函数对称性与函数图象变换总结
函数图像变换(整理)
函数的图象变换函数图象的基本变换:(1)平移;(2)对称;(3)伸缩。
由函数y = f (x)可得到如下函数的图象1. 平移:(1)y = f (x + m) (m>0):把函数y =f (x)的图象向左平移m 的单位(如m<0则向右平移-m 个单位)。
(2)y = f (x) + m (m>0):把函数y =f (x)的图象向上平移m 的单位(如m<0则向下平移-m 个单位)。
2. 对称:✧ 关于直线对称(Ⅰ) (1)函数y = f (-x)与y = f (x)的图象关于y 轴对称。
(2)函数y = -f (x)与y = f (x)的图象关于x 轴对称。
(3)函数y = f (2a -x)与y = f (x)的图象关于直线x = a 对称。
(4)函数y = 2b -f (x)与y = f (x)的图象关于直线y = b 对称。
(5)函数)x (f y 1-=与y = f (x)的图象关于直线y = x 对称。
(6)函数)x (f y 1--=-与y = f (x)的图象关于直线y = -x 对称。
(Ⅱ)(7)函数y = f (|x|)的图象则是将y = f (x)的y 轴右侧的图象保留,并将y =f (x)右侧的图象沿y 轴翻折至左侧。
(留正去负,正左翻(关于y 轴对称));(8)函数y = |f (x)|的图象则是将y = f (x)在x 轴上侧的图象保留,并将y = f (x)在x 轴下侧的图象沿x 轴翻折至上侧。
(留正去负,负上翻;)一般地:函数y = f (a+mx)与y = f (b -mx)的图象关于直线m2a b x -=对称。
✧ 关于点对称(1) 函数y = - f (-x)与y = f (x)的图象关于原点对称。
(2) 函数y = 2b -f (2a -x)与y = f (x)的图象关于点(a,b)对称。
3. 伸缩(1) 函数y = f (mx) (m>0)的图象可将y = f (x)图象上各点的纵坐标不变,横坐标缩小到原来的m 1倍得到。
高中数学函数图象的4种简单变换知识点总结(平移、对称、翻折、伸缩)
高中数学函数图象的简单变换知识点总结高中阶段,函数图象的简单变换有:平移变换、对称变换、翻折变换、伸缩变换。
一、函数图象的平移变换①左右平移变换:()y f x =与()y f x a =+()()00a a a a y f x y f x a ><=−−−−−−−−−−−→=+时,向左平移个单位时,向右平移个单位如:1y x =+的图象可由y x =的图象向右平移一个单位得到;1y x =-的图象可由y x =的图象向下平移一个单位得到。
②上下平移变换()()00a a a a y f x y f x a ><=−−−−−−−−−−−→=+时,向上平移个单位时,向下平移个单位如:1y x =+的图象可由y x =的图象向上平移一个单位得到。
1y x =-的图象可由y x =的图象向下平移一个单位得到。
【注】变换的口诀为:“上加下减,左加右减”。
二、函数图象的对称变换①()()y y f x y f x =−−−−−−−−−→=-作关于轴对称的图象②()()x y f x y f x =−−−−−−−−−→=-作关于轴对称的图象③()()y f x y f x =−−−−−−−−−→=--作关于原点对称的图象如:(i)()sin sin y x y x ϕ=→=+①0ϕ>时,把sin y x =的图象向左平移ϕ个单位得到;②0ϕ<时,把sin y x =的图象向右平移ϕ个单位得到;(ii)已知()2f x x x =-,则()()2g x f x x x =-=+的图象可由()2f x x x =-的图象做关于y 轴对称的图象得到;函数()h x ()2f x x x =-=-+的图象可由()2f x x x =-的图象作关于x 轴对称后的图象得到;函数()()u x f x =--=2x x --的图象可由()2f x x x =-的图象做关于坐标系原点对称的图象得到。
函数图象的四大变换
你会利用图象的直观性来解决问题吗?
函数图象的四大变换
平移
翻折
对称 伸缩
一、知识点及基本方法
1、画函数图象的依据:⑴解析式及定义域;⑵图象变换
2、图象变换类型:常用变换方法有四种,即平移变换、 伸缩变换、对称变换 和翻折变换
(1)平移变换:分为水平平移与竖直平移
y=f(x)
x
x-h ( h > 0 )
练习2:
已知 f(x)=log2|x|, g(x)=-x2+2,则f(x)g(x)的图象
只能是下图中的( )
y
y
y
y
x
x
x
x
A
B
C
D
解析:由f(x)g(x)是偶函数否定A、D,
当x→±∞时,f(x)g(x) →-∞,故选C.
2、画函数图象,由图象求解析式
例2 已知函数y=f (x)是在R上以2为周期的奇函数,在区 间[0,1)上的图象如下图所示,并已知该区间上图象是 一个二次函数的图象的一部分,点(1,1)是其顶点.试作出 y=f (x)在区间[-2,2]上的图象,并求该区间上的解析式.
(3)伸缩变换:
y=f(x)
x
ωx (ω>1)
纵坐标不变,横坐标缩短为原来的 1 倍 ω
y=f(x)
x
ωx ( 0 < ω < 1)
纵坐标不变,横坐标伸长到原来的 1倍 ω
y=f(x)
纵坐标伸长(A>1)或缩短(0<A<1) 到原来的A倍,横坐标不变
y=f(ω x) y=f(ω x)
y= A f( x)
y
y
y
O
1x -1
-1 O
函数的对称问题重点
函数的对称问题湖南彭向阳一、函数的自对称问题1.函数 y=f(x 的图象关于直线x=a 对称f(a+x=f(a-x ;特别,函数y=f(x 的图象关于y 轴对称f(x=f(-x.2.函数 y=f(x 的图象关于点(a,b 对称f(a+x+f(a-x=2b ;特别,函数y=f(x 的图象关于原点对称f(-x=-f(x.主要题型:1.求对称轴 (中心:除了三角函数y=sinx , y=cosx 的对称轴〔中心〕可以由以下结论直接写出来 (对称轴为函数取得最值时的x=,对称中心为函数与x 轴的交点外,其它函数的对称轴(中心就必须求解,求解有两种方法,一是利用对称的定义求解;二是利用图象变换求解.例 1 确定函数的图象的对称中心.解析 1 设函数的图象的对称中心为〔h, k〕,在图象上任意取一点P 〔x, y〕,它关于〔 h, k〕的对称点为Q〔 2h-x, 2k-y 〕, Q 点也在图象上,即有,由于,两式相加得,化简得〔*〕.由于 P 点的任意性,即〔 * 〕式对任意 x 都成立,从而必有 x 的系数和常数项都为 0,即h=1,k=1.所以函数的图象的对称中心为〔1,1〕.解析 2 设函数,那么g(x为奇函数,其对称中心为原点,由于,说明函数f(x 的图象是由g(x 的图象分别向右、向上平移 1 个单位得到,而原点向右、向上分别平移 1 个单位得到点 (1,1.所以函数的图象的对称中心为〔1,1〕.例 2 曲线 f(x=ax 3+bx2+cx ,当 x=1-时,f(x有极小值;当x=1+时,f(x有极大值,且在x=1 处切线的斜率为.(1 求 f(x ;(2 曲线上是否存在一点P,使得 y=f(x 的图象关于点P 中心对称?假设存在,求出点P 的坐标,并给出证明;假设不存在,请说明理由.解析 (1 =3ax2+2bx+c ,由题意知 1- 与 1+ 是 =3ax2+2bx+c=0 的根,代入解得 b=-3a, c=-6a.又 f(x 在 x=1 处切线的斜率为,所以,即3a+2b+c=,解得. 所以f(x .f(x0+x+f(x0-x=2y0 ,(2 假设存在P(x0 , y0,使得f(x 的图象关于点P 中心对称,那么即,化简得.由于是对任意实数x 都成立,所以,而 P在曲线y=f(x上.所以曲线上存在点P,使得y=f(x的图象关于点P 中心对称 .2.证明对称性:证明对称性有三种方法,一是利用定义,二是利用图象变换,三是利用前面的结论 ( 函数 y=f(x的图象关于点(a,b对称f(a+x+f(a-x=2b来解决.例 3 求证函数的图象关于点P〔 1,3 〕成中心对称.证明 1 在函数的图象上任意取一点A〔x, y〕,它关于点P〔 1,3 〕的对称点为 B〔2-x , 6-y 〕,因为,所以点 B 在函数的图象上,故函数的图象关于点P〔 1,3 〕对称 .证明2因为.由于是奇函数,所以的图象关于原点对称,将它的图象分别向右平移 1 个单位,向上平移 3 个单位,就得到函数的图象,所以的图象关于点P〔 1,3 〕对称 .所以的图象关于点 P〔 1,3 〕对称 .3.函数的对称性求函数的值或参数的值:由函数的对称性求值,关键是将对称问题转化为等式问题,然后对变量进行赋值求解. 例4 定义在R 上的函数f(x的图象关于点对称,且满足那么f(1+f(2+f(3++f(2005 的值为〔〕.A .解析由f(x 的图象关于点,即,即对称,那么说明函数,又,函数 f(x是偶函数是奇函数,也就是有,所以.所以,又,即 f(x 以 3 为周期, f(2=f(-1=1 , f(3=f(0=-2 ,所以 f(1+f(2+f(3+ +f(2005=668 〔 f(1+f(2+f(3 〕 +f(2005=f(2005=f(1=1 ,选 D.例 5 函数f(x=的图象关于点中心对称,求f(x.解析 1 设 f(x图象上任意一点A〔 x,y〕,它关于点的对称点为B,由于 A、 B 都在 f(x上,所以,相加整理得,解得 a=1.所以 f(x=.解析 2 由上面的公式有,代入化简整理得a=1.解析 3 由题意知将函数y=f(x的图象向左平移 1 个单位长度,向下平移个单位长度得y=的图象,它关于原点对称,即是奇函数,=,即 y=,它是奇函数必须常数项为0,即 a=1.二、函数的互对称问题1. y=f(x 与 y=g(x 的图象关于直线x=a 对称f(a+x=g(a-x ;2. y=f(x 与 y=g(x 的图象关于直线y=b 对称f(x+g(x=2b ;3. y=f(x 与 y=g(x 的图象关于点 (a , b 对称f(a+x+g(a-x=2b.4. y=f(x 与 y=g(x 的图象关于直线y=x 对称f(x 和 g(x 互为反函数 .记住这些结论不仅仅便于解决选择填空题,也便于解答题中的图象互相对称的函数解析式的求解问题 . 主要题型:1. 判断两个函数图象的对称关系例 6 在同一平面直角坐标系中,函数f(x=2x+1与g(x=21-x的图象关于(.A.直线x= 1 对称 B. x轴对称C.y轴对称D. 直线y=x对称解析作为一个选择题,可以取特殊点验证法,在f(x上取点(1,4,g(x上点(-1,4,而这两个点关于y 轴对称,所以选择 C.当然也可利用上面的结论解决,因为f(-x=2-x+1=g(x,所以f(x、g(x的图象关于y 轴对称,选 C.2.证明两个函数图象的对称性:一般利用对称的定义,先证明前一个函数图象上任意一点关于直线 ( 点的对称点在后一个函数的图象上,再证明后一个函数图象上任意一点关于直线( 点的对称点也在前一个函数的图象上,这两个步骤不能少.当然也可利用上面的结论来解决.例 7 函数f(x=x3-x,将y=f(x的图象沿x 轴、 y 轴正向分别平行移动t 、 s 单位,得到函数 y=g(x 的图象 . 求证: f(x和g(x的图象关于点A〔〕对称.解析由得g(x=(x-t3-(x-t+s.在 y=f(x的图象上任取一点P(x1,y1 ,设Q(x2,y2是P 关于点 A 的对称点,那么有,∴x1=t -x2, y1=s-y2.代入 y=f(x ,得 x2 和 y2 满足方程:s-y2=(t-x23-(t-x2,即y2=(x2-t3-(x2-t+s,可知点 Q(x2,y2 在 y=g(x 的图象上 .反过来,同样可以证明,在y=g(x的图象上的点关于点 A 的对称点也在y=f(x的图象上,因此,f(x和g(x的图象关于点A〔〕对称.3.由两个函数图象的对称性求参数值:首先必须根据对称性由函数求出另一函数的解析式,然后再由条件确定参数的值.例 8 f(x 是定义在上的偶函数,g(x的图象与f(x的图象关于直线x=1 对称,且当时, g(x=2a(x-2-3(x-23 ,其中为常数,假设f(x 的最大值为12,求 a 的值 .解析由于 g(x 的图象与 f(x 的图象关于直线x=1 对称,所以 f(1+x=g(1-x ,即 f(x=g(2-x.当时,,所以f(x=g(2-x= 2a(2-x-2-3(2-x-23=-2ax+3x3,因为f(x 是偶函数,所以当时,, f(x=f(-x=2ax-3x3.因为当时,=-2a+9x2 ≤ -2a+9<0,所以f(x 在上是减函数,从而f(x 在上是增函数,所以f(x 的最大值为f(1=f(-1=2a-3=12 ,即.。
一、有关对称性的常用结论
函数的对称性 一、有关对称性的常用结论(一)函数图象自身的对称关系1、轴对称(1))(x f -=)(x f ⇔函数)(x f y =图象关于y 轴对称;(2) 函数)(x f y =图象关于a x =对称⇔)()(x a f x a f -=+⇔()(2)f x f a x =- ⇔()(2)f x f a x -=+;(3)若函数)(x f y =定义域为R ,且满足条件)()(x b f x a f -=+,则函数)(x f y =的图象关于直线2b a x +=对称。
2、中心对称(1))(x f -=-)(x f ⇔函数)(x f y =图象关于原点对称;.(2)函数)(x f y =图象关于(,0)a 对称⇔)()(x a f x a f --=+⇔()(2)f x f a x =-- ⇔)2()(x a f x f +=-;(3)函数)(x f y =图象关于),(b a 成中心对称⇔b x a f x a f 2)()(=++-⇔b x f x a f 2)()2(=+-(4)若函数)(x f y = 定义域为R ,且满足条件c x b f x a f =-++)()((c b a ,,为常数),则函数)(x f y =的图象关于点)2,2(c b a + 对称。
(二)两个函数图象之间的对称关系 1.若函数)(x f y =定义域为R ,则两函数)(x a f y +=与)(x b f y -=的图象关于直线2a b x -=对称。
推论1:函数)(x a f y +=与函数)(x a f y -=的图象关于直线0=x 对称。
推论2:函数)(a x f y -=与函数)(x a f y -=的图象关于直线a x =对称。
2.若函数)(x f y =定义域为R ,则两函数)(x a f y +=与)(x b f c y --=的图象关于点)2,2(c a b -对称。
推论:函数)(x a f y +=与函数)(x b f y --=图象关于点)0,2(a b -对称。
函数图像的变换法则
( 0,1 )和( 0,1 ) ( 2,0 )和( 2, 2 )
三﹑对称变换
y
(-x,y) .
(-x,-y) .
(y,x) . .(x,y)
x
.(x,-y)
函数图象对称变换的规律:
1. y f ( x) y f ( x)
关于x轴对称
2. y f ( x) y f ( x)
函数图象变换的应用:
①作图﹑② 识图﹑ ③用图
(2)方程 f(x)-a=x 的根的个数等价于 y=f(x)与 y=x-a 的交点的个数,所以可以借助图像进行分析.
规范解答 解
2 x-2 -1, x∈-∞,1]∪[3,+∞ f(x)= 2 -x-2 +1, x∈1,3
作出图像如图所示.
[2 分]
(1)递增区间为[1,2],[3,+∞), 递减区间为(-∞,1],[2,3]. [4 分] (2)原方程变形为 |x2-4x+3|=x+a, 于是,设 y=x+a,在同一坐标系下再作出 y=x+a 的图 像.如图. 则当直线 y=x+a 过点(1,0)时,a=-1; [6 分]
a a
1 x
a
a ax a a a
x
ax a ax
1 y 1
a a a
x
a
x
x
a a
f (1 x)
所以,函数y=f(x)的图象关于点(1/2,1/2)对称
(2)由对称性知f(1-x)+f(x)=1,所以 f(-2)+ f(-1)+ f(0)+ f(1)+ f(2)+ f(3)=3。
对称变换是指两个函数图象之间的对称关系,而”满足 f(x)= f(2a-x)或f(a+x)= f(a-x)有y=f(x)关于直线x=a对称”是 指一个函数自身的性质属性,两者不可混为一谈.
(整理版)第四讲函数图象的对称性与变换
第四讲:函数图象的对称性与变换一、 两个函数的图象的对称性:1、y=f 〔x 〕与y=-f 〔x 〕关于x 轴对称。
2、y=f 〔x 〕与y=f 〔-x 〕关于y 轴对称。
3、 y=f 〔x 〕与y=-f 〔-x 〕关于原点对称。
4、y=f 〔x 〕与y=f 1-〔x 〕关于直线y=x 对称,〔或y=f 〔x 〕与x=f 〔y 〕关于直线y=x 对称〕。
5、y=f 〔x 〕与y=f 〔2a -x 〕{注:y=f 〔a+x 〕与y=f 〔a -x 〕关于直线x=0对称}关于直线x=a 对称。
6、y=f 〔x 〕与y=-f 〔2a -x 〕+2b 关于点〔a,b 〕对称.二、 一个函数的图象的对称性:1、关于直线x=a 对称时,f 〔x 〕=f 〔2a -x 〕或f 〔a -x 〕=f 〔a+x 〕,特例:a=0时,关于y 轴对称,此时 f 〔x 〕=f 〔-x 〕为偶函数。
2、y=f 〔x 〕关于〔a,b 〕对称时,f 〔x 〕=2b -f 〔2a -x 〕,特别a=b=0时, f 〔x 〕=-f 〔-x 〕,即f 〔x 〕关于原点对称,f 〔x 〕为奇函数。
3、y=f 〔x 〕关于直线y=x+b 对称时,由上面知y=f 〔x 〕关于直线y=x+b 对称的函数的解析式是y=f 1-〔x+b 〕+b 。
它与y=f 〔x 〕应是同一函数,所以:f 〔x 〕=f1-〔x+b 〕+b 。
特别当b =0时,f 〔x 〕=f 1-〔x 〕,即一个函数关于直线y=x 对称时,它的反函数就是它本身。
4、类似4有y=f 〔x 〕关于直线y=-x+b 对称时, f 〔x 〕=b -f 1-〔b -x 〕。
特别当b =0时,f 〔x 〕=-f 1-〔-x 〕, f 〔x 〕关于直线y=-x 对称.5、假设f(a+x)=f(b-x),那么f(x)的图像关于直线2b a x +=对称, 三:图象平移与伸缩变换、翻折变换。
1、平移变换〔向量平移法那么〕:y=f 〔x 〕按a =〔h,k 〕平移得y=f 〔x -h 〕+k,即F 〔x,y 〕=0按a =〔h,k 〕平移得F 〔x -h,y -k 〕=0,当m>0时,向右平移,m<0时,向左平移。
反函数、函数图像、函数的对称性
反函数●知识梳理1.反函数定义:若函数y=f (x )(x ∈A )的值域为C ,由这个函数中x 、y 的关系,用y 把x 表示出来,得到x=ϕ(y ).如果对于y 在C 中的任何一个值,通过x=ϕ(y ),x 在A 中都有唯一的值和它对应,那么,x=ϕ(y )就表示y 是自变量,x 是自变量y 的函数.这样的函数x=ϕ(y )(y ∈C )叫做函数y=f (x )(x ∈A )的反函数,记作x=f -1(y ). 在函数x=f -1(y )中,y 表示自变量,x 表示函数.习惯上,我们一般用x 表示自变量,y 表示函数,因此我们常常对调函数x=f -1(y )中的字母x 、y ,把它改写成y=f -1(x ).2.互为反函数的两个函数y=f (x )与y=f -1(x )在同一直角坐标系中的图象关于直线y=x 对称.3.求反函数的步骤:(1)解关于x 的方程y=f (x ),得到x=f -1(y ).(2)把第一步得到的式子中的x 、y 对换位置,得到y=f -1(x ). (3)求出并说明反函数的定义域〔即函数y=f (x )的值域〕.一. 条件存在型例1.函数f x x ax ()=--223在区间[]12,上存在反函数的充要条件是( ) A. (]a ∈-∞,1 B. [)a ∈+∞2, C. (][)a ∈-∞+∞,,12 D. []a ∈12, 二. 式子求解型 例2.函数y x x =-≤2310()的反函数是( )A. y x x =+≥-()()113 B. y x x =-+≥-()()113 C. y x x =+≥()()103 D. y x x =-+≥()()103三.求定义域值域型 例3.若fx -1()为函数f x x ()lg()=+1的反函数,则f -1(x )的值域为_________。
四.性质判断型例4. 函数y e e x x=--2的反函数是( )A. 奇函数,在(0,+∞)上是减函数;B. 偶函数,在(0,+∞)上是减函数C. 奇函数,在(0,+∞)上是增函数;D. 偶函数,在(0,+∞)上是增函数 五. 反函数求值型例5. 设352)(-+==x x x f y ,已知 y=g(x)的图象与)1(1+=-x f y 的图象关于直线y=x 对称,则 g(4)= 。
函数图像的变换(周期,平移,对称)
函数的变换(平移,对称,翻折,周期)【自主梳理】1.() (0)y f x a a =+>的图象可由()y f x =的图象向 平移单位而得到.() (0)y f x a a =->的图象可由()y f x =的图象向 平移单位而得到. 2.() (0)y f x b b =+>的图象可由()y f x =的图象向 平移单位而得到.() (0)y f x b b =->的图象可由()y f x =的图象向 平移单位而得到. 3.() (0)y Af x A =>的图象可由()y f x =图象上所有点的纵坐标变为 ,不变而得到.4.() (0)y f ax a =>的图象可由()y f x =图象上所有点的横坐标变为 ,不变而得到. 【自我检测】1.若()f x 的图象过(0,1)点,则(1)f x +的图象过点 . 2.函数2xy =的图象向右平移2个单位所得函数解析式为 . 3.将函数lg()y x =-的图象 可得函数lg(1)y x =-+的图象.4.函数xy x a =-+的图象的对称中心为(1,1)--,则a = . 5.将函数1cos 2y x =图象的横坐标缩短到原来的21倍,纵坐标扩大为原来的2倍,所得函数解析式为 . 6.为了得到函数3lg10x y +=的图象,只需把函数lg y x =的图象上所有的点向左平移 个单位长度,再向 平移个单位长度. 二、课堂活动: 【例1】填空题:(1)设函数()y f x =图象进行平移变换得到曲线C ,这时()y f x =图象上一点(2,1)A -变为曲线C 上点(3,3)A '-,则曲线C 的函数解析式为.(2)如果直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是.(3)要得到函数sin(2)3y x π=-的图象,只需将函数cos2y x =的图象. (4)若函数()2sin y x θ=+的图象按向量(,2)6π平移后,它的一条对称轴是4x π=,则θ的一个可能的值是.【例2】作出下列函数的图象.(1)12x y -= (2)211x y x +=-【例3】(1)函数()24log 12y x x =-+的图象经过怎样的变换可得到函数2log y x =的图象?(2)函数21cos cos 12y x x x =+⋅+的图象可由sin y x =的图象经过怎样的平移和伸缩变换得到?【自主梳理】1.(1)函数()y f x =-与()y f x =的图像关于 对称; (2)函数()y f x =-与()y f x =的图像关于对称;(3)函数()y f x =--与()y f x =的图像关于 对称. 2.奇函数的图像关于对称,偶函数图像关于对称.3.若对于函数()y f x =定义域内的任意x 都有()()f a x f b x +=-,则()y f x =的图像关于直线 对称. 4.对0a >且1a ≠,函数xy a =和函数log a y x =的图象关于直线对称.5.要得到()y f x =的图像,可将()y f x =的图像在x 轴下方的部分以为轴翻折到x 轴上方,其余部分不变.6.要得到()y f x =的图像,可将()y f x =,[)0,x ∈+∞的部分作出,再利用偶函数的图像关于的对称性,作出(),0x ∈-∞时的图像.3.函数y e =-的图象与函数 的图象关于坐标原点对称.4.将函数1()2x f x +=的图象向右平移一个单位得曲线C ,曲线C '与曲线C 关于直线y x =对称,则C '的解析式为 .5.设函数()y f x =的定义域为R ,则函数(1)y f x =-与(1)y f x =-的图像的关系为关 于 对称. 6.若函数()f x 对一切实数x 都有(2)(2)f x f x +=-,且方程()0f x =恰好有四个不同实根,求这些实根之和为 . 二、课堂活动:(1(2)对于定义在R 上的函数()f x ,有下列命题,其中正确的序号为.①若函数()f x 是奇函数,则(1)f x -的图象关于点(1,0)A 对称;②若对x R ∈,有(1)(1)f x f x +=-,则()y f x =的图象关于直线1x =对称;③若函数(1)f x -的图象关于直线1x =对称,则函数()f x 是偶函数;④函数(1)y f x =+与函数(1)y f x =-的图象关于直线1x =对称.(3)将曲线lg y x =向左平移1个单位,再向下平移2个单位得到曲线C .如果曲线C '与C 关于原点对称,则曲线C '所对应的函数式是.【例2】作出下列函数的图象:(1)12log ()y x =-;(2)12xy ⎛⎫=- ⎪⎝⎭;(3)2log y x =;(4)21y x =-.【例3】(1)将函数12log y x =的图象沿x 轴向右平移1个单位,得图象C ,图象C '与C 关于原点对称,图象C ''与C '关于直线y x =对称,求C ''对应的函数解析式; (2)已知函数()y f x =的定义域为R ,并且满足(2)(2)f x f x +=-.①证明函数()y f x =的图象关于直线2x =对称;②若()f x 又是偶函数,且[]0,2x ∈时,()21f x x =-,求[]4,0x ∈-时()f x 的表达式.一.周期函数的定义:设函数y=f(x)的定义域为D ,若存在常数T ≠0,使得对一切x ∈D ,且x+T ∈D 时都有f(x+T)=f(x),则称y=f(x)为D 上的周期函数,非零常数T 叫这个函数的周期。
函数对称性与函数图象变换总结
(5)若y=f(x)满足f(3-x)=3-f(4+x)
函数的对称性与函数的图象变换总 结
函数图象是研究 函数的重要工具,它能 为所研究函数的数量 关系及其图象特征提 供一种”形”的直观体现, 是利用”数形结合”解题 的重要基础.
函数的对称性与函数的图象变换总 结
描绘函数图象的两种基本方法: ①描点法;(通过列表﹑描点﹑连线三个步骤完成) ②图象变换;(即一个图象经过变换得到另一个与 之相关的函数图象的方法)
y=f(x-1)
x
函数图象的平移变换:
y=f(x)
y=f(x+a)左右平移
a>0,向左平移a个单位 a<0,向右平移|a|个单位
k>0,向上平移k个单位 y=f(x) y=f(x)+k 上下平移 k<0,向下平移|k|个单位
同步练习:
①若函数f(x)恒过定点(1,1),则函数f(x-4)-2恒过
定点 (5,-1) .
X
x0
函数的对称性与函数的图象变换总 结
从”形”的角度看,
从”数”的角度看,
Y=f(x)图像关于直线x=2对称
y
f(1)=f(3)
f (x)
f(0)= f(4)
f(-2)=f(6)
4-x
-3 -2 -1 0
1 23
x2
f(310)=f(4-310)
f(x)=f(4-x)
x
x
4567 8
函数的对称性与函数的图象变换总 结
思考?若y=f(x)图像关于直线x=-1对称 f(x)=f(-2-x)
f(-1+x)=f(-1-x)
Y
-1-x
-3 -2 -1
-1+x
函数的图像及其变换
的图像可由y=f(x)的图像向上平移b个单位 而得到.总之, 对于平移变换,记忆口诀为:左加右减,上加下减.
(2)对称变换 y=f(-x)与y=f(x)的图像关于 y轴 y=-f(x)与y=f(x)的图像关于 x轴 对称; 对称; 对称;
y=-f(-x)与y=f(x)的图像关于 原点
y=|f(x)|的图像可将y=f(x)的图像在x轴下方的部分
AD,当点C落在X轴上时,h′=CF,显然AD=CF,即 当“中心点”M位于最高处时,“最高点”与X轴的距离 相等,选项B不符,故选A.
【答案】 A
·高中总复习(第1轮)·理科数学 ·全国版
立足教育 开创未来
► 探究点3 判断、证明函数的单调性 题型三:函数图象的应用及对称问题 3. 已知f(x)=| x2 -4x+3|. (1)求f(x)的单调区间; (2)求m的取值范围, 使方程f(x)=mx有4个不同实根.
方法二 y=f(x-1)与y=f(1-x)的图像分别由y=f(x) 与y=f(-x)的图像同时向右平移一个单位而得,又y=f(x) 与y=f(-x)的图像关于y轴对称. ∴y=f(x-1)与y=f(1-x)的图像关于直线x=1对 称.
【答案】 (1)g(x)=-ln(x-1) (2)D
变式
(1)已知函数 f(2x+1)是奇函数, 则函数 y=f(2x) )
【解析】 如图所示,不妨设正三角形ABC的边长 为a,记“中心点”M与X轴的距离为h,记“最高点”与 X轴的距离为h′.由图可知,当三段弧的中点落在X轴上 时,h最小,此时h=MD;当点A、B、C落在X轴上时, h最大,h=MC,故“中心点”M的位置先低后高,呈周 期性变化,排除选项C与D.当点D落在X轴上时,h′=
函数图象的几种常见变换
函数图象的几种常见变换⑪ 平移变换:左右平移---“左加右减”(注意是针对x 而言);上下平移----“上加下减”(注意是针对()f x 而言).⑫翻折变换:()|()|→f x f x ;“下沿X 轴翻折到上面”()(||)→f x f x .“右往左翻折—沿Y 轴”⑬对称变换:①证明函数图像的对称性,即证图像上任意点关于对称中心(轴)的对称点仍在图像上.②证明图像1C 与2C 的对称性,即证1C 上任意点关于对称中心(轴)的对称点仍在2C 上,反之亦然.③函数()y f x =与()y f x =-的图像关于直线0x =(y 轴)对称;函数()y f x =与函数()y f x =-的图像关于直线0y =(x 轴)对称;④若函数()y f x =对x R ∈时,()()f a x f a x +=-或()(2)f x f a x =-恒成立,则()y f x =图像关 于直线x a =对称;⑤若()y f x =对x R ∈时,()()f a x f b x +=-恒成立,则()y f x =图像关于直线2a b x +=对称;⑥函数()y f a x =+,()y f b x =-的图像关于直线2b a x -=对称(由a x b x +=-确定);⑦函数()y f x a =-与()y f b x =-的图像关于直线2a b x +=对称;⑧函数()y f x =,()y A f x =-的图像关于直线2A y =对称(由()()2f x A f x y +-=确定);⑨函数()y f x =与()y f x =--的图像关于原点成中心对称;函数()y f x =,()y n f m x =--的图像关于点22(,)m n对称;⑩函数()y f x =与函数1()y f x -=的图像关于直线y x =对称;曲线1C :(,)0f x y =,关于y x a =+,y x a =-+的对称曲线2C 的方程为(,)0f y a x a -+=(或(,)0f y a x a -+-+=;曲线1C :(,)0f x y =关于点(,)a b 的对称曲线2C 方程为:(2,2)0f a x b y --=. 9.函数的周期性:⑪若()y f x =对x R ∈时()()f x a f x a +=-恒成立,则 ()f x 的周期为2||a ;⑫若()y f x =是偶函数,其图像又关于直线x a =对称,则()f x 的周期为2||a ;⑬若()y f x =奇函数,其图像又关于直线x a =对称,则()f x 的周期为4||a ;⑭若()y f x =关于点(,0)a ,(,0)b 对称,则()f x 的周期为2||a b -;⑮()y f x =的图象关于直线x a =,()x b a b =≠对称,则函数()y f x =的周期为2||a b -;⑯()y f x =对x R ∈时,()()f x a f x +=-或1()()f x f x a +=-,则()y f x =的周期为2||a ;。
高中常见函数图像及基本性质
常有函数性质汇总及简单评论对称变换常数函数 f ( x)= b( b∈R)y b1)、y=a和 x=a的图像和走势2)、图象及其性质:函数 f ( x)的图象是平行于x 轴或与 x 轴重合(垂直于y 轴)的直线O一次函数 f ( x)= kx+b ( k≠ 0, b∈R)1) 、两种常用的一次函数形式: 斜截式——y点斜式—— f ( x)= kx+ 2)、对斜截式而言,k、 b 的正负在直角坐标系中对应的图像走势:b3)、 |k| 越大,图象越陡;|k| 越小,图象越缓和Ox4)、定义域: R值域: R单一性:当0 时;当k<0 时k>奇偶性:当 b=0时,函数 f ( x)为奇函数;当b≠0时,函数 f ( x)没有奇偶性;反函数:有反函数(特别状况下:K=± 1 而且 b=0 的时候)。
增补:反函数定义:例题:定义在 r 上的函数 y=f (x) ; y=g(x)都有反函数,且 f ( x-1 )和 g-1 (x) 函数的图像对于Rg( 5) =2016,求 f ( 4) =周期性:无5)、一次函数与其他函数之间的练习1 、常用解题方法:2)点对于直线(点)对称,求点的坐标f( x)=bxy=x 对称,若2、与曲线函数的联合运用反比率函数f ( x )= k ( k ≠ , 值不相等永不订交; k 越大,离坐标轴越远 )x 0 kk>0 时,函数 f ( x ) 的图象分别在第一、第三图象及其性质:永不订交,渐趋平行;当象限;当 k<0 时,函数 f ( x ) 的图象分别在第二、第四象限; yf ( x )=双曲线型曲线, x 轴与 y 轴分别是曲线的两条渐近线; ax b既是中心对成图形也是轴对称图形cx d定义域:( ,0) (0, )值域: ( ,0) (0, )xO单 调 性:当 k> 0 时;当 k< 0 时 周期性:无奇 偶 性:奇函数反 函 数:原函数自己增补: 1、反比率函数的性质2、与曲线函数的联合运用(常观察有无交点、交点围城图行的面积)——下手点常有两个——⑴直接带入, 利用二次函数鉴别式计算未知数的取值;⑵利用斜率,数形联合判断未知数取值(计算面积基本方法也鉴于此)3、反函数变形(如右图)1)、 y=1/ (x-2 )和 y=1/x-2 的图像挪动比较2)、 y=1/(-x) 和 y=- ( 1/x )图像挪动比较 3)、 f ( x )=ax b( c ≠ 0 且 d ≠ 0) (增补一下分别常数)cx d(对照标准反比率函数,总结各项内容)二次函数y f ( x )=一般式: f ( x ) ax 2 bx c(a 0) 极点式: f ( x )a( x k ) 2 h(a 0)两根式: f ( x ) a( x x 1 )( xx 2 )( a 0)图象及其性质:①图形为抛物线,对称轴为,极点坐标为②当 a 0 时,张口向上,有最低点当 a0时。
函数图像及其变换(完整版)
函数的图像及变换一、函数图像的变换对称变换(||)翻折翻折变换|()|翻折左右平移平移变换上下平移横坐标不变,纵坐标伸缩伸缩变换纵坐标不变,横坐标伸缩y f x y f x ⎧⎪⎧=⎪⎨⎪=⎩⎪⎪⎧⎨⎨⎪⎩⎪⎪⎧⎪⎨⎪⎩⎩关于x 轴对称:(,)(,)x y x y →- 关于y 轴对称:(,)(,)x y x y →- 关于原点对称:(,)(,)x y x y →-- 关于y x =对称:(,)(,)x y y x →关于y x =-对称:(,)(,)x y y x →-- 关于直线x a =对称:(,)(2,)x y a x y →-(轴对称) 关于y x b =+对称:(,)(,)x y y b x b →-+ 关于y x b =-+对称:(,)(,)x y b y x b →--+ 关于点(,)P a b 对称:(,)(2,2)x y a x b y →--(点对称)例1:已知2()2f x x x =-,且()g x 与()f x 关于点(1,2)对称,求()g x 的解析式.(相关点法)例2:已知函数()y f x =的图像关于直线1x =-对称,且当(0,)x ∈+∞时,有1()f x x=,则当 (,2)x ∈-∞-时,()f x 的解析式是( ).A. 1x -B. 12x +C.12x -+D. 12x- 例3:下列函数中,同时满足两个条件“①x R ∀∈,()()01212f x f x ππ++-=;②当6π-<x 3π<时,'()0f x >”的一个函数是( ) A.()sin(2)6f x x π=+B. ()cos(2)3f x x π=+C. ()sin(2)6f x x π=-D. ()cos(2)6f x x π=-①关于形如()y f x =的图像画法:当0x ≥时,()y f x =;当0x ≤时,()y f x =-()y f x =为偶函数,关于y 轴对称,即把0x ≥时()y f x =的图像画出,然后0x ≤时的图像与 0x ≥的图像关于y 轴对称即可得到所求图像.②关于形如()y f x =的图像画法当()0f x ≥时,()y f x =;当()0f x ≤时,()y f x =-先画出()y f x =的全部图像,然后把()y f x =的图像x 轴下方全部关于x 轴翻折上去,原x 轴上方的图像保持不变,x 轴下方的图像去掉不要即可得到所求图像.例3:画出下列函数的图像.(1)12log y x = (2)228y x x =--例4:设函数2()45f x x x =--.(1)在区间[2,6]-上,画出函数()f x 的图像;(2)设集合{}()5A x f x =≥,(,2][0,4][6,)B =-∞-+∞.试判断集合A B 、之间的关系,并给出证明;(3)当2k >时,求证:在区间[1,5]-上,3y kx k =+的图像位于函数()f x 图像的上方.①左右平移把函数()y f x =的全部图像沿x 轴方向向左(0a >)或向右(0a <)平移a 个单位即可得到函数()y f x a =+的图像②上下平移把函数()y f x =的全部图像沿y 轴方向向上(0a >)或向下(0a <)平移a 个单位即可得到函数()y f x a =+的图像例4:将函数lg(32)1y x =-+按向量(2,3)a =-平移后得到新的图象解析式为 例5:把一个函数的图象按向量(,2)8a π=-平移后得到的图象的解析式为sin(2)24y x π=+-,则原来函数的解析式 .Ⅰ.将函数()y f x =的全部图像中的每一点横坐标不变,纵坐标伸长(1)a >或缩短(01)a <<为原来的a 倍得到函数()(0)y af x a =>的图像.Ⅱ. 将函数()y f x =的全部图像中的每一点纵坐标不变,横坐标伸长(1)a >或缩短(01)a <<为原来的1a倍得到函数()(0)y f ax a =>的图像. 例6:已知函数21()2lg(2)-=++x f x x ,把函数()y f x =的图像关于y 轴对称,然后向右平移1个单位,最后纵坐标保持不变,横坐标变为原来的2倍得到()g x 的图像,求()g x 的解析式.例7:已知函数2()log (1)f x x =+,将()y f x =的图像向左平移1个单位,再将图像上所有点纵坐标伸长到原来的2倍,得到函数()y g x =的图像. (1)求()y g x =的解析式和定义域; (2)求函数()(1)()F x f x g x =--的最大值.【练习】1.为了得到函数321x y -=-的图像,只需要把函数2x y =的图像上所有的点( ).A.向右平移3个单位长度,再向下平移1个单位长度B.向左平移3个单位长度,再向下平移1个单位长度C.向右平移3个单位长度,再向上平移1个单位长度D.向左平移3个单位长度,再向上平移1个单位长度 2.下面四个图形中,与函数22log (1)yx x =+≥的图像关于y x =对称的是( ).3.若函数()()y f x x R =∈满足(2)()f x f x +=,且[1,1]x ∈-时,()f x x =,则函数()y f x =的图像与函数4log y x =的图像的交点的个数为( ).A.3B.4C.6D.84.将函数by a x a=++的图像向右平移2个单位长度后又向下平移2个单位,所得到的函数图像与原图像如果关于直线y x =对称,那么( ).A. 1,0a b =-≠B. 1,a b R =-∈C.1,0a b =≠D. 0,a b R =∈ 5.已知21()f x x x =+,且()g x 与()f x 关于点(1,0)-对称,求()g x 的解析式.6.画出下列函数的图像.(1)ln y x = (2)26y x x =--7. 函数()2xf x =和3()g x x =的图像的示意图如图所示,设两函数的图像交于点11(,)A x y ,22(,)B x y ,且12x x <.(1)请指出示意图中曲线12,C C 分别对应于哪一个函数;(2)若12[,1],[,1]x a a x b b ∈+∈+,且{},1,2,3,4,5,6,7,8,9,10,11,12a b ∈,指出,a b 的值,并说明理由;(3)结合函数图像的示意图,判断(6),(6),(2010),(2010)f g f g 的大小关系.8.已知函数()f x 和()g x 的图像关于原点对称,且2()2f x x x =+. (1)求函数()g x 的解析式; (2)解不等式()()1g x f x x ≥--;(3)若()()()1h x g x f x λ=-+在[1,1]-上是增函数,求实数λ的取值范围.6. 已知函数()y f x =,把函数()y f x =的图像向左平移1个单位,然后横坐标保持不变,纵坐标变为原来的3倍再向下平移3个单位得到()g x 的图像,求()g x 的解析式.补充:请把相应的幂函数图象代号填入表格.①32x y =;②2-=x y ;③21x y =;④1-=x y ;⑤31x y =;⑥23x y =;⑦34x y =; ⑧21-=x y ;⑨35x y =.常规函数图像有:函数代号 ①②③④⑤⑥⑦⑧⑨⑩图象代号HI指数函数:逆时针旋转,底数越来越大 .对数函数:逆时针旋转,底数越来越小幂函数:逆时针旋转,指数越来越大。
高中数学函数的单调性、奇偶性、周期性、对称性及函数的图像
函数的单调性、奇偶性、周期性、对称性及函数的图像(一)复习指导单调性:设函数y =f (x)定义域为A ,区间MA ,任取区间M 中的两个值x 1,x 2,改变量Δx =x 2-x 1>0,则当Δy =f(x 2)-f(x 1)>0时,就称f(x)在区间M 上是增函数,当Δy=f(x 2)-f(x 1)<0时,就称f(x)在区间M 上是减函数.如果y =f(x)在某个区间M 上是增(减)函数,则说y=f(x)在这一区间上具有单调性,这一区间M 叫做y=f(x)的单调区间.函数的单调性是函数的一个重要性质,在给定区间上,判断函数增减性,最基本的方法就是利用定义:在所给区间任取x 1,x 2,当x 1<x 2时判断相应的函数值f(x 1)与f(x 2)的大小.利用图象观察函数的单调性也是一种常见的方法,教材中所有基本初等函数的单调性都是由图象观察得到的.对于y=f[φ(x)]型双重复合形式的函数的增减性,可通过换元,令u=φ(x),然后分别根据u=φ(x),y=f(u)在相应区间上的增减性进行判断,一般有“同则增,异则减”这一规律.此外,利用导数研究函数的增减性,更是一种非常重要的方法,这一方法将在后面的复习中有专门的讨论,这里不再赘述.奇偶性:(1)设函数f(x)的定义域为D ,如果对D 内任意一个x ,都有-x ∈D ,且f(-x)=-f(x),则这个函数叫做奇函数;设函数f(x)的定义域为D ,如果对D 内任意一个x ,都有-x ∈D ,且f(-x)=f(x),则这个函数叫做偶函数.函数的奇偶性有如下重要性质:f(x)奇函数f(x)的图象关于原点对称.f(x)为偶函数f(x)的图象关于y 轴对称.此外,由奇函数定义可知:若奇函数f(x)在原点处有定义,则一定有f(0)=0,此时函数f(x)的图象一定通过原点.周期性:对于函数f(x),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f(x+T)=f(x)成立,则函数f(x)叫做周期函数,非零常数T 叫做这个函数的周期.关于函数的周期性,下面结论是成立的.(1)若T 为函数f(x)的一个周期,则kT 也是f (x)的周期(k 为非零整数).(2)若T 为y=f(x)的最小正周期,则||T 为y=Af(ωx+φ)+b 的最小正周期,其中ω≠0.对称性:若函数y=f(x)满足f(a -x)=f(b+x)则y=f(x)的图象关于直线2ba x对称,若函数y=f (x)满足f(a -x)=-f(b+x)则y=f(x)的图象关于点(2ba ,0)对称.函数的图象:函数的图象是函数的一种重要表现形式,利用函数的图象可以帮助我们更好的理解函数的性质,我们首先要熟记一些基本初等函数的图象,掌握基本的作图方法,如描点作图,三角函数的五点作图法等,掌握通过一些变换作函数图象的方法.同时要特别注意体会数形结合的思想方法在解题中的灵活应用.(1)利用平移变换作图:y=f(x)左右平移y=f(x +a) y=f(x)上下平移y=f(x)+b(2)利用和y=f(x)对称关系作图:y=f(-x)与y=f (x)的图象关于y 轴对称;y=-f(x)与y=f(x)的图象关于x 轴对称y=-f(-x)与y =f(x)的图象关于原点对称;y=f -1(x)与y=f(x)的图象关于直线y=x 对称(3)利用y=f(x)图象自身的某种对称性作图y=|f(x)|的图象可通过将y=f(x)的图象在x 轴下方的部分关于x 轴旋转180°,其余部分不变的方法作出.y=f(|x|)的图象:可先做出y=f(x),当x ≥0时的图象,再利用偶函数的图象关于y 轴对称的性质,作出y=f(x)(x<0)的图象.此外利用伸缩变换作图问题,待三角的复习中再进行研究.还要记住一些结论:若函数y=f(x)满足f (a -x)=f(b+x)则y=f(x)的图象关于直线2ba x对称,若函数y=f (x)满足f(a -x)=-f(b+x)则y=f(x)的图象关于点(2ba ,0)对称.(二)解题方法指导例1.设a ≠0,试确定函数21)(xax x f 在(-1,1)上的单调性.例2.讨论xxx f 2)(的增减性.例3.f(x)在(-∞,2)上是增函数,且对任意实数x 均有f(4-x)=f(x)成立,判断f(x)在(2,+∞)上的增减性.例4*.已知函数f(x)的定义域为R ,对任意实数m ,n ,都有21)()()(n f m f n m f 且当21x时,f(x)>0.又.0)21(f (Ⅰ)求证;1)21(,21)0(f f (Ⅱ)判断函数f(x)的单调性并进行证明例5.在R 上求一个函数,使其既是奇函数,又是偶函数例6.判断下列函数的奇偶性)1lg()()1(2xxx f (2)11)()(xx aa x x f (其中φ(x)为奇函数,a >0且a ≠1).例7.设函数])1,1[(1)(2x bxxa x x f 是奇函数,判断它的增减性.例8.设f(x)是定义域为R 且以2为一个周期的周期函数,也是偶函数,已知当x ∈[2,3]时f (x)=(x -1)2+1,求当x ∈[1,2]时f(x)的解析式.例9.作出112xx y的图象,并指出函数的对称中心,渐近线,及函数的单调性.例10.作出函数的图象(1)1)1(32x y(2)y=|lg|x||例11.(1)作出方程|x |+|y |=1所表示的曲线.(2)作出方程|x -1|+|y+1|=1所表示的曲线.例12.已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x 2+2x .(1)求函数g(x)的解析式;(2)解不等式g(x)≥f(x)-|x -1|.例题解析例1解:任取x 1,x 2∈(-1,1),且Δx=x 2-x 1>0,则)1)(1()1)((11)()(2221211222122212x x x x x x a x ax x ax x f x f y由于-1<x 1<x 2<1,所以Δx=x 2-x 1>0,1+x 1x 2>0,1-21x >0,1-22x >0.因此当a >0时,Δy=f(x 2)-f(x 1)>0,当a <0时,Δy=f(x 2)-f(x 1)<0.所以当a >0时f(x)在(-1,1)上是增函数,当a <0时,f(x)在(-1,1)上是减函数.例2分析:可先在(0,+∞)上研究f(x)的增减性,然后根据f(x)的奇偶性判断其在(-∞,0)上的增减性,而当x >0时,有,222)(xxx f 当且仅当x x2即2x 时“=”成立,即当2x 时,f(x)取得最小值,2由此可知x=2是函数单调区间的一个分界点.解:任取x 1,x 2∈(0,2],且Δx=x 2-x 1>0则)21)(()2()2()()(2112112212x x x x x x x x x f x f y因为,2021x x Δx=x 2-x 1>0,且02121x x ,因此Δy=f(x 2)-f(x 1)<0,故f(x)在]2,0(上是减函数.同理可证f(x)在),2[是增函数.又由),(2)(x f xxx f 可知f(x)是奇函数,其图像关于原点对称,所以可知f(x)在]2,(上是增函数,在)0,2[上是减函数.综上所述,x xx f 2)(在]2,(和),2[上是增函数,在)0,2[,]2,0(上是减函数.例3解:任取x 1,x 2∈(2,+∞),且x 1<x 2,则由2<x 1<x 2得2>4-x 1>4-x 2 因为f(x)在(-∞,2)上是增函数,所以有f(4-x 1)>f(4-x 2)而由已知又有f(4-x 1)=f(x 1),f(4-x 2)=f(x 2),所以f(x 1)>f(x 2),故f(x)在(2,+∞)上是减函数.小结:注意体会解题中的划归思想.此题若是一个小题,由f(4-x)=f(x)可知f (x)的图像关于x=2对称,立即就可以判断出f(x)在(2,+∞)上是减函数.例4分析:判断这类抽象函数的单调性,关键是根据已知去创造条件,利用单调性的定义进行和判断,可以采用分析法寻求解题思路.解:(Ⅰ)由f(m +n)=f(m)+f(n)21得f(0)=f(0+0)=2f(0)21有f(0)=-21又由及0)21(f 得1)21(f (Ⅱ)任取x 1,x 2∈R 且Δx =x 2-x 1>0则212112x x 根据已知可得)21(12x x f 则有21)()()()(1121122x f x x f x x x f x f 21)(21)21()21(21)()2121(112112x f f x x f x f x x f ).(1)(11)()21(0111x f x f x f f 函数f(x)在R 上为增函数.例5解:设所求的R 上的函数为f(x),则由函数奇偶性定义得f(-x)=-f(x)①,f(-x)=f(x)②,联立①②,消去f(-x),得f(x)=0.显然函数f(x)=0既是奇函数又是偶函数,所以f(x)=0就是所求的函数.例6解:(1)因为对任意x ∈R ,都有0||122xx x xx x,所以函数定义域为R任取x ∈R ,则-x ∈R 且有)()1lg()1lg()1lg()(2122x f xxxxxx x f 所以)1lg()(2xxx f 是奇函数(2)函数的定义域为R .任取x ∈R ,则-x ∈R ,且有.11)(11)(11)()(xx xxxx aa x a a x aa x x f 所以11)()(xx aa x x f 是偶函数.例7解:显然x ∈[-1,1],-x ∈[-1,1],因为f(x)为奇函数,所以对区间[-1,1]内任意实数x 均有f(-x)=-f(x)成立,即1122bx xa x bxxa x ,也就是1122bxxa x bxxa x 这是关于x 的恒等式,比较两端分子分母对应项的系数,可得a=b=0.所以1)(2xx x f 任取x 1,x 2∈[-1,1],且Δx=x 2-x 1>0 则)1)(1()1)((11)()(2221211221122212xxx x x x x x x x x f x f y因为-1≤x 1<x 2≤1,所以Δx=x 2-x 1>0,1-x 1x 2>0,因此Δy=f(x 2)-f(x 1)>0,所以当x ∈[-1,1]时1)(2xx x f 为增函数.注:此题也可以通过f(0)=0,f(-1)=-f (-1)求得a=b=0例8分析:此题的解答要抓住两个关键点,一个是f(x)为偶函数,再一个是f(x)为周期函数,通过画出草图,就会发现可以先求出当x ∈[-3,-2]时函数的解析式,在利用周期性求出当x ∈[1,2]时f(x)的解析式,要注意体会划归的思想方法.解:当x ∈[-3,-2]时-x ∈[2,3]所以f(-x)=(-x -1)2+1=(x +1)2+1,因为f(x)是偶函数,因此当x ∈[-3,-2]时,f(x)=(x +1)2+1当x ∈[1,2]时,x -4∈[-3,-2],有f(x -4)=(x -4+1)2+1=(x -3)2+1,因为2为f(x)的周期,可知-4也为f(x)一个周期,有f(x -4)=f(x)故x ∈[1,2]时f(x)=(x -3)2+1.例9解:因为112112x x x y所以将xy1的图象向左平移一个单位,再向上平移两个单位,即可得到112xx y的图象,如图由图象可以得到:对称中心为(-1,2)渐近线分别为x=-1,y=2函数在(-∞,-1)和(-1,+∞)上都是增函数.例10解:(1)将函数32x y的图象向右平移一个单位,再向上平移一个单位,即可的得到1)1(32xy ,如图.(2)y=|lg |x ||为偶函数,当x >0时先作出y=lg x 的图象,在根据奇偶性作出y=lg |x |的图象,最后将y=lg |x |在横轴下面的图象关于x 轴旋转180°,其余部分不变.即可得到y=|lg |x ||的图象,如图.例11分析,曲线|x |+|y |=1是关于x 轴,y 轴和原点的对称图形,利用对称性可以很快的作出曲线,至于曲线|x -1|+|y +1|=1,只需通过将曲线|x |+|y |=1适当平移即可得到.解:(1)先作出线段x +y=1(x ≥1,y ≥1),再作出该线段分别关于x 轴,y 轴和原点分别对称的线段,就得到方程|x |+|y |=1所表示的曲线,如图.(2)将(1)中方程|x |+|y |=1所表示的曲线右移一个单位,下移一个单位就得到方程|x -1|+|y +1|=1所表示的曲线,如图.例12解:(1)设f(x)上任意一点P(x 0,y 0)关于原点的对称点为P (x ,y)则220y y x x 即yy x x 00因为点P(x 0,y 0)在f (x)=x 2+2x 的图像上,所以20xy 2x 0,即-y=(-x)2+2(-x)故g(x)=-x 2+2x .(2)由g(x)≥f(x)-|x -1|得2x 2≤|x -1|当x ≥1时,不等式化为2x 2-x +1≤0,此式无实数解.当x <1时,不等式化为2x 2+x -1≤0解得211x,因此g(x)≥f(x)-|x -1|解集为].21,1[。
高考数学 函数图像的对称问题专题总结
函数图像的对称专题一、图像的对称变换(1)函数|()|y f x =的图像可以将函数()y f x =的图像____ 去下翻上_____得到;“去下翻上”详解:x 轴及其上方的图像不动,x 轴下方的图像(如果有的话)沿x 轴对称翻折到x 轴上方. (2)函数(||)y f x =的图像可以将函数()y f x =的图像______去左翻右____得到。
“去左翻右”详解:y 轴及其右边的图像不动,y 轴左边的图像(如果有的话)去掉 ,并将y 轴右边的图像沿y 轴对称翻折到y 轴左边.(3)关于,(,)x a y b y x a b ===,, 的对称翻折见二(二) 【例1】(1)2()2||3f x x x 的增区间是_________________.(1,0),(1,)(2)2()|2||3|f x x x k 的增区间是________________;(3,1),(0,1),(3,)(3)若2()|2||3|f x x x k 有6个零点,则k 的取值范围是________.(3,4)二、 图像的对称(一)自对称图一图二 图三1.基本结论:(1)若()y f x =满足()()f a x f b x +=-,则()y f x =的图象关于直线2a bx +=成轴对称(图一). 特殊化: ()()f a x f a x -=+⇔()y f x =的图象关于直线x a =对称; 再特殊化: ()()f x f x -=⇔()y f x =的图象关于直线0x =对称;(2)若()y f x =满足()()f a x f b x +=--,则()y f x =的图象关于点(,0)2a b+成中心对称(图二). 特殊化: ()()f a x f a x -=-+⇔()y f x =的图象关于点(,0)a 对称; 再特殊化: ()()f x f x -=-⇔()y f x =的图象关于点(0,0)对称.一般化:()()2()2()f a x f a x b f a x b f a x -++=⇔-=-+()2(2)f x b f a x ⇔=--()y f x ⇔=的图象关于点(,)a b 对称(图三).2.核心原理:中点坐标公式.从而易得()(2)f x f a x =-()()f a x f a x ⇔-=+3.梳理成表格:一般情况关于直线___对称)()(x b f x a f -=+差个 负号 ↔ )()(x b f x a f --=+关于点___对称 特殊化:上式b a =时 关于直线___对称 )()(x a f x a f -=+ 差个 负号 ↔ )()(x a f x a f --=+关于点___对称 更特殊:上式0=a 时关于 ___对称 )()(x f x f -=差个 负号 ↔)()(x f x f --=关于 ___对称3.核心原理:中点坐标公式【例2】(1)若函数()f x 满足:(1)(1)0f x f x +--=,则()f x 的图象的对称轴为________;1x = (2)若函数()f x 满足:()(4)f x f x -=-,则()f x 的图象的对称轴为________;2x =-(3)若函数()f x 满足:(22)(22)0f x f x +--=,则()f x 的图象的对称轴为________.2x = (4)若函数()f x 满足:(1)(1)0f x f x ++-=,则()f x 的图象的对称中心为________;(10), (5)若函数()f x 满足:()(4)f x f x -=--,则()f x 的图象的对称中心为________;(20)-, (6)若函数()f x 满足:(2)(2)2f x f x ++-=,则()f x 的图象的对称中心为________.(21), (7)已知函数1(bx f x x a-=-满足6)2()(=-+x f x f ,则=a ________;=b _________.1,3 (8)已知函数1312()(1)12x x f x x ---=+-++,则(2)()f x f x -+=______________.2 (9)已知函数()y f x =的图象关于1(,)2对称,则1()()...20222022f +2020...()2022f +2021()2022f +=_________.20212. (二)两个函数图像的对称初步(1)函数()y f x =-的图像与函数()y f x =的图像关于_______对称; (2)函数()y f x =-的图像与函数()y f x =的图像关于________对称; (3)函数()y f x =--的图像与函数()y f x =的图像关于______对称; (4)函数)2(x a f y -=的图像与函数()y f x =的图像关于______对称(图四); (5)函数2()y b f x 的图像与函数()y f x =的图像关于_______对称(图四);图四(6)函数2(2)ybf a x 的图像与函数()y f x =的图像关于_________对称(图四);(7)函数)(y f x =的图像与函数()y f x =的图像关于直线_________对称. 核心原理仍然是_____中点坐标公式______(图四).【例3】(1) 函数1lg600100y x=-与 x y lg =的图像关于______对称.(3,1)-(2)已知x x g lg )(=, )(x f 的图像与)(x g 的图像关于)1,2(对称,则)(x f 的解析式是________. (3)若函数y =f (x )的图象如图所示,则函数y =-f (x +1)的图象大致为( )解析:C 由y =f (x )的图象得到y =-f (x +1)的图象,需要先将y =f (x )的图象关于x 轴对称得到y =-f (x )的图象,然后再向左平移一个单位得到y =-f (x +1)的图象,根据上述步骤可知C 正确.三、图像的应用(综合练习与巩固)【1】将函数()f x 的图象关于y x =对称,然后向右平移1个单位,所得图象与曲线e x y =关于y 轴对称,则()f x 的解析式为()BA .()ln 1f x x =-B .()ln 1f x x =--C .()1ln f x x =-D .()1e xf x --=【2】若函数y =f (2x +1)是偶函数,则函数y =f (x )图象的对称轴方程是( ) A .x =1 B .x =-1 C .x =2 D .x =-2解析:A 因为f (2x +1)是偶函数,所以f (2x +1)=f (-2x +1),所以f (x )=f (2-x ), 所以f (x )图象的对称轴为直线x =1.【3】对于函数f (x )=lg(|x -2|+1),给出如下三个命题:①f (x +2)是偶函数;②f (x )在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数;③f (x )没有最小值.其中正确是_______________. 解析: ①②.作出f (x )的图象,可知f (x )在(-∞,2)上是减函数,在(2,+∞)上是增函数;由图象可知函数存在最小值0.所以①②正确.【4】已知()f x 是定义在R 上的偶函数,()g x 是定义在R 上的奇函数,且()()1g x f x =-,则()()20172019f f +的值为__________.0A .1-B .1C .0D .无法计算解析:由题意,得(()1)g x f x ---=,∵()f x 是定义在R 上的偶函数,()g x 是定义在R 上的奇函数, ∴()()g x g x -=-,()()f x f x -=,∴()()11f x f x =--+,∴()(2)f x f x +=-,∴()()4f x f x =+,∴()f x 的周期为4,∴()20171f f =(),()()20193(1)f f f ==-,又∵()1100()f f g -===(),∴()()201720190f f +=.【5】若函数()f x 满足:()(4)f x f x -=-+,且与直线2y kx k =-交于四个点,则这四个点的横坐标之和x 1 +x 2 +x 3 +x 4 =__________.8.【6】已知函数满足22|1|,1(43,1x f x x x x -+<⎧=⎨-+≥⎩则方程()12xf x -=的解的个数为______. 3 【变式一】已知函数满足22|1|,1(43,1x f x x x x -+<⎧=⎨-+≥⎩则方程[()]0f f x =的解的个数为______. 5 【变式二】 已知函数满足22|1|,1(43,1x f x x x x -+<⎧=⎨-+≥⎩则方程[()]0f f x ≤的解集为__________. (,6][2,0][22,4]-∞--+【7】已知函数2()2||1f x x x =+-,则对任意x 1,x 2∈R ,若0<|x 1|<|x 2|,下列不等式成立的是( )A .f (x 1)+f (x 2)<0B .f (x 1)+f (x 2)>0C .f (x 1)-f (x 2)>0D .f (x 1)-f (x 2)<0解析:D.函数f (x )的图象如图实线部分所示,且f (-x )=f (x ),从而函数f (x )是偶函数且在[0,+∞)上是增函数,又0<|x 1|<|x 2|,∴f (x 2)>f (x 1), 即f (x 1)-f (x 2)<0.思考: 若上题的函数改为f (x )=⎩⎪⎨⎪⎧x 2+2x -1,x ≥0,x 2-2x -1,x <0,呢?【8】已知当[]0,1x ∈时,函数21()y mx =-的图象与y x m =+的图象有且只有一个交点,则正实数m 的取值范围是( )A .(0,1][23,+)∞B .(0,1][3,)+∞C .(0,2][23,+)∞D .(0,2][3,+)∞解析:B.在同一直角坐标系中,分别作出函数221()(1)f x mx m x m ⎛=-=-⎝与()g x x m =+的大致图象.分两种情形: (1)当01m <≤时,11m≥,如图①,当[]0,1x ∈时,()f x 与()g x 的图象有一个交点,符合题意. (2)当1m >时,10m<<,如图②,要使()f x 与()g x 的图象在[]0,1上只有一个交点,只需()()11g f ≤,即211()m m +≤-,解得3m ≥或0m ≤(舍去).综上所述,(][0,13),m ∈+∞.故选B .【9】函数0.5()|log |2x f x x -=的零点个数为________.解析:2.由()0f x =,得0.51|log |2x x ⎛⎫= ⎪⎝⎭,作出函数105log ||y x =.和212xy ⎛⎫=⎪⎝⎭的图象, 由上图知两函数图象有2个交点,故函数()f x 有2个零点.【变式一】函数f (x )=2x |log 0.5x |-1的零点个数为________. 解析:2.由f (x )=0,得|log 0.5x |=⎝⎛⎭⎫12x.【变式二】0.5()|log |(0)f x x k k =->的零点是1,x x ,则( )A A.11x x = B.11x x < C.11x x > D.112x x <【变式三】0.5()|log |2xf x x -=的零点是1,x x ,则( )B A.11x x = B.11x x < C.11x x > D.112x x <【10】(波浪锯齿形)若定义在R 上的偶函数f (x )满足(2)()f x f x -=,且当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点有_______个.解析: 4.因为偶函数f (x )满足f (x +2)=f (x ),故函数的周期为2.当x ∈[0,1]时,f (x )=x ,故当x ∈[-1,0]时,f (x )=-x .函数y =f (x )-log 3|x |的零点的个数等于函数y =f (x )的图象与函数y =log 3|x |的图象的交点个数.在同一个坐标系中画出函数y =f (x )的图象与函数y =log 3|x |的图象,如图所示.显然函数y =f (x )的图象与函数y =log 3|x |的图象有4个交点,故选B.【11】(波浪锯齿形)定义在R 上的奇函数f (x ),满足(2)()f x f x -=,且f (x )在区间[0,1]上 是减函数,则( )C .A .f (x )的图象关于直线x =2对称B .f (x )的图象关于直线(3,0)-对称C .(3)(2018)(2019)f f f -<<D .[11,12] 是f (x )的一个单调增区间 【12】已知函数f (x )=2x ,x ∈R .(1)当m 取何值时,方程|f (x )-2|=m 有一个解?两个解?(2)若不等式[f (x )]2+f (x )-m >0 在 R 上恒成立,求m 的取值范围. 解:(1)令 F (x )=|f (x )-2|=|2x -2|,G (x )=m ,画出 F (x )的图象如图所示,由图象看出,当m =0或m ≥2时,函数F (x )与G (x )的图象只有一个交点,即原方程有一个解; 当0<m <2时,函数F (x )与G (x )的图象有两个交点,即原方程有两个解.(2)令f (x )=t (t >0),H (t )=t 2+t ,因为H (t )=⎝⎛⎭⎫t +122-14在区间(0,+∞)上是增函数, 所以H (t )>H (0)=0.因此要使t 2+t >m 在区间(0,+∞)上恒成立, 应有m ≤0,即所求m 的取值范围为(-∞,0].四、真题赏析(全国卷中的对称)全国卷是“对称热爱狂”.新课标高考十六年以来(2007-2022)的和新高考三年以来(2020-2022),全国卷函数小题大约有共120道左右的,和对称有关的真题超过40道,占三分之一,是函数板块第一高频考点.现积累如下. 1.基础的对称【1】(2007全国一,文9,理9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( )A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件【2】(2014全国一,文5,理3)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是( C ) A. )()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数 C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数【3】(2014全国二,文15)偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________.3【4】(2008全国一,理9)设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( D )A .(10)(1)-+∞,,B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,,D .(10)(01)-,,解析:由奇函数()f x 可知()()2()0f x f x f x xx-<,而(1)0f =,则(1)(1)0f f -=-=,当0x >时,()0(1)f x f <=;当0x <时,()0(1)f x f >=-,又()f x 在(0)+∞,上为增函数,则奇函数()f x 在(,0)-∞上为增函数,01,10x x <<-<<或.【5】(2014全国二,理15)已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是__________.(1,3-)【6】(2020新高考全国一卷8)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A. [)1,1][3,-+∞B. 3,1][,[01]--C. [1,0][1,)-⋃+∞D. [1,0][1,3]-⋃【答案】D【解析】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =, 所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得:021012x x x <⎧⎨-≤-≤-≥⎩或或001212x x >⎧⎨≤-≤-≤-⎩或或0x =解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.【7】(2004全国一,理2,文,2)已知函数=-=+-=)(.)(.11lg)(a f b a f x xx f 则若( ) A .b B .-b C .b 1D .-b1【8】(2009全国二,文3)函数22log 2xy x-=+的图像(A )(A ) 关于原点对称 (B )关于主线y x =-对称 (C ) 关于y 轴对称 (D )关于直线y x =对称【9】(2017全国一,文9)已知函数()ln ln(2)f x x x =+-,则( C ) A .()f x 在(0,2)单调递增 B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称【10】(2018全国三,文7)下列函数中,其图像与函数ln y x =的图像关于直线1x =对称 的是(B )A .ln(1)y x =-B .ln(2)y x =-C .ln(1)y x =+D .ln(2)y x =+【11】(2021全国乙,文理4)设函数1(1xf x x-=+,则下列函数中为奇函数的是( ) A. ()11f x -- B. ()11f x -+ C. ()11f x +- D. ()11f x ++【答案】B【解析】由题意可得1()11xf x x-==-++,对于A ,()2112fx --=-不是奇函数;对于B ,()211f x x -=+是奇函数; 对于C ,()21122f x x +-=-+,定义域不关于原点对称,不是奇函数; 对于D ,()212f x x ++=+,定义域不关于原点对称,不是奇函数.故选:B【12】(2015全国一,理13)若函数()ln(f x x x =+为偶函数,则a =.【13】(2021新高考全国一,13)已知函数()()32xx a f x -=⋅-是偶函数,则a =______.【答案】1【解析】因为()()32xx a f x -=⋅-,故()()32xf x x a --=-⋅-,因为()f x 为偶函数,故()()f x f x -=,时()()32222xx x x xa x a -⋅-=-⋅-,整理得到()()12+2=0x x a --,故1a =,故答案为:1【14】(2007全国一,文、理14)函数()y f x =的图像与函数3log (0)y xx =>的图像关于直线y x =对称,则()f x =__________.【15】(2008全国一,文8、理6)若函数(1)y f x =-的图像与函数ln 1y x =+的图像关于直线y x =对称,则()f x =( B )A .21x e -B .2xe C .21x e +D .22x e +【16】(2008全国二,文4、理3)函数1()f x x x=-的图像关于( C ) A .y 轴对称 B . 直线x y -=对称 C . 坐标原点对称 D . 直线x y =对称【17】(2012全国新课标,理12)设点P 在曲线12x y e =上,点Q 在曲线ln(2)y x =上,则PQ 最小值为( A )()A 1ln 2- ()B2(1ln 2)-()C 1ln 2+ ()D 2(1ln 2)+解析:函数12xy e =与函数ln(2)y x =互为反函数,图象关于y x =对称 函数12x y e =上的点1(,)2x P x e 到直线y x =的距离为122x e d -=,设函数min min 111ln 2()()1()1ln 222x g x e x g x e g x d -'=-⇒=-⇒=-⇒=由图象关于y x =对称得:PQ 最小值为min 22(1ln 2)d =-【18】(2015全国一,文12)设函数()y f x =的图像与2x ay +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =(C )(A ) 1- (B )1 (C )2 (D )4此题的出现,提醒我们,理解到本质最重要.否则纲貌似超了,说不超说超纲也不超.【19】(2013全国一,理16)若函数()f x =22(1)()x x ax b -++的图像关于直线2x =-对称,则()f x 的最大值是______.16【20】(2018全国二,文12,理11)已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…(C )A .50-B .0C .2D .50【21】(2021全国甲,理12)设函数()f x 的定义域为R ,()1fx +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A. 94-B. 32-C.74D.52【答案】D 【解析】因为()1f x +是奇函数,所以()()11f x f x -+=-+①;因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+,因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路一:从定义入手.955122222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,133512222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭511322=2222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以935222f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭. 思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T =.所以91352222f f f ⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D .2.和零点有关的对称问题(或利用对称性求值)见下:1.具体函数对称性【22】(2010全国一理10)已知函数()|lg |f x x =,若0a b <<,且()()f a f b =,则2a b +的取值范围是( A )(A))+∞ (B))+∞ (C)(3,)+∞ (D)[3,)+∞【23】(2010全国一文7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是(C )(A)(1,)+∞ (B)[1,)+∞(C) (2,)+∞ (D) [2,)+∞【24】(2011全国新课标文12)已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =, 那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有(A )A .10个B .9个C .8个D .1个【25】(2010全国一理15)直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是. (1,5)4解析:在同一直角坐标系内画出直线1y =与曲线2y x x a =-+,观图可知,a 的取值必须满足1,414a a >⎧⎪⎨-<⎪⎩解得514a <<. 【26】(2015全国二文12)设函数()()2111ln x x x f +-+=,则使得()()12->x f x f 成立的x 的取值范围是( A )A.⎝ ⎛⎭⎪⎫13,1B.()∞+⋃⎪⎭⎫ ⎝⎛∞,,131- C.⎝ ⎛⎭⎪⎫-13,13 D.⎪⎭⎫ ⎝⎛∞+⋃⎪⎭⎫ ⎝⎛∞,,3131--【27】(2016全国二文12)已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3| 与y =f (x ) 图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑ (B)(A)0 (B)m (C) 2m (D) 4m【28】(2020全国二理9)设函数()ln |21|ln |21|f x x x =+--,则f (x )( ) A. 是偶函数,且在1(,)2+∞单调递增B. 是奇函数,且在1(,)2-单调递减 C. 是偶函数,且在1(,)2-∞-单调递增D. 是奇函数,且在1(,)2-∞-单调递减【答案】D【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x⎫≠±⎨⎩,关于坐标原点对称, 又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当1,2x ⎛∈-⎪⎝时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+在1,2⎛-⎪⎝上单调递增,()ln 12y x =-在1,2⎛-⎪⎝上单调递减,()f x ∴在1,2⎛-⎪⎝上单调递增,排除B ;当1,2x ⎛∈-∞-⎪⎝时,()()()212ln 21ln 12ln ln 12121x f x x x x +⎛=----==+⎪-⎝,2121x μ=+-在1,2⎛-∞- ⎪⎝上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛-∞- ⎪⎝上单调递减,D 正确. 故选:D.【29】(2020全国三理16)关于函数f (x )=1sin sin x x+有如下四个命题:①f (x )的图像关于y 轴对称.②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2π对称.④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③【解析】对于命题①,12622f π⎛⎫=+=⎪⎝⎭,12622f π⎛⎫-=--=- ⎪⎭,则6f π⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛-=-+=--=-+=- -⎝,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,1sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎝⎭⎝⎭- ⎪⎝,1sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎝⎭⎝⎭+ ⎪⎝,则2f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题④错误.故答案为:②③. 【30】(2022全国甲文理5)函数()33cos x x x -=-在区间ππ,2⎡-⎥⎣的图象大致为( )A. B.C. D.【答案】A【解析】令()()33cos ,,2xxf x x x ππ-⎤=-∈-⎥⎦, 则()()()()()33cos 33cos xx x x f x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈⎪⎝时,330,cos 0xx -->>,所以()0f x >,排除C.故选:A.【31】(2022全国新高考全国一卷9)记函数()sin (0)4f x x b πωω⎛=++> ⎝的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫⎝中心对称,则2f π⎛⎫= ⎪⎝⎭( ) A. 1 B.32C.52D. 3【答案】A【解析】由函数的最小正周期T 满足23T ππ<<,得23πππω<,解得23ω<<,又因为函数图象关于点3,22π⎛⎫⎝对称,所以3,2k k Z ππωπ+=∈,且2b =,所以2,6k k Z ω=-+∈,所以52ω=,5()sin 22f x x π⎛=++ ⎝, 所以5sin 21244f ππ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭.故选:A【32】(2022全国新高考全国二卷9)函数()sin(2)(0π)f x x ϕϕ=+<<的图象以2π,03⎛ ⎝中心对称,则( )A. y =()f x 在5π0,12⎛ ⎝单调递减B. y =()f x 在π11π,1212⎛-⎪⎝有2个极值点C. 直线7π6x =是一条对称轴 D. 直线2y =是一条切线【答案】AD【解析】由题意得:2π4πsin 03f ϕ⎛⎫⎛⎫=+= ⎪⎪⎝⎭⎝⎭,所以4ππ3k ϕ+=,k ∈Z , 即4ππ,3k k ϕ=-+∈Z ,又0πϕ<<,所以2k =时,2π3ϕ=,故2π()sin 23f x x ⎛= ⎝.对A ,当5π0,12x ⎛∈⎪⎝时,2π2π3π2332x ⎛+⎪⎝,由正弦函数sin y u =图象知()y f x =在5π0,12⎛ ⎝上是单调递减;对B ,当π11π,1212x ⎛∈-⎪⎝时,2ππ5π2322x ⎛+⎪⎝,由正弦函数sin y u =图象知()y f x =只有1个极值点,由2π3π23x +,解得5π12x =,即5π12x =为函数的唯一极值点; 对C ,当7π6x =时,2π2π3x +,7π()06f =,直线7π6x =不是对称轴;对D ,由2π2cos 213y ⎛'=+=- ⎝得:2π1cos 23x ⎛+=- ⎝, 解得2π2π2π3x +=+或2π4π2π,3x k k +=+∈Z ,从而得:πx k =或ππ,3x k k =+∈Z ,所以函数()y f x =在点0,2⎛ ⎝处的切线斜率为02π2cos13x k y =='==-,切线方程为:(0)2y -=--即2y =.故选:AD .【33】(2022全国新高考全国一卷10)已知函数3()1f x x x =-+,则( )A. ()f x 有两个极值点B. ()f x 有三个零点C. 点(0,1)是曲线()y f x =的对称中心D. 直线2y x =是曲线()y f x =的切线【答案】AC【解析】由题,()231f x x '=-,令()0f x '>得3x >或3x <-,令()0f x '<得3x -<<,所以()f x 在(上单调递减,在(,-∞,)+∞上单调递增,所以x =是极值点,故A 正确;因(103f -=+>,103f =->,()250f -=-<,所以,函数()f x 在,⎛-∞ ⎝上有一个零点,当x ≥()03f x f ⎛≥ ⎝,即函数()f x 在3⎛∞ ⎝上无零点,综上所述,函数()f x 有一个零点,故B 错误;令3()h x x x =-,该函数的定义域为R ,()()()()33h x x x x x h x -=---=-+=-,则()h x 是奇函数,(0,0)是()h x 的对称中心,将()h x 的图象向上移动一个单位得到()f x 的图象, 所以点(0,1)是曲线()y f x =的对称中心,故C 正确; 令()2312f x x '=-=,可得1x =±,又()(1)11f f =-=,当切点为(1,1)时,切线方程为21y x =-,当切点为(1,1)-时,切线方程为23y x =+, 故D 错误.故选:AC2.抽象函数对称性(或虽为具体函数但是具体函数虚晃一枪的对称)【34】(2009全国一,理11)函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则( D ) (A) ()f x 是偶函数(B) ()f x 是奇函数 (C) ()(2)f x f x =+ (D) (3)f x +是奇函数【35】(2021新高考全国二8)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( ) A. 102f ⎫-= ⎪⎭B. ()10f -=C. ()20f =D. ()40f =【答案】B【解析】因为函数()2f x +为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-,因为函数()21f x +为奇函数,则()()1221f x f x -=-+,所以,()()11f x f x -=-+,所以,()()()311f x f x f x +=-+=-,即()()4f x f x =+,故函数()f x 是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==,故()()110f f -=-=,其它三个选项未知.故选:B.【36】(2011全国新课标理12)函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于(D) (A )2 (B) 4 (C) 6(D)8总结:换元后提取对称性【37】(2012全国新课标文16)设函数()f x =(x +1)2+sin x x 2+1的最大值为M ,最小值为m ,则M+m =____解析()f x =22sin 11x x +++,设()g x =()1f x -=22sin 1xx ++,则()g x 是奇函数, ∵()f x 最大值为M ,最小值为m ,∴()g x 的最大值为M-1,最小值为m -1, ∴110M m -+-=,M m +=2. 总结:拆分后提取对称性【38】(2016全国二,理12)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m x y x y x y ⋅⋅⋅则1)mi i xy ==∑ (B )(A )0 (B )m (C )2m (D )4m总结:换元后提取对称性【39】(2017全国三,理11,文12)已知函数211()2()x f x x x a e e --+=-++有唯一零点,则a =(C )A .12-B .13C .12D .1总结:换元后提取对称性,背景在课本《必修一》P83,B 组4.【40】(2018全国三文16)已知函数())1f x x =+,()4f a =,则()f a -= ______.2-【41】(2022全国乙卷理12)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则221(k f k==∑( )A. 21-B. 22-C. 23-D. 24-【答案】D【解析】因为()y g x =的图像关于直线2x =对称,所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-, 因为()(2)5f x g x +-=,所以()(2)5f x g x ++=, 代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-,所以()()()()35212510f f f +++=-⨯=-,()()()()46222510f f f +++=-⨯=-.因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-.因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=, 联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R ,所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()()()()221123521462213101024.(k f f f f f f f f f k=+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑【42】(2022全国新高考全国一卷12)已知函数()f x 及其导函数()'f x 的定义域均为R ,记()()g x f x '=,若322f ⎛- ⎪⎝,(2)g x +均为偶函数,则( )A. (0)0f =B. 102g ⎛-= ⎪⎝ C. (1)(4)f f -= D. (1)(2)g g -=【答案】BC 【解析】因为322f ⎛-⎪⎝,(2)g x +均为偶函数, 所以322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即32f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=-,所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确;函数()f x ,()g x 的图象分别关于直线3,2x =对称,又()()g x f x '=,且函数()f x 可导,所以()()30,32g g x g x ⎛⎫=-=-⎪⎝⎭,所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=,所以102g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.【43】(2022全国新高考全国二卷8)若函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221(k f k ==∑( )A. 3-B. 2-C. 0D. 1【答案】A【解析】因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++=.由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .。
高数—12暑—10—对称性与周期性、函数的图像—顾铭鉴-教师版
高三数学暑假班(教师版)教师日期学生课程编号10 课型复习课题对称性与周期性、函数的图像教学目标1.掌握函数的对称性、周期性等性质,熟悉常考题型2.掌握函数的图象变换的基本模型,能应用基本模型解决实际问题教学重点1.函数的周期、对称问题的综合2.函数图像变换的基本模型的分析教学安排版块时长1例题解析80 2巩固训练30 3师生总结10 4课后练习30一、对称性(一)一个函数)(x f y =图象本身的对称性(自对称性) 1、轴对称()()()f a x f b x f x +=-⇔ 的图象关于直线()()22a xb x a bx ++-+==对称 推论1、()()()f a x f a x f x +=-⇔的图象关于直线x a =对称 推论2、()(2)()f x f a x f x =-⇔的图象关于直线x a =对称 推论3、()(2)()f x f a x f x -=+⇔的图象关于直线x a =对称2、中心对称()()2()f a x f b x c f x ++-=⇔的图象关于点(,)2a bc +对称 推论1、()()2()f a x f a x b f x ++-=⇔的图象关于点(,)a b 对称 推论2、()(2)2()f x f a x b f x +-=⇔的图象关于点(,)a b 对称 推论3、()(2)2()f x f a x b f x -++=⇔的图象关于点(,)a b 对称(二)两个函数的图象对称性(互对称性)(利用解析几何中的对称曲线轨迹方程理解) 1、()y f x =与()y f x =-图象关于y 轴对称 2、()y f x =与()y f x =--图象关于原点对称 3、()y f x =与()y f x =-图象关于x 轴对称 4、()y f x =与其反函数1()y fx -=图象关于直线y x =对称※5、函数()y f a x =+与()y f b x =-图象关于直线2b ax -=对称 对称性与周期性、函数的图像知识梳理推论1、函数()y f a x =+与()y f a x =-图象关于直线0x =对称 推论2、函数()y f x =与(2)y f a x =-图象关于直线x a =对称 推论3、函数()y f x =-与(2)y f a x =+图象关于直线x a =-对称二、周期性:()()f x T f x += 1、T 必须是常数,且不为零;2、等式必须对于定义域上的所有x 值都成立;3、如果T 是函数()f x 的一个周期,则(0)kT k k ∈≠Z 且都是()f x 的周期. 周期函数的定义域是无界的,存在无数个周期.【思考】是否存在函数为周期函数,但是无最小正周期? 存在,常值函数 函数关系()x a b ∈≠R 且周期说明 )()(x f T x f =+T)()(x f T x f -=+ T 2)(1)(x f T x f ±=+ T 2)()(T x f T x f -=+ T 2 )()(T x f T x f --=+ T 4⎩⎨⎧-=+-=+)()()()(x b f x b f x a f x a f )(2a b -正(余)弦函数相邻两条对称轴间的距离为12周期 ()()()f a x f a x f x +=-⎧⎨⎩为偶函数 a 2⎩⎨⎧--=+--=+)()()()(x b f x b f x a f x a f )(2a b -正(余)弦函数相邻两个对称中心间的距离为12周期 ()()()f a x f a x f x +=--⎧⎨⎩为奇函数a 2()()()()f a x f a x f b x f b x +=-⎧⎨+=--⎩ 4()b a -正(余)弦函数相邻一条对称轴和一个对称中心间的距离为14周期 ()()()f a x f a x f x +=-⎧⎨⎩为奇函数 4a()()()f a x f a x f x +=--⎧⎨⎩为偶函数4a1.1(1)1()f x f x +=-,3T =; 2.1()(1)1()f x f x f x -+=+,2T =;3.1()(1)1()f x f x f x ++=-,4T =; 4.(1)()(2)f x f x f x +=++,6T =;5.(1)()(2)f x f x f x +=+g ,6T =.三、图像变换问题平移 变换向左移)0(>a a 个单位 向右移)0(>a a 个单位 向上移(0)b a >个单位 向下移(0)b a >个单位按向量(,)a h k =r平移)(x f y =的图像)(a x f y +=→的图像 )(x f y =的图像()y f x a →=-的图像 )(x f y =的图像b x f y +=→)(的图像 )(x f y =的图像()y f x b →=-的图像 )(x f y =的图像k h x f y +-=→)(的图像 伸缩 变换每点纵标伸)0(>a a 倍 每点横标伸)0(>a a 倍)(x f y =的图像)(x af y =→的图像)(x f y =的图像⎪⎭⎫⎝⎛=→x a f y 1的图像绝对值 变换关于y 轴对称 将x 轴下方图像翻上)(x f y =的图像|)(|x f y =→的图像 )(x f y =的图像|)(|x f y =→的图像一、对称性与周期性【例1】已知函数()1x af x x a -=--的图象的对称中心是(4,1),则a = .【难度】★ 【答案】3【例2】(2010上海春18)已知函数xx f 241)(-=的图像关于点P 对称,则点P 的坐标是( ).A .)21,2(B .)41,2(C .)81,2( D .(0,0)【难度】★★【答案】C【例3】已知函数a x x x x f -+-++=11)(的图像关于垂直于x 轴的直线对称,则a 的取值集合是 . 【难度】★★ 【答案】{}3,0,3-【例4】已知定义在R 上的函数()f x 满足:222,[0,1),()2,[1,0)x x f x x x ⎧+∈=⎨-∈-⎩.且(2)()f x f x +=,25()2x g x x +=+,则方程()()f x g x =在区间[8,3]-上的所有实根之和为 . 【难度】★★【答案】26(1)11-⨯--=-例题解析【例5】函数2()f x ax bx c =++的图像关于任意直线l 对称后的图像依然为某函数图像,则实数a 、b 、c 应满足的充要条件为 .【难度】★★★【答案】20,40a b ac <-=【解析】由题意,得函数图象上有且仅有一个点【例6】若关于x 的方程(2008)()0+-=f x f a x 恰有2009个根,且所有根的和为2009,则实数a 的值为 . 【难度】★★★ 【答案】2010【解析】(2008)y f x =+与()y f a x =-关于20082a x -=对称【例7】已知函数()y f x =既为偶函数,又是以6为周期的周期函数,若当[0,3]x ∈时,2()24f x x x =-++,则当[3,6]x ∈时,()f x =__________.【难度】★★【答案】21020x x -+-【解析】若[3,6]x ∈,则6[3,0]x -∈-,6[0,3]x -∈22()(6)(6)(6)2(6)241020f x f x f x x x x x =-=-=--+-+=-+-【例8】已知定义在R 上的奇函数()f x 满足(4)()f x f x -=-,且在区间[0,2]上是增函数.若方程()(0)f x m m =>在区间[8,8]-上有四个不同的根1234,,,x x x x ,则1234x x x x +++= . 【难度】★★ 【答案】8-【解析】12342(6)228x x x x +++=⨯-+⨯=-【例9】已知函数()f x 的定义域为R ,且对任意x ∈Z ,都有()()()11f x f x f x =-++.若()()12,13f f -==,则()()20122012f f +-=__________.【难度】★★ 【答案】5- 【解析】()()()()()()()()112112f x f x f x f x f x f x f x f x =-++⎧⎪⇒+=--⎨+=++⎪⎩ ()()()()52116f x f x f x f x T ⇒+=-+=---=-⇒=⎡⎤⎣⎦()()()()()()2012201222115f f f f f f ⇒+-=+-=---=-【例10】(2011上海高考理13)设()g x 是定义在R 上,以1为周期的函数,若函数()()f x xg x =+在区间[3,4]上的值域为[2,5]-,则()f x 在区间[10,10]-上的值域为 . 【难度】★★★ 【答案】[15,11]-【解析】若[4,5]x ∈,则1[3,4]x -∈则()()(1)1(1)1[1,6]f x x g x x g x x g x =+=+-=-+-+∈- ※值域为[15,8][1,6][4,11][15,11]---=-UL U UL【巩固训练】1.已知函数2221()()21mx mx m f x m x x -+-=∈-+R ,则该函数的对称轴方程为 . 【难度】★ 【答案】1x =2.已知(1)f x +是偶函数,则函数(2)y f x =的图象的对称轴方程是 . 【难度】★ 【答案】12x =3.若函数()y f x =满足:对于任意的x ∈R 有(1)()f x f x +=-成立,且当[)1,2x ∈时,()21f x x =-,则(1)(2)(3)(2006)f f f f ++++=L .【难度】★ 【答案】04.函数()y f x =的图象沿x 轴正方向平移2个单位,得图象1c ,图象1c 关于y 轴对称图象为2c ,那么2c 对应的函数解析式是 .【难度】★★【答案】(2)y f x =-- 5.定义在R 上的函数)(x f 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程0)(=x f 在闭区间][T T ,-上的根的个数记为n ,则n 至少为 .【难度】★★ 【答案】56.若函数()y f x =满足()(2)20f x f x +-+=,则()y f x =图象的对称中心是 . 【难度】★★ 【答案】(1,1)- 7.(1)函数()y f k x =-和函数()y f x k =-的图象关于直线 对称; (2)函数()y f k x =-和函数()y f k x =+的图象关于直线 对称. 【难度】★★【答案】x k =;0()x y =轴8.定义在R 上的函数)(x f 满足)(2)2(x f x f =+,当]2,0[∈x 时,x x x f 2)(2-=,则当]2,4[--∈x 时,函数)(x f 的最小值为 . 【难度】★★ 【答案】41-9.已知函数1()()f x m x x =+的图象与函数11()()24h x x x=++的图象关于点(0,1)A 对称. (1)求m 的值; (2)若()()4ag x f x x=+在(]0,2上为减函数,求a 的取值范围. 【难度】★★ 【答案】(1)14m =;(2)3a ≥10.设),()(+∞-∞是x f 上的奇函数,对任意实数x ,都有)()2(x f x f -=+,当11x -≤≤时,()sin f x x =.(1)试证:直线x = 1是函数)(x f 图象的一条对称轴; (2)证明:函数)(x f 是以4为周期的函数; (3)求]5,1[∈x 时,)(x f 的解析式;(4)若集合{}(),A x f x a x =>∈R 是非空集合,求a 的取值范围. 【难度】★★ 【答案】(1)提示:证明(1)(1)f x f x +=-; (2)提示:证明(4)()f x f x +=;(3)sin(2)[1,3]()sin(4)(3,5]x x f x x x -∈⎧=⎨-∈⎩;(4)sin1a <.11.已知二次函数2()f x ax bx =+对任意x ∈R 均有)2()4(x f x f -=-成立,且函数的图像过点A 3(1,)2.(1)求函数()y f x =的解析式;(2)若不等式()f x t x -≤的解集为[4,]m ,求实数t m 、的值. 【难度】★★★【答案】 (1)2()(4)(2)f x ax bx x f x f x R 对任意恒有=+?=-Q 成立,且图像过点3(1,)2A ,22(4)(4)(2)(2),3.2a x b x a x b x a b ìï-+-=-+-ïï\íï+=ïïî化简22(4)(4)(2)(2)(126)0a x b x a x b x 2b -4a x a b -+-=-+-+-=,得().此一元一次方程对x R Î都成立,于是,2401260b a a b ì-=ïïíï-=ïî,即2b a =. 进一步可得121a b ìïï=ïíïï=ïî.21()2f x x x 所求函数解析式为\=+. (2)()[4]f x t x m -?Q 的解集为,, 2221(),220[4,],42x t x t x x tx t t m m 即的解集是且.\-+-?+-? 224220m x tx t t 、是方程的两根\-+-=.于是,24242m t m t tì+=ïïíï=-ïî,解此方程组,得120()82m m t t 祆==镲镲眄镲==镲铑或舍去.※128m t ì=ïïíï=ïî.二、函数的图像【例11】分别画出以下函数的图像:(1)2||y x x =-; (2)2||y x x =-; (3)2|2|3y x x =+-;(4)lg |1|y x =-; (5)2(1)3y x -=-+; (6)()2lg 2y x =-.【难度】★★ 【答案】略【例12】手机产业的发展催生了网络新字“孖”.某学生准备在计算机上作出其对应的图像,其中(2,2)A ,如图所示.在作曲线段AB 时,该学生想把xyO AB223函数12,[0,2]y x x =∈的图像作适当变换,得到该段函数的曲线.请写出曲线段AB 在[2,3]x ∈上对应的函数解析式________. 【难度】★★【答案】12222y x =-+()【例13】设定义域为R 的函数|lg |1||,1,()0,1,x x f x x -≠⎧=⎨=⎩关于x 的方程2()()0f x bf x c ++=有7个不同实数解,求实数b 、c 需要满足的条件. 【难度】★★【答案】0b <且0c =【解析】lg lg |||lg ||||lg |1||x x x x →→→-或lg |lg ||lg ||||lg |1||x x x x →→→-令()t f x =,则20t bt c ++=由题意,得121220000t t t b t t t c t +=->>⎧⎧⇒⎨⎨⋅===⎩⎩解得,0b <且0c =【例14】已知函数()1f x x =-,关于x 的方程2()()0f x f x k -+=,给出下列四个命题:① 存在实数k ,使得方程恰有2个不同的实根; ② 存在实数k ,使得方程恰有4个不同的实根; ③ 存在实数k ,使得方程恰有5个不同的实根; ④ 存在实数k ,使得方程恰有8个不同的实根. 其中真命题的序号为 . 【难度】★★ 【答案】①②③④【解析】方法一:212()()y f x f x k y =-=-=,易得,1y 为偶函数 当0x ≥时,21(1)(2)1(1)|1|(1)01x x x y x x x x x --≥⎧=---=⎨-≤<⎩方法二:令|()||||1|t f x x ==-,则2(0)k t t t =-+≥当14k =,1212t t ==,4个不同的实根 当104k <<,121012t t <<<<,8个不同的实根当0k =,120,1t t ==,5个不同的实根 当0k <,1t >,2个不同的实根【例15】(2014浦东二模理18)方程27lg(100)(||200)(||202)2x x x -=---的解的个数为( ) A .2 B .4 C .6 D .8 【难度】★★ 【答案】B【解析】21lg(100)2lg 100y x x =-=-关于100x =对称,27(||200)(||202)2y x x =---为偶函数,且0x ≥的部分的对称轴为201x =, 两个函数在100x =的左侧和右侧分别有1个和3个交点,∴选B【例16】定义在(0,)+∞上的函数()f x 满足:①当[1,3)x ∈时,()1|2|f x x =--,②(3)3()f x f x =,设关于x 的函数()()1F x f x =-的零点从小到大依次记为31542,,,,,x x x x x ⋅⋅⋅,则12345x x x x x ++++=______.【难度】★★ 【答案】50【解析】在同一直角坐标平面内作出()y f x =与1y =的图象123452,2612,21836x x x x x =+=⨯=+=⨯=※1234550x x x x x ++++=【例17】已知函数()f x 满足:※对任意(0,)x ∈+∞,恒有(2)2()f x f x =成立;※当(1,2]x ∈时,()2f x x =-.若()(2020)f a f =,则满足条件的最小的正实数a 是 .【难度】★★★ 【答案】36【解析】21010101020202020(2020)2(1010)2(505)2222822f f f f ⎛⎫⎛⎫=====-=⎪ ⎪⎝⎭⎝⎭L (1,2]x ∈时,()2f x x =-,()[0,1)f x ∈ (2,4]x ∈时,()4f x x =-,()[0,2)f x ∈……1(2,2]n n x +∈时,1()2n f x x +=-,()[0,2),n f x n ∈∈Z显然,()28f a =,a 必须最小,(32,64]a ∈,(32,64]x ∈,()64f x x =-,∴min 36a =【例18】定义在R 上的函数)(x f ,当(1,1]x ∈-时,x x x f -=2)(,且对任意的x 满足(2)()f x af x -=(常数0>a ),则函数)(x f 在区间(5,7]上的最小值是 .【难度】★★【答案】36 【解析】1()(2)f x f x a =-,可以看成平移2个单位后,再将纵坐标变为原来的1a倍,易得341a -【例19】已知函数D x x f y ∈=),(,如果对于定义域D 内的任意实数x ,对于给定的非零常数m ,总存在非零常数T ,恒有)()(x f m T x f ⋅=+成立,则称函数)(x f 是D 上的m 级类周期函数,周期为T .(1)已知 1=T ,)(x f y =是[)∞+,0上m 级类周期函数,且)(x f y =是[)∞+,0上的单调递增函数,当[)1,0∈x 时,xx f 2)(=,求实数m 的取值范围;(2)已知当[]4,0∈x 时,函数x x x f 4)(2-=,若)(x f 是[)∞+,0上周期为4的m 级类周期函数,且)(x f y =的值域为一个闭区间,求实数m 的取值范围. 【难度】★★★【答案】(1)※[)1,0∈x 时,xx f 2)(=,※当[)2,1∈x 时,12)1()(-⋅=-=x m x mf x f ,当[)1,+∈n n x 时,)()2()1()(2n x f m x f m x mf x f n-==-=-=Λn x n m -⋅=2,即[)1,+∈n n x 时,nx nm x f -⋅=2)(,*n ∈N ,※)(x f 在[)∞+,0上单调递增,※0>m 且()1122----⋅≥⋅n n n n n n m m ,即2≥m .(2)※当[]4,0∈x 时,[]0,4-∈y ,且有)()4(x mf x f =+,※当[]4,44,x n n n ∈+∈Z 时,()()2()(4)(4)444n n f x mf x m f x n m x n x n ⎡⎤=-==-=---⎣⎦L ,当10≤<m 时,[]0,4)(-∈x f ;当01<<-m时,[]mxf4,4)(--∈;当1-=m时,[]4,4)(-∈xf;当1>m时,(]0,)(∞-∈xf;当1-<m时,()+∞∞-∈,)(xf;综上可知:01<≤-m或10≤<m.【巩固训练】1.函数(),01,10x by a a b+=<<-<<的图象为().A.B.C.D.【难度】★【答案】C2.已知,,m n m nαβαβ∈<<R、、、,若αβ、是函数()2()()7f x x m x n=---的零点,则m nαβ、、、四个数按从小到大的顺序是(用符号<“”连接起来).【难度】★【答案】m na b<<<3.若曲线与直线没有公共点,则实数的取值范围是.【难度】★【答案】4.关于x的方程243x x a x-+-=有三个不相等的实数根,则实数a的值是.【难度】★【答案】1-或34-21xy=+y b=b[]1,1-5.若直线1y kx =+与曲线11y x x x x=+--有四个不同交点,则实数k 的取值范围是( ). A .11,0,88⎧⎫-⎨⎬⎩⎭ B .11,88⎧⎫-⎨⎬⎩⎭ C .11,88⎡⎤-⎢⎥⎣⎦ D .11,88⎛⎫- ⎪⎝⎭【难度】★★【答案】A6.在平面直角坐标系中,对于函数()y f x =的图像上不重合的两点,A B ,若,A B 关于原点对称,则称点对(),A B 是函数()y f x =的一组“奇点对”(规定(),A B 与(),B A 是相同的“奇点对”).函数()()()1lg 01sin 02x xf x x x ⎧>⎪⎪=⎨⎪<⎪⎩的“奇点对”的组数是 .【难度】★★【答案】3【解析】利用将0x >时的图象关于原点对称,看和0x <时的图象的交点个数,所以答案为37.定义函数348122()1()222x x f x x f x ⎧--≤≤⎪⎪=⎨⎪>⎪⎩,则函数()()6g x xf x =-在区间[]8,1内的所有零点的和为 . 【难度】★★ 【答案】221 【解析】转化为6()f x x=,作出两个函数的图象, 可得交点的横坐标分别为3362、、,※和为2218.已知定义在[)+∞,0上的函数)(x f 满足)2(3)(+=x f x f .当[)2,0∈x 时x x x f 2)(2+-=.设)(x f 在[)n n 2,22-上的最大值为n a ,且数列}{n a 的前n 项和为n S ,则=∞→n n S lim .(其中n *∈N )【难度】★★ 【答案】32【解析】1(2)(),[0,)3f x f x x +=∈+∞【图象右移2个单位的同时,纵坐标变为原来的13】 ※1(1)1a f ==,21(3)3a f ==,…,11(21)3n n a f n -⎛⎫=-= ⎪⎝⎭※113lim 11213n n a S q →∞===--9.已知函数)(x f y =的定义域和值域都是]1,1[-(其图像如下图所示),函数],[,sin )(ππ-∈=x x x g .定义:当])1,1[(0)(11-∈=x x f 且]),[()(212ππ-∈=x x x g 时,称2x 是方程0))((=x g f 的一个实数根.则方程0))((=x g f 的所有不同实数根的个数是 . 【难度】★★ 【答案】810.(2012上海理13)已知函数)(x f y =的图象是折线段ABC ,其中)0,0(A 、)5,21(B 、)0,1(C ,函数)(x xf y =(10≤≤x )的图象与x 轴围成的图形的面积为 . 【难度】★★ 【答案】54【解析】由题意,得110,02()11010,12x x f x x x ⎧≤≤⎪⎪=⎨⎪-+<≤⎪⎩,从而22110,02()11010,12x x y xf x x x x ⎧≤≤⎪⎪==⎨⎪-+<≤⎪⎩.左图中的图形进行分割和重新拼合后能得到右图中的矩形.故,所求图形的面积155224=⨯=.11.已知函数21(1),02,()1(2),2,2x x f x f x x ⎧--≤<⎪=⎨-≥⎪⎩若对于正数n k (*N ∈n ),直线x k y n ⋅=与函数)(x f y =的图像恰有12+n 个不同交点,则2nk = . 【难度】★★★ 【答案】1214()n n n ++ 【解析】n y k x ⇔=⋅与从左往右数的第1n +个半椭圆弧相切22222[(21)](2)1(14)(42)(44)0n n n n x n y k x n x n n y k x⎧-++⋅=⇒+-+++=⎨=⋅⎩ 212104()n n k n n +∆=⇒=+1、函数作图的难点问题(1)()y f x =?(||)y f x a −−−−−−→=+如何变换 方法一:()()0,+(||)0,a x a x a y f x y f x a y f x a a x a >===−−−−−−→=−−−−−−−−−−−−−−−−−−→=+<=左移保留右边图像,去掉左边图像右移并作关于对称图像方法二:()()0,(||)0,y y a y f x y f x y f x a y a >=−−−−−−−−−−−−−−−−−→=−−−−−−→=+<保留轴右边图像,去掉轴左边图像左移并作关于轴对称图像右移(2)()y f x =?(||)y f x a −−−−−−→=+如何变换 ()()0,+(||)0,a y y y f x y f x a y f x a a y >=−−−−−−→=−−−−−−−−−−−−−−−−−→=+<左移保留轴右边图像,去掉轴左边图像右移并作关于轴对称图像.2、函数作图的一些建议(1)作图前先分析函数的奇偶性、对称性、周期性等性质;反思总结(2)遇到含绝对值的函数,做好分类讨论去绝对值的准备; (3)合理利用平移变换和对称变换进行作图方法的设计. 如:(2016浦东二模理14)关于x 的方程11sin 211x x π=--在[2016,2016]-上解的个数是 . 看作1111y x =--与21sin 2y x π=在[2016,2016]-图象交点的个数问题1y :111()1y y x x =−−−−−−→=-向右移个单位偶函数111()111y y x x −−−−→=−−−−−−→=---右翻左向右移个单位偶函数如图可知,两函数图象在[1,3]-上有3个交点, 在[2016,2015)--、[2015,2014)--、…、[2,1)--、(3,4]、(4,5]、…、(2015,2016]均只有1个交点,∴共4031个交点,∴∴解的个数是40311.对于定义在R 上的函数)(x f ,有下述命题:※若)(x f 是奇函数,则)1(-x f 的图象关于点(1,0)A 对称; ※若函数)1(-x f 的图象关于直线1=x 对称,则)(x f 为偶函数; ※若对x ∈R ,有则),()1(x f x f -=-2是)(x f 的一个周期; ※函数)1()1(x f y x f y -=-=与的图象关于直线1=x 对称. 其中正确的命题是 .(写出所有正确命题的序号) 【知识点】对称性、周期性 【题型】填空题 【难度】★★ 【答案】①②③④ 课后练习2.已知函数2()|2|f x x ax a =-+(x ∈R ),给出下列四个命题:※ 当且仅当0a =时,()f x 是偶函数; ※ 函数()f x 一定存在零点; ※ 函数在区间(,]a -∞上单调递减;※ 当01a <<时,函数()f x 的最小值为2a a -.那么所有真命题的序号是 .※※ 【知识点】函数图象与函数性质的综合 【题型】填空题 【难度】★★ 【答案】①④3.给出定义:若(其中m 为整数),则m 叫做离实数x 最近的整数,记作,在此基础上给出下列关于函数的四个命题:※函数的定义域为,值域为;※函数在上是增函数;※函数是周期函数,最小正周期为1;※函数的图像关于直线对称.其中正确命题的序号是 .【知识点】新定义、函数图象与函数性质的综合 【题型】填空题 【难度】★★ 【答案】①③④4.(2014宝山一模14)关于函数()1x f x x =-给出下列四个命题:※当0x >时,()y f x =单调递减且没有最值; ※方程()(0)f x kx b k =+≠一定有解;※如果方程()f x k =有解,则解的个数一定是偶数;※()y f x =是偶函数且有最小值.则其中真命题是 .(只要写标题号) 1122m x m -<+≤{}x m =(){}f x x x =-()y f x =R 10,2⎡⎤⎢⎥⎣⎦()y f x =11,22⎡⎤-⎢⎥⎣⎦()y f x =()y f x =2kx =()k Z ∈【知识点】函数图象与函数性质的综合 【题型】填空题 【难度】★★ 【答案】②④5.(2014嘉定一模13)已知函数⎪⎩⎪⎨⎧<++-≥++=0,,0,12)(22x c bx x x x ax x f 是偶函数,直线t y =与函数)(x f 的图像自左至右依次交于四个不同点A 、B 、C 、D ,若||||BC AB =,则实数t 的值为________. 【知识点】函数图象与函数性质的综合【题型】填空题 【难度】★★ 【答案】47【解析】※()f x 为偶函数,※1a =- 设C x x =,则B x x =-,3D x x =C D 、关于1x =对称13212x x x ⇒+=⨯⇒=,※1724t f ⎛⎫== ⎪⎝⎭6.(2014闵行二模理14)对于函数[]sin ,0,2()1(2),(2,)2x x f x f x x π⎧∈⎪=⎨-∈+∞⎪⎩,有下列4个命题:※任取[)120,x x ∈+∞、,都有12()()2f x f x -≤恒成立;※()2(2)f x kf x k =+*()k ∈N ,对于一切[)0,x ∈+∞恒成立;※函数()ln(1)y f x x =--有3个零点; ※对任意0x >,不等式()k f x x ≤恒成立,则实数k 的取值范围是9,8⎡⎫+∞⎪⎢⎣⎭. 则其中所有真命题的序号是 .【知识点】函数图象与函数性质的综合【题型】填空题 【难度】★★ 【答案】①③【解析】图象右移2个单位的同时,纵坐标变为原来的12※[0,),()[1,1]x f x ∈+∞∈-,该命题正确※※1()(2)2f x f x =- ※2111(2)(22)(24)()222k f x k f x k f x k f x +=⋅+-=⋅+-==L※()2(2)kf x f x k =⋅+,该命题错误※如图,()y f x =与ln(1)y x =-图象的交点有3个,该命题正确※反例:当52x =时,555159222248f ⎛⎫⋅=⋅=> ⎪⎝⎭ ※正确的序号为※※7.(2015虹口二模理14)若()f x 是定义在R 上的奇函数,且对任意的实数0x ≥,总有正常数T ,使得()()f x T f x T +=+成立,则称()f x 具有“性质p ”,已知函数()g x 具有“性质p ”,且在[]0,T 上,()2g x x =;若当[],4x T T ∈-时,函数()y g x kx =-恰有8个零点,则实数k = .【知识点】函数图象与函数性质的综合 【题型】填空题 【难度】★★★ 【答案】436-【解析】“()()f x T f x T +=+”表示函数图象向右平移T 个单位后,再向上平移T 个单位2()1()(0)g T T T g T g T T⎧=⇒=⎨=+=⎩,由于()g x 是R 上的奇函数,※可得()[]2,1,0g x x x =-∈- 零点个数问题转化为函数()y g x =与y kx =的交点问题, 要有8个交点,表示2()(3)3,[3,4]y g x x x ==-+∈的图象与y kx =相切2436(6)1200k k x k x ∆>⎧⇒=-⎨-++==⎩方程的8.已知:()x f y =是最小正周期为2的函数,当[]1,1-∈x 时,()2x x f =,则函数()x f y =()x ∈R 图像与x y 5log =图像的交点的个数是( ).A .8B .9C .10D .12 【知识点】函数周期、图象综合 【题型】选择题 【难度】★★ 【答案】C9.对于函数()y f x =,定义:若存在非零常数M T 、,使函数()f x 对定义域内的任意实数x ,都满足()()f x T f x M +-=,则称函数()y f x =是准周期函数,常数T 称为函数()y f x =的一个准周期.如函数()(1)()xf x x x =+-∈Z 是以2T =为一个准周期且2M =的准周期函数.(1)试判断2π是否是函数()sin f x x =的准周期,说明理由; (2)证明函数()2sin f x x x =+是准周期函数,并求出它的一个准周期和相应的M 的值;(3)请你给出一个准周期函数(不同于题设和(2)中函数),指出它的一个准周期和一些性质,并画出它的大致图像. 【知识点】新定义、函数周期与函数图象综合、探究性问题 【题型】选择题 【难度】★★★【答案】(1)()sin f x x =Q ,(2)()sin(2)sin 0f x f x x x ππ∴+-=+-=2π∴不是函数()f x 的准周期 (2)(2)()[2(2)sin(2)](2sin )24sin 2sin 4f x f x x x x x x x x x πππππ+-=+++-+=++--=Q※()2sin f x x x =+是准周期函数,2T π=是它的一个准周期,相应的4M π= (3)① 写出一个不同于题设和(2)中函数,如3sin ,2(1),23sin ,[]xy x x y x y x x y x =+=+-=+=等得1分(0),()sin(),()cos()y kx b k y kx b A x y kx b a x ωϕωϕ=+≠=+++=+++, 或其它一一次函数(正比例函数)与周期函数的线性组合的具体形式得3分 ② 指出所写函数的一个准周期,得2分③ 指出它的一些性质,如定义域、值域、奇偶性、单调性、最值、…, (写出一条得1分,写出两条以上得2分,可以不证明) ④ 画出其大致图像,得3分. Oxy1234123455-1-2-3-4-5-1-2-3-4-5。
函数的对称性与函数的图象变换课件
轴对称
点对称
如果函数$f(x)$满足$f(k-x) = f(k+x)$ ,则称函数$f(x)$具有点对称性。
如果函数$f(x)$满足$f(-x) = f(x)$, 则称函数$f(x)$具有轴对称性。
函数对称性的分类
01
02
03
偶函数
如果对于定义域内的任意 $x$,都有$f(-x) = f(x)$ ,则称函数$f(x)$为偶函 数。
THANKS
感谢观看
详细描述
在平面坐标系中,顺时针旋转函数图像意味 着将每个点按照顺时针方向移动一定的角度 。具体来说,如果一个点在坐标系中的坐标 为(x, y),经过顺时针旋转θ角度后,其新的 坐标变为(x', y'),其中x' = x cosθ - y sinθ ,y' = x sinθ + y cosθ。
逆时针旋转
一个函数如果既是奇函数又是偶函数,则被称为既奇又偶函 数。其定义是对于所有x,有f(-x) = -f(x)当且仅当f(-x) = f(x) 。例如,函数y = sin(x)是一个既奇又偶函数,其图像关于原 点对称。
04
函数图象的翻折变换
沿x轴翻折
总结词
当函数图像沿x轴翻折时,图像在x轴 两侧对称。
$y$轴。
对称中心的性质
如果函数$f(x)$具有点 对称性,则其对称中心
为$(k,0)$。
偶函数的性质
偶函数的图像关于$y$ 轴对称。
奇函数的性质
奇函数的图像关于原点 对称。
02
函数图象的平移
向左平移
总结词
当函数图像向左平移时,图像上 的每一个点都沿着x轴负方向移动 。
详细描述
对于函数$y = f(x)$,若图像向左 平移$a$个单位,则新的函数解析 式为$y = f(x + a)$。
函数性质知识点总结优秀4篇
函数性质知识点总结优秀4篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!函数性质知识点总结优秀4篇函数是高中数学中比较重要的课程内容,也贯穿了整个高中数学的学习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
类比探究
中心对称性
从”形”的角度看,
从”数”的角度看,
y=f(x)图像关于(0,0)
-x
o xa
x
类比探究
中心对称性
从”形”的角度看,
从”数”的角度看,
y=f(x)图像关于(a,0)中心对称
y
f(x)=-f(2a-x) f(a-x)=-f(a+x)
b
a-x o
f(a-x)=-f(a+x)
练习: (1)若y=f(x)满足f(-2-x)=f(-2+x),
则函数图像关于
对称
(2)若y=f(x)满足f(3-x)=f(4+x)
(3)若y=f(x)满足f(-2-x)=-f(-2+x),
(4)若y=f(x)满足f(3-x)=-f(4+x)
(5)若y=f(x)满足f(3-x)=3-f(4+x)
对称
思考:“函数y=f(x)与函数y=f(2a-x)的图像关于直线x=a对称”与 “函数y=f(x)满足f(x)= f(2a-x),则函数y=f(x)关于直线x=a对称” 两者间有何区别?
对称变换是指两个函数图象之间的对称关系,而”满足
f(x)= f(2a-x)或f(a+x)= f(a-x)有y=f(x)关于直线x=a对称”是
指一个函数自身的性质属性,两者不可混为一谈.
问题3:分别在同一坐标系中作出下列各组函 数的图象,并说明它们之间有什么关系?
(1)y=2x与y=2|x|
y
yy==22|xx|
1
O
x
由y=f(x)的图象作 y=f(|x|)的图象:保留y=f(x)中y轴右侧部分,
再加上y轴右侧部分关于y轴对称 的图形.
则函数图像关于点 (
a+b 2
,C
) 对称
轴对称 函数图像关于直线x=0对称
中心对称性 函数图像关于(0,0)中心对称
-x
x
f(-x)=f(x)
f(-x)=-f(x)
函数图像关于直线x=a对称
函数图像关于(a,0)中心对称
x=a
f(x)=f(2a-x) f(a-x)=f(a+x)
a f(x)=-f(2a-x)
-1+x
x
1 2345678
x=-1
轴对称性
y=f(x)图像关于直线x=a对称
f(x)= f(2a-x)
f(a-x)=f(a+x)
xa
特例:a=0
y=f(x)图像关于直线x=0对称
f(x)= f(-x)
思考? 若y=f(x)满足f(a-x)=f(b+x),
则函数图像关于 直线 x=
a+b 2
对称
y轴 x轴
原点
对称; 对称; 对称;
练习:说出下列函数的图象与指数函数y=2x的
图象的关系,并画出它们的示意图.
(1)y=2-x (2)y=-2x (3)y=-2-x
y
y
y
1 Ox
1
O
-1
x
1
O
-1
x
函数图象对称变换的规律:
1.函数y=f(-x)与函数y=f(x)的图像关于y轴对称 2.函数y=-f(x)与函数y=f(x)的图像关于x轴对称 3.函数y=-f(-x)与函数y=f(x)的图像关于原点对称 4.函数y=f(x)与函数y=f(2a-x)的图像关于直线 x=a
函数图象是研究 函数的重要工具,它能 为所研究函数的数量 关系及其图象特征提 供一种”形”的直观 体现,是利用”数形结 合”解题的重要基础.
描绘函数图象的两种基本方法: ①描点法;(通过列表﹑描点﹑连线三个步骤完成) ②图象变换;(即一个图象经过变换得到另一个与 之相关的函数图象的方法)
函数图象的三大变换
函数对称性与函数图象变 换总结
知识回顾(偶函数)
从”形”的角度看, Y=f(x)图像关于直线x=0对称
Y
从“数”的角度看, f(-x)=f(x)
f(1)f(1) f(2)f(2)
f(x)f(x)
-x
x
-3 -2 -1
1 2345678
X
x0
从”形”的角度看,
从”数”的角度看,
Y=f(x)图像关于直线x=2对称
( 2 )y x 2 2 x 3 与 y |x 2 2 x 3 |
由y=f(x)的图象作 y=|f(x)|的图象:
保留y = f(x)在 x 轴 上方部分,再加上x 轴下方部分关于x轴 对称到上方的图形
y
4
-1 O 1
x
-4
函数图象的平移变换规律: a>0,向左平移a个单位
(1)y=f(x) y=f(x+a) 左右平移 a<0,向右平移|a|个单位
平移 对称 伸缩
问题1:如何由f(x)=x2的图象得到下列各函
数的图象?
y y=f(x)+1
(1)f(x-1)=(x-1)2 (2)f(x+1)=(x+1)2
(3)f(x)+1=x2+1 (4)f(x) -1=x2-1
y=f(x+1)
1 -1 O 1 y=f(x)-1 -1
y=f(x-1)
x
函数图象的平移变换:
关于直线 x=5 对称.
问题2. 设f(x)= 1 (x>0),求函数y=-f(x)、y=f(-x)、
x
y=-f(-x)的解析式及其定义域,并分别作出它们的图象。
y
y
y
y=f(x) y=f(-x)
y=f(x)
y=f(x)
o1 x
o1 x
o1 x
y=-f(x) y=-f(-x)
对 称 变 换( ( (123)))yyy===fff(((xxx)))与 与 与yyy===--f(ff((-x-xx))的的)的图图图象象象关关关于于于
a+x
a
x
类比探究
中心对称性
y=f(x)图像关于(a,b)中心对称
y
f(2a-x)=2b-f(x) f(a+x)=2b-f(a-x)
b
o
a
x
思考?
(1)若y=f(x)满足f(a-x)=-f(b+x),
则函数图像关于点 (
a+b 2
,0
) 对称
(2)若y=f(x)满足f(a-x)=2c-f(b+x),
y=f(x)
y=f(x+a)左右平移
a>0,向左平移a个单位 a<0,向右平移|a|个单位
k>0,向上平移k个单位
y=f(x) y=f(x)+k 上下平移 k<0,向下平移|k|个单位
同步练习:
①若函数f(x)恒过定点(1,1),则函数f(x-4)-2恒过
定点 (5,-1) .
②若函数f(x)关于直线x=1对称,则函数f(x-4)-2
y
f(1)=f(3)
f (x)
f(0)= f(4)
f(-2)=f(6)
4-x
-3 -2 -1 0
1 23
x2
f(310)=f(4-310)
f(x)=f(4-x)
x
x
4567 8
思考?若y=f(x)图像关于直线x=-1对称 f(x)=f(-2-x)
f(-1+x)=f(-1-x)
Y
-1-x
-3 -2 -1