.(本小题满分12分)设函数()22xxf x k -=⋅-是定义R 上的奇函数. (1)求k 的值;(2)若不等式()21xf x a >⋅-有解,求实数a 的取值范围;(3)设()444()x xg x f x -=+-,求()g x 在[1,)+∞上的最小值,并指出取得最小值时的x 的值.高一上学期期中考试数学学科试题参考答案一二、选择题三、填空题 13.(,1)(1,2]-∞--14.()3,3 15.(]0,1 16.(2,0)(0,2)-四、解答题17.解:(1)原式12315002)42016=+-+=-=-;(2)原式3lg5lg 2(lg500lg 2)3lg53lg 23=++=+=.18.解:(1)函数()f x 在区间[]3,7内单调递减,证明如下:在[]3,7上任意取两个数1x 和2x ,且设12x x >,∵()11112x f x x +=-,()22212x f x x +=-, ∴()()()()()21121212123112222x x x x f x f x x x x x -++-=-=----. ∵12,[3,7]x x ∈,12x x >,∴120x ->,220x ->,210x x -<,∴()()()()()2112123022x x f x f x x x --=<--.即()()12f x f x <,由单调函数的定义可知,函数()f x 为[]3,7上的减函数.(2)由单调函数的定义可得max ()(3)4f x f ==,min 8()(7)5f x f ==. 19.解:(1)由2230x x +-<,解得31x -<<,可得:(3,1)A =-.3a =,可得:|3|1x +<,化为:131x -<+<,解得42x -<<-,∴(1,1)B =-. ∴(3,1)AB =-.(2)由||1x a +<,解得11a x a --<<-.∴{11}B xa x a =--<<-∣. ∵p 是q 成立的必要条件,∴1311a a --≥-⎧⎨-≤⎩,解得:02a ≤≤.∴实数a 的取值范围是[]0,2.20.解:(1)根据题意,()f x 是R 上的奇函数,则()00f =,设0x <,则0x ->,则()2243f x x x -=--+,又由()f x 为奇函数,则2()()243f x f x x x =--=+-,则22243,0()0,0243,0x x x f x x x x x ⎧+-<⎪==⎨⎪-+->⎩;(2)根据题意,22243,0()0,0243,0x x x f x x x x x ⎧+-<⎪==⎨⎪-+->⎩,其图象如图:()f x 的单调递增区间为()1,1-,()f x 的单调递增区间为(),1-∞-,(1,)+∞.21.解:(1)当030x <<时,22()800104003000104003000L x x x x x x =---=-+-;当30x ≥时,1000010000()8008049000300060004L x x x x x x ⎛⎫=--+-=-+ ⎪⎝⎭. ∴2104003000,030()1000060004,30x x x L x x x x ⎧-+-<<⎪=⎨⎛⎫-+≥ ⎪⎪⎝⎭⎩. (2)当030x <<时,2()10(20)1000L x x =--+,∴当20x =时,max ()(20)1000L x L ==.当30x ≥时,10000()6000460005600L x x x ⎛⎫=-+≤-= ⎪⎝⎭, 当且仅当100004x x=, 即50x =时,()(50)56001000L x L ==>.当50x =时,获得增加的利润最大,且增加的最大利润为5600元.22.解:(1)因为()22x xf x k -=⋅-是定义域为R 上的奇函数,所以()00f =,所以10k -=, 解得1k =,()22x xf x -=-, 当1k =时,()22()x x f x f x --=-=-,所以()f x 为奇函数,故1k =;(2)()21xf x a >⋅-有解, 所以211122x x a ⎛⎫⎛⎫<-++ ⎪ ⎪⎝⎭⎝⎭有解, 所以2max11122x x a ⎡⎤⎛⎫⎛⎫<-++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦, 因为221111*********x x x ⎛⎫⎛⎫⎛⎫-++=--+≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(1x =时,等号成立), 所以54a <; (3)()444()x x g x f x -=+-,即()()44422x x x x g x --=+--,可令22x x t -=-,可得函数t 在[)1,+∞递增,即32t >, 2442x x t -=+-,可得函数2()42h t t t =-+,32t >, 由()g t 的对称轴为322t =>,可得2t =时,()g t 取得最小值2-,此时222x x -=-,解得2log (1x =,则()g x 在[)1,+∞上的最小值为2-,此时2log (1x =.高一第一学期数学期中考试卷第I 卷(选择题)一、单选题(每小题5分)1.已知集合{}40M x x =-<,{}124x N x -=<,则M N =( )A .(),3-∞B .()0,3C .()0,4D .∅2.已知集合A ={}2|log 1x x <,B ={}|0x x c <<,若A ∪B =B ,则c 的取值范围是( )A .(0,1]B .[1,+∞)C .(0,2]D .[2,+∞)3.全集U =R ,集合{}|0A x x =<,{}|11B x x =-<<,则阴影部分表示的集合为( )A .{}|1x x <-B .{}|1x x <C .{}|10x x -<<D .{}|01x x <<4..函数的零点所在的区间为A .B .C .(D .5.如果二次函数()()2212f x x a x =+-+在区间(],4-∞上是减函数,则a 的取值范围是()A.5a ≤B.3a ≤-C.3a ≥D.3a ≥-6.设函数()2,x f x x R =∈的反函数是()g x ,则1()2g 的值为( )A .1-B .2-C .1D .27.设132()3a =,231()3b =,131()3c =,则()f x 的大小关系是( )A.b c a >>B.a b c >>C.c a b >>D.a c b >>8.函数()()215m f x m m x -=--是幂函数,且当()0 x ∈+∞,时,()f x 是增函数,则实数m 等于( ) A.3或2- B.2- C.3 D.3-或29.函数()2lg 45y x x =--的值域为( )A .(),-∞+∞B .()1,5-C .()5,+∞D .(),1-∞-10.已知x ,y 为正实数,则( )A .lg lg lg lg 222x y x y +=+B .lg()lg lg 222x y x y +=C .lg lg lg lg 222x y x y =+D .lg()lg lg 222xy x y = 11.已知函数()x x f x a a -=-,若(1)0f <,则当[]2,3x ∈时,不等式()+(4)0f t x f x --<恒成立则实数t 的范围是( )A .[2,)+∞B .(2,)+∞C .(,0)-∞D .(,0]-∞12.已知奇函数x 14()(x 0)23F(x)f (x)(x 0)⎧->⎪=⎨⎪<⎩,则21F(f (log )3= ( ) A .56- B .56 C .1331()2D .1314()23- 第II 卷(非选择题)二、填空题(每小题5分)13.已知函数ln x y a e =+(0a >,且1a ≠,常数 2.71828...e =为自然对数的底数)的图象恒过定点(,)P m n ,则m n -=______.14.求值:2327( 3.1)()lg 4lg 25ln18--++++=__________ 15.若函数()()()21142x f x a x log =++++为偶函数,则a =_______.16.已知函数log 2,3()(5)3,3a x x f x a x x ->⎧=⎨--≤⎩()满足对任意的实数12x x ≠,都有()()12120f x f x x x ->-成立,则实数a 的取值范围为______________;三、解答题17.(本题满分10分)(1)求值:(log 83+log 169)(log 32+log 916);(2)若1122a a 2--=,求11122a a a a --++及的值.18.(本题满分12分)函数()log (1)a f x x =-+(3)(01)a log x a +<< (1)求方程()0f x =的解;(2)若函数()f x 的最小值为1-,求a 的值.19.(本题满分12分)已知()y f x =是定义在R 上的奇函数,当时0x ≥,()22f x x x =+. (1)求函数()f x 的解析式;(2)解不等式()2f x x ≥+.20.(本题满分12分)已知二次函数f (x )满足 (1)()21f x f x x +-=+且(0)1,f =函数()2(0)g x mx m =>(Ⅰ)求函数()f x 的解析式;(Ⅱ)判断函数()()()g x F x f x =,在()0,1上的单调性并加以证明.21.(本题满分12分)已知函数()142x x f x a a +=⋅--.(1)若0a =,解方程()24f x =-;(2)若函数()142x x f x a a +=⋅--在[]1,2上有零点,求实数a 的取值范围.22.(本题满分12分)函数()f x 的定义域为R ,且对任意,x y R ∈,都有()()()f x y f x f y +=+,且当0x >时,()0f x <,(Ⅰ)证明()f x 是奇函数;(Ⅱ)证明()f x 在R 上是减函数;(III)若()31f =-,()()321550f x f x ++--<,求x 的取值范围.第一学期高一期中考试卷参考答案学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.已知集合,,则( )A.B.C.D.【答案】A【解析】【分析】可以求出集合,,然后进行交集的运算即可.【详解】解:,,.故选:.【点睛】本题考查描述法、区间的定义,一元二次不等式的解法,指数函数的单调性,以及交集的运算。

福建省莆田第二十四中学2025届九上数学期末学业水平测试试题含解析

福建省莆田第二十四中学2025届九上数学期末学业水平测试试题含解析

福建省莆田第二十四中学2025届九上数学期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.已知抛物线223y x x =--,则下列说法正确的是( )A .抛物线开口向下B .抛物线的对称轴是直线1x =-C .当1x =时,y 的最大值为4-D .抛物线与y 轴的交点为()0,3- 2.如下图形中既是中心对称图形,又是轴对称图形的是( )A .B .C .D .3.如图,若A 、B 、C 、D 、E ,甲、乙、丙、丁都是方格纸中的格点,为使△ABC 与△DEF 相似,则点F 应是甲、乙、丙、丁四点中的( ).A .甲B .乙C .丙D .丁4.抛物线23(1)2y x =-+-经过平移得到抛物线23y x =-,平移的方法是( )A .向左平移1个单位,再向下平移2个单位B .向右平移1个单位,再向下平移2个单位C .向左平移1个单位,再向上平移2个单位D .向右平移1个单位,再向上平移2个单位5.若ABC DEF ∆∆∽,面积之比为9:4,则相似比为( )A .94B .49C .32D .81166.如图,A 、B 、C 是⊙O 上互不重合的三点,若∠CAO =∠CBO =20°,则∠AOB 的度数为( )A .50°B .60°C .70°D .80°7.对于反比例函数3y x =,下列说法正确的是 A .图象经过点(1,﹣3) B .图象在第二、四象限C .x >0时,y 随x 的增大而增大D .x <0时,y 随x 增大而减小 8.如图,AB 是O 的直径,四边形ABCD 内接于O ,若4BC CD DA ===,则O 的周长为( )A .4πB .6πC .8πD .9π9.边长相等的正方形与正六边形按如图方式拼接在一起,则ABC ∠的度数为( )A .10︒B .15︒C .20︒D .3010.将n 个边长都为1cm 的正方形按如图所示的方法摆放,点A 1,A 2,…,A n 分别是正方形对角线的交点,则n 个正方形重叠形成的重叠部分的面积和为( )A .14cm 2B .14n -cm 2C .4n cm 2D .(14)n cm 2 11.已知x 1,x 2是关于x 的方程x 2+ax -2b =0的两个实数根,且x 1+x 2=-2,x 1·x 2=1,则b a 的值是( ) A . B .- C .4 D .-112.从一个不透明的口袋中摸出红球的概率为15,已知口袋中的红球是3个,则袋中共有球的个数是( ) A .5 B .8 C .10D .15 二、填空题(每题4分,共24分)13.如图,在平面直角坐标系xOy 中,()A 1,1,()B 3,1,如果抛物线2y ax (a 0)=>与线段AB 有公共点,那么a 的取值范围是______.14.如图,⊙O 是正方形 ABCD 的外接圆,点 P 在⊙O 上,则∠APB 等于 .15.用纸板制作了一个圆锥模型,它的底面半径为1,高为22,则这个圆锥的侧面积为_________.16.已知△ABC 中,AB =5,sinB =35,AC =4,则BC =_____. 17.用一张半径为14cm 的扇形纸片做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm ,那么这张扇形纸片的面积是________ cm 1.18.如图是某幼儿园的滑梯的简易图,已知滑坡AB 的坡度是1:3 ,滑梯的水平宽是6m ,则高BC 为_______m .三、解答题(共78分)19.(8分)如图所示,每个小方格都是边长为1的正方形,以O 点为坐标原点建立平面直角坐标系四边形OABC 的()()()()OA B C.对称的四边形11120.(8分)现有三张分别标有数字-1,0,3的卡片,它们除数字外完全相同,将卡片背面朝上后洗匀.(1)从中任意抽取一张卡片,抽到标有数字3的卡片的概率为;(2)从中任意抽取两张卡片,求两张卡片上的数字之和为负数的概率.21.(8分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.22.(10分)已知矩形ABCD的顶点A、D在圆上, B、C两点在圆内,请仅用没有刻度的直尺作图.(1)如图1,已知圆心O,请作出直线l⊥AD;(2)如图2,未知圆心O,请作出直线l⊥AD.23.(10分)如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,且AD//BC ,BD 的垂直平分线经过点O ,分别与AD 、BC 交于点E 、F(1)求证:四边形ABCD 为平行四边形;(2)求证:四边形BFDE 为菱形.24.(10分)已知抛物线的顶点坐标为(1,2),且经过点(3,10)求这条抛物线的解析式.25.(12分)如图,边长为3正方形OACD 的顶点O 与原点重合,点,D A 在x 轴,y 轴上。

福建省莆田二十四中高一数学上学期期中试题(答案不全)(1)

福建省莆田二十四中高一数学上学期期中试题(答案不全)(1)

福建省莆田二十四中2021-2021学年高一数学上学期期中试题(答案不全)一、选择题:本大题共12小题,每题5分,共60分。

在每题给出的四个选项中,只有一项为哪一项符合题目要求的。

一、已知集合{}1,0,1-=M ,那么以下关系式正确的选项是A .{}M ∈0B .{}M ∉0C .M ∈0D .M ⊆0二、已知函数()x x f 2log 1+=,那么⎪⎭⎫ ⎝⎛21f 的值为A .21B .21-C .0D .-13、函数x y ln =的单调递增区间是A .[)+∞,eB .()+∞,0C .()+∞∞-,D .[)+∞,14、以下函数是偶函数,且在()0,∞-上单调递减的是A .x y 1=B .21x y -=C .x y 21-=D .x y =五、以下式子正确的选项是A .()03>=a a a aB .2lg 6lg 2lg 6lg -= C .()012>=-a a a D .()()[]()()5lg 3lg 53lg -+-=-⋅-六、函数31-=-x a y 的图象恒过定点坐标是A .()3,1-B .()2,1-C .()3,2-D .()2,2- 7、以下函数中,与函数x y 1=有相同概念域的是A. x x f ln )(=B. x x f 1)(=C. 3)(x x f =D. x e x f =)( 八、方程042=-+x x 的解所在区间为A .()0,1-B .()1,0C .()2,1D .()3,2九、已知函数f(x)对任意x,y ∈R 都有f(x+y)=f(x)+f(y), 且f(2)=4,则f(1)=A .- 2B .1C .0.5D .210、设)(,,,3.0log ,2,3.023.02的大小关系为则c b a c b a ===A .c a b <<B .c b a <<C .a b c <<D .a c b << 1一、已知函数)(x f 为概念在R 上的奇函数,当0≥x 时,x x f x+=2)(,那么(1)f -的值为 A .-3 B .-1 C .1 D .3 1二、已知偶函数()f x 与奇函数()g x 的概念域都是(2,2)-,它们在[0,2)上的图象 如下图,那么使关于x 的不等式f(x)g(x)>0成立的x 的取值范围为A 、(2,1)(1,2)-- f(x) g(x) B 、(1,0)(0,1)- C 、(2,1)(0,1)-- D 、(1,0)(1,2)- 1 2 x O 1 二、填空题:本大题共4小题,每题4分,共16分。

福建省莆田市莆田第二中学2022-2023学年高一上学期数学期中考试卷

福建省莆田市莆田第二中学2022-2023学年高一上学期数学期中考试卷

2021-2022学年莆田二中高一上学期数学期中考一.单项选择题:本题共8小题,每小题5分,共40分,在每小题给出地四个选项中,只有一项是符合题目要求地。

1.设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()A.{x|﹣1<x<3}B.{x|﹣1<x<1}C.{x|1<x<2}D.{x|2<x<3}2.已知命题p:∀x≥0,x﹣2>0,则¬p是()A.∃x≥0,x﹣2≤0B.∃x<0.x﹣2≤0C.∀x≥0,x﹣2≤0D.∀x≥0,x﹣2<03.函数y=x2地图象大约是()|x|A.B.C.D.4.下面函数中,既是奇函数又在区间(0,+∞)上单调递增地是()A.y=x+B.y=2x C.y=x2D.y=x﹣5.a≥5是命题“∀x∈[1,2],x2﹣a≤0”为真命题地()A.充分而不必要款件B.必要而不充分款件C.充分必要款件D.既不充分也不必要款件6.函数f(x)=地值域为()A.(0,1)B.(0,1]C.(0,2)D.(1,2)7.对满足=1地任意正实数x,y,不等式>a2﹣3a﹣1恒成立,实数a地取值范围是()A.{a|﹣1≤a≤4}B.{a|﹣1<a<4}C.{a|﹣4≤a≤1}D.{a|﹣4<a<1}8.已知函数f(x)=,若实数a,b,c满足a<b<c且f(a)=f(b)=f(c),则2a+c+2b+c 地取值范围为()A.(4,8)B.(4,16)C.(8,32)D.(16,32)二.多项选择题:本题共4小题,每小题5分,共20分。

在每小题给出地选项中,有多项符合题目要求。

全部选对得5分,有选错地得0分,部分选对地得2分。

9.已知函数y=f(x)用列表法表示如表,若f(f(x))=x-1,则x可取()x12345f(x)23423A.2B.3C.4D.510.下面各选项给出地两个函数中,表示相同函数地有()A.f(x)=x与g(x)=B.f(t)=|t﹣1|与g(x)=|x﹣1|C.f(x)=x与g(x)=D.f(x)=与g(x)=x﹣111.已知非空集合A,B满足以下两个款件:(ⅰ)A∪B={1,2,3,4},A∩B=∅。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年福建省莆田二十四中高一(上)期中数学试卷一、选择题(每题5分,共60分)1.(5分)已知A={0,1,2,3,4},B={1,3,5},则A∩B为()A.{0,2}B.{1,3}C.{0,1,3}D.{2}2.(5分)已知函数f(x)=,则f(﹣10)的值是()A.B.4 C.2 D.﹣23.(5分)函数y=的定义域是()A.(,+∞)B.[,+∞)C.(﹣∞,) D.(﹣∞,]4.(5分)下列集合不是{1,2,3}的真子集的是()A.{1}B.{2,3}C.∅D.{1,2,3}5.(5分)下列函数是奇函数的是()A.y=x B.y=2x2C.y=2x D.y=x2,x∈[0,1]6.(5分)化简[(﹣)2],得()A.﹣B.C.D.﹣7.(5分)指数函数y=a x的图象经过点(2,16)则a的值是()A.B.C.2 D.48.(5分)已知定义域为R的偶函数f(x)在(0,+∞)上为增函数,则()A.f(4)>f(3)B.f(﹣5)>f(5)C.f(﹣3)>f(﹣5) D.f(3)>f(﹣6)9.(5分)若函数F(x)=f(x)﹣2在(﹣∞,0)内有零点,则y=f(x)的图象可能是()A.B.C.D.10.(5分)如图①y=a x,②y=b x,③y=c x,④y=d x,根据图象可得a、b、c、d与1的大小关系为()A.a<b<1<c<d B.b<a<1<d<c C.1<a<b<c<d D.a<b<1<d<c 11.(5分)已知函数f(x)=4x2﹣kx﹣8在[1,2]上具有单调性,则k的取值范围是()A.(﹣∞,8]∪[16,+∞) B.[8,16] C.(﹣∞,8)∪(16,+∞)D.[8,+∞)12.(5分)已知满足对任意成立,那么a的取值范围是()A. B. C.(1,2) D.(1,+∞)二、填空题(每题5分,共20分)13.(5分)已知3∈{1,﹣a2,a﹣1},则实数a=.14.(5分)若函数f(x)=(a﹣2)•a x为指数函数,则a=.15.(5分)满足48﹣x>4﹣2x的x的取值集合是.16.(5分)设奇函数f(x)的定义域为[﹣5,5],若当x∈[0,5]时,f(x)的图象如图,则不等式f(x)<0的解集是.三、解答题(共6道大题,满分70分,其中第17题10分,其余各题12分)17.(10分)设A={x|x≥1或x≤﹣3},B={x|﹣4<x<0}求:(1)A∩B;(2)A∪(∁R B);(3)(∁R A)∩B.18.(12分)计算下列各值:(1);(2).19.(12分)已知函数f(x)=x﹣的图象的经过点(2,1)(1)求a的值;(2)判断f(x)的奇偶性.20.(12分)已知f(x)=x2﹣bx+c且f(1)=0,f(2)=﹣3(1)求f(x)的函数解析式;(2)求的解析式及其定义域.21.(12分)如图,定义在[﹣1,2]上的函数f(x)的图象为折线段ACB,(1)求函数f(x)的解析式;(2)请用数形结合的方法求不等式f(x)≥log2(x+1)的解集,不需要证明.22.(12分)设函数f(x)=x2﹣2tx+2,其中t∈R.(1)若t=1,求函数f(x)在区间[0,4]上的取值范围;(2)若t=1,且对任意的x∈[a,a+2],都有f(x)<5,求实数a的取值范围;(3)若对任意的x1,x2∈[0,4],都有f(x1)﹣f(x2)≤8,求t的取值范围.2016-2017学年福建省莆田二十四中高一(上)期中数学试卷参考答案与试题解析一、选择题(每题5分,共60分)1.(5分)已知A={0,1,2,3,4},B={1,3,5},则A∩B为()A.{0,2}B.{1,3}C.{0,1,3}D.{2}【解答】解:根据题意,集合A={0,1,2,3,4},B={1,3,5},则A∩B={1,3};故选:B.2.(5分)已知函数f(x)=,则f(﹣10)的值是()A.B.4 C.2 D.﹣2【解答】解:∵函数f(x)=,∴f(﹣10)=﹣10+12=2,故选:C.3.(5分)函数y=的定义域是()A.(,+∞)B.[,+∞)C.(﹣∞,) D.(﹣∞,]【解答】解:要使函数有意义,则需2x﹣1≥0,即x≥,所以原函数的定义域为[,+∞).故选:B.4.(5分)下列集合不是{1,2,3}的真子集的是()A.{1}B.{2,3}C.∅D.{1,2,3}【解答】解:因为{1,2,3}={1,2,3},所以{1,2,3}不是{1,2,3}的真子集.故选:D.5.(5分)下列函数是奇函数的是()A.y=x B.y=2x2C.y=2x D.y=x2,x∈[0,1]【解答】解:A.其定义域为R,关于原点对称,又f(﹣x)=﹣x=﹣f(x),因此是奇函数;B.其定义域为R,关于原点对称,又f(﹣x)=2x2=f(x),因此是偶函数;C.非奇非偶函数;D.其定义域关于原点不对称.故选:A.6.(5分)化简[(﹣)2],得()A.﹣B.C.D.﹣【解答】解:[(﹣)2]=(3)==.故选:C.7.(5分)指数函数y=a x的图象经过点(2,16)则a的值是()A.B.C.2 D.4【解答】解:设指数函数为y=a x(a>0且a≠1)将(2,16)代入得16=a2解得a=4所以y=4x故选:D.8.(5分)已知定义域为R的偶函数f(x)在(0,+∞)上为增函数,则()A.f(4)>f(3)B.f(﹣5)>f(5)C.f(﹣3)>f(﹣5) D.f(3)>f(﹣6)【解答】解:∵定义域为R的偶函数f(x)在(0,+∞)上为增函数,4>3,∴f(4)>f(3),故选:A.9.(5分)若函数F(x)=f(x)﹣2在(﹣∞,0)内有零点,则y=f(x)的图象可能是()A.B.C.D.【解答】解:∵F(x)=f(x)﹣2在(﹣∞,0)内有零点,∴∃x0∈(﹣∞,0)使得f(x0)=2,故选:D.10.(5分)如图①y=a x,②y=b x,③y=c x,④y=d x,根据图象可得a、b、c、d与1的大小关系为()A.a<b<1<c<d B.b<a<1<d<c C.1<a<b<c<d D.a<b<1<d<c 【解答】解:由图,直线x=1与四条曲线的交点坐标从下往上依次是(1,b),(1,a),(1,d),(1,c)故有b<a<1<d<c故选:B.11.(5分)已知函数f(x)=4x2﹣kx﹣8在[1,2]上具有单调性,则k的取值范围是()A.(﹣∞,8]∪[16,+∞) B.[8,16] C.(﹣∞,8)∪(16,+∞)D.[8,+∞)【解答】解:∵对称轴x=,若函数f(x)在[1,2]上单调,则≥2或≤1,解得:k≥16或k≤8,故选:A.12.(5分)已知满足对任意成立,那么a的取值范围是()A. B. C.(1,2) D.(1,+∞)【解答】解:∵对任意x1≠x2,都有>0成立,∴函数在R上单调增,∴,解得≤a<2,所以a的取值范围是[,2).故选:A.二、填空题(每题5分,共20分)13.(5分)已知3∈{1,﹣a2,a﹣1},则实数a=4.【解答】解:3∈{1,﹣a2,a﹣1},可得3=a﹣1,解得a=4.故答案为:4.14.(5分)若函数f(x)=(a﹣2)•a x为指数函数,则a=3.【解答】解:∵函数f(x)=(a﹣2)•a x为指数函数,∴,解得:a=3,故答案为:315.(5分)满足48﹣x>4﹣2x的x的取值集合是(﹣8,+∞).【解答】解:由48﹣x>4﹣2x,得8﹣x>﹣2x,即x>﹣8.∴满足48﹣x>4﹣2x的x的取值集合是(﹣8,+∞).故答案为:(﹣8,+∞).16.(5分)设奇函数f(x)的定义域为[﹣5,5],若当x∈[0,5]时,f(x)的图象如图,则不等式f(x)<0的解集是[﹣5,﹣2)∪(0,2).【解答】解:由于奇函数关于原点对称,故函数(x)在定义域为[﹣5,5]的图象如右图由图象知不等式f(x)<0的解集是[﹣5,﹣2)∪(0,2)故答案为:[﹣5,﹣2)∪(0,2)三、解答题(共6道大题,满分70分,其中第17题10分,其余各题12分)17.(10分)设A={x|x≥1或x≤﹣3},B={x|﹣4<x<0}求:(1)A∩B;(2)A∪(∁R B);(3)(∁R A)∩B.【解答】解:(1)∵A={x|x≥1或x≤﹣3},B={x|﹣4<x<0},∴A∩B={x|﹣4<x≤﹣3}.(2)由题意可得∁R B={x|x≥0或x≤4}∴A∪(∁R B)={x|x≥0或x≤﹣3}.(3)∵∁R A={x|﹣3<x<1},B={x|﹣4<x<0},∴(∁R A)∩B={x|﹣3<x<0}.18.(12分)计算下列各值:(1);(2).【解答】解:(1);…(6分)(2).…(12分)19.(12分)已知函数f(x)=x﹣的图象的经过点(2,1)(1)求a的值;(2)判断f(x)的奇偶性.【解答】解:(1)由题意可得f(2)=1﹣,所以a=2.(2)由(1)得f(x)=x﹣=x﹣,则f(z)的定义域为(0,+∞)∪(0,+∞).所以f(﹣x)=﹣x﹣=﹣x+=﹣f(x).故f(x)为奇函数.20.(12分)已知f(x)=x2﹣bx+c且f(1)=0,f(2)=﹣3(1)求f(x)的函数解析式;(2)求的解析式及其定义域.【解答】解:(1)由题意可得f(1)=1﹣b+c=0,f(2)=4﹣2b+c=﹣3,联立解得:b=6,c=5,∴f(x)=x2﹣6x+5;(2)由(1)得f(x)=x2﹣6x+5,∴=,的定义域为:(﹣1,+∞)21.(12分)如图,定义在[﹣1,2]上的函数f(x)的图象为折线段ACB,(1)求函数f(x)的解析式;(2)请用数形结合的方法求不等式f(x)≥log2(x+1)的解集,不需要证明.【解答】解:(1)根据图象可知点A(﹣1,0),B(0,2),C(2,0),所以(2)根据(1)可得函数f(x)的图象经过点(1,1),而函数log2(x+1)也过点(1,1),函数log2(x+1)的图象可以由log2x左移1个单位而来,如图所示,所以根据图象可得不等式f(x)≥log2(x+1)的解集是(﹣1,1].22.(12分)设函数f(x)=x2﹣2tx+2,其中t∈R.(1)若t=1,求函数f(x)在区间[0,4]上的取值范围;(2)若t=1,且对任意的x∈[a,a+2],都有f(x)<5,求实数a的取值范围;(3)若对任意的x1,x2∈[0,4],都有f(x1)﹣f(x2)≤8,求t的取值范围.【解答】解:(1)当t=1时,f(x)=x2﹣2x+2,∴f(x)的对称轴为x=1,∴f(x)在[0,1]上单调递减,在(1,4]上单调递增,∴当x=1时,f(x)取得最小值f(1)=1,当x=4时,f(x)取得最大值f(4)=10.∴f(x)在区间[0,4]上的取值范围是[1,10].(2)∵f(x)<5,∴x2﹣2x+2<5,即x2﹣2x﹣3<0,令g(x)=x2﹣2x﹣3,g (x)的对称轴为x=1.①若a+1≥1,即a≥0时,g(x)在[a,a+2]上的最大值为g(a+2)=a2+2a﹣3,∵对任意的x∈[a,a+2],都有f(x)<5,∴g(x)=x2﹣2x﹣3<0恒成立,∴a2+2a﹣3<0,解得0≤a<1.②若a+1<1,即a<0时,g(x)在[a,a+2]上的最大值为g(a)=a2﹣2a﹣3,∵对任意的x∈[a,a+2],都有f(x)<5,∴g(x)=x2﹣2x﹣3<0恒成立,∴a2﹣2a﹣3<0,解得﹣1<a<0,综上,实数a的取值范围是(﹣1,1).(3)设函数f(x)在区间[0,4]上的最大值为M,最小值为m,所以“对任意的x 1,x 2∈[0,4],都有|f (x 1)﹣f (x 2)|≤8”等价于“M ﹣m ≤8”. ①当t ≤0时,M=f (4)=18﹣8t ,m=f (0)=2. 由M ﹣m=18﹣8t ﹣2=16﹣8t ≤8,得t ≥1. 从而 t ∈∅.②当0<t ≤2时,M=f (4)=18﹣8t ,m=f (t )=2﹣t 2. 由M ﹣m=18﹣8t ﹣(2﹣t 2)=t 2﹣8t +16=(t ﹣4)2≤8,得.,⇒③当2<t ≤4时,M=f (0)=2,m=f (t )=2﹣t 2. 由M ﹣m=2﹣(2﹣t 2)=t 2≤8,得﹣2≤t ≤2⇒2<t ≤2;④当t >4时,M=f (0)=2,m=f (4)=18﹣8t . 由M ﹣m=2﹣(18﹣8t )=8t ﹣16≤8,得t ≤3. 从而 t ∈∅.综上,t 的取值范围为区间[4﹣2,2]赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

相关文档
最新文档