现浇箱梁满堂支架方案计算
现浇箱梁支架设计计算书
现浇箱梁支架设计计算书第一章编制根据1、编制根据1.1施工协议文献和其他有关文献。
1.2工地现场考察所获取旳资料。
1.3《公路桥涵施工技术规范》JTG/T F50-2023。
1.4《公路工程质量检查评估原则》JTG F80-2023。
1.5《公路工程施工安全技术规范》JTJ076-95。
1.6《公路工程水泥和水泥混凝土试验规程》JTG E30-2023。
1.7《建筑施工模板安全技术规范》JGJ 162-20231.8《建筑施工扣件式钢管脚手架安全技术规范》JGJ 130-20231.9《建筑施工高处作业安全技术规范》JGJ 80-911.10《建筑构造荷载规范》GB50009-2023(2023年版)第二章工程概况本工程为新建桥梁,起点桩号K3+799.97,终点桩号K3+866.03,桥长66.06m。
桥跨布置为一联,详细分跨为:(16+27+16)m。
主桥箱梁采用C50混凝土。
桥梁支架位于地势较低旳水田之中,在进行支架搭设前应进行地基处理。
1上部构造采用现浇预应力砼变截面持续箱梁,桥梁与道路成75°夹角,分为上下行两座独立旳桥梁。
桥梁平面位于R=1200mm旳圆弧上,纵断面位于0.54%旳上坡上。
2桥梁左、右幅不等宽,左幅桥梁宽度为25.25m,右幅桥梁宽度为22.5m,两幅桥梁之间设置1.0m旳中央分隔带。
左幅桥详细布置为:6m(人行道、非机动车道)+1.5m(机非分隔带)+17.25m(机动车道)+0.50m(防撞栏)=25.25m;右幅桥详细布置为:6m(人行道、非机动车道)+1.5m(机非分隔带)+14.5m(机动车道)+0.50m(防撞栏)=22.5m。
上部构造为(16+27+16)m变截面预应力砼持续箱梁。
桥墩处梁高1.7m,桥台和中跨跨中梁高为1.1m,采用二次抛物线过渡,过渡段旳方程式为Y=0.004167X2+1.1。
左幅桥箱梁顶板宽25.25m,底板宽20.25m,悬臂宽2.5m,为单箱五室构造;右幅桥箱梁顶板宽22.5m,底板宽17.5m,悬臂宽2.5m,为单箱五室构造。
现浇箱梁支架计算-[完整版]
金口项目各项计算参数一、现浇箱梁支架计算1.1箱梁简介神山湖大桥起点桩号为K1+759.300,止点桩号为K2+810.700,全长1051.40m。
主线桥采用双幅布置,左右幅分离式,桥型结构为C50现浇预应力混凝土连续梁。
表1.1 预应力箱梁结构表箱梁结构断面桥面标准宽度(m)梁高(m)翼缘板悬臂长(m)顶板厚(m)底板厚(m)腹板厚(m)端横梁宽(m)标准段单箱两室13.49 1.9 2.5 0.25 0.22 0.5 1.5 1.2结构设计主线桥均采用分幅布置,单幅桥标准段采用13.49m的等高斜腹板预应力混凝土连续箱梁,梁体均采用C50砼,桥梁横坡均为双向2%。
主线桥第一~三联桥跨布置为(4×30m+4×30m+3×30m),单幅桥宽由18.99m变化为27.99m;主线第四~六联、第八、九联桥跨布置为(3×30m+4×30m+3×30m)、4×30m、4×30m,单幅桥宽为13.49m。
主梁上部结构采用等高度预应力钢筋混凝土箱梁,单箱双室和多室截面。
30m跨径箱梁梁高1.9m,箱梁跨中部分顶板厚0.25m,腹板厚0.5m,底板厚0.22m,两侧悬臂均为2.5m,悬臂根部厚0.5m;支点处顶板厚0.5m,腹板厚0.8m,底板厚0.47m,悬臂根部折角处设置R=0.5m的圆角,底板底面折角处设置R=0.4m的圆角。
图1.1 桥梁上部结构图1.3地基处理因部分桥梁斜跨神山湖,湖底地层属第四系湖塘相沉积()层,全部为流塑状淤泥含有大量的根茎类有机质、腐殖质,承载力标准值Fak=35kPa,在落地式满堂支架搭设前,先将桥梁两端进行围堰,用机械设备对湖底进行清淤,将湖底淤泥全部清除。
根据神山湖大桥地勘报告,湖底淤泥下为⑤层粉质粘土(地基承载力基本允许值fa0为215kPa),可作为支架基础的持力层。
清淤完成后,采用粘土对湖底分层填筑碾压,分层厚度为30cm,采用15t振动压路机碾压,回填完一层后,进行压实度(环刀法)和承载力(轻型动力触探)试验,要求压实度≥92%,承载力≥200kPa,验收合格后方可进行上层填筑,粘土回填至17.0m即可。
现浇箱梁满堂支架设计计算
现浇箱梁满堂支架计算说明书1 现浇箱梁满堂支架设计计算:本计算以第三联的荷载为例。
A 荷载计算混凝土自重:954*2.5*1.1=2623.5吨模板重:底模1682*.018*1.5=45.4吨支架,横梁重:60.8+150=210.8吨施工荷载0.75吨/平方米B 荷载冲击系数0.25那么每平方米荷载=[2623.5+45.4+210.8]*1.25/{[19.7+17]*82/2}+0.75=3.142吨/平方米C 设立杆沿桥长方向间距1.0米,沿桥宽度方向0.8米:S=1.0*.8=0.8平方米每根立杆承受的荷载为:G=3.142*.08=2.5136吨D WDJ碗扣式支架的力学特征:外径48MM,壁厚3.0MM,截面积4.24*10**2 MM**2,惯性矩1.078*10**5 MM**4,抵抗矩4.93*10**3 MM**3,回转半径15.95 MM,每米自重33.3N。
抗压强度σ=N/A=25136/424=59.3 〔N/MM**2〕〈[σ。
]=210MM**2 抗弯强度ƒ=N/[A*φ]λ=L/I=1500/15.95=95,查表φ=0.558σ=25136/〔424*0.558〕=106.2〈210E 小横杆计算:抗压强度σ=GL**2/[10*W]=25.136*800*800/[10*4.493*1000]=358〉215。
所以不能满足强度要求弯曲强度ƒ=GL**4/150EI所以小横杆用10#槽钢作为承受荷载的横梁。
10#槽钢的力学特性W=39.7立方厘米抗压强度σ=GL**2/[10*W]=25.136*800*800/ [10*39.7*1000]=40.52〈215MM**2弯曲强度ƒ=GL**4/150EI=25.136*800**4/[150*200000*193.8*10000]=0.173〈3MM如果小横杆用方木应重新计算它的强度,扰度。
承托上用10*15方木,纵横杆密度1.0*0.6米,横杆的应力验算如下:Q=3.142吨/米支点反力R=3.142*.6=1.89吨M=QL**2/8=3.142*0.6**2/8=0.141吨米Γ=1.89*10**4/[0.1*0.15]=1.26MPAÓ=M/W=0.141*10**4/[3.75*10**-4]=3.76MPA用一般方木可以满足要求10*15方木,横杆间距60CM。
现浇箱梁满堂支架搭设方案及计算书
现浇箱梁满堂支架搭设方案及计算书一、工程概况本项目为某城市快速路现浇箱梁工程,工程位于城市中心区域,全长约1.5公里,包含多联现浇箱梁结构。
现浇箱梁采用满堂支架法进行施工,为确保施工安全和工程质量,特制定本搭设方案及计算书。
二、施工准备工作及主要材料需用量计划(一)、技术准备工作1. 熟悉设计图纸及施工规范,明确现浇箱梁的施工工艺流程、技术要求及质量控制标准。
2. 组织专业技术人员进行方案编制,包括满堂支架搭设方案、施工计算书等。
3. 对施工人员进行技术培训,使其熟练掌握满堂支架搭设方法、操作规程及安全措施。
4. 准备相关施工图纸和技术文件,以便施工现场查阅。
(二)、物资准备工作1. 根据施工图纸和方案,计算所需主要材料数量,编制材料需用量计划。
2. 采购合格的材料,包括钢材、木材、脚手架配件等。
3. 对采购的材料进行验收,确保材料质量符合国家标准和设计要求。
4. 储备足够的施工设备,如塔吊、施工电梯、运输车辆等。
5. 准备施工所需的工具、仪器和设备,如扳手、螺丝、水准仪、经纬仪等。
6. 搭建临时设施,如临时仓库、加工车间、办公区等。
7. 确保施工现场水、电、通讯等设施齐全,以满足施工需求。
8. 配置足够的劳保用品,确保施工人员的人身安全。
三、一般规定1. 施工应严格遵守国家和地方的相关法律法规,以及现行的建筑施工质量、安全、环保等标准。
2. 施工前应进行详细的技术交底,确保所有施工人员了解施工方案、工艺流程、质量控制和安全措施。
3. 施工中应采用先进的施工工艺和设备,提高施工效率和工程质量。
4. 施工现场应设置明显的安全警示标志,确保施工现场的安全和交通畅通。
a. 标志应包括但不限于:施工区域、危险区域、安全通道、消防器材位置等。
b. 夜间施工应保证足够的照明,避免因视线不良造成安全事故。
5. 施工过程中应定期进行安全检查,及时发现并整改安全隐患。
6. 施工材料应分类堆放,标识清楚,严禁使用不合格材料。
现浇箱梁满堂支架方案计算讲解
浅谈现浇箱梁满堂支架方案计算引言本文针对XXX现浇桥采用碗扣式满堂支架搭设方法进行支架搭设验算、方木验算、模板验算、地基承载力验算等进行计算分析。
为后续现浇桥支架搭设施工提供关建指导作用。
1 工程概况XXX桥采用(26+37+26)m现浇预应力砼连续箱梁,桥梁全长96m;上构按部分预应混凝土A类构件设计,箱梁横断面采用等高度单箱双室断面,主梁高190cm,顶板厚25cm,底板厚22cm悃缘悬臂长200cm;上部结构采用满堂支架现浇,其刚度、强度、稳定性、平整度等均应满足《公路桥涵技术规范》(JTG F80/1-2004)的要求;预应力混凝土容重取26KN/m3。
2 满堂支架上现浇桥设计要点2.1 地基与基础处理在墩身施工完毕后,首先测量放出线路中线和边线,检查现有基底宽度是否满足搭设支架要求,如现有地基宽度不足,需进行补填并夯实;基底处理范围为桥宽每侧边各增加2m,同时根据地形条件做好排水沟、截水沟。
对于软弱地基必须采取石渣或者三七灰土等材料进行换填,换填厚度不小于30cm。
换填后的地表用推土机推平,场地平整后用压路机分层压实,使其压实度达到95%以上,试验室检测地基承载力是否达到支架设计计算中最低250Kpa的要求,如果承载力不足,则加强压实工作或重新换填直至达到规定的承载力。
本工程所在地区为湿陷性黄土地区,黄土受水浸泡后承载力急剧下降,为防止雨水及施工用水进入基础,在已达到支架设计承载力要求的地基上铺10cm厚的混凝土防水层;混凝土设计强度为C20,确保地表水不渗入地基。
在处理好的地基上铺设枕木或型钢做为支架下承托的基础。
在地形条件受限制时,满堂支架采用C25混凝土条形基础,条形基础设计尺寸30cm(宽)×25㎝(高)。
2.2 现浇箱梁底满堂支架布置及搭设要求采用WDJ碗扣式多功能脚手杆搭设,使用与立杆配套的横杆及立杆可调底座、立杆可调托撑。
立杆顶托上纵向设15×15cm方木;纵向方木上设10×10cm的横向方木,其中纵木在墩顶处实心段不大于0.25m、在跨中处间距不大于0.3m。
现浇箱梁满堂支架(贝雷架)计算书
青田县瓯江四桥(步行桥)工程现浇箱梁满堂支架(贝雷架)检算书计算:复核:审核:中铁四局集团有限公司青田县瓯江四桥(步行桥)工程项目领导部2016年11月10日目录1 编制依据............................................................ - 6 -2 方案简介............................................................ - 6 -3 支架要紧材料特性及参数.............................................. - 7 -4 荷载计算............................................................ - 7 -荷载类型......................................................... - 7 -荷载组合......................................................... - 7 -5 NU02联钢筋混凝土预应力箱梁支架结构计算............................. - 7 -计算模型及边界条件设置.......................................... - 10 -计算结果分析.................................................... - 11 -托架上满堂支架计算分析 .................................... - 11 -横向I20a工字钢横梁分析 ................................... - 12 -贝雷梁分析 ................................................ - 12 -主横梁双榀I45a工字钢分析 ................................. - 13 -钢管桩分析 ................................................ - 14 -底模体系计算.................................................... - 15 -支架立杆计算..................................................... - 19 -侧模计算............................................................ - 20 -侧模荷载计算.................................................... - 20 -横向背带钢管计算................................................ - 23 -侧模拉杆计算................................................... - 23 -6 跨江南大道防护棚架结构计算......................................... - 24 -防护棚架设计.................................................... - 24 -计算模型及边界条件设置.......................................... - 25 -设计计算参数.................................................... - 25 -单元构件计算.................................................... - 26 -地基承载力...................................................... - 30 -7 SU03联(NU01联)满堂支架结构计算.................................... - 30 -满堂支架设计概况................................................ - 30 - 计算模型及边界条件设置.......................................... - 33 - 设计计算参数.................................................... - 33 - 梁端满堂支架计算................................................ - 33 - 梁中满堂支架计算................................................ - 36 - 支架立杆计算.................................................... - 39 - 地基承载力计算.................................................. - 41 - 支架稳固性计算.................................................. - 42 - 8 跨S49省道防护棚架结构计算......................................... - 42 -防护棚架设计.................................................... - 42 - 计算模型及边界条件设置.......................................... - 43 - 设计计算参数.................................................... - 43 -单元构件计算.................................................... - 45 - 地基承载力...................................................... - 49 -现浇箱梁满堂支架(贝雷架)检算书1 编制依据(1)《青田县瓯江四桥(步行桥)工程相关设计图纸》;(2)《公路桥涵设计通用标准》(JTG D60-2004);(3)《钢结构设计标准》(GB50017-2003);(4)《公路桥涵钢结构及木结构设计标准》(JTJ025-86);(5)《建筑扣件式钢管脚手架平安技术标准》(JGJ130-2020);(6)《建筑结构静力计算手册》建筑工业出版社。
满堂支架受力计算
一、横杆和钢管架受力计算1、标准截面处受力计算(90c m ×60cm 间距处)1)荷载箱梁自重:q=ρgh=2.6×10×0.5=13.0KN/㎡(钢筋砼密度按ρ=2.6*103kg/m 3,g=10N/KG,h 为砼厚度)施工荷载和风载:10KN/㎡总荷载:Q=13.0+10=23.0KN/㎡2)顺向条木受力计算(10cm ×10cm )大横杆间距为90cm ,顺向条木间距为30cm ,故单根单跨顺向条木受力23.0×0.3=6.9KN/m按最不利因素计算即顺向条木(10cm ×10cm )以简支计算最大弯矩为:m KN ql M ⋅==69.0812max 弯曲强度:Mpa Mpa bh M W M 1114.41.069.06max 632max <=⨯===σ(落叶松木容许弯应力) 最大挠度:mm EI ql f 8.01.0)12/1(1090003849.0109.65384546434max=⨯⨯⨯⨯⨯⨯⨯==<900/400=2.2mm3)横向10cm*10cm 条木计算横向条木以5跨连续计算,即每根条木至少长3.0米,小横杆间距0.6m 。
横向条木受到集中荷载为:P=0.6×23.0×0.3=4.14KN/m最大弯矩为:弯曲强度: Mpa Mpa W M 1126.41.071.063max <=⨯==σ 最大挠度:mm EI Pl f 1.01.0)12/1(1090001006.01014.4764.1100764.146433max =⨯⨯⨯⨯⨯⨯⨯=⨯=<600/400=1.54) 支架受力模板自重:0.43KN /㎡支架顶承受重力为:23.0KN/㎡+0.43KN/㎡=23.43KN/㎡N1=0.9×0.6×23.43=12.65KN支架高度以7米计算:则支架自重:P=7×0.0384+6×0.9×0.0384=0.48KN支架最大荷载为N=12.65+0.48=13.13立杆长细比7678.151200==λ,查表得φ=0.676 [N]=KN N A 1.7171071215489676.0][==⨯⨯=σφ>N 查表得外径48mm 壁厚3.5mm 钢管在步距120mm 时,容许荷载[N]=33.1KN>N 。
现浇梁满堂支架施工验算
附录现浇箱梁满堂支架施工验算现浇梁的特点是结构整体性好,外形美观。
在现浇箱梁的各项施工工序中,支架搭设的质量极为关键,而支架受力的正确验算是保证支架搭设成功的基础。
对现浇梁底模、分配梁和承重梁的设计如下:底模采用122cm×244cm×1.2cm竹胶板,纵桥向铺设,板下采用模木(分配梁)打孔后铁钉相连,板缝用宽胶带纸粘贴;底模下沿横桥向顺铺10cm×10cm方木,间距为2.44/6=0.407m(计算采用0.41m);横梁采用外径φ48,壁厚3.5mm钢管纵桥向架设在碗扣支架的可调上部托撑顶部,支架布距根据经验拟定为箱梁腹板位置0.6m×0.9m,空心位置 0.9m×0.9m,水平杆垂直间距1.2m。
支撑底模的横木受力模型实为多跨超静定梁,现将其简化为单跨静定简支梁这样不仅计算简便,而且增加了方案的安全性。
1横梁验算1.1模板、横梁自重N木=0.1×0.1×0.6×6=0.036KNN模=0.6×0.41×10.3×0.012=0.030KN1.2钢筋砼的重量N钢筋砼=0.6×0.41×1.4×26=8.954KN1.3施工荷载σ活1=2.5KPaN活1=2.5×0.41×0.6=0.615KN;N活2=2.5KN。
1.4振捣砼时产生的荷载N振=2.0×0.41×0.6=0.492KN;这样,N总N1+2+3+4=10.127KN。
F均=N总/0.6=10.127/0.6=16.878KN/m;N活2=2.5KN;那么,M=1/8F均·L2+1/2N活2·L/2=1/8×16.878×0.62+1/2×2.5×0.3=1.135KN·m;σ=M/W=1.135/(1/6×0.1×0.12)=6.81MPa<[σ]容=17MPa;τ=QS/bI=0.947025MPa<[σ]容=1.9 MPaƒ=(5F均·L4)/(384EⅠ)+(N活2L3)/(48EI)=0.469mm<[f]=L/400=1.5 mm 。
现浇箱梁满堂支架搭设方案及计算书
兖州九州大桥36+56+36米现浇箱梁满堂支架搭设方案及计算书一、工程概况兖州泗河九州大桥36+56+36米现浇箱梁采用变高度预应力混凝土结构,上、下游两幅桥采用分幅布置,设双向2%横坡。
单幅桥一般截面为单箱三室斜腹板截面。
单幅桥主梁截面顶宽15.86m,底宽12.76m~13.6m。
主梁支点高 3.5m,跨中梁高1.7m,梁底曲线为圆曲线。
主梁两侧各悬臂0.81m,悬臂端部厚度0.26m,悬臂根部厚度0.33m,顶板全联等厚,厚度0.25m,箱梁底板厚度为0.25m~0.5m。
腹板为斜腹板,腹板厚度为0.4m~0.6m。
各墩顶处设置横梁,横梁厚度根据受力不同有所差别,边支点横梁厚 1.2m,中支点横梁厚 1.8m。
箱梁每个箱室在中墩梁底和中横梁处留有进人孔。
箱梁腹板设有φ10cm通风孔,距顶板80cm,顺桥向间距200cm。
箱梁底板在靠近横梁处设有φ10cm泄水孔。
梁端距离伸缩缝中心线5cm。
主梁采用C50混凝土。
主梁翼缘下设置滴水槽。
二、施工方案简介根据现场实际情况,确定连续箱梁施工工序:1、基础处理:采用建筑垃圾回填0.5m深,分两层压实,浇筑15cm厚C20混凝土对地基进行处理;2、支架搭设:根据施工现场地形采用WDJ碗扣式管架3、模板:采用大块新竹胶板,每块模板面积>2㎡。
1)、外模采用侧板包底板的构造形式2)、底模构造为:下部铺横向10×12㎝的方木,纵向间距为立杆的纵向间距;上部铺纵向10×10㎝的方木,上铺厚1.2㎝的硬(优质)竹胶板作为面板。
3)、侧模、翼板模构造为:横肋采用L型木排架,纵向间距为30㎝。
木排架用材为10×10㎝的方木,上铺厚1.2㎝的硬(优质)竹胶板作为面板。
三、满堂支架的设计和计算参数1、支架力学性能Φ48×3.0mm扣件式钢管支架性能(一) WDJ碗扣式管架2、搭设方案:本现浇段14~16号墩跨越沪杭高速公路,平面位置处于曲线上。
现浇箱梁满堂支架计算
现浇箱梁满堂支架计算箱梁是一种常用的结构形式,广泛用于桥梁、高速公路、铁路等工程中。
现浇箱梁满堂支架是箱梁施工过程中常用的一种支撑结构,用于支撑和固定箱梁的预制和浇筑。
一、满堂支架的布置满堂支架的布置应根据箱梁的几何形状和尺寸进行合理布置。
一般情况下,满堂支架的布置应遵循以下原则:1.满堂支架的间距应根据箱梁的宽度和长度来确定,一般间距为1.5-2.0m。
2.满堂支架的布置应满足箱梁的受力和施工要求,应尽可能均匀分布,避免集中荷载。
3.满堂支架的位置应较为稳定,避免对箱梁的施工和安全造成不利影响。
二、满堂支架杆件尺寸计算满堂支架的杆件主要包括立柱、承重梁和斜杆等。
杆件的尺寸计算应根据其受力和稳定性要求进行。
1.立柱的尺寸计算:根据箱梁的荷载和支撑间距等参数,可以计算出立柱的截面尺寸和高度。
2.承重梁的尺寸计算:承重梁可以根据箱梁的荷载和悬挑长度等参数计算出截面尺寸和长度。
3.斜杆的尺寸计算:斜杆的尺寸计算要考虑箱梁的横向和纵向力,以及满堂支架的稳定性要求。
三、满堂支架杆件受力分析满堂支架的杆件在使用过程中会承受各种力的作用,包括水平力、垂直力以及弯矩等。
对于满堂支架的杆件受力分析,可以采用有限元分析方法或经验公式进行计算。
1.立柱的受力分析:立柱在使用过程中会承受箱梁的垂直和水平荷载,应根据受力情况合理选取材料和截面尺寸。
2.承重梁的受力分析:承重梁承受箱梁的悬挑力和水平力,其截面应能满足受力要求,保证安全可靠。
3.斜杆的受力分析:斜杆主要用于支撑箱梁的稳定性,在受力分析时应考虑斜杆的轴向力、剪力和弯矩等。
总结:。
现浇箱梁满堂支架方案计算
6边跨现浇段堂支架计算书一、工程概况郁江二桥位于桂平市城东南部长安工业园区内,距现有的郁江大桥和桂平航运枢纽对外交通桥郁江约4.9公里处,是南宁至梧州、玉林至桂平和梧贵高速这三条公路的连接纽带。
郁江二桥桥梁的起点桩号为K1+146.5,终点桩号为K2+504.5,主桥为90+165+165+90米预应力混凝土矮塔斜拉桥,主桥采用90+165+165+90m单索面三塔预应力混凝土矮塔斜拉桥,主跨布置双孔单向通航设计,桥宽30.5m,梁高3.2~6.2m,主塔为弧线形花瓶式塔,塔高22.0m,全桥共计144根斜拉索,斜拉索梁上间距4m,塔上理论索距0.8m,主梁采用单箱三室大悬臂等截面预应力混凝土箱梁,顶部为机动车道,下部在箱梁两侧顺底板悬挑出去设人行通道。
箱梁梁高6.2m—3.2m,梁体全宽30.5m,采用单箱三室加悬臂的形式,悬臂端部厚度为0.28m。
斜拉索锚固点布设在箱梁的中室,张拉端位于梁体内。
箱梁纵向划分为中墩顶托架现浇0号、1号梁段、19个悬臂浇筑梁段、边跨支架现浇段、边跨合拢段、中跨合拢段。
中墩顶0号、1号梁段同时浇筑,梁段共长11m,悬臂浇筑梁段数及梁段长度从中墩至跨中布置为:19×4.0m,边跨现浇段长度6.37m,边跨合拢段、中跨合拢段长度均为2.0m。
边跨现浇段为2.5m实心段及3.87m渐变段,实心段受力全部在过渡墩盖梁上,故此次计算取23A-23A断面向中垮方向0.6m范围段。
边跨现浇段采用满堂支架施工,支架采用WDJ碗扣式多功能钢管脚手架,基底进行填土碾压后,浇筑混凝土搭设碗扣支架,碗扣支架经过预压合格后,铺设模板。
内、外模板采用大面积的竹胶板制作,内支撑立杆采用φ48×3.0mm钢管。
二、编制依据(1)《公路桥涵施工手册》(2)《建筑施工扣件式钢管脚手架安全技术规范》(3)《建筑结构荷载规范》(4)《公路桥涵技术施工技术规范实施手册》(6)《建筑施工计算手册》(7)《公路桥涵施工技术规范》(8)、桂平郁江二桥工程设计文件及招标文件等。
现浇连续箱梁满堂支架计算
青银高速青岛收费站迁拓工程二标段现浇连续箱梁满堂支架计算中铁十八局集团第一工程有限公司二〇一三年十月现浇连续箱梁满堂支架计算4.1 总体说明本标段跨线桥梁共三座,K31+547天桥、K33+177即威分离立交、K34+237即墨互通立交桥,桥梁梁高均为1.6m,顶板厚度25cm,底板厚度22cm,腹板厚度45cm,各箱梁断面图见下图:K31+547天桥K33+177即威分离立交半幅K34+237即墨互通立交半幅(1)材料规格:支架采用φ48×3.5mm碗扣式钢管架,立杆主要采用3.0m、2.4m、1.8m三种,横杆采用0.9m、0.6m两种规格。
(2)支架布置:箱梁底板部分:立杆按纵向间距60cm、横向间距90cm,水平横杆步距120cm设置;箱梁翼缘板部:立杆纵向间距90cm、横向间距120cm,水平横杆步距120cm设置。
纵横向均设置剪刀撑,剪刀撑间距3.6m,以保证支架稳定性。
以K34+237即墨互通箱梁断面为例,具体见附图4-1所示。
10×10方木12×15方木顶 托碗扣式支架底 托C15混凝土地面附图4-1 箱梁碗扣式支架横断面布置图(单位:cm)4.2 碗扣件支架现浇梁方案检算4.2.1 已知条件梁端实心段截面尺寸:顶面宽度12.75m,高度1.6m;腹板截面尺寸:腹板宽度0.45m,高度1.6m。
根据设计图纸,梁端实心段重量为:1.6*26=41.6KN/㎡,腹板位置每平米重量为:1.6*26=41.6 KN/㎡,底板一般段每平米重量为:0.47*26=12.22 KN/㎡。
梁端翼缘板处按最大厚度考虑每平米重量为0.5*26=13 KN/㎡,底板部分满堂架布置相同,顾只需取受力最大位置进行计算。
则,只需检算梁体底板实心段位置及翼缘板位置。
(1)施工人员、机具、材料荷载:P1=2.5kN/m2。
(2)砼冲击力及振捣砼时产生的荷载:P2=2.5kN/m2。
现浇连续箱梁满堂支架计算书
现浇连续箱梁满堂支架计算书现浇连续箱梁满堂支架计算书计算依据:1、《建筑施工模板安全技术规范》JGJ162-20082、《建筑施工碗扣式钢管脚手架安全技术规范》JGJ166-20083、《混凝土结构设计规范》GB50010-20104、《建筑结构荷载规范》GB 50009-20015、《钢结构设计规范》GB 50017-2003一、工程属性箱梁断面图二、构造参数底板下支撑小梁布置方式平行于箱梁断面底板底的小梁间距l1(mm) 250 翼缘板底的小梁间距l4(mm) 250 标高调节层小梁是否设置否可调顶托内主梁根数n 2 主梁受力不均匀系数ζ0.5 立杆纵向间距l a(mm) 900 横梁和腹板下立杆横向间距l b(mm) 600 箱室下的立杆横向间距l c(mm) 900 翼缘板下的立杆横向间距l d(mm) 900 模板支架搭设的高度H(m) 8.5 立杆计算步距h(mm) 1200箱梁模板支架剖面图三、荷载参数四、面板计算面板类型覆面竹胶合板厚度t(mm) 15 抗弯强度设计值f(N/mm 2) 15 弹性模量E(N/mm 2) 6500 抗剪强度设计值fv(N/mm 2)1.6计算方式简支梁取单位宽度面板进行计算,即将面板看作一"扁梁",梁宽b=1000mm ,则其:截面惯性矩I=bt 3/12=1000×153/12=281250mm 4 截面抵抗矩W=bt 2/6=1000×152/6=37500mm 31、翼缘板底的面板承载能力极限状态的荷载设计值:活载控制效应组合:q 1=1.2b(G 1k h 0+G 2k +G 4k )+1.4b(Q 1k +Q2k )=1.2×1(26×0.315+0.75+0.4)+1.4×1(2.51+2.1)=17.662kN/m h 0--验算位置处混凝土高度(m) 恒载控制效应组合:q 2=1.35b(G 1k h 0+G 2k +G 4k )+1.4×0.7b(Q 1k +Q2k )=1.35×1(26×0.315+0.75+0.4)+1.4×0.7×1(2.51+2.1)=17.127 kN/m 取两者较大值q=max[q 1,q 2]=max[17.662,17.127]=17.662 kN/m 正常使用极限状态的荷载设计值:q ˊ=b(G 1k h 0+G 2k +G 4k )=1(26×0.315+0.75+0.4)=9.34kN/m 计算简图如下:l=l 4=250mm1)、抗弯强度验算M=0.125ql2 =0.125×17.662×0.252=0.138kN·mσ=M/W=0.138×106/37500=3.68N/mm2≤f=15N/mm2满足要求!2)、抗剪强度验算V=0.5ql =0.5×17.662×0.25=2.208kNτ=3V/(2bt)=3×2.208×103/(2×1000×15)=0.221N/mm2≤fv=1.6 N/mm2满足要求!3)、挠度变形验算ω=5qˊl4/(384EI)=5×9.34×2504/(384×6500×281250)=0.26mm≤[ω]=l/150= 250/150=1.667mm 满足要求!2、底板底的面板显然,横梁和腹板处因混凝土较厚,受力较大,以此处面板为验算对象。
现浇箱梁满堂支架方案计算
K1+700天桥现浇箱梁满堂支架及门洞方案计算书二○一四年八月目录1编制依据 (1)2工程概况 (1)3现浇箱梁满堂支架布置及搭设要求 (1)4现浇箱梁支架验算 (1)4.1荷载计算 (2)4.1.1荷载分析 (2)4.1.2荷载组合 (2)4.1.3荷载计算 (2)4.2结构检算 (4)4.2.1扣件式钢管支架立杆强度及稳定性验算 (4)4.2.2箱梁底模下横桥向方木验算 (6)4.2.3扣件式钢管支架立杆顶托上顺桥向方木验算 (7)4.2.4底模板计算 (8)4.2.5跨中工字钢平台支架体系验算 (9)K1+700天桥现浇箱梁模板及满堂支架方案计算书1编制依据(1)国家及地方政府、相关部委的法律法规、规章制度,建设单位的相关规定和要求;(2)项目施工承包合同;(3)本项目采用的标准、规范、规程等相关技术要求;(4)我部对项目策划和与本项目相关的管理规定;(5)我部对该项目的施工调查情况;(6)我公司现有或可协调、组织、解决的施工装备和技术工艺。
2工程概况K1+700天桥,设计汽车荷载为公路-II级。
上部结构为17+34+17米预应力砼连续梁,桥面净宽7米,箱梁顶宽8米,底宽4.45米,梁高1.5米,采用满堂支架施工;下构桥台均为柱式台,钻孔桩基础;桥墩为实体方墩,钻孔桩基础。
3现浇箱梁满堂支架布置及搭设要求采用WDJ碗扣式多功能脚手杆搭设,使用与立杆配套的横杆及立杆可调底座、立杆可调托撑。
立杆顶设二层方木,立杆顶托上纵向设10×15cm方木;纵向方木上设10×10cm的横向方木,其中在墩顶端横梁和跨中横隔梁下间距不大于0.25m(净间距0.15m)、在跨中其他部位间距不大于0.3m(净间距0.2m)。
模板宜用厚15mm的优质竹胶合板,横板边角宜用4cm厚木板进行加强,防止转角漏浆或出现波浪形,影响外观。
底板腹板位置处采用立杆横桥向间距×纵桥向间距×横杆步距为60cm×60cm×90cm支架结构体系;翼缘板位置处采用立杆横桥向间距×纵桥向间距×横杆步距为60cm×60cm×90cm支架结构体系。
渡槽现浇箱梁满堂支架方案及计算定稿图文
遂资眉高速公路眉山段建设项目J1-1合同段K146+940渡槽施工方案四川瑞通工程建设有限公司二0一三年一月一、工程概况K146+940渡槽为原设计K146+946渡槽经平移并修改过水断面后而来,在146+940处横跨主线路基,与主线线路成90°相交。
K146+940渡槽全长48m,两个渡槽桥台均为4m长,槽身为两节20m现浇单腔室箱梁。
该渡槽为连接黑龙滩灌区灌溉主渠而设置。
过水断面10m2。
该渡槽处在挖方路基上,且该路段的石质较硬,有利于现浇箱梁渡槽的满堂架搭设。
见K146+940渡槽总体布置图。
二、施工计划与安排由于黑龙滩灌区将于2013年3月初开始放水进行春灌,为了满足该时间节点,必须在2013年3月1日之前将K146+940渡槽施工完毕,以便于渡槽所接的灌溉渠通水。
同时须路基施工作业队积极配合实施K146+940处的挖方作业,以满足渡槽下构(含路基中央隔离带的渡槽墩柱、两侧渡槽桥台)的施工。
渡槽的上构施工按满堂架布置4m门洞结构形式,门洞设置在主线路基右半幅渡槽跨中处,其它均采用扣件式满堂支架。
K146+940渡槽总体布置图三、施工方案1 、满堂支架施工满堂支架横向、顺桥向间距(具体布置见图示),满堂架顶部采用顶托支撑双排钢管,支架顶口及底部分别设置钢管封口杆及扫地杆,纵横向加设剪刀撑,形成稳固的支承体系。
具体施工步骤如下:A、放出支架的纵、横轴线,施工班组根据中线拼装塔架,拼装前,应对塔架的立杆、水平杆等进行检查验收,有弯曲、变形、损坏的不得使用。
塔架的顶托调整高度应≤250mm,底调高度应≤300mm不得超限。
如丝杠伸出长度过长可通过加垫木来调整。
B、支架搭设成型后,应用钢管进行平联和剪刀支撑。
脚手架底部用钢管及扣件组成扫地杆,顶部组成封口支撑,中间用钢管纵横平联,使钢管与塔架形成一个整体,增强其整体稳定性。
2、模板工程2.1模板底部用10cm*10cm方木支撑,10cm*10cm方木要求在门洞处放置在22b#工字钢上,其它模板部位方木搁置在其下两层10cm*10cm方木上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新建地方铁路叙永至大村段B合同段大田湾特大桥现浇箱梁满堂支架计算书编制:复核:四川省铁路建设有限公司叙大铁路项目经理部年月日大田湾特大桥现浇箱梁满堂支架计算书1、编制依据1.1新建地方铁路叙永至大村线施工图。
1.2国家有关的政策、法规、施工验收规范和工程建设标准强制性条文,以及现行有关施工技术规范、标准等。
1.3参考《建筑施工扣件式钢管脚手架安全技术规范》、《混凝土工程模板与支架技术》、《铁路桥涵施工手册》、《建筑施工计算手册》。
2、工程概况大田湾特大桥后张法预应力混凝土现浇箱梁段为48m,孔位为第18孔,总计1孔。
主墩17#、18#为矩形承台,墩柱为矩形墩柱。
梁体为单箱单室、变宽度、变截面结构。
箱梁顶宽5.3m,跨中箱宽2.8m,支座位置箱宽3.0m(未计支座位置加宽50cm),顶板厚30cm~45cm按折线变化,底板厚度40~80cm,按直线变化,腹板厚32cm~52cm,按折线变化,底板设30×50cm 梗胁,顶板设30×50cm梗胁。
梁全长49.5m,计算跨度为48m,梁高3.5m。
梁底按二次抛物线变化,边支座中心线至梁端0.75m。
3、现浇箱梁满堂支架布置及搭设要求采用WDJ碗扣式多功能脚手杆搭设,使用与立杆配套的横杆及立杆可调底座、立杆可调托撑。
立杆顶设二层方木,立杆顶托上纵向设15×15cm方木;纵向方木上设10×10cm的横向方木(中心间距25cm)。
采用立杆横桥向间距×纵桥向间距×横杆步距为60cm×60cm×100cm支架结构体系,支架纵横均设置剪刀撑。
4、现浇箱梁支架验算本计算书以最大截面预应力混凝土箱形连续梁(单箱单室)Ⅳ-Ⅳ断面处为例,对荷载进行计算及对其支架体系进行检算。
4.1荷载计算4.1.1荷载分析根据本桥现浇箱梁的结构特点,在施工过程中将涉及到以下荷载形式:⑴ q1——箱梁自重荷载,新浇混凝土密度取2600kg/m3。
⑵ q2——箱梁内模、底模、内模支撑及外模支撑荷载,按均布荷载计算。
⑶q3——施工人员、施工材料和机具荷载,按均布荷载计算,当计算模板及其下肋条时取2.5kPa;当计算肋条下的梁时取1.5kPa;当计算支架立柱及替他承载构件时取2.0kPa。
⑷ q4——振捣混凝土产生的荷载,对底板取2.0kPa,对侧板取4.0kPa。
⑸ q5——新浇混凝土对侧模的压力。
⑹ q6——倾倒混凝土产生的水平荷载,取2.0kPa。
⑺ q7——支架自重,经计算支架自重如下所示:4.1.2满堂钢管支架自重采用Φ48×3.5mm钢管,单位重量为3.84kg/m。
根据17#~18#墩间实际地形,梁底至原地面距离约为3.5m~5m,扣除支架系统高度,钢管桩高度约为2.78~4.28cm。
按最不利位置4.28m计算。
1、立杆自重(横向按5.3米计算,间距0.6米,共10排,纵向按49.5米计算,间距0.6米,共83排。
)Q1=83×10×4.28×0.00384×9.8kn/kg÷(49.5×5.3)=0.51kn/㎡2、横杆自重(横杆间距1m,按4.28m高度计算,共4层)Q2=(83根×5.3m+10根×49.5m)×4层×0.00384kg/m×9.8kn/kg÷(49.5×5.3)=0.537kn/㎡3、斜撑自重(纵向剪刀撑按45度设置,共三排,417.45m。
横向按39度设置,间隔4排立杆设置一道,共21道。
286m)Q3=(417m+286m)×0.00384×9.8kn/kg÷(49.5×5.3)=0.101kn/㎡综上支架自重q7= Q1+ Q2+ Q3=0.51+0.537+0.101=1.148kn/㎡4.1.2荷载组合模板、支架设计计算荷载组合4.1.3荷载计算⑴ 箱梁自重——q 1计算根据本工程现浇箱梁结构特点,我们取Ⅳ-Ⅳ截面代表截面进行箱梁自重计算,并对两个代表截面下的支架体系进行检算,首先分别进行自重计算。
根据横断面图,用CAD 算得该处梁体截面积A=6.32m 2则:q 1 =B W =BA c ⨯γ=kPa 77.54332.626=⨯取1.2的安全系数,则q 1=54.77×1.2=65.73kn/㎡注:B —— 箱梁底宽,取3m ,将箱梁全部重量平均到底宽范围内计算偏于安全。
⑵箱梁模板及支撑重量——q 2计算 (1) 模板面积①箱梁内室模板(木模板)S 1=306.55+54.2+49.7+9.5+2.6+4.22+2.89+19.2=448.85m 2 G1=448.85 m 2×0.03m ×0.6t/m ³=8.07t ②箱梁底模板(九夹板) S 2=3.5×49.5=173.3 m 2G2=173.3 m 2×0.015m ×0.6t/m ³=1.60t ③箱梁侧模板(钢模板) S 3=509.33+0.62=510 m 2 侧模G3含支撑共40t 。
③横向、纵向方木V=横向198排×3米/排×(0.1×0.1)+纵向10排×49.5米/排×(0.15×0.15)=5.94+11.138=17.078方G4=15.96×0.6吨/方=10.247tq 2= (G1 +G2+ G3+G4)×9.8÷(49.5×5.3)=2.24 kn/㎡ ⑶ 新浇混凝土对侧模的压力——q 5计算根据规范规定,新浇混凝土对模板的侧压力,当采用内部振捣器时按下列两式计算,并取两式中较小值。
⎩⎨⎧⋅⋅⋅=⋅=vt F HF c c 21022.0ββγγ γc :新浇混凝土的重力密度(kN/m³),取值25 kN/m³;H :混凝土侧压力计算位置至新浇混凝土顶面时的高度(m ),取3.5m t 0:新浇混凝土的初凝时间(h ),可按实测确定。
取8h 。
T :混凝土的温度(°),取28℃。
β1:外加剂影响修正系数,掺具有缓凝作用的外加剂时取1.2。
β2:混凝土坍落度影响修正系数,110~150mm ,取1.15。
ν:混凝土的浇筑速度,取0.5m/h 。
F=25*3.5=87.5KpaF=0.22*25*8*1.2*1.15*0.707=42.93KpaF :新浇混凝土对模板的最大侧压力取42.93Kpa 。
4.2结构检算4.2.1扣件式钢管支架立杆强度及稳定性验算碗扣式钢管脚手架与支撑和扣件式钢管脚手架与支架一样,同属于杆式结构,以立杆承受竖向荷载作用为主,但碗扣式由于立杆和横杆间为轴心相接,且横杆的“├”型插头被立杆的上、下碗扣紧固,对立杆受压后的侧向变形具有较强的约束能力,因而碗扣式钢管架稳定承载能力显著高于扣件架(一般都高出20%以上,甚至超过35%)。
本工程现浇箱梁支架按φ48×3.5mm 钢管扣件架进行立杆内力计算,计算结果同样也使用于WDJ 多功能碗扣架(偏于安全)。
Ⅳ-Ⅳ截面处在中支点横隔板,钢管扣件式支架体系采用60×60×100cm 的布置结构,如图:①、立杆强度验算根据立杆的设计允许荷载,当横杆步距为100cm ,立杆可承受的最大允许竖直荷载为[N ]=35kN (路桥施工计算手册中表13-5钢管支架容许荷载[N ]=35.7kN )。
立杆实际承受的荷载为:N=1.2(N G1K +N G2K )+0.85×1.4ΣN QK (组合风荷载时) N G1K —支架结构自重标准值产生的轴向力; N G2K —构配件自重标准值产生的轴向力纵 向横 向单位:mΣN QK—施工荷载标准值;于是,有:N G1K=0.6×0.6×q1=0.6×0.6×65.73=23.66KNN G2K=0.6×0.6×q2=0.6×0.6×2.24=0.806KNΣN QK=0.6×0.6 (q3+q4+q7)=0.36×(2.0+2.0+1.068)=1.824KN则:N=1.2(N G1K+N G2K)+0.85×1.4ΣN QK=1.2×(23.66+0.806)+0.85×1.4×1.824=31.53KN <[N]=35kN,强度满足要求。
②、立杆稳定性验算根据《建筑施工扣件式钢管脚手架安全技术规范》有关模板支架立杆的稳定性计算公式:N/ΦA+M W/W≤fN—钢管所受的垂直荷载,N=1.2(N G1K+N G2K)+0.85×1.4ΣN QK(组合风荷载时),同前计算所得;f—钢材的抗压强度设计值,f=205MPa参考《建筑施工扣件式钢管脚手架安全技术规范》表5.1.6得。
A—φ48mm×3.5㎜钢管的截面积A=489mm2。
Φ—轴心受压杆件的稳定系数,根据长细比λ查表即可求得Φ。
i—截面的回转半径,查《建筑施工扣件式钢管脚手架安全技术规范》附录B得i=15.8㎜。
长细比λ=kuL/i。
L—水平步距,L=1m。
于是,λ=kuL/i=1.155×1.5×1000/15.8=109.65<250式中,k—计算长度附加系数,取1.155,根据经验,u取1.50,满足《建筑施工扣件式钢管脚手架安全技术规范》5.1.8条规定λ≤250。
参照《建筑施工扣件式钢管脚手架安全技术规范》查附录C得Φ=0.523。
M W—计算立杆段有风荷载设计值产生的弯距;M W=0.85×1.4×W K×La×h2/10W K=0.7u z×u s×w0u z—风压高度变化系数,参考《建筑结构荷载规范》表7.2.1得u z=1u s —风荷载脚手架体型系数,查《建筑结构荷载规范》表7.3.1第36项得:u s =1.2 w 0—基本风压,查〈〈建筑结构荷载规范〉〉附表D.4 w 0=0.2KN/m 2 故:W K =0.7u z ×u s ×w 0=0.7×1×1.2×0.2=0.168kN/m 2 La —立杆纵距0.6m ; h —立杆步距1m ,故:M W =0.85×1.4×W K ×La×h 2/10=0.012KN·mW — 截面模量查表〈〈建筑施工扣件式脚手架安全技术规范〉〉附表B 得: W=5.08×10-6m 3则,N/ΦA+M W /W =31.53/(0.523×4.89×10-4)+0.012/(5.08×10-6)=125648.1 KN/m 2=125.648MPa ≤f =205MPa计算结果说明支架是安全稳定的。