抽样定理和PAM
抽样定理和脉冲调幅(PAM)实验
电子信息工程学系实验报告课程名称:通信原理 实验项目名称:抽样定理和脉冲调幅(PAM )实验 实验时间:班级:通信091 姓名:Jxairy 学号:910705131实 验 目 的:1)验证抽样定理; 2)观察了解PAM 信号形成过程,平顶展宽解调过程。
实 验 环 境 与 仪 器: 1)抽样定理和脉冲调幅(PAM )实验模块 2)数字频率计 8110A 3) 低频信号发生器XFD7 4) 直流稳压电源 JWY -30-4 5) 双踪同步示波器 SR8 6) 毫伏表 GB9 实 验 原 理:利用抽样脉冲把一个连续信号变为离散时间样值的过程称为“抽样”,抽样后的信号称为脉冲调幅(PAM )信号。
在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。
并且,从抽样信号中可以无失真地恢复出原信号。
图02-01示意地画出了传输一路语音信号的PCM 系统。
从图中可以看出要实现对语音的PCM 编码,首先就要对语音信号进行抽样,然后才能进行量化和编码。
因此,抽样过程是语音信号数字化的重要环节,也是一切模拟信号数字化的重要环节。
图02-01 单路PCM 系统示意图1. 抽样定理:一个频带受限信号m(t)如果它的最高频率为f H (即m(t)的频谱中没有f H 以上的分量),可以唯一地由频率等于或大于2f H 的样值序列所决定。
图02-02 抽样定理实验方框图2.脉冲幅度调制(PAM):是脉冲载波的幅度随基带信号变化的一种的调制方式。
若脉冲载波是冲激脉冲序列,则按抽样定理进行抽样得到的信号m()t就是一个PAM信号。
sPAM信号在时间上是离散的,但在幅度上却是连续的。
而在PCM系统里,PAM信号只有在被量化和编码后才有传输的可能。
本实验仅提供一个PAM系统的简单模式。
图02-03 多路脉冲调幅实验框图实验内容及过程:(一)、抽样和分路脉冲的形成用示波器和频率计观察并核对各脉冲信号的频率、波形及脉冲宽度,并记录相应的波形。
PAM
原理:时钟信号CLK为16K的方波信号,D触发器为边沿触发器,将反相输出端“Q反”与D端连接在一起,由CLK输入信号,当时钟信号在下降沿时开始工作,当D输入1时,Q反输出为0,同时反馈给D,此时Q反为1再反馈给D,则Q为1输出,其利用反馈,当输入两次是输出一次,从而达到分频效果,输出端Q输出的信号即为二分频信号。
BJT是电流控制器件,有两种载流子参与导电,属于双极性器件;而FET是电压控制电流器件,只依靠一种载流子导电,因而属于单极性器件。虽然两种器件的控制原理有所不同,但通过类比可发现,组成电路的形式极为相似。
MOS场效应管是数字电路最常用的器件,在合适的出入信号作用下,具有开关特性。此次课程设计就是利用MOS场效应管的开关特性来对语音信号进行取样。原理如图3-9所示:
本次课程设计采用System View来进行仿真。
SystemView是美国ELANIX公司推出的,基于Windows环境下运行的用于系统仿真分析的可视化软件工具,它使用功能模块(Token)去描述程序,无需与复杂的程序语言打交道,不用写一句代码即可完成各种系统的设计与仿真,快速地建立和修改系统、访问与调整参数,方便地加入注释。
2.2 PAM调制器总原理框图
PAM调制器总原理框图如下图2-1所示:
采用一个多谐振荡器作为方波发生器,
图2-1 PAM调制器设计框图
三、各单元电路设计:
3.1方波发生器:
多谐振荡器(Astable Multivibrator)实际上是方波发生器,是一种自激振荡器,在接通电源以后,不需要外加触发信号,便能自动地产生矩形脉冲。由于矩形波中除基波外还包含了许多高次谐波分量。因此,习惯上又将矩形波振荡器又称为多谐振荡器。如图3-1所示:
04016437-郑志刚-PAM调制与抽样定理实验
PAM 调制与抽样定理实验04016437郑志刚 04016428朱晗东一、实验目的1.掌握自然抽样、平顶抽样特性;2.理解抽样脉冲脉宽、频率对恢复信号的影响; 3.理解低通滤波器幅频特性对恢复信号的影响; 4.了解混迭效应产生的原。
二、实验仪器1. RZ9681实验平台2. 实验模块: • 主控模块• 信源编码与时分复用模块A3 •信源译码与时分解复用模块A63. 100M 双通道示波器4. 信号连接线5. PC 机(二次开发)三、实验原理1. 抽样定理简介抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原原信号。
这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。
图1.2-1 信号的抽样与恢复假设()m t 、()T t δ和()s m t 的频谱分别为()M ω、()T δω和()s M ω。
按照频率卷积定理,()m t ()T t δ的傅立叶变换是()M ω和()T δω的卷积:[]11()()()()2s T s n M M M n T ωωδωωωπ∞=−∞=*=−∑该式表明,已抽样信号()m t s 的频谱()M s ω是无穷多个间隔为ωs 的()M ω相迭加而成。
需要注意,若抽样间隔T 变得大于 , 则()M ω和()T δω的卷积在相邻的周期内存在重叠(亦称混叠),因此不能由()M s ω恢复()M ω。
可见, 是抽样的最大间隔,它被称为奈奎斯特间隔。
下图所示是当抽样频率s f ≥2B 时(不混叠)及当抽样频率s f <2B 时(混叠)两种情况下冲激抽样信号的频谱。
(a) 连续信号及频谱(b ) 高抽样频率时的抽样信号及频谱(不混叠)(c ) 低抽样频率时的抽样信号及频谱(混叠)图1.2-2 采用不同抽样频率时抽样信号及频谱2.抽样定理实现方法通常,按照基带信号改变脉冲参量(幅度、宽度和位置)的不同,把脉冲调制分为脉幅12Hf 12HT f =011调制(PAM)、脉宽调制(PDM)和脉位调制(PPM)。
医学课件实验4 抽样定理与PAM通信系统实验
(7)调节信号源频率调节旋钮改变抽样信号的频率为4KHz,根 据抽样定理判断,选择3KHz作为抽样信号,是否合适? (8) 用示波器在P503处观察和记录已调信号的波形,已调信号 一个周期有几个采样点? (9) 连接PAM_OUT和P605铆孔,观察解调后的信号输出,测 量点为P606,解调后的模拟信号恢复了吗?分析主要原因? (10)调节信号源频率调节旋钮改变抽样信号的频率为16KHz, 根据抽样定理判断,选择16KHz作为抽样信号,是否合适? (11)连接PAM_OUT和P605铆孔,观察解调后的信号输出,测 量点为P606,解调后调制信号是否有失真?对比分析以上三种解 调后的调制信号,判断选择哪一种抽样信号,解调后的调制信号 失真最小。 (12)连接P606和A_IN将抽样恢复后的波形,送至音频功放, 听听效果。
2. 输入1KHz的三角波作为抽样信号 (1)连接P202和P501,选择函数信号输出,K201打在第一档, 选择的三角波输出,调节W202时输入信号的频率为1KHz; (2)用示波器在P501处观察,以该点信号输出幅度不失真时为 好,如有失真,则调节W203,减小信号的输出幅度; (3)连接信号源和P502引入抽样信号,调节信号源频率旋钮, 使输出信号的频率为3KHz; (4)用示波器观察抽样输出波形,看该波形是否稳定,为什么? (5)连接P503和P603将抽样信号送至终端滤波器,在P604出 观察恢复信号的波形,考虑为什么会失真。
测量点的实际波形
P501:输入正弦信号 P503:抽样输出波形
P502:抽样时钟 P503:抽样输出波形
五、实验报告要求
根据实验内容的要求,绘出所测各点的波形、频率、电压等有关 数据,对所测数据做简要分析说明。
抽样定理和脉冲调幅(PAM)实验
实验二:抽样定理和脉冲调幅(PAM)实验一、实验目的通过本实验,学生应达到以下要求:1、观察并了解PAM信号形成、平顶展宽、解调和滤波等过程;2、验证并理解抽样定理,掌握对频谱混叠现象的分析方法;3、观察时分多路系统中非理想信道之间的路际串话现象,分析并掌握其形成原因。
二、实验内容本实验课完成以下实验内容:采用专用集成抽样保持开关完成对输入信号的抽样;多种抽样时隙的产生;采用低通滤波器完成对PAM信号的解调;测试出入信号频率与抽样频率之间的关系,观察频谱混叠现象,验证抽样定理;多路脉冲条幅(PAM);观察并测试时分多路PAM信号和高频串话。
三、实验原理在通信技术中为了获取最大的经济效益,就必须充分利用信道的传输能力,扩大通信容量。
因此,采取多路化制式是极为重要的通信手段。
最常用的多路复用体制是频分多路复用( FDM) 通信系统和时分多路复用( TDM) 通信系统。
频分多路技术是利用不同频率的正弦载波对基带信号进行调制,把各路基带信号频谱搬移到不同的频段上,在同一信道上传输。
利用抽样脉冲把一个连续信号变为离散时间样值的过程称为抽样,抽样后的信号好称为脉冲调幅信号。
在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。
抽样定理:fs>2fh,才能从抽样信号中可以无失真的恢复出原信号。
抽样定理在通信系统、信息传输理论方面占有十分重要的地位。
数字通信系统是以此定理作为理论基础的。
在工作设备中,抽样过程是模拟信号数字化的第一步。
抽样性能的优劣关系到整个系统的性能指标。
抽样量化编码信道解码滤波收定时发定时PAM语音信号语音信号PAM图2-1 单路PCM系统示意图作为例子,图2-1示意地画出了传输一路语音信号的PCM系统。
从图中可以看出要实现对语音的PCM编码,首先就要对语音信号进行抽样,然后才能进行量化和编码。
因此,抽样过程是语音信号数字化的重要环节,也是一切模拟信号数字化的重要环节。
为了让实验者形象地观察抽样过程,加深对抽样定理的理解,本实验提供了一种典型的抽样电路。
通信原理实验二 抽样定理实验(PAM)
实验数据
1、对2K正弦基波用不同方波进行抽样的过程:
(1)、4KHZ方波A
(2)8KHZ方波A
(3)16KHZ方波A
由上面3个图的比较可知,对基波信号进行抽样的抽样脉冲即方波A的频率越大,在一个周期内的抽样点就越多,PAM输出点的波形就越接近基波信号。频谱更密集。
实验原理
1、图8-1是模拟信号的抽样原理框图。
图8-1模拟信号的抽样原理框图
实际上理想冲激脉冲串物理实现困难,实验中采用DDS直接数字频率合成信源产生的矩形脉冲来代替理想的窄脉冲串。
抽样信号规定在音频信号300~3400Hz范围内,由信号源模块提供。抽样脉冲的频率根据抽样定理的描述,应大于或等于输入音频信号频率的2倍。
抽样信号和抽样脉冲送入模拟信号数字化模块抽样电路中,产生PAM抽样信号。
3、抽样信号的还原
若要解调出原始语音信号,将抽样信号送入截止频率为3400Hz的低通滤波器即可。
图8-2抽样信号的还原原理框图
实验仪器
1、信号源模块一块
2、模拟信号数字化模块一块
3、20M双踪示波器一台
4、带话筒立体声耳机一副
5、频谱分析仪一台
4、实验连线如下:
信号源模块模拟信号数字化模块
2K正弦基波——————抽样信号
DDS-OUT——————抽样脉冲
模拟信号数字化模块内连线
PAM输出———————解调输入
5、不同频率方波抽样
(1)信号源模块“DDS-OUT”测试点输出选择“方波A”,调节“DDS调幅”旋转电位器,使其峰峰值为3V左右。
贵州大学实验报告
学院:计信学院专业:网络工程班级:091
通信原理实验04 抽样定理与PAM调制解调实验
实验四抽样定理与PAM调制解调实验实验四抽样定理与PAM调制解调实验实验内容1.抽样定理实验2.脉冲幅度调制(PAM)及系统实验一.实验目的1.通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的特点。
2.通过对电路组成、波形和所测数据的分析,加深理解这种调制方式的优缺点。
二.实验电路工作原理抽样定理在通信系统、信息传输理论方面占有十分重要的地位。
抽样过程是模拟信号数字化的第一步,抽样性能的优劣关系到通信设备整个系统的性能指标。
利用抽样脉冲把一个连续信号变为离散时间样值的过程称为抽样,抽样后的信号称为脉冲幅度(PAM)信号。
抽样定理指出:一个频带受限信号m(t),如果它的最高频率为f h,则可以实验四抽样定理与PAM调制解调实验(二)实验电路工作原理1.输入电路该电路由发送放大电路组成。
该电路还用于PCM、增量调制编码电路中。
电路电原理图如4-2所示。
2.PAM调制电路调制电路见图4-2。
它是利用CD4066开关特性完成抽样实验的,抽样输出的信号中不含有直流分量。
输出负载端,接有取样保持电路,由R605、C602以及R607等组成,由开关K601来控制,在做调制实验时,K601的2端与3端相连,能观察其取样定理的波形。
在做系统实验时,将K601的1端与2端相连,即与解调滤波电路连通。
3.脉冲发生电路该部分电路详见图4-2所示,主要有两种抽样脉冲,一种由555及其它元件组成,这是一个单谐振荡器电路,能产生极性、脉宽、频率可调的方波信号,可通过调节电位器W601实现输出脉冲频率的变化,以便用来验证取样定理,另一种由CPLD产生的8KHz 抽样脉冲,这两种抽样脉冲通过开关K602来选择。
可在TP603处很方便地观测到脉冲频率变化情况和输出的脉冲波形。
注意实验时,用8KHz抽样脉冲效果较好,而且便于稳定观察。
4.PAM解调与滤波电路解调滤波电路由集成运放电路TL084组成。
组成了一个二阶有源低通滤波器,其截止频率设计在3.4KHz左右,因为该滤波器有着解调的作用,因此它的质量好坏直接影响着系统的工作状态。
抽样定理与PAM调制解调实验
脉幅调制(PAM)是数字通信系统最为常用的调制方式之一,脉冲振幅调制,即是脉冲载波的幅度随基带信号变化的一种调制方式。
如果脉冲载波是由脉冲激脉冲组成的,根据抽样定理,就可以把信号复原,就是脉冲振幅调制的原理。
通过本实验,我对抽样定理和PAM调制解调有更深的了解。
抽样定理与PAM调制解调实验工科实验报告2009-12-14 23:22:16 阅读292 评论0 字号:大中小订阅一、实验目的1、通过对模拟信号抽样的实验,加深对抽样定理的理解。
2、通过PAM调制实验,使学生能加深理解脉冲幅度调制的特点。
3、通过对电路组成、波形和所测数据的分析,了解PAM调制方式的优缺点。
二、实验电路的工作原理与分析取样也称抽样、采样,是把时间连续的模拟信号变换为时间离散信号的过程。
抽样定理是指:一个频带限制在(0,fH)内的时间连续信号m(t),如果以T≤1/2fH秒的间隔对它进行等间隔抽样,则m(t)将被所得到的抽样值完全确定。
根据取样脉冲的特性,取样分为理想取样、自然取样(亦称曲顶取样)、瞬时取样(亦称平顶取样);根据被取样信号的性质,取样又分为低通取样和带通取样。
虽然取样种类很多,但是间隔一定时间,取样连续信号的样值,把信号从时间上离散,这是各种取样共同的作用,取样是模拟信号数字化及时分多路的理论基础。
抽样定理和脉冲幅度调制系统框图如(教材)图3-1所示,实验原理图如(教材)图3-2所示,由输入电路、高速电子开关电路、脉冲发生电路、解调滤波电路、功放输出电路等五部分组成。
取样电路是用4066模拟门电路实现。
当取样脉冲为高电位时,取出信号样值;当取样脉冲为低电平时,输出电压为0,这样便完成了取样。
本电路属于低通信号的自然取样根据取样定理,取样后的信号还原为原信号要通过理想低通滤波器,本滤波电路系统用有源低通滤波器代替理想低通滤波器完成还原。
数据测量当SP302接入抽样时钟信号为16KHZ抽样时钟方波信号SP108时测量点波形峰峰值(V)频率(KHZ)TP301图11.442.00TP302 3.6416.65TP301图21.44 1.988TP3030.820 1.999TP303图30.840 1.999TP304 3.12 2.002图1图2图3当SP302接入抽样时钟信号为8KHZ抽样时钟方波信号SP109时测量点波形峰峰值(V)频率(KHZ)TP301图41.44 1.953TP302 3.608.064TP301图51.42 2.000TP3030.840 2.012TP303图60.840 2.014TP304 3.16 2.000图4图5图6当SP302接入抽样时钟信号为4KHZ抽样时钟方波信号SP110时测量点波形峰峰值(V)频率(KHZ)TP301图71.44 1.986TP302 3.60 3.968TP301图81.44 1.985TP3030.664 2.005TP303图90.672 2.000TP304 1.84 1.969图7图8图9(二)音乐信号源的PAM调制解调实验将SP302分别接入不同的抽样时钟信号频率(SP108-SP112)可以发现音乐信号的质量随着频率的降低越来越差。
抽样定理及其应用实验
实验一抽样定理及其应用实验一、实验目的1.通过对实验模拟信号抽样的实验,加深对抽样定理的理解2.PAM调制实验3.学习PAM调制硬件实验电路二、实验基本原理抽样定理:如果对某一带宽有限的时间连续信号进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原原信号。
即若要传输传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。
三、实验器材1.PAM脉冲调幅模块,位号H2.时钟与基带数据发生模块,位号G3.示波器一台4.信号连接线四、实验过程1、把时钟与基带数据发生模块插到底板位号G的位置上,把PAM脉冲调幅模块插位号H的位置上;2、用导线将P03和32P01连接,将P09和32P02连接,将32P03和P14连接;打开电源,指示灯正常显示3、分别把信号源产生的正弦波接在32P01、32P02、32P03上。
接在32P01时用示波器在此处观察并且调节电位器W01,使该点正弦波新号幅度约为2v,可观察PAM取样信号;接在32P02时用示波器在此处观察取样脉冲波形;示波器接在32P03上,调节32W01可以改变PAM传输信道的特性,PAM取样信号会发生改变4、PAM解调用的低通滤波器电路设有两组数据,其截止频率分别为2.6khz、5kHz。
调节不同的输入信号和不同的抽样时钟频率,用示波器观测各点的波形,验证抽样定理五、实验结果数据测量当SP302接入抽样时钟信号为16KHZ抽样时钟方波信号SP108时测量点峰峰值(V) 频率(KHZ)TP301 1.44 2.00TP302 3.64 16.65TP301 1.44 1.988TP303 0.820 1.999TP303 0.840 1.999TP304 3.12 2.002当SP302接入抽样时钟信号为8KHZ抽样时钟方波信号SP109时测量点峰峰值(V) 频率(KHZ)TP301 1.44 1.953TP302 3.60 8.064TP301 1.42 2.000 TP303 0.840 2.012 TP303 0.840 2.014 TP304 3.16 2.000。
抽样定理和PAM调制解调实验
《通信原理》实验报告实验三:抽样定理和PAM调制解调实验系别:信息科学与工程学院专业班级:通信1003 班学生姓名:揭芳073同组学生:杨亦奥成绩:指导教师:***(实验时间:20 12 年12 月7 日——20 12 年12 月7 日)华中科技大学武昌分校一、实验目的1、 通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。
2、 通过实验,了解了自然抽样和平顶抽样的区别3、 对抽样定理的更深一步的了解4、 通过对电路组成、波形和所测数据的分析,加深理解这种调制方式的优缺点。
二、实验内容1、 观察模拟输入正弦波信号、抽样时钟的波形和脉冲幅度调制信号,并注意观察它们之间的相互关系及特点。
2、 改变模拟输入信号或抽样时钟的频率,多次观察波形。
三、实验器材1、 信号源模块 一块2、 ①号模块 一块3、 20M 双踪示波器 一台4、 连接线 若干四、实验原理(一)基本原理 1、抽样定理抽样定理表明:一个频带限制在(0,H f )内的时间连续信号()m t ,如果以T ≤Hf 21秒的间隔对它进行等间隔抽样,则()m t 将被所得到的抽样值完全确定。
假定将信号()m t 和周期为T 的冲激函数)t (T δ相乘,如图3-1所示。
乘积便是均匀间隔为T 秒的冲激序列,这些冲激序列的强度等于相应瞬时上()m t 的值,它表示对函数()m t 的抽样。
若用()m t s 表示此抽样函数,则有:()()()s T m t m t t δ=图3-1 抽样与恢复假设()m t 、()T t δ和()s m t 的频谱分别为()M ω、()T δω和()s M ω。
按照频率卷积定理,()m t ()T t δ的傅立叶变换是()M ω和()T δω的卷积:[]1()()()2s T M M ωωδωπ=* 因为 2()T Ts n n Tπδδωω∞=-∞=-∑Ts πω2=所以 1()()()s T s n M M n T ωωδωω∞=-∞⎡⎤=*-⎢⎥⎣⎦∑由卷积关系,上式可写成1()()s s n M M n T ωωω∞=-∞=-∑该式表明,已抽样信号()m t s 的频谱()M s ω是无穷多个间隔为ωs 的()M ω相迭加而成。
PAM 调制与抽样定理实验
《信息处理综合实验》实验报告(一)班级:姓名:学号:日期:2020-11-15实验一 PAM 调制与抽样定理实验一、实验目的1.掌握自然抽样、平顶抽样特性;2.理解抽样脉冲脉宽、频率对恢复信号的影响;3.理解低通滤波器幅频特性对恢复信号的影响;4.了解混迭效应产生的原理。
二、实验内容及步骤自然抽样验证(1). 选择自然抽样功能在实验框图上通过“切换开关”,选择到“自然抽样”功能;(2). 修改参数进行测量通过实验框图上的“原始信号”、“抽样脉冲”按钮,设置实验参数,如:设置原始信号为:“正弦”,2000hz,幅度为17;设置抽样脉冲:频率:8000hz,占空比:4/8(50%);(3). 抽样信号时域观测用双通道示波器,在3P2 可观测原始信号,在3P4 可观测抽样脉冲信号,在3P6 可观测PAM 取样信号;(4). 抽样信号频域观测使用示波器的FFT 功能或频谱仪,分别观测3P2,3P4,3P6 测量点的频谱;(5). 恢复信号观察通过实验框图上的“恢复滤波器”按钮,设置恢复滤波器的截止频率为3K(点击截止频率数字),在6P3 观察经过恢复滤波器后,恢复信号的时域波形。
(6). 改变参数重新完成上述测量修改模拟信号的频率及类型,修改抽样脉冲的频率,重复上述操作。
频谱混叠现象验证(1). 设置各信号参数设置原始信号为:“正弦”,1000hz,幅度为20;设置抽样脉冲:频率:8000hz,占空比:4/8(50%);恢复滤波器截止频率:2K;(2). 频谱混叠时域观察使用示波器观测原始信号3P2,恢复后信号6P4。
逐渐增加3P2 原始信号频率:1k,2k,3k,…,7k,8k;观察示波器测量波形的变化。
当3P2 为6k 时,记录恢复信号波形及频率;当3P2 为7k 时,记录恢复信号波形及频率;记录3P2 为不同情况下,信号的波形,并分析原因,其是否发生频谱混叠?(3). 频谱混叠频域观察使用示波器的FFT 功能或频谱仪观测抽样后信号3P6,然后重新完成上述步骤(2)操作。
抽样定理和脉冲调幅(PAM)实验
抽样定理和脉冲调幅(PAM)实验抽样定理,也称为奈奎斯特-香农定理或奈斯凯-香农定理,是信号处理中的一条基本定理,它表明,如果我们想要完全恢复连续的信号,我们必须将信号进行采样,采样频率必须要大于信号中频率最高的成分的两倍。
抽样定理告诉我们,如果我们使用低于两倍信号最高频率的采样频率,则不能完整地恢复原始信号。
因此,抽样定理是数字信号处理的基础之一。
脉冲调幅(PAM)是数字通信的一种基本模式,其通过将模拟信号转换为数字信号来完成模拟通信与数字通信之间的转换。
PAM是一种基本的数字化模拟调制技术,它将模拟信号进行采样并将其转换为数字信号,在数字信号中,每个样本由一个固定数量的二进制数表示。
在PAM中,我们使用一个调制脉冲来调制数据信号,这样可以将数据信号从一个信号空间映射到另一个信号空间,因此可以实现数字化通信。
在实际应用中,抽样定理和脉冲调幅(PAM)通常被用于数字通信和数字信号处理方面。
为了理解抽样定理和脉冲调幅(PAM)如何工作,我们可以进行以下实验:实验1:抽样定理实验在这个实验中,我们需要一个函数生成器(signal generator)和一个示波器(oscilloscope)来生成和观察信号。
设置函数生成器以产生一个正弦波信号,然后使用示波器来查看该信号。
以5kHz的频率采样信号,观察它的样本的数量和质量。
接下来,将抽样频率调整为10kHz并观察示波器上的波形,你会发现它看起来更平滑。
继续增加采样率以尝试找到一个极限值,达到这个极限值之后,再增加采样率不会对信号的质量产生任何显著的改进。
实验2:脉冲调幅实验在这个实验中,我们需要一个数字信号生成器(digital signal generator)、一个数字信号记录仪(digital signal recorder)和一个示波器。
设置数字信号生成器以产生一个正弦波数据信号,然后使用数字信号记录仪来记录该信号。
接下来,使用示波器来查看该记录的数字信号。
通信原理实验,码型变换,移相键控调制与解调,眼图,抽样定理,.
实验一码型变换实验一、基本原理在数字通信中, 不使用载波调制装置而直接传送基带信号的系统, 我们称它为基带传输系统,基本结构如图所示。
干扰基带传输系统的基本结构基带信号是代码的一种电表示形式。
在实际的基带传输系统中, 并不是所有的基带电波形都能在信道中传输。
对传输用的基带信号的主要要求有两点:(1对各种代码的要求,期望将原始信息符号编制成适合于传输用的码型; (2 对所选码型的电波形要求, 期望电波形适宜于在信道中传输。
AMI :AMI 码的全称是传号交替反转码。
这是一种将信息代码 0(空号和 1(传号按如下方式进行编码的码:代码的 0仍变换为传输码的 0, 而把代码中的 1交替地变换为传输码的 +1, -1, +1, -1,……。
HDB3:HDB 3码是对 AMI 码的一种改进码,它的全称是三阶高密度双极性码。
其编码规则如下:先检察消息代码(二进制的连 0情况,当没有 4个或 4个以上连 0串时,按照 AMI 码的编码规则对信息代码进行编码; 当出现 4个或 4个以上连 0串时, 则将每 4个连 0小段的第 4个 0变换成与前一非 0符号 (+1或 -1 同极性的符号, 用V 表示 (即 +1记为 +V, -1记为 -V ,为使附加 V 符号后的序列不破坏“极性交替反转”造成的无直流特性,还必须保证相邻 V 符号也应极性交替。
当两个相邻 V 符号之间有奇数个非 0符号时,用取代节“ 000V ” 取代 4连 0信息码; 当两个相邻 V 符号间有偶数个非 0符号时, 用取代节“ B00V ” 取代 4连 0信息码。
CMI :CMI 码是传号反转码的简称,其编码规则为:“ 1”码交替用“ 11”和“ 00”表示; “ 0”码用“ 01”表示。
BPH :BPH 码的全称是数字双相码,又称 Manchester 码,即曼彻斯特码。
它是对每个二进制码分别利用两个具有 2个不同相位的二进制新码去取代的码,编码规则之一是: 0→ 01(零相位的一个周期的方波1→ 10(π相位的一个周期的方波二、实验结果CMIBPHHDB3 AMI三、结果分析各码型波形如上所示, 我们发现许多波形产生了不同程度的畸变, 表现是幅值不是单一的水平线, 而成了曲线。
实验一 PAM实验
实验一PAM实验一、实验目的1、验证抽样定理;2、观察PAM信号形成的过程;3、了解混迭效应产生的原因;4、学习中频抽样的基本方法;二、实验仪器1、J H5001Ⅱ通信原理基础实验箱一台2、20MHz双踪示波器一台3、函数信号发生器一台三、实验原理利用抽样脉冲把一个连续信号变为时间上离散的样值序列,这一过程称之为抽样。
抽样后的信号称为脉冲调幅(PAM)信号。
抽样定理指出,一个频带受限信号m(t),如果它的最高频率为f h,则可以唯一地由频率等于或大于2f h的样值序列所决定。
在满足抽样定理的条件下,抽样信号保留了原信号的全部信息,并且,从抽样信号中可以无失真地恢复出原始信号。
在抽样定理实验中,采用标准的8KHz抽样频率,并用函数信号发生器产生一个信号,通过改变函数信号发生器的频率,观察抽样序列和重建信号,检验抽样定理的正确性。
抽样定理实验各点波形见图2.1.1所示。
图2.1.1 抽样定理实验原理框图图2.1.2 抽样定理实验电路组成框图图2.1.2 是通信原理基础实验箱所设计的抽样定理实验电路组成框图。
电路原理描述:将K701设置在测试位置时(右端),输入信号来自测试信号。
测试信号可以选择外部测试信号或内部测试信号,当设置在信号模块内的跳线开关K001设置在1_2位置(左端)时,选择内部1KHz测试信号;当设置在2_3位置(右端)时选择外部测试信号,测试信号从J005模拟测试端口输入。
抽样定理实验采用外部测试信号输入。
运放U701A、U701B(TL084)和周边阻容器件组成一个3dB带宽为3400Hz的低通滤波器,用于限制最高的信号频率。
信号经运放U701C 缓冲输出,送到U703(CD4066)模拟开关。
模拟开关U703(CD4066)通过抽样时钟完成对信号的抽样,形成抽样序列信号。
信号经运放U702B (TL084)缓冲输出。
运放U702A 、U702C (TL084)和周边阻容器件组成一个3dB 带宽为3400Hz 的低通滤波器,用来恢复原始信号。
PAM调制与抽样定理实验.docx
、实验目的PAM调制与抽样定理实验1. 掌握自然抽样、平顶抽样特性;2. 理解抽样脉冲脉宽、频率对恢复信号的影响;3. 理解低通滤波器幅频特性对恢复信号的影响;了解混叠效应产生的原理。
餐验模1块:豐时分复用模块A3信源译码与时分解复用模块A63. 100M双通道示波器4•信号连接线三P d原理次开发)设连续信号????,其最高截止频率为????如果用频率为????2????抽样信号对????进行抽样,样定理???就可以被样值信号唯一地表示。
?也就是说,如果一个连续信号??????的频谱中最高频率不超过????这种信号必定是个周期性的信号,当抽样频率????2????,抽样后的信号就包含原始连续信?号的全部信息,而不会有信息丢失,在接收端就可以用一个低通滤波器根据这些抽样信号的样本来还原原来的连续信号??????抽样定理告诉我们:如果对某一带宽有限的模拟信号进行抽样,且抽样速率达到一定的数值时,那么根据这些抽样值就可以准确地还原信号。
也就是说,我们在传送模拟信号的时候,不一定要传送模拟信号本身,而是可以只传输按抽样定理得到的抽样值,这样我们在接收端依然可以根据接收到的抽样值还原出原始信号。
图1信号的抽样与恢复、实验目的PAM调制与抽样定理实验图1信号的抽样与恢复2> ????假设??????????对于理想抽样 叶变换的性质,时域的乘积等于频域的卷积,我们可— —????i i???????? [?????)?? ????*???= ? ???????????????上式表明,????"???" 2????? ??……?■??■ 的各?次谐波为中心点相叠加而成, 幅度只利用上图2,我们可以分析出频谱不发生混叠的条件。
我们考虑中心点在 ??=?0和????的频谱。
中心点在??=?0的频谱的上边带的截止频率为???? ,中心点在??=?????频谱傅里心1血.(b>応抽样频率时閑揄坤柑号及和常(不龍』》仍为?冲击序列。
通信实验3抽样定理和PAM调制解调实验
福建工程学院国脉信息学院Fujian University Of Technology Guomai Information College 学生课程实验报告书专业班级:电子信息工程学号: 0930010357 姓名:张兴旺20 ——20 学年第学期实验项目: 实验时间:实验目的:实验仪器:实验原理:PAM 方式有两种:自然抽样和平顶抽样。
自然抽样又称为“曲顶”抽样,已抽样信号m s (t)的脉冲“顶部”是随m(t)变化的,即在顶部保持了m(t)变化的规律(如图3-3所示)。
平顶抽样所得的已抽样信号如图3-3所示,这里每一抽样脉冲的幅度正比于瞬时抽样值,但其形状都相同。
在实际中,平顶抽样的PAM 信号常常采用保持电路来实现,得到的脉冲为矩形脉冲。
(二) 电路组成脉冲幅度调制实验系统如图3-4所示,主要由抽样保持芯片LF398和解调滤波电路两部分组成,电路原理图如图3-5所示。
LF398N1话音输入模拟开关S 自然抽样/平顶抽样选择抽样脉冲N2PAM 解调图3-4 脉冲振幅调制电路原理框图1TP2PAM-SIN1PAMCLK 1PAMTH3THINPUT 1NC 2V-3NC 4NC 5NC 6OUTPUT 7Vo s 14NC 13V+12LOGIC 11LOGIC REF 10NC 9Ch8U2LF398E210u F/16V C1104C29104C31222R41KC20104+12V-12VR7104Y01Y22Yo ut3Y34Y15INH 6VEE 7VSS8B9A 10X311X012Xo ut 13X114X215VDD16U3CD4052VCC GND GNDC2104E110u F/16V1PAMTH1THOUTPUTOUTPUTC4104VEE D44.3VR9150-12VVEE平顶抽样输出自然抽样输出12U1A74LS04K1CLK-INCLK-IN图3-5 脉冲幅度调制电路原理图(三)实验电路工作原理1、 PAM 调制电路如图3-5所示,LF398是一个专用的采样保持芯片,它具有很高的直流精度和较高的采样速率,器件的动态性能和保持性能可以通过合适的外接保持电容达到最佳。
实验三_抽样定理和PAM调制解调实验
实验三抽样定理和 PAM 调制解调实验一、实验目的1、通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。
2、通过对电路组成、波形和所测数据的分析,加深理解这种调制方式的优缺点。
二、实验内容1、观察模拟输入正弦波信号、抽样时钟的波形和脉冲幅度调制信号,并注意观察它们之间的相互关系及特点。
2、改变模拟输入信号或抽样时钟的频率,多次观察波形。
三、实验器材1、信号源模块一块2、①号模块一块3、 60M双踪示波器一台4、连接线若干四、实验原理 (一基本原理 1、抽样定理抽样定理表明:一个频带限制在 (0, H f 内的时间连续信号 ( m t , 如果以T ≤ Hf 21秒的间隔对它进行等间隔抽样,则 ( m t 将被所得到的抽样值完全确定。
假定将信号 ( m t 和周期为 T 的冲激函数 t (T 相乘, 如图 3-1所示。
乘积便是均匀间隔为 T 秒的冲激序列, 这些冲激序列的强度等于相应瞬时上 ( m t 的值, 它表示对函数 ( m t 的抽样。
若用 ( m t s 表示此抽样函数,则有:( ( ( s T m t m t t δ=图 3-1 抽样与恢复假设 ( m t 、( T t δ和 ( s m t 的频谱分别为( M ω、( T δω和( s M ω。
按照频率卷积定理, ( m t ( T t δ的傅立叶变换是( M ω和( T δω的卷积:[]1( ( ( 2s T M M ωωδωπ=* 因为 2( T Ts n n Tπδδωω∞=-∞=-∑Ts πω2=所以 1( ( ( s T s n M M n Tωωδωω∞=-∞⎡⎤=*-⎢⎥⎣⎦∑ 由卷积关系,上式可写成1( (s s n M M n T ωωω∞=-∞=-∑ 该式表明,已抽样信号 ( m t s 的频谱( M s ω是无穷多个间隔为ωs 的( M ω相迭加而成。
这就意味着( M s ω中包含( M ω的全部信息。
需要注意,若抽样间隔 T 变得大于Hf 21,则( M ω和( T δω的卷积在相邻的周期内存在重叠(亦称混叠,因此不能由 ( M s ω恢复( M ω。
通信原理实验报告PAM实验
PAM实验一、实验目的1、验证抽样定理、观察PAM信号形成的过程、学习中频抽样的基本方法;2、了解混迭效应产生的原因;3、熟悉matlab仿真;二、实验仪器1、J H5001(Ⅲ)通信原理基础实验箱一台2、双踪示波器一台3、函数信号发生器一台三、实验原理利用抽样脉冲把一个连续信号变为离散时间样值的过程称为抽样,抽样后的信号称为脉冲调幅(PAM)信号。
采样频率一般大于2f h。
当采样频率小于2f h 的时候,就会出现频谱的混叠。
抽样定理实验电路实验电路中A部分为低通滤波器用于限制最高频率,C部分为实现采样/保持的模拟开关,B、D为缓冲输出,E部分低通滤波器用于恢复原始信号。
图6 抽样定理实验电路组成框图四、实验步骤及实验现象与分析1.自然抽样脉冲序列测量预置电路:将KB04设置在右端(自然抽样状态);将K501设置在右端以输入测试信号。
将K702设置在NF位置(无滤波),将正弦波输出1000Hz、2Vp-p 的测试信号送入测试端口。
PAM脉冲抽样序列观察:注意观测时以TP701做同步,本实验同步信号不同对结果影响不太大,但有的实验会影响严重。
记录与分析:CH2蓝色波形是由(TP701)观测到的正弦波输入信号,测得该信号频率为1kHz,Vpp为1.96V。
CH1黄色波形是由(TP703)观测到的PAM脉冲抽样序列信号。
由红框当中可以明显看出一个周期内PAM脉冲抽样序列信号抽样了8次(一个周期内有8个脉冲),符合以8kHz 脉冲来抽样1kHz 信号的结果。
且抽样信号占空比不是50%,而是大约1/3。
由图中可以看出黄色PAM 脉冲抽样信号的包络与蓝色正弦波输入信号波形是基本吻合的。
两者的峰谷位置以及正负半周变换都基本一致,相位上基本符合应有的对应关系,PAM 脉冲抽样信号包络的相位略微滞后于正弦波输入信号,应该是由于模拟开关等部分电路造成略微延时所带来的。
PAM 脉冲抽样信号的包络幅值要大于正弦波输入信号,约为2倍,应该是因为经过缓冲输出时电路的运放有放大作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南工学院
《通信原理》课程实验报告
系部:电子通信工程系
班级:通技142 姓名:吴志强
学号: 140413229
实验抽样定理和脉冲调幅实验
一、实验目的
1)验证抽样定理;
2)观察了解PAM信号形成过程,平顶展宽解调过程。
3)了解时分多路系统中的路际串话现象。
二、基本原理
利用抽样脉冲把一个连续信号变为离散时间样值的过程称为“抽样”,抽样后的信号称为脉冲调幅(PAM)信号。
在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。
并且,从抽样信号中可以无失真地恢复出原信号。
下图示意地画出了传输一路语音信号的PCM系统。
从图中可以看出要实现对语音的PCM编码,首先就要对语音信号进行抽样,然后才能进行量化和编码。
因此,抽样过程是语音信号数字化的重要环节,也是一切模拟信号数字化的重要环节。
单路PCM系统示意图
1、抽样定理
一个频带受限信号m(t)如果它的最高频率为fH(即m(t)的频谱中没有fH 以上的分量),可以唯一地由频率等于或大于2fH 的样值序列所决定。
对于一个最高频率为3400Hz 的语音信号m(t),可以用频率大于或等于6800Hz 的样值序列来表示。
抽样频率fs 和语音信号m(t)的频谱如图所示。
由频谱可知,用截止频率为fH 的理想低通滤波器可以无失真地恢复原始信号m(t),
f
H
M
f
语音信号的频谱
f
H
M
f
f s 2f s
f
H
f s +f H
f s +2理想低通滤波器
语言信号的抽样频谱和抽样信号的频谱
实际上,考虑到低通滤波器特性不可能理想,对最高频率为3400Hz 的语音信号,通常采用8KHz 抽样频率,这样可以留出1200Hz 的防卫带,见下图。
如果fs <2fH ,就会出现频谱混迭的现象,如图所示。
0f
H
M
f
f s 2f s
f
H
f s +f H
f s +2一般低通滤波器
留出防卫带的语音信号的抽样频谱
f
H
M
f
f s 2f s
f H f s +f H
f s +2
fs <2fH 时语音信号的抽样频谱
实验原理图:
音频信号
抽样门
低通滤波
抽样脉冲
抽样定理实验方框图
多路脉冲调幅(PAM 信号的形成和解调)
音频信号1
音频信号2
分路
抽样
1
分路
抽样
2
分路3
分路2
相
加
信
道
分路
选通
1
展
宽
低
通
分路2'
多路脉冲调幅实验框图
分路抽样电路的作用:
将在时间上连续的语音信号经脉冲抽样形成时间上离散的脉冲调幅信号。
n路抽样脉冲在时间上是互不交叉、顺序排列的。
各路的抽样信号在多路汇接的公共负载上相加便形成合路的脉冲调幅信号。
本实验设置了两路分路抽样电路。
多路脉冲调幅信号进入接收端后,由分路选通脉冲分离成n路,亦即还原出单路PAM信号。
发送端分路抽样与接收端分路选通是一一对应的,这是依靠它们所使用的定时脉冲的对应关系决定的。
为简化实验系统,本实验的分路选通脉冲直接利用该路的分路抽样脉冲经适当延迟获得。
脉冲展宽电路的作用:
接收端的选通电路也采用结型场效应晶体管作为开关元件,但输出负载不是电阻而是电容。
采用这种类似于平顶抽样的电路是为了解决PAM解调信号的幅度问题。
由于时分多路的需要,分路脉冲的宽度τS是很窄的。
当占空比为τS/TS 的脉冲通过话路低通滤波器后,低通滤波器输出信号的幅度很小。
这样大的衰减带来的
后果是严重的。
但是,在分路选通后加入保持电容,可使分路后的PAM信号展宽到100%的占空比,从而解决信号幅度衰减过大的问题。
但我们知道平顶抽样将引起固有的频率失真。
多路脉冲调幅系统中的路际串话
路际串话是衡量多路系统的重要指标之一。
路际串话是指在同一时分多路系统中,某一路或某几路的通话信号串扰到其它话路上去,这样就产生了同一端机中的各路通话之间的串话。
串话分可懂串话和不可懂串话,前者造成失密或影响正常通话;后者等于噪声干扰。
对路际串话必须设法防止。
一个实用的通话系统必须满足对路际串话规定的指标。
在一个理想的传输系统中,各路PAM信号应是严格地限制在本路时隙中的矩形脉冲。
但如果传输PAM信号的通道频带是有限的,则PAM信号就会出现“拖尾”的现象,当“拖尾”严重,以至侵入邻路隙时,就产生了路际串话。
三、实验内容
(一)、抽样和分路脉冲的形成
经过抽样过程,通过示波器和频率计观察并核对TP1主振脉冲信号和TP2分路信号的频率、波形及脉冲宽度。
TP1观察主振脉冲信号 TP2观察分路
抽样脉冲
(二)、验证抽样定理
将低频正弦信号从TP4输入(其中fH = 1kHz,幅度约2VP-P)。
以TP4作双踪同步示波器的同步信号,观察TP8——抽样后形成的PAM 信号。
TP4输入信号波形如图02 -06所示,同步信号TP1与抽样信号TP8对比如图02 -07所示。
连接TP8 –TP14,用示波器观察TP15低通滤波器和放大器的解调信号,如图02 -08所示。
当fH = 6k Hz 波重复上述步骤2、3。
输入信号TP4波形同步信号TP1与抽样信号TP8对比
分析:抽样次数:8次,抽样频率:250Hz,信号频率:1000Hz,信号频率是抽样频率的4倍。
TP15波形 fH = 6kHz时TP1与TP8对比
图02 10 fH = 6kHz时TP15波形
(三)、PAM信号的形成和解调
TP13单路解调展宽信号 TP15低通滤波器放大后的音频信号
五.实验心得
(学习的目的是增长知识,提高能力,相信一分耕耘一分收获,努力
就一定可以获得应有的回报)。