苏教版九年级数学下册摸底试卷及答案

合集下载

苏教版九年级数学第二学期一模试卷(含答案)

苏教版九年级数学第二学期一模试卷(含答案)

初三数学第一次课堂检测一、选择题本大题共10小题,每小题3分,共30分. 1.193-⨯的结果是 A. 3 B. 3- C.13- D.132.下列计算正确的是A.633x x x ÷= B.933x x x =• C.729()a a = D.22264y y -=-3.一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为 A.60.100810⨯ B.61.00810⨯ C.51.00810⨯ D.410.0810⨯4.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们那么20 A. 85,90 B. 85,87.5 C. 90,85 D. 95,90 5.一个多边形的每一个内角均为108º,那么这个多边形是A.七边形B.六边形C.五边形D.四边形6.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,己知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马,多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为A.10033100x y x y +=⎧⎨+=⎩B.1003100x y x y +=⎧⎨+=⎩C.1003100x y x y +=⎧⎨+=⎩D.100131003x y x y +=⎧⎪⎨+=⎪⎩7.己知圆锥的底面半径为4cm ,母线长为5cm ,则这个圆锥的侧面积是A. 20πcm 2B. 20cm 2C.40πcm 2D. 40cm 28.如图,在矩形ABCD 中,2AB =,3BC =.若E 是边CD 的中点,连接AE ,过点B 作BF AE ⊥于点F ,则BF 的长为 A.2103 B.5103 C.510 D.5539.己知抛物线2y ax bx c =++(0)b a >>与x 轴最多有一个交点,现有以下三个结论: ①该抛物线的对称轴在y 轴右侧;②关于x 的方程210ax bx c +++=无实数根;③420a b c ++>; 其中,正确结论的个数为A. 0个B. 1个C.2个D.3个10.如图,ABC ∆中,90BAC ∠=︒,5AB =,12AC=,点D 是BC 的中点,将ABD ∆ 沿AD 翻折得到AED ∆,连CE ,则线段CE 的长等于 A.2 B. 9 C. 12013 D. 11913二、填空题:本大题共8小题,每小题3分,共24分.1l.23-的相反数是 . 12.函数y =中自变量x 的取值范围是 .13.一个质地均匀的小正方体,6个面分别标有数字1、1、2、4、5、5.若随机投掷一次小正方体,则朝上一面的数字是5的概率为 .14.如图,点A ,B ,C 在⊙O 上,72AOB ∠=︒,则ACB ∠等于 .15.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数ky x=的图像上,则k 的值为.16.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A ,B ,C ,D 都在格点处,AB 与CD 相交于O ,则sin BOD ∠的值等于 .17.如图①,四边形ABCD 中,//AB CD ,90ADC ∠=︒,P 从A 点出发,以每秒2个单位长度的速度,按A B C D →→→的顺序在边上匀速运动,设P 点的运动时间为t 秒,PAD ∆的面积为S ,S 关于t 的函数图像如图②所示,当P 运动到BC 中点时,PAD ∆的面积为.18.如图,在ABC ∆中,90ACB ∠=︒,12BC =,9AC =,以点C 为圆心,6为半径的圆上有一个动点D .连接AD 、BD 、CD ,则23AD BD +的最小值是 . 三、解答题:本大题共10小题,共76分.19.(本题满分5分)计算:011cos60(2()3π-︒---+20.(本题满分5分)解不等式组:3(2)41213x x x x --≤⎧⎪+⎨>-⎪⎩21.(本题满分6分)先化简,再求值:2211()1121x x x x x x -+÷+--+,其中1x =. 22.(本题满分6分)甲、乙两公司为“见义勇为基金会”各捐款30000元.己知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.甲、乙两公司各有多少人? 23.(本题满分8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:(1)m = ,n = ;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为 º;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.24.(本题满分8分)如图,在ABCD Y 中,点E 是边BC 的中点,连接AE 并延长,交DC 的延长线于点F .连接AC 、BF . (1)求证: ABE FCE ∆≅∆;(2)当四边形ABFC 是矩形时,若80AEC ∠=︒,求D ∠的度数.25.(本题满分8分)如图,在ABC ∆中,AB AC =,BC x ⊥轴,垂足为D ,边AB 所在直线分别交x 轴、y 轴于点E 、F ,且AF EF =,反比例函数12y x=的图像经过、C 两点,已知点(2,)A n .(1)求AB 所在直线对应的函数表达式;(2)求点C 的坐标.26.(本题满分10分)如图,已知ABC ∆内接于⊙O ,直径AD 交BC 于点E ,连接OC ,过点C 作CF AD ⊥,垂足为F .过点D 作⊙O 的切线,交AB 的延长线于点G . (1)若50G ∠=︒,求ACB ∠的度数;(2)若AB AE =,求证:BAD COF ∠=∠;(3)在(2)的条件下,连接OB ,设AOB ∆的面积为1S ,ACF ∆的面积为2S , 若1289S S =,求tan CAF ∠的值27.(本题满分10分)如图,四边形ABCD 是矩形,点P 是对角线AC 上一动点(不与A 、C 重合),连接PB ,过点P 作PE PB ⊥,交射线DC 于点E ,已知3AD =,3sin 5BAC ∠=.设AP 的长为x .(1)AB = ;当1x =时,PEPB= ; (2)①试探究:PEPB否是定值?若是,请求出这个值;若不是,请说明理由; ②连接BE ,设PBE ∆的面积为S ,求S 的最小值. (3)当PCE ∆是等腰三角形时.请求出x 的值;28.(本题满分10分)如图1,抛物线2222(1)333y x m x m =---(0)m >与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,且3OB OA =.(1)求该抛物线的函数表达式;(2)动点D 在线段BC 下方的抛物线上.①连接AC 、BC ,过点D 作x 轴的垂线,垂足为E ,交BC 于点F .过点F 作FG AC ⊥,垂足为G .设点D 的横坐标为t ,线段FG 的长为d ,用含t 的代数式表示d ;②过点D 作DH BC ⊥,垂足为H ,连接CD .是否存在点D ,使得CDH ∆中的一个角恰好等于ABC ∠的2倍?如果存在,求出点D 的横坐标;如果不存在,请说明理由.23.。

【苏科版】初三数学下期末模拟试题附答案

【苏科版】初三数学下期末模拟试题附答案

一、选择题1.如图,是由-些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块最后搭成一个大的长方体,至少还需要添加()个小立方块.A.26 B.38 C.54 D.562.如图是一个由多个相同小正方体搭成的几何体的俯视图,图中所标数字为该位置小正方体的个数,则这个几何体的主视图是()A.B.C.D.3.从上面看下图能看到的结果是图形()A.B.C.D.4.如图,王华用橡皮泥做了个圆柱,再用手工刀切去一部分,则其左视图是()A.B.C.D.5.如图,是一块带有圆形空洞和正方形空洞(圆面直径与正方形边长相等)的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的可能是().A .B .C .D . 6.如图,已知该圆锥的侧面展开图的圆心角为120°、半径长为6,圆锥的高与母线的夹角为α,则( )A .圆锥的底面半径为3B .2tan 2α=C .该圆锥的主视图的面积为82D .圆锥的表面积为12π7.小明在学完《解直角三角形》一章后,利用测角仪和校园旗杆的拉绳测量校园旗杆的高度,如图,旗杆PA 的高度与拉绳PB 的长度相等,小明先将PB 拉到'PB 的位置,测得(''PB C a B C ∠=为水平线),测角仪/B D 的高度为1米,则旗杆PA 的高度为( )A .11sin a +米B .11cos a -米C .11sin a-米 D .11cos a+米 8.如图,在Rt △ABC 中,斜边AB 的长为m ,∠A=35°,则直角边AC 的长是( )A .m·sin35°B .cos35m ︒C .sin 35m ︒D .m·cos35° 9.如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使得其面积变为原矩形面积的一半,则平行四边形ABCD 的内角BCD ∠的大小为( )A.100°B.120°C.135°D.150°10.如图,平行四边形ABCD中,AB⊥AC,AB=3,BC=7,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交B C,AD于点E,F,下列说法:①在旋转过程中,AF=CE. ②OB=AC,③在旋转过程中,四边形ABEF的面积为212,④当直线AC绕点O顺时针旋转30°时,连接BF,DE则四边形BEDF是菱形,其中正确的是()A.①②④B.① ②C.①②③④D.② ③ ④11.如图所示,一般书本的纸张是原纸张多次对开得到,矩形ABCD沿EF对开后,再把矩形EFCD沿MN对开,依次类推,若各种开本的矩形都相似,那么ADAB等于()A.2B.22C.512-D.212.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=kx的图象上,OA=1,OC=6,则正方形ADEF的边长为( )A.1.5 B.1.8 C.2 D.无法求二、填空题13.如图是一个几何体的三视图,则这个几何体的侧面积是______.(结果保留π)14.如图,墙角处有6个棱长为1分米的正方体纸盒,露在外面的面积之和是_____平方分米.15.由一些完全相同的小正方体组成的几何体,从正面看和左面看的图形如图所示,则组成这个几何体的小正方体的个数至少是_____个.16.如图 1 的矩形ABCD中,有一点E在AD上,现以BE为折线将点A往右折,如图2⊥于点F,如图3所示,若所示,再过点A作AF CD===,则图3中AF的长度为____.∠123,26,60AB BC BEA︒17.如图,ABCD是一张边长为4cm的正方形纸片,E,F分别为AB,CD的中点,沿过点D的折痕将A 角翻折,使得点A落在EF上的点A′处折痕交AE于点G,则∠ADG=____°EG=___cm .18.如图,边长为6的正方形ABCD绕点C按顺时针方向旋转30后得到正方形EFCG,EF交AD于点H,则DH=____________.19.如图,在矩形ABCD 中,M N 、分别是边AD BC 、的中点,点P Q 、在DC 边上,且14PQ DC =.若8,10AB BC ==,则图中阴影部分的面积是_____________20.如图,一次函数1y k x b =+的图象过点()0,4A ,且与反比例函数()20k y x x=>的图象相交于B 、C 两点,若2BC AB =,则12k k ⋅的值为______.三、解答题21.用若干大小相同的小立方块搭成一个几何体,使得从正面和从上面看到的这个几何体的形状图如图所示.请你画出从左面看到的这个几何体的形状图的可能结果(要求画出不少于三种形状图).22.一个几何体由大小相同的小立方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形的数字表示在该位置的小立方体块的个数,请画出从正面和从左面看到的这个几何体的形状图.23.如图,在等腰△ABC 中,AB =BC ,∠A =30°,O 为线段AC 上一点,以O 为圆心,线段OC 的长为半径画圆恰好经过点B ,与AC 的另一个交点为D .(1)求证:AB 是圆O 的切线;(2)若⊙O 的半径为1,求图中阴影部分的面积.24.如图,已知⊙O 的直径 AB 与弦 CD 互相垂直,垂足为点 E .⊙O 的切线 BF 与弦 AC 的延长线相交于点 F ,且AC=8,tan ∠BDC=34.(1)求⊙O 的半径长;(2)求线段 CF 长. 25.如图, ABC 中,中线AD ,BE 交于点F ,//EG BC 交AD 于点G .(1)求AG GF的值. (2)如果3BD =4DF =,请找出与BDA 相似的三角形,并挑出一个进行证明. 26.如图,直线y=2x-6与反比例函数k y x=的图象交于点A (4,2),与x 轴交于点B . (1)求k 的值及点B 的坐标;(2)求△OAB 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先由主视图、左视图、俯视图求出原来的几何体共有10个正方体,再根据搭成的大正方体的共有4×3×3=36个小正方体,即可得出答案.【详解】解:由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;第一层有7个正方体,第二层有2个正方体,第三层有1个正方体,共有10个正方体,∵搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大正方体,∴搭成的大正方体的共有4×3×3=36个小正方体,∴至少还需要36-10=26个小正方体.故选:A.【点睛】本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大正方体共有多少个小正方体.2.C解析:C【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右分别是1,3,2个正方形.【详解】由俯视图中的数字可得:主视图有3列,从左到右分别是1,3,2个正方形.故选:C.【点睛】此题考查几何体的三视图,解题关键在于掌握其定义.3.D解析:D【分析】先细心观察原立体图形中的圆锥体和长方体的位置关系,结合四个选项选出答案.【详解】从上面往下看到左边一个长方形,右边一个圆,因此只有D 的图形符合这个条件. 故选:D .【点睛】本题考查了三视图的知识,解题的关键是熟知俯视图是从上面往下的视图.4.A解析:A【分析】根据从左边看得到的图形是左视图,可得答案.【详解】从左边看是上下两个矩形,矩形的公共边是虚线.故选A .【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.B解析:B【分析】根据题意,满足条件的空间几何体的三视图中含有圆和正方形.然后分别进行判断即可.【详解】A .正方体的正视图为正方形,侧视图为正方形,俯视图也为正方形,不满足条件.B .圆柱的正视图和侧视图为相同的矩形,俯视图为圆,满足条件.C .圆锥的正视图为三角形,侧视图为三角形,俯视图为圆,不满足条件.D .球的正视图,侧视图和俯视图相同的圆,不满足条件.故选B .【点睛】本题主要考查三视图的识别和判断,解题关键在于熟练掌握常见空间几何体的三视图,比较基础.6.C解析:C【分析】根据圆锥的侧面展开图的弧长等于圆锥底面周长,可知2πr =180n l ,求出r 以及圆锥的母线l 和高h 即可解决问题.【详解】解:设圆锥的底面半径为r ,高为h .A 选项,由题意:2πr =1206180π⨯⨯,解得r =2,故错误;B 选项,h =,所以tanα4=,故错误;C 选项,圆锥的主视图的面积=12×4×D 选项,表面积=4π+2π×6=16π,故错误.故选:C .【点睛】本题考查圆锥的有关知识,记住圆锥的侧面展开图的弧长等于圆锥底面周长,即2πr =180n l π,圆锥的表面积=πr 2+πrl 是解决问题的关键,属于中考常考题型. 7.C解析:C【分析】设PA=PB=PB′=x ,在RT △PCB′中,根据sin αPC PB =',列出方程即可解决问题. 【详解】解:设PA=PB=PB′=x ,在RT △PCB′中,sin αPC PB ='∴1sin αx x-=∴x 1xsin α-=, ∴(1-sin α)x=1,∴x=11sin α-. 故选C .【点睛】 本题考查解直角三角形、三角函数等知识,解题的关键是设未知数列方程,属于中考常考题型.8.D解析:D【分析】根据Rt △ABC 中cos35AC AB AC m︒==,即可得到AC 的长. 【详解】在Rt △ABC 中, AB=m ,∠A=35°,cos35AC AB AC m︒==, ∴AC=cos35m ⋅︒,故选:D. 【点睛】 此题考查锐角三角函数的实际应用,正确掌握各三角函数对应边的比值是解题的关键. 9.D 解析:D【分析】作AE ⊥BC 于E ,根据平行四边形的面积=矩形面积的一半,得出AE=12AB ,再由三角函数即可求出∠ABC 的度数,即可得到答案.【详解】解:作AE ⊥BC 于E ,如图所示:则∠AEB=90°,根据题意得:平行四边形的面积=BC•AE=12BC•AB , ∴AE=12AB , ∴sinB=12AE AB =, ∴∠ABC=30°,∴∠BCD=150°.故选:D .【点睛】本题考查了平行四边形的性质、矩形的性质、面积的计算以及三角函数;熟练掌握平行四边形和矩形的性质,并能进行推理计算是解决问题的关键.10.A解析:A【分析】①通过证明AOF COE ≅△△即可判断;②分别利用勾股定理求出OB,AC 的长度即可得出答案;③先利用ABC 的面积求出AG 的长度,然后利用梯形的面积公式求解即可; ④易证四边形BEDF 是平行四边形,然后通过角度得出90DOF ∠=︒,然后证明DOF DOE ≅,则有DF DE =,则可证明结论.【详解】∵四边形ABCD 是平行四边形,,//,AO CO AD BC AD BC ∴== ,AFO CEO ∴∠=∠ .在AOF 和COE 中,AFO CEO AOF COE AO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩()AOF COE AAS ∴≅,AF CE OF OE ∴==,故①正确;∵AB ⊥AC ,90BAC ∴∠=︒ .∵AB =3,BC=7,222AC BC AB ∴=-= ,112AO AC ∴== , 222OB AO AB ∴=+=,OB AC ∴=,故②正确;过点A 作AG BC ⊥交BC 于点G ,1122ABC S AB AC BC AG =⋅=⋅ , 3222177AB AC AG BC ⋅⨯∴===, 11221()73227ABEF S AF BE AG ∴=+⋅==四边形,故③错误; 连接DE,BF ,,AF CE AD BC ==,DF BE ∴= .∵//DF BE ,∴四边形BEDF 是平行四边形.3sin AB AOB OB ∠== , 60AOB ∴∠=︒ .30AOF ∠=︒,180603090DOF ∴∠=︒-︒-︒=︒,90DOE ∴∠=︒.在DOF △和DOE △中,FO OE DOF DOE DO DO =⎧⎪∠=∠⎨⎪=⎩()DOF DOE SAS ∴≅,DF DE ∴=,∴四边形BEDF 是菱形,故④正确;所以正确的有:①②④,故选:A .【点睛】本题主要考查平行四边形的性质,全等三角形的判定及性质,勾股定理和锐角三角函数,掌握平行四边形的性质,全等三角形的判定及性质,勾股定理和锐角三角函数是解题的关键.11.A解析:A【分析】 首先根据相似的性质,可得对应边成比例,即为AD AB AB BF =,又根据12BF AD =,可得出2212AD AB =,据此进行求解即可.【详解】∵各种开本的矩形都相似,∴矩形ABCD 与矩形BFEA 相似, ∴AD AB AB BF=, ∴AD•BF=AB•AB ,又∵12BF AD =, ∴2212AD AB =,∴AD AB=, 故选A .【点睛】本题考查了相似多边形的的性质,相似多边形对应边之比等于相似比,准确识图,熟练掌握和灵活运用相关知识是解题的关键.12.C解析:C【分析】根据OA 、OC 的长度,可得反比例函数的比例系数k=6,设正方形ADEF 的边长为x ,则OD DE=(1x)x=6⋅+⋅,解得x 即为正方形的边长.【详解】解:根据OA=1,OC=6,可得反比例函数的比例系数k=OA OC=6⋅,设正方形ADEF 的边长为x ,则OD=OA+AD=1+x ,DE=x ,则OD DE=(1x)x=6⋅+⋅,解得:x=2或-3(舍),故选:C .【点睛】本题主要考察了反比例函数与几何图形的综合、解一元二次函数,解题的关键在于根据图形求出反比例函数的比例系数k .二、填空题13.【解析】【分析】易得圆锥的底面直径为2母线长为2根据圆锥的侧面积=π×底面半径×母线长把相应数值代入即可求解【详解】易得此几何体为圆锥底面直径为2母线长为2所以圆锥的侧面积=πrl=2×1π=2π故解析:2π【解析】【分析】易得圆锥的底面直径为2,母线长为2,根据圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【详解】易得此几何体为圆锥,底面直径为2,母线长为2,所以圆锥的侧面积=πrl=2×1π=2π,故答案为2π.【点睛】本题考查了由三视图判断几何体及圆锥的侧面积计算,解题的关键是确定几何体的形状,难度不大.14.12【分析】观察图形知道露在外面的面:上面一层是3个下面一层是9个所以一共是3+9=12个由此根据正方形的面积公式S=a×a求出一个正方形的面积再乘12即可【详解】解:1×1×(3+9)=1×12=解析:12【分析】观察图形知道,露在外面的面:上面一层是3个,下面一层是9个,所以一共是3+9=12个,由此根据正方形的面积公式S=a×a,求出一个正方形的面积,再乘12即可.【详解】解:1×1×(3+9)=1×12=12(平方分米);∴露在外面的面积是:12平方分米.故答案为:12.【点睛】本题考查了求表面积,此题关键是正确数出露在外面的面有几个,再根据正方形的面积公式解决问题.15.4【分析】根据图示可知该几何体有2层由俯视图可得第一层小正方图的个数由主视图可得第二层小正方体的可能的个数即可解决问题【详解】由俯视图易得最底层有3个小正方体由主视图易得第二层最少有1个最多有2个小解析:4【分析】根据图示可知,该几何体有2层,由俯视图可得第一层小正方图的个数,由主视图可得第二层小正方体的可能的个数,即可解决问题.【详解】由俯视图易得,最底层有3个小正方体,由主视图易得,第二层最少有1个,最多有2个小正方体,那么搭成这个几何体的小正方体最少为3+1=4个,最多为3+2=5个故答案为:4【点睛】本题考查了从不同方向观察几何体,难度适中,熟练掌握根据主视图和俯视图确定小正方体的个数是解题关键.16.8【分析】作AH ⊥BC 于H 则四边形AFCH 是矩形AF=CHAH=CF 在Rt △ABH 中解直角三角形即可解决问题【详解】解:作AH ⊥BC 于H 则四边形AFCH 是矩形AF=CH 在Rt △ABE 中∠BAE=90解析:8【分析】作AH ⊥BC 于H ,则四边形AFCH 是矩形,AF=CH ,AH=CF. 在Rt △ABH 中,解直角三角形即可解决问题.【详解】解:作AH ⊥BC 于H ,则四边形AFCH 是矩形,AF=CH.在Rt △ABE 中,∠BAE=90°,∠BEA=60°∴∠ABE=180°-∠A-∠BEA=180°-90°-60°=30°由题意得∠ABH=90°-2∠ABE=90°-30°×2=30°在Rt △ABH 中,∠ABH=30°,3,BC=26∴BH=AB cos30°33 ∴CH=BC-BH=26-18=8.即AF=8.故答案为8.【点睛】本题考查了翻折变换,矩形的性质及解直角三角形等知识.解题的关键是学会添加辅助线,构造直角三角形来解决问题. 17.15【分析】由ABCD 是一张边长为4cm 的正方形纸片EF 分别为ABCD 的中点可得AE=DF=2cmEF=AD=4cm 由翻折可得AG=A′GAD=A′D 在Rt △DF 中利用勾股定理可求得答案求得在Rt △解析:15︒ 436【分析】由ABCD 是一张边长为4cm 的正方形纸片,E ,F 分别为AB ,CD 的中点,可得AE=DF=2cm ,EF=AD=4cm ,由翻折可得AG=A′G ,AD=A′D ,在Rt △DF 'A 中,利用勾股定理可求得答案.求得'A F ,在Rt △DF 'A 中利用正切值即可求得'FDA ∠度数,进而求得∠ADG 度数;在Rt △'A EG 中,设EG=x ,则'A G=AG=2−x ,利用勾股定理即可求得x 值.【详解】∵ABCD 是一张边长为4cm 的正方形纸片,E 、F 分别为AB ,CD 的中点,∴AE=DF=2cm ,EF=AD=4cm ,DG 为折痕,∴AG='A G ,AD='A D ,Rt △DF 'A 中,2222''4223AF A D DF =-=-= '23tan '32A F FDA DF ∠=== ∴'60FDA ∠=︒∴∠ADG =∠'A DG =11(90')301522FDA ⨯︒-∠=⨯︒=︒ ∴'423A E =-Rt △'A EG 中,设EG=x ,则'A G=AG=2−x ,∴x=2222'(2)(423)AG A E x -=---解得x=436-故答案为:15°,436-【点睛】本题考查了图形的翻折问题,翻折后找到相等的边和相等的角,作为解题依据,考查了正方形的性质,在直角三角形中可利用锐角三角函数值求得角度和边长,勾股定理也是解直角三角形常用方法.18.【分析】过点F 作FI ⊥BC 于点I 延长线IF 交AD 于J 根据含30°直角三角形的性质可求出FIFJ 和JH 的长度从而求出HD 的长度【详解】解:过点F 作FI ⊥BC 于点BC 延长线AD 交AD 于J 由题意可知:CF解析:23【分析】过点F 作FI ⊥BC 于点I ,延长线IF 交AD 于J ,根据含30°直角三角形的性质可求出FI 、FJ 和JH 的长度,从而求出HD 的长度.【详解】解:过点F 作FI ⊥BC 于点BC ,延长线AD 交AD 于J ,由题意可知:CF=BC=6,∠FCB=30°,∴FI=3,CI=33∵JI=CD=6,∴JF=JI-FI=6-3=3,∵∠HFC=90°,∴∠JFH+∠IFC=∠IFC+∠FCB=90°,∴∠JFH=∠FCB=30°,设JH=x ,则HF=2x ,∴由勾股定理可知:(2x )2=x 2+32,∴x=3, ∴DH=DJ-JH=33323-=故答案为:23.【点睛】本题考查正方形的性质,涉及正方形的性质,勾股定理,旋转的性质,含30°的直角三角形的性质,本题属于中等题型.19.【分析】连接MN 过点O 作于点E 交CD 于点F 先证明得到相似比是然后求出和的面积用矩形MNCD 的面积减去这两个三角形的面积得到阴影部分面积【详解】解:如图连接MN 过点O 作于点E 交CD 于点F ∵四边形ABC 解析:23【分析】连接MN ,过点O 作OE MN ⊥于点E ,交CD 于点F ,先证明OMN PQO ,得到相似比是4:1,然后求出OMN 和PQO 的面积,用矩形MNCD 的面积减去这两个三角形的面积得到阴影部分面积.【详解】解:如图,连接MN ,过点O 作OE MN ⊥于点E ,交CD 于点F ,∵四边形ABCD 是矩形,∴//AD BC ,AD BC =,∵M 、N 分别是边AD 、BC 的中点,∴DM CN =,∴四边形MNCD 是平行四边形,∴//MN CD ,∴OMN PQO ,相似比是:4:1MN PQ =,∴:4:1OE OF =, ∵152EF BC ==, ∴4OE =,1OF =, ∴184162MNO S =⨯⨯=,12112PQOS =⨯⨯=,8540MNCD S =⨯=, ∴4016123S =--=阴影.【点睛】本题考查相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定. 20.﹣3【分析】由题意可设一次函数的解析式为y =k1x+4然后联立两个函数的解析式可得等式k1x2+4x ﹣k2=0进而可根据根与系数的关系得出x1+x2=﹣x1x2=﹣再由可得点C 的横坐标是点B 横坐标的解析:﹣3【分析】由题意可设一次函数的解析式为y =k 1x +4,然后联立两个函数的解析式可得等式k 1x 2+4x ﹣k 2=0,进而可根据根与系数的关系得出x 1+x 2=﹣14k ,x 1x 2=﹣21k k ,再由2BC AB =可得点C 的横坐标是点B 横坐标的3倍,不妨设x 2=3x 1,然后对上述的两个式子整理变形即得结果.【详解】解:∵一次函数y =k 1x +b 的图象过点A (0,4),∴一次函数的解析式为y =k 1x +4,由k 1x +4=2k x,得k 1x 2+4x ﹣k 2=0, 设上述方程的两个实数根为x 1、x 2,则x 1+x 2=﹣14k , x 1x 2=﹣21k k , ∵BC =2AB ,∴点C 的横坐标是点B 横坐标的3倍,不妨设x 2=3x 1,∴x 1+x 2=4x 1=﹣14k ,x 1x 2=3x 12=﹣21k k , ∴221113k k k ⎛⎫⨯-=- ⎪⎝⎭,整理得:k 1k 2=﹣3. 故答案为﹣3.【点睛】本题考查了一次函数与反比例函数的交点、一元二次方程的根与系数的关系等知识,熟练掌握上述知识、掌握求解的方法是关键.三、解答题21.见解析【分析】根据俯视图可得底面有5个小正方体,结合主视图可得第二层“田”字上可能有2个或3个或4个或5个,进而可得答案.【详解】解:可能有以下三种情况.【点睛】本题考查了三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是主视图,从上面看到的图形是俯视图,从左面看到的图形是左视图.22.答案见解析.【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为3,2,3;左视图有2列,每列小正方形数目分别为3,3.据此可画出图形.【详解】解:作图如下:【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.23.(1)见解析;(2)326π-【分析】(1)连接OB,根据等边对等角可求得∠OBA=90°,根据切线的判定即可求出答案.(2)分别求出△ABO与扇形OBD的面积后即可求出阴影部分面积.【详解】解:(1)连接OB,∵AB =BC ,∴∠C =∠A =30°,∠CBA =120°,∵OC =OB ,∴∠OBC =∠C =30°,∴∠OBA =∠CAB ﹣∠OBC =90°,∵OB 是⊙O 的半径,∴AB 是圆O 的切线;(2)∵∠A =30°,OB =1,∴AB =tan 30OB =3=3, ∴S △ABO =12×1×3=3, ∵∠AOB =2∠C=60°,∴S 扇形OBD =601360π︒︒⨯=6π, ∴S 阴影=S △ABO ﹣S 扇形OBD =326π-.【点睛】本题考查切线的判定、等腰三角形的性质、圆周角定理、锐角的三角函数、三角形的面积公式、扇形的面积公式,熟练掌握相关知识的运用是解答的关键.24.(1)5;(2)92 【分析】(1)过O 作OH 垂直于AC ,利用垂径定理得到H 为AC 中点,求出AH 的长为4,根据同弧所对的圆周角相等得到tanA =tan ∠BDC ,求出OH 的长,利用勾股定理即可求出圆的半径OA 的长;(2)由AB 垂直于CD 得到E 为CD 的中点,得到EC =ED ,在直角三角形AEC 中,由AC 的长以及tanA 的值求出CE 与AE 的长,由FB 为圆的切线得到AB 垂直于BF ,得到CE 与FB 平行,由平行得比例列出关系式求出AF 的长,根据AF−AC 即可求出CF 的长.【详解】(1)作OH AC ⊥于H ,则142AH AC ==,在Rt AOH ∆中,344AH tanA tan BDC ==∠=,, 3OH ∴=,∴半径225OA AH OH =+=;(2)AB CD ⊥,E ∴为CD 的中点,即CE DE =, 在Rt AEC ∆中,384AC tanA ==,,设3CE k =,则4AE k =, 根据勾股定理得:222AC CE AE =+,即2291664k k +=,解得85k =则2432,55CE DE AE ===, BF 为圆O 的切线,FB AB ∴⊥,又AE CD ⊥,//CD FB ∴,AC AE AF AB ∴=,即328510AF =, 解得:252AF =, 则92CF AF AC =-=. 【点睛】此题考查了切线的性质,垂径定理,锐角三角函数定义,勾股定理,以及平行线的性质,熟练掌握切线的性质是解本题的关键.25.(1)3;(2)BDA FGE ∽△△,证明见解析【分析】(1)先证明AGE ADC △∽△,再证明GEF DBF ∽△△,得到2DF GF =,则问题可解; (2)根据题意分别证明BDA FDB ∽△△,BDA FGE ∽△△问题可证.【详解】 解:(1)D 是BC 的中点,E 是AC 的中点,BD CD ∴=,AE CE =,//GE BC ,AGE ADC ∴∽△△,12AG GE AE AD CD AC ∴===, AG GD ∴=,2GE CD BD ==,//GE BC ,GEF DBF ∴∽△△,12GE GF BD DF ∴==, 2DF GF ∴=,3AG DG GF ∴==,3AG GF∴=.(2)当BD =4DF =时,由(1)可得122GF DF ==,36AG DG GF ===,212AD AG ==, 12GE BD ==,4BD DF ==AD BD ==, AD BD BD DF ∴=, 又BDG ADB ∠=∠,BDA FDB ∴∽△△,3GEGF =AD BD == AD GE BD GF∴=, //GE BC ,ADB EGF ∴∠=∠,BDA FGE ∴∽△△.【点睛】本题考查了相似三角形的性质和判定,解答关键是根据题意选择适当方法证明三角形相似.26.(1)k=8,B(3,0);(2)3【分析】(1)利用待定系数法即可求出k 的值,把y=0代入y=2x-6即可求出点B 的坐标; (2)根据三角形的面积公式计算即可.【详解】解:(1)把A(4,2)代入kyx,得2=4k,解得k=8,在y=2x-6中,当y=0时,2x-6=0,解得x=3,∴点B的坐标为(3,0);(2)连接OA,∵点B(3,0),∴OB=3,∵A(4,2),∴△OAB=12×3×2=3.【点睛】本题考查了待定系数法求反比例函数解析式,一次函数与x轴的交点问题,以及三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。

【苏科版】九年级数学下期末一模试卷带答案

【苏科版】九年级数学下期末一模试卷带答案

一、选择题1.如图所示,该几何体的主视图为()A.B.C.D.2.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A.B.C.D.3.小阳和小明两人从远处沿直线走到路灯下,他们规定:小阳在前,小明在后,两人之间的距离始终与小阳的影长相等.在这种情况下,他们两人之间的距离()A.始终不变B.越来越远C.时近时远D.越来越近4.如图,用八个同样大小的小立方体粘成一个大正方体,得到的几何体从正面、从左面和从上面看到的形状图如图,若小明从八个小立方体中取走若干个,剩余小立方体保持位置不动,并使得到的新几何体从三个方向看到的形状图不变,则他取走的小立方体最多可以是()A.0个B.1个C.4个D.3个5.如图是由一些完全相同的小立方块搭成的几何体的三种视图.搭成这个几何体所用的小立方块的个数是()A.5个B.6个C.7个D.8个6.如图,点A(-1,0),点B(-4,0),平行四边形ABCD的顶点D在第二象限,反比例函数y=kx(k<0)图像过点D和BC边的中点E,若∠C=α,则k的值(用含α的式子表示为)( )A .-4tanαB .-3tanαC .925-tanαD .289-tanα 7.小明在学完《解直角三角形》一章后,利用测角仪和校园旗杆的拉绳测量校园旗杆的高度,如图,旗杆PA 的高度与拉绳PB 的长度相等,小明先将PB 拉到'PB 的位置,测得(''PB C a B C ∠=为水平线),测角仪/B D 的高度为1米,则旗杆PA 的高度为( )A .11sin a +米B .11cos a -米C .11sin a -米D .11cos a +米 8.如图,在矩形ABCD 中,AB =3,做BD 的垂直平分线E ,F ,分别与AD 、BC 交于点E 、F ,连接BE ,DF ,若EF =AE +FC ,则边BC 的长为( )A .23B .33C .63D .9329.如图,在Rt ABC ∆中,90C ∠=︒,30BAC ∠=︒,延长CA 到点D ,使AD AB =,连接BD .根据此图形可求得tan15︒的值是( )A .23B .23C .36D 310.如图,为一幅重叠放置的三角板,其中∠ABC=∠EDF=90°,BC 与DF 共线,将△DEF 沿CB 方向平移,当EF 经过AC 的中点O 时,直线EF 交AB 于点G ,若BC=3,则此时OG 的长度为( )A .322B .332C .32D .33322- 11.若234a b c ==,则a b b c +-的值为( ) A .5 B .15 C .-5 D .-1512.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数k y x =(k <0)的图象上的两点,若x 1<0<x 2,则下列结论正确的是( )A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<0 二、填空题13.将若干个正方体小方块堆放在一起,形成一个几何体,分别从正面看和从上面看,得到的图形如图所示,则这对小方块共有____________块.14.如图,小明在A 时测得某树的影长为3米,B 时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_________米.15.如图,在A 时测得旗杆的影长是4米,B 时测得旗杆的影长是16米,若两次的日照光线恰好垂直,则旗杆的高度是______米.16.如图,我市在建高铁的某段路基横断面为梯形ABCD ,DC ∥AB ,BC 长为6米,坡角β为45°,AD 的坡角α为30°,则AD 的长为 ________ 米 (结果保留根号)17.如图,ABCD 是一张边长为4cm 的正方形纸片,E ,F 分别为AB ,CD 的中点,沿过点D 的折痕将A 角翻折,使得点A 落在EF 上的点A′处折痕交AE 于点G ,则∠ADG=____°EG=___cm .18.已知直角三角形一个锐角60°,斜边长为4,那么此直角三角形斜边上的的高是________.19.如图,已知菱形ABCD 的边长为4,点E 、F 分别是AB 、AD 上的点,若BE =AF =1,∠BAD =120°,GF EG=_____.20.如图,在ABO ∆中,90BAO AO AB ∠==,,且点4(2)A ,在双曲线(0)k y x x=>上,OB 交双曲线于点C ,则C 点的坐标为______.三、解答题21.如图,若干个完全相同的小正方体堆成一个几何体.(1)请在图中方格中画出该几何体的左视图和俯视图.(2)用若干小立方体搭一个几何体,使得它的左视图和俯视图与你在方格中所画的一 致,则这样的几何体最多要 个小立方块.(3)若小正方体的棱长为1cm ,如果将图1中几何体的表面(不含几何体之间叠合部分及与地面接触的底面)喷上油漆,求需喷漆部分的面积.22.画出如图所示的几何体的主视图、左视图和俯视图.23.如图,以ABC ∆的一边BC 为直径的O ,交AB 于点D ,连结CD ,OD ,已知1902A DOC ∠+∠=︒.(1)判断AC 是否为O 的切线?请说明理由.(2)①若60A ∠=︒,1AD =,求O 的半径.②若DOC α∠=︒,AC m =,OB r =,请用含r 、α的代数式表示m .24.已知ABC 为等边三角形,6,AB P =是AB 上的一个动点,(与A B 、不重合),过点P 作AB 的垂线与BC 相交于点D ,以点D 为正方形的一个顶点,在ABC 内作正方形DEFG ,其中D E 、在BC 上,F 在AC 上,(1)设BP 的长为x ,正方形DEFG 的边长为y ,写出y 关于x 的函数解析式及定义域;(2)当2BP =时,求CF 的长;(3)GDP △是否可能成为直角三角形?若能,求出BP 的长;若不能,请说明理由.25.如图1,在△ABC 中,AD ⊥BC ,DE ⊥A B ,DF ⊥AC .(1)若AD 2 =BD ·DC , ①求证:∠BAC =90°;②连接EF ,若AB =4,DC =6,求EF .(2)如图2,若AD =4,BD =2,DC =4,求EF .26.已知直线l 分别与x 轴、y 轴交于A 、B 两点,与双曲线y =m x(m≠0,x >0)分别交于D 、E 两点,若点D 的坐标为(4,1),点E 的坐标为(1,n)(1)分别求出直线l 与双曲线的解析式;(2)求△EOD 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】找到从正面看所得到的图形即可.【详解】从正面看两个矩形,中间的线为虚线,故选B.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.2.D解析:D【解析】分析:根据从正面看得到的图形是主视图,可得答案.详解:从正面看第一层是三个小正方形,第二层左边一个小正方形,故选D.点睛:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.D解析:D【解析】分析:由题意易得,小阳和小明离光源是由远到近的过程,根据中心投影的特点,即可得到身影越来越短,而两人之间的距离始终与小阳的影长相等,则他们两人之间的距离越来越近.详解:因为小阳和小明两人从远处沿直线走到路灯下这一过程中离光源是由远到近的过程,所以他在地上的影子会变短,所以他们两人之间的距离越来越近.故选D.点睛:考查了中心投影的特点和规律.中心投影的特点是,等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.4.C解析:C【解析】【分析】根据三视图不变,可知可以把1、4号小正方体下面的两个小正方体去掉,再把第二层的2、3号小正方体去掉,最多去掉四个.【详解】由于从八个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图不变,所以这个正方体可以把1、4号小正方体下面的两个小正方体去掉,再把2、3号小正方体去掉(或最底层2、3号小正方体下面的两个小正方体去掉,再把第二层的1、4号小正方体去掉),即可得取走的小立方体最多可以是4个.故选:C【点睛】本题考查了学生的观察能力和对几何体三种视图的空间想象能力,根据三视图确定几何体的形状是解决本题的关键.5.D解析:D【解析】【分析】结合三视图的知识,主视图以及左视图底面有6个小正方体,共有两层三行,第二层有2个小正方体.【详解】综合主视图,俯视图,左视图底面有6个正方体,第二层有2个正方体,所以搭成这个几何体所用的小立方块的个数是8.故选D.【点睛】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的个数.6.D解析:D【分析】过点D作DH⊥OB于H,过点E作EF⊥x轴于F,根据平行四边形的对边相等可得DA=CB ,然后求出DA=2EB ,再求出HA=2FB ,设FB=a ,表示出点E 、D 的坐标,然后根据EF 、DH 的关系列方程求出a 的值,再求出HA 、DH ,然后利用∠DAH 的正切值列式整理即可得解.【详解】解:如图,过点D 作DH ⊥OB 于H ,过点E 作EF ⊥x 轴于F ,在平行四边形ABCD 中,DA=CB ,∵E 为边BC 的中点,∴DA=CB=2EB ,DH=2EF ,∴AH=2FB ,设FB=a ,∵点C 、D 都在反比例函数上,∴D(−2a−1,k−2a−1),∵B(−4,0),∴点E(−a -4,4k a --), ∴2214k k a a =⨯----,解得a= 23, ∴FB=a=23,EF=3241443k k k a ==-----, ∵∠C=α,∴tan ∠EBF=tan ∠α=EF FB , 即tanα=928k -,k=289-tanα. 故选D .【点睛】本题考查了平行四边形的性质,反比例函数图象上点的坐标特征,锐角三角函数,根据点C 、D 的纵坐标列出方程是解题的关键. 7.C解析:C【分析】设PA=PB=PB′=x ,在RT △PCB′中,根据sin αPC PB =',列出方程即可解决问题. 【详解】解:设PA=PB=PB′=x ,在RT △PCB′中,sin αPC PB =' ∴1sin αx x-= ∴x 1xsin α-=,∴(1-sin α)x=1,∴x=11sin α-. 故选C .【点睛】 本题考查解直角三角形、三角函数等知识,解题的关键是设未知数列方程,属于中考常考题型.8.B解析:B【分析】根据矩形的性质和菱形的性质得∠ABE=∠EBD=∠DBC=30°,AB=BO=3,因为四边形BEDF 是菱形,所以可求出BE ,AE ,进而可求出BC 的长.【详解】解:∵四边形ABCD 是矩形,//,DE BF ∴,,DEO BFO EDO FBO ∴∠=∠∠=∠ EF 垂直平分BD ,OB OD ∴=,BOF DOE ∴∆∆≌,,OE OF ∴=∴ 四边形BEDF 是菱形,∵四边形ABCD 是矩形,四边形BEDF 是菱形,∴∠A=90°,AD=BC ,DE=BF ,OE=OF ,EF ⊥BD ,∠EBO=FBO ,∴AE=FC .又EF=AE+FC ,∴EF=2AE=2CF ,又EF=2OE=2OF ,AE=OE ,∴△ABE ≌OBE , ∴∠ABE=∠OBE ,∴∠ABE=∠EBD=∠DBC=30°,∴BE= cos30BO ︒= ∴BF=BE=∴∴BC=BF+CF=故选B .【点睛】本题考查了矩形的性质、菱形的性质以及在直角三角形中30°角所对的直角边时斜边的一半,解题的关键是求出∠ABE=∠EBD=∠DBC=30°.9.A解析:A【分析】设BC=x ,在Rt ABC ∆中,90C ∠=︒,30BAC ∠=︒,可得,AB=2x ,,由AD AB ==2x ,可得,由AD AB =,可知,∠D=∠ABD=12∠BAC=15°,在Rt BDC ∆ 中,根据锐角正切三角函数的定义,即可求解.【详解】∵AD AB =,∴∠D=∠ABD ,∵∠BAC=∠D+∠ABD ,∴∠D=12∠BAC=15°, 设BC=x , ∵在Rt ABC ∆中,90C ∠=︒,30BAC ∠=︒,∴AB=2x,=,∴=(2x +,在Rt BDC ∆中,tan 2BC D DC ∠===- , ∴°tan15=2 A.【点睛】本题主要考查锐角正切三角函数的定义,根据图形,设BC=x ,用含x 的代数式表示相关线段的长,是解题的关键.10.A解析:A【分析】分别过O 作OH ⊥BC ,过G 作GI ⊥OH ,由O 是中点,根据平行线等分线段定理,可得H为BC 的中点,则可得BH=32,再由三个角都是直角的四边形是矩形,可得GI=BH=32,在等腰直角三角形OGI 中,即可求解.【详解】解:过O 作OH ⊥BC 于H ,过G 作GI ⊥OH 于I ∵∠ABC=90°,∴AB ⊥BC ,∴OH ∥AB ,又O 为中点,∴H 为BC 的中点,∴BH=12BC=32∵GI ⊥OH ,∴四边形BHIG 为矩形,∴GI ∥BH ,GI=BH=32, 又∠F=45°,∴∠OGI=45°,∴在Rt △OGI 中,32cos 2GI OG OGI ==∠.故选:A【点睛】本题考查了解直角三角形及平行线等分线段定理,构造合适的辅助线是解题关键. 11.C解析:C【分析】设234a b c k ===,则2a k =,3b k =,4c k =,然后代入求值即可. 【详解】 解:设234a b c k ===,则2a k =,3b k =,4c k =,∴a b b c +-=2334k k k k +-=5-k k=﹣5, 故选:C .【点睛】 本题考查了比例的性质、分式的求值,设参数求解是解答的关键.12.B解析:B【分析】首先根据系数判定函数的图象在二、四象限,再根据x 1<0<x 2,可比较出y 1、y 2的大小,进而得到答案.【详解】解:由反比例函数k y x=(k <0),可知函数的图象在二、四象限, ∵x 1<0<x 2,∴A (x 1,y 1)在第二象限,y 1>0,B (x 2,y 2)在第四象限,y 2<0,∴y 2<0<y 1,故选:B .【点睛】此题主要考查了反比例函数图象上的点的坐标特征,熟练掌握是解题的关键. 二、填空题13.4或5【解析】如图方块有4或5块解析:4或5【解析】如图方块有4或5块.14.6【分析】根据题意画出示意图易得:Rt △EDC ∽Rt △FDC 进而可得;即DC2=EDFD 代入数据可得答案【详解】根据题意作△EFC 树高为CD 且∠ECF=90°ED=3FD=12易得:Rt △EDC ∽R解析:6【分析】根据题意,画出示意图,易得:Rt △EDC ∽Rt △FDC ,进而可得ED DC DC FD=;即DC 2=ED?FD ,代入数据可得答案.【详解】根据题意,作△EFC,树高为CD,且∠ECF=90°,ED=3,FD=12,易得:Rt△EDC∽Rt△DCF,有ED DCDC FD=,即DC2=ED×FD,代入数据可得DC2=36,DC=6,故答案为6.15.8【分析】如图∠CPD=90°QC=4mQD=9m利用等角的余角相等得到∠QPC=∠D则可判断Rt△PCQ∽Rt△DPQ然后利用相似比可计算出PQ【详解】解:如图∠CPD=90°QC=4mQD=16解析:8【分析】如图,∠CPD=90°,QC=4m,QD=9m,利用等角的余角相等得到∠QPC=∠D,则可判断Rt△PCQ∽Rt△DPQ,然后利用相似比可计算出PQ.【详解】解:如图,∠CPD=90°,QC=4m,QD=16m,∵PQ⊥CD,∴∠PQC=90°,∴∠C+∠QPC=90°,而∠C+∠D=90°,∴∠QPC=∠D,∴Rt△PCQ∽Rt△DPQ,∴PQ QCQD PQ=,即416PQPQ=,∴PQ=8,即旗杆的高度为8m.故答案为8.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.也考查了相似三角形的判定与性质.16.【分析】过C 作CE ⊥AB 于EDF ⊥AB 于F 分别在Rt △CEB 与Rt △DFA 中使用三角函数即可求解【详解】解:过C 作CE ⊥AB 于EDF ⊥AB 于F 可得矩形CEFD 和Rt △CEB 与Rt △DFA ∵BC=6∴ 解析:62 【分析】 过C 作CE ⊥AB 于E ,DF ⊥AB 于F ,分别在Rt △CEB 与Rt △DFA 中使用三角函数即可求解.【详解】解:过C 作CE ⊥AB 于E ,DF ⊥AB 于F ,可得矩形CEFD 和Rt △CEB 与Rt △DFA , ∵BC=6,∴CE=2sin 45632BC ︒=⨯=, ∴DF=CE=32,∴62sin 30DF AD ==︒, 故答案为:62.【点睛】此题考查了解直角三角形的应用-坡度坡角问题,难度适中,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.17.15【分析】由ABCD 是一张边长为4cm 的正方形纸片EF 分别为ABCD 的中点可得AE=DF=2cmEF=AD=4cm 由翻折可得AG=A′GAD=A′D 在Rt △DF 中利用勾股定理可求得答案求得在Rt △解析:15︒ 436【分析】由ABCD 是一张边长为4cm 的正方形纸片,E ,F 分别为AB ,CD 的中点,可得AE=DF=2cm ,EF=AD=4cm ,由翻折可得AG=A′G ,AD=A′D ,在Rt △DF 'A 中,利用勾股定理可求得答案.求得'A F ,在Rt △DF 'A 中利用正切值即可求得'FDA ∠度数,进而求得∠ADG 度数;在Rt △'A EG 中,设EG=x ,则'A G=AG=2−x ,利用勾股定理即可求得x 值.【详解】∵ABCD 是一张边长为4cm 的正方形纸片,E 、F 分别为AB ,CD 的中点,∴AE=DF=2cm ,EF=AD=4cm ,DG 为折痕,∴AG='A G ,AD='A D ,Rt △DF 'A 中,2222''4223AF A D DF =-=-='23tan '32A F FDA DF ∠=== ∴'60FDA ∠=︒∴∠ADG =∠'A DG =11(90')301522FDA ⨯︒-∠=⨯︒=︒ ∴'423A E =-Rt △'A EG 中,设EG=x ,则'A G=AG=2−x ,∴x=2222'(2)(423)AG A E x -=---解得x=436-故答案为:15°,436-【点睛】本题考查了图形的翻折问题,翻折后找到相等的边和相等的角,作为解题依据,考查了正方形的性质,在直角三角形中可利用锐角三角函数值求得角度和边长,勾股定理也是解直角三角形常用方法.18.【分析】由直角三角形中30°角所对的直角边等于斜边的一半可求出30°角对应的直角边再由勾股定理可知求出另一直角边进而求出斜边上的高【详解】解:如下图所示BC=4∠B=30°∠C=60°由直角三角形中解析:3【分析】由直角三角形中30°角所对的直角边等于斜边的一半,可求出30°角对应的直角边,再由勾股定理可知求出另一直角边,进而求出斜边上的高.【详解】解:如下图所示,BC=4,∠B=30°,∠C=60°由直角三角形中,30°角所对的直角边等于斜边的一半知:AC=12BC=2 由勾股定理知:2222=422 3.-=-=AB BC AC在Rt △ABH 中,AH=12AB=3. 故答案为:3.【点睛】 本题考查了直角三角形中30°角所对的直角边等于斜边的一半、勾股定理等相关知识,熟练掌握直角三角形的性质是解题的关键.19.【分析】过点E 作EM ∥BC 交AC 下点M 点根据菱形的性质可得△AEM 是等边三角形则EM=AE=3由AF ∥EM 对应线段成比例即可得结论【详解】解:过点E 作EM ∥BC 交AC 于点M ∵四边形ABCD 是菱形∴A解析:13【分析】过点E 作EM ∥BC 交AC 下点M 点,根据菱形的性质可得△AEM 是等边三角形,则EM=AE=3,由AF ∥EM ,对应线段成比例即可得结论.【详解】解:过点E 作EM ∥BC 交AC 于点M ,∵四边形ABCD 是菱形,∴AB =4,AD ∥BC ,∴∠AEM =∠B =60°,∠AME =∠ACB =60°,∴△AEM 是等边三角形,则EM =AE =3,∵AF ∥EM ,∴13GF AF GE EM ==, 故答案为:13. 【点睛】 本题考查了平行线分线段成比例,菱形的性质,熟练运用菱形的性质、等边三角形性质是解题的关键.20.()【分析】根据等腰直角三角形求得B 得坐标联立方程即可求得C 得坐标【详解】解:将A 点代入得k=8∴双曲线y =(x >0)设点B (mn )m >0∵△ABO 为等腰直角三角形则AO =BO =OB ∴且m >0解得即解析:(3) 【分析】 根据等腰直角三角形求得B 得坐标,联立方程即可求得C 得坐标.【详解】解:将A 点代入得4=2k , k=8, ∴双曲线y =8x(x >0), 设点B (m ,n )m >0 ∵△ABO 为等腰直角三角形 则AO =BO=2OB ∴()()()222242416{2416n m m n -+-=++=+,且m >0 , 解得62m n ⎧⎨⎩==, 即B (6,2),∴直线OB 得解析式为 y =13x , 联立方程138y x y x ⎧=⎪⎪⎨⎪=⎪⎩,且x >0解得3x y ⎧=⎪⎨=⎪⎩,∴C点的坐标为:(3)故答案为:(3). 【点睛】 本题主要考查双曲线与一次函数的交点问题,掌握等腰直角三角形的性质是解答本题的关键.三、解答题21.(1)见解析;(2)14;(3)230cm【分析】(1)从上面看得到从左往右3列正方形的个数依次为3,2,1,依此画出图形即可;从左面看得到从左往右3列正方形的个数依次为3,2,1,;依此画出图形即可;(2)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最多个数相加即可; (3)数一数有多少个正方形露在外面即可求得面积.【详解】解:(1)如图所示:(2)由俯视图易得最底层有6个小立方块,第二层最多有5个小立方块,第三层最多有3个小立方块,所以最多有6+5+3=14个小立方块.故答案为:14;(3)若将图1中几何体的表面(不含几何体之间叠合部分及与地面接触的底面)喷上油漆,则需要喷6×2+6×2+6=30个小正方形,面积为230cm ,故需喷漆部分的面积为230cm .【点睛】本题考查了作图-三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形,俯视图决定底层立方块的个数,易错点是由左视图得到其余层数里最多的立方块个数.22.见解析【分析】分别找到从正面,左面,上面看得到的图形即可,看到的棱用实线表示;实际存在,没有被其他棱挡住,又看不到的棱用虚线表示.【详解】解:如图所示:.【点睛】此题主要考查化三视图,解题的关键是熟知三视图的定义.23.(1)是,见解析;(2)①3r =;②2tan 2m r α︒=.【分析】(1)∠ABC=12∠DOC ,而∠A+12∠DOC=90°,即可求解;(2)在Rt △ACD 中,CD=AD÷tan ∠ACD=1÷3 (3)在Rt △ABC 中,tan ∠ABC=22AC m tan BC r α︒==,即可求解. 【详解】解:(1)是,理由:∵∠ABC=12∠DOC , 而∠A+12∠DOC=90°, ∴∠A+∠ABC=90°,∴AC 是⊙O 的切线;(2)∵AC 是圆的切线,∴∠ACD+∠DCB=90°,∵BC 是圆的直径,∴∠DCB+∠ABC=90°,∴∠ACD=∠ABC=90°-∠A=30°,在Rt △ACD 中,CD=AD÷tan ∠ACD=1÷3; 而∠DOC=2∠ABC=60°,∴△COD 为等边三角形,∴圆的半径为(3)∠ABC=12∠DOC=12α°, 在Rt △ABC 中,tan ∠ABC=22AC m tan BC r α︒==, 即m=2r 2tanα︒.【点睛】 本题考查了切线的判定与性质,涉及到解直角三角形、等边三角形的性质等,解题的关键是灵活运用判定与性质.24.(1)))3903y x x =+-<≤;(2)32;(3) 【分析】(1)设BP 的长为 x ,正方形 DEFG 的边长为 y ,则由题意可得BD=2x ,DE=y ,3EC y =,然后根据BC=6可以得到y 关于 x 的函数解析式; (2)若BP=2,即x=2,由(1)可得正方形 DEFG 的边长EF 的长度,解直角三角形CEF 可得CF 的长度;(3)设△GDP 是直角三角形,则PG ⊥GD ,然后可得关于x 的方程,解方程可得x 的值,即BP 的长度.【详解】解:(1)设BP 的长为 x ,正方形 DEFG 的边长为 y ,由∠B=60°,PD 垂直AB ,则BD=2x ,DE=y ,EC=tan 303EF y ⨯︒=,∴有26x y y ++=,整理得: ))3903y x x =+-<≤;(2)若BP=2,即x=2,可得3y =,∴(3sin 6032CF EF =⨯︒==; (3)若△GDP 是直角三角形,则PG ⊥GD ,∴∠DPG=30°,即PD=2GD ,)(22329y x ==+-,解之得: 3011x -= ,此即BP 的长度. 【点睛】本题考查解直角三角形与一次函数的综合应用,根据直角三角形边和角的关系求解是解题关键.25.(1)①见解析;②2【分析】 (1)①依据∠ADB =∠CDA =90°,BD AD AD CD=,即可得到△ABD ∽△CAD ,再根据相似三角形的性质,即可得到∠BAC =90°; ②先判定四边形AEDF 是矩形,得出EF =AD ,再根据射影定理可得BD =2,最后根据勾股定理,求得Rt △ABD 中,AD EF =(2)根据勾股定理得到AC =AB =AE AF AC AB =,∠EAF =∠CAB ,即可判定△AEF ∽△ACB ,进而得出=EF AF BC AB ,即可得到EF 【详解】(1)①证明:∵AD ⊥BC ,∴∠ADB =∠CDA =90°.∵AD 2 =BD ·DC ,∴BD AD AD CD=. ∴△ABD ∽ △CAD .∴∠BAD =∠C .又∵∠B +∠BAD =90° ,∴∠B +∠C =90°.∴∠BAC = 90°.②∵DE ⊥AB ,DF ⊥AC ,∠BAC =90°.∴∠EAF =∠AED =∠AFD =90°.∴四边形AEDF 是矩形.∴EF =AD .∵∠BAC =90°,AD ⊥BC ,∴AB 2=BD ⋅BC .∵AB =4,DC =6,即42=BD ⋅(BD +6).解得BD =2.∴Rt △ABD 中,AD∴EF=(2)∵在Rt △ABD 中,AD =4,BD =2,∴AB =∵AD =4,DC =4,DF ⊥AC ,∴AC=.∴AF =12AC = ∵DE ⊥AB ,DF ⊥AC ,AD ⊥BC ,∴AD 2=AE ⋅AB ,AD 2=AF ⋅AC .∴AE ⋅AB =AF ⋅AC . 即AE AF AC AB=. 又∵∠EAF =∠CAB ,∴△AEF ∽△ACB . ∴=EF AF BC AB .∴6EF =.解得EF 【点睛】本题主要考查了相似三角形的判定与性质,解题时注意:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,或依据基本图形对图形进行分解、组合.26.(1)y=﹣x+5;y=4 x(2)15 2【分析】(1)只需运用待定系数法就可求出反比例函数的解析式,把点E的坐标代入反比例函数的解析式,就可求出点E的坐标,然后运用待定系数法就可求出直线l的解析式;(2)连接OD、OE,过点D作DM⊥OA于M,作EN⊥OA于N,如图,只需运用割补法,就可求出△EOD的面积.【详解】(1)把D(4,1)代入反比例函数的解析式得,m=4×1=4,∴反比例函数的解析式为y=4x.把点E(1,n)的坐标代入y=4x得n=4,∴点E的坐标为(1,4).设直线l的解析式为y=kx+b,则有144k bk b=+⎧⎨=+⎩,解得15kb=-⎧⎨=⎩,∴直线l的解析式为y=﹣x+5;(2)连接OD、OE,过点D作DM⊥OA于M,作EN⊥OA于N,如图.∵点A是直线y=﹣x+5与x轴的交点,∴点A的坐标为(5,0),OA=5,∴S△DOE=S△AOE﹣S△ADO,=12×5×4﹣12×5×1=152.【点睛】本题考查求直线和反比例函数解析式及三角形面积,掌握待定系数法求解析式,需待定的字母,有几个待定需要找到图像上几个点,求面积多采取平行x轴的线段为底,平行y轴线段为高,掌握面积公式,也可用割补法求面积.。

【苏科版】初三数学下期末模拟试卷(附答案)

【苏科版】初三数学下期末模拟试卷(附答案)

一、选择题1.如图是一个由多个相同小正方体搭成的几何体的俯视图,图中所标数字为该位置小正方体的个数,则这个几何体的主视图是( )A .B .C .D .2.如图是由一些相同的小正方体构成的立体图形的三视图.构成这个立体图形的小正方体的个数是( )A .6B .7C .4D .53.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm4.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )A .主视图改变,左视图改变B .俯视图不变,左视图不变C .俯视图改变,左视图改变D .主视图改变,左视图不变5.小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是( ) A .三角形B .线段C .矩形D .平行四边形6.在ABC 中,若21cos |1tan |02A B ⎛⎫-+-= ⎪⎝⎭,则C ∠的度数是( ) A .45︒ B .60︒ C .75︒ D .105︒7.如图,已知第一象限内的点A 在反比例函数2y x=的图象上,第二象限的点B 在反比例函数ky x=的图象上,且OA ⊥OB ,tanA=2,则k 的值为( )A .4B .8C .-4D .-8 8.在△ABC 中,∠C=90º,AC=3,AB=4,则下列结论正确的是( )A .34sinA = B .34cos A = C .34tan A = D .34cotA =9.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则()2sin cos θθ-=( )A .15B .5 C .35D .95 10.在Rt △ABC 中,∠C =90°,AB =13,AC =5,则sin A 的值为( ) A .513B .1213C .512D .12511.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若()0,8A ,4CF =,则点E 的坐标是( )A .()8,4-B .()10,3-C .()10,4-D .()8,3-12.如图,反比例函数ky x=的图像经过平行四边形ABCD 的顶点C ,D ,若点A 、点B 、点C 的坐标分别为()3,0,()0,4,(),a b ,且7.5a b +=,则k 的值是( )A .7.5B .9C .10D .12二、填空题13.八中食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如表: 碟子的个数 碟子的高度(单位:cm ) 1 2 2 2+1.5 3 2+3 4 2+4.5 ……现在分别从三个方向上看若干碟子,得到的三视图如图所示,厨房师傅想把它们整齐地叠成一摞,求叠成一摞后的高度为_____cm .14.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米,垂直于地面放置的标杆在地面上的影长为2米,则树的高度为___.15.如图,小军、小珠之间的距离为2.8m ,他们在同一盏路灯下的影长分别为1.7m ,1.5m ,已知小军、小珠的身高分别为1.7m ,1.5m ,则路灯的高为________m .16.小芳同学在学习了图形的镶嵌和拼接以后,设计了一幅瓷砖贴纸(图1),它是由图2这种基本图形拼接而成。

【苏科版】九年级数学下期末模拟试题附答案

【苏科版】九年级数学下期末模拟试题附答案

一、选择题1.如图,下面是由一些相同的小正方体构成的立体图形的三视图,这些相同的正方体的个数是( )A .6B .7C .8D .92.用大小和形状完全相同的小正方体木块搭成一-个几何体,使得它的正视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为( )A .22个B .19个C .16个D .13个3.如图所示立体图形,从上面看到的图形是( )A .B .C .D . 4.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm 5.如图,丁轩同学在晚上由路灯AC 走向路灯BD ,当他走到点P 时,发现身后他影子的顶部刚好接触到路灯AC 的底部,当他向前再步行20 m 到达Q 点时,发现身前他影子的顶部刚好接触到路灯BD 的底部,已知丁轩同学的身高是1.5 m,两个路灯的高度都是9 m,则两路灯之间的距离是( )A.24 m B.25 m C.28 m D.30 m6.已知:如图,四边形AOBC是矩形,以O为坐标原点,OB、OA分别在x轴、y轴上,点A的坐标为(0,3),∠OAB=60°,以AB为轴对折后,C点落在D点处,则D点的坐标为()A.33(3,)22-B.33(3,)22--C.33(,3)22D.(3,33)-7.在正方形网格中,小正方形的边长均为1,∠ABC如图放置,则sin∠ABC的值为()A.5B.5C.33D.18.如图,为一幅重叠放置的三角板,其中∠ABC=∠EDF=90°,BC与DF共线,将△DEF沿CB方向平移,当EF经过AC的中点O时,直线EF交AB于点G,若BC=3,则此时OG的长度为()A 322B332C .32D .33322- 9.如图,等边ABC 边长为a ,点O 是ABC 的内心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE 形状不变;②ODE 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE 周长的最小值为1.5a .上述结论中正确的个数是( )A .4B .3C .2D .110.在Rt △ABC 中,∠C =90°,AB =13,AC =5,则sin A 的值为( )A .513B .1213C .512D .12511.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,AE 、CD 相交于点O ,若S △DOE :S △COA =1:9,则S △BDE :S △CDE 的值是( ).A .1:2B .1:3C .1:4D .2:512.已知(5,-1)是双曲线(0)k y k x =≠上的一点,则下列各点中不在该图象上的是( )A .1(,15)3- B .(5,1) C .(1,5)- D .1(10,)2- 二、填空题13.如图是一个几何体的三视图,则这个几何体的侧面积是______.(结果保留π)14.如图,是由一些相同的小正方体搭成的几何体从三个方向看到的图形,搭成这个几何体的小正方体的个数是_______.15.如图为一个长方体,则该几何体主视图的面积为______cm 2.16.先将一矩形ABCD 置于直角坐标系中,使点A 与坐标系的原点重合,边AB ,AD 分别落在x 轴、y 轴上(如图1),再将此矩形在坐标平面内按逆时针方向绕原点旋转30°(如图2),若4AB =,3BC =,则图1和图2中点B 点的坐标为_________,点C 的坐标_________.17.如图所示,在直角坐标系中,等腰直角ABO ∆的顶点O 是坐标原点,点A 的坐标是()4,0-,直角顶点B 在第二象限,把AOB ∆绕点O 旋转15︒到AOB''∆,点A 与A '对应,点B 与B '对应,那么点B '的坐标是_________.18.如图,在直角三角形ABC 中,∠C=90°,AC=12cm ,BC=5cm ,AB=13cm ,则点C 到AB 边的距离是______cm .19.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”.如图,P 为AB 的黄金分割点()AP PB >,如果AB 的长度为8cm ,那么AP 的长度是_____________.20.如图,一次函数y1=ax+b与反比例函数2kyx的图像交于A(1,4)、B(4,1)两点,若使y1>y2,则x的取值范围是___________.三、解答题21.如图,是由一些大小相同的小正方体组合成的简单几何体.(1)图①是从哪个方向看该几何体得到的平面图形?(将正确答案填入图①下面的空中)(2)请在给出的方格纸中分别画出从其它两个方向看得到的平面图形.22.一个几何体由若干个大小相同的小立方块搭成,从上面看到的这个几何体的形状图如图所示,其中小正方形中的数字表示在该位置上小立方块的个数.画出从正面和从左面看到的这个几何体的形状图.23.“筒车”是一种以水流作动力,取水灌田的工具.据史料记载,它发明于隋而盛于唐,距今已有1000多年的历史,是我国古代劳动人民的一项伟大创造.明朝科学家徐光启在《农政全书》中用图画描绘“筒车”的工作原理.如图,“筒车”盛水筒的运行轨迹是以轴心O为圆心的圆,已知圆心O在水面上方,且当圆被水面截得的弦AB为6米时,水面下盛水筒的最大深度为1米(即水面下方部分圆上一点距离水面的最大距离).(1)求该圆的半径;(2)若水面上涨导致圆被水面截得的弦AB从原来的6米变为8米时,则水面上涨的高度为多少米?24.如图,ABC是O的内接三角形,60∠=︒,设O的半径为2.BAC(1)求BC 的长;(2)求弧BC 与弦BC 围成的图形面积(结果保留)π.25.如图,王华同学在晚上由路灯AC 走向路灯BD ,当他走到点P 时,发现身后他影子的顶部刚好接触到路灯AC 的底部,当他向前再步行12 m 到达Q 点时,发现身前他影子的顶部刚好接触到路灯BD 的底部.已知王华同学的身高是1.6 m ,两个路灯的高度都是9.6 m(1)求两个路灯之间的距离;(2)当王华同学走到路灯BD 处时,他在路灯AC 下的影子长是多少?26.如图,一次函数y =kx +b 的图象与反比例函数y =m x的图象相交于A (1,a ),B (﹣3,c ),直线y =kx +b 交x 轴、y 轴于C 、D .(1)求m a c+的值; (2)求证:AD =BC ; (3)直接写出不等式0m kx b x -->的解集.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从左视图可看出每一行小正方体的层数和个数,从而算出总的个数.【详解】由左视图知该立体图形有两层,由俯视图知,最底层有5个小正方体,结合三视图知,最上面一层有2个小正方体,故这些相同的小正方体共有7个,故选B.【点睛】本题主要考查由三视图判断几何体,利用三视图的定义得出几何体的形状是解题关键.2.D解析:D【分析】先根据俯视图判断出这个几何体的行列数,然后根据正视图推算每列小正方体的最少个数,最后将各列的小正方体个数求和即可得.【详解】由俯视图可得,这个几何体共有3行3列,其中左边一列有2行,中间一列有2行,右边一列有3行由正视图可得,左边一列2行中的最高层数为2,则这列小正方体最少有213+=个中间一列2行中的最高层数为3,则这列小正方体最少有314+=个右边一列3行中的最高层数为4,则这列小正方体最少有4116++=个因此,这个几何体的一种可能的摆放为2,3,41,1,10,0,1(数字表示所在位置小正方体的个数),小正方体最少有34613++=个故选:D.【点睛】本题考查了三视图(俯视图、正视图)的定义,根据俯视图和正视图得出几何体的实际可能摆放是解题关键.另一个重要概念是左视图,这是常考知识点,需掌握.3.C解析:C【分析】从上面看到3列正方形,找到相应列上的正方形的个数即可.【详解】从上面看得到从左往右3列正方形的个数依次为2,1,1,故选C.【点睛】本题考查了简单组合体的三视图,解决本题的关键是得到3列正方形具体数目.4.C解析:C【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm ,高是3cm .所以该几何体的侧面积为2π×1×3=6π(cm 2).故选C .【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.5.D解析:D【解析】由题意可得:EP ∥BD ,所以△AEP ∽△ADB ,所以AP EP AP PQ BQ BD=++,因为EP =1.5,BD =9,所以1.59220AP AP =+,解得:AP =5,因为AP=BQ ,PQ =20,所以AB=AP+BQ+PQ =5+5+20=30,故选D. 点睛:本题主要考查相似三角形的对应边成比例在解决实际问题中的应用,应用相似三角形可以间接地计算一些不易直接测量的物体的高度和宽度,解题时关键是找出相似三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.6.A解析:A【分析】如图,作 DE ⊥x 轴于点E ,灵活运用三角函数解直角三角形来求点 D 的坐标.【详解】解:如图,作DE ⊥x 轴于点E ,∵点A 的坐标为(0,3),∴OA =3.又∵∠OAB =60°,∴OB =OA•tan ∠OAB =,∠ABO =30°.∴BD =BC =OA =3.∵根据折叠的性质知∠ABD =∠ABC =60°,∴∠DBE =30°,∴DE =12BD =32,BE∴OE=∴E33(3,)22-.故选:A.【点睛】本题考查了矩形的性质、坐标与图形性质以及折叠问题,翻折前后对应角相等,对应边相等;注意构造直角三角形利用相应的三角函数值求解.7.B解析:B【分析】作AD⊥BC于D,由勾股定理得出BC=2231+=10,AB=2211+=2,由△ABC的面积求出AD=105,由三角函数定义即可得出答案.【详解】解:作AD⊥BC于D,如图所示:由勾股定理得:BC2231+10,AB2211+2,∵△ABC的面积=12BC×AD=12×3×1−12×1×1,∴1210×AD=12×3×1−12×1×1,解得:AD=105,∴sin ∠ABC =AD AB; 故选:B .【点睛】本题考查了解直角三角形、勾股定理以及三角函数定义;熟练掌握勾股定理和三角函数定义是解题的关键.8.A解析:A【分析】分别过O 作OH ⊥BC ,过G 作GI ⊥OH ,由O 是中点,根据平行线等分线段定理,可得H为BC 的中点,则可得BH=32,再由三个角都是直角的四边形是矩形,可得GI=BH=32,在等腰直角三角形OGI 中,即可求解.【详解】解:过O 作OH ⊥BC 于H ,过G 作GI ⊥OH 于I ∵∠ABC=90°,∴AB ⊥BC ,∴OH ∥AB ,又O 为中点,∴H 为BC 的中点,∴BH=12BC=32∵GI ⊥OH ,∴四边形BHIG 为矩形,∴GI ∥BH ,GI=BH=32, 又∠F=45°,∴∠OGI=45°,∴在Rt △OGI 中,cos GI OG OGI ==∠故选:A【点睛】本题考查了解直角三角形及平行线等分线段定理,构造合适的辅助线是解题关键. 9.A解析:A【分析】连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=12OE 和3OE ,然后三角形的面积公式可得S △ODE 32,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC =2312a 即可判断②和③;求出BDE 的周长=a +DE ,求出DE 的最小值即可判断④.【详解】解:连接OB 、OC∵ABC 是等边三角形,点O 是ABC 的内心,∴∠ABC=∠ACB=60°,BO=CO ,BO 、CO 平分∠ABC 和∠ACB ∴∠OBA=∠OBC=12∠ABC=30°,∠OCA=∠OCB=12∠ACB=30° ∴∠OBA=∠OCB ,∠BOC=180°-∠OBC -∠OCB=120°∵120FOG ∠=︒∴∠=FOG ∠BOC∴∠FOG -∠BOE=∠BOC -∠BOE∴∠BOD=∠COE在△ODB 和△OEC 中BOD COE BO COOBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ODB ≌△OEC∴OD=OE∴△ODE 是顶角为120°的等腰三角形,∴ODE 形状不变,故①正确;过点O 作OH ⊥DE ,则DH=EH ∵△ODE 是顶角为120°的等腰三角形∴∠ODE=∠OED=12(180°-120°)=30° ∴OH=OE·sin ∠OED=12OE ,EH= OE·cos ∠OED=32OE ∴DE=2EH=3OE∴S △ODE =12DE·OH=3OE 2 ∴OE 最小时,S △ODE 最小,过点O 作OE′⊥BC 于E′,根据垂线段最短,OE′即为OE 的最小值∴BE′=12BC=12a 在Rt △OBE′中 OE′=BE′·tan ∠O BE′=12a 33 ∴S △ODE 3223 ∵△ODB ≌△OEC ∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =1223 ∵23=1423 ∴S △ODE ≤14S 四边形ODBE 即ODE 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确; ∵S 四边形ODBE =2312a∴四边形ODBE 的面积始终不变,故③正确;∵△ODB ≌△OEC∴DB=EC∴BDE 的周长=DB +BE +DE= EC +BE +DE=BC +DE=a +DE∴DE 最小时BDE 的周长最小 ∵OE∴OE 最小时,DE 最小而OE 的最小值为∴DE=12a ∴BDE 的周长的最小值为a +12a =1.5a ,故④正确; 综上:4个结论都正确,故选A .【点睛】此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.10.B解析:B【分析】先根据勾股定理求出BC=12,再利用余弦函数的定义即可求解.【详解】解:在Rt △ABC 中,由勾股定理得,BC 12,∴sin A =1213BC AB =, 故选:B .【点睛】 此题考查勾股定理以及锐角三角函数的定义,解题关键在于计算出BC 的长度.11.A解析:A【分析】根据DE ∥AC 可得到△DOE ∽△COA 和△DBE ∽△ABC ,再根据相似三角形的性质即可得出12BE EC =,再根据同高三角形的面积比等于底之比即可求出. 【详解】∵DE ∥AC∴△DOE ∽△COA ,△DBE ∽△ABC∵S △DOE :S △COA =1:9 ∴13DE AC = ∴13DE BE AC BC == ∴12BE EC = ∴S △BDE :S △CDE =1:2故答案选A .【点睛】本题主要考察了相似三角形的性质,准确记住面积比等于相似比平方是解题关键. 12.B解析:B【详解】解:因为点(5,-1)是双曲线(0)k y k x =≠上的一点, 将(5,-1)代入(0)k y k x=≠得k=-5; 四个选项中只有B 不符合要求:k=5×1≠-5.故选B .【点睛】本题考查反比例函数图象上点的坐标特征.二、填空题13.【解析】【分析】易得圆锥的底面直径为2母线长为2根据圆锥的侧面积=π×底面半径×母线长把相应数值代入即可求解【详解】易得此几何体为圆锥底面直径为2母线长为2所以圆锥的侧面积=πrl=2×1π=2π故解析:2π【解析】【分析】易得圆锥的底面直径为2,母线长为2,根据圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【详解】易得此几何体为圆锥,底面直径为2,母线长为2,所以圆锥的侧面积=πrl=2×1π=2π,故答案为2π.【点睛】本题考查了由三视图判断几何体及圆锥的侧面积计算,解题的关键是确定几何体的形状,难度不大.14.4【解析】【分析】根据从正面看可得该几何体有2层再分别根据从左面看从上面看判断该几何体有几行几列以及正方体的具体摆放即可解答【详解】观察三视图可得这个几何体有两层底下一层是一行三列有3个正方体上面一 解析:4【解析】【分析】根据“从正面看”可得该几何体有2层,再分别根据“从左面看”、“从上面看”,判断该几何体有几行、几列以及正方体的具体摆放,即可解答.【详解】观察三视图,可得这个几何体有两层,底下一层是一行三列有3个正方体,上面一层最右边有一个正方体,故搭成这个几何体的小正方体的个数为3+1=4个.故答案为4.【点睛】本题考查对三视图的理解应用以及空间想象能力,可从主视图分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后的位置,综合上述分析出小立方体的个数. 15.20【分析】根据从正面看所得到的图形即可得出这个几何体的主视图的面积【详解】解:该几何体的主视图是一个长为5宽为4的矩形所以该几何体主视图的面积为20cm2故答案为:20【点睛】本题考查了三视图的知解析:20【分析】根据从正面看所得到的图形,即可得出这个几何体的主视图的面积.【详解】解:该几何体的主视图是一个长为5,宽为4的矩形,所以该几何体主视图的面积为20cm 2.故答案为:20.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.16.【分析】根据旋转的性质求解【详解】解:∵AB=4在x 轴正半轴上∴图1中B 坐标为(40)在图2中过B 作BE ⊥x 轴于点E 那么OE=4×cos30°=2BE=2在图2中B 点的坐标为(22);易知图1中点C解析:()234,22⎛⎫+ ⎪⎝⎭ 【分析】根据旋转的性质求解.【详解】解:∵AB=4,在x 轴正半轴上,∴图1中B 坐标为(4,0),在图2中过B 作BE ⊥x 轴于点E ,那么OE=4×cos30°=23,BE=2,在图2中B 点的坐标为(23,2);易知图1中点C 的坐标为(4,3),在图2中,设CD 与y 轴交于点M ,作CN ⊥y 轴于点N ,那么∠DOM=30°,OD=3, ∴3OM=3÷cos30°3,那么3∠NCM=30°,∴43-,433-, 则334+, ∴图2中C 点的坐标为(4332,3342). 【点睛】此题主要考查了旋转性质的应用,旋转前后对应角的度数不变,对应线段的长度不变,注意构造直角三角形求解.17.或【分析】根据△AOB 绕点O 旋转15°得到△AOB 分两种情况过B 作BC ⊥y 轴依据Rt △BOC 中BC 和CO 的长即可得到点B 的坐标【详解】解:如图所示:若△AOB 绕点O 顺时针旋转15°得到△AOB 过B 作 解析:(2,6-或(6,2-【分析】根据△AOB 绕点O 旋转15°得到△A'OB',分两种情况,过B'作B'C ⊥y 轴,依据Rt △B'OC 中,B'C 和CO 的长,即可得到点B'的坐标.【详解】解:如图所示:若△AOB 绕点O 顺时针旋转15°得到△A'OB',过B'作B'C ⊥y 轴,则∠BOB'=15°,又∵∠AOB=45°,∴∠BOC=45°,∴∠B'OC=30°,∵点A 的坐标是(-4,0),∴AO=4,∴B'O=BO=cos45°×4=22, ∴B'C=12B'O=2,CO=3B'C=6, ∴点B'的坐标是()2,6-;如图所示:若△AOB 绕点O 逆时针旋转15°得到△A'OB',过B'作B'C ⊥y 轴,则∠BOB'=15°,同理可得,∠AOB'=30°,2,∴∠CB'O=30°,∴CO=122,36, ∴点B'的坐标是(6,2-,综上所述,点B'的坐标是(2,6-或(6,2-.故答案为:(2,6-或(6,2-. 【点睛】本题考查坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标. 18.【分析】根据△ABC 的面积相等选择AC 和BC 为底高算出的△ABC 的面积和选择AB 为底C 到AB 边的距离为高算出的面积一样列出等式求解【详解】解:在Rt △ABC 中设点C 到AB 边的距离为由△ABC 的面积相解析:6013【分析】根据△ABC 的面积相等,选择AC 和BC 为底、高算出的△ABC 的面积和选择AB 为底,C 到AB 边的距离为高算出的面积一样列出等式求解.【详解】解:在Rt △ABC 中,设点C 到AB 边的距离为d ,由△ABC 的面积相等可列出如下等式:11=22⨯⨯AC BC AB d ,代入数据: 即:11125=1322⨯⨯⨯⨯d 解得:6013=d 故点C 到AB 边的距离是6013cm. 故答案为:6013. 【点睛】 本题结合直角三角形考查了三角形的面积公式,点到直线的距离垂线段最短等知识点,掌握好直角三角形的等面积法是解题的关键.19.()cm 【分析】利用黄金分割的定义计算出AP 【详解】为的黄金分割点故答案为:()cm 【点睛】此题考查黄金分割的定义黄金分割物体的较大部分等于与整体的解析:(4)cm【分析】利用黄金分割的定义计算出AP .【详解】 P 为AB 的黄金分割点()AP PB >,()84AP AB cm ∴===故答案为:(4)cm.【点睛】此题考查黄金分割的定义,黄金分割物体的较大部分等于与整体的12. 20.x <0或1<x <4【分析】根据图形找出一次函数图象在反比例函数图象上方的x 的取值范围即可【详解】解:根据图形当x <0或1<x <4时一次函数图象在反比例函数图象上方y1>y2故答案为:x<0或1<x<解析:x<0或1<x<4【分析】根据图形,找出一次函数图象在反比例函数图象上方的x的取值范围即可.【详解】解:根据图形,当x<0或1<x<4时,一次函数图象在反比例函数图象上方,y1>y2.故答案为:x<0或1<x<4.【点睛】本题考查了反比例函数一次函数的交点问题,要注意y轴左边的部分,一次函数图象在第二象限,反比例函数图象在第三象限,这也是本题容易忽视而导致出错的地方.三、解答题21.(1)从左面看;(2)从正面、上面看,图见解析【分析】(1)根据几何体的三视图判断即可;(2)根据几何体的三视图画法即可求解.【详解】解:(1)(从左面看)(2)(从正面看)(从上面看)【点睛】此题主要考查几何体的三视图,提高空间想象能力是解题关键.22.见解析【分析】由已知条件可知,从正面看有4列,每列小正方数形数目分别为2,3,3,1;从左面看有3列,每列小正方形数目分别为3,2,3.据此可画出图形.【详解】解:如图所示.从正面看从侧面看【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.23.(1)该圆的半径为5m.;(2)2米.【分析】(1)连接OC,延长CO交AB于点D,利用垂径定理求出AD,再利用勾股定理求出圆的半径.(2)过点O作OE⊥AB',利用垂径定理求出A'E的长,再利用勾股定理求出OE的长,然后求出水面上涨的高度.【详解】(1)解:连接OC,延长CO交AB于点D,∴CD⊥AB∴116322AD AB==⨯=,设圆的半径为r,OD=r-1在Rt△AOD中OD2+AD2=AO2即(r-1)2+9=r2.解之:r=5.∴该圆的半径为5m.(2)解:过点O作OE⊥AB'∴A'E=1''2A B =4,∴2222''543OEA O A E , ∴水面上涨的高度为5-3=2米. 【点睛】此题考查了解直角三角形的应用,垂径定理,以及圆周角定理,熟练掌握各自的性质是解本题的关键.24.(1)23BC =;(2)433π-或833π+ 【分析】(1)连接OB ,OC ,作ODBC 于点D ,通过圆周角定理及解直角三角形解题即可; (2)分优弧BC 与劣弧BC 两种情况分别进行讨论即可. 【详解】(1)如图,连接OB ,OC ,作OD BC 于点D ,则12BD DC BC ==,由圆周角定理得,2120BOC BAC ∠=∠=︒,则sin 3BD OB BOD =⋅∠=223BC BD ∴==; (2)劣弧BC 与弦BC 围成的图形面积2120214231336023ππ⨯=-⨯⨯=-, 优弧BC 与弦BC 围成的图形面积2240218231336023ππ⨯=+⨯⨯=+. 【点睛】本题主要考查圆的综合问题,掌握圆周角定理,扇形的面积公式是解题的关键. 25.(1)18;(2)3.6【分析】(1)依题意得到△APM ∽△ABD ,得到MP AP BD AB=再由它可以求出AB ; (2)设王华走到路灯BD 处头的顶部为E ,连接CE 并延长交AB 的延长线于点F 则BF 即为此时他在路灯AC 的影子长,容易知道△EBF ∽△CAF ,再利用它们对应边成比例求出现在的影子.【详解】解:(1)由对称性可知AP =BQ ,设AP =BQ =x m ,∵MP ∥BD ,∴△APM ∽△ABD ,∴MP AP BD AB = , ∴1.69.6=212x x +, 解得x =3,∴AB =2x +12=18(m),即两个路灯之间的距离为18米(2)设王华走到路灯BD 处头的顶部为E ,连接CE 并延长交AB 的延长线于点F ,则BF 即为此时他在路灯AC 下的影子长,设BF =y m ,∵BE ∥AC ,∴△FEB ∽△FCA ,∴BE BF AC FA = ,即1.69.6=18y y +, 解得y =3.6,当王华同学走到路灯BD 处时,他在路灯AC 下的影子长3.6米.【点睛】此题主要考查相似三角形的应用,两个问题都主要利用了相似三角形的性质:对应边成比例.26.(1)32m a c =+;(2)见解析;(3)0m kx b x -->的解集为x >3或﹣1<x <0. 【分析】 (1)点A 、B 都在反比例函数y=m x 的图象上,则a=-3c=m ,故m a c +=33c c c --+=32; (2)求出D (0,-2c ),C (-2,0),则AD 2=1+9c 2;BC 2=1+9c 2,即可证明;(3)观察函数图象即可求解.【详解】 解:(1)∵点A 、B 都在反比例函数y =m x 的图象上, ∴a =﹣3c =m , ∴3332m c a c c c -==+-+; (2)将A (1,﹣3c )、B (﹣3,c ),分别代入y =kx +b 得33k b c k b c +=-⎧⎨-+=⎩,解得2k c b c =-⎧⎨=-⎩, ∴y =﹣cx ﹣2c ,令x =0,y =﹣2c ,令y =0,即y =﹣cx ﹣2c =0,解得x =﹣2,∴D (0,﹣2c ),C (﹣2,0),∴AD 2=1+9c 2;BC 2=1+9c 2,∴AD =BC ;(3)∵y =kx ﹣b =﹣cx +2c ,∴点(3,﹣c )、(﹣1,3c )为直线y =kx ﹣b =﹣cx +2c 与双曲线m y x =的交点, ∴0m kx b x -->的解集为x >3或﹣1<x <0. 【点睛】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,使用一次函数,体现了方程思想,综合性较强.。

【苏科版】九年级数学下期末一模试卷带答案

【苏科版】九年级数学下期末一模试卷带答案

一、选择题1.《九章算术》是我国古代数学成就的杰出代表,其中《方田》章给出计算弧田面积所用公式为:弧田面积=12(弦×矢+矢2),弧田(如图)是由圆弧和其所对的弦所围成,公式中“弦”指圆弧所对弦长AB ,“矢”等于半径长与圆心O 到弦的距离之差.在如图所示的弧田中,“弦”为8,“矢”为3,则cos ∠OAB =( )A .35B .2425C .45D .12252.如图,A B C D 、、、是O 上的点,180AOD BOC ∠+∠=︒.若2,6AD BC ==,则BOC ∆的面积为( )A .3B .6C .9D .123.如图,AB 为半圆O 的直径,C 是半圆上一点,且60COA ∠=º,设扇形AOC 、COB △、弓形BmC 的面积为1S 、2S 、3S ,则他们之间的关系是( )A .123S S S <<B .213S S S <<C .132S S S <<D .321S S S <<4.如图,正方形ABCD 的四个顶点都在⊙O 上,在AD 上取一点E (点E 不与D 重合),连接EC ,ED ,则∠CED 的度数为( )A .30°B .45°C .60°D .75° 5.抛物线()2212y x =+-的对称轴是( )A .直线1x =B .直线1x =-C .直线2x =D .直线2x =- 6.抛物线y =ax 2+bx +c 的顶点坐标(﹣2,3),抛物线与x 轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,其部分图象如图所示,有下列说法:①4a ﹣b =0;②a ﹣b +c =0; ③若(﹣4,y 1),(1,y 2)是抛物线上的两点,则y 1>y 2; ④b 2+3b =4ac .其中正确的个数有( )A .4B .3C .2D .17.已知二次函数2(2)1y mx m x =+--(m 为常数,且0m ≠),( )A .若0m >,则1x <,y 随x 的增大而增大B .若0m >,则1x >,y 随x 的增大而减小C .若0m <,则1x <,y 随x 的增大而增大D .若0m <,则1x >,y 随x 的增大而减小8.二次函数()20y ax bx c a =++≠的图象如图所示,给出下列四个结论:①240b ac -<;②0a b c ++<;③2a b >;④0abc >,其中正确的结论是( ). A .①② B .②④ C .③④ D .②③④ 9.如图,四边形ABCD 中,∠B =∠C =90°,CD =2米,BC =5米,5sin 13A =,则AB =( )A .8米B .10米C .12米D .14米 10.如图,拦水坝的横断面是梯形,高6BC =米,斜面坡度为1:2,则斜坡AB 的长为( )A .43米B .65米C .125米D .12米 11.在Rt ABC 中,90C ∠=︒,5AB =,4BC =,则tan A 的值为( ) A .35 B .45C .34D .43 12.cos45°的值为( ) A .1 B .12 C .22 D .32 二、填空题13.在平面直角坐标系xOy 中,O 的半径为13,直线34y kx k =-+与O 交于B ,C 两点,则弦BC 长的最小值等于____.14.点A ,B ,C ,D 都在O 上,AB AC =,D 为O 上的一点,67.5ABC ODC ∠=∠=︒,CO 的延长线交AB 于点P ,若2CD =,则BP =___________.15.抛物线2y ax bx c =++经过()30A -,,()4,0B 两点,则关于x 的一元二次方程()()2110a x b x c -+-+=的解是______.16.抛物线24y x x c =-++向右平移一个单位得到的抛物线恰好经过原点,则c =_____.17.抛物线2y ax bx c =++的对称轴为直线1x =-,部分图象如图所示,下列判断中:①0abc >;②240b ac ->;③930a b c -+=;④若点()()120.5,,2,y y --均在抛物线上,则12y y >;⑤520a b c -+<.其中正确的序号是____(填写正确的序号).18.如图,从A 地到B 地需经过C 地,现城市规划需修建一条从A 到B 的笔直道路,已知180AC 米,30CAB ∠=︒,45CBA ∠=︒,则道路改直后比原来缩短了___________米.(结果精确到1米,可能用到的数据:2 1.4≈,3 1.7≈)19.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,AF 平分∠CAB ,交CD 于点E ,交CB 于点F ,若AC =6,tanB =34,则CE =_____.20.如图,点P (m ,1)是反比例函数3y =图象上的一点,PT ⊥x 轴于点T ,把△PTO 沿直线OP 翻折得到△PT O ',则点T '的坐标为_______________.21.ABC ∆中,67.5A ,8BC =,BE AC ⊥交AC 于E ,CF AB ⊥交AB 于F ,点D 是BC 的中点.以点F 为原点,FD 所在的直线为x 轴构造平面直角坐标系,则点E 的横坐标为________.22.如图,在山坡上种树时,要求株距(相邻两树间的水平距离)为6m .测得斜坡的斜面坡度为i =1:3(斜面坡度指坡面的铅直高度与水平宽度的比),则斜坡相邻两树间的坡面距离为_____.三、解答题23.如图,已知圆锥的底面积为29cm π,高4AO cm =,求该圆锥的侧面展开图的面积(结果保留π).24.如图,在ABC 中,90C ∠=︒,ABC ∠的平分线BE 交AC 于点E ,过点E 作BE 的垂线交AB 于点F ,O 是BEF 的外接圆,BC 与O 交于点D .(1)求证:AC 是O 的切线;(2)过点E 作EH AB ⊥于点H ,求证:CD HF =.25.东坡区农产品资源极为丰富,其中晚熟柑橘远销北上广等大城市.某水果店购进一批优质晚熟柑橘,进价为5元/千克,售价不低于8元/千克,且不超过20元/每千克,根据销售情况,发现该柑橘在一天内的销售量y (千克)与该天的售价x (元/千克)之间的数量满足如下表所示的一次函数关系. 销售量y (千克) … 42 45 48 51 …售价x(元/千克)…1815129…(2)设某天销售这种柑橘获利m元,写出m与售价x之间的函数关系式.如果水果店该天获利450元,那么这天柑橘的售价为多少元?26.在平面直角坐标系xOy中,二次函数y=ax2+2x﹣3a(a≠0)交x轴于A、B两点(点A 在点B的左侧),且抛物线的对称轴为直线x=﹣1.(1)求此抛物线的解析式及A、B两点坐标;(2)若抛物线交y轴于点C,顶点为D,求四边形ABCD的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】如图,作射线OH⊥AB于H.交圆弧于C,利用垂径定理以及勾股定理构建方程组求出OA,OH,利用余弦函数定义即可解决问题.【详解】解:如图,作OH⊥AB于H.交圆弧于C,由题意:AB=8,HC=3,∴OA﹣OH=3,∵OH⊥AB,OC为半径,∴AH=BH=1AB2=4,在Rt△OAH中由勾股定理得AH2+OH2=OA2,∴42=(OA+OH)(OA﹣OH),∴OA+OH=163,∴OA=256,OH=76,∴cos ∠OAB =AH 424==25OA 256,故选:B .【点睛】本题考查垂径定理与勾股定理,三角函数的定义,掌握垂径定理与勾股定理的条件与结论,三角函数的定义是解题关键.2.A解析:A【分析】作出辅助线延长BO 交O 于点E ,连接CE ,由此构建圆心角AOD COE ∠=∠,根据圆周角与弧长和弦长的关系得到2AD CE ==,再据此求出BEC △的面积,经由OB OE =即可求出BCE 的面积.【详解】解:如图延长BO 交O 于点E ,连接CE ,∵B O E 、、三点共线∴180COE BOC ∠+∠=︒,90BCE ∠=︒,∴CE BC ⊥,∵180AOD BOC ∠+∠=︒,∴AOD COE ∠=∠,∴AD CE =,∴2AD CE ==,∵6BC =,∴1162622S BC CE ==⨯⨯=△BCE , ∵OB OE =, ∴116322S S ==⨯=△BOC △BEC . 故选A.本题主要考查圆心角所对弧、弦的关系,圆周角定理,关键在于作出OB 的延长线OE ,来构造出圆心角相等,以此来解决问题.3.B解析:B【分析】设出半径,作出△COB 底边BC 上的高,利用扇形的面积公式和三角形的面积公式表示出三个图形面积,比较即可求解.【详解】解:作OD ⊥BC 交BC 与点D ,∵∠COA =60°,∴∠COB =120°,则∠COD =60°.∴S 扇形AOC =22603606ππ=R R ; S 扇形BOC =221203603ππ=R R . 在三角形OCD 中,∠OCD =30°,∴OD =2R ,CD =3R ,BC =3R , ∴S △OBC =23R ,S 弓形=2233R R π-=2(433)π-R , 2(433)12π-R >26πR >234R , ∴S 2<S 1<S 3.故选:B .【点睛】此题考查扇形面积公式及弓形面积公式,解题的关键是算出三个图形的面积,首先利用扇形公式计算出第一个扇形的面积,再利用弓形等于扇形﹣三角形的关系求出弓形的面积,进行比较得出它们的面积关系.4.B解析:B【分析】连接DO 、CO ,利用正方形的性质可求得圆心角的度数为90°,再根据圆周角定理求解即可得出结论.解:如图,连接DO 、CO ,∵四边形ABCD 为正方形,∴∠COD =90°,∴∠CED =12∠COD =45°. 故选:B .【点睛】考查了正方形和圆的性质,掌握正方形的性质及圆周角定理并能正确的作出辅助线是解答此题的关键. 5.B解析:B【分析】根据二次函数的顶点式的性质求对称轴即可;【详解】∵ ()2212y x =+- , ∴对称轴为:x=-1,故选:B .【点睛】本题考查了二次函数顶点式的性质,正确掌握知识点是解题的关键.6.B解析:B【分析】根据抛物线的对称轴可判断①;由抛物线与x 轴的交点及抛物线的对称性以及由x =﹣1时y >0可判断②,由抛物线对称性和增减性,即可判断③;利用抛物线的顶点的纵坐标为3得到244ac b a-=3,即可判断④. 【详解】解:∵抛物线的对称轴为直线x 2b a=-=-2, ∴4a ﹣b =0,所以①正确;∵与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间,∴x =﹣1时y >0,即a ﹣b +c >0,∴所以②错误;由抛物线的对称性知(﹣4,y 1)与(0,y 1)关于对称轴对称,∵抛物线开口向下,对称轴为直线x 2b a=-=-2 ∴当x >-2时,y 随x 的增大而减小,∵-2<0<1∴y 1>y 2∴所以③正确;∵抛物线的顶点坐标为(﹣2,3), ∴244ac b a-=3, ∴b 2+12a =4ac ,∵4a ﹣b =0,∴b =4a ,∴b 2+3b =4ac ,所以④正确;故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ):抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.7.D解析:D【分析】先求出二次函数图象的对称轴,然后根据m 的符号分类讨论,结合图象的特征即可得出结论.【详解】 该二次函数图象的对称轴为直线21122m x m m -=-=-+, 若0m >,对于22m x m -=-无法判断其符号,故A 、B 选项不一定正确; 若0m <,则202m x m -=-<,即22m m--<1,且抛物线的开口向下, ∴当1x >时,y 随x 的增大而减小,故选:D .【点睛】此题考查的是二次函数的图象及性质,解决此题的关键是分类讨论确定对称轴的位置,再结合开口方向进行综合分析.8.B解析:B【分析】根据抛物线与x 轴交点可判断①;根据x=1时,y <0,可判断②;对称轴x=-1可判断③;根据抛物线开口方向、对称轴、与y 轴交点可判断④.【详解】解:①由抛物线图象与x 轴有两个交点可知240b ac ->,故①错误;②由图象知,当x=1时,y=a+b+c <0,故②正确;③抛物线对称轴x=-1,即-2b a=-1<0,即b=2a <0,即③错误; ④由抛物线图象得:开口向下,即a <0;c >0,b <0,∴abc >0,故④正确; 所以正确的有:②④,故选:B .【点睛】主要考查图象与二次函数系数之间的关系,掌握二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定是解题的关键. 9.D解析:D【分析】过点D 作DE ⊥AB 于E ,得到四边形DEBC 是矩形,得到BE=DC=2米,DE=BC=5米,根据5sin 13A =,求得AD=13米,根据勾股定理求出AE=12米,即可得到答案. 【详解】过点D 作DE ⊥AB 于E ,∴∠DEB=∠B =∠C =90°,∴四边形DEBC 是矩形,∴BE=DC=2米,DE=BC=5米, ∵5sin 13A =, ∴513DE AD =, ∴AD=13米,∴12=米,∴AB=AE+BE=12+2=14米,故选:D ..【点睛】此题考查矩形的判定及性质,勾股定理,锐角三角函数,正确引出辅助线构建直角三角形解决问题是解题的关键.10.B解析:B【分析】根据坡度求出AC 的长度,再利用勾股定理求出AB .【详解】∵坡度12BC i AC ==,6BC =米, ∴AC=12米, ∴222212665AC BC ++=故选:B .【点睛】此题考查已知正切值求边长,勾股定理求直角三角形边长,熟记坡度定义求出AC 是解题的关键.11.D解析:D【分析】由勾股定理算出AC 的值,然后根据正切函数的定义即可得到解答.【详解】 解:由勾股定理可得:2222543AC AB BC =-=-=,∴tanA=43BC AC =, 故选D .【点睛】 本题考查解直角三角形,熟练掌握勾股定理及三角函数的定义是解题关键.12.C解析:C【分析】直接根据特殊角的三角函数值即可得出结论;【详解】∵2cos 452=° , 故选:C .【点睛】 本题考查了特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.二、填空题13.24【分析】根据直线y=kx-3k+4必过点D (34)求出最短的弦CB 是过点D 且与该圆直径垂直的弦再求出OD 的长再根据以原点O 为圆心的圆过点A (130)求出OB 的长再利用勾股定理求出BD 即可得出答案解析:24【分析】根据直线y=kx-3k+4必过点D (3,4),求出最短的弦CB 是过点D 且与该圆直径垂直的弦,再求出OD 的长,再根据以原点O 为圆心的圆过点A (13,0),求出OB 的长,再利用勾股定理求出BD ,即可得出答案.【详解】解:连接OB ,∵直线y=kx-3k+4必过点D (3,4),∴最短的弦CB 是过点D 且与该圆直径垂直的弦,∵点D 的坐标是(3,4),∴223+4=5,∵以原点O 为圆心的圆过点A (13,0),∴圆的半径为13,∴OB=13,∴2222=135OB OD --=12,∴BC=2BD=24,∴BC 的长的最小值为24;故答案为:24.【点睛】此题考查的是垂径定理,用到的知识点是垂径定理、勾股定理、圆的有关性质,关键是求出BC 最短时的位置.14.【分析】连接ACOB 根据三角形的内角和得到∠DOC=180°-675°-675°=45°根据圆周角定理得到∠BOC=90°推出∠BCP=∠COD=45°∠PBC=∠OCD=675°证得△CPB ∽△O 解析:22【分析】连接AC ,OB ,根据三角形的内角和得到∠DOC=180°-67.5°-67.5°=45°,根据圆周角定理得到∠BOC=90°,推出∠BCP=∠COD=45°,∠PBC=∠OCD=67.5°,证得△CPB ∽△ODC ,根据相似三角形的性质即可求得结果.【详解】如图,连接AC ,OB67.5ABC ODC =︒∠=∠又∵AB AC = ∴AB=AC∴∠ABC=∠ACB=67.5°∴∠BAC=180°-67.5°-67.5°=45°又CO=DO∴∠OCD=∠ODC=67.5°∴∠COD=180°-67.5°-67.5°=45°45BAC COD ∴∠=∠=︒290BOC BAC45BCO ∴∠=︒∴∠BCP=∠COD=45°又∠CBP=∠OCD CPB ODC ∴△∽△PB BC CD OC ∴=, ∴22PB =22PB ∴=.故答案为:2【点睛】本题考查了圆周角定理,相似三角形的判定和性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.15.【分析】抛物线经过两点则方程的解为x=-3或x=4根据方程可得x-1=-3或4求解即可;【详解】∵抛物线经过两点∴方程的解为x=-3或x=4∵∴x-1=-3或x-1=4解得=-2或5故答案为:=-2解析:12x =-,25x =【分析】抛物线2y ax bx c =++经过()30A -,,()4,0B 两点,则方程2=0ax bx c ++的解为x=-3或x=4,根据方程()()2110a x b x c -+-+=可得x-1=-3或4,求解即可;【详解】 ∵抛物线2y ax bx c =++经过()30A -,,()4,0B 两点, ∴方程2=0ax bx c ++的解为x=-3或x=4,∵()()2110a x b x c -+-+=, ∴ x-1=-3或x-1=4,解得1x =-2或2x =5,故答案为:1x =-2,2x = 5.【点睛】本题考查了二次函数与一元二次方程的关系,正确理解二次函数与一元二次方程是解题的关键;16.5【分析】先根据平移的规律得出平移后的解析式再根据二次函数图象上的点的特点即可得到关于c 的方程解方程即可【详解】抛物线解析式为:向右平移一个单位得到的抛物线为:抛物线恰好经过原点解得c=5故答案为: 解析:5【分析】先根据平移的规律得出平移后的解析式,再根据二次函数图象上的点的特点即可得到关于c 的方程,解方程即可.【详解】抛物线解析式为:224(2)4y x x c x c =-++=--++,向右平移一个单位得到的抛物线为:2(3)4y x c =--++,抛物线恰好经过原点, ∴20(03)4c =--++,解得c=5.故答案为:5【点睛】本题考查的是二次函数图象与几何变换,二次函数的性质以及二次函数图象上的点的坐标的特征,图象上的点的坐标适合解析式.17.②③⑤【分析】利用抛物线开口方向得到a >0利用抛物线的对称轴方程得到b=2a >0利用抛物线与y 轴的交点位置得到c <0则可对①进行判断;利用抛物线与x 轴交点个数可对②进行判断;利用抛物线的对称性得到抛 解析:②③⑤【分析】利用抛物线开口方向得到a >0,利用抛物线的对称轴方程得到b=2a >0,利用抛物线与y 轴的交点位置得到c <0,则可对①进行判断;利用抛物线与x 轴交点个数可对②进行判断;利用抛物线的对称性得到抛物线与x 轴的另一个交点坐标为(-3,0),则可对③进行判断;根据二次函数的性质,通过比较两点到对称轴的距离可对④进行判断;利用5a-2b+c=5a-4a-3a=-2a <0,则可对⑤进行判断.【详解】解:∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线x=-2b a=-1, ∴b=2a >0,∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc <0,所以①错误;∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,所以②正确;∵抛物线的对称轴为直线x=-1,抛物线与x 轴的一个交点坐标为(1,0),∴抛物线与x 轴的另一个交点坐标为(-3,0),∴9a-3b+c=0,所以③正确;∵点(-0.5,y 1)到直线x=-1的距离比点(-2,y 2)到直线x=-1的距离小,而抛物线开口向上,∴y 1<y 2;所以④错误;∵5a-2b+c=5a-4a-3a=-2a <0,故⑤正确,故答案为:②③⑤.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点. 18.【分析】过点C 作CD ⊥AB 垂足为D 计算BCAB 的长度比较AC+BC 与AB 的大小即可【详解】如图过点C 作CD ⊥AB 垂足为D ∵米∴DC=BD=90AD=90BC=90∴AC+BC=180+90≈306A解析:【分析】过点C 作CD ⊥AB ,垂足为D ,计算BC ,AB 的长度,比较AC+BC 与AB 的大小即可.【详解】如图,过点C 作CD ⊥AB ,垂足为D ,∵180AC 米,30CAB ∠=︒,45CBA ∠=︒,∴DC=BD=90,AD=903,BC=902,∴AC+BC=180+902≈306,AB=AD+BD=903+90≈243,∴缩短了:306-243=63(米),故答案为:63米.【点睛】本题考查了解斜三角形,学会作高化,把斜三角形化为直角三角形,并熟练运用特殊角的三角函数值是解题的关键.19.3【分析】证明∠CEF=∠CFE 得到CE=CF 过点F 作FH ⊥AB 于H 根据角平分线的性质得到FC=FH 设FH=x 根据tanB =求出BC=8根据勾股定理求出FB=得到解之即可得到答案【详解】证明:∵在R解析:3 【分析】证明∠CEF=∠CFE 得到CE=CF ,过点F 作FH ⊥AB 于H ,根据角平分线的性质得到FC=FH ,设FH=x ,根据tanB =34求出BC=8,43BH x =,根据勾股定理求出2253FH BH x +=, 得到583x x =-,解之即可得到答案. 【详解】证明:∵在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,∴∠CDB=∠ACB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,∴∠ACD=∠B ,∵AF 平分∠CAB ,∴∠CAE=∠BAF ,∴∠ACD+∠CAE=∠B+∠BAF ,∵∠CEF=∠ACD+∠CAE ,∠CFE=∠B+∠BAF ,∴∠CEF=∠CFE∴CE=CF ,过点F 作FH ⊥AB 于H ,∵AF 平分∠CAB ,FC ⊥AC ,FH ⊥AB ,∴FC=FH ,设FH=x ,在Rt △ABC 中,∠ACB =90°,AC =6,tanB =34, ∴BC=8,∴FC=x ,FB=8-x ,∵3tan 4FH B BH ==, ∴43BH x =, ∴FB=2253FH BH x +=, ∴583x x =-, 解得x=3,∴CE=FC=FH=3,故答案为:3. .【点睛】此题考查角平分线的性质,等角对等边的判定,勾股定理,利用锐角三角函数求边长,题中证得CE=FC 并引出辅助线解决问题是解题的关键.20.【分析】连接过点作于点C 先根据反比例函数解析式求出点P 坐标根据的正切值得到它的度数再根据折叠的性质证明是等边三角形再解直角三角形得到OC 和的长即可求出的坐标【详解】解:如图连接过点作于点C ∵点P(m解析:33,2⎛⎫ ⎪ ⎪⎝⎭【分析】连接TT ',过点T '作T C OT '⊥于点C ,先根据反比例函数解析式求出点P 坐标,根据POT ∠的正切值得到它的度数,再根据折叠的性质证明TOT '是等边三角形,再解直角三角形得到OC 和CT '的长,即可求出T '的坐标.【详解】解:如图,连接TT ',过点T '作T C OT '⊥于点C ,∵点P (m ,1)是反比例函数3y =图象上的一点, ∴31m=,即3m , ∴3OT =,1PT =,∵3tan POT ∠=∴30POT ∠=︒,由折叠的性质得:30,3POT POT OT OT ∠=∠=︒='='∴60TOT '∠=︒,又∵OT OT '=,∴TOT '是等边三角形,∵T C OT '⊥, ∴132OC OT ==, 33sin 32CT OT TOT '''=⋅∠==, ∴332T ⎫'⎪⎪⎝⎭.故答案为:332⎫⎪⎪⎝⎭.【点睛】本题考查反比例函数与几何,解题的关键是掌握反比例函数的性质,利用锐角三角函数值得到特殊角的度数,然后解直角三角形.21.【分析】连接DE 过E 作EH ⊥OD 于H 求得∠EDO =45°即可得到Rt △DEH 中求得DH 进而得出OH 即可求解【详解】如图所示连接过作于于于是的中点中点的横坐标是【点睛】本题主要考查了直角三角形斜边上中 解析:422-【分析】 连接DE ,过E 作EH ⊥OD 于H ,求得∠EDO =45°,即可得到Rt △DEH 中,求得DH ,进而得出OH ,即可求解.【详解】如图所示,连接DE ,过E 作EH OD ⊥于H ,BE CA ⊥于E ,CF AB ⊥于F ,D 是BC 的中点,142DE DC BC DO DB ∴=====, DCE DEC ∴∠=∠,DBO DOB ∠=∠,67.5A ∴∠=︒,112.5ACB ABC ∴∠+∠=︒,18021802()()CDE BDO DCE DBO ∴∠+∠=︒-∠+︒-∠ 3602()DCE DBO =︒-∠+∠3602112.5=︒-⨯︒135=︒,45EDO ∴∠=︒, Rt DEH ∴∆中,cos 4522DH DE =︒⨯=422OH OD DH ∴=-=-点E 的横坐标是422-【点睛】本题主要考查了直角三角形斜边上中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.解决问题的关键是作辅助线构造等腰直角三角形.22.4米【分析】首先根据斜面坡度为i =1:求出株距(相邻两树间的水平距离)为6m 时的铅直高度再利用勾股定理计算出斜坡相邻两树间的坡面距离【详解】由题意水平距离为6米铅垂高度2米∴斜坡上相邻两树间的坡面距解析:【分析】首先根据斜面坡度为i =16m 时的铅直高度,再利用勾股定理计算出斜坡相邻两树间的坡面距离.【详解】由题意水平距离为6米,铅垂高度∴(m ),故答案为:【点睛】此题考查解直角三角形的应用,解题关键是掌握计算法则. 三、解答题23.215cm π【分析】先求出圆锥底面圆的半径,再利用勾股定理求出AB 的长,利用扇形的面积公式即可求解【详解】由题意可知:29OB ππ⋅=,∴圆锥的底面半径3OB cm =,4AO =5AB cm ∴==圆锥的侧面展开图的弧长等圆锥底面圆的周长∴圆锥的侧面展开图的弧长236l ππ=⨯=∴圆锥的侧面展开图的面积为11651522S l r ππ=⨯=⨯⨯=2cm 【点睛】本题利用了圆周长公式和扇形的面积公式求解,熟练掌握圆锥侧面展开图与底面圆的关系,牢记公式是解题关键.24.(1)见解析;(2)见解析【分析】(1)连接OE ,根据角平分线证OE BC ∥,得90AEO C ∠=∠=︒,可证; (2)连接DE ,证CDE HFE △≌△即可.【详解】 证明:(1)BE EF ⊥,90BEF ∴∠=︒,BF ∴是O 的直径.如图,连接OE , BE 平分ABC ∠,CBE OBE ∴∠=∠.OB OE =,OBE OEB ∴∠=∠.OEB CBE ∴∠=∠.OE BC ∴.90AEO C ∴∠=∠=︒,∴OE ⊥AC ,AC ∴是O 的切线.(2)如图,连接DECBE OBE ∠=∠,EC BC ⊥于C ,EH AB ⊥于H ,EC EH ∴=.180CDE BDE ∠∠+=︒,180HFE BDE ∠+∠=︒,CDE HFE ∴∠=∠.在CDE △与HFE 中,90CDE HFE C FHE EC EH ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩CDE HFE ∴△≌△,CD HF ∴=.【点睛】本题考查了切线的判定、角平分线的性质、全等三角形的判定与性质,解题关键是恰当的作辅助线,准确的应用切线的判定定理和全等三角形的判定定理进行证明. 25.(1)柑橘售价为10元/千克时,当天该柑橘的销售量为50千克;(2)m =-x 2+65x -300;这天柑橘的售价为15元.【分析】(1)用待定系数求出一次函数解析式,再代入自变量的值求得函数值;(2)根据利润=销量×(售价−成本),列出m 与x 的函数关系式,再由函数值求出自变量的值.【详解】解:(1)设该一次函数解析式为y =kx +b ,则1545 951k bk b+=⎧⎨+=⎩,解得:160 kb=-⎧⎨=⎩∴y=-x+60(8≤x≤20).∴当x=10时,y=50.∴柑橘售价为10元/千克时,当天该柑橘的销售量为50千克;(2)由题易知m=y(x-5)=(-x+60)( x-5)=-x2+65x-300当m=450时,则-x2+65x-300=450.整理,得x2-65x+750=0.解得x1=50,x2=15.∵8≤x≤20,∴x=15.所以这天柑橘的售价为15元.【点睛】本题是一次函数与二次函数的应用的综合题,主要考查了用待定系数法求函数的解析式,由函数值求自变量,由自变量的值求函数值,正确求出函数解析式是解题的关键.26.(1)y=x2+2x﹣3,A(﹣3,0),B(1,0);(2)四边形ABCD的面积是9【分析】(1)根据抛物线对称轴方程x=b2a求得a的值,继而确定函数解析式;将二次函数解析式转换为交点式,直接写出A、B两点坐标;(2)由抛物线解析式求得点C、D的坐标,然后利用分割法求得四边形ABCD的面积.【详解】解:(1)根据题意知,抛物线的对称轴为x=﹣22a=﹣1,则a=1.故该抛物线解析式是:y=x2+2x﹣3.因为y=x2+2x﹣3=(x+3)(x﹣1),所以A(﹣3,0),B(1,0);(2)如图:由(1)知,A(﹣3,0),B(1,0),由抛物线y=x2+2x﹣3知,C(0,﹣3).∵y=x2+2x﹣3=(x+1)2﹣4,∴D(﹣1,﹣4),E(﹣1,0).∴AE=2,OC=3,OE=1,OB=1,ED=4,∴S四边形ABCD=S△BOC+S梯形OEDC+S△DAE=12×1×3+12(3+4)×1+12×2×4=9.即四边形ABCD的面积是9.【点睛】本题考查了抛物线与x轴的交点以及二次函数的性质,得出各点的坐标是解答本题的突破口,另外注意将不规则图形的面积转化为几个规则图形的面积和进行求解.。

【苏科版】初三数学下期末一模试卷含答案

【苏科版】初三数学下期末一模试卷含答案

一、选择题1.下图是一些完全相同的小立方块搭成的几何体的三视图,那么搭成这个几何体所用的小立方块的最多个数是()A.9 B.8 C.7 D.62.如图,是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的主视图(从正面看)是()A.B.C.D.3.如图,∠APD=90°,AP=PB=BC=CD,则下列结论成立的是()A.△PAB∽△PCA B.△ABC∽△DBA C.△PAB∽△PDA D.△ABC∽△DCA 4.如图所示的几何体的俯视图为( )A.B.C.D.5.如图所示的立体图形的主视图是()A .B .C .D .6.如图,在正方形方格纸中,每个小方格边长为1,A ,B ,C ,D 都在格点处,AB 与CD 相交于点O ,则sin ∠BOD 的值等于( )A .1010B .31010C .2105D .1057.如图,为了测量某建筑物MN 的高度,在平地上A 处测得建筑物顶端M 的仰角为30°,向N 点方向前进16m 到达B 处,在B 处测得建筑物顶端M 的仰角为45°,则建筑物MN 的高度等于( )A .8(31)+mB .8(31)-mC .16(31)+mD .16(31)-m8.如图,分别以直角三角形三边为边向外作等边三角形,面积分别为1S 、2S 、3S ;如图2,分别以直角三角形的三边为直径向外半圆,面积分别为4S 、5S 、6S .其中116S =,245S =,511S =,614S =,则34S S +=( )A .86B .64C .54D .489.在平面直角坐标系中,正方形1111D C B A 、1122D E E B 、2222A B C D 、2343D E E B 、3333A B C D …按如图所示的方式放置,其中点1B 在y 轴上,点1C 、1E 、2C 、3E 、4E 、3C …在x 轴上,已知正方形1111D C B A 的边长为1,1160B C O ∠=︒,112233B C B C B C …则正方形2019201920192019A B C D 的边长是( )A .201812⎛⎫⎪⎝⎭B .201912⎛⎫⎪⎝⎭C .201933⎛⎫⎪ ⎪⎝⎭D .201833⎛⎫⎪ ⎪⎝⎭10.如图所示,矩形ABCD 的边长AB =2,BC =23,△ADE 为正三角形.若半径为R 的圆能够覆盖五边形ABCDE (即五边形ABCDE 的每个顶点都在圆内或圆上),则R 的最小值是( )A .23B .4C .2.8D .2.511.如图,已知////AB CD EF ,它们依次交直线1l 、2l 于点A 、D 、F 和点B 、C 、E ,如果:3:1AD DF =,10BE =,那么CE 等于( )A .103B .203 C .52 D .15212.在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在...“好点”的是( ) A .y x =-B .2y x =+C .2y x=D .22y x x =-二、填空题13.已知一个物体由x 个相同的正方体堆成,它的正视图和左视图如图所示,那么x 的最大值是_____.14.桌上摆满了朋友们送来的礼物,小狗贝贝好奇地想看个究竟.①小狗先是站在地面上看;②然后抬起了前腿看;③唉,还是站到凳子上看吧;④最后,它终于爬上了桌子….请你根据小狗四次看礼物的顺序,把下面四幅图片按对应字母正确排序为_________________.15.一个几何体的三视图如图所示,其中从上面看的视图是一个等边三角形,则这个几何体的表面积为____.16.如图,在ABC ∆中,AB=AC=10,3tan 4B =,点D 为BC 边上的动点(点D 不与点B ,C 重合),以D 为顶点作ADE B ∠=∠,射线DE 交AC 边于点E ,若BD=4,则AE= __________.17.如图,边长为1的小正方形构成的网格中,半径为1的⊙O 在格点上,则∠AED 的正切值为_____.18.如图,已知直线l :y =33x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为_____.19.如图,点P 是ABC 的重心,过P 作BC 的平行线,分别交AC ,AB 于点D ,E ,作//DF EB ,交CB 于点F ,若ABC 的面积为227cm ,则DFC △的面积为______2cm .20.如图,在平面直角坐标系中,反比例函数(0)ky x x=>经过矩形ABOC 的对角线OA 的中点M ,己知矩形ABOC 的面积为24,则k 的值为___________三、解答题21.如图是一个几何体从三个方向看所得到的形状图.(1)写出这个几何体的名称;(2)若从正面看的长为10cm ,从上面看到的圆的直径为4cm ,求这个几何体的表面积(结果保留π).22.如图,是由几个边长为1的小立方体所组成几何体的俯视图,小正方形中的数字表示在该位置的小正方体的个数,请画出这个几何体的主视图和左视图,并求出这个几何体的表面积.23.如图,ABC 中,,45,tan 2AB AC BC ABC ==∠=;(1)求AC 和AC 边上的高;(2)在AC 上取一点M ,使得BM BC =,过M 作MH AB ⊥,求BHAH的值. 24.如图,在△CFE 中,CF =6,CE =12,∠FCE =45°,以点C 为圆心,以任意长为半径作AD ,再分别以点A 和点D 为圆心,大于12AD 长为半径作弧,交EF 于点B ,AB //CD .(1)求证:四边形ACDB 为菱形; (2)求四边形ACDB 的面积.25.如图,在ABC 中,AD BC ⊥于点D ,4=AD ,3BD =,8DC =,点P 是BC 边上一点(不与点B 、D 、C 重合),过点P 作PQ BC ⊥交AB 或AC 于点Q ,作点Q 关于直线AD 的对称点M ,连结QM ,过点M 作MN BC ⊥交直线BC 于点N .设BP x =,矩形PQMN 与ABC 重叠部分图形的周长为y .(1)直接写出PQ 的长(用含x 的代数式表示). (2)求矩形PQMN 成为正方形时x 的值. (3)求y 与x 的函数关系式.(4)当过点C 和点M 的直线平分ADC 的面积时,直接写出x 的值. 26.如图,在平面直角坐标系中,一次函数152y x =-+的图象于反比例函数(0)ky k x=≠的图象相交于点(8,t)A 和点B .(1)求反比例函数的关系式和点B 的坐标; (2)结合图象,请直接写出在第一象限内,当152kx x-+>时x 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据俯视图可看出最底层小正方体的个数及形状,再从左视图看出每一层小正方体可能的数量,并再俯视图中标出个数,即可得出答案. 【详解】根据左视图在俯视图中标注小正方形最多时的个数如图所示:1+1+2+2+2+1=9,故选A.【点睛】本题考查根据三视图判断小正方形的个数,根据左视图在俯视图中标注小正方形的个数是关键,需要一定的空间想象力.2.B解析:B【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有4列,从左到右分别是1,2,3,2个正方形.【详解】由俯视图中的数字可得:主视图有4列,从左到右分别是1,2,3,2个正方形.故选B.【点睛】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.3.B解析:B【解析】【分析】根据相似三角形的判定,采用排除法,逐条分析判断.【详解】∵∠APD=90°,而∠PAB≠∠PCA,∠PBA≠∠PAC,∴无法判定△PAB与△PCA相似,故A错误;同理,无法判定△PAB与△PDA,△ABC与△DCA相似,故C、D错误;∵∠APD=90°,AP=PB=BC=CD,∴AB=PA,AC=PA,AD=PA,BD=2PA,∴=,∴,∴△ABC∽△DBA,故B正确.故选B.【点睛】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.4.C解析:C 【分析】根据从上边看得到的图形是俯视图,可得答案. 【详解】解:从上边看外面是一个矩形,里面是一个圆形, 故选C . 【点睛】考查了简单组合体的三视图,从上边看得到的图形是俯视图.5.A解析:A 【解析】解:此立体图形从正面看所得到的图形为矩形,里面有一条竖线且为实线,故选A . 点睛:此题主要考查了简单几何体的三视图,关键是注意所有的看到的棱都应表现在三视图中.6.B解析:B 【分析】根据平行线的性质和锐角三角函数定义以及勾股定理,通过转化的数学思想可以求得sin ∠BOD 的值,本题得以解决. 【详解】解:连接AE 、EF ,如图所示,则AE ∥CD , ∴∠FAE=∠BOD ,∵每个小正方形的边长为1,则222222112,2425,3332,AE AF EF =+==+==+= ∴△FAE 是直角三角形,∠FEA=90°, ∴32310sin 1025EF FAE AF ∠=== ∴310sin 10BOD ∠= 故选:B . 【点睛】本题考查了解直角三角形、锐角三角函数定义、勾股定理和勾股定理的逆定理等知识,熟练掌握勾股定理和勾股定理的逆定理是解题的关键.7.A解析:A 【解析】 设MN=xm ,在Rt △BMN 中,∵∠MBN=45∘, ∴BN=MN=x ,在Rt △AMN 中,tan ∠MAN=MNAN, ∴tan30∘=16xx+ =3√3,解得:,则建筑物MN 的高度等于 +1)m ; 故选A.点睛:本题是解直角三角形的应用,考查了仰角和俯角的问题,要明确哪个角是仰角,哪个角是俯角,知道仰角是向上看的视线与水平线的夹角,俯角是向下看的视线与水平线的夹角,并与三角函数相结合求边的长.8.C解析:C 【分析】分别用AC ,AB 和BC 表示出123,,S S S ,然后根据222BC AB AC =-即可得出123,,S S S 的关系.同理,得出456,,S S S 的关系,从而可得答案. 【详解】解:如图,1S 对应ACD ∆的面积,过D 作DH AC ⊥于H , ACD ∆为等边三角形,160,,,2DAC AH CH AC AD AC ∴∠=︒=== sin 60,DHAD∴︒=,22DH AD AC ∴==211,24S AC DH AC ∴=•=同理:222333,,44S BC S AB == ∵222BC AB AC =-, ∴213,S S S -=如图2,同理可得:456S S S =+,∴3421564516111454.S S S S S S +=-++=-++=故选:C .【点睛】本题考查了勾股定理、等边三角形的性质.锐角三角函数等知识点,其中勾股定理:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么222+=a b c .9.D解析:D【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【详解】解:∵∠B 1C 1O=60°,B 1C 1//B 2C 2//B 3C 3,∴∠D 1C 1E 1=∠C 2B 2E 2=∠C 3B 3E 4=30°,∴D 1E 1=C 1D 1sin30°= 12, 则B 2C 2= 2230B E cos = 123= 13(3,同理可得:B 3C 3= 13= 2(3,故正方形A n B n C n D n 的边长是:1n -.则正方形2019201920192019A B C D 的边长是:2018. 故选D .【点睛】 此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.10.C解析:C【分析】连接AC 、BE 、CE ,取BC 的中点F ,连接EF ,根据勾股定理可得AC ,根据直角三角形的边角关系可得∠ACB =30°,∠CAD =30°,再根据正三角形的性质可得:∠EAD =∠EDA =60°,AE =AD =DE =△EAC 是直角三角形,由勾股定理可得EC 的长.判断△EAB ≌△EDC ,根据全等三角形的性质可得EB =EC ,继而根据题意可判断能够覆盖五边形ABCDE 的最小圆的圆心在线段EF 上,且此圆只要覆盖住△EBC 必能覆盖五边形ABCDE ,从而此圆的圆心到△BCE 的三个顶点距离相等.根据等腰三角形的判定和性质可得F 是BC 中点,BF =CF EF ⊥BC ,由勾股定理可得EF 的长,继而列出关于R 的一元二次方程,解方程即可解答.【详解】如图所示,连接AC 、BE 、CE ,取BC 的中点F ,连接EF ,∵四边形ABCD 是矩形,∴∠ABC=∠DAB =∠BCD =∠ADC =90°,AD ∥BC ,AD =BC =AB =CD =2∵BC=AB =2由勾股定理可得:AC 4∴sin ∠ACB =24AB AC ==12,sin ∠CAD =24CD AC ==12∴∠ACB =30°,∠CAD =30°∵△ADE 是正三角形 ∴∠EAD =∠EDA =60°,AE =AD =DE =∴∠EAC =∠EAD +∠CAD =90°,∴△EAC 是直角三角形,由勾股定理可得:EC =22AE AC +=()22234+=27∵∠EAB =∠EAD +∠BAD =150°∠EDC =∠EDA +∠ADC =150°∴∠EAB =∠EDC∵EA =ED ,AB =DC∴△EAB ≌△EDC∴EB =EC =27即△EBC 是等腰三角形∵五边形ABCDE 是轴对称图形,其对称轴是直线EF ,∴能够覆盖五边形ABCDE 的最小圆的圆心在线段EF 上,且此圆只要覆盖住△EBC 必能覆盖五边形ABCDE .从而此圆的圆心到△BCE 的三个顶点距离相等.设此圆圆心为O ,则OE =OB =OC =R ,∵F 是BC 中点∴BF =CF =3,EF ⊥BC在Rt △BEF 中,由勾股定理可得:EF =22EB BF -=()()22273-=5 ∴OF =EF -OE =5-R在Rt △OBF 中,222BF OF OB 即()()22235R R +-= 解得:R =2.8∴能够覆盖五边形ABCDE 的最小圆的半径为2.8.故选C .【点睛】本题考查勾股定理的应用、全等三角形的判定及其性质、等腰三角形的判定及其性质、直角三角形的边角关系.解题的关键是理解圆内接五边形的特点,并且灵活运用所学知识. 11.C解析:C【分析】 根据平行线分线段成比例得到BC AD CE DF =,代入已知解答即可. 【详解】解:∵////AB CD EF , ∴BC AD CE DF=, ∵:3:1AD DF =,10BE =, ∴1031CE CE -=, 解得:CE=52, 故选:C .【点睛】 本题考查平行线分线段成比例、比例的性质,掌握平行线分线段成比例是解答的关键,注意对应线段的顺序.12.B解析:B【分析】根据“好点”的定义判断出“好点”即是直线y=x 上的点,再各函数中令y=x ,对应方程无解即不存在“好点”.【详解】解:根据“好点”的定义,好点即为直线y=x 上的点,令各函数中y=x ,A 、x=-x ,解得:x=0,即“好点”为(0,0),故选项不符合;B 、2x x =+,无解,即该函数图像中不存在“好点”,故选项符合;C 、2x x=,解得:x =x =“好点”)和(,),故选项不符合;D 、22x x x =-,解得:x=0或3,即“好点”为(0,0)和(3,3),故选项不符合; 故选B.【点睛】本题考查了函数图像上的点的坐标,涉及到解分式方程,一元二次方程,以及一元一次方程,解题的关键是理解“好点”的定义.二、填空题13.11【解析】综合正视图和左视图底面最多有3×3=9个小正方体第二层最多有2个小正方体那么x 的最大值应该是9+2=11故答案为:11点睛:本题考查对三视图的理解应用及空间想象能力本题中虽然没有告诉俯视解析:11【解析】综合正视图和左视图,底面最多有3×3=9个小正方体,第二层最多有2个小正方体,那么x 的最大值应该是9+2=11.故答案为:11.点睛:本题考查对三视图的理解应用及空间想象能力.本题中虽然没有告诉俯视图,但是说明了x 取最大值也就间接的说明了俯视图的情况.14.bdca 【解析】试题分析:根据观察的角度不同得到的视图不同可得答案①小狗先是站在地面上看②然后抬起了前腿看③唉还是站到凳子上看吧④最后它终于爬上了桌子…看到的由少到多最后全看到得bdca 考点:简单几 解析:bdca .【解析】试题分析:根据观察的角度不同,得到的视图不同,可得答案.①小狗先是站在地面上看,②然后抬起了前腿看,③唉,还是站到凳子上看吧,④最后,它终于爬上了桌子…看到的由少到多,最后全看到,得b ,d ,c ,a .考点:简单几何体的三视图.15.【分析】先判断出几何体为正三棱柱求出三棱柱的底面积最后求表面积即可【详解】解:由三视图得几何体为正三棱柱上下底为边长为2的等边三角形侧面积为长为3宽为2的矩形如图等边三角形ABC 中作AD ⊥BC 于D 则 解析:1823+ 【分析】 先判断出几何体为正三棱柱,求出三棱柱的底面积,最后求表面积即可. 【详解】 解:由三视图得,几何体为正三棱柱,上下底为边长为2的等边三角形,侧面积为长为3,宽为2的矩形.如图,等边三角形ABC 中,作AD ⊥BC 于D ,则BD=1BC=12, 在t ABD R △中,2222AD=AB -BD =21=3-;∴11=BC AD=23=322ABC S ⨯⨯⨯⨯△, ∴三棱柱的表面积为23323=18+23⨯⨯+⨯.故答案为: 1823+ 【点睛】本题考查了三视图,等边三角形的面积计算等知识,根据三视图判断出几何体形状是解题关键.16.【分析】先求出CD 的长再证明△ABD ∽△DCE 得代入即可求解【详解】解:如图1作AH ⊥BC 于H ∵∴∴BH=ABcosB=10×=8∵AB=AC ∴BC=2BH=16∠B=∠C ∴CD=16-4=12∵∠ 解析:265【分析】 先求出CD 的长,再证明△ABD ∽△DCE ,得CE CD BD AB =,代入即可求解. 【详解】解:如图1,作AH ⊥BC 于H ,∵3tan 4B =∴cos 45B = ∴BH=ABcosB=10×45=8, ∵AB=AC ,∴BC=2BH=16,∠B=∠C ,∴CD=16-4=12,∵∠ADC=∠ADE+∠EDC=∠BAD+∠B ,∵∠ADE=∠B ,∴∠EDC=∠BAD ,∴△ABD ∽△DCE ,∴CE CD BD AB =, ∴12410CE =, ∴245CE =.∴26105AE CE =-=故答案是:265. 【点睛】 本题考查的是三角形综合题,涉及到三角形相似、解直角三角形,等腰三角形的性质等. 17.【详解】解:根据圆周角定理可得∠AED=∠ABC 所以tan ∠AED=tan ∠ABC=故答案为:【点睛】本题考查圆周角定理;锐角三角函数 解析:12【详解】解:根据圆周角定理可得∠AED=∠ABC ,所以tan ∠AED=tan ∠ABC=12AC AB =. 故答案为:12. 【点睛】本题考查圆周角定理;锐角三角函数. 18.(0256)【分析】利用锐角三角函数分别计算得到的坐标利用规律直接得到答案【详解】解:∵l :y =x ∴l 与x 轴的夹角为30°∵AB ∥x 轴∴∠ABO =30°∵OA =1∴AB =∵A1B ⊥l ∴∠ABA1=6解析:(0,256)【分析】利用锐角三角函数分别计算得到12,A A 的坐标,利用规律直接得到答案.【详解】解:∵l :y ∴l 与x 轴的夹角为30°∵AB ∥x 轴∴∠ABO =30°∵OA =1∴AB∵A 1B ⊥l∴∠ABA 1=60°∴AA 1=3∴A 1(0,4)同理可得A 2(0,16)…∴A 4纵坐标为44=256∴A 4(0,256)故答案为:(0,256).【点睛】本题考查的是一次函数综合题,先根据所给一次函数判断出一次函数与x 轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到123,,A A A …的点的坐标是解决本题的关键.19.3【分析】连接AP 并延长交BC 于G 由重心的性质得AP :PG=2:1由DE//BC 根据平行线分线段成比例定理可得AD :DC=AP :PG=2:1于是CD :AC=1:3再由DF//AB 得出△DFC ∽△AB解析:3【分析】连接AP 并延长交BC 于G .由重心的性质得,AP :PG=2:1.由DE//BC ,根据平行线分线段成比例定理可得AD :DC=AP :PG=2:1,于是CD :AC=1:3.再由DF//AB ,得出△DFC ∽△ABC ,根据相似三角形的性质得出S △DFC :S △ABC =1:9.【详解】解:连接AP 并延长交BC 于G .由重心的性质得,AP :PG=2:1.∵DE//BC ,∴AD :DC=AP :PG=2:1,∴CD :AC=1:3.∵DF//AB ,∴△DFC ∽△ABC ,∴S △DFC :S △ABC =1:9,∴S △DFC =19×S △ABC =3cm 2. 故答案为:3.【点睛】 本题考查了三角形重心的性质,平行线分线段成比例定理,相似三角形的判定与性质,难度适中.准确作出辅助线是解题的关键.20.6【分析】设A (ab )由矩形的面积求得ab 再根据中点定义求得M 点坐标进而用待定系数法求得k 【详解】解:设A (ab )则ab=24∵点M 是OA 的中点∴∵反比例函数经过点M ∴故答案为:6【点睛】本题主要考解析:6【分析】设A (a ,b ),由矩形的面积求得ab ,再根据中点定义求得M 点坐标,进而用待定系数法求得k .【详解】解:设A (a ,b ),则ab=24,∵点M 是OA 的中点, ∴1122M a b ⎛⎫ ⎪⎝⎭,, ∵反比例函数(0)k y x x =>经过点M , ∴1111•2462244k a b ab =⨯===, 故答案为:6【点睛】本题主要考查了矩形的性质,反比例函数的图象与性质,关键是通过A 点坐标与已知矩形面积和未知k 联系起来.三、解答题21.(1)圆柱;(2)248πcm .【分析】(1)根据该几何体的主视图与左视图是矩形,俯视图是圆可以确定该几何体是圆柱; (2)根据告诉的几何体的尺寸确定该几何体的表面积即可;【详解】(1)由三视图判断出该几何体是圆柱.(2)∵从正面看的长为10cm ,从上面看的圆的直径为4cm ,∴该圆柱的底面半径径为2cm ,高为10cm ,∴该几何体的侧面积为22πrh 2π21040πcm =⨯⨯=,底面积为:2πr 2=8πcm 2.∴该几何体的表面积为240π8π48πcm +=.【点睛】本题考查了由三视图判断几何体及几何体的表面积问题,解题的关键是了解圆柱的表面积的计算方法.22.见解析,44【分析】根据主视图、左视图、俯视图的画法画出相应的图形即可;表面积为三种视图的面积和的2倍.【详解】解:这个几何体的主视图和左视图如图所示,表面积为:(8+8+6)×2=44.【点睛】本题主要考查简单几何体的三视图的画法,主视图、左视图、俯视图实际上就是从正面、左面、上面对该几何体正投影所得到的图形,解决本题的关键是要熟练掌握三视图的画法. 23.(1)10AC =,AC 边上的高为8;(2)223BH AH =. 【分析】(1)如图(见解析),先根据等腰三角形的三线合一可得1252BD BC ==,再利用正切三角函数的定义可得AD 的长,然后利用勾股定理可得AB 的长,从而可得AC 的长,最后利用三角形的面积公式即可得AC 边上的高;(2)如图(见解析),先根据利用勾股定理、等腰三角形的三线合一可得28CM CE ==,从而可得2,6AM AE ==,再利用BAC ∠的余弦三角函数可得AH 的长,然后根据线段的和差可得BH 的长,由此即可得出答案.【详解】(1)如图1,过点A 作AD BC ⊥于点D ,过点B 作BE AC ⊥于点E ,∵,45AB AC BC ==∴1252BD BC == ∴tan 225AD ABC BD ∠===, 解得45AD =∴2222(45)(25)10AB AD BD =+=+=,10AC ∴=,∵1122ABC SBC AD AC BE =⋅=⋅△, ∴4545810BC AD BE AC ⋅⨯===; (2)由题意,画出图形如图2所示:由(1)得:8BE =,45BC =,224CE BC BE ∴=-=, 1046AE AC CE ∴=-=-=,∵BM BC =,BE AC ⊥, ∴28CM CE ==,∴1082AM AC CM =-=-=,在Rt ABE △中,63s 5c 10o AE BAC AB ∠===, 在Rt AMH 中,cos 325AH AH BAC AM ∠===, 解得65AH =, ∴6441055BH AB AH =-=-=, ∴44225635BH AH ==. 【点睛】本题考查了解直角三角形、勾股定理、等腰三角形的三线合一等知识点,熟练掌握解直角三角形的方法是解题关键.24.(1)见解析;(2)四边形ACDB 的面积为82【分析】(1)根据已知得出AC CD =,AB DB =,ACB DCB ∠=∠,求出 AC AB =,根据菱形的判定得出即可;(2)根据相似三角形的性质得出比例式,求出菱形的边长和高,根据菱形的面积公式求出即可.【详解】(1)证明:由已知得:AC CD =,AB DB =,由已知尺规作图痕迹得:BC 是FCE ∠的角平分线,ACB DCB ∴∠=∠,又//AB CD ,ABC DCB ∴∠=∠,ACB ABC ∴∠=∠,AC AB ∴=,又AC CD =,AB DB =,AC CD DB BA ,∴四边形ACDB 是菱形,(2)解:设菱形ACDB 的边长为x ,四边形ACDB 是菱形,//AB CE ∴,FAB FCE ,FBA E ,FAB FCE ∽ ∴FA AB FC CE =, 即6126x x -=, 解得:4x =,过A 点作AH CD ⊥于H 点,在Rt ACH ∆中,45ACH ∠=︒, sin AH ACEAC ,4AC =, 2sin 422AH AC ACE ,∴四边形ACDB 的面积为:42282CD AH.【点睛】 本题考查了菱形的性质和判定,解直角三角形,三角函数,相似三角形的性质和判定等知识点,能求出四边形ACDB 是菱形是解此题的关键.25.(1)PQ=43x ;PQ=11-x 2;(2)x=95;x=235;(3)y=12-43x ;(4)1513x =; 【分析】(1)根据x 的取值范围不同,分两种情况进行讨论;(2)根据正方形的性质,分0<x<3,3<x<11进行讨论即可;(3)由y=PQ+MN+QM+PN 代入值求解即可;(4)连接CM 交AD 于O ,证明△△OME OCD ,即可得解;【详解】(1)①当PQ 交AB 于点Q 时,0<x<3,∵AD ⊥BC ,AD=4,BD=3, ∴tan ∠B=43, ∵PQ ⊥BC , ∴43PQ BP =, ∴当0<x<3时,PQ=43x ; ②当PQ 交AC 于点Q 时,3<x<11,∵AD ⊥BC ,AD=4,CD=8,∴tan ∠C=12, ∵PQ ⊥BC , ∴12PQ PC =,PC=11-x , ∴当3<x<11时,PQ=11-x 2; (2)①当PQ 交AB 于点Q 时,0<x<3,∵四边形PQMN 为正方形,∴PQ=QM=MN=NP ,∵QM=2(3-x ), ∴43x=2(3-x ), 解得x=95; ②当PQ 交AC 于点Q 时,3<x<11,∵四边形PQMN 为正方形,∴PQ=QM=MN=NP ,∵QM=2(x-3),∴()11-x 2=2(x-3), 解得x=235; (3)y=PQ+MN+QM+PN ,=2×43x+2×2(3-x ), =12-43x ; (4)如图,连接CM 交AD 于O , 由题可知:122AE DE AD ===, ∵43QP ED x ==, ∴423OE OD DE x =-=-,3EM QE PD x ===-, ∵QM ∥BC ,∴△△OMEOCD , ∴EO EM DO DC=, ∴423328x x --=, 化简得:44233x x ⎛⎫-=- ⎪⎝⎭, ∴1513x =.【点睛】本题主要考查了相似三角形的判定与性质,结合正方形的性质计算是解题的关键. 26.(1)B 的坐标为(2,4);(2)2<x <8【分析】(1)把点A (8,t )代入,求得t 的值,然后根据待定系数法即可求得反比例函数的关系式,解析式联立成方程组,解方程组求得点B 的坐标;(2)根据图象即可求得.【详解】解:(1)∵A (8,t )在一次函数y=-12x+5的图象上,∴t=-12×8+5=1, ∴A (8,1),∵反比例函数y=k x (k≠0)的图象经过点A (8,1), ∴k=8×1=8,∴反比例函数的解析式为y=8x, 解1528y=xy x ⎧=-+⎪⎪⎨⎪⎪⎩ 81x y ⎧⎨⎩==或24x y ⎧⎨⎩== ∴B 的坐标为(2,4);(2)由图象可知,在第一象限内,当152k x x -+>时,x 的取值范围是2<x <8. 【点睛】本题考查了一次函数与反比例函数的交点问题,用待定系数法求一次函数和反比例函数的解析式及利用图象比较函数值的大小.解题的关键是:确定交点的坐标.。

【苏科版】九年级数学下期末第一次模拟试卷(含答案)

【苏科版】九年级数学下期末第一次模拟试卷(含答案)

一、选择题1.由m 个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m 能取到的最大值是( )A .6B .5C .4D .32.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm 3.如图,身高为1.6m 的某学生想测量一棵大树的高度,她沿着树影BA 由B 向A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得BC =3.2m",CA =0.8m , 则树的高度为( )A .4.8mB .6.4mC .8mD .10m4.下列命题是真命题的是( )A .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:95.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是( ) A . B . C . D . 6.若菱形的边长为2cm ,其中一内角为60°,则它的面积为( )A .232cmB .23cmC .22cmD .223cm 7.在正方形网格中,小正方形的边长均为1,∠ABC 如图放置,则sin ∠ABC 的值为( )A .52B .55C .33D .18.如图,点A 为∠α边上的任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示cosα的值,错误的是( )A .BD BCB .BC AB C .AD AC D .CD AC9.如图,为一幅重叠放置的三角板,其中∠ABC=∠EDF=90°,BC 与DF 共线,将△DEF 沿CB 方向平移,当EF 经过AC 的中点O 时,直线EF 交AB 于点G ,若BC=3,则此时OG 的长度为( )A 322B 332C .32D 3332210.在课外实践中,小明为了测量江中信号塔A 离河边的距离AB ,采取了如下措施:如图在江边D 处,测得信号塔A 的俯角为40︒,若55DE =米,DE CE ⊥,36CE =米,CE 平行于AB ,BC 的坡度为1:0.75i =,坡长140BC =米,则AB 的长为( )(精确到0.1米,参考数据:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈)A.78.6米B.78.7米C.78.8米D.78.9米11.如图,在ABC中,中线BE,CD相交于点O,连接DE,下列结论:①12DEBC=;②12SS=△DOE△COB;③AD OEAB OB=;④16ODEADCSS=△△.其中结论正确的是().A.①②B.①③C.①②③D.①③④12.将函数6yx=的图象沿x轴向右平移1个单位长度,得到的图象所相应的函数表达式是()A.61yx=+B.61yx=-C.61yx=+D.61yx=-二、填空题13.八中食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如表:碟子的个数碟子的高度(单位:cm)1222+1.532+342+4.5……现在分别从三个方向上看若干碟子,得到的三视图如图所示,厨房师傅想把它们整齐地叠成一摞,求叠成一摞后的高度为_____cm.14.如图是由几个小立方块所搭成几何体的从上面、从正面看到的形状图.这样搭建的几何体最多需要__________个小立方块.15.如图,一个几何体的三视图分别是两个矩形、一个扇形,则这个几何体表面积的大小为_____.16.如图,在ABC 中,6AB BC ==,点O 为BC 中点,点P 是射线AO 上的一个动点,且 60AOC ∠=︒.要使得BCP 为直角三角形,CP 的长为 ________ .17.如图,“人字梯”放在水平的地面上,AB AC =,当梯子的一边与地面所夹的锐角α为60︒时,两梯角之间的距离BC 的长为2m .周日亮亮帮助妈妈整理换季衣服,先使α为60︒,后又调整α为45︒,则梯子顶端A 离地面的高度下降了___________m .18.在直角三角形ABC 中,∠ACB=90°,D 、E 是边AB 上两点,且CE 所在直线垂直平分线段AD ,CD 平分∠BCE ,3AB=_____.19.如图,在Rt ABC ∆中,90ACB ∠=︒,//CD AB ,ABC ∠的平分线BD 交AC 于点E ,若10AB =,6BC =,则AE =_______.20.如图,在平面直角坐标系中,菱形OABC 的面积为20,点B 在y 轴上,点C 在反比函数k y x=的图像上,则k 的值为________.三、解答题21.如图是由几个小立方体所堆成的几何俯视图,小下方形里的数学字表示该位置小立方块的个数,请画出这个几何主视图和左视图:22.如图各图是棱长为1cm 的小正方体摆成的,如图①中,从正面看有1个正方形,表面积为6cm 2;如图②中,从正面看有3个正方形,表面积为18cm 2;如图③,从正面看有6个正方形,表面积为36cm 2;…(1)第6个图中,从正面看有多少个正方形?表面积是多少?(2)第n 个图形中,从正面看有多少个正方形?表面积是多少?23.如图,已知ABC 和点A '.(1)以点A '为顶点求作A B C ''',使A B C ABC '''∽,4A B C ABC SS '''=;(尺规作图,保留作图痕迹,不写作法) (2)设D 、E 、F 分别是ABC 三边AB 、BC 、AC 的中点,D '、E '、F '分别是你所作的A B C '''三边A B ''、B C ''、A C ''的中点,求证:DEF D E F '''∽.24.如图,O 为ABC 的外接圆,AB 为O 的直径,点D 为BC 的中点.(1)连接OD .求证://OD AC .(2)设OD 交BC 于E ,若43BC=2DE =.求阴影部分面积. 25.解答下列各题:(1)计算:(1012sin 6032202032-⎛⎫︒+-+ ⎪⎝⎭. (2)解方程:21133x x x-=--. 26.如图,已知一次函数y =x+2的图象与x 轴、y 轴分别交于点A ,B 两点,且与反比例函数y =m x的图象在第一象限交于点C ,CD ⊥x 轴于点D ,且OA =OD . (1)求点A 的坐标和m 的值; (2)点P 是反比例函数y =m x在第一象限的图象上的动点,若S △CDP =2,求点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据主视图和俯视图分析每行每列小正方体最多的情况,即可得出答案.【详解】由题中所给出的主视图知物体共两列,且左侧一列高两层,右侧一列最高一层;由俯视图可知左侧两行,右侧一行,于是,可确定右侧只有一个小正方体,而左侧可能是一行单层一行两层,可能两行都是两层.最多的情况如图所示,所以图中的小正方体最多5块.故选:B.【点睛】本题考查根据三视图判断小正方体个数,需要一定空间想象力,熟练掌握主视图与俯视图的定义是解题的关键.2.C解析:C【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.3.C解析:C【解析】解:因为人和树均垂直于地面,所以和光线构成的两个直角三角形相似,设树高x米,则1.6ACAB x=,即0.8 1.60.8 3.2x=+∴x=8故选C.4.B解析:B【分析】根据相似三角形的性质分别对每一项进行分析即可.【详解】解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B.【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.5.B解析:B【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到长方形的图形.【详解】解:A、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误;B、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;C、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;D、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误.【点睛】本题重点考查三视图的定义以及考查学生的空间想象能力.6.D解析:D【分析】连接AC,过点A作AM⊥BC于点M,根据菱形的面积公式即可求出答案.【详解】连接AC,过点A作AM⊥BC于点M,∵菱形的边长为2cm,∴AB=BC=2cm,∵有一个内角是60°,∴∠ABC=60°,∴AM=ABsin60°3,∴此菱形的面积为:323=2cm).故选:D.【点睛】本题考查菱形的性质,特殊角的三角函数值,解题的关键是熟练运用菱形的性质.7.B解析:B【分析】作AD⊥BC于D,由勾股定理得出BC2231+10,AB2211+2,由△ABC的面积求出AD=105,由三角函数定义即可得出答案.【详解】解:作AD⊥BC于D,如图所示:由勾股定理得:BC2231+10,AB2211+2,∵△ABC的面积=12BC×AD=12×3×1−12×1×1,∴1210×AD=12×3×1−12×1×1,解得:AD=105,∴sin∠ABC=ADAB 10525;故选:B.【点睛】本题考查了解直角三角形、勾股定理以及三角函数定义;熟练掌握勾股定理和三角函数定义是解题的关键.8.C解析:C【分析】利用垂直的定义以及互余的定义得出∠α=∠ACD,进而利用锐角三角函数关系得出答案.【详解】解:∵AC⊥BC,CD⊥AB,∴∠α+∠BCD=∠ACD+∠BCD,∴∠α=∠ACD,∴cosα=cos∠ACD=BDBC=BCAB=DCAC,只有选项C错误,符合题意.故选:C.【点睛】此题主要考查了锐角三角函数的定义,得出∠α=∠ACD是解题关键.9.A解析:A【分析】分别过O作OH⊥BC,过G作GI⊥OH,由O是中点,根据平行线等分线段定理,可得H为BC的中点,则可得BH=32,再由三个角都是直角的四边形是矩形,可得GI=BH=32,在等腰直角三角形OGI中,即可求解.【详解】解:过O作OH⊥BC于H,过G作GI⊥OH于I ∵∠ABC=90°,∴AB⊥BC,∴OH∥AB,又O为中点,∴H为BC的中点,∴BH=12BC=32∵GI⊥OH,∴四边形BHIG为矩形,∴GI∥BH,GI=BH=32,又∠F=45°,∴∠OGI=45°,∴在Rt△OGI中,32cos2GIOGOGI==∠.故选:A【点睛】本题考查了解直角三角形及平行线等分线段定理,构造合适的辅助线是解题关键.10.C解析:C【分析】如下图,先在Rt △CBF 中求得BF 、CF 的长,再利用Rt △ADG 求AG 的长,进而得到AB 的长度【详解】如下图,过点C 作AB 的垂线,交AB 延长线于点F ,延长DE 交AB 延长线于点G∵BC 的坡度为1:0.75∴设CF 为xm ,则BF 为0.75xm∵BC=140m∴在Rt △BCF 中,()2220.75140x x +=,解得:x=112 ∴CF=112m ,BF=84m∵DE ⊥CE ,CE ∥AB ,∴DG ⊥AB ,∴△ADG 是直角三角形∵DE=55m ,CE=FG=36m∴DG=167m ,BG=120m设AB=ym∵∠DAB=40°∴tan40°=1670.84120DG AG y ==+ 解得:y=78.8故选:C【点睛】本题是三角函数的考查,注意题干中的坡度指的是斜边与水平面夹角的正弦值. 11.D解析:D【分析】先判断DE 为ABC 的中位线,则根据三角形中位线性质得到//DE BC ,12DE BC =,于是可对①进行判断;证明DOE △∽COB △,利用相似比得到12OE DE OD OB BC OC ===,14DOE COB S S =△△,则可对②进行判断;加上12AD AB =,则可对③进行判断;利用三角形面积公式得到13ODE DCE S S =△△,12DCE ADC S S =△△,则可对④进行判断.【详解】解:∵BE 、CD 为ABC 的中线,∴DE 为ABC 的中位线,∴//DE BC ,12DE BC =,所以①正确; ∵//DE BC ,∴DOE △∽COB △, ∴12OE DE OD OB BC OC ===,214DOE COB S DE S CB ⎛⎫== ⎪⎝⎭△△,所以②错误; ∵12AD AB =, ∴AD OE AB OB=,所以③正确; ∵:1:2OD OC =, ∴13ODE DCE S S =△△, ∵AE CE =, ∴12DCE ADC S S =△△, ∴16ODE ADC S S =△△,所以④正确. 故选D .【点睛】本题考查相似三角形的性质和判定,解题的关键是熟练运用相似三角形的性质和判定定理. 12.B解析:B【分析】由于把双曲线平移,k 值不变,利用“左加右减,上加下减”的规律即可求解.【详解】 解:将函数6y x=的图象沿x 轴向右平移1个单位长度,得到的图象所相应的函数表达式是61y x =-, 故选:B .【点睛】本题考查了反比例函数的图象,注意:平移后解析式有这样一个规律“左加右减,上加下减”.二、填空题13.23【分析】根据三视图得出碟子的总数由(1)知每个碟子的高度即可得出答案【详解】可以看出碟子数为x时碟子的高度为2+15(x﹣1);由三视图可知共有15个碟子∴叠成一摞的高度=15×15+05=23解析:23【分析】根据三视图得出碟子的总数,由(1)知每个碟子的高度,即可得出答案.【详解】可以看出碟子数为x时,碟子的高度为2+1.5(x﹣1);由三视图可知共有15个碟子,∴叠成一摞的高度=1.5×15+0.5=23(cm).故答案为:23cm.【点睛】本题考查了图形的变化类问题及由三视图判断几何体的知识,找出碟子个数与碟子高度的之间的关系式是此题的关键.14.17【解析】【分析】易得这个几何体共有3层由俯视图可得第一层正方体的个数由主视图可得第二层和第三层最多的正方体的个数相加即可【详解】最多需要8+6+3=17个小正方体;故答案为:17【点睛】考查学生解析:17【解析】【分析】易得这个几何体共有3层,由俯视图可得第一层正方体的个数,由主视图可得第二层和第三层最多的正方体的个数,相加即可.【详解】最多需要8+6+3=17个小正方体;故答案为: 17.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.15.12+15π【解析】试题分析:由几何体的三视图可得:该几何体是长方体两个扇形和一个矩形的组合体该组合体的表面积为:S=2×2×3+×2+×3=12+15π故答案为12+15π解析:12+15π【解析】试题分析:由几何体的三视图可得:该几何体是长方体、两个扇形和一个矩形的组合体,该组合体的表面积为:S=2×2×3+22702360π⨯×2+2702180π⨯×3=12+15π,故答案为12+15π.16.或3或【分析】利用分类讨论①当∠BPC=90°时情况一:如图1利用直角三角形斜边的中线等于斜边的一半得出PO=BO易得△BOP为等边三角形利用锐角三角函数可得CP的长;情况二:如图2利用直角三角形斜解析:33或3或37.【分析】利用分类讨论,①当∠BPC=90°时,情况一:如图1,利用直角三角形斜边的中线等于斜边的一半得出PO=BO,易得△BOP为等边三角形,利用锐角三角函数可得CP的长;情况二:如图2,利用直角三角形斜边的中线等于斜边的一半可得结论.②当∠CBP=90°时,如图3,由对顶角的性质可得∠AOC=∠BOP=60°,易得∠BPO=30°,易得BP的长,利用勾股定理可得CP的长.【详解】解:①当∠CPB=90°时,情况一:(如图1),∵点O为BC中点,∴AO=BO,∴PO=BO,∵∠AOC=60°,∴∠BOP=60°,∴△BOP为等边三角形,∵AB=BC=6,∴CP=CB•sin60°=6×32=33;情况二:如图2,∵点O 为BC 中点,∴AO=BO ,∵∠CPB=90°,∴PO=BO=CO ,∵∠AOC=60°,∴△COP 为等边三角形,∴CP=CO=3,②当∠CBP=90°时,如图3,∵∠AOC=∠BOP=60°,∴∠BPO=30°,∴BP=33tan 303OB ==︒, 在直角三角形CBP 中, 22226(33)37BC BP +=+= 故答案为:333或37【点睛】本题主要考查了勾股定理,含30°直角三角形的性质和直角三角形斜边的中线,分类讨论,数形结合是解答此题的关键. 17.m 【分析】根据有一个角是的等腰三角形是等边三角形判断出是等边三角形根据等边三角形的三边相等得出BC=AB=AC=2米在Rt 中根据正弦函数的定义及特殊锐角三角函数值由AD=即可求出AD 的长同理算出进而 解析:32m . 【分析】根据有一个角是60︒的等腰三角形是等边三角形判断出ABC 是等边三角形,根据等边三角形的三边相等得出BC=AB=AC=2米,在Rt ABD 中根据正弦函数的定义及特殊锐角三角函数值,由AD=AB?sin60︒即可求出AD 的长,同理算出11A D ,进而根据AD-11A D 即可得出答案.【详解】解:如图1,由题意可得:∵∠B=∠C=60︒,AB=AC∴ABC 是等边三角形BC=AB=AC=2米 在Rt ABD 中:23AD 2sin603=︒== 如图2,由题意可得:∵∠B 1=∠C 1=45︒,A 1B 1=A 1C 1=2m在111Rt A B D 中:11222sin452A D =︒== ∴(1132AD A D -=m . 故答案为:(32m . 【点睛】此题主要考查锐角三角函数定义、等腰三角形的性质、等边三角形的判定和性质、特殊角的三角函数值,正确理解锐角三角函数定义是解题关键. 18.4【解析】分析:由CE 所在直线垂直平分线段AD 可得出CE 平分∠ACD 进而可得出∠ACE=∠DCE 由CD 平分∠BCE 利用角平分线的性质可得出∠DCE=∠DCB 结合∠ACB=90°可求出∠ACE ∠A 的度解析:4【解析】分析:由CE 所在直线垂直平分线段AD 可得出CE 平分∠ACD ,进而可得出∠ACE=∠DCE ,由CD 平分∠BCE 利用角平分线的性质可得出∠DCE=∠DCB ,结合∠ACB=90°可求出∠ACE 、∠A 的度数,再利用余弦的定义结合特殊角的三角函数值,即可求出AB 的长度. 详解:∵CE 所在直线垂直平分线段AD ,∴CE 平分∠ACD ,∴∠ACE=∠DCE .∵CD 平分∠BCE ,∴∠DCE=∠DCB .∵∠ACB=90°,∴∠ACE=13∠ACB=30°, ∴∠A=60°,∴AB=60BC sin =︒=4.故答案为4.点睛:本题考查了线段垂直平分线的性质、角平分线的性质以及特殊角的三角函数值,通过角的计算找出∠A=60°是解题的关键.19.5【分析】首先由勾股定理求出AC 再证明得到进而列方程求解即可【详解】解析:5【分析】首先由勾股定理求出AC ,再证明~ABE CDE ∆∆,得到AB AE CD CE=,进而列方程求解即可.【详解】 90ACB ∠=︒,10AB =,6BC =,8AC ∴==,∴设AE x =,则8CE x =-, BD 平分ABC ∠,ABD DBC ∴∠=∠,又//AB CD ,ABD BDC ∴∠=∠,DBC BDC ∴∠=∠,6BC CD ∴==,//AB CD ,∴~ABE CDE ∆∆,AB AE CD CE∴= 1068x x∴=- 解得5x =,5AE ∴=故答案为:5.【点睛】此题主要考查了相似三角形和判定与性质,熟练掌握并能灵活运用相似三角形和判定与性质定理是解答此题的关键.20.-10【分析】连接AC 交OB 于点D 根据菱形的性质可得出SOCD =×20=5再根据反比例函数系数k 的几何意义即可求出k 值由点C 在第二象限即可确定k 的值【详解】连接AC 交OB 于点D 如图所示∵四边形OAB解析:-10【分析】连接AC交OB于点D,根据菱形的性质可得出S OCD=14×20=5,再根据反比例函数系数k的几何意义即可求出k值,由点C在第二象限,即可确定k的值.【详解】连接AC交OB于点D,如图所示.∵四边形OABC为菱形,∴AC⊥OB,∵菱形OABC的面积为20,∴S OCD=14×20=5.∵点C在反比例函数kyx的图象上,CD⊥y轴,∴S OCD=12|k|=5,解得:k=±10.∵点C在第二象限,∴k=−10.故答案为:-10.【点睛】本题考查了反比例函数系数k的几何以及菱形的性质,根据菱形的性质找出S OCD=14×20=5是解题的关键.三、解答题21.见解析【分析】利用俯视图即可得出几何体的形状,进而得出几何体的主视图和左视图.【详解】解:如图所示:.【点睛】此题主要考查了作三视图以及由三视图判断几何体的形状,正确得出几何体的形状是解题关键.22.(1)126cm2;(2)3n(n+1)cm2.【分析】(1)由题意知,第4个图共有1+3+6+10=20个,从正面看有10个正方形,第5个图共有1+3+6+10+15=35个,从正面看有15个正方形,即可推出第6个图形的正方体和正面看到的正方形个数;(2)由题意知,从正面看有(1+2+3+4+…+n)个正方形,即可得出其表面积.【详解】(1)由题意可知,第6个图中,从正面看有1+2+3+4+5+6=21个正方形,表面积为:21×6=126cm2;(2)由题意知,从正面看到的正方形个数有(1+2+3+4+…+n)=(1)2n n+个,表面积为:(1)2n n+×6=3n(n+1)cm2.【点睛】本题主要考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.23.(1)见解析;(2)见解析.【分析】(1)分别作A'B'=2AB、A'C'=2AC、B'C'=2BC得△A'B'C'即为所求.(2)根据中位线定理易得DE= 12AC,DF=12BC,EF=12AB,D'E'=12A'C'=AC、D'F'=12B'C'=BC、E'F'=12A'B'=AB,于是''2''''DD E D F E FDE F EF===,故可证△DEF∽△D'E'F'.【详解】解:(1)如图1,①作线段A'B'=2AB;②分别以A'、B'为圆心,以2AC、2BC为半径作弧,两弧交于点C';③连接A'C'、 B'C'得△A'B'C'.△A'B'C'即为所求.证明:∵A'B'=2AB 、A'C'=2AC 、B'C'=2BC , ∴''2''''AB A A B A C B C C BC===, ∴△ABC ∽△A′B′C′, ∴2()4A B C ABC S A B S AB'''''∆∆==. (2)证明:如图2,∵D 、E 、F 分别是△ABC 三边AB 、BC 、AC 的中点, ∴DE= 12AC ,DF =12BC ,EF =12AB , ∵D '、E '、F '分别是A B C '''三边A B ''、B C ''、A C ''的中点, ∴D'E'=12 A'C'=AC 、D'F'=12 B'C'=BC 、E'F'=12 A'B'=AB , ∴''2''''D D E D F E F DE F EF===, ∴△DEF ∽△D'E'F'.【点睛】本题考查了相似三角形的判定和性质及三角形的中位线定理,解答本题的关键是掌握相似三角形的判定方法.24.(1)证明见解析;(2)16433π- 【分析】(1)先根据圆周角定理可得90ACB ∠=︒,再根据垂径定理的推论可得OD 垂直平分BC ,然后根据平行线的判定即可得证;(2)设O 的半径为r ,从而可得,2OB r OE r ==-,再根据垂径定理的推论可得1232BE BC ==Rt OBE 中,利用勾股定理可得r 的值,从而可得OBC ∠的度数,最后利用扇形和三角形的面积公式即可得.【详解】(1)AB 为O 的直径,90ACB ∴∠=︒,即AC BC ⊥, 点D 为BC 的中点,OD ∴垂直平分BC ,//OD AC ∴;(2)设O 的半径为r ,则OB OD OC r ===,2DE =,2OE OD DE r ∴=-=-,由(1)已证:OD 垂直平分BC ,1122BE BC ∴==⨯=在Rt OBE 中,222OE BE OB +=,即222(2)r r -+=,解得4r =,4,2OB OE ∴==,在Rt OBE 中,1sin 2OE OBC OB ∠==, 30OBC ∴∠=︒,又OB OC =,30OCB OBC ,180120BOC OCB OBC ∴∠=︒-∠-∠=︒,则阴影部分面积为21204116236023OBC OBC S Sππ⨯-=-⨯=-扇形 【点睛】本题考查了圆周角定理、垂径定理的推论、扇形的面积公式、正弦三角函数等知识点,熟练掌握并灵活运用各定理和公式是解题关键.25.(1)1;(2)4x =-【分析】(1)原式利用特殊角的三角函数、绝对值的代数意义、负指数幂法则以及0指数幂的运算法则分别化简,即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,检验后即可得到分式方程的解的结果.【详解】解:(1)原式=2221++=1; (221133x x x-=--去分母得:()231x x --=-,去括号得:231x x -+=-,解得:4x =-,经检验4x =-是分式方程的解.【点睛】此题考查了实数的运算和解分式方程,实数运算的关键是掌握各运算类型的法则,解分式方程时把分式方程转化为整式方程求解,且一定注意要验根.26.(1)(-2,0);8 (2)(1,8)或(3,83) 【分析】(1)根据待定系数法就可以求出函数的解析式;(2)1||2CDP P C S CD x x =⨯⨯-△,即可求解. 【详解】解:(1)对于一次函数2y x =+,令0x =,则2y =,令0y =,则2x =-, 故点A 、B 的坐标分别为(2,0)-、(0,2), OA OD =,故点(2,0)D ,则点C 的横坐标为2,当2x =时,24y x =+=,故点(2,4)C ,将点C 的坐标代入反比例函数表达式得:42m =, 解得:8m =,故点A 的坐标为(2,0)-,8m =;(2)1142222CDP P C P S CD x x x =⨯⨯-=⨯⨯-=, 解得:3P x =或1,故点P 的坐标为(1,8)或8(3,)3.【点睛】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.。

【苏科版】九年级数学下期末一模试卷(带答案)

【苏科版】九年级数学下期末一模试卷(带答案)

一、选择题1.如图是某个几何体的三视图,则该几何体是()A.圆锥B.三棱柱C.圆柱D.三棱锥2.由7个相同的棱长为1的小立方块拼成的几何体如图所示,它的表面积为()A.23B.24C.26D.283.如图,是一个由若干个小正方体组成的几何体的三视图.则该几何体最多可由多少个小正方体组合而成?( )A.11个B.14个C.13个D.12个4.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A.B.C.D.5.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A .1.5mB .1.6mC .1.86mD .2.16m 6.若菱形的边长为2cm ,其中一内角为60°,则它的面积为( )A .232cmB .23cmC .22cmD .223cm 7.如图,在Rt △ABC 中,斜边AB 的长为m ,∠A=35°,则直角边AC 的长是( )A .m·sin35°B .cos35m ︒C .sin 35m ︒D .m·cos35° 8.如图,在A 处测得点P 在北偏东60︒方向上,在B 处测得点P 在北偏东30︒方向上,若2AB =米,则点P 到直线AB 距离PC 为( ).A .3米B .3米C .2米D .1米9.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,下面四个结论:①CF=2AF ;②t an ∠CAD=2 ;③DF=DC ;④△AEF ∽△CAB ;⑤S 四边形CDEF =52S △ABF ,其中正确的结论有( )A .2个B .3个C .4个D .5个10.如图,分别以直角三角形三边为边向外作等边三角形,面积分别为1S 、2S 、3S ;如图2,分别以直角三角形的三边为直径向外半圆,面积分别为4S 、5S 、6S .其中116S =,245S =,511S =,614S =,则34S S +=( )A .86B .64C .54D .4811.如图,直线l 1//l 2//l 3,分别交直线m 、n 于点A 、B 、C 、D 、E 、F .若AB ∶BC =5∶3,DE =15,则EF 的长为( )A .6B .9C .10D .2512.已知点11(,)x y ,22(,)x y 均在双曲线1y x =-上,下列说法中错误的是( ) A .若12x x =,则12y y =B .若12x x =-,则12y y =-C .若120x x <<,则12y y <D .若120x x <<,则12y y >二、填空题13.如图是由几个小立方块所搭成几何体的从上面、从正面看到的形状图.这样搭建的几何体最多需要__________个小立方块.14.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是_____.15.写出两个三视图形状都一样的几何体:__________、__________.16.如图,四边形ABCD 的两条对角线,AC BD 所成的锐角为60,10AC BD +=,则四边形ABCD 的面积最大值为_______________________.17.如图ABC 的内接圆于O ,45C ∠=︒,4AB =,则O 的半径为______.18.如图,已知在Rt ABC 中,C 90,AC BC 2∠=︒==,点D 在边BC 上,将ABC 沿直线AD 翻折,使点C 落在点C '处,联结AC ',直线AC '与边CB 的廷长线相交于点F ,如果DAB BAF ∠∠=,那么BF =_________.19.如图,在△ABO 的顶点A 在函数k y x=(x >0)的图像上∠ABO=90°,过AO 边的三等分点M 、N 分别作x 轴的平行线交AB 于点P 、Q .若四边形MNQP 的面积为3,则k 的值为________.20.如图,在平面直角坐标系xOy 中,直线y =ax ,y =1a x 与反比例函数y =6x (x >0)分别交于点A ,B 两点,由线段OA ,OB 和函数y =6x(x >0)在A ,B 之间的部分围成的区域(不含边界)为W . (1)当A 点的坐标为(2,3)时,区域W 内的整点为_____个;(2)若区域W 内恰有8个整点,则a 的取值范围为_____.三、解答题21.如图,是由一些大小相同的小正方体组合成的简单几何体.根据要求完成下列题目. (1)请在下面方格纸中分别画出它的左视图和俯视图(画出的图需涂上阴影); (2)图中共有 个小正方体.22.在平整的地面上,有若干个完全相同的棱长为1cm 的小正方体堆成一个几何体,如下图所示.(1)该几何体是由 个小正方体组成,请画出它的主视图、左视图、俯视图(网格中所画的图形要画出各个正方形边框并涂上阴影).(2)如果在这个几何体露在外面的表面喷上黄色的漆,每平方厘米用2克,则共需 克漆.(3)这个几何体上,再添加一些相同的小正方体并保持这个几何体的俯视图和左视图不变,那么最多可以再添加 个小正方体.23.解答下列问题.(1)解方程:2670x x --=.(2)先化简,再求值:22211111a a a a +⎛⎫-÷ ⎪---⎝⎭,其中2cos30tan 45a =︒-︒. 24.如图,在每个小正方形的边长为1的网格中,△ABC 的项点A ,B ,C 均落在格点上:(I )AC 的长等于_________;(II )点P 落在格点上,M 是边BC 上任意一点,点B 关于直线AM 的对称点为B ',当PB '最短时,请在如图所示的网格中,用无刻度的直尺,画出点B ',并简要说明点B '的位置是如何找到的.(不要求证明)25.如图,一次函数y =ax +b 的图象与反比例函数的图象交于A (﹣4,2)、B (2,n )两点,且与x 轴交于点C .(1)试确定上述反比例函数和一次函数的表达式;(2)求△AOB 的面积;(3)根据图象写出一次函数的值<反比例函数的值x 的取值范围.26.如图,在斜坡PA 的坡顶平台处有一座信号塔BC ,在坡顶A 处测得该塔的塔顶B 的仰角为76︒,在坡底的点P 处测得塔顶B 的仰角为45︒,已知斜坡长26m PA =,坡度为1:2.4,点A 与点C 在同一水平面上,且//AC PQ ,BC AC ⊥.请解答以下问题:(1)求坡顶A 到地面PQ 的距离;(2)求信号塔BC 的高度.(结果精确到1m ,参考数据:sin760.97︒≈,cos760.24︒≈,tan76 4.01︒≈)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱,故选B.2.D解析:D【分析】从6个方向数正方形的个数,再加上层中间的两个表面,从而得到几何体的表面积.【详解】它的表面积=5+5+5+5+3+3+2=28.故选:D.【点睛】本题考查了几何体的表面积:几何体的表面积=侧面积+底面积(上、下底的面积和).3.A解析:A【分析】根据画三视图的方法,得到各行构成几何体的小正方体的个数,相加即可.【详解】综合三视图,第一行:第1列没有,第2列没有,第3列有1个;第二行:第1列有2个,第2列有2个,第3列有1个;第三行:第1列3个,第2列有2个,第3列没有;一共有:1+2+2+1+3+2=11个,故选:A.【点睛】此题考查了几何体三视图的应用问题,解题的关键是根据三视图得出几何体结构特征.4.D解析:D【解析】分析:根据从正面看得到的图形是主视图,可得答案.详解:从正面看第一层是三个小正方形,第二层左边一个小正方形,故选D.点睛:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.A解析:A【解析】∵BE ∥AD ,∴△BCE ∽△ACD , ∴CB CE AC CD =,即 CB CE AB BC DE EC=++, ∵BC=1,DE=1.8,EC=1.2 ∴1 1.21 1.8 1.2AB =++ ∴1.2AB=1.8, ∴AB=1.5m .故选A . 6.D解析:D【分析】连接AC ,过点A 作AM ⊥BC 于点M ,根据菱形的面积公式即可求出答案.【详解】连接AC ,过点A 作AM ⊥BC 于点M ,∵菱形的边长为2cm ,∴AB=BC=2cm ,∵有一个内角是60°,∴∠ABC=60°,∴AM=ABsin60°3,∴此菱形的面积为:323=2cm ).故选:D .【点睛】本题考查菱形的性质,特殊角的三角函数值,解题的关键是熟练运用菱形的性质. 7.D解析:D【分析】根据Rt △ABC 中cos35AC AB AC m︒==,即可得到AC 的长. 【详解】 在Rt △ABC 中, AB=m ,∠A=35°,cos35AC AB AC m︒==, ∴AC=cos35m ⋅︒,故选:D.【点睛】 此题考查锐角三角函数的实际应用,正确掌握各三角函数对应边的比值是解题的关键. 8.B解析:B【分析】设点P 到直线AB 距离PC 为x 米,根据正切的定义用x 表示出AC 、BC ,根据题意列出方程,解方程即可.【详解】解:设点P 到直线AB 距离PC 为x 米,在Rt APC △中,tan PC AC PAC ==∠,在Rt BPC △中,tan 3PC BC x PBC ==∠,2x -=,解得,x =),故选:B .【点睛】本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键. 9.D解析:D【分析】依据△AEF ∽△CBF ,即可得出CF=2AF ;依据△BAE ∽△ADC ,即可得到tan ∠CAD=2 ;过D 作DM ∥BE 交AC 于N ,依据DM 垂直平分CF ,即可得出DF=DC ;依据∠EAC=∠ACB ,∠ABC=∠AFE=90°,即可得到△AEF ∽△CAB ;设△AEF 的面积为s ,则△ABF 的面积为2s ,△CEF 的面积为2s ,△CDE 的面积为3s ,四边形CDEF 的面积为5s ,进而得出S 四边形CDEF =52S △ABF 【详解】解:∵AD ∥BC ,∴△AEF ∽△CBF , AE AF BC CF ∴= ∵AE= 12AD= 12BC , 12AF CF ∴= ∴CF=2AF ,故①正确;设AE=a ,AB=b ,则AD=2a , ∵BE ⊥AC ,∠BAD=90°, ∴∠ABE=∠ADC ,而∠BAE=∠ADC=90°, ∴△BAE ∽△ADC ,2b a a b∴=,即2b a ∴= 222CD tan CAD AD b a =∠=∴=,故②正确;如图,过D 作DM ∥BE 交AC 于N ,∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形, ∴BM=DE=12BC , ∴BM=CM ,∴CN=NF ,∵BE ⊥AC 于点F ,DM ∥BE , ∴DN ⊥CF ,∴DM 垂直平分CF ,∴DF=DC ,故③正确;∵四边形ABCD 是矩形, ∴AD ∥BC ,∠ABC=90°,AD=BC , ∵BE ⊥AC 于点F ,∴∠EAC=∠ACB ,∠ABC=∠AFE=90°, ∴△AEF ∽△CAB ,故④正确; 如图,连接CE ,由△AEF ∽△CBF ,可得12AF CFEF BF == 设△AEF 的面积为s ,则△ABF 的面积为2s ,△CEF 的面积为2s ,∴△ACE 的面积为3s ,∵E 是AD 的中点,∴△CDE 的面积为3s ,∴四边形CDEF 的面积为5s ,∴S 四边形CDEF =52S △ABF ,故⑤正确. 故选:D .【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例. 10.C解析:C【分析】分别用AC ,AB 和BC 表示出123,,S S S ,然后根据222BC AB AC =-即可得出123,,S S S 的关系.同理,得出456,,S S S 的关系,从而可得答案.【详解】解:如图,1S 对应ACD ∆的面积,过D 作DH AC ⊥于H ,ACD ∆为等边三角形,160,,,2DAC AH CH AC AD AC ∴∠=︒=== sin 60,DH AD ∴︒=33,DH AD AC ∴== 2113,24S AC DH AC ∴=•=同理:222333,,44S BC S AB == ∵222BC AB AC =-, ∴213,S S S -=如图2,同理可得:456S S S =+,∴3421564516111454.S S S S S S +=-++=-++= 故选:C .【点睛】本题考查了勾股定理、等边三角形的性质.锐角三角函数等知识点,其中勾股定理:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么222+=a b c .11.B解析:B【分析】根据平行线分线段成比例定理列出比例式,代入计算得到答案.【详解】解:∵l 1∥l 2∥l 3,DE=15,∴53DE AB EF BC ==,即1553EF =, 解得,EF=9,故选:B .【点睛】 本题考查了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键. 12.D解析:D【分析】先把点A (x 1,y 1)、B (x 2,y 2)代入双曲线1y x =-,用y 1、y 2表示出x 1,x 2,据此进行判断.【详解】∵点(x 1,y 1),(x 2,y 2)均在双曲线1y x =-上, ∴111y x =-,221y x =-. A 、当x 1=x 2时,-11x =-21x ,即y 1=y 2,故本选项说法正确; B 、当x 1=-x 2时,-11x =21x ,即y 1=-y 2,故本选项说法正确; C 、因为双曲线1y x=-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当0<x 1<x 2时,y 1<y 2,故本选项说法正确; D 、因为双曲线1y x=-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当x 1<x 2<0时,y 1>y 2,故本选项说法错误;故选:D .【点睛】 本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.二、填空题13.17【解析】【分析】易得这个几何体共有3层由俯视图可得第一层正方体的个数由主视图可得第二层和第三层最多的正方体的个数相加即可【详解】最多需要8+6+3=17个小正方体;故答案为:17【点睛】考查学生解析:17【解析】【分析】易得这个几何体共有3层,由俯视图可得第一层正方体的个数,由主视图可得第二层和第三层最多的正方体的个数,相加即可.【详解】最多需要8+6+3=17个小正方体;故答案为: 17.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.14.7【解析】该几何体的主视图的面积为1×1×4=4左视图的面积是1×1×3=3所以该几何体的主视图和左视图的面积之和是3+4=7故答案为7解析:7【解析】该几何体的主视图的面积为1×1×4=4,左视图的面积是1×1×3=3,所以该几何体的主视图和左视图的面积之和是3+4=7,故答案为7.15.球;正方体【分析】找到从物体正面左面和上面看得到的图形全等的几何体即可答案不唯一【详解】解:三视图形状都一样的几何体为球正方体故答案为球正方体(答案不唯一)【点睛】考查三视图的有关知识注意三视图都相 解析:球; 正方体.【分析】找到从物体正面、左面和上面看得到的图形全等的几何体即可,答案不唯一,【详解】解:三视图形状都一样的几何体为球、正方体.故答案为球、正方体(答案不唯一).【点睛】考查三视图的有关知识,注意三视图都相同的常见的几何体有球或正方体.16.【分析】根据四边形面积公式S =AC×BD×sin60°根据sin60°=得出S =x(10−x )×再利用二次函数最值求出即可【详解】解:∵AC 与BD 所成的锐角为60°∴根据四边形面积公式得四边形ABC【分析】根据四边形面积公式,S =12AC×BD×sin60°,根据sin60°=2得出S =12x (10−x )【详解】解:∵AC 与BD 所成的锐角为60°,∴根据四边形面积公式,得四边形ABCD 的面积S =12AC×BD×sin60°, 设AC =x ,则BD =10−x ,所以S =12x (10−x )x−5)2所以当x =5,S故答案为:253. 【点睛】 此题主要考查了四边形面积公式以及二次函数最值,利用二次函数最值求出四边形的面积最大值是解决问题的关键.17.【分析】连接OAOB 根据圆周角定理易知:∠AOB=90°即△AOB 是等腰直角三角形;已知了斜边AB 的长可求出直角边即半径的长【详解】解:如图连接OAOB 由圆周角定理知∠AOB=2∠C=90°;∵OA解析:22【分析】连接OA 、OB ,根据圆周角定理,易知:∠AOB=90°,即△AOB 是等腰直角三角形;已知了斜边AB 的长,可求出直角边即半径的长.【详解】解:如图,连接OA 、OB ,由圆周角定理知,∠AOB=2∠C=90°;∵OA=OB ,∴△AOB 是等腰直角三角形;则2sin 454222OA AB =⋅=⨯=, 故答案为:22.【点睛】本题主要考查了等腰直角三角形的性质和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.18.【分析】首先根据题意画出图形再根据折叠的性质和可求出各角的度数再利用解直角三角形的知识分别求出CDDFBD 的长度最后根据线段之间的和差关系即可求出结果【详解】解:如图所示:∵△ADC 是由△ACD 翻折解析:32【分析】首先根据题意画出图形,再根据折叠的性质和DAB BAF ∠∠=,可求出各角的度数,再利用解直角三角形的知识分别求出CD ,DF ,BD 的长度,最后根据线段之间的和差关系即可求出结果.【详解】解:如图所示:∵△ADC’是由△ACD 翻折得到,∴DAC 'DAC ∠∠=, ∵DAB BAF ∠∠=, ∴DAC 2DAB ∠∠=. ∵AC 45B ∠=︒, ∴DAB BAF=15∠∠=︒.∴30CAD ∠=︒.在Rt △ACD 中,AC=2 ∴23tan 30CD AC =⋅︒= ,43cos30AC AD ==︒ . ∵'ADC F DAC ∠=∠+∠∴'30F DAC ∠=∠=︒ . ∴433DF AD ==. 23432232BF CD DF BC∴=+-=-= 故答案为32.【点睛】本题考查了翻折的性质和解 直角三角形的知识,根据题意画出图形是解题的关键. 19.【分析】易证△ANQ ∽△AMP ∽△AOB 由相似三角形的性质:面积比等于相似比的平方可求出△ANQ 的面积进而可求出△AOB 的面积则k 的值也可求出【详解】∵NQ ∥MP ∥OB ∴△ANQ ∽△AMP ∽△AOB解析:18【分析】易证△ANQ ∽△AMP ∽△AOB ,由相似三角形的性质:面积比等于相似比的平方可求出△ANQ 的面积,进而可求出△AOB 的面积,则k 的值也可求出.【详解】∵NQ ∥MP ∥OB ,∴△ANQ ∽△AMP ∽△AOB ,∵M 、N 是OA 的三等分点, ∴11,23AN AN AM AO ==, ∴14ANQ AMP SS =, ∵四边形MNQP 的面积为3, ∴314ANQ ANQ S S =+, ∴S △ANQ =1,∵2119AOB AN S AO ⎛⎫== ⎪⎝⎭, ∴S △AOB =9,∴k =2S △AOB =18,故答案为:18.【点睛】本题考查了相似三角形的判定和性质以及反比例函数k 的几何意义,正确的求出S △ANQ =1是解题的关键.20.24<a≤5或≤a <【分析】(1)把A 点坐标代入y =ax 得出直线直线y =ax 和的解析式作出函数图象再根据定义求出区域W 的整点个数便可;(2)直线y =ax 关于y =x 对称当区域W 内恰有8个整点则在直线y 解析:2 4<a ≤5或15≤a <14 【分析】(1)把A 点坐标代入y =ax ,得出直线直线y =ax 和1y x a=的解析式,作出函数图象,再根据定义求出区域W 的整点个数便可; (2)直线y =ax ,1y x a=关于y =x 对称,当区域W 内恰有8个整点,则在直线y =x 上方与下方各有3个整点,进而求解.【详解】解:(1)如图,∵A(2,3),∴3=2a,∴a=32,∴直线OA:y=32x,直线OB:y=23 x,∴当23x=6x时,解得:x=3,或x=﹣3(负值舍去),∴B(3,2),∴故区域W内的整点个数有(1,1),(2,2)共2个,故答案为:2;(2)∵直线y=ax,1y xa关于y=x对称,∵y=6x与y=x66),∴在W区域内有点(1,1),(2,2),∴区域W内恰有8个整点,∴在直线y=x上方与下方各有3个整点即可,∵(2,3),(3,2)在y=6x上,∴整点为(1,2),(2,1),(1,3),(3,1),(1,4),(4,1),当点(1,4)在y=ax上时,a=4,当点(1,5)在y=ax上时,a=5,∴4<a≤5;当点(1,4)在1y xa=上时,a=14,当点(1,5)在1y xa=上时,a=15,∴1 5≤a<14;故答案为:4<a≤5或15≤a<14.【点睛】本题主要考查了一次函数与反比例函数图象的交点,主要考查了待定系数法求函数解析式,函数图象与性质,新定义,最后一问关键是读懂新定义,找到关键点求出a的值.三、解答题21.(1)见解析;(2)9.【分析】(1)依据几何体的形状,即可得到它的左视图和俯视图;(2)可以直接从图中数出小正方体的个数.【详解】解:(1)左视图和俯视图如下:(2)由图可得,该几何体由9块小正方体组成,故答案为:9.【点睛】本题考查了作三视图,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.22.(1)10,图详见解析;(2)64;(3)4【分析】(1)根据实物摆放可得该几何体是由10个小正方体组成;(2)根据视图的定义画图;(3)根据视图效果画图可得.【详解】(1)根据实物摆放可得该几何体是由10个小正方体组成;故答案为:10图如下:(2)需要漆:[(6+6)×2+6]×2=64(克)故答案为:64(3)由图可得:最多可放4块.【点睛】考核知识点:组合体视图.理解视图的定义是关键,注意空间想象力的发挥.23.(1)17x =,21x =-;(2)11a +133. 【分析】(1)因式分解法解一元二次方程即可;(2)先通分合并再约分化简为最简分式,求出a 的值,在代入计算求代数式的值即可.【详解】解:(1)2670x x --=, ()()710x x -+=,则17x =,21x =-.(2)原式2221(1)(1)(1)a a a a a +--=⨯-+- 11a =+, 2cos30tan 45a =︒-︒ 321= 31=,∴原式311=-+ 3=133=.【点睛】本题考查一元二次方程的解法与分式化简求值,掌握一元二次方程的解法与分式化简求值的方法与步骤是解题关键.24.(I)29;(II)见解析.【分析】(I)利用勾股定理即可解决问题.(2)连接AP,想办法在AP上取一点B′,使得AB′=2时,PB′的值最小.方法:取格点G,H,连接GH交AP于点B′,由平行线分线段成比例定理可知AB′=2,点B′即为所求.【详解】解:(I)222529AC=+=.故答案为29.(II)如图,点B′即为所求.取格点G,H,连接GH交AP于点B′,由平行线分线段成比例定理可知AB′=2,点B′即为所求.【点睛】本题考查作图-复杂作图,勾股定理,平行线分线段成比例定理,轴对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.25.(1)反比例函数8yx-=,一次函数y=-x-2;(2)6AOBS∆=;(3)-4<x<0或x>2.【分析】(1)先根据点A的坐标求出反比例函数的解析式,再求出B的坐标是(2,-4),利用待定系数法求一次函数的解析式;(2)求出C点坐标,再利OC把△AOB的面积分成两个部分求解;(3)当一次函数的值<反比例函数的值时,直线在双曲线的下方,直接根据图象得出x的取值范围.【详解】解:(1)设反比例函数的解析式为kyx=,因为经过A(-4,2),∴k=-8,∴反比例函数的解析式为8y x -=. 因为B (2,n )在8y x -=上, ∴842n ,∴B 的坐标是(2,-4)把A (-4,2)、B (2,-4)代入y=ax+b ,得4224a b a b -+=⎧⎨+=-⎩, 解得:12a b =-⎧⎨=-⎩, ∴y=-x-2;(2)y=-x-2中,当y=0时,x=-2;∴直线y=-x-2和x 轴交点是C (-2,0), ∴OC=2∴112422622AOB S ∆=⨯⨯+⨯⨯=; (3)由图象可知-4<x <0或x >2时一次函数的值<反比例函数的值.【点睛】本题主要考查了待定系数法求反比例函数与一次函数的解析式和一次函数与反比例函数综合.这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.26.(1)10m ;(2)19m .【分析】(1)过点A 作AH PQ ⊥,垂足为H ,根据斜坡AP 的坡度为1:2.4,设5AH k =,则12PH k =,根据勾股定理构造方程,求出k 的值,即可求解;(2)延长BC 交PQ 于点D ,求出PH=24,设BC x =,表示出AC=14x -, 在Rt ABC ∆中,根据tan tan 76BC BAC AC∠=︒=得到关于x 的方程,即可求解. 【详解】解:(1)如图,过点A 作AH PQ ⊥,垂足为H ,斜坡AP 的坡度为1:2.4, 152.412AH PH ∴==. 设5AH k =,则12PH k =,在Rt AHP ∆中,由勾股定理,得13AP k ===.1326k ∴=,解,得2k =. 1(0)AH m ∴=.答:坡顶A 到地面PQ 的距离为10m . (2)如图,延长BC 交PQ 于点D , 由题意可知四边形AHDC 是矩形, 10CD AH ∴==,AC DH =. 45BPD ∠=︒,90BDP ∠=︒, PD BD ∴=.12224PH =⨯=m ,设BC x =,则1024x DH +=+. ()14AC DH x ∴==-m .在Rt ABC ∆中,tan tan 76BC BAC AC ∠=︒=,即 4.0114x x ≈-. 解,得19()x m ≈.答:信号塔BC 的高度约为19m .【点睛】本题为解直角三角形实际应用,根据题意作出直角三角形,解直角三角形是解题关键.。

【苏科版】九年级数学下期末第一次模拟试卷(及答案)

【苏科版】九年级数学下期末第一次模拟试卷(及答案)

一、选择题1.如图,是由-些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块最后搭成一个大的长方体,至少还需要添加( )个小立方块.A .26B .38C .54D .562.如图,正方形ABCD 的边长为3cm ,以直线AB 为轴,将正方形旋转一周,所得几何体的主视图的面积是( )A .29cmB .29πcmC .218πcmD .218cm 3.如图是由大小相同的小正方体搭成的几何体,将其中的一个小正方体①去掉,则三视图不发生改变的是( )A .主视图B .俯视图C .左视图D .俯视图和左视图 4.下图是一些完全相同的小立方块搭成的几何体的三视图,那么搭成这个几何体所用的小立方块的最多个数是( )A .9B .8C .7D .65.如图所示几何体的主视图是( )A .B .C .D . 6.如图,在正方形方格纸中,每个小方格边长为1,A ,B ,C ,D 都在格点处,AB 与CD 相交于点O ,则sin ∠BOD 的值等于( )A .1010B .31010C .2105D .105 7.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2B .25C .5D .12 8.如图,半径为5的O 中, OA BC ⊥,30ADC ∠=︒,则BC 的长为( )A .52B .53C 522D 5329.如图,平行四边形ABCD 中,AB ⊥AC ,AB 3BC 7,对角线AC ,BD 相交于点O ,将直线AC 绕点O 顺时针旋转,分别交B C ,AD 于点E ,F ,下列说法:①在旋转过程中,AF =CE . ②OB =AC ,③在旋转过程中,四边形ABEF 的面积为212,④当直线AC 绕点O 顺时针旋转30°时,连接BF ,DE 则四边形BEDF 是菱形,其中正确的是( )A .①②④B .① ②C .①②③④D .② ③ ④ 10.在课外实践中,小明为了测量江中信号塔A 离河边的距离AB ,采取了如下措施:如图在江边D 处,测得信号塔A 的俯角为40︒,若55DE =米,DE CE ⊥,36CE =米,CE 平行于AB ,BC 的坡度为1:0.75i =,坡长140BC =米,则AB 的长为( )(精确到0.1米,参考数据:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈)A .78.6米B .78.7米C .78.8米D .78.9米 11.如图,AB 为半圆O 的直径,10AB =,AC 为O 的弦,8AC =,D 为AB 的中点,DM AC ⊥于M ,则DM 的长为( )A .42B .2C .1D .312.如图, O 为坐标原点,点B 在x 轴的正半轴上,四边形OBCA 是平行四边形, 45sin AOB ∠=,反比例函数()0m y m x=>在第一象限内的图像经过点A ,与BC 交于点F ,若点F 为BC 的中点,且AOF 的面积为12,则m 的值为( )A .16B .24C .36D .48二、填空题13.某几何体从三个方向看到的图形分别如图,则该几何体的体积为___________.14.长方体的主视图与左视图如图所示,则这个长方体的表面积是________cm 2.15.用小立方块搭成的几何体从正面和上面看的视图如图,这个几何体中小立方块的个数最多有_________个.16.某斜坡的坡度3:3i =,则它的坡角是__________度.17.如图所示,在直角坐标系中,等腰直角ABO ∆的顶点O 是坐标原点,点A 的坐标是()4,0-,直角顶点B 在第二象限,把AOB ∆绕点O 旋转15︒到AOB''∆,点A 与A '对应,点B 与B '对应,那么点B '的坐标是_________.18.如图,已知直线l :y =33x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为_____.19.如图,△ABC中,∠C=90°,BC=8cm,AC=6cm,点P沿BC边以2cm/s的速度从点B向点C移动,同时点Q沿CA边以1cm/s的速度从点C向点A移动.若以点C、P、Q构成的三角形与△ABC相似,则运动时间为____________秒.20.如图,点P,Q在反比例函数y=kx(k>0)的图像上,过点P作PA⊥x轴于点A,过点Q作QB⊥y轴于点B.若△POA与△QOB的面积之和为4,则k的值为_________.三、解答题21.作图与推理:如图,是由一些大小相同的小正方体组合成的简单几何体.(1)图中有几块小正方体?(2)诸分别画出从正面看、从左面看和从上面看到的这个几何体的形状图.22.把边长为2厘米的6个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)试求出其表面积;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加个小正方体.23.小明的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A 处测得汽车前端F 的俯角为α,且tanα=13,若直线AF 与地面l 1相交于点B ,点A 到地面l 1的垂线段AC 的长度为1.6米,假设眼睛A 处的水平线l 2与地面l 1平行. (1)求BC 的长度; (2)假如障碍物上的点M 正好位于线段BC 的中点位置(障碍物的横截面为长方形,且线段MN 为此长方形前端的边),MN ⊥l 1,若小强的爸爸将汽车沿直线l 1后退0.6米,通过汽车的前端F 1点恰好看见障碍物的顶部N 点(点D 为点A 的对应点,点F 1为点F 的对应点),求障碍物的高度.24.计算:(1)cos 245°cos 601-sin30︒-︒+tan 245°−tan 260° (2)213tan 308cos 45(1tan 60)cos60︒︒︒︒-++- 25.如图,矩形OABC 的顶点A 、C 分别在x 轴和y 轴的正半轴上.双曲线(0)k y x x=>经过BC 边的中点(2,4)D ,与AB 交于点E ,连结DE ,CE .(1)求k 的值及CDE ∠的度数.(2)在直线AB 上找点F ,使得以点A 、D 、F 为顶点的三角形与CDE △相似,求F 点的坐标.26.为让同学们更好的了解电路,学校实验室购进一批蓄电池,已知蓄电池的电压为定值,同学们在实验过程中得到电流I (A )是电阻R (Ω)的反比例函数,其图象如图所示.(电压=电流×电阻)(1)求蓄电池的电压是多少?(2)若保证电路中的小灯泡发光所需要的电流的范围为212I ≤≤,则求电路中能使小灯泡发光的电阻R 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先由主视图、左视图、俯视图求出原来的几何体共有10个正方体,再根据搭成的大正方体的共有4×3×3=36个小正方体,即可得出答案.【详解】解:由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;第一层有7个正方体,第二层有2个正方体,第三层有1个正方体,共有10个正方体,∵搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大正方体,∴搭成的大正方体的共有4×3×3=36个小正方体,∴至少还需要36-10=26个小正方体.故选:A .【点睛】本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大正方体共有多少个小正方体.2.D解析:D【分析】先确定几何体的主视图,得到边长分别为3cm 、6cm ,再根据面积公式计算得出答案.【详解】如图,所得几何体的主视图是一个长方形,边长分别为3cm、6cm,∴所得几何体的主视图的面积是36 =218cm,故选:D.【点睛】此题考查几何体的三视图,平面图形的面积计算公式,正确理解几何体的三视图是解题的关键.3.C解析:C【分析】利用结合体的形状,结合三视图可得出主视图没有发生变化.【详解】解:主视图由原来的三列变为两列;俯视图由原来的三列变为两列;左视图不变,依然是两列,左起第一列是两个小正方形,第二列底层是一个小正方形.故选:C.【点睛】本题考查了简单组合体的三视图,根据题意正确掌握三视图的观察角度是解题的关键.4.A解析:A【分析】根据俯视图可看出最底层小正方体的个数及形状,再从左视图看出每一层小正方体可能的数量,并再俯视图中标出个数,即可得出答案.【详解】根据左视图在俯视图中标注小正方形最多时的个数如图所示:1+1+2+2+2+1=9,故选A.【点睛】本题考查根据三视图判断小正方形的个数,根据左视图在俯视图中标注小正方形的个数是关键,需要一定的空间想象力.5.D解析:D【解析】【分析】主视图是正面看去所得图形.【详解】解:由图可知,该几何体的主视图为D 选项所示图形,故选择D.【点睛】本题考查了立体图形三视图的概念.6.B解析:B【分析】根据平行线的性质和锐角三角函数定义以及勾股定理,通过转化的数学思想可以求得sin ∠BOD 的值,本题得以解决.【详解】解:连接AE 、EF ,如图所示,则AE ∥CD ,∴∠FAE=∠BOD ,∵每个小正方形的边长为1, 则222222112,2425,3332,AE AF EF =+==+==+=∴△FAE 是直角三角形,∠FEA=90°, ∴32310sin 25EF FAE AF ∠=== ∴310sin BOD ∠=故选:B .【点睛】本题考查了解直角三角形、锐角三角函数定义、勾股定理和勾股定理的逆定理等知识,熟练掌握勾股定理和勾股定理的逆定理是解题的关键. 7.D解析:D【分析】连接AC ,根据网格图不难得出=90CAB ∠︒,求出AC 、BC 的长度即可求出ABC ∠的正切值.【详解】连接AC ,由网格图可得:=90CAB ∠︒,由勾股定理可得:AC =2,AB =22,∴tan ABC ∠=21222AC AB ==. 故选:D .【点睛】本题主要考查网格图中锐角三角函数值的求解,根据网格图构造直角三角形是解题关键. 8.B解析:B【分析】连接OC ,设BC 与OA 交于点E ,根据圆周角定理即可求出∠AOC ,然后根据垂径定理可得BC=2CE ,利用锐角三角函数求出CE ,即可求出结论.【详解】解:连接OC ,设BC 与OA 交于点E∵30ADC ∠=︒∴∠AOC=2∠ADC=60°∵OA BC ⊥∴BC=2CE ,在Rt △OCE 中,CE=OC·sin ∠∴BC=故选B .【点睛】 此题考查的是圆周角定理、垂径定理和锐角三角函数,掌握圆周角定理、垂径定理和锐角三角函数是解题关键.9.A解析:A【分析】①通过证明AOF COE ≅△△即可判断;②分别利用勾股定理求出OB,AC 的长度即可得出答案;③先利用ABC 的面积求出AG 的长度,然后利用梯形的面积公式求解即可; ④易证四边形BEDF 是平行四边形,然后通过角度得出90DOF ∠=︒,然后证明DOF DOE ≅,则有DF DE =,则可证明结论.【详解】∵四边形ABCD 是平行四边形,,//,AO CO AD BC AD BC ∴== ,AFO CEO ∴∠=∠ .在AOF 和COE 中,AFO CEO AOF COE AO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩()AOF COE AAS ∴≅,AF CE OF OE ∴==,故①正确;∵AB ⊥AC ,90BAC ∴∠=︒ .∵ABBC2AC ∴== ,112AO AC ∴== ,2OB ∴==,OB AC ∴=,故②正确;过点A 作AG BC ⊥交BC 于点G ,1122ABC S AB AC BC AG =⋅=⋅ , 3222177AB AC AG BC ⋅⨯∴=== , 11221()7322ABEF S AF BE AG ∴=+⋅=⨯⨯=四边形 ,故③错误; 连接DE,BF ,,AF CE AD BC ==,DF BE ∴= .∵//DF BE ,∴四边形BEDF 是平行四边形.3sin 2AB AOB OB ∠== , 60AOB ∴∠=︒ .30AOF ∠=︒,180603090DOF ∴∠=︒-︒-︒=︒,90DOE ∴∠=︒.在DOF △和DOE △中,FO OE DOF DOE DO DO =⎧⎪∠=∠⎨⎪=⎩()DOF DOE SAS ∴≅,DF DE ∴=,∴四边形BEDF 是菱形,故④正确;所以正确的有:①②④,故选:A .【点睛】本题主要考查平行四边形的性质,全等三角形的判定及性质,勾股定理和锐角三角函数,掌握平行四边形的性质,全等三角形的判定及性质,勾股定理和锐角三角函数是解题的关键.10.C解析:C【分析】如下图,先在Rt △CBF 中求得BF 、CF 的长,再利用Rt △ADG 求AG 的长,进而得到AB 的长度【详解】如下图,过点C 作AB 的垂线,交AB 延长线于点F ,延长DE 交AB 延长线于点G∵BC 的坡度为1:0.75∴设CF 为xm ,则BF 为0.75xm∵BC=140m∴在Rt △BCF 中,()2220.75140x x +=,解得:x=112 ∴CF=112m ,BF=84m∵DE ⊥CE ,CE ∥AB ,∴DG ⊥AB ,∴△ADG 是直角三角形∵DE=55m ,CE=FG=36m∴DG=167m ,BG=120m设AB=ym∵∠DAB=40°∴tan40°=1670.84120DG AG y ==+解得:y=78.8故选:C【点睛】本题是三角函数的考查,注意题干中的坡度指的是斜边与水平面夹角的正弦值. 11.C解析:C【分析】如图,连接OD 交AC 于H ,连接BC .利用勾股定理求出BC ,再利用相似三角形的性质求出OH ,AH ,DH ,证明△DMH ∽△AOH ,构建关系式即可解决问题.【详解】解:如图,连接OD 交AC 于H ,连接BC .∵AB 是直径,∴∠ACB=90°, ∴226BC AB AC -=,∵AD DB =,∴OD ⊥AB ,∵∠OAH=∠CAB ,∠AOH=∠ACB=90°,∴△AOH ∽△ACB , ∴OH OA AH BC AC AB== ∴56810OH AH == ∴1525,44OH AH ==, ∵DH=OD-OH=155544-=, ∵DM ⊥AC ,∵∠DMH=∠AOH=90°,∠DHM=∠AHO ,∴△DMH ∽△AOH , ∴DM DH AO AH=, ∴542554DM =,∴DM=1,故选:C .【点睛】本题考查勾股定理,圆周角定理,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识.12.A解析:A【分析】过点A 作AM ⊥OB 于M ,FN ⊥OB 于N ,,设OA=5k ,通过解直角三角形得出AM=4k,OM=3k,m=12k 2,,再根据S 四边形OAFN =S 梯形AMNF +S △AOM =S △AOF +S △OFN 得到S 梯形AMNF =S △AOF =12,得出12(4k+2k)⋅3k=12,得到k 2的值,再求m 得值即可. 【详解】解:过点A 作AM ⊥OB 于M ,FN ⊥OB 于N ,设OA=5k ,∵45sin AOB ∠= ∴AM=4k,OM=3k,m=12k 2,∵四边形OACB 是平行四边形,F 为BC 的中点,∴FN=2k ,ON=6k ,∵S △AOM =S △OFN ,S 四边形OAFN =S 梯形AMNF +S △AOM =S △AOF +S △OFN ,∴S 梯形AMNF =S △AOF =12,∴12(4k+2k)⋅3k=12, ∴k 2=43, ∴m=12k 2=16.故选A.【点睛】本题考查反比例函数的性质、平行四边形的性质、三角形的面积、梯形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.二、填空题13.3π【分析】由三视图可得这个几何体为圆柱利用圆柱的体积公式求解即可【详解】由三视图可得此几何体为圆柱所以圆柱的体积为3×π•()2=3π故答案为3π【点睛】本题考查了与三视图有关的计算根据三视图确定解析:3π.【分析】由三视图可得这个几何体为圆柱,利用圆柱的体积公式求解即可.【详解】由三视图可得,此几何体为圆柱,所以圆柱的体积为3×π•(22 )2=3π, 故答案为3π.【点睛】本题考查了与三视图有关的计算,根据三视图确定这个几何体为圆柱是解决问题的关键. 14.94【解析】【分析】由所给的视图判断出长方体的长宽高根据长方体的表面积公式计算即可【详解】由主视图可知这个长方体的长和高分别为5和3由左视图可知这个长方体的宽和高分别为4和3因此这个长方体的长宽高分 解析:94【解析】【分析】由所给的视图判断出长方体的长、宽、高,根据长方体的表面积公式计算即可.【详解】由主视图可知,这个长方体的长和高分别为5和3,由左视图可知,这个长方体的宽和高分别为4和3,因此这个长方体的长、宽、高分别为5、4、3,因此这个长方体的表面积为253243254294cm ⨯⨯+⨯⨯+⨯⨯=.故答案为:94.【点睛】本题是由两种视图考查长方体的特征,这种类型问题在中考试卷中经常出现,本题所用的知识是:主视图主要反映物体的长和高,左视图主要反映物体的宽和高.15.10【分析】根据俯视图和主视图确定每一层正方体可能有的个数最后求和即可【详解】解:从俯视图可以看出下面的一层有6个由主视图可以知道在中间一列的一个正方体上面可以放2个或在一个上放2个另一个上放1或2 解析:10.【分析】根据俯视图和主视图,确定每一层正方体可能有的个数,最后求和即可.【详解】解:从俯视图可以看出,下面的一层有6个,由主视图可以知道在中间一列的一个正方体上面可以放2个或在一个上放2个,另一个上放1或2个.所以小立方块的个数可以是628+=个,6219++=个,62210++=个.所以最多的有10个.故答案为10.【点睛】本题主要考查了通过三视图确定立方体的数量,正确理解俯视图和主视图以及较好的空间想象能力是解答本题的关键.16.30【分析】根据坡度与坡角的关系及特殊角正切的值可得解答【详解】解:设斜坡的坡角为则有∵故答案为【点睛】本题考查锐角三角函数值的应用正确理解坡度与坡角的意义及特殊角的三角函数值是解题关键解析:30【分析】根据坡度与坡角的关系及特殊角正切的值可得解答.【详解】解:设斜坡的坡角为α,则有()3tan i α==, ∵()3tan 30303α︒=∴=︒,, 故答案为30 .【点睛】本题考查锐角三角函数值的应用,正确理解坡度与坡角的意义及特殊角的三角函数值是解题关键 .17.或【分析】根据△AOB 绕点O 旋转15°得到△AOB 分两种情况过B 作BC ⊥y 轴依据Rt △BOC 中BC 和CO 的长即可得到点B 的坐标【详解】解:如图所示:若△AOB 绕点O 顺时针旋转15°得到△AOB 过B 作解析:()2,6-或()6,2-【分析】根据△AOB 绕点O 旋转15°得到△A'OB',分两种情况,过B'作B'C ⊥y 轴,依据Rt △B'OC 中,B'C 和CO 的长,即可得到点B'的坐标.【详解】解:如图所示:若△AOB 绕点O 顺时针旋转15°得到△A'OB',过B'作B'C ⊥y 轴,则∠BOB'=15°,又∵∠AOB=45°,∴∠BOC=45°,∴∠B'OC=30°,∵点A 的坐标是(-4,0),∴AO=4,∴B'O=BO=cos45°×4=22, ∴B'C=12B'O=2,CO=3B'C=6, ∴点B'的坐标是()2,6-;如图所示:若△AOB 绕点O 逆时针旋转15°得到△A'OB',过B'作B'C ⊥y 轴,则∠BOB'=15°,同理可得,∠AOB'=30°,2,∴∠CB'O=30°,∴CO=122,36, ∴点B'的坐标是(6,2-,综上所述,点B'的坐标是(2,6-或(6,2-.故答案为:(2,6-或(6,2-. 【点睛】本题考查坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标. 18.(0256)【分析】利用锐角三角函数分别计算得到的坐标利用规律直接得到答案【详解】解:∵l :y =x ∴l 与x 轴的夹角为30°∵AB ∥x 轴∴∠ABO =30°∵OA =1∴AB =∵A1B ⊥l ∴∠ABA1=6解析:(0,256)【分析】利用锐角三角函数分别计算得到12,A A 的坐标,利用规律直接得到答案.【详解】解:∵l :y =33x∴l 与x 轴的夹角为30°∵AB ∥x 轴∴∠ABO =30°∵OA =1∴AB∵A 1B ⊥l∴∠ABA 1=60°∴AA 1=3∴A 1(0,4)同理可得A 2(0,16)…∴A 4纵坐标为44=256∴A 4(0,256)故答案为:(0,256).【点睛】本题考查的是一次函数综合题,先根据所给一次函数判断出一次函数与x 轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到123,,A A A …的点的坐标是解决本题的关键.19.或【分析】首先设点P 移动t 秒时△CPQ 与△ABC 相似然后分别从当即时△CPQ ∽△CBA 与当即时△CPQ ∽△CAB 去分析求解即可求得答案【详解】设点P 移动t 秒时△CPQ 与△ABC 相似∵点P 从点B 以2c 解析:125或3211【分析】 首先设点P 移动t 秒时△CPQ 与△ABC 相似,然后分别从当CP CQ CB CA =,即8286t t -=时,△CPQ ∽△CBA ,与当CQ CP CB CA =,即8286t t -=时,△CPQ ∽△CAB ,去分析求解即可求得答案.【详解】设点P 移动t 秒时△CPQ 与△ABC 相似,∵点P 从点B 以2cm/s 的速度向点C 移动,点Q 以1cm/s 的速度从点C 向点A 移动, ∴BP =2tcm ,CQ =tcm ,则CP =CB−BP =8−2t (cm ),∵∠C 是公共角,∴当CP CQ CB CA=,即8286t t -=时,△CPQ ∽△CBA , 解得:t =125;当CQ CP CB CA=,即8286t t -=时,△CPQ ∽△CAB , 解得:t =3211, ∴点P 移动125s 或3211s 时△CPQ 与△ABC 相似. 故答案为:125或3211【点睛】 此题考查了相似三角形的判定.此题难度适中,注意掌握数形结合思想、分类讨论思想以及方程思想的应用.20.4【分析】根据反比例函数的性质确定△POA 与△QOB 的面积均为2然后根据反比例函数的比例系数的几何意义确定其值即可【详解】根据题意得:点P 和点Q 关于原点对称所以△POA 与△QOB 的面积相等∵△POA解析:4【分析】根据反比例函数的性质确定△POA 与△QOB 的面积均为2,然后根据反比例函数的比例系数的几何意义确定其值即可.【详解】根据题意得:点P 和点Q 关于原点对称,所以△POA 与△QOB 的面积相等,∵△POA 与△QOB 的面积之和为4,∴△POA 与△QOB 的面积均为2, ∴2k=2,∴|k|=4,∵反比例函数的图象位于一、三象限,∴k=4,故答案为4.【点睛】此题考查了反比例函数的比例系数的几何意义及反比例函数的图象上点的坐标特征的知识,解题的关键是求得△POA 与△QOB 的面积,难度不大.三、解答题21.(1)图中有11块小正方体;(2)如图见解析.【分析】(1)根据如图所示即可得出图中小正方体的个数;(2)读图可得,左视图有2列,每列小正方形数目分别为2,2;俯视图有4列,每行小正方形数目分别为2,2,1,1.【详解】解:(1)2×5+1=11(块).即图中有11块小正方体,(2)如图,【点睛】此题主要考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.22.(1)见解析;(2)104平方厘米;(3)2【分析】(1)直接利用三视图的画法进而得出答案;(2)利用几何体的形状进而得出其表面积;(3)利用左视图和俯视图不变,得出可以添加的位置.【详解】解:(1)如图所示:(2)几何体表面积:2×2×5+2×2×4+2×2×5+2×2×12=104(平方厘米);(3)如图,可以在A和B的位置上各加一个小正方体,这个几何体的左视图和俯视图不变.所以最多可以再添加2个小正方体.故答案为:2.【点睛】此题主要考查了画三视图以及几何体的表面积,正确得出三视图是解题关键.23.(1)4.8;(2)0.6.【分析】(1)在Rt △ABC ,根据tan ∠ABC =tanα=13,AC=1.6米,即可求出BC 的长度; (2)过D 作DH ⊥BC 于H ,求出EM 的长度,证明△EMN ∽△EHD ,得到MN EM DH EH =,即可求解.【详解】解:(1)由题意得,∠ABC =∠α,在Rt △ABC 中,AC =1.6,tan ∠ABC =tanα=13, ∴BC = 1.6 4.81tan 3AC ABC ==∠m ,答:BC 的长度为4.8m ;(2)过D 作DH ⊥BC 于H ,则四边形ADHC 是矩形,∴AD =CH =BE =0.6,∵点M 是线段BC 的中点,∴BM =CM =2.4米,∴EM =BM ﹣BE =1.8,∵MN ⊥BC ,∴MN ∥DH ,∴△EMN ∽△EHD , ∴MN EM DH EH =, ∴ 1.81.6 4.8MN =, ∴MN =0.6,答:障碍物的高度为0.6米.【点睛】本题考查解直角三角形的应用,理解三角函数的意义,构造直角三角形,得到相似是解题的关键.24.(1)52-;(2)31 【分析】(1)直接代入特殊角的三角函数值进行计算即可解答;(2)直接利用特殊角的三角函数值和二次根式的性质分别化简计算即可解答.【详解】 解:(1)原式= 22122(1(3)1212-+-- = 11132-+- = 52-; (2)原式= 32322231)32⨯-++ 32231++ =31.【点睛】本题考查了实数的运算、二次根式的性质、特殊角的三角函数值,熟记特殊角的三角函数值,正确计算各数是解答的关键.25.(1)8k,135CDE ∠=︒;(2)点F 的坐标为:(4,10)或(4,2).【分析】(1)把D 点的坐标代入反比例函数可求得k 的值,然后得出B 、E 的坐标,求得BD=BE ,得出BDE 为等腰直角三角形,并用补交的定义求得CDE ∠的度数. (2)连接AD ,得出()SAS BCE BAD ≌△△,进而得出BCE BAD ∠=∠,设(4,)F t ,则AF t =,所以分两种情况讨论①CDE ADF △∽△,②CDE AFD ∽△△,根据相似三角形的性质得出比例式建立方程求解即可.【详解】(1)∵点D 为BC 的中点,(2,4)D ,(0,4)C ∴,(4,4)B ,将点(2,4)D 代入ky x=得:8k , 8y x∴=, ∴四边形OABC 是矩形,(4,0)A ∴,点E 的横坐标为:4,∴当4x =时,2y =,(4,2)E ∴,2BD BE ∴==,又90B ∠=︒BDE ∴为等腰直角三角形,则45BDE ∠=︒,180135CDE BDE ∴∠=︒-∠=︒.(2)如图,连接AD ,(4,4)B ,(4,0)A ,(0,4)C ,4AB BC ∴==, 在BCE 和BAD 中,BC BA CBE ABD BD BE =⎧⎪∠=∠⎨⎪=⎩,()SAS BCE BAD ∴≌△△,BCE BAD ∴∠=∠,(0,4)C ,(2,4)D ,(4,2)E ,(4,0)A ,2CD ∴=,224(24)25CE =+-=22(42)425AD =-+=设(4,)F t ,则AF t =,①CDE ADF △∽△,CD CE AD AF ∴=2525t=, 解得:110t =,(4,10)F ∴,②CDE AFD ∽△△,CD CE AF AD ∴=,2t = 解得:22t =,(4,2)F ∴,综上所述,点F 的坐标为:(4,10)或(4,2).【点睛】此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,等腰直角三角形的性质,相似三角形的判定和性质,解题时注意点的坐标与线段长的转化.26.(1)蓄电池的电压是36V ;(2)电阻R 的取值范围是318R ≤≤.【分析】(1)根据“电压=电流×电阻”即可求解;(2)先利用待定系数法即可求出这个反比例函数的解析式,再将212I ≤≤代入即可确定电阻的取值范围.【详解】(1)蓄电池的电压是4×9=36,∴蓄电池的电压是36V ;(2)电流I 是电阻R 的反比例函数,设k I R =, ∵图象经过(9,4),∴9436k =⨯=, ∴36I R=, 当I=2时,18R =,当I=12时,3R =,∵I 随R 的增大而减小,∴电阻R 的取值范围是:318R ≤≤.【点睛】本题考查了反比例函数的应用,解题的关键是正确地从中整理出函数模型,并利用函数的知识解决实际问题.。

苏科版九年级下阶段数学模拟试题含解析

苏科版九年级下阶段数学模拟试题含解析

初三数学模拟试题一、选择题:(本大题共8小题,共24分.)1.三角形的两边长分别为3和6,第三边的长是方程x2-6x+8=0的一个根,则这个三角形的周长是( )A.9B.11 C.13 D.11或13 2.下列计算正确的是(▲ )A.3x2·4x2=12x2B.x3·x5=x15C.x4÷x=x3D.(x5)2=x7 3.下列图形中,既是中心对称图形又是轴对称图形的是(▲ )A.角B.等边三角形C. 平行四边形D. 圆4.如果要判断小明本学期数学考试成绩是否稳定,那么需要知道他本学期几次数学考试成绩的(▲ ).A. 平均数B.方差C. 中位数D.众数5.从正面观察下图所示的两个物体,看到的是(▲ )6.点M(-3,2)关于轴对称的点的坐标是(▲ )A.(-3,-2)B.(-3,2)C.(3,-2)D.(3,2)7.在△ABC中,∠C=90°,AC=8,BC=6,则sin B的值是(▲ )A.4 5B.35C.43D.34 8.如图,图①、图②、图③分别表示甲、乙、丙三人由A地到B地的路线图(箭头表示行进的方向) .其中E为AB的中点,AJ>JB.判断三人行进路线长度的大小关系为(▲ )A.甲<乙<丙B.乙<丙<甲C.丙<乙<甲D.甲=乙=丙x二、填空题:(本大题共10小题,共30分.)9 .若关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0有一个根为0,则m等于__ _▲__ .10. 写出7x<的正整数解....__▲__ .11.如图,若将木条a绕点O旋转后与木条b平行,则旋转角的最小值为▲.12.在比例尺为1:0的地图上,测得某水渠长度约为6cm,其实际长度约为▲m(结果用科学记数法表示).13.如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于__▲_ .14.一个材质均匀的正方体的六个面上分别标有字母A、B、C,其展开图如图所示,随机抛掷此正方体,A面朝上的概率是▲.15.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径OB=6cm,高OC=8cm.则这个圆锥漏斗的侧面积是▲cm2.16.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x,可列方程为___ ▲__ .17.如图,已知点A在双曲线xy6=上,过点A作AC⊥x轴于点C,OC=3,线段OA的垂直平分线交OC于点B,则△ABC的周长为___ ▲ ___ .18. 刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b-1,例如把(3,-2)放入其中,第17题第14题第13题就会得到:32+(-2)-1=6.现将实数对(-1,3)放入其中,得到实数m ,再将实数对(m ,1)放入其中后,得到的实数是 ▲ . 三、解答题:(本大题共10小题,共96分)19. (1)(6分)计算:03tan 30(2012)12π----.(2) (6分) 解方程:233x x=-20.(8分)如图,在△ABC 中,AB=AC ,D 是BC 的中点,连结AD ,在AD 的延长线上取一点E ,连结BE ,CE. (1)求证:△ABE ≌△ACE(2)当AE 与AD 满足什么数量关系时, 四边形ABEC 是菱形?并说明理由.21.(8分) 陈老师让同学们为数学课活动设计一个抽奖方案,拟使中奖概率为60%. (1)小文的设计方案:在一个不透明的盒子中,放入10个球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到黄球则表示中奖,否则不中奖.如果小文的设计符合老师要求,则盒子中黄球应有 ▲ 个;(2)小兵的设计方案:在一个不透明的盒子中,放入4个黄球和1个白球,这些球除颜色外都相同,搅匀后从中任意摸出2个球,摸到的2个球都是黄球则表示中奖,否则不中奖.该设计方案是否符合老师的要求?请用画树状图法.....或列表法...说明理由. 22.(8分)课外兴趣小组为了解某段路上机动车的车速,抽查了一段时间内若干辆车的车速(车速取整数,单位:千米/时)并制成如图所示的频数分布直方图.已知车速在41千米/时到50千米/时的车辆数占车辆总数的29.(1)在这段时间中他们抽查的车有 ▲ 辆; (2)补全频数分布直方图;(3)被抽查车辆的车速的中位数所在速度段(单位:千米/时)是( ▲ )A .30.5~40.5B .40.5~50.5C .50.5~60.5D .60.5~70.5 (4)如果全天超速(车速大于60千米/时)的车有240辆,则当天的车流量约为多少辆?23.(8分)如图,BD 是⊙O 的直径,A 、C 是⊙O 上的两点,且AB=AC ,AD 与BC 的延长线交于点E.(1)试说明:△ABD∽△AEB; (2)若AD=1,DE=3,求⊙O 半径的长.24.(8分)如图,抛物线232--=x ax y 与x 轴正半轴交于点A (3,0).以OA 为 边在x 轴上方作正方形OABC ,延长CB 交抛物线于点D ,再以BD 为边向上作 正方形BDEF. (1)求a 的值. (2)求点F 的坐标.25.( 8分)小明同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形。

【苏科版】九年级数学下期末一模试题(带答案)

【苏科版】九年级数学下期末一模试题(带答案)

一、选择题1.如图所示的几何体的俯视图是()A.B.C.D.2.一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多可由多少个这样的正方体组成()A.12B.13C.14D.153.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图4.已知:如图,是由若干个大小相同的小正方体所搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.6个B.7个C.8个D.9个5.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A .B .C .D . 6.如图,已知该圆锥的侧面展开图的圆心角为120°、半径长为6,圆锥的高与母线的夹角为α,则( )A .圆锥的底面半径为3B .2tan 2α=C .该圆锥的主视图的面积为82D .圆锥的表面积为12π7.如图,在矩形ABCD 中,AB =6,BC =62,点E 是边BC 上一动点,B 关于AE 的对称点为B ′,过B ′作B ′F ⊥DC 于F ,连接DB ′,若△DB ′F 为等腰直角三角形,则BE 的长是( )A .6B .3C .32D .62﹣6 8.如图,在Rt ABC ∆中,90ACB ∠=︒,22AC BC ==,CD AB ⊥于点D .点P 从点A 出发,沿A D C →→的路径运动,运动到点C 停止,过点P 作PE AC ⊥于点E ,作PF BC ⊥于点F .设点P 运动的路程为x ,四边形CEPF 的面积为y ,则能反映y 与x 之间函数关系的图象是( )A .B .C .D .9.如图,在Rt ABC ∆中,BC=4,AC=3,90C ∠=︒,则sinB 的值为( )A .45B .34C .35D .4310.如图,分别以直角三角形三边为边向外作等边三角形,面积分别为1S 、2S 、3S ;如图2,分别以直角三角形的三边为直径向外半圆,面积分别为4S 、5S 、6S .其中116S =,245S =,511S =,614S =,则34S S +=( )A .86B .64C .54D .48 11.如图,在ABC 中,//DE BC ,6AD =,3DB =,4AE =,则AC 的长为( )A .1B .2C .4D .612.下列函数是y 关于x 的反比例函数的是( )A .y =11x +B .y =21xC .y =﹣12xD .y =﹣2x 二、填空题13.如图,小明站在距离灯杆6m 的点B 处.若小明的身高AB=1.5m ,灯杆CD=6m ,则在灯C 的照射下,小明的影长BE=______m .14.小新的身高是1.7m ,他的影子长为5.1m ,同一时刻水塔的影长是42m ,则水塔的高度是_____m .15.一个几何体的主视图和俯视图如图所示,若这个几何体最多有m 个小正方体组成,最少有n 个小正方体组成,m +n =_____.16.如图,ABC 内接于O ,AB AC =,直径AD 交BC 于点E ,若1DE =,2cos 3BAC ∠=,则弦BC 的长为______.17.如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交,AD BC 于,E F 两点.若23,120AC AEO =∠=︒,则FC 的长度为_________,AOES 等于_____.18.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,F 为DA 上一点,连接BF ,E 为BF 中点,CD=6,sin ∠10,若△AEF 的周长为18,则S △BOE =_____.19.下列五组图形中,①两个等腰三角形;②两个等边三形;③两个菱形;④两个矩形;⑤两个正方形.一定相似的有_______(填序号)20.如图,在平面直角坐标系中,函数y kx =与2y x =-的图像交于A 、B 两点,过点A 作y 轴的垂线,交函数1y x=的图像于点C ,连接BC ,则ABC ∆的面积为 _________.三、解答题21.已知某几何体的三视图如图,其中主视图和左视图都是腰长为5,底边长为4的等腰三角形(1)判断该几何体形状;(2)求该几何体的侧面展开图的面积(结果保留π)22.下图所示的几何体(*)由若干个大小相同的小正方体构成.(1)下面五个平面图形中有三个是从三个方向看到的图形,把看到的图形与观测位置连接起来;(2)已知小正方体的边长为a ,求这个几何体(*)的体积和表面积.23.如图,在1010⨯的正方形网格中,每个小正方形的边长为1,建立如图所示的坐标系,ABC 的三个顶点均在格点上.(1)若将ABC 沿x 轴对折得到111A B C △,则1C 的坐标为________.(2)以点B 为位似中心,将ABC 各边放大为原来的2倍,得到22A BC ,请在这个网格中画出22A BC .(3)在(2)的条件下,求22A BC 的面积是多少?24.如图,在平面直角坐标系中,一次函数1y ax b =+的图象与反比例函数2k y x=的图象交于点()A 1,2和()B 2,m -. ()1求一次函数和反比例函数的表达式;()2请直接写出12y y >时,x 的取值范围;()3过点B 作BE //x 轴,AD BE ⊥于点D ,点C 是直线BE 上一点,若AC 2CD =,求点C 的坐标.25.先化简,再求值:2311422a a a a -⎛⎫-÷ ⎪--+⎝⎭,其中10cos302tan 45a ︒=+︒. 26.在ABC 中,AB AC =,45BAC ∠=︒,将ABC 绕点A 顺时针旋转得到ADE ,连接BD 、CE ,直线BD 、CE 相交于点F .(1)求证BD CE =.(2)求BFC ∠的度数.(3)若2AB AC ==,当四边形ADFC 是菱形时,求BF 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据俯视图的概念逐一判断即可得.【详解】解:图中几何体的俯视图如图所示:故答案为:B .【点睛】本题考查简单几何体的三视图,解题的关键是掌握常见几何体的三视图.2.B解析:B【分析】易得此几何体有三行,三列,判断出各行各列最多有几个正方体组成即可.【详解】解:综合主视图与左视图分析可知,第一行第1列最多有2个,第一行第2列最多有1个,第一行第3列最多有2个;第二行第1列最多有1个,第二行第2列最多有1个,第二行第3列最多有1个;第三行第1列最多有2个,第三行第2列最多有1个,第三行第3列最多有2个;所以最多有:2+1+2+1+1+1+2+1+2=13(个),故选B.【点睛】本题考查了几何体三视图,重点是考查学生的空间想象能力.掌握以下知识点:主视图反映长和高,左视图反映宽和高,俯视图反映长和宽.3.C解析:C【解析】【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.4.B解析:B【详解】解:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.综合三视图可知,这个几何体的底层有4个小正方体,第二层有2个小正方体,第,三层有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+2+1=7个.故选B.考点:由三视图判断几何体.5.D解析:D【解析】分析:根据从正面看得到的图形是主视图,可得答案.详解:从正面看第一层是三个小正方形,第二层左边一个小正方形,故选D.点睛:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.6.C解析:C【分析】根据圆锥的侧面展开图的弧长等于圆锥底面周长,可知2πr =180n l π,求出r 以及圆锥的母线l 和高h 即可解决问题.【详解】解:设圆锥的底面半径为r ,高为h .A 选项,由题意:2πr =1206180π⨯⨯,解得r =2,故错误;B 选项,h =,所以tanα4=,故错误;C 选项,圆锥的主视图的面积=12×4×D 选项,表面积=4π+2π×6=16π,故错误.故选:C .【点睛】本题考查圆锥的有关知识,记住圆锥的侧面展开图的弧长等于圆锥底面周长,即2πr =180n l π,圆锥的表面积=πr 2+πrl 是解决问题的关键,属于中考常考题型. 7.D解析:D【分析】根据 B 关于 AE 的对称点为 B′,可得2AB AD '=,1AB D ∴等腰直角三角形,可得D B E '、、三点共线,可求出BE 的长.【详解】解:6,2AB AB AB AD AD ==='∴=', 又△DB′F 为等腰直角三角形,045FDB ∴∠=,又在矩形 ABCD ,090ADF ∠=,045ADB ∴='∠,又2AB AD '= AB D ∴'等腰直角三角形, 090AB D ∴='∠,090AB E ∠=',D BE ∴'、、三点共线,在等腰直角△RCE ,CE=CD=6,∴BE=BC-CE=6,故选D..【点睛】本题考查三角形的性质及解直角三角形,找出D B E '、、三点共线是解题关键.8.A解析:A【分析】分两段来分析:①点P 从点A 出发运动到点D 时,写出此段的函数解析式,则可排除C 和D ;②P 点过了D 点向C 点运动,作出图形,写出此阶段的函数解析式,根据图象的开口方向可得答案.【详解】解:∵90ACB ∠=︒,22AC BC ==, ∴45A ∠=︒,4AB =,又∵CD AB ⊥,∴2AD BD CD ===,45ACD BCD ∠=∠=︒,∵PE AC ⊥,PF BC ⊥,∴四边形CEPF 是矩形,I .当P 在线段AD 上时,即02x <≤时,如解图1∴2sin AE PE AP A x ===, ∴2222CE x =-, ∴四边形CEPF 的面积为2221222222y x x x x ⎛⎫=-=-+ ⎪ ⎪⎝⎭,此阶段函数图象是抛物线,开口方向向下,故选项CD 错误;II .当P 在线段CD 上时,即24x <≤时,如解图2:依题意得:4CP x =-,∵45ACD BCD ∠=∠=︒,PE AC ⊥,∴sin CE PE CP ECP ==⨯∠,∴())4sin 4542CE PE x x ==-︒=-,∴四边形CEPF 的面积为()22144822x x x y ⎤-=-+⎥⎣⎦=,此阶段函数图象是抛物线,开口方向向上,故选项B 错误;故选:A .【点睛】本题考查了动点问题的函数图象,分段写出函数的解析式并数形结合进行分析是解题的关键.9.C解析:C【分析】由勾股定理求出AB 的长度,即可求出sinB 的值.【详解】解:在Rt ABC ∆中,BC=4,AC=3,90C ∠=︒,∴5AB =, ∴35AC sinB AB ==, 故选:C .【点睛】 本题考查了求角的正弦值,以及勾股定理,解题的关键是正确求出AB 的值.10.C解析:C【分析】分别用AC ,AB 和BC 表示出123,,S S S ,然后根据222BC AB AC =-即可得出123,,S S S 的关系.同理,得出456,,S S S 的关系,从而可得答案.【详解】解:如图,1S 对应ACD ∆的面积,过D 作DH AC ⊥于H ,ACD ∆为等边三角形,160,,,2DAC AH CH AC AD AC ∴∠=︒=== sin 60,DH AD ∴︒=,DH AD AC ∴==211,24S AC DH AC ∴=•=同理:222333,,44S BC S AB == ∵222BC AB AC =-, ∴213,S S S -=如图2,同理可得:456S S S =+,∴3421564516111454.S S S S S S +=-++=-++=故选:C .【点睛】本题考查了勾股定理、等边三角形的性质.锐角三角函数等知识点,其中勾股定理:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么222+=a b c .11.D解析:D【分析】根据平行线分线段成比例求出EC ,即可解答.【详解】解:∵DE ∥BC ,∴AD AE DB EC =,即643EC=, 解得:EC=2,∴AC=AE+EC=4+2=6;故选:D .【点睛】 本题考查了平行线分线段成比例定理,解决本题的关键是熟记平行线分线段成比例定理. 12.C解析:C【分析】直接利用反比例函数的定义分别判断得出答案.【详解】解:A 、y =11x +是y 与x+1成反比例,故此选项不合题意; B 、y =21x,是y 与x 2成反比例,不符合反比例函数的定义,故此选项不合题意; C 、y =﹣12x ,符合反比例函数的定义,故此选项符合题意; D 、y =﹣2x 是正比例函数,故此选项不合题意. 故选:C .【点睛】本题考查了反比例函数的定义,正确把握定义是解题的关键.二、填空题13.2【分析】首先判定△ABE ∽△CDE 根据相似三角形的性质可得然后代入数值进行计算即可【详解】解:∵AB ⊥EDCD ⊥ED ∴AB ∥DC ∴△ABE ∽△CDE ∴∵AB=15mCD=6mBD=6m ∴解得:EB解析:2【分析】首先判定△ABE ∽△CDE ,根据相似三角形的性质可得AB EB CD ED =,然后代入数值进行计算即可.【详解】解:∵AB ⊥ED ,CD ⊥ED ,∴AB ∥DC ,∴△ABE ∽△CDE , ∴AB EB CD ED= ∵AB=1.5m ,CD=6m ,BD=6m , ∴1.566EB EB =+ 解得:EB=2,故答案为2【点睛】 此题主要考查了相似三角形的应用,属于简单题,关键是掌握相似三角形对应边成比例是解题关键.14.14【分析】设水塔的高为xm根据同一时刻平行投影中物体与影长成正比得到x:42=17:51然后利用比例性质求x即可【详解】设水塔的高为xm根据题意得x:42=17:51解得x=14即水塔的高为14m解析:14.【分析】设水塔的高为xm,根据同一时刻,平行投影中物体与影长成正比得到x:42=1.7:5.1,然后利用比例性质求x即可.【详解】设水塔的高为xm,根据题意得x:42=1.7:5.1,解得x=14,即水塔的高为14m.故答案为14.【点睛】本题考查了平行投影的知识,解题的关键是熟练的掌握投影的性质与运用.15.16【分析】主视图俯视图是分别从物体正面上面看所得到的图形【详解】易得第一层有4个正方体第二层最多有3个正方体最少有2个正方体第三层最多有2个正方体最少有1个正方体M=4+3+2=9N=4+2+1=解析:16【分析】主视图、俯视图是分别从物体正面、上面看所得到的图形.【详解】易得第一层有4个正方体,第二层最多有3个正方体,最少有2个正方体,第三层最多有2个正方体,最少有1个正方体,M=4+3+2=9,N=4+2+1=7,所以M+N=9+7=16.故答案为:16.【点睛】此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.16.【分析】连接OBOC由题意易得AE⊥BC则有BE=EC∠BOD=∠BAC设OB=3rOE=2r然后根据勾股定理可求解【详解】解:连接OBOC如图所示:∵内接于AD过圆心O∴AE⊥BC∴BE=EC∴∠解析:【分析】连接OB、OC,由题意易得AE⊥BC,则有BE=EC,∠BOD=∠BAC,设OB=3r,OE=2r,然后根据勾股定理可求解.【详解】解:连接OB、OC,如图所示:∵ABC 内接于O ,AB AC =,AD 过圆心O ,∴AE ⊥BC ,∴BE=EC ,BD DC =,∴∠BAD=∠CAD ,∵∠BOD=2∠BAD ,∴∠BAC=∠BOD , ∵2cos 3BAC ∠=, ∴2cos 3BOD ∠=, ∵DE=1,∴设OB=3r ,OE=2r ,则有: 321r r =+,解得:1r =,∴3,2OB OE ==,∴在Rt △BEO 中,225BE OB OE -=, ∴25BC = 故答案为5【点睛】本题主要考查垂径定理、三角形内接圆的性质及圆周角定理,熟练掌握垂径定理、三角形内接圆的性质及圆周角定理是解题的关键.17.1【分析】先根据矩形的性质推理得到OF=CF 再根据Rt △BOF 求得OF 的长即可得到CF 的长再由三角形面积公式可得结论【详解】解:∵EF ⊥BD ∠AEO=120°∴∠DEO=60°∠EDO=30°∵四边解析:3 【分析】先根据矩形的性质,推理得到OF=CF ,再根据Rt △BOF 求得OF 的长,即可得到CF 的长,再由三角形面积公式可得结论.【详解】解:∵EF ⊥BD ,∠AEO=120°,∴∠DEO=60°,∠EDO=30°,∵四边形ABCD 是矩形,∴∠OBF=∠OCF=30°,∠BFO=60°,∴∠FOC=60°-30°=30°,∴OF=CF ,又∵Rt △BOF 中,BO=12BD=12AC=3, ∴OF=tan30°×BO=1,∴CF=1, 过H 点O 作OH ⊥BC 于点H ,则OH=132BO = , ∴1133122FOC S CF OH ∆==⨯= ∵四边形ABCD 是矩形,∴AD//BC ,AO=CO∴∠EAO=∠FCO又∠AOE=∠COF∴△AOE ≌△COF∴3AOE S ∆= 故答案为:13 【点睛】本题主要考查了矩形的性质以及解直角三角形的运用,解决问题的关键是掌握:矩形的对角线相等且互相平分.18.【分析】根据题意求出AD=18设AF=则BF=在Rt △ABF 中利用勾股定理可求得求出DF=10可求出S △BDF 由三角形中位线定理可求出答案【详解】∵四边形ABCD 是矩形∴AB=CD=6∠BAD=90解析:152【分析】根据题意求出AD=18,设AF=a ,则BF=18a -,在Rt △ABF 中,利用勾股定理可求得8a =,求出DF=10,可求出S △BDF ,由三角形中位线定理可求出答案.【详解】∵四边形ABCD 是矩形,∴AB=CD=6,∠BAD=90°,OB=OD ,∵sin ∠ADB=10,∴6AB BD BD ==, ∴BD =∴18DA ===,∵E 为BF 中点,∴AE=BE=EF ,∵△AEF 的周长为18,∴AE+EF+AF=BE+EF+AF=BF+AF=18,设AF=a ,则BF=18a -,在Rt △ABF 中,AB 2+AF 2=BF 2,∴62+a 2=(18a -)2,解得:8a =,∴DF=18-8=10.∵E 为BF 中点,O 为BD 的中点, ∴OE ∥DF ,OE=12DF , ∴△BOE ∽△BDF , ∴BOE BDF 14S S =, ∵BDF 12S =DF•AB=12×6×10=30, ∴S △BOE =BDF 111530442S =⨯=. 故答案为:152. 【点睛】 本题考查了矩形的性质,勾股定理,锐角三角函数,相似三角形的判定与性质,中位线定理,三角形的面积等知识,熟练掌握几何基本图形的性质是解题的关键.19.②⑤【分析】根据相似图形的性质对各个选项逐个分析即可得到答案【详解】两个等腰三角形的顶角不一定相等故不一定相似;两个等边三角形一定相似;两个菱形的内角不一定相等故不一定相似;两个矩形的相邻边长比例不解析:②⑤【分析】根据相似图形的性质对各个选项逐个分析,即可得到答案.【详解】两个等腰三角形的顶角不一定相等,故不一定相似;两个等边三角形一定相似;两个菱形的内角不一定相等,故不一定相似;两个矩形的相邻边长比例不一定相等,故不一定相似;两个正方形一定相似;故答案为:②⑤.【点睛】本题考查了图形相似的知识;解题的关键是熟练掌握相似图形的性质,从而完成求解.20.3【分析】连接OC设AC交y轴于E根据反比例函数k的几何意义求出△AOC的面积再利用反比例函数关于原点对称的性质推出OA=OB即可解决问题【详解】解:如图连接OC设AC交y轴于E∵AC⊥y轴于E∴S解析:3【分析】连接OC,设AC交y轴于E.根据反比例函数k的几何意义求出△AOC的面积,再利用反比例函数关于原点对称的性质,推出OA=OB即可解决问题.【详解】解:如图,连接OC设AC交y轴于E.∵AC⊥y轴于E,∴S△AOE=12×2=1,S△OEC=12×1=12,∴S△AOC=32,∵A,B关于原点对称,∴OA=OB,∴S△ABC=2S△AOC=3,故答案为:3.【点睛】本题考查反比例函数与一次函数的性质,解题的关键是熟练掌握反比例函数系数k 的几何意义.三、解答题21.(1)圆锥;(2)10π.【分析】(1)由三视图可知,该几何体是圆锥;(2)根据圆锥的侧面积公式计算即可.【详解】解:(1)由三视图可知,该几何体是圆锥;(2)侧面展开图的面积=π×2×5=10π.【点睛】本题考查三视图,圆锥等知识,解题的关键是掌握圆锥的侧面积公式.22.(1)详见解析;(2)体积是:34a ,表面积是:218a .【分析】(1)根据从物体不同方向看图的定义求解;(2)几何体的体积=原正方体体积-挖去的棱长为1的小正方体的体积;表面积与原来相同.【详解】解:(1)如图所示:(2)这个几何体的体积是:344a a a a ⨯⨯⨯=,表面积是:21818a a a ⨯⨯=.【点睛】此题主要考查了平面图形,以及求几何体的体积和表面积,掌握主视图、左视图、俯视图是从那个角度所得到的图形是解题的关键.23.(1)(4,)1-;(2)画图见解析;(3)12.【分析】(1)直接利用关于x 轴对称图形的性质得出得出对应点位置即可;(2)直接利用位似图形的性质得出对应点位置进而得出答案;(3)直接运用三角形面积公式求出△A 2BC 2的面积即可.【详解】解:(1)如图所示:111A B C △,即为所求,则1C 的坐标为:(4,)1-.故答案为:(4,)1-.(2)如图所示:22A BC ,即为所求.(3)22164122A BC S =⨯⨯=. 【点睛】此题主要考查了位似变换以及轴对称变换,正确得出对应点位置是解题关键. 24.()1反比例函数的解析式为22y x=,一次函数解析式为:1y x 1=+;()2当2x 0-<<或x 1>时,12y y >;()3当点C 的坐标为()13,1-或)31,1-时,AC 2CD =.【分析】 (1)利用待定系数法求出k ,求出点B 的坐标,再利用待定系数法求出一次函数解析式;(2)利用数形结合思想,观察直线在双曲线上方的情况即可进行解答;(3)根据直角三角形的性质得到∠DAC=30°,根据正切的定义求出CD ,分点C 在点D 的左侧、点C 在点D 的右侧两种情况解答.【详解】()1点()A 1,2在反比例函数2k y x=的图象上, k 122∴=⨯=,∴反比例函数的解析式为22y x=, 点()B 2,m -在反比例函数22y x =的图象上, 2m 12∴==--, 则点B 的坐标为()2,1--,由题意得,{a b 22a b 1+=-+=-,解得,{a 1b 1==,则一次函数解析式为:1y x 1=+; ()2由函数图象可知,当2x 0-<<或x 1>时,12y y >;()3AD BE ⊥,AC 2CD =,DAC 30∠∴=,由题意得,AD 213=+=,在Rt ADC 中,CD tan DAC AD ∠=,即CD 333=, 解得,CD 3=, 当点C 在点D 的左侧时,点C 的坐标为()13,1--, 当点C 在点D 的右侧时,点C 的坐标为()31,1+-,∴当点C 的坐标为()13,1--或()31,1+-时,AC 2CD =.【点睛】本题考查一次函数和反比例函数的交点问题,熟练掌握待定系数法求函数解析式的一般步骤、灵活运用分类讨论思想、数形结合思想是解题的关键.25.52a --,3 【分析】 先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.【详解】310cos302tan 451021532a =+=⨯=︒+︒, ()()()()()()23113132522422222222a a a a a a a a a a a a a a a ⎡⎤-----⎛⎫-÷=-⋅+=⋅+=-⎢⎥ ⎪--++--+--⎝⎭⎢⎥⎣⎦当532a =+时,原式35322=-=-+-. 【点睛】 考查分式的化简求值,关键是化简,掌握运算顺序是化简的关键.26.(1)见解析;(2)45BFC ∠=︒或135BFC ∠=︒;(3)222BF =-【分析】(1)通过AEC ADB △≌△即可证得BD=CE ;(2)分情况讨论:旋转角小于45︒和旋转角大于45︒两种情况;(3)AB 与FC 相交于点G ,依题意可证得△AGC 和△FBG 是等腰直角三角形,再利用锐角三角函数求出AG 和FB ,问题可解.【详解】解:(1)∵将ABC 绕点A 顺时针旋转得到ADE ,∴CAE BAD ∠=∠,,,45AC AE AB AD BAC DAE ==∠=∠=︒,∵AB AC =,∴AC AE AB AD ===,∴AEC ADB △≌△(SAS )BD CE ∴=;(2)过点A 作AM BD ⊥于M ,AN CE ⊥于N ,当45CAE BAD ∠=∠︒<时,如图,AC AE AB AD ===,1234∴∠=∠=∠=∠,90AMB ANF ∠=∠=︒,在四边形ANFN 中,180BFC MAN ∠+∠=︒ ,MAN 311245BAE BAE BAC ∠=∠+∠+∠=∠+∠+∠=∠=︒18045135BFC ∴∠=︒-︒=︒;当45CAE BAD ∠=∠︒>时,如图,45BAC DAE ∠=∠=︒BAC BAE DAE BAE ∴∠+∠=∠+∠,DAB CAE ∴∠=∠,AC AE AB AD ===,111,222EAN CAE BAM DAB ∴∠=∠=∠∠=∠=∠, 12EAN BAM ∴∠=∠=∠=∠145MAN BAN BAM BAN BAC ∴∠=∠+∠=∠+∠=∠=︒90AMF ANF ∠=∠=︒,180135MFN MAN ∴∠=︒-∠=︒,18045BFC MFN ∴∠=︒-∠=︒,故45BFC ∠=︒或135︒;(3)如图,AB 与EC 交于G ,∵四边形ADFC 是菱形,AC ∴∥BD ,45FBA BAC ∴∠=∠=︒,BFC 45∠=︒,90FGB AGC ∴∠=∠=︒,在Rt △AGC 中,AC=2, ∴2cos 45222AG AC =⋅︒=⨯= 22GB AB AG ∴=-=22222sin 452BG BF -∴===︒ .【点睛】本题考察了全等三角形的判定和性质,旋转变换,四边形内角和,等腰直角三角形的性质,锐角三角函数等知识,有一定的综合性,根据旋转的特征进行分类讨论和正确运用图形的性质是解题的关键.。

【苏科版】九年级数学下期末一模试卷含答案

【苏科版】九年级数学下期末一模试卷含答案

一、选择题1.“圆柱与球的组合体”如下图所示,则它的三视图是()A.B.C.D.2.如图,下面是由一些相同的小正方体构成的立体图形的三视图,这些相同的正方体的个数是()A.6 B.7 C.8 D.93.如图,是一个由若干个小正方体组成的几何体的主视图和左视图,则该几何体最多可由多少个小正方体组合而成?()A.12个B.13个C.14个D.15个4.由7个相同的棱长为1的小立方块拼成的几何体如图所示,它的表面积为( )A .23B .24C .26D .285.如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是( )A .B .C .D . 6.如图,在等边△ABC 中,点O 在边AB 上,⊙O 过点B 且分别与边AB 、BC 相交于点D 、E ,F 是AC 上的点,判断下列说法错误的是( )A .若EF ⊥AC ,则EF 是⊙O 的切线B .若EF 是⊙O 的切线,则EF ⊥ACC .若BE =EC ,则AC 是⊙O 的切线D .若32BE EC =,则AC 是⊙O 的切线 7.在正方形网格中,小正方形的边长均为1,∠ABC 如图放置,则sin ∠ABC 的值为( )A 5B 5C .33D .18.如图,在Rt ABC ∆中,90ACB ∠=︒,22AC BC ==CD AB ⊥于点D .点P 从点A 出发,沿A D C →→的路径运动,运动到点C 停止,过点P 作PE AC ⊥于点E ,作PF BC ⊥于点F .设点P 运动的路程为x ,四边形CEPF 的面积为y ,则能反映y 与x 之间函数关系的图象是( )A .B .C .D .9.构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt △ACB 中,∠C =90°,∠ABC =30°,延长CB 使BD =AB ,连接AD ,得∠D =15°,所以tan15°()()2323232323AC CD -====-++-.类比这种方法,计算tan22.5°的值为( )A 21B 2﹣1C 2D .1210.点E 在射线OA 上,点F 在射线OB 上,AO ⊥BO ,EM 平分∠AEF ,FM 平分∠BFE ,则tan ∠EMF 的值为( )A .12B .33C .1D 311.如图所示,一电线杆AB 的影子分别落在了地上和墙上,某一时刻,小明竖起1米高的直杆,量得其影长为0.5米,此时,他又量得电线杆AB 落在地上的影子BD 长3米,落在墙上的影子CD 的高为2米,小明用这些数据很快算出了电线杆AB 的高,请你计算,电线杆AB 的高为( )A .5米B .6米C .8米D .10米 12.如图,已知双曲线()0k y x x=>经过矩形OABC 的边AB 的中点F ,交BC 于点E ,且四边形OEBF 的面积为2.则k =( )A .2B .12C .1D .4二、填空题13.如图,用棱长为1cm 的小立方块组成一个几何体,从正面看和从上面看得到的图形如图所示,则这样的几何体的表面积的最小值是__cm 2.14.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由___________个这样的正方体组成.15.用小立方块搭成的几何体从正面和上面看的视图如图,这个几何体中小立方块的个数最多有_________个.16.先将一矩形ABCD 置于直角坐标系中,使点A 与坐标系的原点重合,边AB ,AD 分别落在x 轴、y 轴上(如图1),再将此矩形在坐标平面内按逆时针方向绕原点旋转30°(如图2),若4AB =,3BC =,则图1和图2中点B 点的坐标为_________,点C 的坐标_________.17.如图,在矩形ABCD 中,6BC =,4cos 5CAB ∠=, P 为对角线AC 上一动点,过线段BP 上的点M 作EF BP ⊥,交AB 边于点E ,交BC 边于点 F ,点N 为线段EF 的中点,若四边形BEPF 的面积为18,则线段BN 的最大值为 ________ .18.如图,在ABC 中,已知90,4,8C AC BC ∠=︒==,将ABC 绕着点C 逆时针旋转到''A B C 处,此时线段''A B 与BC 的交点D 为BC 的中点,那么'B D 的长度为_________.19.如图,在Rt ACB 中,90C ∠=︒,30ABC ∠=︒,4AC =,N 是斜边AB 上方一点,连接BN ,点D 是BC 的中点,DM 垂直平分BN ,交AB 于点E ,连接DN ,交AB 于点F ,当ANF 为直角三角形时,线段AE 的长为________.20.如图,菱形ABCD 的两个顶点A 、B 在函数k y x=(x>0)的图像上,对角线AC//x 轴.若AC=4,点A 的坐标为(2,2),则菱形ABCD 的周长为_____.三、解答题21.(1)如图①是一个组合几何体,右边是它的两种视图,在右边横线上填写出两种视图名称;(2)根据两种视图中尺寸(单位:cm),计算这个组合几何体的表面积.(π取3.14)22.如图,是由一些大小相同的小正方体组合成的简单几何体.根据要求完成下列题目.(1)请在下面方格纸中分别画出它的左视图和俯视图(画出的图需涂上阴影);(2)图中共有个小正方体.23.定义:如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“特征轴三角形”.显然,“特征轴三角形”是等腰三角形.(1)抛物线y=x2﹣23x对应的“特征轴三角形”是;抛物线y=12x2﹣2对应的“特征轴三角形”是.(把下列较恰当结论的序号填在横线上:①腰与底边不相等的等腰三角形;②等边三角形;③非等腰的直角三角形;④等腰直角三角形.)(2)若抛物线y=ax2+2ax﹣3a对应的“特征轴三角形”是直角三角形,请求出a的值.(3)如图,面积为123的矩形ABCO的对角线OB在x轴的正半轴上,AC与OB相交于点E,若△ABE是抛物线y=ax2+bx+c的“特征轴三角形”,求此抛物线的解析式.24.如图,在ABC中,BA BC,以AB为直径的O分别交AC、BC于点D、E,BC 的延长线与O的切线AF交于点F.(1)求证:2ABC CAF ∠=∠;(2)若210AC =,:1:4CE EB =,求AF 的长.25.如图,在直角坐标系中,双曲线k y x=与直线y ax b =+相交于()2,3,6,)(A B n -两点,(1)求双曲线和直线的函数解析式;(2)点P 在x 负半轴上,APB △的面积为14,求点P 的坐标; (3)根据图象,直接写出不等式组0k ax b x ax b⎧+⎪⎨⎪+⎩﹤﹥的解集.26.已知等边三角形ABC .(1)用尺规作图找出ABC ∆外心O .(2)设等边三角形的边长为4,求外接圆的半径.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据几何体三视图的定义即可得.【详解】从正面看和从左面看得到的平面图形都是一个圆和一个矩形的组合图形,从上面看得到的平面图形是一个圆环,观察四个选项可知,只有选项A符合,故选:A.【点睛】本题考查了几何体的三视图,熟练掌握定义是解题关键.2.B解析:B【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从左视图可看出每一行小正方体的层数和个数,从而算出总的个数.【详解】由左视图知该立体图形有两层,由俯视图知,最底层有5个小正方体,结合三视图知,最上面一层有2个小正方体,故这些相同的小正方体共有7个,故选B.【点睛】本题主要考查由三视图判断几何体,利用三视图的定义得出几何体的形状是解题关键.3.C解析:C【分析】根主视图和左视图可知,考虑俯视图的情况,得到每个位置最多可摆小正方体的个数,相加即可.【详解】由主视图和左视图可知,俯视图可为3×3正方形,每个位置上最多可摆正方体的个数如图所示:因此,最多可由14个正方体搭建而成,故选:C.【点睛】此题考查了几何体三视图的应用问题,根据三视图求几何体的小正方体最多或最少个数,解题的关键是根据三视图得出几何体结构特征.4.D解析:D【分析】从6个方向数正方形的个数,再加上层中间的两个表面,从而得到几何体的表面积.【详解】它的表面积=5+5+5+5+3+3+2=28.故选:D.【点睛】本题考查了几何体的表面积:几何体的表面积=侧面积+底面积(上、下底的面积和).5.C解析:C【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.【详解】解:从左面看可得到从左到右分别是3,1个正方形.故选C.【点睛】查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.6.C解析:C【分析】A、连接OE,根据同圆的半径相等得到OB=OE,根据等边三角形的性质得到∠BOE=∠BAC,求得OE∥AC,于是得到A选项正确;B、由于EF是⊙O的切线,得到OE⊥EF,根据平行线的性质得到B选项正确;C、根据等边三角形的性质和圆的性质得到AO=OB,过O作OH⊥AC于H,根据三角函数AO≠OB,于是得到C选项错误;得到OH=2D、根据等边三角形的性质和等量代换即可得到D选项正确.【详解】A、如图,连接OE,则OB=OE,∵∠B=60°∴∠BOE=60°,∵∠BAC=60°,∴∠BOE=∠BAC,∴OE∥AC,∵EF⊥AC,∴OE⊥EF,∴EF是⊙O的切线∴A选项正确,不符合题意.B、∵EF是⊙O的切线,∴OE⊥EF,由A知:OE∥AC,∴AC⊥EF,∴B选项正确,不符合题意.C、∵∠B=60°,OB=OE,∴BE=OB,∵BE=CE,∴BC=AB=2BO,∴AO=OB,如图,过O作OH⊥AC于H,∵∠BAC=60°,∴OH=3AO≠OB,∴C选项错误,符合题意.D、如C中的图,∵BE 3,∴CE=33BE,∵AB=BC,BO=BE,∴AO=CE23OB,∴OH=32AO=OB,∴AC是⊙O的切线,∴D选项正确.故选:C.【点睛】本题为圆的综合题,掌握切线的判定和性质、平行线的判定和性质以及勾股定理是解答本题的关键.7.B解析:B【分析】作AD⊥BC于D,由勾股定理得出BC=2231+=10,AB=2211+=2,由△ABC的面积求出AD=10,由三角函数定义即可得出答案.【详解】解:作AD⊥BC于D,如图所示:由勾股定理得:BC2231+10,AB2211+2,∵△ABC的面积=12BC×AD=12×3×1−12×1×1,∴1210×AD=12×3×1−12×1×1,解得:AD=105,∴sin∠ABC=ADAB 10525;故选:B.【点睛】本题考查了解直角三角形、勾股定理以及三角函数定义;熟练掌握勾股定理和三角函数定义是解题的关键.8.A解析:A【分析】分两段来分析:①点P 从点A 出发运动到点D 时,写出此段的函数解析式,则可排除C 和D ;②P 点过了D 点向C 点运动,作出图形,写出此阶段的函数解析式,根据图象的开口方向可得答案.【详解】解:∵90ACB ∠=︒,22AC BC ==, ∴45A ∠=︒,4AB =,又∵CD AB ⊥,∴2AD BD CD ===,45ACD BCD ∠=∠=︒,∵PE AC ⊥,PF BC ⊥,∴四边形CEPF 是矩形,I .当P 在线段AD 上时,即02x <≤时,如解图1∴2sin AE PE AP A x ===, ∴2222CE x =-, ∴四边形CEPF 的面积为2221222222y x x x x ⎛⎫=-=-+ ⎪ ⎪⎝⎭,此阶段函数图象是抛物线,开口方向向下,故选项CD 错误;II .当P 在线段CD 上时,即24x <≤时,如解图2:依题意得:4CP x =-,∵45ACD BCD ∠=∠=︒,PE AC ⊥,∴sin CE PE CP ECP ==⨯∠,∴()()24sin 4542CE PE x x ==-︒=-, ∴四边形CEPF 的面积为()222144822x x x y ⎡⎤-=-+⎢⎥⎣⎦=,此阶段函数图象是抛物线,开口方向向上,故选项B 错误;故选:A .【点睛】本题考查了动点问题的函数图象,分段写出函数的解析式并数形结合进行分析是解题的关键.9.B解析:B【分析】作Rt △ABC ,使∠C =90°,∠ABC =45°,延长CB 到D ,使BD =AB ,连接AD ,根据构造的直角三角形,设AC =x ,再用x 表示出CD ,即可求出tan22.5°的值.【详解】解:作Rt △ABC ,使∠C =90°,∠ABC =90°,∠ABC =45°,延长CB 到D ,使BD =AB ,连接AD ,设AC =x ,则:BC =x ,AB =2x ,CD =()1+2x , ()22.5==211+2AC C tan ta D x n D =∠=-︒故选:B.【点睛】本题考查解直角三角形,解题的关键是根据阅读构造含45°的直角三角形,再作辅助线得到22.5°的直角三角形.10.C解析:C【分析】根据三角形外角的性质求得∠AEF+∠BFE=270°,由角平分线定义可求得∠MEF+∠MFE=135°,根据三角形内角和定理可求出∠EMF=45°,从而可得出结论.【详解】如图,∵AO⊥BO∴∠AOB=90°∴∠OEF+∠OFE=90°∵∠AEF和∠BFE是△EOF的外角∴∠AEF=90°+∠OFE,∠BFE=90°+∠OEF∴∠AEF+∠BFE=90°+90°+∠OFE+∠OEF=270°∵EM平分∠AEF,FM平分∠BFE,∴∠MEF+∠MFE=1(∠AEF+∠BFE) =135°,2∵∠MEF+∠MFE+∠M=180°∴∠M=180°-(∠MEF+∠MFE)=180°-135°=45°∴tan∠EMF=tan45°=1故选:C.【点睛】此题主要考查了三角形内角和定理、三角形外角的性质及三角函数,求出∠MEF+∠MFE=135°是解答此题的关键.11.C解析:C【分析】根据同一时刻,物体的实际高度和影长成正比例列出比例式即可解答.【详解】解:如图,假设没有墙,电线杆AB的影子落在E处,∵同一时刻,物体的实际高度和影长成正比例,∴CD:DE=1:0.5=2:1,∴AB:BE=2:1,∵CD=2,BE=BD+DE ,∴BE=3+1=4,∴AB :4=2:1,∴AB=8,即电线杆AB 的高为8米,故选:C .【点睛】本题考查了相似三角形的应用、比例的性质,解答的关键是理解题意,将实际问题转化为相似三角形中,利用同一时刻,物体的实际高度和影长成正比例列出方程求解. 12.A解析:A【分析】通过设F的坐标,得到点B 的坐标,再利用四边形面积OFBE 等于矩形面积OABC 减去三角形COE 和△AOF 的面积作等量,解得k 值即可.【详解】解:设点F 的坐标(m ,k m ), ∵点F 是AB 的中点,∴点B 的坐标(m ,2k m), 则 S 四边形OEBF =S 矩形OABC -S △COE -S △AOF ,∴2=m 21122k k k m --(k>0) ∴2=2k-k ,∴k=2,故选:A .【点睛】 本题考查反比例函数的k 的几何意义以及反比例函数上的点的坐标特点、矩形的性质,难点是根据一点的坐标表示其他点的坐标.二、填空题13.34【分析】易得这个几何体共有3层由俯视图可得第一层正方体的个数由主视图可得第二层和第三层最少或最多的正方体的个数相加即可【详解】搭这样的几何体最少需要6+2+1=9个小正方体最多需要6+5+2=1解析:34【分析】易得这个几何体共有3层,由俯视图可得第一层正方体的个数,由主视图可得第二层和第三层最少或最多的正方体的个数,相加即可.【详解】搭这样的几何体最少需要6+2+1=9个小正方体,最多需要6+5+2=13个小正方体;故最多需要13个小正方体,最少需要9个小正方体.最少的小正方体搭成几何体的表面积是(6+6+5)×2=34.故答案为34;【点睛】本题考查由三视图判断几何体,做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.14.13【分析】主视图左视图是分别从物体正面左面看所得到的图形【详解】易得第一层最多有9个正方体第二层最多有4个正方体所以此几何体共有13个正方体故答案为13解析:13【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形.【详解】易得第一层最多有9个正方体,第二层最多有4个正方体,所以此几何体共有13个正方体.故答案为13.15.10【分析】根据俯视图和主视图确定每一层正方体可能有的个数最后求和即可【详解】解:从俯视图可以看出下面的一层有6个由主视图可以知道在中间一列的一个正方体上面可以放2个或在一个上放2个另一个上放1或2 解析:10.【分析】根据俯视图和主视图,确定每一层正方体可能有的个数,最后求和即可.【详解】解:从俯视图可以看出,下面的一层有6个,由主视图可以知道在中间一列的一个正方体上面可以放2个或在一个上放2个,另一个上放1或2个.所以小立方块的个数可以是628+=个,6219++=个,62210++=个.所以最多的有10个.故答案为10.【点睛】本题主要考查了通过三视图确定立方体的数量,正确理解俯视图和主视图以及较好的空间想象能力是解答本题的关键.16.【分析】根据旋转的性质求解【详解】解:∵AB=4在x 轴正半轴上∴图1中B 坐标为(40)在图2中过B 作BE ⊥x 轴于点E 那么OE=4×cos30°=2BE=2在图2中B 点的坐标为(22);易知图1中点C解析:()23,2433334,⎛⎫-+ ⎪⎝⎭ 【分析】根据旋转的性质求解.【详解】解:∵AB=4,在x 轴正半轴上,∴图1中B 坐标为(4,0),在图2中过B 作BE ⊥x 轴于点E ,那么OE=4×cos30°=23,BE=2,在图2中B 点的坐标为(23,2);易知图1中点C 的坐标为(4,3),在图2中,设CD 与y 轴交于点M ,作CN ⊥y 轴于点N ,那么∠DOM=30°,OD=3, ∴3OM=3÷cos30°3,那么3∠NCM=30°,∴MN=CM•sin30°=432-,CN=CM•cos30°=332, 则334+, ∴图2中C 433-334+). 【点睛】此题主要考查了旋转性质的应用,旋转前后对应角的度数不变,对应线段的长度不变,注意构造直角三角形求解.17.【分析】在△ABC 中求出AC 与AB 的长点P 在AC 上则6≤BP≤8由点N 为线段EF 的中点∠ABC=90º则EF=2BN 根据四边形BEPF 的面积为18利用对角线乘积的一半求面积得BN 与PB 成反比例PB 最解析:154【分析】在△ABC 中,6BC =,4cos 5CAB ∠=求出AC 与AB 的长,点P 在AC 上 则6≤BP≤8,由点N 为线段EF 的中点,∠ABC=90º,则EF=2BN ,根据四边形BEPF 的面积为18,EF BP ⊥利用对角线乘积的一半求面积得,PB BN=18,BN 与PB 成反比例, PB 最小时,BN 最大,当PB ⊥AC 时,PB 最小,求出最小值即可.【详解】在△ABC 中,6BC =,4cos 5CAB ∠=, ∵22sin cos 1CAB CAB ∠+∠=,∴3sin 5CAB ∠=, 由正弦函数定义BC sin =ACCAB ∠, ∴AC=BC 6==103sin 5CAB ∠,由勾股定理得8==,点P 在AC 上 则6≤BP≤8,∵点N 为线段EF 的中点,由∠ABC=90º,∴EF=2BN ,∵四边形BEPF 的面积为18,EF BP ⊥,∴S 四边形EBFP =11PB EF=PB 2BN=PB BN=1822⨯, ∴PB BN=18, ∴18BN=PB, 当PB 最小时,BN 最大, 当PB ⊥AC 时,PB 最小,即S △ABC=11AB BC=AC BP 22 BP 最小=AB BC 8624==AC 105⨯ BN 最大=1815=2445故答案为:154.【点睛】本题考查锐角三角函数解直角三角形与点到直线距离最短问题,掌握锐角三角函数及其之间的关系,会用锐角三角函数解直角三角形,掌握垂线段最短,会利用面积或勾股定理求BP 的最小值,解题时要理解BP 最小,BN 最大是解题关键.18.【分析】根据题意先考虑多种情况①与D 重合=AB ;②与D 不重合过点C 作CE 于点E 利用的余弦值求出由等腰三角形三线合一得求出再用减去得到【详解】①如图与D 重合②如图与D 不重合过点C 作CE 于点E ∵旋转∴在 解析:12545,【分析】根据题意,先考虑多种情况,①A '与D 重合,B D '=AB ;②A '与D 不重合,过点C 作CE ⊥A B ''于点E ,利用CA B ''∠的余弦值求出A E ',由等腰三角形三线合一得2A D A E ''=,求出A D ',再用A B ''减去A D '得到B D '.【详解】①如图,A '与D 重合,45B D AB '==.②如图,A '与D 不重合,过点C 作CE ⊥A B ''于点E ,∵旋转,∴4AC A C '==,8BC B C '==,在Rt A B C ''△中,由勾股定理,22224845A B A C B C ''''=++= 5cos 545A C CA B A B '''∠===',在Rt A EC '中,5cos 45A E A E CA E A C '''∠===', ∴455A E '=∵D 是BC 中点∴4CD CA '== 在等腰三角形ACD '中,由“三线合一”得852A D A E ''==, ∴8512545B D A B A D ''''=-=-=.故答案是:555. 【点睛】 本题考查图形的旋转,等腰三角形三线合一,锐角三角函数,关键在于要画出对应的图象进行分类讨论,把情况考虑全面.19.或【分析】(1)分别在中应用含角的直角三角形的性质以及勾股定理求得再根据垂直平分线的性质等边三角形的判定和性质等腰三角形的判定求得最后利用线段的和差即可求得答案;根据垂直平分线的性质全等三角形的判定 解析:6或285 【分析】(1)分别在Rt ACB ∆、Rt BDF ∆、Rt DEF ∆中应用含30角的直角三角形的性质以及勾股定理求得1EF =,2DE =,再根据垂直平分线的性质、等边三角形的判定和性质、等腰三角形的判定求得2BE =,最后利用线段的和差即可求得答案;根据垂直平分线的性质、全等三角形的判定和性质、分线段成比例定理可证得//DM CN ,然后根据平行线的性质、相似三角形的判定和性质列出方程,解方程即可求得125BE =,最后利用线段的和差即可求得答案.【详解】解:①当90AFN ∠=︒时,如图1:∵在Rt ACB ∆中,90C ∠=︒,4AC =,30ABC ∠=︒∴28AB AC == ∴2243BC AB AC∵90AFN DFB ∠=∠=︒,30ABC ∠=︒∴60FDB ∠=︒∵23==CD DB∴132DF BD == ∴ 在Rt DEF △中,设EF x =,则22DE EF x == ∵222EF DF DE +=∴()()22223x x -= ∴1x =∴1EF =,2DE =∵DM 垂直平分线段BN∴DBDN ∵60FDB ∠=︒ ∴BDN 是等边三角形∴30FDM EDB EBD ∠=∠=∠=︒∴2BE DE ==∴826=-=-=AE AB BE ;②当90ANF ∠=︒时,连接AD 、CN 交于点O ,过点E 作⊥EH DB 于H ,如图2:设EH x =,则3BH x =,233DH x =∵DM 垂直平分线段BN ,点D 是BC 的中点∴CD DN BD ==∵AD AD =∴()Rt ACD Rt AND HL ≌∵AC AN =∵CD DN =∴AD 垂直平分线段CN∴90AON ∠=︒∵CD DB =,MN BM =∴//DM CN∴90ADM AON ∠=∠=︒∵90ACD EHD ∠=∠=︒∴90ADC EDH ∠+∠=︒,90EDH DEH ∠+∠=︒∴∠=∠ADC DEH∴ACD DHE ∽ ∴AC CD DH EH =∴=x ∴65x =∴1225==BE x ∴1228855=-=-=AE AB BE . ∴综上所述,满足条件的AE 的值为6或285. 故答案是:6或285【点睛】 本题考查了垂直平分线的性质和判定、含30角的直角三角形的性质、勾股定理、全等三角形的判定和性质、平行线的判定和性质、相似三角形的判定和性质、等边三角形的判定和性质等,渗透了逻辑推理的核心素养以及分类讨论的数学思想.20.【分析】连接BD 与AC 交于点O 根据AC=4得出AO=OC=2再根据A 的坐标为(22)求出反比例解析式从而计算出B 点的坐标再根据距离公式算出AB 的长度从而求算周长【详解】如图连接BD 与AC 交于点O ∵A解析:【分析】连接BD 与AC 交于点O ,根据AC=4,得出AO=OC=2,再根据A 的坐标为(2,2)求出反比例解析式,从而计算出B 点的坐标,再根据距离公式算出AB 的长度,从而求算周长.【详解】如图,连接BD 与AC 交于点O∵A 的坐标为(2,2)∴反比例函数的解析式为4y x = 又∵四边形ABCD 是菱形且AC=4∴AO=OC=2 ∴B 点坐标为()4,1∴AB=()()2242125-+-= ∴菱形ABCD 的周长为:45故答案为:45.【点睛】本题考查反比例函数与菱形性质相结合,掌握菱形的对角线平分以及反比例图象上的点的特点是解题关键.三、解答题21.(1)主,俯;(2)207.36cm 2【分析】(1)根据三视图的定义解答即可;(2)所求组合几何体的表面积=长方体的表面积+圆柱的侧面积,据此代入数据计算即可.【详解】解:(1)如图所示:;故答案为:主,俯;(2)组合几何体的表面积=2×(8×5+8×2+5×2)+4×π×6=2×66+24×3.14=207.36(cm 2).【点睛】本题考查了几何体的三视图和几何体表面积的计算,正确理解题意、熟练掌握基本知识是关键.22.(1)见解析;(2)9.【分析】(1)依据几何体的形状,即可得到它的左视图和俯视图;(2)可以直接从图中数出小正方体的个数.【详解】解:(1)左视图和俯视图如下:(2)由图可得,该几何体由9块小正方体组成,故答案为:9.【点睛】本题考查了作三视图,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.23.(1)②;④;(2)12±;(3)y =﹣x 23x ﹣24. 【分析】(1)根据题意先求出这两个抛物线的顶点及与x 轴的交点坐标,然后进行求解即可; (2)由题意易得抛物线的顶点及与x 轴的交点坐标,然后根据题意列方程求解即可; (3)如图,过点A 作AH ⊥x 轴,交于点H ,由题意易得S △ABE =14ABCD S 矩形=143332=3A (3,3),E (3,0),B (30),然后利用待定系数法求解即可.【详解】解:(1)由抛物线y =x 2﹣3可得顶点坐标为:)3,3-,与x 轴的交点坐标为:()()0,0,23,0, ∴抛物线y =x 2﹣3对应的“特征轴三角形”是等边三角形;由抛物线y =12x 2﹣2可得顶点坐标为:()0,2-,与x 轴的交点坐标为:()()2,0,2,0-,∴抛物线y =12x 2﹣2对应的“特征轴三角形”是等腰直角三角形; 故答案为②;④;(2)设抛物线y =ax 2+2ax ﹣3a 与x 轴的交点坐标为A ,B ,顶点为D ,∴A (﹣3,0),B (1,0),D (﹣1,﹣4a ),∵抛物线y =ax 2+2ax ﹣3a 对应的“特征轴三角形”是直角三角形,∴AB 2=AD 2+BD 2,∴16=4+16a 2+4+16a 2,∴a =12; (3)如图,∵四边形ABCD 是矩形,∴AE =CE =OE =BE ,∴S △ABE =14ABCD S 矩形=143=3 ∵△ABE 是抛物线的“特征轴三角形”,根据抛物线的对称性得,AE =AB ,∴AE =AB =BE ,∴△ABE 是等边三角形,过点A 作AH ⊥BE ,∴AH =AB sin ∠ABE 33, ∴32=3 ∴BE =3∴AH =3,EH 3∴A (33),E (3,0),B (30),设抛物线解析式为y =a (x ﹣3)2+3,将点E (30)代入得,a =﹣1, ∴y =﹣(x ﹣32+3=﹣x 23﹣24.∴过点A ,B ,E 三点的抛物线的解析式y =﹣x 23x ﹣24.【点睛】本题主要考查二次函数的综合及三角函数,熟练掌握二次函数的性质及三角函数是解题的关键.24.(1)见解析;(2)152【分析】(1)根据切线性质可知90CAB CAF ∠+∠=︒,所得等式两边同乘2可得22180CAB CAF ∠+∠=︒,在等腰三角形ABC 中,2180CAB ABC ∠+∠=︒,联立两个等式即可证明.(2)连接AE ,设CE x =,根据等腰三角形性质及勾股定理可得3AE x =,在Rt AEC 中运用勾股定理得出CE 、AE 的值,再根据AEF BEA ∽△△计算得出AF 的值.【详解】(1)证明:∵AB 为O 的直径,AF 是O 的切线,∴AF AB ⊥,90CAB CAF ∠+∠=︒,等式两边同乘2可得:22180CAB CAF ∠+∠=︒①;∵BA=BC ,∴CAB ACB ∠=∠,∴在ABC 中,2180CAB ABC ∠+∠=︒②,联立①和②可得:222CAB CAF CAB ABC ∠+∠=∠+∠,∴2ABC CAF ∠=∠.(2)解:连接AE ,如图:∵:1:4CE EB =,BA=BC ,设CE x =,90AEB =︒∠(直径所对圆周角是直角), ∴在Rt AEB 中,45AB CE EB x x x =+=+=,4BE x =,22=(5)(4)3AE x x x -=,∵在Rt AEC 中,222AE CE AC +=,即()(222321040x x +==,∴解得:2x =,AE=6,AB=10,∵AE ⊥BF ,FAE ABE ∠=∠(弦切角度数等于它所夹弧度所对圆周角度数),∴FAE ABE ∽,∴FA AB AE BE =,即1068FA =,解得:152FA =. 【点睛】 本题考查切线性质的综合运用,用勾股定理解三角形,灵活运用切线性质和勾股定理是解题关键. 25.(1)6y x=-,122y =-+;(2)()3,0P -;(3)20x -<< 【分析】 (1)将()2,3A -代入k y x=求出k ,得到B 点坐标,再代入y ax b =+即可求解; (2)作,AD x ⊥轴于,D BE x ⊥轴于E .得到3,1AD BE ==,根据三角形的面积公式求出7PC =,再根据直线解析式求出C 点坐标,故可求出P 点坐标;(3)根据函数图像即可求解.【详解】解:(1)将()2,3A -代入k y x=,得6k =-. ∴双曲线解析式为6y x=- 当6x =时,1y =-∴()6,1B -将()()2,3,6,1A B --代入y ax b =+,得2361a b a b -+=⎧⎨+=-⎩,解得1,22a b =-= ∴直线解析式为122y =-+. (2)作,AD x ⊥轴于,D BE x ⊥轴于E .则3,1AD BE ==.∵1122APB SPC AD PC BE =⋅+⋅ ∴()1142PC AD BE +=∴7 PC=由1202y x=-+=,得4x=.∴()4,0C,∴4OC=,∴3OP=∴()3,0P-(3)由图象,不等式组kax bxax b⎧+<⎪⎨⎪+>⎩,的解集为20x-<<.【点睛】此题主要考查一次函数与反比例函数综合,解题的关键是熟知待定系数法的应用.26.(1)见解析;(2)433【分析】(1)作AB,BC的垂直平分线交于点O,则点O即为所求;(2)根据正三角形的每个内角为60°和三角形外接圆的相关知识解答.【详解】(1)如图所示,点O即为所求ABC∆外心.(2)如图,O是等边△ABC的外接圆,连接OA、OB、OC,延长AO交BC于D,∵OB=OC,∴点O在BC的垂直平分线上,又∵ABC是等边三角形,4AB BC AC===,∴点A在BC的垂直平分线上,∴AO是BC的垂直平分线,∴OD⊥BC,BD=BC=2,∴190602ODB BOD BOC∠=︒∠=∠=︒,,∴43sin 603BD OB ===︒【点睛】本题考查正多边形外接圆的问题,解答此题要明确两点:(1)正多边形的中心和外接圆圆心重合;(2)正三角形每个内角每条边都相等.。

【苏科版】九年级数学下期末一模试卷附答案

【苏科版】九年级数学下期末一模试卷附答案

一、选择题1.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm2.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( )A .主视图B .左视图C .俯视图D .主视图和左视图3.如图,∠APD=90°,AP=PB=BC=CD ,则下列结论成立的是( )A .△PAB ∽△PCA B .△ABC ∽△DBA C .△PAB ∽△PDAD .△ABC ∽△DCA4.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体( ).A .6个B .5个C .4个D .3个5.如图的几何体由6个相同的小正方体搭成,它的主视图是( )A .B .C .D .6.若菱形的边长为2cm ,其中一内角为60°,则它的面积为( ) A .232cm B .23cm C .22cm D .223cm7.如图,半径为5的O 中, OA BC ⊥,30ADC ∠=︒,则BC 的长为( )A .52B .53C .522D .5328.一把5m 长的梯子AB 斜靠在墙上,梯子倾斜角α的正切值为34,考虑安全问题,现要求将梯子的倾斜角改为30°,则梯子下滑的距离AA '的长度是( )A .34m B .13m C .23m D .12m 9.如图,小明想要测量学校操场上旗杆AB 的高度,他作了如下操作:(1)在点C 处放置测角仪,测得旗杆顶的仰角ACE α∠=;(2)量得测角仪的高度CD a =;(3)量得测角仪到旗杆的水平距离DB b =.利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为( )A .tan a b α+B .sin a b α+C .tan ba α+D .sin b a α+10.西南大学附中初2020级小李同学想利用学过的知识测量棵树的高度,假设树是竖直生长的,用图中线段AB 表示,小李站在C 点测得∠BCA =45°,小李从C 点走4米到达了斜坡DE 的底端D 点,并测得∠CDE =150°,从D 点上斜坡走了8米到达E 点,测得∠AED =60°,B ,C ,D 在同一水平线上,A 、B 、C 、D 、E 在同一平面内,则大树AB 的高度约为( )米.(结果精确到0.1米,参考数据:2≈1.41,3≈1.73)A .24.3B .24.4C .20.3D .20.411.如图,要使ABC ACD ∆∆,需补充的条件不能是( )A .ADC ACB ∠=∠ B .ABC ACD ∠=∠ C .AD ACAC AB= D .AD BC AC DC ⋅=⋅12.如图,直线l x ⊥轴于点P ,且与反比例函数11(0)k y x x=>及22(0)ky x x =>的图象分别交于点A ,B ,连接OA ,OB ,已知△OAB 的面积为2,则12k k -的值为( )A .2B .3C .4D .5二、填空题13.已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为_____.14.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.15.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由___________个这样的正方体组成.16.已知抛物线2y ax bx c =++过点()0,3A ,且抛物线上任意不同两点()11,M x y ,()22,N x y ,都满足:当120x x <<时,()()12120x x y y -->;当120x x <<时,()()12120x x y y --<.以原点O 为圆心,OA 为半径的圆与抛物线的另两个交点为B ,C ,且B 在C 的左侧,ABC ∆有一个内角为60︒,则抛物线的解析式为______.17.如图,在ABC 中,已知90,4,8C AC BC ∠=︒==,将ABC 绕着点C 逆时针旋转到''A B C 处,此时线段''A B 与BC 的交点D 为BC 的中点,那么'B D 的长度为_________.18.已知在矩形ABCD 中,AC =12,∠ACB =15°,那么顶点D 到AC 的距离为_____. 19.如图,在△ABC 中,中线BE ,CD 相交于点G ,则EDG BDG S S ∆∆:=__________.20.如果反比例函数2y x=的图象经过点11(,)A x y ,22(,)B x y ,33(,)C x y 且1230x x x <<<,请比较1y 、2y 、3y 的大小为__________.三、解答题21.一个几何体由若干个大小相同的小立方块搭成,从上面看到的这个几何体的形状图如图所示,其中小正方形中的数字表示在该位置上小立方块的个数.画出从正面和从左面看到的这个几何体的形状图.22.用5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是 立方单位,表面积是 平方单位(包括底面积); (2)请在方格纸中用实线画出它的三个视图.23.如图1,ABC 与ADE 中,90ACB AED ∠=∠=︒,连接BD 、CE ,EAC DAB ∠=∠.(1)求证:BAD CAE ∽; (2)已知4BC =,3AC =,32AE =.将AED 绕点A 旋转,当C 、E 、D 三点共线时,如图2,求BD 的长.24.如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,点C 的坐标为()0,3,点A 在x 轴的负半轴上,点M 、D 分别在OA 、AB 上,且2AD AM ==;一次函数y kx b =+的图象过点D 和M ,反比例函数my x=的图像经过点D ,与BC 交点为N .(1)求反比例函数和一次函数的表达式;(2)直接写出使一次函数值大于反比例函数值的x 的取值范围;(3)若点P在y轴上,且使四边形OMDP的面积与四边形OMNC的面积相等,求点P 的坐标.25.如图,ABC内接于O,AB是O的直径,C是AD中点,弦CE AB于点H,连结AD,分别交CE、BC于点P、Q,连结BD.(1)求证:P是线段AQ的中点;(2)若O的半径为5,D是BC的中点,求弦CE的长.26.第十一届全国少数民族传统体育运动会于2019年9月8日至16日在郑州举行,据了解,该赛事每四年举办一届,是我国规格最高、规模最大的综合性民族体育盛会,其中,花炮、押加、民族式摔跤三个项目的比赛在郑州大学主校区进行.如图,钟楼是郑州大学主校区标志性建筑物之一,是郑大的“第一高度”,寓意来自五湖四海的郑大人的团结和凝聚.小刚站在钟楼前C处测得钟楼顶A的仰角为53°,小强站在对面的教学楼三楼上的D 处测得钟楼顶A的仰角为45°,此时,两人的水平距离EC为4m,已知教学楼三楼所在的高度为10m,根据测得的数据,计算钟楼AB的高度.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故选C.【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.2.C解析:C【解析】【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.3.B解析:B【解析】【分析】根据相似三角形的判定,采用排除法,逐条分析判断.【详解】∵∠APD=90°,而∠PAB≠∠PCA,∠PBA≠∠PAC,∴无法判定△PAB与△PCA相似,故A错误;同理,无法判定△PAB与△PDA,△ABC与△DCA相似,故C、D错误;∵∠APD=90°,AP=PB=BC=CD,∴AB=PA,AC=PA,AD=PA,BD=2PA,∴=,∴,∴△ABC∽△DBA,故B正确.故选B.【点睛】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.4.C解析:C【分析】这些正方体分前、后两排,左、右两行.后排左边是一列2个正方体,右边一个正方体;前排1个正方体,与后排右列对齐.【详解】如图搭成此展台共需这样的正方体(如下图)共需4个这样的正方体.故选C.【点睛】本题是考查作简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.5.A解析:A【分析】根据从正面看得到的视图是主视图,可得答案.【详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A符合题意,故选A.【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.6.D解析:D【分析】连接AC,过点A作AM⊥BC于点M,根据菱形的面积公式即可求出答案.【详解】连接AC,过点A作AM⊥BC于点M,∵菱形的边长为2cm,∴AB=BC=2cm,∵有一个内角是60°,∴∠ABC=60°,∴AM=ABsin60°=3,∴此菱形的面积为:2×323=(2cm).故选:D.【点睛】本题考查菱形的性质,特殊角的三角函数值,解题的关键是熟练运用菱形的性质.7.B解析:B【分析】连接OC,设BC与OA交于点E,根据圆周角定理即可求出∠AOC,然后根据垂径定理可得BC=2CE,利用锐角三角函数求出CE,即可求出结论.【详解】解:连接OC,设BC与OA交于点E∵30ADC∠=︒∴∠AOC=2∠ADC=60°∵OA BC⊥∴BC=2CE,在Rt△OCE中,CE=OC·sin∠53 2∴BC=53故选B.【点睛】此题考查的是圆周角定理、垂径定理和锐角三角函数,掌握圆周角定理、垂径定理和锐角三角函数是解题关键.8.D解析:D【分析】设AC=3k,BC=4k,根据勾股定理得到AB=22AC BC+=5k=5,求得AC=3m,BC=4m,根据直角三角形的性质健康得到结论.【详解】解:如图,∵梯子倾斜角α的正切值为34,∴设AC=3k,BC=4k,∴AB=22AC BC+=5k=5,∴k=1,∴AC=3m,BC=4m,∵A′B′=AB=5,∠A′B′C=30°,∴A′C=12A′B′=52,∴AA′=AC﹣A′C=3﹣52=12m,故梯子下滑的距离AA'的长度是12 m,故选:D.【点睛】本题考查了解直角三角形在实际生活中的应用,本题中根据梯子长不会变的等量关系求解是解题的关键,属于中考常考题型.9.A解析:A【分析】延长CE 交AB 于F ,得四边形CDBF 为矩形,故CF=DB=b ,FB=CD=a ,在直角三角形ACF 中,利用CF 的长和已知的角的度数,利用正切函数可求得AF 的长,从而可求出旗杆AB 的长.【详解】延长CE 交AB 于F ,如图,根据题意得,四边形CDBF 为矩形,∴CF=DB=b ,FB=CD=a ,在Rt △ACF 中,∠ACF=α,CF=b ,tan ∠ACF=AF CF∴AF=tan tan CF ACF b α∠=,AB=AF+BF=tan a b α+,故选:A .【点睛】主要考查了利用了直角三角形的边角关系来解题,通过构造直角三角形,将实际问题转化为数学问题是解答此类题目的关键所在.10.B解析:B【分析】过E 作EG ⊥AB 于G ,EF ⊥BD 于F ,则BG=EF ,EG=BF ,求得∠EDF=30°,根据直角三角形的性质得到EF=12DE=4,33即可得到结论.【详解】过E 作EG ⊥AB 于G ,EF ⊥BD 于F ,则BG =EF ,EG =BF ,∵∠CDE =150°,∴∠EDF =30°,∵DE =8,∴EF =12DE =4,DF =3 ∴CF =CD +DF =3,∵∠ABC =90°,∠ACB =45°,∴AB =BC ,∴GE =BF =AB +4+43,AG =AB ﹣4,∵∠AED =60°,∠GED =∠EDF =30°,∴∠AEG =30°,∴tan30°=3443AG GE AB ==++ , 解得:AB =14+63≈24.4,故选:B .【点睛】此题考查解直角三角形的应用-坡度坡角问题,根据题意作出辅助线是解题的关键. 11.D解析:D【分析】 要使两三角形相似,已知有一组公共角,则可以再添加一组角相等或添加该角的两边对应成比例.【详解】 ∵∠DAC=∠CAB∴当∠ACD=∠ABC 或∠ADC=∠ACB 或AD :AC=AC :AB 时,△ABC ∽△ACD .故选:D【点睛】本题考查相似三角形的判定方法的开放性的题,相似三角形的判定方法:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.12.C解析:C【分析】据反比例函数k 的几何意义可知:△AOP 的面积为12k ,△BOP 的面积为22k ,由题意可知△AOB 的面积为12k −22k . 【详解】根据反比例函数k 的几何意义可知:△AOP 的面积为12k ,△BOP 的面积为22k , ∴△AOB 的面积为12k −22k , ∴12k −22k =2, ∴k 1-k 2=4,故选:C .【点睛】本题考查反比例函数k 的几何意义,解题的关键是正确理解k 的几何意义,本题属于中等题型,二、填空题13.3cm2【分析】由三视图想象几何体的形状首先应分别根据主视图俯视图和左视图想象几何体的前面上面和左侧面的形状然后综合起来考虑整体形状【详解】解:该几何体是一个三棱柱底面等边三角形边长为2cm 底面三角解析:2.【分析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.【详解】解:该几何体是一个三棱柱,底面等边三角形边长为2cm cm ,三棱柱的高为3cm ,∴其左视图为长方形,长为3cm ,∴面积为:cm 2),故答案为:2.【点睛】本题考查了三视图,三视图是中考经常考查的知识内容,难度不大,但要求对三视图画法规则要熟练掌握,对常见几何体的三视图要熟悉. 14.64【分析】根据平行投影同一时刻物长与影长的比值固定即可解题【详解】解:由题可知:解得:树高=64米【点睛】本题考查了投影的实际应用属于简单题熟悉投影概念列比例式是解题关键解析:6.4【分析】根据平行投影,同一时刻物长与影长的比值固定即可解题.【详解】解:由题可知:1.628=树高, 解得:树高=6.4米.【点睛】 本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.15.13【分析】主视图左视图是分别从物体正面左面看所得到的图形【详解】易得第一层最多有9个正方体第二层最多有4个正方体所以此几何体共有13个正方体故答案为13解析:13【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形.【详解】易得第一层最多有9个正方体,第二层最多有4个正方体,所以此几何体共有13个正方体.故答案为13.16.【分析】由A 的坐标确定出c 的值根据已知不等式判断出y1-y2<0可得出抛物线的增减性确定出抛物线对称轴为y 轴且开口向下求出b 的值如图1所示可得三角形ABC 为等边三角形确定出B 的坐标代入抛物线解析式即 解析:2233=-+y x 【分析】由A 的坐标确定出c 的值,根据已知不等式判断出y 1-y 2<0,可得出抛物线的增减性,确定出抛物线对称轴为y 轴,且开口向下,求出b 的值,如图1所示,可得三角形ABC 为等边三角形,确定出B 的坐标,代入抛物线解析式即可.【详解】解:∵抛物线过点A (0,3),∴c=3,当x 1<x 2<0时,x 1-x 2<0,由(x 1-x 2)(y 1-y 2)>0,得到y 1-y 2<0,∴当x <0时,y 随x 的增大而增大,同理当x >0时,y 随x 的增大而减小,∴抛物线的对称轴为y 轴,且开口向下,即b=0,∵以O 为圆心,OA 为半径的圆与抛物线交于另两点B ,C ,如图所示,∴△ABC 为等腰三角形,∵△ABC 中有一个角为60°,∴△ABC 为等边三角形,且OC=OA=3,设线段BC 与y 轴的交点为点D ,则有BD=CD ,且∠OBD=30°,333cos30sin 302︒︒∴=⋅==⋅=BD OB OD OB ∵B 在C 的左侧,∴B 的坐标为333,22⎛⎫-- ⎪ ⎪⎝⎭∵B 点在抛物线上,且c=3,b=0,327432∴+=-a 解得:23a =- 则抛物线解析式为2233=-+y x 故答案为: 2233=-+y x . 【点睛】 此题属于二次函数综合题,涉及的知识有:待定系数法求二次函数解析式,二次函数的图象与性质,锐角三角函数定义,熟练掌握各自的性质是解本题的关键.17.【分析】根据题意先考虑多种情况①与D 重合=AB ;②与D 不重合过点C 作CE 于点E 利用的余弦值求出由等腰三角形三线合一得求出再用减去得到【详解】①如图与D 重合②如图与D 不重合过点C 作CE 于点E ∵旋转∴在 解析:1255,5 【分析】根据题意,先考虑多种情况,①A '与D 重合,B D '=AB ;②A '与D 不重合,过点C 作CE ⊥A B ''于点E ,利用CA B ''∠的余弦值求出A E ',由等腰三角形三线合一得2A D A E ''=,求出A D ',再用A B ''减去A D '得到B D '.【详解】①如图,A '与D 重合,45B D AB '==.②如图,A '与D 不重合,过点C 作CE ⊥A B ''于点E ,∵旋转,∴4AC A C '==,8BC B C '==,在Rt A B C ''△中,由勾股定理,22224845A B A C B C ''''=+=+=,5cos 45A C CA B A B '''∠===', 在Rt A EC '中,5cos 45A E A E CA E A C '''∠===', ∴455A E '= ∵D 是BC 中点∴4CD CA '==在等腰三角形ACD '中,由“三线合一”得852A D A E ''==, ∴8512545B D A B A D ''''=-=-=.故答案是:45或1255. 【点睛】 本题考查图形的旋转,等腰三角形三线合一,锐角三角函数,关键在于要画出对应的图象进行分类讨论,把情况考虑全面.18.3【分析】先利用三角函数的值分别求出AB 及BC 然后利用三角形ADC 面积的两种表示形式可求出DE 的长【详解】如图过点D 作DE ⊥AC 于点E 在这里先推导出sin15°的值:如图设中D 是AC 上一点则设则由题解析:3【分析】先利用三角函数的值分别求出AB 及BC ,然后利用三角形ADC 面积的两种表示形式可求出DE 的长.【详解】如图,过点D 作DE ⊥AC 于点E ,在这里先推导出sin15°的值:如图,设Rt ABC 中,A 15,C 90∠=︒∠=︒,D 是AC 上一点,BDC 30∠=︒,则ABD 15∠=︒,AD BD =,设BC x =,则AD BD 2x ==,DC 3x =,AC (32)x =+2222[(32)](62)AB AB BC x x ∴=+=+⨯+=+,BC 62sin15sin A AB 4(62)x -∴︒====+由题意得:AB =AC sin ∠ACB =6﹣2,BC =62,S △ADC =12AD •DC =12AC •DE =9, ∴DE =3.故答案为:3.【点睛】此题考查的是矩形的性质,解答本题的关键是根据∠ACB 的度数求出AB 及AC 的长,这要求我们熟练掌握三角函数值的求解方法.19.1:2【分析】设△ABC 的面积为1ΔEDG 的面积为xΔBDG 的面积为y 则由题意可得关于xy 的二元一次方程组解方程组得到xy 的值后可得问题解答【详解】解:设△ABC 的面积为1ΔEDG 的面积为xΔBDG解析:1:2【分析】设△ABC 的面积为1,ΔEDG 的面积为x ,ΔBDG 的面积为y ,则由题意可得关于x 、y 的二元一次方程组,解方程组得到x 、y 的值后可得问题解答.【详解】解:设△ABC 的面积为1,ΔEDG 的面积为x ,ΔBDG 的面积为y ,∵DE 为三角形ABE 的中位线,∴三角形DEB 的面积为三角形ABE 面积的一半或者三角形ABC 面积的四分之一, ∴x+y=14, 又由题意可得:△DGE ∽△CGB , ∴214DGE CGB S DE S BC ⎛⎫== ⎪⎝⎭, 即()111442CBD GBD x S S y ⎛⎫=-=- ⎪⎝⎭, ∴ 1184x y =-,所以有: 141184x y x y ⎧+=⎪⎪⎨⎪=-⎪⎩, 解之得: 11216x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴1112126EDG BDG S S x y ===::::, 故答案为1:2.【点睛】本题考查三角形中线、中位线的应用和相似三角形的判定及性质,熟练掌握“三角形中线把三角形分成面积相等的两部分”和相似三角形的判定及性质是解题关键 .20.【分析】根据题意和反比例函数的性质可以得到y1y2y3的大小关系从而可以解答本题【详解】解:∵反比例函数∴在每个象限内y 随x 的增大而减小当x <0时y <0当x >0时y >0∵反比例函数的图象经过点A (x解析:213y y y <<【分析】根据题意和反比例函数的性质,可以得到y 1,y 2,y 3的大小关系,从而可以解答本题.【详解】解:∵反比例函数2y x = ∴在每个象限内,y 随x 的增大而减小,当x <0时,y <0,当x >0时,y >0, ∵反比例函数2y x=的图象经过点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),且1230x x x <<<,∴213y y y <<,故答案为:213y y y <<.【点睛】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.三、解答题21.见解析【分析】由已知条件可知,从正面看有4列,每列小正方数形数目分别为2,3,3,1;从左面看有3列,每列小正方形数目分别为3,2,3.据此可画出图形.【详解】解:如图所示.从正面看 从侧面看【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.22.(1)5;22;(2)见解析.【分析】(1)根据几何体的形状得出立方体的体积和表面积即可;(2)主视图有3列,从左往右每一列小正方形的数量为2,1,1;左视图有2列,小正方形的个数为2,1;俯视图有3列,从左往右小正方形的个数为1,2,1.【详解】解:(1)几何体的体积:1×1×1×5=5(立方单位),表面积:小正方体被遮住的面有8个,所以表面积为:1×1×22=22(平方单位); (2)如图所示:【点睛】此题主要考查了画几何体的三视图,关键是掌握三视图所看位置.23.(1)见解析;(2)532BD =【分析】(1)由已知可得CAB EAD ∠=∠,则A ABC DE ∽△△,可得AC AE AB AD=,结合EAC BAD ∠=∠,则结论得证;(2)由A ABC DE ∽△△,求出AB 、AD 的长,再结合BAD CAE ∽可得90AEC ADB ∠=∠=︒,则BD 可求.【详解】(1)证明:∵EAC DAB ∠=∠,∴CAB EAD ∠=∠.∵90ACB AED ∠=∠=︒,∴A ABC DE ∽△△. ∴AC AE AB AD=. ∵EAC BAD ∠=∠, ∴BAD CAE ∽. (2)∵90ACB ∠=︒,4BC =,3AC =, ∴2222435AB BC AC =+=+=.∵A ABC DE ∽△△, ∴AC AB AE AD=.∴52AB AE AD AC ⋅==. 将AED 绕点A 旋转,当C 、E 、D 三点共线时,90AEC ∠=︒,∵BAD CAE ∽,∴90AEC ADB ∠=∠=︒.∴BD === 【点睛】本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定方法及相似性质是解题的关键.24.(1)反比例函数的解析式为6y x =-,一次函数的解析式为1y x =--;(2)x <-3或0<x <2;(3)703⎛⎫ ⎪⎝⎭,【分析】(1)由正方形OABC 的顶点C 坐标,确定出边长,及四个角为直角,根据2AD AM ==,求出AD 的长,确定出D 坐标,代入反比例解析式求出m 的值,再由2AD AM ==,确定出MO 的长,即M 坐标,将M 与D 坐标代入一次函数解析式求出k 与b 的值,即可确定出一次函数解析式;(2)联立方程组求得一次函数与反比例函数的交点坐标,然后结合函数图像确定使一次函数值大于反比例函数值的x 的取值范围;(3)设P (0,y ),根据四边形OMDP 的面积与四边形OMNC 的面积相等,列方程求出y 的值,确定出P 坐标即可.【详解】解:(1)∵正方形OABC 的顶点C (0,3),∴OA=AB=BC=OC=3,∠OAB=∠B=∠BCO=90°,∵2AD AM ==∴D (-3,2),M (-1,0)把D (-3,2)代入反比例函数m y x =中,23m =-,解得m=-6 把D (-3,2),M (-1,0)代入一次函数y kx b =+中320k b k b -+=⎧⎨-+=⎩,解得11k b =-⎧⎨=-⎩∴反比例函数的解析式为6y x=-,一次函数的解析式为1y x =-- (2)联立方程组61y x y x ⎧=-⎪⎨⎪=--⎩,解得1132x y =-⎧⎨=⎩,222-3x y =⎧⎨=⎩∴使一次函数值大于反比例函数值的x 的取值范围为x <-3或0<x <2(3)连接MN ,DP ,OD由题意可得N (-2,3) ∴119()(12)3222OMNC S OM NC OC =+=+⨯=四边形 1131231222OMD OPD OMDP S S S y y =+=⨯⨯+⨯=+△△四边形 由题意,391=22y +,解得7=3y ∴P 点坐标为703⎛⎫ ⎪⎝⎭,【点睛】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法确定一次函数、反比例函数解析式,坐标与图形性质,正方形的性质,以及三角形面积计算,熟练掌握待定系数法是解本题的关键.25.(1)见解析;(2)53CE= 【分析】(1)先证明CAD ACE ∠=∠可得PA=PC ,然再证明PC=PQ ,即可得到P 是AQ 的中点; (2)首先证明:△CAQC0△CB4,依据相似三角形的对应边的比相等求得AC 、BC 的长度,然后根据直角三角形的面积公式即可求得CH 的长,则可以求得CE 的长.【详解】(1)证明:∵CE AB ⊥,AB 是直径∴AC AE =又∵AC CD =∴AE CD =∴CAD ACE ∠=∠∴AP CP =∵AB 是O 的直径∴90ACB ∠=︒,∴90ACE BCP CAD CQA ∠+∠=∠+∠=°∴BCP CQA ∠=∠∴CP PQ =∴AP PQ =即P 是线段AQ 的中点;(2)∵C 是AD 中点, D 是BC 的中点∴==AC CD DB ,AB 是直径∴90ACB ∠=︒,30ABC ∠=︒,∠CAB=60°又∵5210AB =⨯=∴5AC =,∴BC ==又∵CE AB ⊥,∠CAB=60°∴CH=AC·sin60°=5×2∴222CE CH ==⨯= 【点睛】本题主要考查了圆周角定理、弧的中点的性质以及三角形的面积公式,灵活应用相关相关性质是解答本题的关键.26.钟楼AB 的高度约为56m【分析】作DF ⊥AB 于F ,根据矩形的性质得到FB =DE =10,DF =BE ,根据等腰直角三角形的性质、正切的定义计算,得到答案.【详解】解:作DF ⊥AB 于F ,设AB =xm ,∵FB ⊥EB ,DE ⊥EB ,DF ⊥AB ,∴四边形FBED 为矩形,∴FB =DE =10,DF =BE ,∴AF =10﹣x ,在Rt △AFD 中,∠ADF =45°,∴DF =AF =x ﹣10,在Rt △ABC 中,∠ACB =53°,tan ∠ACB =AB BC , ∴BC =3tan 4AB x ACB ≈∠,由题意得,BE﹣BC=CE,即x﹣10﹣34x=4,解得,x=56,答:钟楼AB的高度约为56m.【点睛】本题考查了解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.。

初三数学下册摸底试卷答案

初三数学下册摸底试卷答案

一、选择题(每题3分,共30分)1. 已知函数f(x) = 2x - 3,则f(-1)的值为()A. -5B. -1C. 1D. 5答案:A2. 若a < b,则下列不等式中正确的是()A. a^2 < b^2B. a + 1 < b + 1C. a - 1 < b - 1D. a^2 + 1 < b^2 + 1答案:B3. 在直角坐标系中,点A(2,3),点B(-1,-2),则线段AB的中点坐标为()A. (1,1)B. (3,2)C. (1,-1)D. (-2,-3)答案:A4. 若sinα = 1/2,则α的值为()A. π/6B. π/3C. 5π/6D. 2π/3答案:B5. 若a、b是方程x^2 - 4x + 3 = 0的两个根,则a + b的值为()A. 1B. 2C. 3D. 4答案:B6. 在△ABC中,若∠A = 45°,∠B = 60°,则∠C的度数为()A. 75°B. 45°C. 90°D. 30°答案:C7. 若sinx = 1/√2,cosx = √2/2,则tanx的值为()A. 1B. -1C. √3D. -√3答案:A8. 若函数f(x) = x^2 - 4x + 3,则f(2)的值为()A. -1B. 1C. 3D. 5答案:B9. 若a、b是方程x^2 - 5x + 6 = 0的两个根,则ab的值为()A. 1B. 2C. 3D. 6答案:D10. 在直角坐标系中,点P(3,4),点Q(-2,1),则线段PQ的长度为()A. 5B. 7C. 9D. 11答案:B二、填空题(每题3分,共30分)11. 若sinα = 1/2,cosα = √3/2,则tanα的值为______。

答案:√312. 在△ABC中,若∠A = 30°,∠B = 45°,则∠C的度数为______。

苏教版九年级下学期中模拟考一模考试数学试题(有答案)

苏教版九年级下学期中模拟考一模考试数学试题(有答案)

第二学期预一模试卷九年级数学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.2.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须写在答题卷上的指定位置,在其他位置答题一律无效.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答.题.卡.相应位置....上) 1.如果a 与-2互为倒数,那么a 是A .-2B .-12C .12D .22.计算(-a 2)3的结果是A .a 5B .-a 5C .a 6D .-a 63.从下列不等式中选一个与x +2≥1组成不等式组,若要使该不等式组的解集为x ≥-1,则可以选择的不等式是 A .x >-2 B .x >0 C .x <0D .x<-24.如图,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点,则sin ∠OMN 的值为A .12B .1C .22D .325.如图,A ,B 的坐标为(2,0),(0,1)若将线段AB 平移至A 1B 1,则a +b 的值为A .2B .3C .4D .56.在同一直角坐标系中,P 、Q 分别是y =-x +3与y =3x -5的图象上的点,且P 、Q 关于x 轴对称,则点P 的坐标是 A .(-12,72) B .(-2,5) C .(1,2) D .(-4,7)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卷相应位置.......上) 7.式子x -2在实数范围内有意义,x 的取值范围是 ▲ .8.月球是距离地球最近的天体,它与地球的平均距离约为384400千米.将(第5题)ABCDOMN(第4题)384400用科学记数法可表示为 ▲ .9.如果一次函数y =kx +b 的图像经过点(1,0),且y 随x 的增大而减小,那么这个一次函数的关系式可以是 ▲ .10.设x 1,x 2是方程x 2-2x =1的两根,则x 1·x 2= ▲ . 11.若m 2-5m +2=0,则2m 2-10m +2015= ▲ .12.如图,△ABC 内接于⊙O,∠C=45°,AB =4,则⊙O 的半径为 ▲ . 13.某班6名同学在一次“1分钟仰卧起坐”测试中,成绩为(单位:次):39,42,42,37,41,39.这组数据的方差是 ▲ .14.四张完全相同的卡片上分别画有圆、正方形、等边三角形、平行四边形,现在从中随机抽取一张,卡片上画的恰好是中心对称图形的概率是 ▲ . 15.如图,两条互相垂直的弦将⊙O 分成四部分,相对的两部分面积之和分别记为S 1、S 2,若圆心O 到两弦的距离分别为4和6,则| S 1-S 2|= ▲ .16.如图,将一张长方形的纸片ABCD 沿x 轴摆放,顶点A (6,1)恰好落在某双曲线上.现在AD 边上找一点E ,使得将纸片的右半部分沿OE 所在直线折叠后,点A 恰好还落在此双曲线上,则满足条件的点E 的坐标为 ▲ .(第12题)C(第16题)xA B CDO三、解答题(本大题共10小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题6分)计算33+ (π+ 3 )0-27 +| 3 -2|.18.(本题6分)解方程:x x +1-1x =1.19.(本题8分)先化简(a 2-4a 2-4a +4-2a -2)÷a 2+2aa -2,然后选取一个恰当..的数代入求值.20.(本题8分)中考体育测试满分为40分,某校九年级进行了中考体育模拟测试,随机抽取了部分学生的考试成绩进行统计分析,并把分析结果绘制成如下两幅统计图.试根据统计图中提供的数据,回答下列问题:5 各类学生人数比例统计图各类学生人数条形统计图得40分得39分得38分占20%得36分 得37分(第15题)(1)抽取的样本中,成绩为39分的人数有 ▲ 人;(2)抽取的样本中,考试成绩的中位数是 ▲ 分,众数是 ▲ 分; (3)若该校九年级共有500名学生,试根据这次模拟测试成绩估计该校九年级将有多少名学生能得到满分?21.(本题8分)如图1,圆规两脚形成的角α称为圆规的张角.一个圆规两脚均为10cm ,最大张角α为150°,你能否利用此圆规,画出一个半径为18cm 的圆?请借助图2说明理由.(参考数据:sin150.26°≈,cos150.97°≈,tan150.27°≈,sin 750.97°≈,cos750.26°≈,tan 75 3.73°≈)22.(本题8分)某校有A 、B 两个阅览室,甲、乙、丙三名学生各自随机选择其中的一个阅览室阅读.(1)下列事件中,是必然事件的为( ▲ )(第21题)图2CBAA.甲、乙同学都在A阅览室B.甲、乙、丙同学中至少两人在A阅览室C.甲、乙同学在同一阅览室D.甲、乙、丙同学中至少两人在同一阅览室(2)求甲、乙、丙三名学生在同一阅览室阅读的概率.23.(本题10分)如图,四边形ABCD是菱形,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F,连接CE.(1)求证:∠DAE=∠DCE;(2)当AE=2EF时,判断FG与EF有何等量关系?并证明你的结论.(第23题)24.(本题10分)甲、乙两城市之间开通了动车组高速列车.已知每隔2h有一列速度相同的动车组列车从甲城开往乙城.如图,OA是第一列动车组列车离开甲城的路程s(km)与运行时间t(h)的函数图像,BC是一列从乙城开往甲城的普通快车距甲城的路程s(km)与运行时间t(h)的函数图像.请根据图中的信息,解答下列问题:(1)从图像看,普通快车发车时间比第一列动车组列车发车时间▲1 h(填”早”或”晚”),点B的纵坐标600的实际意义是▲;(2)请直接在图中画出第二列动车组列车离开甲城的路程s(km)与时间t (h)的函数图像;(3)若普通快车的速度为100 km/h,①求BC的表达式,并写出自变量的取值范围;②第二列动车组列车出发多长时间后与普通快车相遇?③请直接写出这列普通快车在行驶途中与迎面而来的相邻两列动车组列车相遇的时间间隔.25.(本题12分)如图,△ABC 内接于⊙O ,∠DAB =∠ACB . (1)判断直线AD 与⊙O 的位置关系,并说明理由; (2)若∠DAB=30°,AB =1,求弦AB 所对的弧长;(3)在(2)的条件下,点C 在优弧AB 上运动,是否存在点C ,使点O 到弦BC 的距离为12,若有,请直接写出AC 的长;若没有,请说明理由.26.(本题满分12分)(第25题)(备用图)我们知道对于任意实数a 、b ,都有a 2+b 2≥2ab (当且仅当a =b 时取等号).我们可以利用这一结论来解决很多实际问题. (1)若x >0,则函数y =x 2+1x2的最小值是 ▲ .(2)现有一架敌方无人机沿曲线y =2x (x >0)前来侦察,我方位于坐标原点O (0,0)的雷达站捕捉信号,当无人机与雷达站距离最近时,信号最强,求此时无人机信号所在点的坐标.(3)现有两个电阻R 1、R 2,串联后总电阻R 串=R 1+R 2,并联后总电阻1R 并=1R 1+1R 2,若R 串=k ·R 并,求实数k 的取值范围.九年级数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分. 一、选择题(每小题2分,共计12分)二、7.x ≥2 8.3.844×105 9.答案不唯一,如y =-x +1 10.-1 11.2011 12.2 2 13.103 14.3415.96 16.(1,1),(-1,1),(-16,1)三、解答题(本大题共10小题,共计88分) 17.(本题6分)解:原式=3+1-33+2-3············································································=3-3 3 ·······························································································18.(本题6分)解:x 2-(x +1)=x(x +1) ···················································································x 2-x -1= x 2+xx =-12. ······································································································经检验,x =-12是原方程的解. ········································································19.(本题8分)解:(a 2-4a 2-4a +4-2a -2)÷a 2+2aa -2=[(a +2)(a -2) (a -2)2-2a -2]·a -2a(a +2)········································································ =a a -2·a -2a(a +2)·································································································=1a +2. ·········································································································代入除2,-2,0以外的数字,并计算正确 ·····························································20.(本题8分)解:(1)14. ······································································································(2)中位数:39分,众数:40分. ··································································(3)500×40%=200(人). ···········································································所以估计这次模拟测试成绩该校九年级有200名学生能得到满分.·······························································································································21.(本题8分)解:能画.过A 作AD⊥BC,垂足为D . ··········································································∵在△ABC 中, AB =AC 、∠BAC=150°,∴∠B=15°,BD =12BC . ···············································································∵在△ABC 中,cosB =BDAB,∴DE =AB ·cosB =10×0.97=9.7, ·································································∴BC=2BD =19.4; ······················································································ ∵19.4>18,∴能画. ·······································································································22.(本题8分)解:(1)D . ······································································································(2)用树状图分析如下:∵共有8种等可能性,其中三名学生在同一阅览室阅读有两种情况. ·······························(AAA ) (AAB ) A(ABA )(ABB ) B(BAA )(BAB )A(BBA )(BBB ) BA B开始 甲乙 丙 所有结果∴P (三名学生在同一阅览室阅读)=28=14. ·····························································(说明:通过枚举、画树状图或列表得出全部正确情况得4分;没有说明等可能性扣1分.) 23.(本题10分)(1)证明:∵四边形ABCD 是菱形,∴AD=CD ,∠ADE=∠CDB; 又∵DE=DE , ∴△ADE ≌△CDB,∴∠DAE=∠DCE. ··················································································(2)FG =3EF . ··································································································证明∵四边形ABCD 是菱形, ∴AD∥BG, ∴∠G=∠DAG;又∵由(1)可知∠DAE=∠DCE, ∴∠G=∠DCE; ∵∠CEF=∠GEC, ∴△CEF∽△GEC,∴EF EC =CEGE; ······························································································ 又∵△ABE ≌△CBE ,AE =2EF , ∴AE=CE =2EF ,∴EF EC =AE GE =EF AE =12,∴EF FG =13,即FG =3EF . ·············································································24.(本题10分)解:(1)晚; ······································································································甲乙两城相距600km . ···················································································(2)画对图. ······································································································(3)解:①设直线BC 的解析式为:S =kt +b , 由图像可知:直线BC 经过点B (1,600), 又因为普通快车的速度为100 km/h , 所以直线BC 还经过点(2,500)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级下数学摸底试卷没有比人更高的山,没有比脚更长的路。

亲爱的同学们请相信自己,沉着应答,你一定能愉快地完成这次测试之旅,让我们一同走进这次测试吧。

祝你成功!考生注意:1 .本试卷含三个大题,共 25 题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题: (本大题共 6题,每题 4分,满分 24 分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.321 .计算 (a ) 的结果是( )0, 的解集是( 1A . x 1B . 3.用换元法解分式方程 x3 x1 3x 个整式方程是(A . 2 yy 30B .C . 3y 2 y 10D . 4.抛物线 2(x m)2A . (m ,n)5A . aB .C . a 8D .2.不等式组1 10.已知函数 f (x ) ,那么 f (3) .1x5.下列正多边形中,中心角等于内角的是( A .正六边形 6.如图 A .C . 7.分母有理化:8.方程 9.如果关于 C . 3y 2 n ( m , B . ( m , n) 3y n是常数)的顶点坐标是( 0 时,如果设x3 10 C . (m , AD DF CD EF B .正五边形 C .正四边形1,已知 BC CE BC BE x1 AB ∥ CD ∥ EF ,那么下列结论正确的是( BC B . CE CD D . EF DF AD ADAF D . x 1 n ) D . ( ) C .正三边形12 题,每题 4分,满分 48 分)5_1 的根是x 的方程 x 2 3x1 y ,将原方程化为关于 y 的整式方程,那么这 m ,n)F D x k 0( k 为常数)有两个相等的实数根,那么k21.(本题满分 10 分,每小题满分各 5 分) 如图 4,在梯形 ABCD 中, AD ∥ BC , AB DC 8, B 60°, BC 12,联结 AC .( 1 )求 tan ACB 的值;11.反比例函数 y 2 图像的两支分别在第 象限. x 12.将抛物线 y x 2 向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是 . 13.如果从小明等 6 名学生中任选 1 名作为“世博会”志愿者,那么小明被选中的概率是 14. 某商品的原价为100 元, 如果经过两次降价, 且每次降价的百分率都是 m , 那么该商品现在的价格是 元(结果用含 m 的代数式表示) . uuur r uuur r 15.如图 2,在 △ ABC 中, AD 是边 BC 上的中线,设向量 , AB a BC b r r uuur uuur 如果用向量 a , b 表示向量 ____ AD ,那么 AD = 16.在圆 O 中,弦 AB 的长为 6,它所对应的弦心距为 4,那么半径 OA . 17.在四边形 ABCD 中,对角线 AC 与 BD 互相平分,交点为 O .在不添加任何辅 2 助线的前提下,要使四边形 ABCD 成为矩形,还需添加一个条件,这个条件可以是 ________________ 18 .在 Rt △ ABC 中, BAC 90°, AB 3, M 为边 BC 上的点,联 结 AM (如图 3 所示) .如果将 △ ABM 沿直线 AM 翻折后,点 B 恰好 落在边 AC 的中点处,那么点 M 到 AC 的距离是 . 三、解答题: (本大题共 19. (本题满分 10 分) 2a 2 计算: (a 1)a1 7 题,满分 78 分) a 2 1 . a 2 2a 1 3 20. (本题满分10分) 解方程组: y x 1, 2x 2xy 2 0.( 2)若M 、N 分别是AB、DC 的中点,联结M N ,求线段M N 的长.22. (本题满分 10 分,第( 1 )小题满分 2 分,第(2)小题满分 3 分,第( 3)小题满分 2 分,第( 4)小题 满分 3 分)为了了解某校初中男生的身体素质状况,在该校六年级至九年级共四个年级的男生中,分别抽取部分学生进行“引体向上”测试.所有被测试者的“引体向上”次数情况如表一所示;各年级的被测试人数占所有被测试人数的百分率如图 5 所示(其中六年级相关数据未标出) . 次数 0 1 2 3 4 5 6 7 8 9 10 人数1 12 234 2 2 2 0 1 表一23. (本题满分 12 分,每小题满分各 6 分)已知线段 AC 与 BD 相交于点 O ,联结 AB 、DC , E 为 OB 的中点, F 为OC 的中点,联结 E F (如图 6 所示) .( 1 )添加条件 A D , OEF OFE ,求证: AB DC .( 2)分别将 “ A D ”记为①,“ OEF OFE ”记为②,“ AB DC ” B 记为③,添加条件①、③,以②为结论构成命题 1 ,添加条件②、③,以①为结论构成命题 2.命题1 是 命题,命题2 是 命题(选择“真”或“假”填入空格)根据上述信息,回答下列问题(直接写出结果) :( 1 )六年级的被测试人数占所有被测试人数的百分率是;( 2)在所有被测试者中,九年级的人数是 ;八年级 九年级 30%七年级 25% 六年级24.(本题满分12 分,每小题满分各 4 分)O 为原点,点A 的坐标为(1, 0),点C 的坐标为(0,4),直线CM ∥ x 轴(如图B 与点A 关于原点对称,直线y x b ( b 为常数)经过点 B ,且与直线CM 相交于点 D ,联结( 1 )求 b 的值和点 D 的坐标;( 2)设点P 在x 轴的正半轴上,P 的坐标;( 3)在(2)的条件下,如果以求圆O 的半径.7 所示).点OD .角形,求点在直角坐标平面内,25.(本题满分 14 分,第( 1)小题满分 4 分,第( 2)小题满分 5分,第( 3)小题满分 5 分) 已知 ABC 90°, AB 2, BC 3, AD ∥ BC , P 为线段 BD 上的动点,点 Q 在射线 AB 上,且满足1 )当 AD2 ,且点 Q 与点 B 重合时(如图 9 所示) ,求线段 PC 的长;3S △ APQ 在图 8 中, 联结 AP . 当 AD 3 , 且点 Q 在线段 AB 上时, 设点B 、 Q 之间的距离为 x ,△ APQ y , 2S △ PBC 其中 S △ APQ 表示 △ APQ 的面积,S △ PBC 表示 △PBC 的面积, 求 y 关于 x 的函数解析式, 并写出函数定义域;3)当 AD AB ,且点Q 在线段 AB 的延长线上时(如图 10 所示) ,求 QPC 的大小. PQ PC AD AB8 所示) . 2)九年级上数学摸底试卷答案说明:1. . 解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2. 第一、二大题若无特别说明,每题评分只有满分或零分;3. 第三大题中各题右端所注分数,表示考生正确做对这一步应得分数;4. 评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半;5. 评分时,给分或扣分均以 1 分为基本单位.4. B; 5. C; 6. A . 10. 1 ; 11.一、三 221100(1 m ) ; 15. a b ;2 0 等) ; 18. 2 .(本大题共 7 题,满分 78 分)2(a 1) 1 (a 1)(a 1) 19. 解:原式=2 ·· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ( 7 分)a 1 a 1 (a 1)22 a1= ·· · ··· · · · · · · · · ·· ··· ·· ·· · · · · · · · ·· ·· ··· · · · · · · · · ··· ·· ·· · · · · · · · ·· · · ·· · ·· · · · ( 1 分) a1a11a= · · · · · · · ·· · ··· · · · · · · · · ·· ··· ·· ·· · · · · · · · ·· ·· ··· · · · · · · · · ··· ·· ·· · · · · · · · ·· ·· ·· · ·· · · · ( 1 分)a1= 1 .· · · · · · · · · · · · · · · · · · ·· · · · · · · · · · · · · · · · · · · ·· · · · · · · · · · · · · · · · · · · ·· · · · · · · · · · · · · · · · · · · ·· ( 1 分)一.选择题: (本大题共 6 题,满分 24 分) 1 . B ; 2. C ; 3. A;二.填空题: (本大题共 12 题,满分 48 分)51 7 . ; 8. x 2 ; 9. ; 5420. 解:由方程①得 y x 1 , ③·· ····· ·············· ············· ·················· ··· ( 1 分)将③代入②,得 2x 2 x (x 1) 20, ·········································· ( 1 分)整理,得 x 2 x 2 0,··· · ·· ·· ····· ··· ·· · ·· · ·· ··· ····· ··· ·· ··· ····· ··· · ···· · ······· ( 2 分)解得 x 1 2, x 2 1 ,··········· ··························· ····· ····· ················ ( 3分)分别将 x 1 2, x 2 1 代入③,得 y 1 3, y 2 0 , x 1 2, 所以,原方程组的解为y 1 3; 21. 解: ( 1 ) 过点 A 作 AE BC ,垂足为 E . · ····· ·············· ············· ·········· ( 1 分)在 Rt △ ABE 中,∵ B 60 , AB 8,∴ BE AB cosB 8 cos60 4,···············································( 1 分)AE AB sin B 8 sin 60 4 3 .················································ ( 1 分)∵ BC 12,∴ EC 8.·······························································( 1 分)( 2) 在梯形 ABCD 中,∵ AB DC , B 60 ,∴ DCB B 60 . ······································································· ( 1 分)过点 D 作 DF BC ,垂足为 F ,∵ DFC AEC 90 ,∴ AE// DF .∵ AD//BC ,∴四边形 AEFD 是平行四边形.∴ AD EF .···················· ( 1 分) 在 Rt △ DCF 中, FC DC cos DCF 8 cos60 4,··················· ( 1 分) 2 分)1 分) x 21, 在 Rt △ AEC 中, tan ACBAE 4 3 3 EC 8 21 分)∴ EF EC FC 4 ∴ AD 4AD BC 4 12∵ M 、N 分别是AB 、DC 的中点,∴MN8 ······· ( 2 分)2222 ( 1)20% ;············ ····· ····· ···························································· (2分)( 2)6;··················································································· (3分)( 3)35% ;··· ·· ··· ·· ··· ········ · ·· ·· · ···· ··· · ·· ·· · ·· ··· ···· · ··· ·· ········ ··· · · ··· · ···· ··· ( 2 分)( 4)5· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·· · · · · · · · · · · · · · · · · · · · · · ·· · · · · · · · · · · · · · · · · · ( 3 分)23 ( 1 )证明:OEF OFE ,∴OEOF ··································································· ( 1 分)∴E 为OB 的中点, F 为OC 的中点,∴OB 2OE ,OC2OF · ································ ·········· ( 1 分)∴OBOC ··································································· ( 1 分)∴A D,AOB DOC ,∴△ AOB≌△DOC · ································ ····················· ( 2分)ABDC ··································································· ( 1分)( 2)真;······················································································ (3分)假· · · · · · · · · ·· · ··· · · · · · ·· · ·· ··· ·· ·· · · · · · · · ·· ·· ··· · · · · · · · · ··· ·· ·· · · · · · · ··· ·· ·· · ·· · · · · · · · ·· ·· · ·· (3 分)24 解:( 1 )∵点 A 的坐标为(1, 0),点B 与点A关于原点对称,∴点B 的坐标为(1,0)································································ ( 1 分)∵直线y x b经过点B,∴ 1 b 0,得b 1·························· ( 1 分)∵点C 的坐标为(0, 4),直线CM //x轴,∴设点 D 的坐标为(x, 4)······ ( 1 分)∵直线y x 1 与直线CM 相交于点 D ,∴ x 3 ∴ D 的坐标为(3, 4)⋯( 1 分)( 2)∵ D 的坐标为(3,4),∴ OD 5·············································· ( 1 分)当PD OD 5 时,点P的坐标为(6,0);···································· (1分)当PO OD 5 时,点P的坐标为(5,0),····································· ( 1 分)当PO PD 时,设点P 的坐标为(x, 0)(x 0),2 2 25 25∴ x (x 3)242,得x ,∴点P 的坐标为(,0)· ·········· ( 1 分)66综上所述,所求点P 的坐标是(6, 0)、(5, 0)或(, 0)63)当以PD 为半径的圆P 与圆O外切时,若点P 的坐标为(6, 0),则圆P 的半径PD 5 ,圆心距PO 6,∴圆O的半径r 1···································································· (2分)若点P 的坐标为(5, 0),则圆P 的半径PD 2 5 ,圆心距PO 5,∴圆O的半径r 5 2 5························································· (2分)综上所述,所求圆O 的半径等于 1 或5 2 525 解:( 1)∵ AD//BC ,∴ ADB DBC∵ AD AB 2,∴ABD ADB ∴ DBC ABD∵ ABC 90 ∴ PBC 45················································ ( 1 分)PQ AD∵,AD AB ,点Q 与点B 重合,∴PB PQ PCPC AB∴ PCB PBC 45····························································· ( 1 分)∴ BPC 90········································································· ( 1 分)S APQ 2 x 2 x ,即 yS PBC 4 4函数的定义域是 0 ≤ x ≤ . ·· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ( 1 分)83) 过点 P 作 PM BC , PN 易得四边形 PNBM 为矩形,∴AB ,垂足分别为 M 、N .PN//BC , PM BN , MPN 在 Rt △ BPC 中, PC BC cosC 3 cos45322) 过点 P 作 PE BC ,PF∴ PFB FBE BEP∴ PF// BC , PE BF .2AB ,垂足分别为 E 、 F . · 90 .∴四边形FBEP 是矩形.1分) 1 分)AD // BC ,∴ PF // AD.∴ PF BF AD AB 3 AD , AB 2,∴2 PF3 PE 41 分)AQ AB QB 2 x , BC 3,∴2x 3S △APQ PF , S △PBCPE .22AD // BC ,∴ PN //AD .∴PN AD BN AB PN PM AD AB 2 分)90∵ MPN 90 ,∴ CPM QPM QPN QPM 即 QPC 90 .······················································PQ ADPN∵,∴PC AB PM 又∵PMC PNQ ∴ CPM QPN . PQ. ············ ····· ·············· ······· PC90 ,∴ Rt △ PCM ∽ Rt △ PQN .1分)1分)1分)1分)MPN 90 ,· · ··。

相关文档
最新文档