圣维南原理证明
圣维南原理及其证明
圣维南原理及其证明圣维南原理又称为中值定理,是微积分中一个重要的定理。
它是由法国数学家约瑟夫·路易·圣维南于1690年发现并提出的。
该原理主要用于描述实函数的连续性与导数之间的关系,并说明在一定条件下函数在其中一区间上的平均变化率与其中一点上的瞬时变化率之间存在关系。
1.第一中值定理:设函数f(x)在闭区间[a,b]上连续,且在开区间(a,b)上可导(注意不一定连续),则在开区间(a,b)内存在一个点c,使得f'(c)=(f(b)-f(a))/(b-a)。
即函数在区间[a,b]上有一点的导数等于该区间上函数值的平均变化率。
2.第二中值定理:设函数f(x)在闭区间[a,b]上连续且在开区间(a,b)上可微,且f(a)≠f(b),则在开区间(a,b)内存在一个点c,使得f'(c)=(f(b)-f(a))/(b-a)。
即函数在区间[a,b]上其中一点的导数等于该区间上函数值的平均变化率。
3.第三中值定理:设函数f(x)和g(x)在闭区间[a,b]上连续且在开区间(a,b)上可微,且g'(x)≠0且g(a)≠g(b),则在开区间(a,b)内存在一个点c,使得[f(b)-f(a)]/g(b)-g(a)]=f'(c)/g'(c)。
即两个函数在区间[a,b]上的斜率之比等于它们在开区间(a,b)内其中一点的导数之比。
对于圣维南原理的证明,需要运用微积分的基本概念和定理。
以下以第一中值定理为例进行证明。
证明:设函数f(x)在闭区间[a,b]上连续,且在开区间(a,b)上可导。
我们定义一个新的函数g(x)=f(x)-[(f(b)-f(a))/(b-a)](x-a)。
1.首先验证函数g(x)在闭区间[a,b]上连续。
由于f(x)在[a,b]上连续,那么f(x)-[(f(b)-f(a))/(b-a)](x-a)也是连续函数。
2.再来验证函数g(x)在开区间(a,b)上可导。
圣维南原理的概念和应用
圣维南原理的概念和应用圣维南原理(Saint-Venant's principle)是弹性力学中的基本原理之一,由法国工程师、数学家阿道夫·维南(Adhémar Jean ClaudeBarré de Saint-Venant)于1855年首次提出。
该原理也被称为“局部效应原理”或“远场近似原理”。
圣维南原理的概念是,当应力施加在一个足够大的物体上时,物体内部的应变和位移仅在施加应力的局部区域发生显著变化,而在远离施加应力的区域,应变和位移几乎不变。
换句话说,这个原理认为,对于一个较大的物体,只有局部区域受到应力的影响,而在其他地方,物体的响应可以用远场近似来描述。
1.结构分析:在结构力学中,可以利用圣维南原理来简化复杂的结构系统的分析。
例如,当一个结构受到局部载荷时,可以通过该原理近似地计算结构的响应,而无需考虑整个结构的细节。
这在工程实践中非常有用,因为它可以大大简化结构的分析过程。
2.弯曲问题:弯曲是圣维南原理最经常应用的领域之一、该原理可以用来求解梁的弯曲问题,即当在梁的一端施加弯曲力时,可以通过近似地构建一个等效的约束系统,来计算受力部分的位移和应变。
这种方法在结构工程中非常常用,因为它可以准确地预测梁的变形和应力分布。
3.施加边界条件:在求解弹性力学问题时,边界条件是一个非常重要的因素。
圣维南原理可以帮助我们确定适当的边界条件,以便正确地描述系统的行为。
例如,当在一个弹性平板上施加一个外力时,通过将维南近似应用于平板的等效系统中,我们可以确定一个合适的边界条件来求解平板的位移和应力分布。
4.地震工程:地震是土木工程中的一个重要考虑因素。
圣维南原理的应用可以帮助工程师们分析建筑物在地震加载下的响应。
通过近似建筑的响应为由局部载荷引起的问题,可以更好地理解建筑结构在地震中的行为,并优化其设计。
总结起来,圣维南原理是弹性力学中一项重要的概念,它通过近似处理复杂的弹性力学问题,使得工程师们能够更好地理解和预测结构的响应。
圣维南原理及其证明
圣维南原理及其证明:历史与评述赵建中云南大学资源、环境与地球科学学院地球物理系,昆明650091 摘要圣维南原理(Saint-Venant’s Principle)是弹性力学的基础性原理,圣维南原理的证明一直是弹性力学重要的研究课题。
本文以圣维南原理研究中最重要的事件为线索,对圣维南原理的发展历史作了综述,对重要的研究工作和结果进行了评论;发表和论证了图平定理不是圣维南原理的数学表达、一般的圣维南原理不成立、修正的圣维南原理可以证明为真等观点;介绍了建立修正的圣维南原理的数学方法;阐述了研究圣维南原理证明问题的意义;目的在于引起对这些有关圣维南原理的基本问题的关注和讨论,促进圣维南原理研究的繁荣和发展。
关键词圣维南原理,历史,图平定理,证明,否证,数学表达,修正,意义中图分类号:0343.2AMS Subject Classifications: 74G50引言弹性力学的圣维南原理已经有一百多年的历史了[1,2]。
早期有关原理有重要的文章[39] 。
波西涅克(Boussinesq)[3]于1885年、勒夫(Love)[4]于1927 年分别发表了圣维南原理的一般性陈述。
然而Mises[5]认为勒夫陈述不清楚并提出修改的陈述,其后的论证既可以看作是对一般的Mises 陈述的否证,又可以看作是对具有特殊条件的Mises 陈述的证明。
Sternberg [6]赞同Mises的修改,他的论证也可以既看作是对Mises 陈述(Sternberg称为圣维南原理的传统陈述)的一般性的否证,又看作是对附加了条件的Mises 陈述的证明。
Truesdell[10]于1959年断言,如果关于等效载荷的圣维南原理为真,它“必须是”线性弹性力学“一般方程的数学推论”。
这就从理性力学的角度提出了圣维南原理的证明问题,圣维南原理被视为一个数学命题,其真理性需要证明。
毫无疑问,圣维南原理的数学证明成了一个学术热点。
为了揭示原理隐秘的内涵,或者说破解原理之谜,学者们花费了巨大的努力。
圣维南原理
圣维南原理圣维南原理(Saint-Venant's principle)是固体力学中的一个基本原理,它是由法国工程师Adhémar Jean Claude Barre de Saint-Venant于19世纪提出的。
该原理描述了在弹性体受力作用下,应力和应变在距离载荷作用点很远的地方变化不大,而且在足够远的距离上,应力和应变趋向于稳定。
圣维南原理在工程实践中有着广泛的应用,特别是在结构分析和设计中起着重要的作用。
圣维南原理的提出,为工程力学领域的研究和工程实践带来了重大的影响。
它的核心思想是弹性体受力后,应力和应变会随着距离载荷作用点的增加而逐渐减小,并最终趋于稳定。
这一原理的确立为工程师们提供了一个重要的理论基础,使得他们能够更准确地分析和设计各种结构,确保其在受力作用下的稳定性和安全性。
在工程实践中,圣维南原理被广泛应用于各种结构的分析和设计中。
比如,在桥梁工程中,工程师们可以利用该原理来分析桥梁结构在受力作用下的应力分布情况,从而确定材料的选择和结构的设计方案。
在建筑工程中,该原理也可以帮助工程师们更好地理解建筑结构的受力特性,确保建筑物在各种外部力的作用下能够保持稳定。
此外,圣维南原理还被应用于地基工程、机械设计等领域,为工程实践提供了重要的理论支持。
需要指出的是,圣维南原理虽然在工程实践中有着广泛的应用,但在某些特定情况下也存在一定的局限性。
例如,在材料非线性、应变集中、载荷非均匀等情况下,该原理可能不再适用。
因此,在实际工程中,工程师们需要结合具体的工程情况,综合运用圣维南原理和其他理论知识,进行合理的分析和设计。
总的来说,圣维南原理作为固体力学中的一个基本原理,为工程力学领域的发展和工程实践提供了重要的理论支持。
它的应用不仅帮助工程师们更好地理解和分析结构的受力特性,也为工程设计提供了重要的参考依据。
当然,我们也要意识到,圣维南原理并非适用于所有情况,工程师们需要在实际工程中灵活运用,结合其他理论知识,确保工程设计的科学性和合理性。
圣维南原理并说明它的用途
圣维南原理并说明它的用途圣维南原理(Saint-Venant's principle)是弹性力学中的一个基本原理,也被称为等效自由力原理或诺特尔对偶原理。
它是由法国数学家和工程师阿道夫·圣维南(Adhémar Jean Claude Barréde Saint-Venant)于19世纪中期提出的。
圣维南原理的基本思想是,当对结构施加作用力并达到平衡状态时,结构内部的应力分布在离作用点足够远的地方将变得无关紧要,只保留结构的整体行为。
具体来说,圣维南原理认为结构在受力下,仅在应力集中的区域附近才会出现显著的变形和应力,而在远离这些集中应力区域的地方,结构的变形和应力将逐渐趋于均匀分布,从而使结构产生一个等效的自由体力或力偶。
这种等效力或力偶可以反映出结构的整体行为和响应,用来简化对结构的分析和计算。
圣维南原理的主要用途如下:1. 结构受力分析:在结构力学中,使用圣维南原理可以简化结构的受力分析。
通过将外部作用力转化为等效的自由力或力偶,并结合结构的边界条件和材料性质,可以有效地求解结构的应力、应变和变形等问题。
这对于设计和优化复杂结构的强度和刚度具有重要意义。
2. 结构变形衡量:通过圣维南原理,可以量化结构的变形情况。
根据等效自由力或力偶的大小和方向,可以确定结构的变形形态和位移分布。
这对于工程师评估和控制结构的变形行为,尤其是在弹性阶段的变形情况,非常有帮助。
3. 结构优化设计:圣维南原理可以在结构优化设计中发挥重要作用。
通过分析结构的等效自由力或力偶,可以直观地了解结构的受力特点和存在的问题,从而指导工程师进行合理的结构调整和优化。
这可以使结构更加经济高效,减轻结构在受力中的应力集中和可能的破坏。
4. 材料选择和设计验证:圣维南原理可以帮助工程师选择合适的材料和验证结构的设计安全性。
通过分析结构的等效自由力或力偶,可以评估结构在不同材料参数下的应力分布和变形行为,从而选择适合的材料,并验证结构的安全性和可靠性。
6圣维南原理解析
6圣维南原理解析圣维南 (Saint-Venant) 原理是应用于弹性体力学的一种物理原理,它描述了在应力场中,当载荷施加在物体表面时,这个载荷会沿着物体的体积方向向内传播,引起物体内部的变形和应力分布。
圣维南原理的基本思想是假设物体是连续、均匀且各向同性的,其应变和应力满足弹性力学方程。
圣维南原理可用数学方程表示,假设载荷作用在物体表面的小区域,而物体内部每个小区域都是向外均匀受力的平衡状态。
根据这个原理,我们可以推导出弹性体的位移、应变和应力满足的偏微分方程,称为圣维南方程。
该方程描述了物体内部的变形和应力分布,并能通过求解该方程来获得物体的解析解。
圣维南原理的应用范围广泛,它可以用于解析地基沉降、桥梁和建筑物的变形、材料的弹性行为等问题。
具体应用有:1.地基工程:圣维南原理可用于分析地下水或地震等外部载荷引起的地基沉降。
通过求解圣维南方程,可以预测地基变形,并为工程设计提供依据。
2.结构工程:圣维南原理可用于分析桥梁、建筑物等结构物在受外部荷载作用下的变形情况。
通过求解圣维南方程,可以评估结构物的强度和刚度,并进行结构优化设计。
3.材料工程:圣维南原理可用于研究材料的弹性行为。
通过求解圣维南方程,可以分析材料的应力分布和应变变化,评估材料的机械性能,并为材料疲劳寿命预测提供依据。
需要注意的是,圣维南原理是在弹性条件下成立的,即物体在加载后能恢复到原来的形状。
在实际工程中,弹性体的行为往往与非弹性效应有关,如塑性、粘弹性、破裂等。
因此,在实际应用中,圣维南原理通常与其他力学原理相结合,如塑性力学、粘弹性力学等。
为了更好地应用圣维南原理,我们还需要关注实验测试和数值模拟等方法。
实验测试可以用于验证圣维南原理的适用性,并提供实际数据用于验证数值模拟结果。
数值模拟可以通过有限元法等数值方法求解圣维南方程,从而得到更复杂的物体变形和应力分布情况。
总之,圣维南原理是弹性体力学领域的基本原理之一,广泛应用于地基工程、结构工程和材料工程等领域。
简述圣维南原理及其应用公式
简述圣维南原理及其应用公式
圣维南原理(Saint-Venant's principle)是指当一个外部载荷作用于一根杆件时,如果这个杆件在距离载荷作用点处足够远的地方,其挠度几乎不受载荷位置的影响,即载荷反应在杆件上的分布是近似均匀的。
该原理适用于解决结构力学中的弯曲问题。
圣维南原理还可以用于分析结构的自由振动问题。
在自由振动问题中,需要求解结构的固有频率和振型,而圣维南原理可以用来简化结构的初始条件。
通常情况下,结构的自由振动问题可以分解为多个单独的振动模态,圣维南原理则可以使每个模态的振型分布趋于均匀,从而简化求解过程。
圣维南原理的应用公式为:
Δ = (Ml^2)/(2EI)
其中,Δ表示载荷作用点处的挠度,M表示载荷矩,l表示载荷作用点到杆件固定端的距离,E表示弹性模量,I表示截面惯性矩。
该公式可以用来计算载荷作用点处的挠度。
根据圣维南原理,载荷作用点处的挠度与载荷位置的影响几乎无关,因此可以通过该公式计算出载荷作用点处的挠度,而无需考虑载荷位置的具体情况。
在实际工程中,圣维南原理广泛应用于弯曲问题的分析与设计中。
例如,在桥梁设计中,为了确保桥梁能够承受车辆和行人的重量,
需要对桥梁的弯曲问题进行分析和设计。
圣维南原理可以用来简化桥梁弯曲问题的分析,从而提高设计效率和准确性。
圣维南原理是结构力学中非常重要的原理之一,其应用广泛,可以用于弯曲问题的分析和设计,也可以用于结构的自由振动问题的求解。
掌握圣维南原理和其应用公式,可以提高工程师在结构力学和结构设计领域的能力和水平。
弹性力学的一般原理-圣维南原理
圣维南原理(Saint-Venant’s Principle)是弹性力学的基础性原理,是法国力学家A.J.C.B.de 圣维南于1855年提出的。
其内容是:分布于弹性体上一小块面积(或体积)内的载荷所引起的物体中的应力,在离载荷作用区稍远的地方,基本上只同载荷的合力和合力矩有关;载荷的具体分布只影响载荷作用区附近的应力分布。
还有一种等价的提法:如果作用在弹性体某一小块面积(或体积)上的载荷的合力和合力矩都等于零,则在远离载荷作用区的地方,应力就小得几乎等于零。
不少学者研究过圣维南原理的正确性,结果发现,它在大部分实际问题中成立。
因此,圣维南原理中“原理”二字,只是一种习惯提法。
在弹性力学的边值问题中,严格地说在面力给定的边界条件及位移给定的边界条件应该是逐点满足的,但在数学上要给出完全满足边界条件的解答是非常困难的。
另一方面,工程中人们往往只知道作用于物体表面某一部分区域上的合力和合力矩,并不知道面力的具体分别形式。
因此,在弹性力学问题的求解过程中,一些边界条件可以通过某种等效形式提出。
这种等效将出带来数学上的某种近似,但人们在长期的实践中发现这种近似带来的误差是局部的,这是法国科学家圣维南首先提出的。
其要点有两处:一、两个力系必须是按照刚体力学原则的“等效”力系;二、替换所在的表面必须小,并且替换导致在小表面附近失去精确解。
一般对连续体而言,替换所造成显著影响的区域深度与小表面的直径有关。
圣维南原理在实用上和理论上都有重要意义。
在解决具体问题时,如果只关心远离载荷处的应力,就可视计算或实验的方便,改变载荷的分布情况,不过须保持它们的合力和合力矩等于原先给定的值。
圣维南原理是定性地说明弹性力学中一大批局部效应的第一个原理。
弹性力学的一般原理:圣维南原理:对于作用于物体边界上一小块表面上的外力系可以用静力等效(主矢量、主矩相同)并且作用于同一小块表面上的外力系替换,这种替换造成的区别仅在离该小块表面的近处是显著的,而在较远处的影响可以忽略。
圣维南原理及其证明.doc
圣维南原理及其证明.. 圣维南原理及其证明:历史与评述赵建中云南大学资源、环境与地球科学学院地球物理系,昆明650091 摘要圣维南原理(Saint-历史与评述赵建中云南大学资源、环境与地球科学学院地球物理系,昆明650091 摘要圣维南原理(Saint:0343.2 AMS Subject Classifications: 74G50 引言弹性力学的圣维南原理已经有一百多年的历史了。
早期有关原理有重要的文章。
波西涅克(Boussinesq)于1885年、勒夫(Love)于1927 年分别发表了圣维南原理的一般性陈述。
然而Mises 认为勒夫陈述不清楚并提出修改的陈述,其后的论证既可以看作是对一般的Mises 陈述的否证,又可以看作是对具有特殊条件的Mises 陈述的证明。
Sternberg 赞同Mises 的修改,他的论证也可以既看作是对Mises 陈述(Sternberg称为圣维南原理的传统陈述)的一般性的否证,又看作是对附加了条件的Mises 陈述的证明。
Truesdell 于1959年断言,如果关于等效载荷的圣维南原理为真,它“必须是”线性弹性力学“一般方程的数学推论”。
这就从理性力学的角度提出了圣维南原理的证明问题,圣维南原理被视为一个数学命题,其真理性需要证明。
毫无疑问,圣维南原理的数学证明成了一个学术热点。
为了揭示原理隐秘的内涵,或者说破解原理之谜,学者们花费了巨大的努力。
Zanaboni “证明”了一个定理,并称和圣维南原理有关。
图平(Toupin)列举了更多的反例说明波西涅克和勒夫的一般性陈述不真,并建立了一个能量衰减的定理,这个定理被认为是柱体圣维南原理的数学证明,似乎具有里程碑的意义。
Berdichevskii 推广了图平定理。
诸多学者仿效着推导出一些定理来建立图平型衰减,并把原理推广到连续介质物理学的各个领域,诸如流体流动和热传导问题等,发展了许多方法。
Horgan 和Knowles 对原理的进展跟踪作了评论,其后又有不少新的工作。
什么是圣维南原理及如何证明
什么是圣维南原理及如何证明弹塑性力学作业孙嘉粲建筑与土木工程2017级3班学号2170970036Q1:什么是圣维南原理?Q2:为什么需要圣维南原理?Q3:如何证明圣维南原理是正确的?Q1:什么是圣维南原理?答:圣维南原理(Saint Venant’s Principle)是弹性力学的基础性原理,是法国力学家圣维南于1855年提出的。
其内容是:分布于弹性体上一小块面积(或体积)内的荷载所引起的物体中的应力,在离荷载作用区稍远的地方,基本上只同荷载的合力和合力矩有关;荷载的具体分布只影响荷载作用区附近的应力分布。
还有一种等价的提法:如果作用在弹性体某一小块面积(或体积)上的荷载的合力和合力矩都等于零,则在远离荷载作用区的地方,应力就小得几乎等于零。
不少学者研究过圣维南原理的正确性,结果发现,它在大部分实际问题中成立。
因此,圣维南原理中“原理”二字,只是一种习惯提法。
有限元软件的模拟验证了这一点,如图1所示。
==图1 有限元计算得到的柱体在不同应力边界下得到的应力分布图Q2:为什么需要圣维南原理?问题的提出:弹性力学问题的求解是在给定的边界条件下求解基本方程。
使应力分量、应变分量、位移分量完全满足8个基本方程相对容易。
但对于工程实际问题,构件表面面力或者位移是很难满足边界条件要求。
这使得弹性力学解的应用将受到极大的限制。
为了扩大弹性力学解的适用范围,放宽这种限制,圣维南提出了局部影响原理。
圣维南原理的应用:对复杂的力边界,用静力等效的分布面力代替。
有些位移边界不易满足时,也可用静力等效的分布面力代替。
不论在弹性力学中还是在有限元中都广泛灵活的应用圣维南原理来处理和简化边界条件。
值得注意的是:圣维南原理只能适用于一小部分边界(小边界:尺寸相对很小的边界;次要边界:面力分布复杂的小边界)。
对于主要边界,圣维南原理不再适用。
例如对于较长的粱,其端部可以应用圣维南原理,而在粱的侧面,则不能应用。
Q3:如何证明圣维南原理是正确的?见附录1《圣维南原理证明》附录1《圣维南原理证明》1.Boussinesq 的陈述1855年Boussinesq 将圣维南的思想一般化,并冠“Saint-Venant’s Principle ”的名称,其内容为:施于弹性体上的任意平衡力系,如果其作用点限于某个给定的球内,那么该平衡力系在任意一个与球的距离远大于球半径的点上所产生的形变是可以忽略的。
圣维南原理
x
y
弹性力学解
(4)
2 x 2
2 y 2
( x
y
)
0
弹 性
应力边界条件
力
l x m yx X
l xy m y Y
学
(5) 问 题
解
式(4)
式(5)解答
例 如图所示薄片,周边作用有法向均布荷载q, 不计体力,试证明下列一组应力分量是本问题
的解答。 x q, y q, xy 0
MO mO (F i )
这种等效只是从平衡的观点而言的,对刚体来而言完全正 确,但对变形体而言一般是不等效的。
2.圣维南原理
(Saint-Venant Principle)
原理: 若把物体的一小部分边界上的面力,变换为分布 不同但静力等效的面力,则近处的应力分布将有
显著改变,而远处所受的影响可忽略不计。
o
x
A
q y
[解] 分析:欲证明是否弹性力学解答,只需证明在弹性 体内部满足式(4),在应力边界上能够满足式(5)
1)
将这组应力分量代入式(4),式(4) 中三式恒满足
2) 再考察边界条件,取边界上A点,有
y
X q cos,Y q sin
yx
l cos, m cos(900 ) x xy A
2 y2
(
x
y
)
2 x2
(
y
x
)
2(1
)
2 xy
xy
利用平衡方程式消去上式的 xy
xy
y
xy
x
x
x
y
y
X Y
2
2 xy
xy
2 x
x2
什么是圣维南原理及如何证明
什么是圣维南原理及如何证明圣维南原理(Saint-Venant's principle),也称为圣维南原则或相似性原理,是结构力学中的基本原理之一、该原理表明,对于一个具有局部载荷的结构,结构在远离载荷作用点的位置的变形和应力分布与载荷的具体位置和形状无关,只取决于结构受力的方式。
圣维南原理的核心思想是,当应用一个局部载荷到一个结构上时,由于结构的刚度和强度特性,载荷引起的变形和应力仅会在载荷附近有显著影响。
远离载荷作用点的区域的变形和应力分布主要由结构整体的特性决定。
这个原理是基于结构足够大且足够均匀的前提条件。
圣维南原理的有效性可以通过数学和实验方法进行证明。
首先,数学证明通常基于假设结构具有良好的连续性和线弹性的特性。
数学证明是通过施加部分载荷到结构上,然后采用弹性力学的理论进行分析,推导出结构在远离载荷作用点的位置的应变和应力。
其中,数学模型的建立需要采用适当的假设和边界条件。
其次,实验是验证圣维南原理的重要方法。
实验可以通过在真实结构和模型中施加不同形式的载荷,然后测量结构的变形和应力分布来进行。
对于较大的结构,实验可通过密集的传感器和位移测量设备进行准确的数据采集和分析。
对于较小的模型,实验可以使用物理模型进行。
通过实验的结果,可以直观地验证圣维南原理的有效性。
需要注意的是,圣维南原理适用于大多数实际工程结构,但在一些情况下可能不适用。
对于高度非线性、非均质、非连续或非弹性的材料和结构,圣维南原理可能不适用。
此外,对于具有复杂几何形状或载荷作用方式的结构,也需要进一步考虑边界条件和结构的详细特性。
总之,圣维南原理是结构力学中的一个重要原理,可以帮助工程师在设计和分析结构时简化计算和分析过程。
该原理可以通过数学和实验方法进行证明,但需要注意对一些特殊情况进行额外考虑。
圣维南原理及其证明
圣维南原理及其证明:历史与评述赵建中云南大学资源、环境与地球科学学院地球物理系,昆明650091 摘要圣维南原理(Saint-Venant’s Principle)是弹性力学的基础性原理,圣维南原理的证明一直是弹性力学重要的研究课题。
本文以圣维南原理研究中最重要的事件为线索,对圣维南原理的发展历史作了综述,对重要的研究工作和结果进行了评论;发表和论证了图平定理不是圣维南原理的数学表达、一般的圣维南原理不成立、修正的圣维南原理可以证明为真等观点;介绍了建立修正的圣维南原理的数学方法;阐述了研究圣维南原理证明问题的意义;目的在于引起对这些有关圣维南原理的基本问题的关注和讨论,促进圣维南原理研究的繁荣和发展。
关键词圣维南原理,历史,图平定理,证明,否证,数学表达,修正,意义中图分类号:0343.2AMS Subject Classifications: 74G50引言弹性力学的圣维南原理已经有一百多年的历史了[1,2]。
早期有关原理有重要的文章[39] 。
波西涅克(Boussinesq)[3]于1885年、勒夫(Love)[4]于1927 年分别发表了圣维南原理的一般性陈述。
然而Mises[5]认为勒夫陈述不清楚并提出修改的陈述,其后的论证既可以看作是对一般的Mises 陈述的否证,又可以看作是对具有特殊条件的Mises 陈述的证明。
Sternberg [6]赞同Mises的修改,他的论证也可以既看作是对Mises 陈述(Sternberg称为圣维南原理的传统陈述)的一般性的否证,又看作是对附加了条件的Mises 陈述的证明。
Truesdell[10]于1959年断言,如果关于等效载荷的圣维南原理为真,它“必须是”线性弹性力学“一般方程的数学推论”。
这就从理性力学的角度提出了圣维南原理的证明问题,圣维南原理被视为一个数学命题,其真理性需要证明。
毫无疑问,圣维南原理的数学证明成了一个学术热点。
为了揭示原理隐秘的内涵,或者说破解原理之谜,学者们花费了巨大的努力。
圣维南原理及其证明
圣维南原理及其证明:历史与评述赵建中云南大学资源、环境与地球科学学院地球物理系,昆明650091 摘要圣维南原理(Saint-Venant’s Principle)是弹性力学的基础性原理,圣维南原理的证明一直是弹性力学重要的研究课题。
本文以圣维南原理研究中最重要的事件为线索,对圣维南原理的发展历史作了综述,对重要的研究工作和结果进行了评论;发表和论证了图平定理不是圣维南原理的数学表达、一般的圣维南原理不成立、修正的圣维南原理可以证明为真等观点;介绍了建立修正的圣维南原理的数学方法;阐述了研究圣维南原理证明问题的意义;目的在于引起对这些有关圣维南原理的基本问题的关注和讨论,促进圣维南原理研究的繁荣和发展。
关键词圣维南原理,历史,图平定理,证明,否证,数学表达,修正,意义中图分类号:0343.2AMS Subject Classifications: 74G50引言弹性力学的圣维南原理已经有一百多年的历史了[1,2]。
早期有关原理有重要的文章[39] 。
波西涅克(Boussinesq)[3]于1885年、勒夫(Love)[4]于1927 年分别发表了圣维南原理的一般性陈述。
然而Mises[5]认为勒夫陈述不清楚并提出修改的陈述,其后的论证既可以看作是对一般的Mises 陈述的否证,又可以看作是对具有特殊条件的Mises 陈述的证明。
Sternberg [6]赞同Mises的修改,他的论证也可以既看作是对Mises 陈述(Sternberg称为圣维南原理的传统陈述)的一般性的否证,又看作是对附加了条件的Mises 陈述的证明。
Truesdell[10]于1959年断言,如果关于等效载荷的圣维南原理为真,它“必须是”线性弹性力学“一般方程的数学推论”。
这就从理性力学的角度提出了圣维南原理的证明问题,圣维南原理被视为一个数学命题,其真理性需要证明。
毫无疑问,圣维南原理的数学证明成了一个学术热点。
为了揭示原理隐秘的内涵,或者说破解原理之谜,学者们花费了巨大的努力。
验证圣维南原理
将表1. 中的数据带入S矩阵中得 i j mI
1 0 E S 0 0 a 1 0 2
0 0 1 0 1 0 1 1 0 2 2
0 1 1 2
求各个单元的应力只需 将节点i、j、k 所对应的 节点位移带入即可。
在2、3节点中间的截面总的合力为0.97482Fh 总的合力接近P=Fh,所以符合圣维南原理!
ui v i u j 源自 v j um vm
x y xy
o ci bi 2
bj 0 cj 2
0 cj bj 2
bm 0 cm 2
S称为应力矩阵,由于S是常数矩阵,所 以三角形单元内的应力是一样的。
i j
m
总刚合成
2单元
1单元 2 18 1
2 18
2
19 18
0 0 0 2 0 2 0 1 1 0 1 1 1 1 0 1 1 Eh 0 e k1 0 0 2 0 2 4 0 2 1 1 0 3 1 0 1 1 2 1 3
kim k jm k mm
ke
cr cs b b Eh r s 2 krs 4 A br cs 2
A为单元面积 (r , s=i , j , m)
cr bs br bs cr cs 2
(i , j , m按顺 序换可的j , m 对应的数)
图1.
将本结构离散化,划分为由64个直角等腰三角形单元组成的结构, 含有51个节点,其中节点1、18和35都是约束节点,没有位移。
计算单元刚度矩阵
kii e k k ji k mi
圣维南原理
圣维南原理
圣维南原理,是由法国数学家雅克·夏尔·圣维南于1800年提
出的一条重要原理。
该原理是数学分析中的基础定理之一,对于解决微积分问题具有重要意义。
圣维南原理可以用于求解函数在闭区间上的极值问题。
它的具体表述是:如果一个函数在闭区间上连续,且在开区间内可导,在区间的两个端点上的函数值符号不同,那么在该闭区间上一定存在至少一个点,使得这个点的导数等于零。
圣维南原理的推导基于罗尔定理,也就是如果一个函数在闭区间上连续,在开区间内可导,且在闭区间的两个端点上函数值相等,那么在该闭区间上一定存在至少一个点,使得这个点的导数等于零。
圣维南原理则是对罗尔定理的一种推广。
圣维南原理的应用广泛。
在求解极值问题时,可以利用圣维南原理来确定极值点的存在性,并借助导数的符号来判断极大值和极小值。
此外,在实际问题中,圣维南原理也能够帮助我们分析函数的行为,揭示其中隐藏的性质。
总之,圣维南原理是微积分中一条重要原理,它为解决函数的极值问题提供了有效的方法,且具有广泛的应用价值。
通过熟练掌握和灵活运用圣维南原理,我们能够更好地理解和掌握微积分的相关知识。
圣维南原理的概念及应用
圣维南原理的概念及应用圣维南原理(Saint-Venant's principle)是力学领域中的一个重要原理,它描述了结构体受外力作用时,在远离该外力集中作用的区域内受力分布是均匀的。
该原理在结构分析和设计中具有广泛的应用,尤其在弹性和塑性理论的研究中起着重要的作用。
圣维南原理的概念可以通过下面的实例来解释。
假设有一个杆件,在杆件的一端施加一个力,力的作用点与该杆件的距离相对较远。
根据圣维南原理,如果距离力作用点比较远的位置测量该杆件的应变或应力,那么这些测量值将与力作用点附近的测量值非常接近。
简单来说,圣维南原理表明,在结构体内部,不同位置受力的情况是相似的。
圣维南原理的应用十分广泛。
在力学中,它被用于解释和预测结构体的力学响应。
例如,在结构力学中,可以利用圣维南原理确定一个受力结构体的应力和应变分布情况。
此外,圣维南原理还被用于验证数值模拟的准确性,通过比较实验测量结果和数值模拟结果,可以判断该数值模拟是否满足圣维南原理。
在结构设计中,圣维南原理可以用于简化求解结构体力学问题。
例如,在弹性力学中,通常假设材料是均匀的且具有均匀的弹性模量,这样就可以利用圣维南原理预测结构体的力学行为,而不需要详细的材料特性。
另外,在结构体受力分析中,圣维南原理也可用于确定荷载在结构体内部的传递情况,从而优化结构体的设计。
圣维南原理的一个重要应用领域是结构体的变形分析。
它可以用于描述结构在外力作用下的变形情况。
例如,在弹性力学中,可以利用圣维南原理建立结构体的偏微分方程,通过求解这些方程,可以得到结构体受力下的变形分布。
这对于结构体设计和优化非常重要,可以帮助工程师确定结构体的几何形状和材料选择。
此外,圣维南原理还是其他工程学科的基础。
在流体力学中,圣维南原理可以用于描述流体在管道中的流动行为。
在电学和热学方面,圣维南原理也被应用于描述电流和热量在导体中的传递过程。
总之,圣维南原理是力学领域中一个重要的原理,它描述了结构体受外力作用时,在远离该外力集中作用的区域内受力分布是均匀的。
圣维南原理的概念和应用
圣维南原理的概念和应用圣维南原理(Saint-Venant’s principle)是弹性力学中的一个重要原理,用来描述材料在外力作用下的应力分布。
该原理由法国工程师和数学家Adhémar Jean Claude Barré de Saint-Venant于1855年提出,被广泛应用于结构力学、地震工程和流体力学等领域。
圣维南原理的概念可以简单地描述为:当一个杆件或构件受到外力作用时,杆件或构件上的应力分布在远离作用点的区域中变化很小。
换句话说,即使受到集中力的作用,杆件或构件的应力分布在相对较远处可以近似认为是均匀且恒定的。
这个原理在工程实践中具有重要的应用价值。
1.线性弹性假设:该假设指材料遵循胡克定律,在弹性范围内应力和应变之间存在线性关系,即应力与应变成正比。
2.充分薄假设:该假设指构件的尺寸相对于应变的变化而言足够小,以至于可以忽略其内部的应力分布。
这样可以将构件看作一个连续体,并可以应用简化的微分方程来描述其应力分布。
通过以上两个假设,可以得出圣维南原理的数学表达式。
在弹性力学中,常使用圣维南原理来推导杆件或构件的位移和应力分布。
基于这一原理,可以进行各类结构的静力和动力分析、设计和优化。
1.结构力学:在建筑工程和土木工程中,圣维南原理可用于分析结构构件的应力分布和变形情况。
通过近似方法,可以简化复杂的结构力学问题,例如梁、桁架和板等的分析和设计。
2.地震工程:地震是一种动力载荷,会引起建筑物和桥梁等结构的振动。
圣维南原理可以应用于地震工程中的结构响应分析,用于评估结构的承载能力和耐震性能。
3.流体力学:在流体静力学和流体动力学中,圣维南原理可应用于近似描述流体内部的压力分布。
例如,通过该原理可以得出液体的压力在各个截面上几乎相等的结论,从而简化流体力学问题的求解。
总之,圣维南原理是弹性力学中的一个重要概念,通过近似处理结构力学问题,简化了工程实践中的求解过程。
该原理在结构力学、地震工程和流体力学等领域中得到广泛应用,为工程师和科学家提供了一种有效解决实际问题的方法。
圣维南原理
几何方程
应变
协调条件
位移
位移求解: 位移
几何方程
应变
物理方程
应力
应力解法
未知数3个σx、σy、τxy,须联立平衡方程与 变形协调条件,以平面应力问题为例, 将虎克定律代入应变协调条件得到:
xy ( x y ) 2 ( y x ) 2(1 ) 2 y x xy
X Y x y x 2 y 2 ( x y ) (1 )
2 2
(1)
平面应力情形
控制方程
μ
μ/1-μ
平面应变情形
控制方程
1 X Y ( ) x y x 2 y 2 1 x y
i
这种等效只是从平衡的观点而言的,对刚体来而言完全正 确,但对变形体而言一般是不等效的。
2.圣维南原理
(Saint-Venant Principle)
原理: 若把物体的一小部分边界上的面力,变换为分布 不同但静力等效的面力,则近处的应力分布将有 显著改变,而远处所受的影响可忽略不计。 P P/2
P A
h( yx )y Nhomakorabea0dx P cos
可见,与前面结果相同。
§2-8 平面问题应力解法
上节回顾 应力解法 应力函数
上节回顾
平衡方程 基本方程 几何方程 物理方程 位移边界 边界条件 应力边界 混合边界 弹性力学问题的解
基本方程
1、平衡方程
xy x X 0 x y xy y Y 0 x y
P P/2
P A P A
P
3.圣维南原理的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有限元圣维南原理简述
圣维南原理(Sai nt Ve nant ' s Prin ciple )是弹性力学的基础性原理,是法国力学家圣维南于1855年提出的。
其内容是:分布于弹性体上一小块面积(或体积)内的荷载所引起的物体中的应力,在离荷载作用区稍远的地方,基本上只
同荷载的合力和合力矩有关;荷载的具体分布只影响荷载作用区附近的应力分布。
还有一种等价的提法:如果作用在弹性体某一小块面积(或体积)上的荷载的合力和合力矩都等于零,则在远离荷载作用区的地方,应力就小得几乎等于零。
不少学者研究过圣维南原理的正确性,结果发现,它在大部分实际问题中成立。
因此,圣维南原理中原理”二字,圣维南原理(Saint-Venant ' s Principle )表述如下:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受的影响可以不计。
圣维南原理是弹性力学的基础性原理,圣维南原理的证明一直是弹性力学重要的研究课题,在此通过ANSY歎件工具,进行该原理的证明。
2. ANSYS 证明
当物体一小部分边界上的位移边界条件不能满足时,也可以应用圣维南原理得到用用的解答。
例如,图1, 2所示构建的右端是固定端,则在该构件的右端, 有边界条件(u)s =O,(v)s二V =0。
这就是说,右端固定端的面力,静力等效于
经过右端截面形心的力F。
结果仍然应该是在靠近两端处有显著的误差,而在离两端较远之处,误差是可以不计的。
考虑到在ANSYS中建立约束条件的可行性,采用具有代表性的进行建模分析。
图1
图2
1)创建有限元模型一一柱形构件
为便于在两端面中心加载,选用四面体单元类型。
由于ANSYS勺单元类型是在不断
发展和改进的,同样功能的单元,编号大的往往意味着在某些方面有优化或者增强。
在
ANSYS 15.0中,选用Solid-Tet-10 node 187 单元类型。
根据常用材料属性表,选用弹性较好较为常用的低碳钢,弹性模量取
EX=2.0E11,泊松比PRXY=0.25为满足小边界条件,使L»h,创建一个长、宽、高分别为1m 0.01m,0.01m的长方体,并对其进行自由网格划分,SmatSize取6。
建模及网格划分结果如下图3所示
2、施加载荷并求解。
低碳钢的屈服极限为207MPa取安全系数S=2时,计算可得,在不发生塑性变形的前
提下,在断面可施加的最大力为:
6 2
Fmax= s* A/S =(207*10 *0.01 /2)N N0.35KN
1) 在柱形构件一端加上全自由度位移约束,另一端面中心加上沿X方向的F=5KN 的集中力作用,求解。
约束及载荷施加结果如图4所示。
图4集中力及约束施加结果
2)在柱形构件一端加上全自由度位移约束,另一端面(与集中力作用端面相同)
加上与集中力静力等效的P=5e7N的均布载荷作用,求解。
约束及载荷施加结果如图5所示。
图5均布载荷及约束施加结果
3、查看分析结果。
1)分别生成在柱形构件端面施加集中力与等效均布载荷情况下,各节点X 方向位移图以及位移分布变化曲线。
如下图所示。
7
-.lIliClE-DT -.3 94E-UX-.13VI-IF3
』LATE.Qll
图7均布载荷下各节点X方向位移图
2)分别生成在柱形构件端面施加集中力与等效均布载荷情况下,其平均应力分布图以及各节点处平均应力分布变化曲线。
如下图所示。
图6集中力下各节点X方向位移图
图8集中力下所得平均应力分布图
L £ J LLTI IL H FTIF-L ten -«i nra -L rt 级
卿
a
、
图9
均布载荷下所得平均应力分布图
3 !£+□€: /US.齢阴
+
1-S-OErD*
B
233£t -1:即
h
3O7Z-r
-1 TTHS-l
2-iy¥ M'E) ・.2^1-0J fMTi -s ;01E4-C -- S4X 二-叮牡+!>•
・m】E+俑
.41^E+D4.H3E^Q■羽■凹■'
■M I 4E^-U H
图10均布载荷下所得平均应力分布图
在ANSYSH处理中,基于两端面中心的1117号节点和1122号节点,建立贯穿柱形
构件中线的路径,并分别将X方向位移数值和平均应力数值映射到所创建的路径上。
数值列表及分布曲线如下所示:
POST ETEP-1 SIJB —1
TIHE-1 r^TH FLCT
AN
JKhl 2 :沪fj
J 图11集中力下各节点处位移分布变化曲线
>0971
WUB -1
匸応仝TfcTH PLOT
AN
JAN 2
rii2t»
3-31
U3
1.:!
)n Z1
■2
,.g3
Q
・1■■3
DJCT
璋.B 1
.1 a g
图12均布载荷下各节点处位移分布变化曲线
-1 riNE-i FATH PLOT SD
丄-dJLJ :
*匸1
AN
jjyj J 2gfi 7
2■专亠.7
1
1
H!>4
f
・$ A
DI
a
■
图13集中力下各节点处平均应力分布变化曲线
WST1
STEF-1 rio « I
T I KB-1
TA"I< T LOT
HOJJ1-1117 ltuL>2- I 3
图14均布载荷下各节点处平均应力分布变化曲线
3)基于其他有限元模型
同样道理,亦可建立满足一定长宽比的基本的圆柱、圆锥构件等,原理过程 与柱形构建一致,在此不复赘述。
三、分析与总结
由图可知,所创建柱形构件在受到集中力及与其等效的均布载荷作用下, 其绝大
部分平均应力数值均处于 5000Pa 左右,而且各节点处应力分布变化情况 也基本一致,只在添加约束及受力端面处有明显变化。
故此矩形截面直杆两端受等效应力的实例结果,即验证了圣维南原理的正确 性:作
*;sr 】口 " p
口工4
用在物体一端(次要边界或是小边界)的荷载,如果只改变应力分布而不
改变合成,那么就只会显著改变该端附近的应力,在距离端部较远处相差甚微。