勾股定理、实数测试卷
(北师大版)八年级数学上(勾股定理、实数、四边形)
第一章《勾股定理》一、选择题1. 三角形三边长分别为6,8,10,那么它最短边上的高为……………()A. 4B. 5C. 6D. 82. 三角形各边(从小到大)长度的平方比如下,其中不是直角三角形的是…………………………………………………………………………………()A. 1:1:2B. 1:3:4C. 9:25:36D. 25:144:169﹡3. 设一个直角三角形的两条直角边长为a、b,斜边上的高为h,斜边长为c,则以c+h,a+b,h为边的三角形的形状是…………………………………()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定﹡4. △ABC中,∠A:∠B:∠C=1:2:3,则BC:AC:AB为……………………()A. 1:2:3B. 1:2:3C. 1:3:2D. 3:1:25. △ABC中,AB=15,AC=13。
高AD=12。
则△ABC的周长是……………()A. 42B. 32C. 42或32D. 37或33提示:两种情况。
二、填空题1. 若有两条线段,长度分别为8 cm,17cm,第三条线段长满足__________条件时,这三条线段才能组成一个直角三角形。
2. 木工做一个长方形桌面,量得桌面的长为60cm,宽为32cm,对角线长为68cm,这个桌面__________ (填“合格”或“不合格”)。
3. 如图,有一圆柱,其高为12cm,它的底面半径为3cm,在圆柱下底面A处有一只蚂蚁,它想得到上面B处的食物,则蚂蚁经过的最短距离为________ cm。
(π取3)4. 如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于________ 。
三、计算题1. 如图,公路MN和公路PQ在P点处交汇,点A处有一所中学,AP=160米,点A到公路MN的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?2. 已知直角三角形的三边长分别为3,4,x,求x2。
八年级数学上册测试题及答案(1-6章)
八年级上册数学评价检测试卷第一章勾股定理一、选择题1.以下列各组数据为三角形三边,能构成直角三角形的是( ) (A )4cm ,8cm ,7cm (B ) 2cm ,2cm ,2cm (C ) 2cm ,2cm ,4cm (D )13cm ,12 cm ,5 cm2.一个三角形的三边长分别为15cm ,20cm ,25cm ,则这个三角形最长边上的高为( ) (A )12cm (B )10cm (C )12.5cm (D )10.5cm3.Rt ∆ABC 的两边长分别为3和4,若一个正方形的边长是∆ABC 的第三边,则这个正方形的面积是( ) (A )25 (B )7 (C )12 (D )25或74.有长度为9cm ,12cm ,15cm ,36cm ,39cm 的五根木棒,可搭成(首尾连接)直角三角形的个数为 ( ) (A )1个 (B )2个 (C )3个 (D )4个5.将直角三角形的三边长扩大相同的倍数后,得到的三角形是( ) (A )直角三角形 (B )锐角三角形 (C )钝角三角形 (D )以上结论都不对 6.在△ABC 中,AB =12cm , AC =9cm ,BC =15cm ,下列关系成立的是( ) (A )B C A ∠+∠>∠ (B )B C A ∠+∠=∠ (C )B C A ∠+∠<∠ (D )以上都不对7.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( )(A )2m (B )2.5cm (C )2.25m (D )3m 8.若一个三角形三边满足ab c b a 2)(22=-+,则这个三角形是( )(A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对 9.一架250cm 的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm ,如果梯子顶端沿墙下滑40cm ,那么梯足将向外滑动( ) (A )150cm(B )90cm(C )80cm(D )40cm10.三角形三边长分别为12+n 、n n 222+、1222++n n (n 为自然数),则此三角形是( ) (A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对二、填空题11.写四组勾股数组.______,______,______,______.12.若一个直角三角形的三边为三个连续的偶数,则它的周长为____________。
2022年沪科版八年级数学下册第18章 勾股定理章节测评试题(含解析)
八年级数学下册第18章勾股定理章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,1C.6,8,13 D.5,12,152、如图,数轴上点A所表示的数是()A B C D 13、小亮想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多2m,当他把绳子的下端拉开8m 后,下端刚好接触到地面,则学校旗杆的高度为()A.10m B.12m C.15m D.18m4、如图,在Rt△ABC中,∠C=90°,AC=12,AB=13,AB边的垂直平分线分别交AB、AC于N、M两点,则△BCM的周长为()A.18 B.16 C.17 D.无法确定5、如图,在△ABC中,∠A=90°,AB=6,BC=10,EF是BC的垂直平分线,P是直线EF上的任意一点,则PA+PB的最小值是()A.6 B.8 C.10 D.126、下列条件中,能判断△ABC是直角三角形的是()A.a:b:c=3:4:4 B.a=1,b,cC.∠A:∠B:∠C=3:4:5 D.a2:b2:c2=3:4:57、下列命题中,逆命题不正确的是()A.如果关于x的一元二次方程ax2+bx+c=0(a≠0)没有实数根,那么b2﹣4ac<0B.线段垂直平分线上的任意一点到这条线段两个端点的距离相等C.全等三角形对应角相等D.直角三角形的两条直角边的平方和等于斜边的平方8、下列命题属于假命题的是()A.3,4,5是一组勾股数B.内错角相等,两直线平行C.三角形的内角和为180°D.9的平方根是39、下列各组数中,能作为直角三角形三边长的是()A.1,2B.8,9,10 C D10、如图所示,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD,则BC的长为()A B C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、圆锥体的高为4cm,圆锥的底面半径为3cm,则该圆锥的表面积为___________.2、如图,△ABC中,∠ACB=90°,AC=4,BC=3,射线CD与边AB交于点D,点E、F分别为AD、BD中点,设点E、F到射线CD的距离分别为m、n,则m+n的最大值为________.3、禅城区某一中学现有一块空地ABCD如图所示,现计划在空地上种草皮,经测量90∠,B= ====,若每种植1平方米草皮需要300元,总共需投入______元AB BC m CD AD3m,4,13m,12m4、如图Rt△ABC,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”:当AC=6,BC=8时,则阴影部分的面积为_____.5、如图,点A为等边三角形BCD外一点,连接AB、AD且AB=AD,过点A作AE∥CD分别交BC、BD 于点E、F,若3BD=5AE,EF=6,则线段AE的长 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC中,∠C 90°.(1)用尺规作图,保留作图痕迹,不写作法:在边BC 上求作一点D ,使得点D 到AB 的距离等于DC 的长;(2)在(1)的条件下,若AC =6,AB =10,求CD 的长.2、已知一次函数26y x =--.(1)画出函数图象.(2)不等式26x -->0的解集是_______;不等式26x --<0的解集是_______.(3)求出函数图象与坐标轴的两个交点之间的距离.3、在Rt ACB ∆中,90ACB ∠=︒,6CA CB ==,点P 是线段CB 上的一个动点(不与点B ,C 重合),过点P 作直线l CB ⊥交AB 于点Q .给出如下定义:若在AC 边上存在一点M ,使得点M 关于直线l 的对称点N 恰好在.ACB △的边上...,则称点M 是ACB △的关于直线l 的“反称点”.例如,图1中的点M 是ACB △的关于直线l 的“反称点”.(1)如图2,若1CP =,点1M ,2M ,3M ,4M 在AC 边上且11AM =,22AM =,34AM =,46AM =.在点1M ,2M ,3M ,4M 中,是ACB △的关于直线l 的“反称点”为______;(2)若点M 是ACB △的关于直线l 的“反称点”,恰好使得ACN △是等腰三角形,求AM 的长;(3)存在直线l 及点M ,使得点M 是ACB △的关于直线l 的“反称点”,直接写出线段CP 的取值范围.4、如图,在△ABC 和△DEB 中,AC ∥BE ,∠C =90°,AB =DE ,点D 为BC 的中点,12AC BC =. (1)求证:△ABC ≌△DEB .(2)连结AE ,若BC =4,直接写出AE 的长.5、如图,ABC 是边长为6cm 的等边三角形,点P ,Q 分别从顶点A ,B 同时出发,点P 沿射线AB 运动,点Q 沿折线BC CA -运动,且它们的速度都为1cm/s .当点Q 到达点A 时,点P 随之停止运动连接PQ ,PC ,设点P 的运动时间为(s)t .(1)当点Q在线段BC上运动时,BQ的长为_______(cm),BP的长为_______(cm)(用含t的式子表示);(2)当PQ与ABC的一条边垂直时,求t的值;(3)在运动过程中,当CPQ是等腰三角形时,直接写出t的值.-参考答案-一、单选题1、B【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、52+42≠62,不能构成直角三角形,故不符合题意;B、12+122,能构成直角三角形,故符合题意;C、62+82≠132,不能构成直角三角形,故不符合题意;D、122+52≠152,不能构成直角三角形,故不符合题意.故选:B.【点睛】本题考查勾股定理的逆定理的应用,正确应用勾股定理的逆定理是解题的关键.2、D【分析】先根据勾股定理计算出BC BA=BC AD的长,接着计算出OA的长,即可得到点A所表示的数.【详解】解:如图,BD=1﹣(﹣1)=2,CD=1,∴BC∴BA=BC∴AD2,∴OA=21,∴点A1.故选:D【点睛】本题主要考查了勾股定理,实数与数轴的关系,熟练掌握勾股定理,实数与数轴的关系是解题的关键.3、C【分析】根据题意设旗杆的高AB为xm,则绳子AC的长为(x+2)m,再利用勾股定理即可求得AB的长,即旗【详解】解:根据题意画出图形如下所示:则BC=8m,设旗杆的高AB为xm,则绳子AC的长为(x+2)m,在Rt△ABC中,AB2+BC2=AC2,即x2+82=(x+2)2,解得x=15,故AB=15m,即旗杆的高为15m.故选:C.【点睛】此题考查了学生利用勾股定理解决实际问题的能力,在应用勾股定理解决实际问题时,勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.4、C【分析】根据勾股定理求出BC的长,根据线段垂直平分线的性质得到MB=MA,根据三角形的周长的计算方法代入计算即可.解:在Rt△ABC中,∠C=90°,AC=12,AB=13,∴由勾股定理得,5BC=,∵MN是AB的垂直平分线,∴MB=MA,∴△BCM的周长=BC+CM+MB=BC+CM+MA=BC+CA=17,故选C.【点睛】本题主要考查了线段垂直平分线的性质,勾股定理,熟知线段垂直平分线的性质是解题的关键.5、B【分析】如图,由线段垂直平分线的性质可知PB=PC,则有PA+PB=PA+PC,然后可知当点A、P、C三点共线时,PA+PB取得最小值,即为AC的长.【详解】解:如图,连接PC,∵EF是BC的垂直平分线,∴PB=PC,∴PA +PB =PA +PC ,∴PA +PB 的最小值即为PA +PC 的最小值,当点A 、P 、C 三点共线时,PA +PB 取得最小值,即为AC 的长,∴在Rt △ABC 中,∠A =90°,AB =6,BC =10,由勾股定理可得:8AC ,∴PA +PB 的最小值为8;故选B .【点睛】本题主要考查垂直平分线的性质及勾股定理,熟练掌握垂直平分线的性质及勾股定理是解题的关键.6、B【分析】根据勾股定理的逆定理,以及三角形的内角等于180︒逐项判断即可.【详解】A ,设3a x =,4b x ,4=c x ,此时()()()222344x x x +≠,故ABC 不能构成直角三角形,故不符合题意;B ,2221+=,故ABC 能构成直角三角形,故符合题意 C ,::3:4:5A B C ∠∠∠=且180A B C ∠+∠+∠=︒,设3A x ∠=,4B x ∠=,5C x ∠=,则有12180x =︒,所以15x =︒,则75C ∠=︒,故ABC 不能构成直角三角形,故不符合题意;D ,设23a x =,24b x =,25c x =,则345x x x +≠,即222a b c +≠,故ABC 不能构成直角三角形,故不符合题意;故选:B【点睛】本题考查了勾股定理的逆定理,和三角形的内角和等知识,能熟记勾股定理的逆定理内容和三角形内角和等于180 是解题关键.7、C【分析】分别写出各个命题的逆命题,然后判断正误即可.【详解】解:A.逆命题为:如果一元二次方程ax2+bx+c=0(a≠0)中b2﹣4ac<0,那么它没有实数根,正确,不符合题意;B.逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,不符合题意;C.逆命题为:对应角相等的两三角形全等,错误,符合题意;D.逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,不符合题意.故选:C【点睛】本题考查了原命题、逆命题,命题的真假,一元二次方程根的判别式,线段垂直平分线,全等三角形的判定与性质,勾股定理极其逆定理等知识,综合性较强,准确写出各选项的逆命题并准确判断是解题关键.8、D【分析】利用勾股数的定义、平行线的判定、三角形的内角和及平方根的定义分别判断后即可确定正确的选项.【详解】解:A、3,4,5是一组勾股数,正确,是真命题,不符合题意;B、内错角相等,两直线平行,正确,是真命题,不符合题意;C、三角形的内角和为180°,正确,是真命题,不符合题意;D、9的平方根是±3,故原命题是假命题,符合题意.故选:D.【点睛】考查了命题与定理的知识,解题的关键是了解勾股数的定义、平行线的判定、三角形的内角和及平方根的定义,难度不大.9、A【分析】比较较小的两边的平方和是否等于较长边的平方来判定即可.【详解】解:A、222+=,能构造直角三角形,故符合题意;12B、222081,不能构造直角三角形,故不符合题意;9C、222+≠,不能构造直角三角形,故不符合题意;D、222+≠,不能构造直角三角形,故不符合题意;故选:A.【点睛】此题考查勾股定理的逆定理,三角形的两边的平方和等于第三边的平方,则此三角形为直角三角形,熟练运用这个定理是解题关键.10、B【分析】根据∠ADC=2∠B,∠ADC=∠B+∠BAD判断出DB=DA,根据勾股定理求出DC的长,从而求出BC的长.【详解】解:∵∠ADC =2∠B ,∠ADC =∠B +∠BAD ,∴∠B =∠DAB ,∴BD =AD ,在Rt△ADC 中,∠C =90°,∴DC,∴BC =BD +DC 故选:B .【点睛】本题考查了等角对等边,勾股定理,求得BD AD =是解题的关键.二、填空题1、224cm π【分析】先利用勾股定理求出SA 的长,再根据表面积公式进行求解即可.【详解】解:∵圆锥体的高为4cm ,圆锥的底面半径为3cm ,∴5cm SA =,∴该圆锥的表面积22=15924cm rl r πππππ+=+=,故答案为:224cm π.【点睛】本题主要考查了圆锥的表面积,勾股定理,求出母线长是解题的关键.2、2.5【分析】连接CE ,CF ,作,EM CD FN CD ⊥⊥,分别交CD 于点M 和点N ,首先根据中线的性质和三角形面积公式得出132FCE ABC S S ∆∆==,然后证明出当CD 的长度最小时,m +n 的值最大,然后根据垂线段最短和等面积法求出CD 的最小值,即可求出m +n 的最大值.【详解】解:连接CE ,CF ,作,EM CD FN CD ⊥⊥,分别交CD 于点M 和点N ,∵点E 是AD 的中点,点F 是BD 的中点,∴CE 是ACD ∆中AD 边上的中线,CF 是BCD ∆中BD 边上的中线, ∴12ACE DCE ACD S S S ∆∆∆==,12BCF DCF BCD S S S ∆∆∆==, ∴11111322222FCE DCE DCF ACD BCD ABC S S S S S S AC BC ∆∆∆∆∆∆=+=+==⨯⨯⨯=, ∴11322CD EM CD FN ++=,∴()132CD EM FN +=,即()132CD m n +=, ∴()6CD m n +=,∴当CD 的长度最小时,m +n 的值最大,∴当CD AB ⊥时,CD 的长度最小,此时m +n 的值最大,∵△ABC 中,∠ACB =90°,AC =4,BC =3,∴AB 5, ∴162CD AB ⨯⨯=,解得:125CD =, ∴将125CD =代入()6CD m n +=得: 2.5m n +=. 故答案为:2.5.【点睛】此题考查了勾股定理,中线的性质,三角形面积的应用,垂线段最短等知识,解题的关键是根据题意作出辅助线,正确分析出当CD AB ⊥时m +n 的值最大.3、10800【分析】仔细分析题目,需要求得四边形的面积才能求得结果,在直角三角形ABC 中可求得AC 的长,由AC 、AD 、DC 的长度关系可得ACD △为直角三角形,CD 为斜边;由此可知,四边形ABCD 由t R ABC 和Rt ACD △构成,即可求解.【详解】解:在t R ABC 中,∵222222=345AC AB BC +=+=,∴AC =5.在ACD △中,2213CD =,2212AD =,而22212513+=,即222AC AD CD +=,∴90DAC ∠=︒, 即:11=22BAC DAC ABCD S SS BC AB CD AC +=+四边形 =11431253622⨯⨯+⨯⨯=.所以需费用:3630010800⨯=(元).故答案为10800.【点睛】本题考查了勾股定理,逆定理的相关知识,以及割补法求图形的面积,熟练掌握勾股定理及其逆定理是解答本题的关键.4、24【分析】根据勾股定理求出AB ,分别求出三个半圆的面积和△ABC 的面积,两小半圆与直角三角形的和减去大半圆即可得出答案.【详解】解:在Rt △ACB 中∠ACB =90°,AC =6,BC =8,由勾股定理得:AB =10,阴影部分的面积2221618111068242222222S πππ⎛⎫⎛⎫⎛⎫=⨯⨯+⨯⨯+⨯⨯-⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故答案为:24.【点睛】本题主要考查勾股定理和圆有关的不规则图形的阴影面积.利用规则图形面积的和差关系求阴影面积是这类题型的关键.勾股定理是解决三角形中线段问题最有效的方法之一.5、9【分析】连接AC交BD于点O,可得AC是BD的垂直平分线,设BD=5x,则AE=3x,求出OF=OB-BF=52x-6,AF=AE-EF=3x-6,证明△BOE是等边三角形,得30AFE∠=︒,利用AF=2OF列出方程求出x的值,进而可得AE的长.【详解】解:如图,连接AC交BD于点O,∵3BD=5AE,∴53 BDAE=,设BD=5x,则AE=3x,∵△BCD是等边三角形,∴BC=CD=BD=5x,∠DCB=∠DBC=60°,∵AB=AD,BC=CD,∴AC是BD的垂直平分线,∴OB=OD=52x,OC平分∠BCD,∴∠DCO=12∠DCB=30°,∵AE ∥CD ,∴∠DCO =30°,∴OC ==, ∵AE ∥CD ,∴∠AEB =∠BCD =60°,∴∠AEB =∠FBE =∠BFE =60°,∴△BEF 是等边三角形,∴BE =BF =EF =6,∴OF =OB -BF =52x -6,AF =AE -EF =3x -6,∵60BFE ∠=︒∴30AFE ∠=︒∴2AF OF = ∴5362(6)2x x -=-解得x =3,∴AE =AF +EF =3x -6+6=3x =9.故答案为:9.【点睛】本题考查了垂直平分线的判定与性质,勾股定理,等边三角形的判定与性质,直角三角形的性质,解决本题的关键是得到AF =2OF 列出方程求解.三、解答题1、(1)图见详解;(2)3.【分析】(1)根据题意作∠BAC 的平分线交BC 于D ,根据角平分线的性质得到点D 满足条件;(2)根据题意作DE ⊥AB 于E ,先根据勾股定理计算出BC =8,再根据角平分线性质得到DC =DE ,通过证明Rt △ACD ≌Rt △AED 得到AE =AC =6,则EB =4,设CD =x ,则BD =8-x ,在Rt △BED 中,利用勾股定理得到x 2+42=(8-x )2,解方程求出即可.【详解】解:(1)如图,点D 即为所作;(2)作DE ⊥AB 于E ,如上图,在Rt △ABC 中,BC ,∵AD 为角平分线,∴DC =DE ,在Rt △ACD 和Rt △AED 中AD AD DC DE =⎧⎨=⎩, ∴Rt △ACD ≌Rt △AED (HL ),∴AE =AC =6,∴EB =AB -AE =10-6=4设CD =x ,则DE =x ,则BD =8-x ,在Rt△BED中,x2+42=(8-x)2,解得x=3,∴CD=3.【点睛】本题考查作图-复杂作图以及全等三角形判定和角平分线定理、勾股定理,注意掌握复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.2、(1)见解析;(2)x<-3;x>-3;(3)BC=【分析】(1)分别将x=0、y=0代入一次函数y=-2x-6,求出与之相对应的y、x值,由此即可得出点A、B的坐标,连点成线即可画出函数图象;(2)根据一次函数图象与x轴的上下位置关系,即可得出不等式的解集;(3)由点A、B的坐标即可得出OA、OB的长度,再根据勾股定理即可得出结论.(或者直接用两点间的距离公式也可求出结论)【详解】(1)当x=0时,y=-2x-6=-6,∴一次函数y=-2x-6与y轴交点C的坐标为(0,-6);当y=-2x-6=0时,解得:x=-3,∴一次函数y=-2x-6与x轴交点B的坐标为(-3,0).描点连线画出函数图象,如图所示.(2)观察图象可知:当x <-3时,一次函数y =-2x -6的图象在x 轴上方;当x >-3时,一次函数y =-2x -6的图象在x 轴下方.∴不等式-2x -6>0的解集是x <-3;不等式-2x -6<0的解集是x >-3.故答案是:x <-3,x >-3;(3)∵B (-3,0),C (0,-6),∴OB =3,OC =6,∴BC =【点睛】本题考查了一次函数与一元一次不等式、一次函数图象以及勾股定理,解题的关键是:(1)找出一次函数与坐标轴的交点坐标;(2)根据一次函数图象与x 轴的上下位置关系找出不等式的解集;(3)利用勾股定理求出直角三角形斜边长度.3、(1)2M 和4M ;(2)3或6;(3)03CP <≤【分析】(1)根据反称点的定义进行判断即可;(2)ACN △是等腰三角形分三种情况讨论求解即可;(3)根据“反称点的定义”判断出CP 的取值范围即可.【详解】解:(1)∵CP =1∴M 点到PQ 的距离为1∵M 、N 关于PQ 对称,∴N 点到PQ 的距离为1∴MN =2如图,1N 在ABC ∆外部,3N 在ABC ∆内部,均不符合题意,∵90ACB ∠=︒,6CA CB ==,∴ABC ∆是等腰直角三角形,∴45A B ∠=∠=︒∵222222,2,AM M N M N AC ==⊥∴2N 在AB 边上,∵46AM =,∴4M 与点C 重合,4M 与4N 关于PQ 对称,4N 在BC 上,∴点1M ,2M ,3M ,4M 中,是ACB △的关于直线l 的“反称点”为2M 和4M故答案为:2M 和4M(2)ACN △是等腰三角形分三种情况:如图,①当11AN CN =时,∵ABC ∆是等腰直角三角形∴1N 是AB 边的中点,1116322AM AC ==⨯= ②当2AC AN =时,此时2=6AN∵22M N //BC∴2290AM N ∠=︒∵45A ∠=︒∴22AM N ∆是等腰直角三角形,且222AM M N =∴2222222AM M N AN +=∴22226AM =∴2AM =③当3AC CN =时,此时,3N 与点B 重合,3M 与点C 重合,∴3AM =AC =6综上,AM 的长为3或6;(3)如图,∵M 是AC 边上的点,CB =6∴当03CP <≤时,在AC 边上至少有一个点M 关于PQ 的对称点在AB 边上,当3CP '>时,如图所示,此时AC 上的所有点到P Q ''的距离都大于3,即6MN >,M 关于P Q ''的对称点都在ABC ∆的外部,∴03CP <≤【点睛】本题主要考查了等腰直角三角形的性质,勾股定理,对称的性质等知识,正确理解反对称点的定义是解答本题的关键4、(1)见解析;(2)【分析】(1)根据平行可得∠DBE =90°,再由HL 定理证明直角三角形全等即可;(2)构造Rt AHE ,利用矩形性质和勾股定理即可求出AE 长.【详解】(1)∵AC ∥BE ,∴∠C +∠DBE =180°.∴∠DBE =180°-∠C =180°-90°=90°.∴△ABC 和△DEB 都是直角三角形.∵点D 为BC 的中点,12AC BC =,∴AC =DB . ∵AB =DE ,∴Rt △ABC ≌Rt △DEB (HL ).(2)AE =过程如下:连接AE 、过A 点作AH ⊥BE ,∵∠C =90°,∠DBE =90°.∴AC BH ∥,AH BC ∥,∴AH =BC =4, 122BH AC BC ===,∴2EH EB EH =-=,在Rt AHE 中,AE =【点睛】本题主要考查了直角三角形全等的判定和勾股定理解三角形,解题关键是构造直角三角形,利用用平行线间的距离处处相等得线段AH =BC ,从而利用勾股定理求AE .5、(1)t ;()6t -;(2)当2t =或4t =或8t =时,PQ 与ABC 的一条边垂直;(3)当3t =或9t =时,ΔΔΔΔ为等腰三角形.【分析】(1)根据点的位置及运动速度可直接得出;(2)根据题意分三种情况讨论:①当PQ CB ⊥时,90PQB ∠=︒;②当PQ AB ⊥时,90QPB ∠=︒;③当PQ AC ⊥时,90AQP ∠=︒;作出图形,分别应用直角三角形中30︒角的特殊性质求解即可得;(3)根据题意,分四种情况进行讨论:①当点Q 在BC 边上时,CQ PQ =时;②当点Q 在BC 边上时,CP CQ =时;③当点Q 在BC 边上时,CP PQ =时;④当点Q 在AC 边上时,只讨论CP PQ =情况;分别作出四种情况的图形,然后综合运用勾股定理及解一元二次方程求解即可.【详解】解:(1)点Q 从点B 出发,速度为1/cm s ,点P 从点A 出发,速度为1/cm s ,∴BQ tcm =,AP tcm =,∴()6BP t cm =-,故答案为:t ;()6t -;(2)根据题意分三种情况讨论:①如图所示:当PQ CB ⊥时,90PQB ∠=︒,∵三角形ABC 为等边三角形,∴60A ACB ABC ∠=∠=∠=︒,∴30QPB ∠=︒, ∴12QB PB =,由(1)可得:()162t t =-, 解得:2t =;②如图所示:当PQ AB ⊥时,90QPB ∠=︒,∵60ABC ∠=︒,∴30BQP ∠=︒,∴2QB PB =,由(1)可得:()26t t =-,解得:4t =;③如图所示:当PQ AC ⊥时,90AQP ∠=︒,∵60A ∠=︒,∴30APQ ∠=︒,∴2AP QA =,由(1)可得:()212t t =-,解得:8t =;综上可得:当2t =或4t =或8t =时,PQ 与ABC 的一条边垂直;(3)根据题意,分情况讨论:①当点Q 在BC 边上时,CQ PQ =时,如图所示:过点Q 作QE AB ⊥,∵60ABC ∠=︒,∴30BQE ∠=︒, ∴1122BE BQ t ==,∴QE =, 6CQ t =-,136622PE t t t =--=-,∴PQ ==∵CQ PQ =,∴()2223662t t ⎫⎛⎫-=-+⎪ ⎪⎪⎝⎭⎝⎭,解得:3t =或0t =(舍去);②当点Q 在BC 边上时,CP CQ =时,如图所示:过点P 作PF AC ⊥,∵60CAB ∠=︒,∴30APF ∠=︒, ∴1122AF AP t ==,∴PF =, 6CQ t =-,162CF t =-,∴CP ==∵CP CQ =,∴()2221662t t ⎫⎛⎫-=-+⎪ ⎪⎪⎝⎭⎝⎭, 解得: 0t =(舍去);③当点Q 在BC 边上时,CP PQ =时,如图所示:由图可得:60CQP ∠>︒,60QCP ∠<︒,CQP QCP ∠≠∠,∴这种情况不成立;④当点Q 在AC 边上时,只讨论CP PQ =情况,如图所示:过点Q 作QE AB ⊥,过点C 作CF AB ⊥,∵60CAB ∠=︒,ABC ∆为等边三角形,∴30AQE ∠=︒,3AF BF ==,∴CF =12AQ t =-, ∴162AE t =-,∴)12QE t =-, ∴136622EP t t t ⎛⎫=--=- ⎪⎝⎭,∴PQ ==∵CF =3PF t =-,∴PC =∵PC PQ =,∴()(()222233126342t t t ⎛⎫-+-=+- ⎪⎝⎭, 解得:19t =或26t =(舍去),综上可得:当3t =或9t =时,ΔΔΔΔ为等腰三角形.【点睛】题目主要考查三角形与动点问题,包括勾股定理的应用,含30︒角的直角三角形的特殊性质,等腰三角形的判定和性质,求解一元二次方程等,根据题意,作出相应图形,然后利用勾股定理求解是解题关键.。
勾股定理,实数
xxxXXXXX学校XXXX年学年度第二学期第二次月考XXX年级xx班级姓名:_______________班级:_______________考号:_______________一、选择题(每空?分,共?分)1、要使式子有意义,则的取值范围是()A.x> B.x>- C.x≥ D.x≥-2、估算的值在A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间3、下列关于的说法中,错误的是()A.是无理数 B.是15的算术平方根C.15的平方根是 D.4、一个正偶数的算术平方根是,那么与这个正偶数相邻的下一个正偶数的算术平方根是()A. B. C.D.5、下列说法错误的是() A.1是(-1)2的算术平方根 B.0的平方根是0C.-27的立方根是-3 D .6、若,则、、的大小关系是()A. B . C . D .7、以OA为斜边作等腰直角三角形OAB,再以OB为斜边在△OAB外侧作等腰直角三角形OBC,如此继续,得到8个等腰直角三角形(如图),则图中△OAB与△OHJ的面积比值是()A.32 B.64 C.128 D.256二、填空题(每空?分,共?分)8、根据图所示的程序计算,若输入x的值为64,则输出结果为________.9、请你观察思考下列计算过程:因为112=121,所以=11;同样,因为1112=12321,所以=111;…由此猜想=_10、直角三角形纸片的两直角边BC、AC的长分别为6、8,现将如图那样折叠,使点与点重合,折痕为,则的长为________.11、如图,矩形ABCD 中,AB=2,BC=3,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,则CE 的长为 。
三、简答题(每空? 分,共? 分)12、(1)观察:……可得= .(1.5分)如果,则奇数的值为 .(1.5分)(2)观察式子:;;……按此规律计算=.(2分)13、已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.14、如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形(涂上阴影).⑴在图1中,画一个三角形,使它的三边长都是有理数;⑵在图2、图3中,分别画一个直角三角形,使它的三边长都是无理数.(两个三角形不全等)15、如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米,求FC和EF的长。
24-25八年级数学第一次月考卷(深圳专用,北师大版八上第1~2章:勾股定理+实数)(考试版A4)
2024-2025学年八年级数学上学期第一次月考卷(深圳专用)(考试时间:90分钟试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:北师大版第一章勾股定理+第二章实数。
5.难度系数:0.68。
第Ⅰ卷一、选择题:本大题共8小题,每小题3分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列数中是无理数的是()A.2πB.3.1415926C.117D. 3.6-2.以下列各组数为边长,不能构成直角三角形的是()A.8,15,17B.7,24,25C.6,8,10D.1,13)A3=B=C6´=D+= 4.如图是由两个直角三角形和三个正方形组成的图形,其中阴影部分的面积是()A.16B.25C.144D.1695.实数a ,b 在数轴上的位置如图所示,且|a |>|b ||2a +b |的结果为( )A .2a +b .﹣2a +b C .a +b D .2a ﹣b6.使代数式y =有意义的自变量x 的取值范围是( )A .4x ¹B .3x >C .3x ³D .3x ³且4x ¹7.在四边形ABCD 中,AD BC ∥,90D Ð=°,5AD =,3BC =,分别以A ,C 为圆心,大于12AC 的长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O ,若点O 是AC 的中点,则CD 的长为( )A B C .D .48.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD ,对角线AC BD ,交于点O .若1AD =,4BC =,则22AB CD +等于( )A .15B .16C .17D .20第Ⅱ卷二、填空题:本大题共5小题,每小题3分,共15分。
八上第一次月考数学试卷-勾股定理与实数
八年级(上)第一次阶段考(1.勾股定理与2.实数)班级: 姓名:A 卷(100分)一、选择题(本大题共10小题,每题3分,计30分) 1、如图(1),带阴影的矩形面积是( )平方厘米A .9B .24C .45D .51 2、观察下列几组数据:(1) 8, 15, 17;(2) 7, 12, 15;(3)12, 15, 20; (4) 7, 24, 25,(5);51,41,31===c b a其中能作为直角三角形三边长的有( )组 A .1 B .2 C .3 D .4 3、81的算术平方根是( )A. 9B. -3C. 3D.±34、将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .无法判断5、下列说法正确的是 ( )A .带根号的数都是无理数B .不带根号的数都是有理数C .无理数是无限小数D .无限小数是无理数 6、下列二次根式是最简二次根式的是( ) A.44+a B.48C.baD.147、已知某数有两个平方根分别是a+3与2a -15,这个数的值为( )。
A.4B.7±C.7-D.498、下列说法正确的是 ( )A .一个数的平方根互为相反数B .平方根等于本身的数是0和1C .立方根等于本身的数是0和1D .算术平方根等于本身的数是0和1 9、下列计算或命题下列各式计算正确的是( )A2=±B.2=±C.1=-D.3=10、如图所示.一个圆柱高为8 cm ,底面圆的半径为5 cm ,则从圆柱左下角A 点出发.沿圆柱体表面到右上角B 点的最短路程为 ( )ABCD .以上都不对二、填空题(本大题共5小题,每题4分,计20分) 11、下列各数:①12-,②0,③722,④3125-,⑤1010010001.0…(相邻两个1之间0的个数逐次增加1),⑥210-,⑦ 2π-,无理数有 _______ (填序号) 12、计算下列各式: ①=169 ,②=-3125 ,③=±900 ,④=-0009.0 ,⑤=2)5( ,⑥=-2)4( ,⑦=33a ,⑧=+2243 。
北师大版八年级数学上册第一、二章《勾股定理与实数》综合测试(3)
最新北师大版《八年级数学名师新课同步单元达标练习》 非精品不上传第1页 佛山中学数学吉老师 137********QQ :107669811八年级数学(上)第一、二章综合测试(3)一、选择题:1、已知9,a ,15是一组勾股数,则a =( ) A 、6 B 、10 C 、12 D 、132、下列各数中,有理数的个数为( )31- ; 2 ; 35.0 ; 2π ; 0 ;0.21211211121111……;25-; 364- ; 173-;A 、3B 、4C 、5D 、6 3、下列说法中不正确...的是( ) A 、-1的立方根是-1。
B 、-4的平方根是2±。
C 、0的平方根与立方根相等。
D 、每一个数都有一个立方根。
4、下列几种说法中 : ①无限小数都是无理数○2无理数与无理数的和一定还是无理数 ○3无理数的相反数还是无理数 ○4无理数与有理数的和一定是无理数 ○5正数、负数和0统称有理数 ○6 无理数与有理数的积一定仍是无理数 正确的有 ( )个。
A 、1B 、2C 、3D 、4 5、直角三角形的两直角边分别为5、12,则斜边上的高为( )A 、1360B 、213C 、1380D 、66、小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1 m ,当它把绳子的下端拉开5 m 后,发现下端刚好接触地面,则旗杆的高为 ( )A 、6cmB 、12cmC 、13cmD 、14cm 7、如图,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A 、2cm B 、3 cm C 、4 cm D 、5 cm8、下列各式估算正确的是( )A 、4.605676≈B 、38.65603≈C 、66.043.0≈D 、969003≈9、下列各组线段中的三个长度①9、12、15;②6、8、10;③ 32、42、52;④3a 、4a 、5a (a>0);⑤m 2-n 2、2mn 、m 2+n 2(m 、n 为正整数,且m>n )其中可以构成直角三角形的有( ) A 、5组; B 、4组; C 、3组; D 、2组 10、如图,数轴上表示1、2的对应点分别为A 、B ,点B 关于点A 的对称点为C ,则点C 所表示的数是( )A.、2-1 B 、 1-2 C 、2-2 D 、2-2 二、填空题:11、81的平方根是 ;—8的立方根是 12、 Rt △ABC 的三边分别为a,b 和c,已知a=3,b=4,则c= ; 13、大于5-且小于3的所有整数和是____________14、如果4是5m+1的算术平方根,那么2-10m=_______________。
勾股定理实数单元测试题(2014.7.23)
勾股定理与实数单元测试题一一.选择题(每小题3分,共36分)1. ).A.2 B.±2 C.-2 D.4.2. 在-1.732,2,π,3.41,2+3,3.212212221…,3.14这些数中,无理数的个数为( ). A.5 B.2 C.3 D.43. 已知下列结论:①在数轴上只能表示无理数2;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个. 其中正确的结论是( ).A.①②B.②③C.③④D.②③④ 4. 下列各式中,正确的是( ).A.3355-=-B.6.06.3-=-C.13)13(2-=- D.636±=6. 下列说法中,正确的是( ).A. 不带根号的数不是无理数B. 8的立方根是±2C. 绝对值是3的实数是3D. 每个实数都对应数轴上一个点7. 若a a =-2)3(-3,则a 的取值范围是( ).A. a >3B. a ≥3C. a <3D. a ≤3 8. 能使xx --+352有意义的x 的范围是( ). A. x ≥-2且x ≠3 B. x ≤3 C.-2≤x <3 D.-2≤x ≤3 9.下列说法错误的是( )A .3-是9的平方根B .5的平方等于5C .1-的平方根是1±D .9的算术平方根是310.下列说法中正确的是( )A. 实数2a -是负数 B.a a =2C. a -一定是正数D. 实数a -的绝对值是a 11. 有下列说法:其中正确的说法的个数是( )(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数; (4)无理数都可以用数轴上的点来表示。
A .1 B .2 C .3 D .4 12.()20.7-的平方根是( )A .0.7-B .0.7±C .0.7D .0.49 二.填空题(每小题3分,共30分) 13.若x 的立方根是-41,则x =___________.14.化简 =___________。
《勾股定理和实数》期末总复习试题含答案
鲁教版七年级数学上册期末总复习第三四单元勾股定理和实数复习测试题(含答案)一.选择题(共14小题)1.如图,每个小正方形的边长都相等,A、B、C是小正方形的顶点,则∠ABC的度数为()A.30°B.45°C.60°D.90°(1题图)(3题图)(6题图)(7题图)2.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8D.2,3,43.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S1=4,S2=9,S3=8,S4=10,则S=()A.25B.31C.32D.404.知一个Rt△的两边长分别为3和4,则第三边长的平方是()A.25B.14C.7D.7或255.三角形的三边长分别为6,8,10,它的最短边上的高为()A.6B.4.5C.2.4D.86.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺7.如图,圆柱形纸杯高8cm,底面周长为l2cm,在纸杯内壁离杯底2Cem的点C处有一滴蜂蜜,一只蚂蚁正好在纸杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为()A.2B.6C.10D.以上答案都不对8.在实数0、π、、、﹣中,无理数的个数有()A.1个B.2个C.3个D.4个9.的算术平方根是()A.2B.±2C.D.±10.的平方根是()A.±9B.9C.3D.±311.下列运算中,正确的是()A.(﹣2)0=1B.=﹣3C.=±2D.2﹣1=﹣212.若一个数的平方根与它的立方根完全相同,则这个数是()A.0B.1C.﹣1D.±1,013.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c14.下列四个数中的负数是()A.﹣22B.C.(﹣2)2D.|﹣2|二.填空题(共8小题)15.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.(15题图)(16题图)(17题图)16.如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…,则OA10的长度为.17.如图,AD=13,BD=12,∠C=90°,AC=3,BC=4.则阴影部分的面积=.18.一个零件的形状如图,工人师傅量得这个零件的各边尺寸(单位:dm)如下:AB=3,AD=4,BC=12,CD=13,且∠DAB=90°,求这个零件的面积.(18题图)(19题图)19.如图将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF=.20.若实数m,n满足(m﹣1)2+=0,则(m+n)5=.21.已知a是﹣1的整数部分,则a=.22.计算:|﹣2|+(π﹣0)0×(﹣1)2015﹣+()﹣3=.三.解答题(共8小题)23.如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.24.如图,已知AC=4,BC=3,BD=12,AD=13,∠ACB=90°,试求阴影部分的面积.25.如图,在四边形地块ABCD中,∠B=90°,AB=30m,BC=40m,CD=130m,AD=120m,求这块地的面积.26.如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?27.已知2m﹣3与4m﹣5是一个正数的平方根,求这个正数.28.求下列x的值.(1)3x3=﹣81;(2)x2﹣=0.29.在数轴上表示与它的相反数.30.探索与应用.先填写下表,通过观察后再回答问题:a…0.00010.01110010000……0.01x1y100…(1)表格中x=;y=;(2)从表格中探究a与数位的规律,并利用这个规律解决下面两个问题:①已知≈3.16,则≈;②已知=1.8,若=180,则a=;(3)拓展:已知,若,则z=.鲁教版七年级数学上册期末总复习第三四单元勾股定理和实数复习测试题参考答案一.选择题(共14小题)1.B;2.B;3.B;4.D;5.D;6.D;7.C;8.B;9.C;10.D;11.A;12.A;13.D;14.A;二.填空题(共8小题)15.76;16.32;17.24;18.36;19.6;20.-1;21.3;22.7;三.解答题(共8小题)23.解:连接AC,如图所示:∵∠B=90°,∴△ABC为直角三角形,又∵AB=3,BC=4,∴根据勾股定理得:AC==5,又∵CD=12,AD=13,∴AD2=132=169,CD2+AC2=122+52=144+25=169,∴CD2+AC2=AD2,∴△ACD为直角三角形,∠ACD=90°,=S△ABC+S△ACD=AB•BC+AC•CD=×3×4+×5×12=36.则S四边形ABCD故四边形ABCD的面积是36.(23题图)(24题图)(25题图)24.解:连接AB,∵∠ACB=90°,∴AB==5,∵AD=13,BD=12,∴AB2+BD2=AD2,∴△ABD为直角三角形,阴影部分的面积=AB×BD﹣AC×BC=30﹣6=24.答:阴影部分的面积是24.25.解:连接AC,如下图所示:∵∠B=90°,AB=30,BC=40,∴AC==50,在△ACD中,AC2+AD2=2500+14400=16900=CD2,∴△ACD是直角三角形,=S△ABC+S△ACD=AB•BC+AC•AD=×30×40+×50×120=600+3000∴S四边形ABC D=3600(m2).26.解;在直角△ABC中,已知AB=2.5m,BC=0.7m,则AC=m=2.4m,∵AC=AA1+CA1∴CA1=2m,∵在直角△A1B1C中,AB=A1B1,且A1B1为斜边,∴CB1==1.5m,∴BB1=CB1﹣CB=1.5m﹣0.7m=0.8m答:梯足向外移动了0.8m.27.解:当2m﹣3=4m﹣5时,m=1,∴这个正数为(2m﹣3)2=(2×1﹣3)2=1;当2m﹣3=﹣(4m﹣5)时,m=∴这个正数为(2m﹣3)2=[2×﹣3]2=故这个正数是1或.28.解:(1)系数化为1得:x3=﹣27,∴x=﹣3;(2)移项得:∴,.29.解:如图所示:30.解:(1)x=0.1,y=10,故答案为:0.1,10;(2)①=31.62,a=32400,故答案为:31.62,32400;(4)z=0.012,故答案为:0.012.。
人教版数学八年级下册 第十七章 勾股定理 单元测试卷(含答案解析)
人教版数学八年级下册第十七章勾股定理单元测试卷一、单选题(共10题;共20分)1.下列说法:①无理数分为正无理数,零,负无理数;②-4是16的平方根;③如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;④任何实数都有立方根,其中正确的有()A. 4B. 3C. 2D. 12.若一个直角三角形的三边分别为a、b、c,a2=144,b2=25,则c2=()A. 169B. 119C. 169或119D. 13或253.如图,∠B=∠ACD=90°;AD=13;CD=12;BC=3,则AB的长为()A. 4B. 5C. 8D. 104.下列各组数是勾股数的是()A. 12、15、18B. 6、8、12C. 4、5、6D. 7、24、255.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处.若M,N两点相距100海里,则∠NOF的度数为()A. 50°B. 60°C. 70°D. 90°6.如图以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点处,则点表示的数是()A. B. C. D.7.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂0A=OB=10分米,晾衣臂支架HG=FE=5分米,HO=FO=4分米。
当∠AOC=90°,且OB∥CD时,线段OG与OE的长分别为( )A. 3和7B. 3和C. 3和2+D. 和2+8.如图,圆柱形容器高为18cm,底面周长为32cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好也在杯内壁,离杯上沿2cm与蜂蜜正相对的点A处,则蚂蚁从内壁A处到达内壁B处的最短距离为()A. 13cmB. cmC. 2 cmD. 20cm9.如图,在△ABC中,AB=AC,∠BAC=60°,BC=2,AD⊥BC于D,点F是AB的中点,点E在AD边上,则BE+EF的最小值是( )A. 1B.C. 2D.10.如图,小江同学把三角尺含有60°角的一端以不同的方向穿入进另一把三角尺(含有45°角)的孔洞中。
北师大版八年级数学上册第一、二章《勾股定理与实数》综合测试(1)
最新北师大版《八年级数学名师新课同步单元达标练习》 非精品不上传第1页 佛山中学数学吉老师 137********QQ :107669811八年级数学(上)第一、二章综合测试(1)一、选择题(每小题3分,共30分): 1、下列各数中是无理数的是( )A 、-3B 、8C 、0D 、0.151515… 2、下列语句中正确的是 ( )A 、4的算术平方根是2B 、4的平方根是2C 、4的算术平方根是2±D 、-4的平方根是-2 3、下列说法正确的是( )A 、负数没有平方根,因此负数也没有立方根B 、一个数的立方根比它本身小C 、正数有两个立方根,它们互为相反数D 、-2是-8的立方根4、下列各式的求值中正确的是( )A 、0001.0=0.1B 、1.001.0±=C 、1.001.0=D 、-0001.0=0.015、如果一个数的立方根是这个数本身,那么这个数是( )(A )1 (B )1- (C )1± (D )0,1± 6、如图,一圆柱高9cm,底面半径4cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π取3)是( )A 20cmB 15cmC 14cmD 无法确定 7、下列各式计算中正确的是( )A 、5x x x =-4 B 、2+222=C 、5223222188=+=+ D 、1532++8、已知,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( ) A 、25海里 B 、30海里 C 、35海里D 、40海里9、2008年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆 方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图)。
如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a 。
八年级数学第一次月考卷(北师大版,八上第1~2章:勾股定理+实数)
2024-2025学年八年级数学上学期第一次月考卷01(考试时间:90分钟;满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:北师大版八上第一章勾股定理+第二章实数。
5.考试难度:0.7.第Ⅰ卷一、选择题:本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列各数是无理数的是()AB.237C.5.034 D.3π2.已知一个直角三角形的两边长分别为1和2,则第三边长是()A.3B C.D31+的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间4.下列三角形中,一定是直角三角形的有()①有两个内角互余的三角形;②三边长分别为0.3,0.4,0.5的三角形;③三边之比为3:4:5的三角形;④三个内角的比是1:2:3的三角形.A.1个B.2个C.3个D.4个5是同类二次根式,则a的值是()A.2B.3C.4D.56.如图,以Rt ABC∆的三边为直角边分别向外作等腰直角三角形.若3AB=,则图中阴影部分的面积为()A.3B.92C.32D.357.下列几组数中,是勾股数的有()①0.6,0.8,1②7,24,25③10,24,26④13,14,15A.1组B.2组C.3组D.4组8.下列说法错误的是()A.4-是16的平方根B.16的算术平方根是2C.125的平方根是15D.255=9.如图,若圆柱的底面周长是50cm,高是120cm,从圆柱底部A处沿侧面缠绕一圈丝线到顶部B处,则这条丝线的最小长度是()A.170cm B.70cm C.145cm D.130cm10.已知实数a在数轴上的位置如图,则化简2|1|a a-+的结果为()A .1B .1-C .12a -D .21a -第Ⅱ卷二、填空题:本大题共5小题,每小题3分,共15分。
勾股定理及实数的测试卷
勾股定理与二次根式复习训练A 卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分)1. 数轴上的点表示的数一定是( )A.整数B.有理数C.无理数D.实数 2.33)4(-的值是 ( )A.-4B.4C.±4D.16 3. 下列式子中无意义的是( )AB CD 4. 在△ABC 中,∠A=90°,∠A 、∠B 、∠C 的对边长分别为a 、b 、c ,则下列 结论错误的是( )A .a 2+b 2=c 2B .b 2+c 2=a 2C .222a b c -=D .222a c b -= 5.下列说法中,正确的是 ( )A .64的平方根是8B .16的平方根是4和-4C .(-3)2没有平方根D .4的平方根是2和-2 6. 下列运算正确的是 ( )A.3+2 =5B.3×2=6C.(3-1)2=3-1D.2235+=5+3 7. 等腰三角形腰长10cm ,底边长16cm ,则等腰三角形面积是( ) A .296cm B .248cmC .224cmD .232cm8.三角形三边c b a ,,满足ab c b a 2)(22+=+,则这个三角形是 ( ) A .锐角三角形 B .钝角三角形 C .直角三角形D ,等腰三角形9. Rt △ABC 中,斜边AB=1,则AB 2+BC 2+AC 2的值是( ) A .2 B .4 C .6 D .810.如图一直角三角形纸片,两直角边cm BC cm AC 8,6==,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A.cm 2 B .cm 3C .cm 4D .cm 5二.填空题(本大题共5个小题,每小题4分,共20分)11.49的平方根是________,0.216的立方根是________12.已知等边三角形的边长为6cm ,则它的高为______ 13. 如果0)6(42=++-y x ,则=+y x ________.14. 化简: 327-= ,51= . 15. 若三角形三边之比为3∶4∶5,周长为24,则三角形面积是________.三.解答题(本大题共6个小题,共50分)16.计算题(本小题满分12分,每题6分) (1 (2)-22+(-2)2+91 +(-1)2013.A EBD C第10题图17.求下列各式中x 的值(本小题满分12分,每题6分) (1)()823=-x (2)10)192=+x (18.(本小题满分8分)如图,AB 为一棵大树,在树上距地面10m 的D 处有两只猴子,它们同时发现地面上的C 处有一筐水果,一只猴子从D 处爬到树顶A 处,利用拉在A 处的滑绳AC ,滑到C 处,另一只猴子从D 处滑到地面B ,再由B 跑到C ,已知两只猴子所经路程都是15m ,求树高AB 的长度. A D19.(本小题满分8分)已知a 3-1与27-b 互为相反数,求ab 的算术平方根。
《勾股定理》《实数》期末复习
《勾股定理》期末复习题班级: 姓名: 成绩:一、填空题1.在Rt ⊿ABC 中,斜边AB = 2,则______222=++CABCAB ;2.Rt ⊿ABC 中,斜边AB 上的高为CD ,若AC = 3,BC = 4。
则CD = ; 3.如果梯子底端离建筑物9m ,那么15m 长的梯子可达到建筑物的高度是__。
4.在△ABC 中,若其三条边的长度分别为9、12、15,则以两个这样的三角形所拼成的长方形的面积是____。
5. △ABC 中,AB=AC=10cm ,BC=16cm ,AD ⊥BC 于D ,则AD=____。
二、选择题1.CD 为直角三角形ABC 斜边AB 上的高,若AB = 10,AC :BC = 3:4,则这个直角三角形的面积为 ( )(A )6 (B )8 (C ) 12 (D ) 242.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1 m ,当它把绳子的下端拉开5 m 后,发现下端刚好接触地面,则旗杆的高为 ( ) (A )8cm (B )10cm (C )12cm (D )14cm3.如图,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm , 现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合, 则CD 等于( )(A ) 2cm (B ) 3 cm (C ) 4 cm (D ) 5 cm4.下列各组线段中的三个长度①9、12、15;②7、24、25;③32、42、52;④3a 、4a 、5a (a>0);⑤m 2-n 2、2mn 、m 2+n 2(m 、n 为正整数,且m>n )其中可以构成直角三角形的有( )A 、5组;B 、4组;C 、3组;D 、2组5.直角三角形有一条直角边的长为11,另外两边的长也是正整数,那么此三角形的周长是( )A 、120;B 、121;C 、132;D 、123三.解答题1.如图,在四边形ABCD 中,∠BAD =︒90,∠DBC =︒90,AD = 3,AB = 4,BC = 12,求CD ;A2.已知,如图,折叠长方形(四个角都是直角,对边相等)的一边AD 使点D 落在BC 边的点F 处,已知AB = 8cm ,BC = 10 cm ,求EC 的长3.为了丰富少年儿童的业余生活,某社区要在如图所示AB 所在的直线建一图书室,本社区有两所学校所在的位置在点C 和点D 处,CA ⊥AB 于A ,DB ⊥AB 于B ,已知AB = 25km ,CA = 15 km ,DB = 10km ,试问:图书室E 应该建在距点A 多少km 处,才能使它到两所学校的距离相等?4.如图,长方体的长为15 cm ,宽为10 cm ,高为20 cm ,点B 离点C 5 cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是多少?DEA《实数》期末复习题一、填空题1、36的平方根是 ;-8的立方根是 。
24-25八年级数学第一次月考卷(辽宁专用)(考试版A4)【测试范围:勾股定理、实数】(北师大版)
2024-2025学年八年级数学上学期第一次月考卷(辽宁专用)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:丰富的图形世界、有理数及其运算5.难度系数:0.65。
第Ⅰ卷一.选择题(共10小题,满分30分,每小题3分)1.下列各式中,二次根式是()A B C D 2.下列各组数中,勾股数是()A .13,14,15B .1,1C .0.3,0.4,0.5D .8,15,17310.2121121112...,(每两个2之间依次多一个1),0.3g 中,无理数有( )A .2个B .3个C .4个D .5个4.如图,公园园内池塘边A 、B 两点,在池塘边选定一点C ,构成一个三角形ABC ,使90ABC Ð=°,若测得AC 长26m ,BC 长24m ,则A 、B 两点之间的距离为()A .10mB .8mC .5mD .12m5.下列运算正确的是()A 5=±B .1-=9=D =6式的有( )个A .1B .2C .3D .47.如图,已知直角三角形ABC 的三边长分别为a 、b 、c (其中c 为斜边),分别以直角三角形的三边为直径,向外作半圆,已知132,5S S ==,那么2S =( )A .B .3C .4D .58.把-A .B .C .D 9.已知Rt ABC V 的两条直角边分别为6,8,现将Rt ABC V 按如图所示的方式折叠,使点A 与点B 重合,则BE 的长为()A .252B .152C .254D .15410.定义:有两个相邻的内角是直角,并且有两条邻边相等的四边形称为邻等四边形,相等两邻边的夹角称为邻等角.例如:如图①,在四边形ABCD 中,90A ABC Ð=Ð=°且DC BC =,那么四边形ABCD 就是邻等四边形.问题解决:如图②,在65´的方格纸中,A ,B ,C 三点均在格点上,若四边形ABCD 是邻等四边形(点D 在格点上),则所有符合条件的点D 共有()个.A .2B .3C .4D .5第Ⅱ卷二.填空题(共5小题,满分15分,每小题3分)11a 的值为__________.12.如图,数轴上的点P 表示的数为无理数,该数可以为__________.13.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA 静止的时候,踏板离地高一尺(1AC =尺),将它往前推进两步(10EB =尺),此时踏板升高离地五尺(5BD =尺),则秋千绳索(OA 或OB )的长度为__________尺.14.有一个数值转换机,原理如下:当输入的16x =时,输出的y =__________.三、解答题(本大题共8个小题,第16、17、18、19题每题8分,第20题9分,第21题10分,第22、23题每题12分,共75分)16.计算:17.如图,小区A 与公路l 的距离200AC =米,小区B 与公路l 的距离400BD =米,已知800CD =米.(1)政府准备在公路边建造一座公交站台Q ,使Q 到A 、B 两小区的路程相等,求CQ 的长;(2)现要在公路旁建造一利民超市P ,使P 到A 、B 两小区的路程之和最短,求PA PB +的最小值,求出此最小值.18.如图,在一条东西走向的河流的一侧有一村庄C ,河边原有两个取水点A ,B ,其中AB AC =,由于某种原因,由C 到A 的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H (A 、H 、B 在同一条直线上),并新修一条路CH ,测得5km CB =,4km CH =,3km HB =.(1)CH 是不是从村庄C 到河边的最近的路,请通过计算加以说明;(2)求新路CH 比原路少多少千米.19.如图,观察图形,认真分析,其中1S 表示12Rt A A O △的面积,2S 表示23Rt A A O △的面积,…,以此类推.22212OA =+=,1S =22313OA =+=,2S22414OA =+=,3S ….根据以上规律,解答下列问题:(1)填空:26OA =______,6S =______;(2)求2222123100S S S S +++×××+的值.21.我们在学习有理数时,可以根据有理数在数轴上的位置关系比较有理数的大小,某数学兴趣小组发现可以用相同的方法比较无理数的大小,请根据他们的探究过程,完成下列问题.(1)1在数轴上的位置;(2)11;(3)若a b (a b .22.【知识链接】(1)有理化因式:两个含有根式的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相1的有理化因式是1(2)分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去,指的是如果代数式中1====【知识理解】(1)填空:(2)计算:①②;【启发运用】(3L 23.【阅读理解】若3a b +=,1ab =,求22a b +的值.解:因为3a b +=,所以()29a b +=,即:2229a ab b ++=,又因为1ab =,所以227a b +=【方法应用】(1)若7x y +=,2229x y +=,求xy 的值.(2)若()815x x -=,则()228x x -+=________.【拓展提升】(3)在Rt ABC V 中,90C Ð=°,11AC BC +=,三角形ABC 的面积为232,求的长.(4)如图,在四边形ABCD 中,对角线AC BD ^于点O ,且2BD AC -=,22100BD AC +=,则四边形ABCD 的面积为_________.。