(6)28.2 解直角三角形的应用(2)----方位角
28.2解直角三角形及其应用(教案)
-理解和运用勾股定理求解直角三角形边长,特别是斜边的求解;
-在实际问题中,能够正确建立直角三角形的模型,将问题转化为解直角三角形的问题;
-对于特殊角的三角函数值,学生容易混淆,需要通过具体例子和反复练习来加深理解。
举例:针对勾股定理的应用,可以通过图形演示和实际例题,帮助学生理解斜边和直角边的关系,突破求解斜边的难点。在解决实际问题时,指导学生如何将问题抽象成直角三角形模型,并运用所学知识进行求解。对于特殊角的三角函数值,设计不同类型的习题,帮助学生巩固记忆,如计算30°角的正弦、余弦值,以及如何在直角三角形中识别和应用这些值。
28.2解直角三角形及其应用(教案)
一、教学内容
本节课选自《数学》八年级下册第28章第2节“解直角三角形及其应用”。教学内容主要包括以下几部分:
1.理解直角三角形的定义及性质;
2.学会使用勾股定理求解直角三角形的边长;
3.掌握特殊角的三角函数值;
4.应用直角三角形的解法解决实际问题,如测量距离、高度等;
五、教学反思
在今天的教学中,我重点关注了学生对直角三角形性质和求解方法的理解,以及如何将这些知识应用于解决实际问题。课堂上,我通过引入日常生活中的例子,尝试激发学生对解直角三角形的好奇心和兴趣。从学生的反应来看,这个方法还是相当有效的,他们能够积极参与到课堂讨论和实践中。
我发现,在讲解勾股定理时,部分学生对斜边和直角边的关系理解不够透彻,这需要在今后的教学中加以关注。我尝试用图形和实际例题来帮助他们理解,但可能还需要更多的练习和巩固。此外,对于特殊角的三角函数值,学生们容易混淆,我打算在下一节课中设计一些更有针对性的习题,帮助他们更好地记住这些值。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解直角三角形的基本概念。直角三角形是一种有一个角是直角(90°)的三角形。它在数学和实际生活中有着广泛的应用,如建筑、测量等领域。
28.2 解直角三角形的应用举例
a
热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,
15m,这栋楼有多高?
年级: 九年级 学科: 数学 命题人: 王金涛 审核人: 叶书生
东 辛 店 中 学 验 标 题
(满分: 20 时间: 10 分钟 成绩: )
必做题:(共1题,每题10分)
1、为促进我市经济快速发展,加快道路建设,某高速公路建设工程中,需修建隧道AB. 如图, 在山外一点C 测得BC 距离为求隧道AB 的长.(参考数据: )
选做题:(共1题,每题10分)
2、如图,河对岸有一水塔AB ,在C 处测得塔顶A 的仰角为30°,向塔前进12米到达D ,在D 处测得A 的仰角为45°,求水塔AB 的高(结果保留根号)。
28.2解直角三角形(第2课时)
2. 两座建筑 AB及CD,其 地面距离AC为50.4米,从 AB 的顶点 B 测得 CD 的顶 部 D 的仰角 β = 250, 测得 其 底 部 C 的 俯 角 a = 500, 求两座建筑物 AB 及 CD 的 高.(精确到0.1米)
A
C
B
课本P92 例4
(第 2 题)
3.国外船只,除特许外,不得进入我国海洋100海里 以内的区域,如图,设A、B是我们的观察站,A和B 之间的距离为157.73海里,海岸线是过A、B的一条 直线,一外国船只在P点,在A点测得∠BAP=450,同 时在B点测得∠ABP=600,问此时是否要向外国船只 发出警告,令其退出我国海域.
图2
当堂反馈
3.如图3,从地面上的C,D两点测得树顶A仰角分别是 45°和30°,已知CD=200m,点C在BD上,则树高 AB等于 100( 3 1)m(根号保留).
图3
图4
4.如图4,将宽为1cm的纸条沿BC折叠,使∠CAB=45°
,则折叠后重叠部分的面积为
2 2 cm (根号保留). 2
更上一层楼
新人教版九年级数学(下册)第二十八章
§28.2 解直角三角形(2)
1.解直角三角形
在直角三角形中,除直角外,由已知两元素 (必有一边) 求其余未知元素的过程叫解直角三角形.
2.解直角三角形的依据
(1)三边之间的关系: a2+b2=c2(勾股定理); c
B
; (2)两锐角之间的关系: ∠ A+ ∠ B= 90º (3)边角之间的关系: a sinA= c b cosA= c a tanA= b
2.实际问题向数学模型的转化
(解直角三角形)
当堂反馈
1.如图1,已知楼房AB高为50m,铁塔塔基距楼房地 基间的水平距离BD为100m,塔高CD为 (100 3 50) m 3 ,则下面结论中正确的是( C ) A.由楼顶望塔顶仰角为60° B.由楼顶望塔基俯角为60° C.由楼顶望塔顶仰角为30° D.由楼顶望塔基俯角为30°
人教版九年级下册数学 28.2.2解直角三角形的应用举例 例5 航海——方位角(共18张PPT)
险区。这渔船如果继续向东追赶鱼群,有没有进入危险 将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);
方位角
区的可能? (3)边角之间的关系:
某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东45°方向,然后向
的速度沿西偏北30°方向前进,乙船以每小时15千米的速度沿东北 方向前进,甲船航行2小时到达C处,此时甲船发现渔具丢在乙船上, 于是甲船快速(匀速)沿北偏东75°的方向追赶,结果两船在B处 相遇。 (1)甲船从C处追赶上乙船用了多长时间? (2)甲船追赶乙船的速度北是每小时多少千米?
B
D
C 75°
45°
西走60米到达C点,测得点B在点C的北偏东60°方向。 这渔船如果继续向东追赶鱼群,有没有进入危险区的可能?
C
为有效开发海洋资源,保护海洋权益,我国对南海诸岛
2解直角三角形的应用举例
北 为有效开发海洋资源,保护海洋权益,我国对南海诸岛
进行了全面调查,一测量船在A岛测得B岛2解直角三角形的应用举例 航海问题——方位角
北 M东
B
A
D
N
解直角三角形的依据
(1)三边之间的关系: (2)锐角之间的关系:
(3)边角之间的关系:
B
c a
A
bC
仰角俯角
A
?
E 34
F
18
D
10米
B
方位角
北
C
西
O
B
东
南
利用锐角三角函数解决航海问题
如图,一艘海伦位于灯塔P的北偏东65°方向,距离灯 塔80海里的A处,它沿正南方向航行一段时间后,到达 位于灯塔P的南偏东34°方向的B处。这时,B处距离 灯塔P有多远?(结果取整数)(cos25°=0.9063, sin34°=0.5291, )
人教版数学九年级下册第28章28.2-解直角三角形及其应用
课堂小结
解 直 角 三 角 形
依据
勾股定理 两锐角互余 锐角的三角函数
解法:只要知道五个元素中的两个元素(至 少有一个是边),就可以求出余下的三个未 知元素
对接中考
对接中考
H
对接中考
A
B
C
对接中考
A
B
C D
对接中考
B
CD
A
对接中考
B
C D
A
课后作业 请完成课本后习题第1题.
12 、能者上,庸者下,平者让。谁砸企业的牌子,企业就砸谁的饭碗。 19 、生活中的许多事,并不是我们不能做到,而是我们不相信能够做到。 5 、当你手中抓住一件东西不放时,你只能拥有一件东西,如果你肯放手,你就有机会选择更多。( ) 1 、生活是一面镜子。你对它笑,它就对你笑;你对它哭,它也对你哭。 17 、再长的路,一步步也能走完,再短的路,不迈开双脚也无法到达。 17 、忍耐力较诸脑力,尤胜一筹。 15 、如果你不给自己烦恼,别人也永远不可能给你烦恼。因为你自己的内心,你放不下。 19 、你不能左右天气,但可以改变心情。你不能改变容貌,但可以掌握自己。你不能预见明天,但可以珍惜今天。 7 、如果我们投一辈子石块,即使闭着眼睛,也肯定有一次击中成功。 1 、生活是一面镜子。你对它笑,它就对你笑;你对它哭,它也对你哭。 19 、经营信为本,买卖礼当先。心态决定成败,有志者事竟成。 10 、人生有顺境也有逆境,输什么也不能输了心情;人生有进有退,输什么也不要输掉自己。 7 、成功在于好的心态与坚持,心态决定状态,心胸决定格局,眼界决定境界。 7 、喜欢一个人不是回复他每条动态,而是研究下面可疑的评论。 13 、用冷静的目光去看待人世间的一切,才能活得坦荡,活得超然。 6 、人的一生要面临许多选择,而每次选择都会带来一阵阵剧痛,而这种剧痛叫做成长。 12 、天下没有免费的午餐,一切成功都要靠自己的努力去争取。机会需要把握,也需要创造。 6 、大部分人往往对已经失去的机遇捶胸顿足,却对眼前的机遇熟视无睹。 16 、并不是先有了勇气才敢于说话,而是在说话的同时培养了勇气。 13 、不要在你的智慧中夹杂着傲慢,不要使你的谦虚心缺乏智慧。 12 、你希望别人怎样对待自己,你首先应该怎样来对待别人。
解直角三角形的实际应用----仰角、俯角及方位角的重难点解析
28.2解直角三角形的实际应用——仰角、俯角及方位角的重难点解析今天我说课的课题是28.2解直角三角形的实际应用(第一课时),下面我将从教材分析、教法学法、教学程序、设计思路四个方面进行阐述。
一、教材分析(一)教材地位和作用这是一节复习课,是在学生学习了《解直角三角形》和《解直角三角形的应用》后进行的阶段性小结。
《解直角三角形的应用》是第二十八章锐角三角函数的延续,渗透着数形结合思想、方程思想、转化思想。
因此本课无论是在本章还是在整个初中数学中都具有重要的地位,在中考中是个比较重要的考点。
(分值约占6---10分,常出现在第19题—第21题)(二)教学目标1、知识技能目标:进一步理解并掌握直角三角形中各元素之间的内在联系,会利用解直角三角形的知识解决仰角、俯角及方位角等有关的综合性实际问题.2、过程方法目标:在将实际问题抽象为数学问题,画出示意图,转化为解直角三角形问题的过程中,体会“数学建模”和“数形结合”的思想,培养学生分析问题、解决问题的能力.3、情感态度目标:渗透数形结合和数学建模的数学思想,激发学生学习兴趣,调动学生的积极性和主动性;培养学生理论联系实际,勇于探索敢于创新的精神.(三)教学重点与难点重点:熟练解直角三角形及会利用解直角三角形的知识去解决有关仰角、俯角及方位角的实际问题。
难点:把实际问题转化为解直角三角形的问题。
二、教法学法(一)教法分析本节课着重采用的是探究启发、分组讨论、讲练结合等教学方法,通过多媒体课件,以历年中考题创设问题情境,引出课题,简洁回顾原有的知识,引导学生从实际应用中建立数学模型。
(二)学法分析通过独立思考、小组合作、讲练结合、学生讲评等学习方式,理解直角三角形中各元素之间的内在联系,发挥学生的主观能动性。
使学生在这一过程中主动获得知识,通过例题的实践应用,能提高学生分析、解决问题的能力和综合运用知识的能力。
三、教学程序本节课我将围绕 情景引入、复习回顾、探索知识、课堂练习、小结梳理、作业布置 这六个环节展开复习教学,具体步骤是:(一)情景引入问题:(2015云南19题6分)为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥.建桥过程中需测量河的宽度(即两平行河岸AB 与MN 之间的距离).在测量时,选定河对岸MN 上的点C 处为桥的一端,在河岸点A 处,测得∠CAB =30°,沿河岸AB 前行30米后到达B 处,在B 处测得∠CBA =60°.请你根据以上测量数据求出河的宽度?方式:是以云南省去年的中考题为问题而引出的。
28.2解直角三角形(方向角及坡比问题)2014年3月18日
解: (1 ) 过点 A 作 AD 垂直于
BC ,垂足为
D
ABC
30
0
, AB 160 米
AD 80 米 100 米 ,
在 Rt ABD 中,解得
所以受噪声影响。
以点 A 为圆心, 100 米长为半径画圆弧分别
线段 EF 为受影响的路段 .
交 BC 于 E , F 两点
1 8 .4
沿水库拦河坝的背水坡将坝顶加宽2 米,坡度由原来的1:2改为1:2.5, 已知坝高6米,坝长50米。 (1)求加宽部分横断面AFEB (2)完成这一工程需要多少方土?
F
2
A D
6Leabharlann EBNM
1.在解直角三角形及应用时经常接触到 的一些概念(方位角;坡度、坡角等)
2.实际问题向数学模型的转化
sin B PC PB
65° P
A C
34°
PB
PC sin B
72.8 sin 34
72.8 0.559
B
130.23
当海轮到达位于灯塔P的南偏东34°方向时,它距离灯塔P大约130.23海里.
气象台发布的卫星云图显示,代号为W的台风在某海岛(设为 点O)的南偏东45°方向的B点生成,测得 O B 1 0 0 6 k m . 台 风中心从点B以40km/h的速度向正北方向移动,经5h后到达海 面上的点C处.因受气旋影响,台风中心从点C开始以30km/h 的速度向北偏西60°方向继续移动.以O为原点建立如图12所示 的直角坐标系. (1)台风中心生成点B的坐标为 ,台风中心转折点C的 坐标为 ;(结果保留根号) (2)已知距台风中心20km的范围内均会受到台风的侵袭.如 果某城市(设为A点)位于点O的正北方向且处于台风中心的移 动路线上,那么台风从生成到最初侵袭该城要经过多长时间? 北
人教初中数学九年级下册28-2 解直角三角形及其应用(教学设计)
师:尝试写出∠A 的三角函数。
生:∠A 的正弦值:sin A=∠A 所对的边斜边= ac∠A 的余弦值:cos A= ∠A 所邻的边斜边= bc∠A 的正切值:tan A=∠A 所对的边邻边= ab师:将 30°、45°、60°角的正弦值、余弦值和正切值填入下表:生:变式1-1 在Rt △ABC 中,∠C =90°,a = 30, b = 20,根据条件解直角三角形.变式1-2 在△ABC 中,∠C =90∘, AB =6, cosA =13,则AC 等于( )A .18B .2C .12D .118变式1-3在Rt △ABC 中,斜边AB 的长为m ,∠A =35°,则直角边BC 的长是( ) A .msin35° B .mcos35° C .m sin35°D .mcos35°变式1-4 如图,在Rt △ABC 中,∠C=90°,∠B=35° ,b=20,解这个直角三角形(结果保留小数点后一位). 变式1-5 如图,太阳光线与水平线成70°角,窗子高AB =2米, 要在窗子外面上方0.2米的点D 处安装水平遮阳板DC ,使光线不 能直接射入室内,则遮阳板DC 的长度至少是( ) A .2tan70°米 B .2sin70°米 C .2.2tan70°米 D .2.2cos70°米平线下方的叫做俯角。
指南或指北的方向线与目标方向线构成小于900的角,叫做方位角. 师:尝试说出A,B关于坐标原点O的位置?生:点A位于点O北偏东30°位置,点B位于点O南偏西45°位置[多媒体展示]热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120m,这栋高楼有多高(结果精确到0.1m)。
人教版九年级下册数学:第28章 28.2.2解直角三角形的应用 (2)方位角、坡度坡比
达标测试
1.如图,C岛在A岛的北偏东50°方 向,C岛在B岛的北偏西40°方向,则从C
岛看A,B两岛的视角∠ACB等于 90° 。 50°
40° 50° 40°
2、如下图,在一次数学课外活动中,测得电线杆底部B与 钢缆固定点O的距离为4米,钢缆与地面的夹角∠BOA为60º,则 这条钢缆在电线杆上的固定点A到地面的距离AB是多少米.
tanα= 1 = 3 33
∴α=30°
240
C
1: 3
?
A?
B
在Rt△ABC中,∠B=90°,∠A=30°,AC=240m
∴ sinα= BC = BC
AC 240
∴ BC=240×sin30°=120(m)
答:这座山坡的坡角为30°,小刚上升了120m.
【例4 】水库大坝的横断面是梯形,坝顶宽6m,坝高23m,
北
PC=PA·cos(90°-65°)=80×cos25°
≈80×0.91 =72.8
65°
在Rt△BPC中,∠B=34°
西
P
∵ sinB = PC
PB
34°
∴
PB
=
PC sinB
=
72.8 sin340
≈
72.8 0.559
≈130.23(海里)
南
?
当海轮到达位于灯塔P的南偏东34°
方向时,它距离灯塔P大约130.23海里。
45° 南
45° 45°
西南
(南偏西45°)
南
东南
(南偏东45°)
典例精析
【例1】如图,一艘海轮位于灯塔P的北偏东65°方向,距
离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位
人教版九年级数学下册:28.2解直角三角形的应用优秀教学案例
在导入新课后,我开始讲授解直角三角形的相关知识。首先,我讲解直角三角形的定义和性质,让学生理解直角三角形的特殊地位。接着,我引入勾股定理,并通过几何图形和实例讲解勾股定理的应用。最后,我讲解如何利用三角函数解决直角三角形的问题。在讲授过程中,我注重与学生的互动,提问和引导学生思考,确保学生能够理解和掌握解直角三角形的知识。
问题导向是本节课的重要教学策略。在教学过程中,教师应提出一系列与解直角三角形相关的问题,引导学生思考和探索。例如,可以提出“如何利用勾股定理计算直角三角形的边长?”“在实际问题中,如何确定直角三角形的各个角度?”等问题。通过问题导向,激发学生的思维,培养学生解决问题的能力。
(三)小组合作
小组合作是本节课的重要教学组织形式。教师可以将学生分成若干小组,让学生在小组内进行讨论、交流和合作。例如,可以设计一个小组活动,让学生共同解决一个关于直角三角形的实际问题。通过小组合作,培养学生的合作意识和团队精神,提高学生的实践能力。
五、案例亮点
1.贴近生活实际:本案例以实际问题为背景,让学生在解决问题的过程中自然引入解直角三角形的知识和方法。这种贴近生活实际的教学方式能够激发学生的学习兴趣,使学生感受到数学与生活的紧密联系,从而提高学习的积极性和主动性。
2.问题导向:本案例通过提出一系列与解直角三角形相关的问题,引导学生思考和探索。问题导向的教学策略能够激发学生的思维,培养学生解决问题的能力。在解决问题的过程中,学生能够深入理解和掌握解直角三角形的知识和方法。
在教学过程中,我发现许多学生在学习这一章节时,往往对直角三角形的理解不够深入,无法将理论知识与实际问题相结合。因此,我设计了本节教学案例,以帮助学生更好地理解和应用解直角三角形的知识。
本案例以一个实际问题为切入点,让学生在解决问题的过程中,自然而然地引入解直角三角形的概念和方法。通过案例的引导和学生的积极参与,使学生能够掌握解直角三角形的技巧,提高解决问题的能力。同时,本案例还注重培养学生的合作意识和创新精神,使他们在解决实际问题的过程中,能够灵活运用所学知识,提高自己的综合素质。
28.2.2解直角三角形(2)实际应用
28.2.2解直角三角形(2)实际应用姓名:家长签名:介绍:仰角和俯角在进行测量时,从下向上看,视线与水平线的夹角叫做;从上往下看,视线与水平线的夹角叫做.例1.如图,为了测量电线杆的高度AB,在离电线杆22.7米的C处,用高1.20米的测角仪CD测得电线杆顶端B的仰角a=22°,求电线杆AB的高.(精确到0.1米)例2:热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120m,这栋高楼有多高? (结果保留小数点后一位)练习:建筑物BC上有一旗杆AB,由距BC 40m的D处观察旗杆顶部A的仰角为50°,观察底部B的仰角为45°,求旗杆的高度(精确到0.1m)小结:利用解直角三角形的知识解决实际问题的一般过程是: 1.将实际问题抽象为数学问题;(画出平面图形,转化为解直角三角形的问题)2.根据条件的特点,适当选用锐角三角函数等去解直角三角形;3.得到数学问题的答案;4.得到实际问题的答案.课后练习:1、如图所示,沿AC方向开山修路,为了加快施工进度,要在小山的另一边同时施工.在AC上取一点B,使得∠ABD=140°,BD=520米,∠D=50°.•要使A、C、E成一直线,那么开挖点E离点D的距离是多少?2、2003年10月15日“神舟”5号载人飞船发射成功,当飞船完成变轨后,就在离地球表面350km的圆形轨道上运行,如图,当飞船运行到地球表面上P点的正上方时,从飞船上能直接看到的地球上最远的点在什么位置?这样的最远点与P点的距离是多少(地球半径约为6400km,取3.142,结果保留整数)?3、已知:如图,△ABC中,∠A=30°,∠B=60°,AC=10cm.求AB及BC的长.2.已知:如图,Rt△ABC中,∠D=90°,∠B=45°,∠ACD=60°.BC=10cm.求AD的长.3.已知:如图,△ABC中,∠A=30°,∠B=135°,AC=10cm.求AB及BC的长.。
28.2.2解直角三角形(2)
B 900 A B 900 A
在Rt△ABC中, ∠ C=Rt ∠,根据 下列条件,解直角三角形.
350 6400 6400
课堂小结:
解直角三角形时,运用直角三角形有关知识,通 过数值计算,去求出图形中的某些边的长度或角 的大小.在分析问题时,最好画出几何图形,按 照图中的边角之间的关系进行计算.这样可以帮 助思考、防止出错.
老师提示:当从低处观察高处的目标时.视线与水 平线所成的锐角称为仰角.当从高处观察低处的目 标时.视线与水平线所成的锐角称为俯角.
驶向胜利 的彼岸
小结
拓展
解直角三角形
(1)三边关系:
a2+b2=c2;
∠A+∠B=90°;
(2)锐角之间关系:
(3)边角之间关系
• 解三角形
回味无穷 驶向胜利
的彼岸
B
C
60
D
45
A
3、山顶上有一旗杆,在地面上一点A处测得杆顶B 的仰角为 600,杆底C的仰角为450,已知旗杆高 BC=20米,求山高CD。
B 20
C
x
60
D
45
A
4、在山脚C处测得山顶A的仰角为45°.问题如下: 1.沿着水平地面向前300m到达D点,在D点 测得山顶A的仰角为60 °,求山高AB. 2.沿着坡角为30 °的斜坡前进300m到达D 点,在D点测得山顶A的仰角为60 ° ,求山高AB.
解直角三角形(2)
回顾与思考 1
直角三角形的边角关系
a2+b2=c2.
直角三角形三边的关系: 勾股定理
直角三角形两锐角的关系:两锐角互余 ∠A+ ∠B=900. 直角三角形边与角之间的关系:锐角三角函数 a a b sin A cos B , cos A sin B , tan A = b c c 互余两角之间的三角函数关系:
28.2.2解直角三角形的应用仰角与俯角
锐角a
30°
三角函数
sin a
1
2
45°
60°
2
2
3
2
cos a
3
2
2
2
tan a
3
3
1
1
2
3
向上看,视线与水平线的夹角叫做仰角;
向下看,视线与水平线的夹角叫做俯角.
铅垂线
视线
水平线
仰角
俯角
视线
情境问题1.
如图,某飞机于空中A处探测到地面目标C,此时飞行高度
x
B
30°
400米
A
解题思想与方法小结:
1.将实际问题转化为解直角三角形的问题,如
果示意图不是直角三角形,可添加适当的辅助
线,构造出直角三角形. (转化思想)
2.根据条件的特点,适当选用锐角三角函数
或方程去解直角三角形。
(数形结合思想)
(方程思想)
布置作业:
1、课本78页第3/4/8题。
2、练习册:第2课时。
=
CE=120
E
A
30米
CD=30+120
B
120米
D
?
小试牛刀!
1、如图,建筑物BC上有一旗杆AB,从与BC相距40m的D处观察
旗杆顶部A的仰角为60°,观测旗杆底部B的仰角为45°,求旗杆
的高度. (结果保留根号)
巩固提升一:
热气球的探测器显示,从热
气球看一栋高楼顶部的仰角为
AC=1200米,从飞机上看地平面控制点B的俯角为300,求飞机A
人教版解直角三角形的应用举例(方位角)
拓展练习
1、如图,某船以29.8海里/时的速度向正北方向航 行,在A处测得灯塔C在该船的北偏东32°方向上, 半小时后该船航行到点B处,发现此时灯塔C与船的 距离最短。 (1)在图上标出点B的位置; (2)求灯塔C到B处的距离(精确到0.1海里)。
北
D C
A
东
2、海中有一个小岛A,它的周围8海里内有暗礁,鱼 船跟踪鱼群由西向东航行。在B点测得小岛A在北偏东 60°方向上,航行12海里到达点D,这时测得小岛A在 北偏东30°方向上,如果鱼船不改变航线继续向东航 行,有没有触礁的危险?
A
B D
3、如图,小岛A在港口P的南偏西45°方向,距离港口 81海里处,甲船从小岛A出发,沿AP方向以9海里/时的 速度驶向港口;乙船从港口P出发,沿南偏东60°方向, 以18海里/时的速度驶离港口。已知两船同时出发。 (1)出发后几小时两船与港口P的距离相等? (2)出发后几小时乙船在甲船的正东方向?
A
东南方向:_射__线__O_G____ G 东北方向:_射__线__O_H____
B 西
北
(3)南偏西25°
70°
O 60°
25° A南
射线OA 东
北偏西70° C 射线OB
南偏东60°
射线OC
合作探究
例题:如图,一艘海轮位于灯塔P的北偏东65°方向, 距离灯塔80海里的A处,它正沿着正南方向航行一段 时间后,到达位于灯塔P的南偏东34°方向上的B处, 这时,海轮所在的B处距离灯塔P有多远?
北
A
P
C
B
归纳经验
利用解直角三角形的知识解决实际问题的一般过程是:
(1)、将实际问题抽象为数学问题(画出平面图形,转化 为解直角三角形的问题);
人教版九年级数学下册《 28.2 解直角三角形及其应用 阅读与思考 山坡的高度》公开课教案_2 (2)
《阅读与思考:山坡的高度》教案一、教学目标知识与技能:1、学生了解仰角和俯角的定义,正确辨别实际问题中的仰角和俯角。
2、学生能把与仰角和俯角有关的实际问题转化成解直角三角形的问题,进一步掌握解直角三角形的方法。
过程与方法:1、学生综合运用所学知识解决与直角三角形有关的度量问题,进一步培养学生的推理能力,运算能力和数学建模能力。
2、学生全面掌握解直角三角形的组成要素(边、角)的关系,加强两种基本图形的训练。
情感态度与价值观:1、学生积极参与数学活动, 在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心。
2、学生体会数学来源于实际又反作用于实际,有利于调动学生学习数学的积极性,激发学生学习兴趣。
二、重点难点教学重点:能运用锐角三角函数解决与仰角和俯角有关的简单实际问题。
教学难点:建立已知和未知条件的联系,灵活运用解直角三角形的知识解决仰角和俯角有关的实际问题。
三、教学过程活动1复习引课1、复习仰角、俯角的定义2、复习破角、坡比的定义3、简单知识的练习(1)如图,已知一商场自动扶梯的长l 为10米,该自动扶梯到达的高度h 为6米,自动扶梯与地面所成的角为θ,则tanθ的值等于( )A.34B.43C.35D.45(2)河堤横断面如图所示,堤高AC =53米,迎水坡AB 的坡比是1∶3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),则BC 的长是( )A .5米B .10米C .15米D .103米设计意图:利用简单知识的复习,勾起学生对知识的回忆,并利用例(2)对水坝高度BC的求解引入对规则三角形问题求高度的归纳所以当我们要测量如图所示大坝的高度h时,只要测出坡角a和大坝的坡面长度l,就能算出h=lsin a;或者利用坡比算出h。
活动2体会新知例1.如图,某景区要修建一段登山阶梯AB,每个台阶的高度不能超过20厘米,已知AB=15米,∠BAC=30°,这段阶梯最少要修建______个台阶.变式1:如图,在高为2 m,倾斜角为30°的楼梯表面铺地毯,地毯的长度至少需要()米变式2.如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4 m.如果在坡度为0.75的山坡上种树,也要求株距为4 m,那么相邻两树间的坡面距离为()A.5 m B.6 m C.7 m D.8 m设计意图:让学生对化整为零,化曲为直有个初步的体会,对得出新知起到铺垫和引领活动3探究新知,得出结论这种山坡的高度如何求呢?通过学生思考,讨论,得出分段解决,每段近似的看成直线斜坡,从而达到解决问题的地步得出结论:我们设法“化曲为直,以直代曲”.可以把山坡“化整为零”地划分为一些小段,如图所示,表示其中一部分小段.划分小段时,注意使每一小段上的山坡近似是“直”的,可以量出这段坡长,测出相应的坡角,这样就可以算出这段山坡的高度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【达标测评】
1.上午10点整,一渔轮在小岛O的北偏东30°方向,距离等于10海里的A处,正以每小时10海里的速度向南偏东60°方向航行.那么渔轮到达小岛O的正东方向是什么时间?(精确到1分).
2、在东西方向的海岸线 上有一长为1km的码头MN(如图),在码头西端M的正西19.5 km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距 km的C处.
(1)求该轮船航行的速度(保留精确结果);
(2)如果该轮船不改变航向继续航行,那么轮船能否正
好行至码头MN靠岸?请说明理由.
复习方位角的定义,准确画出指定方位角。
利用直角三角形的知识解决实际问题的一般过程是:(1)将实际问题抽象成数学问题(画出平面图形,转化为解直角三角形的问题);(2)根据问题中的条件,适当选用三角函数等解直角三角形;(3)得到问题的答案;(4)得到实际问题的答案。
吉昌中学九年数学(下)导学案
制作人:霍雨佳复核人:曹三成审核人:№:6班级:小组:姓名:
课题
28.2解直角三角形的应用(2)----方位角
课型
训练课
时间
学习
目标
1.使学生理解方位角概念的Fra bibliotek义,并能适当的选择锐角三角函数关系式去解决有关直角三角形实际问题;
2.培养学生将实际问题抽象为数学问题(画出平面图形 转化为解直角三角形)的能力.
课后
反思
【范例精析】
如图,某货船以20海里/时的速度将一批重要物资由A处运往正西方向的B处,经16小时的航行到达,到达后必须立即卸货.此时.接到气象部门通知,一台风中心正以40海里/时的速度由A向北偏西60°方向移动,距台风中心200海里的圆形区域(包括边界)均受到影响.
(1)B处是否会受到台风的影响?请说明理由.
2.王英同学从A地沿北偏西60º方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地( )
A.150mB. mC.100 m D. m
3.如图所示,海上有一灯塔P,在它周围3海里处有暗礁.一艘客轮以9海里/时的速度由西向东航行,行至A点处测得P在它的北偏东60°的方向,继续行驶20分钟后,到达B处又测得灯塔P在它的北偏东45°方向.问客轮不改变方向继续前进有无触礁的危险?
2.例5中如何把实际问题转化成几何问题?可将问题到一个什么几何图形中解决?根据示意图,用什么知识解出来的?你知道每一步的依据吗?体现了数学中的哪些思想方法?
3.你知道利用直角三角形的知识解决实际问题的一般步骤吗?
二.自我检测:
1.如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为________米.(结果保留根号)
重点
用三角函数有关知识解决方位角的实际问题.
难点
学会准确分析问题并将实际问题转化成数学模型.
学习内容(资源)
学法
指导
【自主探究】
一.导引自学:阅读书本P76例5,思考以下问题
1.(1)方位角的定义是什么?
(2)画出以下方位角;南偏东300;南偏西600;北偏西150;东北方向。
(3)A点在B点的南偏东360,,则B点在A点的什么方向?