2012全国各地中考数学解析汇编--第09章 一元一次不等式与不等式组(已排版)

合集下载

2012年中考试题汇编 一元一次不等式(组)的应用

2012年中考试题汇编       一元一次不等式(组)的应用

专题13:一元一次不等式(组)的应用一、选择题1. 某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高【 B 】A.40% B.33.4% C.33.3% D.30%2. 已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是【 A 】A. B. C. D.3. 某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有【 B 】4. 篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计在2012—2013赛季全部32场比赛中最少得到48分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是【 A 】(A)2x(32x)--≥48 (C)2x(32x)+-≤48 (D)2x≥48 +-≥48 (B)2x(32x)5. 为庆祝“六·一”国际儿童节,龙沙区某小学组织师生共360人参加公园游园活动,有A、B两种型号客车可供租用,两种客车载客量分别为45人、30人,要求每辆车必须满载,则师生一次性全部到达公园的租车方案有【 C 】A.3种 B.4种 C.5种 D.6种二、填空题1. 某商品的售价是528元,商家出售一件这样的商品可获利润是进价的10%~20%,设进价为x元,则x的取值范围是440≤x≤480。

2. 如图,a,b,c三种物体的质量的大小关系是 a>b>c .3. 某饮料瓶上这样的字样:Eatable Date 18 months.如果用x(单位:月)表示EatableDate(保质期),那么该饮料的保质期可以用不等式表示为x≤18.三、解答题1. 某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票分A.B两类:A类年票每张100元,持票者每次进入公园无需再购买门票;B类年票每张50元,持票者进入公园时需再购买每次2元的门票.某游客一年中进入该公园至少要超过多少次时,购买A类年票最合算?。

人教版初中数学七年级下册第九章一元一次不等式(组)含参专题——有、无解问题课件(共12张PPT)

人教版初中数学七年级下册第九章一元一次不等式(组)含参专题——有、无解问题课件(共12张PPT)

问题反转,运用自如
问题3:如果不等式组
x x
2m 0 ① 有解,怎样确定
m 3②
m
的取值范围?
解不等式①得x≤2m 解不等式②得x≥3-m
自主操作:在数轴上画出有解的情况.
图⑧
自主分析:3-m和2m的大小关 系是?“=”能取?为什么.
2m 3-m 图⑨
3-m ≤ 2m
∴m的取值范围是:m ≥ 1
x x
2m 0 m3
你能确定不等式组的解集吗?请结合数轴分析.
析:由例题知两个不等式的解集分别为x<2m和x>3-m, 那么这两个解集在数轴上会有几种情况?
3-m
2m
图①
2m
3-m
图③
3-m 2m 图②
思考1:图①②③对应解集情况?
问题2:如果这个不等式组
x 2m 0 x m 3
无解,你能确定m
教学重点、难点
重点:
含参一元一次不等式组的分类解法.
难点:
1.一元一次不等式中字母参数的讨论, 2.一元一次不等式中运用数轴分析参数的范围.
温故知新,问题设疑
例1:解下列关于x两个不等式 (1)x-2m<0 (2)x+m>3
解:(1)得x<2m (2) 得x>3-m
问题引导,合作交流
问题1:如果将上述两个不等式联立成不等式组
x x
2m 0① m 3②
时,
不等式组无解,m的取值又会有改变吗?
解不等式①得x≤2m 解不等式②得x≥3-m
思考4:你能在数轴上画出无解的情况?
图⑥
2m 3-m 图⑦
同学们有没有画出图⑦这种情 况的?你认为不等式组无解, 会不会出现像图⑦3-m和2m两 个点重合的情况?

2012届中考数学一元一次不等式及其应用专题复习测试题及答案

2012届中考数学一元一次不等式及其应用专题复习测试题及答案

2012届中考数学一元一次不等式及其应用专题复习测试题及答案(备战中考)江苏省2012年中考数学深度复习讲义(教案+中考真题+模拟试题+单元测试)一元一次不等式及其应用◆知识讲解1.一元一次不等式的概念类似于一元一次方程,含有一个未知数,未知数的次数是1•的不等式叫做一元一次不等式. 2.不等式的解和解集不等式的解:与方程类似,我们可以把那些使不等式成立的未知数的值叫做不等式的解.不等式的解集:对于一个含有未知数的不等式,它的所有的解的集合叫做这个不等式的解集.它可以用最简单的不等式表示,也可以用数轴来表示. 3.不等式的性质性质1:不等式两边加上(或减去)同一个数(或式子),不等号的方向不变,即如a>b,那么a±c>b±c.性质2:不等式两边乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,c>0,那么ac>bc(或 > ).性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,即如果a>b,c<0,那么ac<bc(或 > ).不等式的其他性质:①若a>b,则b<a;②若a> b,b>c,则a>c;③若a≥b,且b≥a,•则a=b;④若a≤0,则a=0. 4.一元一次不等式的解法一元一次不等式的解法与一元一次方程的解法类似,•但要特别注意不等式的两边都乘以(或除以)同一个负数时,不等号要改变方向. 5.一元一次不等式的应用列一元一次不等式解实际应用问题,可类比列一元一次方程解应用问题的方法和技巧,不同的是,列不等式解应用题,寻求的是不等关系,因此,根据问题情境,抓住应用问题中“不等”关系的关键词语,或从题意中体会、感悟出不等关系十分重要. 6.解不等式组一般先分别求出不等式组中各个不等式的解集并表示在数轴上,再求出它们的公共部分,就得到不等式组的解集. 7.由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.不等式组(其中a<b)图示解集口诀x≥b 同大取大x≤a 同小取小a≤x≤b 大小、小大中间找空集小小、大大找不到 8.列一元一次不等式组解决实际问题是中考要考查的一个重要内容,在列不等式解决实际问题时,应掌握以下三个步骤:(1)•找出实际问题中的所有不等关系或相等关系(有时要通过不等式与方程综合来解决),设出未知数,列出不等式组(•或不等式与方程的混合组);(2)解不等式组;(3)从不等式组(或不等式与方程的混合组)•的解集中求出符合题意的答案.◆例题解析例1(2011浙江温州,23,12分)2011年5月20日是第22个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题. (1)求这份快餐中所含脂肪质量; (2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量; (3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.【答案】解:(1)400×5%=20.答:这份快餐中所含脂肪质量为20克. (2)设所含矿物质的质量为x克,由题意得:x+4x+20+400×40%=400,∴x=44,∴4x=176 答:所含蛋白质的质量为176克. (3)解法一:设所含矿物质的质量为y克,则所含碳水化合物的质量为(380-5y)克,∴4y+(380-5y)≤400×85%,∴y≥40,∴380-5y≤180,∴所含碳水化合物质量的最大值为180克.解法二:设所含矿物质的质量为而克,则n≥(1-85%-5%)×400 ∴n≥40,∴4n≥160,∴400×85%-4n≤180,∴所含碳水化合物质量的最大值为180克.例2若实数a<1,则实数M=a,N= ,P= 的大小关系为() A.P>N>MB.M>N>PC.N>P>MD.M>P>N 【分析】本题主要考查代数式大小的比较有两种方法:其一,由于选项是确定的,我们可以用特值法,取a>1内的任意值即可;其二,•用作差法和不等式的传递性可得M,N,P的关系.【解答】方法一:取a=2,则M=2,N= ,P= ,由此知M>P>N,应选D.方法二:由a>1知a-1>0.又M-P=a- = >0,∴M>P; P-N= - = >0,∴P>N.∴M>P>N,应选D.【点评】应用特值法来解题的条件是答案必须确定.如,当a>1时,A与2a-2•的大小关系不确定,当1<a<2时,当a>2a-2;当a=2时,a=2a-2;当a>2时,a<2a-2,因此,•此时a与2a-2的大小关系不能用特征法.例3(2011四川内江,加试6,12分)某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液晶显示器5台,共需要资金4120元. (1)每台电脑机箱、液晶显示器的进价各是多少元? (2)该经销商计划购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少? 【答案】(1)设每台电脑机箱的进价是x元,液晶显示器的进价是y元,得,解得答:每台电脑机箱的进价是60元,液晶显示器的进价是800元 (2)设购进电脑机箱z台,得,解得24≤x≤26 因x是整数,所以x=24,25,26 利润10x+160(50-x)=8000-150x,可见x越小利润就越大,故x=24时利润最大为4400元答:该经销商有3种进货方案:①进24台电脑机箱,26台液晶显示器;②进25台电脑机箱,25台液晶显示器;③进26台电脑机箱,24台液晶显示器。

2024–2025学年九年级数学讲义(北师大版)专题01 一元一次不等式与一元一次不等式组(解析版)

2024–2025学年九年级数学讲义(北师大版)专题01 一元一次不等式与一元一次不等式组(解析版)

专题01一元一次不等式与一元一次不等式组目录【考点一不等式的定义】..........................................................................................................................................2【考点二不等式的性质】..........................................................................................................................................3【考点三一元一次不等式的定义】..........................................................................................................................5【考点四根据一元一次不等式的解集求参数】......................................................................................................6【考点五求一元一次不等式的解集】......................................................................................................................7【考点六方程(组)与一元一次不等式结合求参数的问题】...................................................................................9【考点七一元一次不等式与一次函数】................................................................................................................11【考点八求一元一次不等式组的解集】................................................................................................................14【考点九利用一元一次不等式组的整数解求参数的取值范围】.......................................................................17【考点十根据一元一次不等式组的解集的情况求参数的取值范围】...............................................................19【考点十一方程与不等式(组)解决实际问题】................................................................................................20【过关检测】..............................................................................................................................................................261.不等式的概念><≥≤≠⎧⎪>≥≠⎧⎨⎨⎪<≤⎩⎩不等关系大于大于或等于不(1)概念:用不等号“”、“”、“”、“”、“”表示的式子;; 表示“”或“”小于不等于小于小于; 表;(2)常见不等号:; 表示“”或”不大于“或等于2.不等式的基本性质1;002;.3;.a b a b a ba b am bm m m a b a b a m m bm m m m mm ⎧⎪>⇒>⎪⎪>⇒±±>>><<⎨⎪⎪>⇒⎪⎩<(1)不等式的基本性质:(2)不等式的基本性质:且(3)不等式的基本性质:且3.一元一次不等式的解法(0);ax b a ⎧⎪⎪⎪⎨⎪⎪⎪⎩>≠(1)不等式的解:能使不等式成立的;(2)不等式的解集:一个含有未知数的不等式的,组成这个不等式的解集;(3)解不等式:求不等式解集的过程;(4)解一元一次不等式未知数的值所有解去分母去括号移项未知数的系的步骤:;;;化成两边同除以数.① ②③④⑤4.一元一次不等式组(1)(2),;;;(3)x a x x a x a x a x a a b x b x b x b x b x a b b ><<>⎧⎧⎧⎧>⎨⎨⎨⎨><>><⎩⎩<<<⎩⎩同一个未知数几个一元一次不等式公定义:关于的合在一起组成一个元一次不等式组;解集:各个不等式的解集的叫这个一元一次不等式组的解集; 设的解集的解集的解集的解集;解法:一般步骤求各不等式的;在表示各不等式解集; 共部分无解解 确集轴上定数 ①②③⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩各不等式解集的.公共部分5.列一元一次不等式(组)解实际问题的一般步骤:(1)审题;(2)设未知数,找不等量关系式;(3)设元,根据不等量关系式列不等式(组);(4)解不等式(组),检验并作答。

第9章+一元一次不等式组++重难点总结+++2023-2024学年人教版七年级数学下册

第9章+一元一次不等式组++重难点总结+++2023-2024学年人教版七年级数学下册

一元一次不等式组及其应用姓名:日期:教学目标:1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.教学重难点:求参数一、知识点讲解要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如,等都是一元一次不等式组. 要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上. (2)这几个一元一次不等式必须含有同一个未知数. 要点二、解一元一次不等式组 1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集. 要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的2562010x x ->⎧⎨-<⎩7021163159x x x ->⎧⎪+>⎨⎪+<⎩部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.二、考点讲解【考点1 解一元一次不等式组】【方法点拨】不等式组的解的求解过程:分别求出每个不等式的解、把两个不等式的解表示在同一数轴上、取公共部分作为不等式组的解(若没有公共部分则无解)。

2012中考数学试题及答案分类汇编:方程(组)和不等式(组)

2012中考数学试题及答案分类汇编:方程(组)和不等式(组)

2012中考数学试题及答案分类汇编:方程(组)和不等式(组)一、选择题1(山西省2分)分式方程1223x x =+的解为 A 、1x =- B 、1x = C 、2x = D 、 3x =【答案】B 。

【考点】解分式方程。

【分析】观察可得最简公分母是2x (x +3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解:方程的两边同乘2x (x +3),得x +3=4x ,解得x =1、检验:把x =1代入2x (x +3)=8≠0。

∴原方程的解为:x =1。

故选B 。

2.(山西省2分)“五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元、设该电器的成本价为x 元,根据题意,下面所列方程正确的是A 、(130%)80%2080x +⨯=B 、30%80%2080x ⋅⋅=C 、208030%80%x ⨯⨯=D 、30%208080%x ⋅=⨯【答案】A 。

【考点】由实际问题抽象出一元一次方程。

【分析】设该电器的成本价为x 元,根据按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元可列出方程:x (1+30%)×80%=2080。

故选A 。

3.(内蒙古巴彦淖尔、赤峰3分)不等式组⎩⎨⎧x+2>0 x -2≤0的解集在数轴上表示正确的是【答案】B 。

【考点】解一元一次不等式组,在数轴上表示不等式的解集。

【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。

解不等式组得到﹣2<x≤2。

不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集、有几个就要几个。

在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示。

2012版中考数学精品课件(含10-11真题)第9讲不等式与不等式组(54张)精选版.ppt

2012版中考数学精品课件(含10-11真题)第9讲不等式与不等式组(54张)精选版.ppt
精品
2012版中考数学复习指导
1.(2010·江西中考)不等式组 22x<x6>1的解集是( ) (A)x>-3 (B)x>3 (C)-3<x<3 (D)无解 【解析】选B.解-2x<6,得x>-3;解-2+x>1, 得x>3.因此原不等式组的解集是x>3.
精品
2012版中考数学复习指导
精品
2012版中考数学复习指导
不等式(组)的整数解 不等式(组)的整数解,包含在它的解集中,因此,解决 此类问题的关键是先求出不等式(组)的解集,然后,根据题 目条件的限制或实际意义的要求借助数轴确定其整数解.
精品
2012版中考数学复习指导
【例2】(2010·芜湖中考)求不等式组
2x 3x
精品
2012版中考数学复习指导
【例3】(2010·荆门中考)试确定实数a的取值范围,使不等

x 2
,并写出不等式组
的整数解.
5 2x 3 ①
【解析】

x
3
1

x 2
, ②
解不等式①得:x≥-1,解不等式②得:x<2,
所以不等式组的解集是-1≤x<2.
所以不等式组的整数解是-1,0,1.
精品
2012版中考数学复习指导
确定不等式(组)中的参数的取值范围(值)
1.已知的不等式组中含有参数m,可以先进行化简,求出不等 式组的解集,然后再与已知解集比较,求出m的取值范围. 2.当一元一次不等式组化简后解集中含有参数时,可以通过 比较已知解集列不等式或列方程来确定参数的取值范围或值. 3.确定不等式中某个参数的范围时,常常借助数轴,使数与形 有机地结合起来,是解决此类问题的关键.
2.命题热点以不等式(组)的解法及有关设计方案的优化 判断为主.

【中考数学】中考复习第9课时 一元一次不等式(组)及其应用

【中考数学】中考复习第9课时 一元一次不等式(组)及其应用

九年级数学讲学稿系列(北师大版 ) 中考复习第9课时 一元一次不等式(组)及其应用 课型 复习课主备人 审核人 九年级数学备课组 上课时间 3.141. 根据具体问题,了解不等式的意义,一元一次不等式(组)的定义。

2. 类比等式理解不等式的基本性质.3.会解数字系数的一元一次不等式,并能在数轴上表示出解集;会用数轴确定由两个一元一次不等式组成的不等式组的解集。

4.能根据具体的问题中的数量关系列出一元一次不等式,解决简单问题.重点:会解一元一次不等式(组).难点:一元一次不等式的实际应用.讲练结合建立一元一次不等式数学模型,培养学生数学运算的能力。

一、考点梳理:知识体系图引入,引发思考二、引入真题,深化理解考点一 不等式的基本性质【例1】已知x >y ,则下列不等式成立的是( )复习目标复习重难点考查重点必掌握哦!复习方法学科核心素养复习过程中考数学复习我记牢:温故知新、扎实基础----自己做、不放过 。

中考数学复习我记牢:扫除漏点、弱点是关键、用心钻研得高分! A. x −1<y −1B. 3x <3yC. −x <−yD. x 2<y 2 考点二 一元一次不等式的解法 【例2】解不等式x−54>5x+16-1,并把解集在数轴上表示出来.变式1: 1. 不等式4-x ≤2(3-x )的正整数解有( )A. 1个B. 2个C. 3个D. 无数个2.若不等式(m −2)x >1的解集是x <1m−2,则m 的取值范围是______.考点三 一元一次不等式组的解法【例3】解不等式组,并在数轴上表示出解集:(1){8x +5>9x +62x −1<7(2){2x−13−5x+12≤15x −1<3(x +1). 变式2: 1.如果不等式组{x >m x<7有解,那么m 的取值范围是( ) A. m >7 B. m ≥7 C. m <7 D. m ≤72.关于x 的不等式组{x −a >01−x >0只有3个整数解,则a 的取值范围是( ) A. −3≤a ≤−2B. −3≤a <−2C. −3<a ≤−2D. −3<a <−2考点四 一元一次不等式的应用 【例4】某校组织340名师生进行长途考察活动.带有行李170件,计划租用甲、乙两种型号的汽车共10辆.经了解,甲种车最多能载40人和16件行李,乙种车最多能载30人和20件行李.(1)请你帮助该学校设计所有可行的租车方案;(2)如果甲种车的租金为每辆2000元,乙种车的租金为每辆1800元,问哪种可行的方案使租车的费用最省钱.【考点】本题考查一元一次不等式组的应用,整数解等,解题的关键是学会利用不等式组,解决实际问题,属于中考常考题型.训练:考点帮典例5三、随堂检测:解一元一次不等式组。

一元一次不等式(组)知识总结及经典例题分析

一元一次不等式(组)知识总结及经典例题分析

二、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a <(x a >或 )x a x a ³£或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。

说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以或除以))同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321£---x x 解不等式: 解:去分母,得解:去分母,得 6)13(2)13£---x x ((不要漏乘!每一项都得乘) 去括号,得去括号,得去括号,得 62633£+--x x (注意符号,不要漏乘!)移移 项,得项,得项,得 23663-+£-x x (移项,每一项要变号;但符号不改变) 合并同类项,得合并同类项,得合并同类项,得 73£-x (计算要正确)系数化为系数化为1, 得 37-³x (同除负,不等号方向要改变,分子分母别颠倒了)三、一元一次不等式组含有同一个未知数的含有同一个未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。

一元一次不等式所组成的不等式组,叫做一元一次不等式组。

说明:判断一个不等式组是一元一次不等式组需满足两个条件:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、个、33个、个、44个或更多.个或更多.四、一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.一元一次不等式组的解集通常利用数轴来确定.五、不等式组解集的确定方法,可以归纳为以下四种类型(b a <) a a a a x <ax >a x ≤a x ≥a 一元一次不等式和不等式组【知识要点】一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。

2011-2012全国各中考数学试题分考点解析汇编 一元一次不等式(组)的应用

2011-2012全国各中考数学试题分考点解析汇编 一元一次不等式(组)的应用

2011-2012全国各中考数学试题分考点解析汇编一元一次不等式(组)的应用一、选择题1.(2011某某龙东五市3分)把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。

则共有学生A、4人B、5人C、6人D、5人或6人【答案】C。

【考点】一元一次不等式组的应用。

【分析】假设共有学生x人,根据题意,得不等式组,()()513383851x>xx>x⎧-++⎪⎨+-⎪⎩,解得:5<x<6.5。

故选C。

2.(2011某某某某3分)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打A、6折B、7折C、8折D、9折【答案】B。

【考点】一元一次不等式的应用。

【分析】设可打x折,则有1200x·0.1≥800(1+0.05),解之得x≥7。

故选B。

3.(2011某某省3分)如图,天平右盘中的每个砝码的质量都是1克,则物体A的质量m克的取值X围表示在数轴上为A B C D【答案】C。

【考点】一元一次不等式组的应用,在数轴上表示不等式的解集。

【分析】根据天平知2<m<3。

不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个。

在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示。

故选C。

二、填空题1.(2011某某东营4分)如图,用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入.铁钉所受的阻力也越来越大,当铁钉未进入木块部分长度足够时,每次钉入木块妁铁钉长度是前一次的13,已知这个铁钉被敲击3次后全部进入木块(木块足够厚).且第一次敲击后,铁钉进入木块的长度是a cm ,若铁钉总长度为6 cm ,则a的取值X 围是 ▲ 。

2012年中考试题159套精选一元一次不等式(组)

2012年中考试题159套精选一元一次不等式(组)

2012年全国中考数学试题分类解析汇编(159套63专题)专题12:一元一次不等式(组)一、选择题1. (2012上海市4分)不等式组2x6x20<>-⎧⎨-⎩的解集是【】A. x>﹣3 B.x<﹣3 C.x>2 D.x<2【答案】C。

【考点】解一元一次不等式组。

【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。

因此,由第一个不等式得:x>﹣3,由第二个不等式得:x>2。

∴不等式组的解集是x>2.故选C。

2. (2012广东广州3分)已知a>b,若c是任意实数,则下列不等式中总是成立的是【】A.a+c<b+c B.a﹣c>b﹣c C.ac<bc D.ac>bc【答案】B。

【考点】不等式的性质。

【分析】根据不等式的性质,应用排除法分别将个选项分析求解即可求得答案:A、∵a>b,c是任意实数,∴a+c>b+c,故本选项错误;B、∵a>b,c是任意实数,∴a﹣c>b﹣c,故本选项正确;C、当a>b,c<0时,ac<bc,而此题c是任意实数,故本选项错误;D、当a>b,c>0时,ac>bc,而此题c是任意实数,故本选项错误.故选B。

3. (2012浙江义乌3分)在x=﹣4,﹣1,0,3中,满足不等式组x22(x1)2<⎧⎨+>-⎩的x值是【】A.﹣4和0 B.﹣4和﹣1 C.0和3 D.﹣1和0 【答案】D。

【考点】解一元一次不等式组,不等式的解集。

【分析】解出不等式组,再检验所给四个数是否在不等式的解集的解集即可:由2(x +1)>-2得x >﹣2。

∴此不等式组的解集为:﹣2<x <2。

x=﹣4,﹣1,0,3中只有﹣1,0在﹣2<x <2内。

故选D 。

4. (2012江苏常州2分)已知a 、b 、c 、d 都是正实数,且a cb d<,给出下列四个不等式: ①a c a+b c+d <;②c a c+d a+b <;③d b c+d a+b <;④b d a+b c+d <。

2012年中考数学一轮复习精品讲义 不等式与不等式组 人教新课标版

2012年中考数学一轮复习精品讲义 不等式与不等式组 人教新课标版

第九章不等式与不等式组本章小结小结1 本章概述本章知识是在学习了一元一次方程(组)的基础上研究简单的不等关系的.教材首先通过具体实例建立不等式,探索不等式的基本性质,了解一般不等式的解、解集及解不等式的概念,然后具体研究了一元一次不等式的解、解集、一元一次不等式的解法以及一元一次不等式的简单应用等.通过具体实例渗透一元一次不等式与一元一次方程的内在联系.最后研究一元一次不等式组的解、解集、一元一次不等式组的解法以及一元一次不等式组的简单应用等.小结2 本章学习重难点【本章重点】能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质.会解简单的一元一次不等式,能在数轴上表示出不等式的解集,会解一元一次不等式组,并会用数轴确定其解集.能够根据具体问题中的不等关系,列出一元一次不等式或一元一次不等式组解决简单的问题【本章难点】能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质;会解简单的一元一次不等式,并能在数轴上表示出解集,会解由两个一元一次不等式组成的不等式组,并用数轴确定解集.能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组解决简单的实际问题.小结3 中考透视本章内容在中考中所占比重较大,直接考查不等式的基本性质.一元一次不等式(组)的解法,在数轴上表示不等式(组)的解集;间接考查将不等式(组)应用于二次根式、绝对值的化简与求值讨论、一元二次方程根的情况及求函数自变量的取值范围.以填空、选择形式为主,计算题形式也不少,其中应用不等式知识进行方案设计及比赛分析题目难度较大,不易得分.知识网络结构图专题总结及应用一、知识性专题专题1 不等式(组)的实际应用【专题解读】利用不等式(组)解决实际问题的步骤与列一元一次不等式解应用题的步骤类似,所不同的是,前者需寻求的不等关系往往不止一个,而后者只需找出一个不等关系即可.在列不等式(组)时,审题是基础,根据不等关系列出不等式组是关键.解出不等式组的解集后,要养成检验不等式的解集是否合理,是否符合实际情况的习惯.即审题→设一个未知数→找出题中所有的数量关系,列出不等式组→解不等式组→检验.例1 2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A种船票600元/张,B种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A,B两种船票共15张,要求A种船票的数量不少于B种船票数量的一半.若设购买A种船票x张,请你解答下列问题.(1)共有几种符合题意的购票方案?写出解答过程.(2)根据计算判断哪种购票方案更省钱.解: (1)由题意知购买B种船票(15-x)张.根据题意,得15,2 600120(15)5000.xxx x-⎧≥⎪⎨⎪+-≤⎩解得205.3x≤≤因为x为正整数,所以满足条件的x为5或6.所以共有两种购票方案.方案一:购买A种票5张,B种票10张.方案二:购买A种票6张,B种票9张.(2)方案一的购票费用为600×5+120×10=4200(元);方案二的购票费用为600×6+120×9=4680(元).因为4500元<4680元,所以方案一更省钱.【解题策略】运用不等式知识解决实际问题,关键是把实际问题的文字语言转化为数学符号语言.二、规律方法专题专题2 求一元一次不等式(组)的特殊值【专题解读】在此类问题中,一般给出一个一元一次不等式(组),然后在解集的范围内限制取值,解决的方法通常是先求出不等式(组)的解集,再由题意求出符合条件的数值.例2 求不等式12123x x+-≥的非负整数解.分析先解不等式,求出x的取值范围,在x的取值范围内找出非负整数解,求非负整数解时注意不要漏解.解:解不等式12123x x+-≥,得x≤5.所以不等式的非负整数解是5,4,3,2,1,0.【解题策略】此题不能忽略0的答案.专题3 一元一次不等式(组)中求参数的技巧【专题解读】由已知不等式(组)的解集或整数解来确定选定系数的值或待定系数的取值范围,常用的方法是先用解不等式(组)的方法解出含待定系数的不等式(组)的解集,再代入已给出的条件中,即可求出待定系数的值.例3 已知关于x的不等式组0,245x bx-≤⎧⎨-≥⎩的整数解共有3个,则b的取值范围是______.分析化简不等式组,得,4.5.x bx≤⎧⎨≥⎩如图9-59所示,将其表示在数轴上,其整数解有3个,即为x=5,6,7.由图可知7≤b<8.故填7≤b<8.例4 已知关于x的不等式(2-a)x>3的解集为32xa-<-,则a的取值范围是( )A.a>0B.a>2C.a<0D.a<2分析分析题中不等式解集的特点,结合不等式的性质3,可知2-a<0,即a>2.故选B.三、思想方法专题专题4 数形结合思想【专题解读】在解有关不等式的问题时,有些问题需要我们借助图形来给出解答.解决此类问题时,要充分利用图形反馈的信息,或将文字信息反馈到图形上,做到有数思形,有形思数,顺利解决问题.例5 关于x的不等式2x-a≤-1的解集如图9-60所示,则a的取值是()A.0B.-3C.-2D.-1分析由图9-60可以看出,不等式的解集为x≤-1,而由不等式2x-a≤-1,解得x≤12a-,所以12a-=-1,解这个方程,得a=-1.故选D.专题5 分类讨论思想【专题解读】在利用不等式(组)解决实际问题中的方案选择、优化设计以及最大利润等问题时,为了防止漏解和便于比较,我们常常用到分类讨论思想对方案的优劣进行探讨.例6某校准备组织290名学生进行野外考察活动,行李共有100件,学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案;(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,那么请你帮助学校选出最省钱的一种租车方案.分析本题考查利用不等式组设计方案并做出决策的问题.根据题中的不等关系可列出不等式组,解不等式组求出x的取值,从而解答本题.解:(1)设租用甲种汽车x辆,则租用乙种汽车(8-x)辆.根据题意得4030(8)290,1020(8)100,x xx x+-≥⎧⎨+-≥⎩解得5≤x≤6.因为x为整数,所以x=5或x=6.故有两种租车方案,方案一:租用甲种汽车5辆、乙种汽车3辆.方案二、租用甲种汽车6辆、乙种汽车2辆.(2)方案一的费用:5×2000+3×1800=15400(元).方案二的费用:6×2000+2×1800=15600(元).因为15400元<15600元,所以方案一最省钱.答:第一种租车方案更节省费用,即租用甲种汽车5辆、乙种汽车3辆.【解题策略】解答设计方案的问题时,要注意不等式组的解集必须符合实际问题的要求,不能把数学问题与实际问题相混淆.2011中考真题精选一、选择题1. (2011江苏无锡,2,3分)若a >b ,则( )A .a >﹣bB .a <﹣bC .﹣2a >﹣2bD .﹣2a <﹣2b考点:不等式的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(最新最全)2012年全国各地中考数学解析汇编(按章节考点整理) 第九章 一元一次不等式与不等式组(分4个考点精选67题)9.1 解一元一次不等式 1.(2012广州市,8, 3分)已知a >b,c 为任意实数,则下列不等式中总是成立的是( ) A. a+c <b+c B. a -c >b -c C. ac <bc D. ac >bc【解析】运用不等式的3个性质进行推理,A 、B 答案是不等式性质1的运用; C 、D 答案均是不等式性质2、3 的错误运用.【答案】根据不等式的性质1可知A 错误,B 是正确的,由不等式的性质2、3可知CD 不等号的方向要根据c 的符号确定,是错误的。

选B。

【点评】这类习题较为常规,不等式的性质1和2一般不会出现错误的运用,运用性质3务必注意不等号要改变方向.易错点:运用不等式的性质学生错误存在于忘记改变不等号的方向.2.(2012广州市,12, 3分)不等式x -1≤10的解集是 。

【解析】根据不等式的性质1可直接求解。

【答案】x ≤11。

【点评】本题主要查不等式的解法。

3.(2012四川省南充市,11,4分) 不等式x+2>6的解集为_________________. 【解析】移项解得x>4. 【答案】x>4【点评】将不等式中各项从一边移到另一边时要注意变号。

4.(2012浙江省衢州,11,4分)不等式2x -1>12x 的解是 .【解析】利用不等式的基本性质,将不等式移项得2x -12x >1,合并同类项得32x >1,系数化为1即可得解集.【答案】x >23【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变. 5.(2012连云港,19,3分)解不等式32x -1>2x,并把解集在数轴上表示出来。

10-1-2【解析】本题可先将方程移项,进行化简,最后得出x 的取值,然后在数轴上表示出来 【答案】解:32x -2x >1, 12-x >1,∴x <-2,表示在数轴上为:【点评】本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.6. (2012四川攀枝花,3,3分)下列说法中,错误..的是( ) A. 不等式2<x 的正整数解中有一个 B. 2-是不等式012<-x 的一个解C. 不等式93>-x 的解集是3->xD. 不等式10<x 的整数解有无数个【解析】解不等式、整数解。

不等式2<x 的正整数解为x=1;012<-x 的一个解为x<12,–2在这个解集中;x <10的整数解有无数个,包括无数个负整数解、零和1到9这9个正整数解。

【答案】C【点评】解不等式时,不等号的两边同时乘以或除以一个负数,不等号的方向要改变。

正整数包括1,2,3,……;整数包括正整数、零和负整数。

7. (2012浙江省嘉兴市,18,8分)解不等式2(x-1)-3<1,并把它的解在数轴上表示出来.【解析】根据题意,先解一元一次不等式,然后将不等式的解表示在数轴上. 【答案】2x -2-3<1,得x <3,图略.【点评】基础题.主要考查一元一次不等式的解法.在数轴上表示不等式的解时要注意两点:一是方向;二是空圈与实点的区别. 8.(2012贵州六盘水,3,3分)已知不等式10x -≥,此不等式的解集在数轴上表示为( ▲ )分析:根据在数轴上表示不等式解集的方法表示出不等式的解集x ≤2,再得出符合条件的选项即可.解答:解:不等式的解集10x -≥在数轴上表示为:故选C .点评:本题考查的是在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 9.(2012广东汕头,10,4分)不等式3x ﹣9>0的解集是 x >3 . 分析: 先移项,再将x 的系数化为1即可. 解答: 解:移项得,3x >9,系数化为1得,x >3. 故答案为:x >3.点评: 本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.【解析】利用不等式的基本性质,将不等式移项再合并同类项即可求得不等式的解集. 【答案】2x-1>x2x-x>1 x>1故答案为:x>1. 【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的步骤是解答此题的关键. 11.(2012广安,13,3分)不等式2x+9≥3(x+2)的正整数解是_________________. 【解析】确定一元一次不等式的正整数解问题,先解不等式,在结合正整数这一条件,对范围进行界定,找出正整数解的个数【答案】2x+9≥3(x+2),即是2x +9≥3x +6,解得:x ≤3,由于x 是正整数,因此只有正整数1,2,3符合条件【点评】确定不等式以及不等式组的正整数解问题,一般是结合不等式的解集,以及正整数概念缩小范围,找出正整数解或者是确定正整数解的个数.12. (2012湖北武汉,3,3分)在数轴上表示不等式x-1<0的解集,正确的是【 】A .B .C .D .【解析】首先解出不等式x-1<0得x <1,不含等号,空心点;小于,开口向左,选B 【答案】B .【点评】本题在于考察解不等式以及用数轴表示不等式的解集,用数轴表示不等式的解集,关键在于区分实心点与空心点以及开口方向,含等号的用实心点,不含等号用空心点,开口方向与不等号开口方向一致,难度低.13.(2012广东肇庆,16,6)解不等式:04)3(2>-+x ,并把解集在下列的数轴上(如【解析】在数轴上表示不等式的解集时要注意空心圈实心点的区别. 【答案】解:0462>-+x (1分) 22->x (3分)1->x (4分)(6分)【点评】本题考查一元一次不等式的解法,难度较小. 14.(2012呼和浩特,18,6分)(1)解不等式:5(x –2)+8<6(x –1)+7(2)若(1)中的不等式的最小整数解是方程2x –ax=3的解,求a 的值. 【解析】根据不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变。

(2)中根据(1)中的解集,得到最小整数解,并代入到方程中,解a 的值。

【答案】(1) 5(x –2)+8<6(x –1)+7 5x –10+8<6x –7+7 5x –2<6x+1 –x<3 x>–3(2) 由(1)得,最小整数解为x= –2 ∴2×(–2)–a ×(–2)=3∴72a =【点评】本题考查了解不等式的方法,一定要注意符号的变化,和不等号的变化情况。

根据得出的解集得出最小整数解,并把最小整数解代入到方程中解方程求a 的值。

15. (2012贵州贵阳,11,4分)不等式x-2≤0的解集是 . 【解析】解不等式即得x ≤2 【答案】x ≤2【点评】本题考查解一元一次不等式,关键是移项,属于容易题. 0 1 21 2 12图49.2 一元一次不等式的应用1.(2012浙江省湖州市,23,10分)为了进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙、丙三种树每棵的价格之比是2:2:3,甲种树每棵200元,现计划用210000元,购买这三种树共1000棵, (1)求乙、丙两种树每棵个多少元? (2)若购买甲种树的棵树是乙种树的2倍,且恰好用完计划资金,求三种树各购买多少棵? (3)若又增加了10120元的购树款,在购买总棵树不变的情况下,求丙种树最多可以购买多少棵? 【解析】(1)根据甲、乙、丙三种树每棵的价格之比是2:2:3,甲种树每棵200元,可求得乙、丙两种树的价格;(2)根据购买三种树的总费用为210000元,列方程求解;(3)根据购买三种树的总费用不大于(210000+10120)元,列不等式求解; 【答案】(1)∵甲、乙、丙三种树每棵的价格之比是2:2:3,甲种树每棵200元,∴乙种树每棵的价格200元,丙种树每棵的价格200×23=300元; (2)设购买乙种树x 棵,则购买甲种树2x 棵,购买丙种树(1000-3x )棵,∴200×2x+200×x+300(1000-3x)=210000.解得x=300,∴购买甲种树600棵, 购买乙种树300棵,购买丙种树100棵;(3)设若购买丙种树y 棵,则购买甲、乙两种树共(1000-y )棵,∴200(1000-y )+300y ≤210000+10120,解得y ≤201.2,∵y 为正整数,∴y=201. ∴丙种树最多可以购买201棵.【点评】本题考查的是一元一次方程和一元一次不等式的应用,根据题意: (1)购买三种树的总费用为210000元,列出一元一次方程;(2)购买三种树的总费用不大于(210000+10120)元,列出一元一次不等式求解,是解答此题的关键.2. (2012陕西 14,3分)小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买瓶甲饮料.【解析】设小宏能买x 瓶甲饮料,则买乙饮料()10-x 瓶.根据题意,得:()7+410-50x x ≤解得133x ≤所以小宏最多能买3瓶甲饮料. 【答案】3【点评】本题主要考查不等式(组)的应用.难度中等.3. (2012·湖北省恩施市,题号11 分值 3)某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市想要至少获得20%的利润,那么这种水果在进价的基础上至少提高( ) A .40% B .33.4% C .33.3% D .30%【解析】根据关系式:售价≥进价×(1+20%)进行计算.设超市购进大樱桃P 千克,每千克Q 元,售价应提高x%,则有P (1-10%)•Q (1+x%)≥PQ (1+20%),即(1-10%)(1+x%)≥1+20%,∴x%≥33.3%. 【答案】C【点评】本题采用了多元设法来解决问题,我们通常在解决实际问题的时候,通常可以借助多个参数参与到列式中来,这些参数只起到“辅助”作用,通常可以根据等式的性质约掉。

相关文档
最新文档