2017-2018学年度新人教版初中数学七年级下册期末教学质量检测及答案解析-精品试卷
人教版2018年七年级数学下学期期末数学试卷含答案解析
2017-2018学年下学期期末考试七年级数学试卷一、选择题(在每小题给出的四个选项中,只有一项符合题目要求,.每个小题3分,共30分)1.下列运算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a5D.(a3)2=a5【分析】根据合并同类项法则、同底数幂的乘法法则、积的乘方法则计算,判断即可.【解答】解:a3和a2不是同类项,不能合并,A错误;a3和a2不是同类项,不能合并,B错误;a3•a2=a5,C正确;(a3)2=a6,D错误,故选:C.【点评】本题考查的是合并同类项、同底数幂的乘法、积的乘方,掌握相关的运算法则是解题的关键.2.已知等腰三角形的一个角是100°,则它的顶角是()A.40°B.60°C.80°D.100°【分析】等腰三角形一内角为100°,没说明是顶角还是底角,所以要分两种情况讨论求解.【解答】解:(1)当100°角为顶角时,其顶角为100°;(2)当100°为底角时,100°×2>180°,不能构成三角形.故它的顶角是100°.故选:D.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;涉及到等腰三角形的角的计算,若没有明确哪个是底角哪个是顶角时,要分情况进行讨论.3.如图,计划把河水l引到水池A中,先作AB⊥l,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是()A.两点之间线段最短B.垂线段最短C.过一点只能作一条直线D.平面内,过一点有且只有一条直线与已知直线垂直【专题】线段、角、相交线与平行线.【分析】根据垂线段最短,可得答案.【解答】解:计划把河水l引到水池A中,先作AB⊥l,垂足为B,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是垂线段最短,故选:B.【点评】本题考查了垂线段的性质,利用了垂线段的性质.4.如果(x﹣2)(x+3)=x2+px+q,那么p、q的值为()A.p=5,q=6 B.p=1,q=﹣6 C.p=1,q=6 D.p=5,q=﹣6【专题】计算题.【分析】已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件求出p与q的值即可.【解答】解:∵(x-2)(x+3)=x2+x-6=x2+px+q,∴p=1,q=-6,故选:B.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.5.下列四个图形中,不能推出∠2与∠1相等的是()A. B.C.D.【分析】根据平行线的性质以及对顶角相等的性质进行判断.【解答】解:A、∵∠1和∠2互为对顶角,∴∠1=∠2,故本选项错误;B、∵a∥b,∴∠1+∠2=180°(两直线平行,同旁内角互补),不能判断∠1=∠2,故本选项正确;C、∵a∥b,∴∠1=∠2(两直线平行,内错角相等),故本选项错误;D、如图,∵a∥b,∴∠1=∠3(两直线平行,同位角相等),∵∠2=∠3(对顶角相等),∴∠1=∠2,故本选项错误;故选:B.【点评】本题考查了平行线的性质,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.6.下列多项式乘法中可以用平方差公式计算的是()A.(﹣a+b)(a﹣b)B.(x+2)(2+x) C.(+y)(y﹣)D.(x﹣2)(x+1)【专题】常规题型.【分析】根据平方差公式即可求出答案.【解答】解:(A)原式=-(a-b)(a-b)=-(a-b)2,故A不能用平方差公式;(B)原式=(x+2)2,故B不能用平方差公式;(D)原式=x2-x+1,故D不能用平方差公式;故选:C.【点评】本题考查平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.7.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是()A. B. C. D.【分析】根据题意出教室,离门口近,返回教室离门口远,在教室内距离不变,速快跑距离变化快,可得答案.【解答】解:根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B符合题意;故选:B.【点评】本题考查了函数图象,根据距离的变化描述函数是解题关键.8.如图,已知∠ABC=∠BAD.下列条件中,不能作为判定△ABC≌△BAD的条件的是()A.∠C=∠D B.∠BAC=∠ABD C.B C=AD D.A C=BD【专题】几何图形.【分析】已有条件∠ABC=∠BAD再有公共边AB=AB,然后结合所给选项分别进行分析即可.【解答】解:A、添加∠C=∠D时,可利用AAS判定△ABC≌△BAD,故此选项不符合题意;B、添加∠BAC=∠ABD,根据ASA判定△ABC≌△BAD,故此选项不符合题意;C、添加AB=DC,根据SAS能判定△ABC≌△BAD,故此选项不符合题意;D、添加AC=DB,不能判定△ABC≌△BAD,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.计算(x﹣2)x=1,则x的值是()A.3 B.1 C.0 D.3或0【专题】常规题型.【分析】直接利用零指数幂的性质以及有理数的乘方运算法则化简得出答案.【解答】解:∵(x-2)x=1,当x-2=1时,得x=3,原式可以化简为:13=1,当次数x=0时,原式可化简为(-2)0=1,当底数为-1时,次数为1,得幂为-1,故舍去.故选:D.【点评】此题主要考查了零指数幂的性质和有理数的乘方运算,正确掌握运算法则是解题关键.10.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是()A.28°B.34°C.46°D.56°【专题】线段、角、相交线与平行线.【分析】延长DC交AE于F,依据AB∥CD,∠BAE=87°,可得∠CFE=87°,再根据三角形外角性质,即可得到∠E=∠DCE-∠CFE.【解答】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=87°,∴∠CFE=87°,又∵∠DCE=121°,∴∠E=∠DCE-∠CFE=121°-87°=34°,故选:B.【点评】本题主要考查了平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.二、填空题(每题3分,共15分)11.如图,要使AD∥BF,则需要添加的条件是(写一个即可)【专题】线段、角、相交线与平行线.【分析】依据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,即可得到添加的条件.【解答】解:当∠A=∠EBC(或∠D=∠DCF或∠A+∠ABC=180°或∠D+∠BCD=180°)时,AD∥BF,故答案为:∠A=∠EBC(答案不唯一).【点评】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.12.某水库的水位在5小时内持续上涨,初始的水位高度为4米,水位以每小时0.2米的速度匀速上涨,则水库的水位y(米)与上涨时间x(小时)(0≤x≤5)之间的函数表达式为.【专题】函数及其图象.【分析】根据高度等于速度乘以时间列出关系式解答即可.【解答】解:根据题意可得:y=4+0.2x(0≤x≤5),故答案为:y=4+0.2x.【点评】此题考查函数关系式,关键是根据题中水位以每小时0.2米的速度匀速上升列出关系式.13.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,晓明同学在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AO=CO═AC;③AC⊥BD;其中,正确的结论有个.【专题】三角形.【分析】先证明△ABD与△CBD全等,再证明△AOD与△COD全等即可判断.【解答】解:在△ABD与△CBD中,∴AC⊥DB,故②③正确.故答案是:3.【点评】此题考查全等三角形的判定和性质,关键是根据SSS证明△ABD与△CBD全等和利用SAS证明△AOD与△COD全等.14.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为.【分析】根据白球个数除以小球总数进而得出得到白球的概率,进而得出答案.【解答】解:∵在一个不透明的盒子中装有8个白球,设黄球有x个,根据题意得出:解得:x=4.故答案为:4.【点评】此题主要考查了概率公式的应用,熟练利用概率公式是解题关键.15.如图,△ABC中,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,若∠DAE=28°,则∠BAC=°.【专题】三角形.【分析】想办法求出∠B+∠C的度数即可解决问题;【解答】解:∵AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,∴DA=DB,EA=EC,∴∠B=∠DAB,∠C=∠EACM∵∠B+∠C+∠BAC=180°,∠DAE=28°,∴2∠B+2∠C+∠DAE=180°,∴∠B+∠C=76°,∴∠BAC=180°-76°=104°.故答案为104.【点评】本题考查线段的垂直平分线的性质、三角形的内角和定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(共75分)16.(16分)(1)计算:﹣20+4﹣1×()﹣2(2)2016×2018﹣20172(3)(a+3)(a﹣1)﹣a(a﹣2)(4)[(a+2b)2﹣(a+2b)(a﹣2b)]÷4b【专题】常规题型.【分析】(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;(2)直接利用平方差公式计算得出答案;(3)直接利用多项式乘以多项式运算法则计算得出答案;(4)直接利用乘法公式计算,再利用整式的除法运算法则计算得出答案.16.解:(1)﹣20+4﹣1×()﹣2=﹣1+×4=﹣1+1=0;(2)2016×2018﹣20172=(2017﹣1)×(2017+1)﹣20172=20172﹣1﹣20172=﹣1;(3)(a+3)(a﹣1)﹣a(a﹣2)=a2+2a﹣3﹣a2+2a=4a﹣3;(4)[(a+2b)2﹣(a+2b)(a﹣2b)]÷4b=(a2+4ab+4b2﹣a2+4b2)÷4b=(4ab+8b2)÷4b=a+2b.【点评】此题主要考查了实数运算以及整式的混合运算,正确应用乘法公式是解题关键.17.(7分)先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣【专题】计算题;整式.【分析】先利用单项式乘多项式法则和完全平方公式去括号,再合并同类项即可化简原式,把a、b的值代入计算可得.【解答】解:原式=a2﹣3ab+a2+2ab+b2﹣a2+ab=a2+b2,当a=1、b=﹣时,原式=12+(﹣)2=1+=.【点评】此题考查了整式的混合运算-化简求值,涉及的知识有:单项式乘多项式,完全平方公式以及合并同类项法则,熟练掌握公式及法则是解本题的关键.18.(8分)如图,已知E是AB上的点,AD∥BC,AD平分∠EAC,试判定∠B与∠C的大小关系,并说明理由.【专题】线段、角、相交线与平行线.【分析】由AD∥BC,可得∠EAD=∠B,∠DAC=∠C,根据角平分线的定义,证得∠EAD=∠DAC,等量代换可得∠B与∠C的大小关系.【解答】解:∠B=∠C.理由如下:∵AD∥BC,∴∠EAD=∠B,∠DAC=∠C.∵AD平分∠EAC,∴∠EAD=∠DAC,∴∠B=∠C.【点评】本题考查的是平行线的性质以及角平分线的性质,解题时注意:两直线平行,同位角相等.19.(8分)如图,正方形网格中每个小正方形边长都是1.(1)画出△ABC关于直线l对称的图形△A1B1C1;(2)在直线l上找一点P,使PB=PC;(要求在直线l上标出点P的位置)(3)连接PA、PC,计算四边形PABC的面积.【分析】(1)根据网格结构找出点A、B、C对应点A1、B1、C1的位置,然后顺次连接即可;(2)过BC中点D作DP⊥BC交直线l于点P,使得PB=PC;(3)S四边形PABC=S△ABC+S△APC,代入数据求解即可.解:(1)所作图形如图所示:(2)如图所示,过BC中点D作DP⊥BC交直线l于点P,此时PB=PC;(3)S四边形PABC=S△ABC+S△APC=×5×2+×5×1=.【点评】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出点A、B、C的对应点,然后顺次连接.20.(6分)某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成20份),并规定:顾客每购物满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得50元、30元、20元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转盘,那么可直接获得10元的购物券.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?【分析】(1)找到红色、黄色或绿色区域的份数之和占总份数的多少即为获得购物券的概率.(2)应计算出转转盘所获得的购物券与直接获得10元的购物券相比较便可解答.【解答】解:(1)整个圆周被分成了20份,转动一次转盘获得购物券的有9种情况,所以转动一次转盘获得购物券的概率=;(2)根据题意得:转转盘所获得的购物券为:50×+30×+20×=12(元),∵12元>10元,∴选择转盘对顾客更合算.【点评】本题考查了概率公式的运用,易错点在于准确无误的找到红色、黄色或绿色区域的份数之和,关键是理解获胜的概率即为可能获胜的份数之和与总份数的比.21.(11分)小明家距离学校8千米,今天早晨小明骑车上学途中,自行车突然“爆胎”,恰好路边有便民服务点,几分钟后车修好了,他加快速度骑车到校.我们根据小明的这段经历画了一幅图象,该图描绘了小明行驶路程s与所用时间t之间的函数关系,请根据图象回答下列问题:(1)小明骑车行驶了千米时,自行车“爆胎”修车用了分钟.(2)修车后小明骑车的速度为每小时千米.(3)小明离家分钟距家6千米.(4)如果自行车未“爆胎”,小明一直按修车前速度行驶,那么他比实际情况早到或晚到多少分钟?【专题】函数及其图象.【分析】(1)通过图象上的点的坐标和与x轴之间的关系可知他在图中停留了5分钟;(2)利用图象得出速度即可;(3)实质是求当s=6时,t=24;解:(1)小明骑车行驶了3千米时,自行车“爆胎”修车用了5分钟.故答案为:3;5;(2)修车后小明骑车的速度为每小时千米.故答案为:20;(3)当s=6时,t=24,所以小明离家后24分钟距家6千米.故答案为:24;(4)当s=8时,先前速度需要分钟,30﹣=,即早到分钟;【点评】主要考查利用一次函数的模型解决实际问题的能力和读图能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解,并会根据图示得出所需要的信息.22.(8分)如图,△ABC中,∠ACB=90°,AC=BC,AE⊥CD于E,BD⊥CD于D,AE=5cm,BD=2cm,(1)求证:△AEC≌△CDB;(2)求DE的长.【分析】(1)利用等腰直角三角形的性质和已知条件易证△AEC≌△CDB;(2)根据全等三角形的性质可得AE=CD,CE=BD,所以DE可求出.【解答】解:(1)∵∠ACB=90°,∴∠ACE+∠DCB=90°,∵AE⊥CD于E,∴∠ACE+∠CAE=90°,∴∠CAE=∠DCB,∵BD⊥CD于D,∴∠D=90°,在△AEC和△CDB中,,∴△AEC≌△CDB(AAS);(2)∵∴△AEC≌△CDB,∴AE=CD=5cm,CE=BD=2cm,∴DE=CD﹣CE=3cm.【点评】本题考查了全等三角形的判定与性质以及等腰直角三角形的性质,解答本题的关键是根据已知条件判定三角形的全等.23.(11分)探索题:图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀分成四块小长方形,然后按图b的形状拼成一个正方形.(1)你认为图b中的影部分的正方形的边长等于.(2)请用两种不同的方法求图b中阴影部分的面积.方法1:;方法2:(3)观察图b,请你写出下列三个代数式之间的等量关系.代数式:(m+n)2,(m﹣n)2,mn,(4)根据(3)题中的等量关系,解决如下问题:若2a+2b=14,ab=5,则(a﹣b)2=.分析】(1)根据线段的和差定义即可解决问题;(2)①直接根据正方形的面积等于边长的平方计算;②利用分割法计算即可解决问题;(3)利用(2)中结论即可解决问题;(4)利用(3)中公式计算即可;【解答】解:(1)图b中的影部分的正方形的边长等于m-n.(2)方法1:(m-n)2;方法2:(m+n)2-4mn,(3)观察图b,(m+n)2,(m-n)2=(m-n)2+4mn,(4)∵2a+2b=14,ab=5,∴a+b=7,∴(a-b)2=(a+b)2-4ab=49-20=29.故答案为:m-n,(m-n)2,(m+n)2-4mn,29.【点评】本题考查完全平方公式的几何背景、正方形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.。
人教版2017-2018七年级下期末数学质量检测卷(有答案)
人教版2017—2018学年度第二学期期末调研测试七年级数学试题(全卷共五个大题满分150分考试时间120分钟)注:所有试题的答案必须答在答题卡上,不得在试卷上直接作答.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.方程20x=的解是A.2x=-B.0x=C.12x=-D.12x=2.以下四个标志中,是轴对称图形的是A.B.C.D.3.解方程组⎩⎨⎧=+=-②①,.102232yxyx时,由②-①得A.28y=B.48y=C.28y-=D.48y-=4.已知三角形两边的长分别是6和9,则这个三角形第三边的长可能为A.2B.3C.7D.165.一个一元一次不等式组的解集在数轴上表示如右图,则此不等式组的解集是A.x>3 B.x≥3 C.x>1 D.x≥6.将方程31221+=--xx去分母,得到的整式方程是A.()()12231+=--xx B.()()13226+=--xxC.()()12236+=--xx D.22636+=--xx7.在△ABC中,∠A∶∠B∶∠C=1∶2∶3,则△ABC的形状是A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形8.已知x m=是关于x的方程26x m+=的解,则m的值是A.-3 B.3 C.-2 D.25题图432-1 118题图B CP9.下列四组数中,是方程组20,21,32x y z x y z x y z ++=⎧⎪--=⎨⎪--=⎩的解是A .1,2,3.x y z =⎧⎪=-⎨⎪=⎩B .1,0,1.x y z =⎧⎪=⎨⎪=⎩C .0,1,0.x y z =⎧⎪=-⎨⎪=⎩D .0,1,2.x y z =⎧⎪=⎨⎪=-⎩10.将△ABC 沿BC 方向平移3个单位得△DEF .若 △ABC 的周长等于8,则四边形ABFD 的周长为A .14B .12C .10D .8 11.如图是由相同的花盆按一定的规律组成的正多边形图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…,则第8A .56B .64C .72D .90 12.如图,将△ABC 绕着点C 顺时针旋转50°后得到△A B C ''.若A ∠=40°,'B ∠=110°,则∠BCA '的度数为A .30°B .50°C .80°D .90°二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.在方程21x y -=中,当1x =-时,y = .14.一个正八边形的每个外角等于 度.15.如图,已知△ABC ≌△ADE ,若AB =7,AC =3,则BE 的值为 .16.不等式32>x 的最小整数解是 . 17.若不等式组0,0x b x a -<⎧⎨+>⎩的解集为23x <<,则关于x ,y 的方程组5,21ax y x by +=⎧⎨-=⎩的解为 .18.如图,长方形ABCD 中,AB =4,AD =2.点Q 与点P 同时从点A 出发,点Q 以每秒1个单位的速度沿A →D →C →B 的方向运动,点P以每秒3个单位的速度沿A →B →C →D 的方向运动,当P ,Q 两点 … A B E C D F10题图 12题图 C′ 15题图 D E A B C。
2017-2018年新人教版七年级下册数学期末试卷及答案
2017-2018新人教版七年级数学第二学期期末测试卷(附答案)一、精心挑选,小心有陷阱哟!(本大题共10小题,每小题3分,共30分.每小题四个选项中只有一个正确,请把正确选项的代号写在题后的括号内)1. 在平面直角坐标系中,点P (-3,4)位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是( )A .300名学生是总体B .每名学生是个体C .50名学生是所抽取的一个样本D .这个样本容量是503.导火线的燃烧速度为0.8cm /s ,爆破员点燃后跑开的速度为5m /s ,为了点火后能够跑到150m 外的安全地带,导火线的长度至少是( )A .22cmB .23cmC .24cmD .25cm 4.不等式组⎩⎨⎧+-ax x x <<5335的解集为4<x ,则a 满足的条件是( )A .4<aB .4=aC .4≤aD .4≥a5.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )A .1个B .2个C .3个D .4个 6.下列运动属于平移的是( )A .荡秋千B .地球绕着太阳转C .风筝在空中随风飘动D .急刹车时,汽车在地面上的滑动 7.一个正方形的面积是15,估计它的边长大小在( ) A .2与3之间B .3与4之间C .4与5之间D .5与6之间8.已知实数x ,y 满足()0122=++-y x ,则y x -等于( )A .3B .-3C .D .-19.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )A .(1,0)B .(-1,0)C .(-1,1)D .(1,-1)10.根据以下对话,可以求得嫒嫒所买的笔和笔记本的价格分别是( )嫒嫒,你上周买的笔和笔记本的价格是多少啊?哦,…,我忘了!只记得先后买了两次,第一次买了5支笔和10本笔记本共花了42元钱,第二次买了10支笔和5本笔记本共花了30元钱.A .0.8元/支,2.6元/本B .0.8元/支,3.6元/本C .1.2元/支,2.6元/本D .1.2元/支,3.6元/本二、细心填空,看谁又对又快哟!(本大题共5小题,每小题4分,共20分) 11.已知a 、b 为两个连续的整数,且a <11 <b ,则=+b a . 12.若()0232=++-n m ,则n m 2+的值是______.13.如图,已知a ∥b ,小亮把三角板的直角顶点放在直线b 上.若∠1=40°,则∠2的度数为 .14.某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人,对其到校方式进行调查,并将调查的结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有 人.15.设[)x 表示大于x 的最小整数,如[)43=,[)12.1-=-,则下列结论中正确的 是 . (填写所有正确结论的序号)①[)00=;②[)x x -的最小值是0;③[)x x -的最大值是0;④存在实数x ,使[)5.0=-x x 成立. 三、解答题(共50分)16.(4分) 解方程组⎩⎨⎧=-=+.1123,12y x y x17.(4分) 解不等式组:()20213 1.x x x ->⎧⎪⎨+-⎪⎩,≥并把解集在数轴上表示出来.18. (6分)如图所示,直线a 、b 被c 、d 所截,且c a ⊥,c b ⊥,170∠=°,求∠3的大小.19、(6分)某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是 ;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数是 .20.(2分) 在我国沿海地区,几乎每年夏秋两季都会或多或少地遭受台风的侵袭,加强台风的监测和预报,是减轻台风灾害的重要措施.下表是中央气象台2010年发布的第13号台风“鲇鱼”的有关信息:时 间台风中心位置 东 经 北 纬 2010年10月16日23时 129.5° 18.5°2010年10月17日23时124.5°18°请在下面的经纬度地图上找到台风中心在16日23时和17日23时所在的位置.21.(7分)今年春季我县大旱,导致大量农作物减产,下图是一对农民父子的对话内容,请根据对话内容分别求出该农户今年两块农田的产量分别是多少千克?22.(7分)丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?咱家两块农田去年花生产量一共是470千克,可老天不作美,四处大旱,今年两块农田只产花生57千克.今年,第一块田的产量比去年减产80%,第二块田的产量比去年减产90%.23.(8分)为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A 、B 、C 、D 分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面? (2)将图1中色素含量为B 的部分补充完整;(3)图2中的色素含量为D 的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?24.(6分)我们知道0=+b a 时,033=+b a 也成立,若将a 看成3a 的立方根,b 看成3b 的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立; (2)若321x -与353-x 互为相反数,求x -1的值.BAC七年级数学答案一、选择题:1 2 3 4 5 6 7 8 9 10 BDCDBDBAAD二、填空题:11.7;12.-1;13.︒50;14.216;15.④. 16.解:.112312⎩⎨⎧=-=+②①y x y x①+②,得4x =12,解得:x =3.(3分)将x =3代入①,得9-2y =11,解得y =-1.(3分) 所以方程组的解是⎩⎨⎧-==13y x .(2分)17.解:由20x ->,得 2.x >(2分)由()2131x x +-≥,得223 1.x x +-≥解得 3.x ≤(2分)∴不等式组的解集是2 3.x <≤(2分)在数轴上表示如下:(2分)18.解:∵c a ⊥,c b ⊥,∴a ∥b .(3分)∴∠1=∠2.(2分) 又∵∠2=∠3,∴∠3=∠1=700.(3分)19.解:(1)24人;(3分)(2)100;(2分)(3)360人.(3分) 20.答案:(没标注日期酌情扣分)21.解:设去年第一块田的花生产量为x 千克,第二块田的花生产量为y 千克,根据题意,得470(180%)(190%)57x y x y +=⎧⎨-+-=⎩解得 100370x y =⎧⎨=⎩100(180%)20⨯-=,370(190%)37⨯-=答:该农户今年第一块田的花生产量是20千克,第二块田的花生产量是37千克. (设未知数1分,列方程4分,解方程4分,答1分)22.解:设丁丁至少要答对x 道题,那么答错和不答的题目为(30-x )道.(1分)根据题意,得()100305>x x --.(4分)解这个不等式得6130>x .(3分)x 取最小整数,得22=x .(1分) 答:丁丁至少要答对22道题.(1分) 23.答案:(1)20袋;(3分) (2)图略;(3分) (3)5%;(3分)(4)10000×5%=500.(3分)24.答案:(1)∵2+(-2)=0,而且23=8,(-2)3=-8,有8-8=0,∴结论成立;∴即“若两个数的立方根互为相反数,则这两个数也互为相反数.”是成立的.(5分)(2)由(1)验证的结果知,1-2x+3x-5=0,∴x=4,∴1211-=-=-x。
17-18第二学期期末测试七年级数学答案
2017~2018学年度第二学期期末学业水平调研测试七年级数学及答案说明:1、本试卷共4页,共25小题,考试时间为100分钟,满分120分.2、考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己的考生号,并用2B 铅笔把对应号码的标号涂黑,在指定位置填写学校,姓名,试室号和座位号.3、选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.4、非选择题必须在指定区域内,用黑色字迹的签字笔或钢笔作答,如需改动,先划掉原来答案,然后再写上新答案;不准使用铅笔或涂改液,不按以上要求作答的答案无效.5、考生务必保持答题卡的整洁,不折叠答题卡,考试结束后,只交回答题卡.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选选项涂黑.1、如图,直线a ,b 与直线l 相交,则下列说法错误的是( ) A 、1∠与2∠互为对顶角 B 、1∠与3∠互为邻补角 C 、1∠与4∠是一对同旁内角 D 、2∠与4∠是一对内错角2、计算 4的值,结果是( )A 、2B 、-2C 、±2D 、2±3、在平面直角坐标系中,第二象限的点P 到x 轴的距离为3,到y 轴的距离为4,则点P 的坐标是( )A 、(3,4)B 、(-3,4)C 、(4,3)D 、(-4,3) 4、如图,点O 是直线AB 外的点,点C ,D 在AB 上,且AB OC ⊥,若5=OA ,4=OB ,2=OC ,3=OD ,则点O 到直线AB 的距离是( )A 、5B 、4C 、2D 、35、已知关于x ,y 的二元一次方程53=+y kx 有一组解为⎩⎨⎧==12y x ,则k 的值为( )A 、1B 、2C 、3D 、4lba 3 12 4第1题图OA第4题图BEAD第10题图OBEA CD 第14题图6、已知1-<a ,则下列不等式中,错误的是( ) A 、33-<a B 、33<-a C 、12<+a D 、32>-a7、经调查,某班同学上学所用的交通工具中,自行车占60%,公交车占30%,其它占10%,用扇形图描述以上统计数据,则公交车对应的扇形的圆心角的度数是( )A 、︒216B 、︒120C 、︒108D 、︒60 8、下列说法正确的是( )A 、无限小数都是无理数B 、无理数都是无限小数C 、带根号的数都是无理数D 、无理数能写成分数形式 9、下列说法错误的是( )A 、在同一平面内,过一点有且只有一条直线与已知直线垂直B 、连接直线外一点与直线上各点的所有线段中,垂线段最短C 、在同一平面内,不重合的两条直线互相平行D 、经过直线外一点,有且只有一条直线与这条直线平行10、如图,在三角形ABC 中,点D 是AB 上的点,由条件AC DE ⊥于点E ,DE ∥BC 得出的下列结论中,不正确的是( )A 、CDE BCD ∠=∠B 、︒=∠90ACBC 、B ADE ∠=∠D 、DCE BDC ∠=∠二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11、7-的相反数是 . 12、计算:=-+3)32( . 13、不等式1152<+x 的解集是 .14、如图,直线AB 与CD 相交于点O ,OA 平分COE ∠,若︒=∠30AOE ,则DOE ∠的度数是 .15、在直角坐标系中,线段CD 是由线段AB 平移得到,点A (-3,-2)的对应点为C (2,1),则点B (-1,2)的对应点D 的坐标是 .第18题图1PBAB A CD第18题图216、如图,8块相同的长方形地砖拼成一个长方形,则每块长方形地砖的面积是 2cm .答案:一、选择题 C A D C A B C B C D二、填空题 11、7 12、2 13、3<x 14、︒120 15、(4,5) 16、675 三、解答题(一)(本大题3小题,每小题6分,共18分) 17、计算:53325161643-+-+.34533534+=-++=(评分说明:计算364占1分,计算25161-,533-各占2分,答案正确占1分)18、画图题:(1)如图1,已知点P 是直线AB 外一点,用三角尺画图:过点P 作AB PM ⊥,垂足为M ; (2)如图2,已知直线AB 与CD ,请画出直线EF ,使EF 与直线AB 、CD 都相交,在所构成的八个角中,用数字表示其中的一对同位角.解:(1)评分说明:准确画出图形给3分,其中会过点P 作直线、用直角画出垂直线、标注垂足各占1分;(2)共3分.其中画出EF ,用数字表示同位角,写出结果各占1分.19、已知四个点的坐标,A (-3,-2),B (2,-2),C (3,1),D (-2,1). (1)在直角坐标系中描出A ,B ,C ,D 四个点;(2)连结AB 、CD ,写出线段AB ,CD 的位置关系和数量关系.解:(1)略 4分(准确描出一个点1分)(2)AB ∥CD,CD AB =; 6分(每个结论占1分)第16题图四、解答题(二)(本大题3小题,每小题7分,共21分) 20、解方程组:⎩⎨⎧=-=+112312y x y x .解:①+②得,124=x , 2分3=x , 3分把3=x 代入①得,123=+y ,1-=y , 6分∴这个方程组的解是⎩⎨⎧-==13y x . 7分或由①得,y x 21-=③, 1分 代入②得,112)21(3=--y y , 3分 解得1-=y , 4分 把1-=y 代入③得,3)1(21=-⨯-=x , 6分∴这个方程组的解是⎩⎨⎧-==13y x . 7分21、解不等式组:⎪⎩⎪⎨⎧-<--≥+-x x x x 6)1(31324,并求该不等式组的正整数解.解:不等式x x ≥+-324的解是2≤x , 2分 不等式x x -<--6)1(31的解是1->x , 4分 ∴不等式组的解是21≤<-x , 6分 ∴不等式组的正整数解是1,2. 7分22、某校为了解该校七年级同学对排球、篮球和足球三种球类运动项目的喜爱情况(每位同学必须且只须选择最喜爱的一种运动项目),进行了随机抽样调查,并将调查结果统计后,绘制成如下表和不完整的统计图表.(1)填空:=m ,=n ,=p ; (2)补全条形统计图;(3)若七年级学生总人数为900人,请你估计七年级学生喜爱足球运动项目的人数.解:(1)50=m ,14=n ,%20=p ; 3分 (2)略 5分 (3)900×20%=180(人) 7分五、解答题(三)(本大题3小题,每小题9分,共27分)23、某养牛场每天可用的饲料不超过1000kg ,原有30头大牛和15头小牛,1天要用饲料675kg ;一周后又购进12头大牛和5头小牛,这时1天要用饲料940kg .(1)求每头大牛和每头小牛1天各用饲料多少kg ?(2)一段时间后,大牛已全部上市出售,原来的小牛也长成大牛,需要再购进大牛和小牛若干头继续饲养.经测算,养牛场养牛数刚好80头,且尽量多养大牛将获得最大效益,问养牛场应购进多少头大牛和小牛才获得最大效益?解:(1)设每头大牛1天用饲料x kg ,每头小牛1天用饲料y kg , 1分依题意得,⎩⎨⎧=+=+94020426751530y x y x , 3分解得,⎩⎨⎧==520y x , 5分 答:每头大牛1天用饲料20kg ,每头小牛1天用饲料5kg ; 6分 (2)设最多购进m 头大牛,第24题图BA CD123依题意得,1000)60(5)20(20≤-++m m , 7分 解得,20≤m , 8分答:最多购进20头大牛,此时需购进40头小牛,使养牛数刚好80头牛并获得最大效益, 9分24、(1)在下面括号内,填上推理的根据,并完成下面的证明:如图,在四边形ABCD 中,BD 平分ABC ∠,31∠=∠.求证:AD ∥BC . 证明:∵BD 平分ABC ∠,∴21∠=∠( ), 又∵31∠=∠(已知),∴∠ ∠= ( ), ∴AD ∥BC ( );(2)请根据本题给出的图形举出反例,判定命题“相等的角是对顶角”是假命题;(3)命题“在四边形ABCD 中,AB ∥CD ,AD ∥BC ,那么C A ∠=∠”是真命题吗?如果是,写出推理过程(要求写出每一步的推理依据),如果不是,请举出反例.解:(1)分别填写:角平分线的定义、32∠=∠、等量代换、内错角相等,两直线平行 每个1分,共4分(2)BD 平分ABC ∠,21∠=∠,但它们不是对顶角, 5分 ∴命题“相等的角是对顶角”是假命题; 6分 (3)命题是真命题,证明如下: ∵AB ∥CD ,∴︒=∠+∠180C ABC (两直线平行,同旁内角互补), 7分 ∵AD ∥BC ,∴︒=∠+∠180A ABC (两直线平行,同旁内角互补), 8分 ∴C A ∠=∠(等角的补角相等). 9分 若证明过程正确给2分,但推理根据没有写或有写错的,全部扣1分25、如图,在直角坐标系中,点O 为坐标原点,直线AB 与两条坐标轴交于点A 、B ,OB OA <,过OB 的中点C 作直线CD 交AB 于点D ,使1∠=∠CDB ,过点D 作AB DE ⊥交x 轴于点E ,交y 轴于点F .已知直线AB 上的点的坐标是二元一次方程2443=+y x 的解.(1)写出点A 、B 、C 的坐标;(2)证明:OB CD ⊥(要求写出每一步的推理依据);(3)若点D 、E 的坐标都是方程734=-y x 的解,求四边形OADE 的面积. 解:(1)A (0,6),B (8,0),C (4,0); 3分 (2)∵OAB ∠=∠1(对顶角相等), 4分 又1∠=∠CDB (已知),∴CDB OAB ∠=∠(等量代换), ∴CD ∥y 轴(同位角相等,两直线平行), 5分 ∴︒=∠=∠90AOB DCB (两直线平行,同位角相等), ∴OB DC ⊥(垂直的定义); 6分 (3)由OB DC ⊥,得点D 的横坐标为4, 7分 ∴D (4,3),E (47,0), ∴425478=-=EB , 8分 ∴四边形OADE 的面积81173425216821=⨯⨯-⨯⨯=S . 9分。
新人教版2017-2018学年七年级(下)期末质量调研数学试卷
2017-2018学年七年级(下)期末质量调研数学试卷一、选择题(本大题共10小题,每小题4分,共40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的1.9的平方根是()A.3B.﹣3C.±3D.812.下列计算正确的是()A.2a3•a2=2a6B.(﹣a3)2=﹣a6C.a6÷a2=a3D.(2a)2=4a23.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00 000 000 034m,这个数用科学记数法表示正确的是()A.3.4×10﹣9B.0.34×10﹣9C.3.4×10﹣10D.3.4×10﹣114.若使分式有意义,则x的取值范围是()A.x≠2B.x≠﹣2C.x>﹣2D.x<25.不等式2x+3≥5的解集在数轴上表示正确的是()A.B.C.D.6.如图,在数轴上表示实数的点可能是()A.点P B.点Q C.点M D.点N7.下列多项式中,能用公式法分解因式的是()A.x2﹣xy B.x2+xy C.x2﹣y2D.x2+y28.化简(﹣)÷的结果是()A.﹣x﹣1B.﹣x+1C.﹣D.9.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°10.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长D.三种方案所用铁丝一样长二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:ab2﹣2a2b+a3=.12.分式方程=的解是.13.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(a+2b)、宽为(a+b)的大长方形,则共需要这三类卡片张.14.已知∠AOB和∠COD的两边分别互相垂直,且∠COD比∠AOB的3倍少60°,则∠COD的度数为三、(本大题共2小题,每小题8分,满分16分)15.化简:4(a﹣b)2﹣(2a+b)(﹣b+2a)16.先化简,再求值:(+a)÷,其中a=2.四、(本大题共2小题,每小题8分,满分16分)2-x>017.解不等式组并把它的解集在数轴上表示出来.18.如图,每个小正方形的边长都相等,三角形ABC的三个顶点都在格点(小正方形的顶点)上.(1)平移三角形ABC,使顶点A平移到点D的位置,得到三角形DEF,请在图中画出三角形DEF;(注:点B的对应点为点E)(2)若∠A=50°,则直线AC与直线DE相交所得锐角的度数为°,依据是.五、(本大题共2小题,每小题10分,满分20分)19.已知长方形和直角梯形相应边长(单位:cm)如图所示,且它们的面积相差3cm2,试求x的值.20.如图,直线CD与直线AB相交于C,根据下列语句画图(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.六、(本题满分12分)21.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?七、(本题满分12分)22.观察后填空①(x﹣1)(x+1)=x2﹣1②(x﹣1)(x2+x+1)=x3﹣1③(x﹣1)(x3+x2+x+1)=x4﹣1(1)填空:(x﹣1)(x99+x98+x97+…+x+1)=.(2)请利用上面的结论计算①(﹣2)50+(﹣2)49+(﹣2)48+…+(﹣2)+1②若x3+x2+x+1=0,求x2016的值.八、(本题满分14分)23.在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征.比如在学习“同底数幂的乘法法则”过程中,利用有理数的乘方概念和乘法结合律,可由“特殊”抽象概括出“一般”,具体如下22×23=25,23×24=27,22×26=28…→2m•2n=2m+n…→a m•a n=a m+n(m、n都是正整数)我们亦知:<,<,<,<…(1)请你根据上面的材料,用字母a、b、c归纳出a、b、c(a>b>0,c>0)之间的一个数学关系式.(2)请尝试说明(1)中关系式的正确性.(3)试用(1)中你归纳的数学关系式,解释下面生活中的一个现象:“若m克糖水里含有n克糖,再加入k克糖(仍不饱和),则糖水更甜了”参考答案1.C 2.D 3.C 4.A 5.D 6.C 7.C.8.A.9.B.10.D.11.解:ab2﹣2a2b+a3,=a(b2﹣2ab+a2),=a(a﹣b)2.12.解:去分母得:3x=2x+2,解得:x=2,经检验x=2是分式方程的解.答案为:x=2.13.解:长方形的面积为(a+2b)(a+b)=a2+ab+2ab+2b2=a2+3ab+2b2,1+3+2=6,故答案为:6.14.解:设∠AOB=x°,则∠COD=3x°﹣60°,分两种情况:①如图1,∵∠AOB和∠COD的两边分别互相垂直,∴∠COD=90°+90°﹣∠AOB,即3x﹣60=90+90﹣x,x=60°,∴∠COD=3×60°﹣60°=120°;②如图2,∵OA⊥OC,OB⊥OD,∴∠AOB+∠BOD=∠COD+∠AOC,x+90=3x﹣60+90,x=30°,∴∠COD=30°,综上所述,∠COD的度数为30°或120°,故答案为:30°或120°.15.解:原式=4(a2﹣2ab+b2)﹣(4a2﹣b2)=4a2﹣8ab+4b2﹣4a2+b2=5b2﹣8ab.16.解:原式=×=×=当a=2时,原式=3.17.解:解不等式①,得x<2.解不等式②,得x≥﹣1.所以,不等式组的解集是﹣1≤x<2.在数轴上表示:.18.解:(1)如图所示:△DEF,即为所求;(2)∵AC∥DF,∴∠A=∠ENC=50°,∴直线AC与直线DE相交所得锐角的度数为50°,依据是:两直线平行,同位角相等或两直线平行,内错角相等.答案为:50,两直线平行,同位角相等或两直线平行,内错角相等.19.解:S 长方形=(x ﹣2)(x +3)=x 2+x ﹣6;S 梯形=x (2x +1)=x 2+x ,当(x 2+x ﹣6)﹣(x 2+x )=3时,x =18;当(x 2+x )﹣(x 2+x ﹣6)=3时,x =6,则满足要求的x 的值为6或18.20.解:(1)如图所示:PQ 即为所求;(2)如图所示:PR 即为所求;(3)∠PQC =60°理由:∵PQ ∥CD ,∴∠DCB +∠PQC =180°,∵∠DCB =120°,∴∠PQC =180°﹣120°=60°.21.解:(1)设原计划每年绿化面积为x 万平方米,则实际每年绿化面积为1.6x 万平方米,根据题意,得﹣=4,解得:x =33.75,经检验x =33.75是原分式方程的解,则1.6x =1.6×33.75=54(万平方米).答:实际每年绿化面积为54万平方米;(2)设平均每年绿化面积增加a 万平方米,根据题意得54×3+2(54+a )≥360,解得:a≥45.答:则至少每年平均增加45万平方米.22.解:(1)由题意给出的规律可知:x100﹣1(2)①由给出的规律可知:(x﹣1)(x50+x49+……+x+1)=x51﹣1∴令x=﹣2,∴(﹣2)50+(﹣2)49+(﹣2)48+…+(﹣2)+1=,②∵x3+x2+x+1=0,∴(x﹣1)(x3+x2+x+1)=x4﹣1=0,∴x4=1,∴x2016=(x4)504=123.解:(1)<.(2)∵﹣==,∵a>b>0,c>0,∴a+c>0,b﹣a<0,∴<0,∴<.(3)∵原来糖水里含糖的质量分数为,加入k克糖后的糖水里含糖的质量分数为,由(1)可知:<,所以糖水更甜了.。
人教版2017-2018学年第二学期期末考试七年级数学测试卷及答案
2017-2018学年第二学期期末考试七年级数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是()A.沙漠B.体温C.时间D.骆驼2.两根长度分别为3cm、7cm的钢条,下面为第三根的长,则可组成一个三角形框架的是()A.3cmB.4cmC.7cmD.10cm3.计算2x2·(-3x3)的结果是()A.-6x3B.6x5C.-2x6D.2x64.如图,已知∠1=70°,如果CD//BE,那么∠B的度数为()A.100°B.70°C.120°D.110°E5.下列事件中是必然事件的是()A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上6.将数据0.0000025用科学记数法表示为()A.25×10-7B.0.25×10-8C.2.5×10-7D.2.5×10-8下列世界博览会会徽图案中是轴对称图形的是()7.A. B C. D.8.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()9.下列计算正确的是( )A.(ab )2=a 2b 2B.2(a +1)=2a +1C.a 2+a 3=a 6D.a 6÷a 2=a 310.如图,已知∠1=∠2,要说明△ABD ≌△ACD ,还需从下列条件中选一个,错误的选法是( ) A.∠ADB =∠ADC B.∠B =∠C C.DB =DC D.AB =ACC11.如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,CD 、BE 交于点P ,∠A =50°,则∠BPC 是( )A.150°B.130°C.120°D.100°BC12.若x 2+(m -3)x +16是完全平方式,则m 的值是( ) A.-5 B.11 C.-5或11 D.-11或5 13.如果等腰三角形两边长是6和3,那么它的周长是( ) A.15或12 B.9 C.12 D.1514.规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算,现有如下的运算法则:log a a n =n , log N M =log n M log n N (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log 105log 102,则log 1001000=( ) A.32 B.23C.2D.315.如图,四边形ABCD是边长为2cm的正方形,动点P在ABCD的边上沿A→B→C→D的路径以1cm/s的速度运动(点P不与A,D重合)。
2017-2018学年(下)七年级数学质量检测含答案
FEDCBA 2017-2018学年(下)七年级数学质量检测(试卷满分:150分 考试时间:120分) 准考证号 姓名 座位号注意事项:1.全卷三大题,27小题,试卷共4页,另有答题卡. 2.答案一律写在答题卡上,否则不能得分. 3.可直接用2B 铅笔画图.一、选择题(本大题共10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1. 下列数中,是无理数的是A. 0B. 71-C. 3D. 2 2. 下面4个图形中,∠1与∠2是对顶角的是A. B. C. D. 3.在平面直角坐标系中,点()1-2,P 在A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.下列调查中,适宜采用全面调查方式的是 A. 了解全国中学生的视力情况 B. 调查某批次日光灯的使用寿命 C. 调查市场上矿泉水的质量情况D. 调查机场乘坐飞机的旅客是否携带了违禁物品 5.下列说法错误..的是 A. 1的平方根是1 B. 0的平方根是0 C. 1的算术平方根是1 D. -1的立方根是-1 6.若a <b ,则下列结论中,不成立...的是 A. a +3<b +3 B. a -2>b -2 C. 12a <12b D . -2a >-2b7.如图1,下列条件能判定AD ∥BC 的是A. ∠C =∠CBEB. ∠C +∠ABC =180°C. ∠FDC =∠CD. ∠FDC =∠A8.下列命题中,是真命题的是A . 若b a >,则a >b B. 若a >b ,则b a >21212121图1C. 若b a =,则22b a =D. 若22b a =,则b a = 9.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木长为x 尺,绳子长为y 尺,则下列符合题意的方程组是A. ⎪⎩⎪⎨⎧+=+=1215.4x y x y B.⎪⎩⎪⎨⎧-=+=1215.4x y x y C. ⎪⎩⎪⎨⎧+=-=1215.4x y xy D. ⎪⎩⎪⎨⎧-=-=1215.4x y x y 10.关于x 的不等式组21111x x a-⎧⎨+⎩≤>恰好只有两个整数解,则a 的取值范围为A. 56a ≤<B. 56a <≤C. 6a 4≤<D. 46a <≤ 二、填空题(本大题有6小题,每小题4分,共24分) 11.计算:=-223 .12.小明一家三口随旅游团外出旅游,旅途的费用支出情况如图2所示. 若他们共支出了4000元,则在购物上支出了 元.13. 体育老师从七年级学生中抽取40名参加全校的健身操比赛. 这些学生身高(单位:cm )的最大值为175,最小值为155. 若取组距为3,则可以分成 组. 14. 如图3,已知BC AD ∥,38=∠C ,ADB ∠︰BDC ∠=1︰3, 则ADB ∠= °.15.已知212<m ,若2+m 是整数,则m = .16.已知点A (2,2),B (1,0),点C 在坐标轴上,且三角形ABC 的面积为2,请写出所有满足条件的点C 的坐标: . 三、解答题(本大题有11小题,共86分) 17.(本题满分7分) 解方程组⎩⎨⎧=+=-.22,1y x y x18.(本题满分7分) 解不等式组13,12).x x x +⎧⎨-+⎩≤<4(并把解集在数轴上表示出来.19. (本题满分7分)某校七年(1)班体育委员统计了全班同学60秒跳绳的次数,并绘制出如下频数分布表图3DCBA图2购物食宿30%路费45%图4FEDCBA结合图表完成下列问题:(1)a= ; (2)补全频数分布直方图.(3)若跳绳次数不少于140的学生成绩为优秀,则优秀的学生人数占全班总人数的百分之几?20.(本题满分7分)已知⎩⎨⎧==21y x 是二元一次方程a y x =+2的一个解.(1)a = ; (2)完成下表,并在所给的直角坐标系上描出表示21.(本题满分7分)完成下面的证明(在下面的括号内填上相应的结论或推理的依据): 如图4,∠BED =∠B +∠D . 求证:AB ∥CD .证明:过点E 作EF ∥AB (平行公理).∵EF ∥AB (已作),∴∠BEF=∠B ( ). ∵∠BED =∠B +∠D (已知),又∵∠BED =∠BEF +∠FED , ∴∠FED =( )(等量代换).∴EF ∥CD ( ). ∴AB ∥CD ( ). 22.(本题满分7分)厦门是全国著名的旅游城市,“厦门蓝”已经成为厦门一张亮丽的城市名片.去年厦门市空气质量在全国74个主要城市空气排名中,创下历史新高,排名第二,其中优(一级以上)的天数是202天.如果今年优的天数要超过全年天数(366天)的60%,那么今年空气质量优的天数至少要比去年增加多少?23.(本题满分7分) 如图5,点A (0,2),B (-3,1),C (-2,-2).三角形ABC 内任意一点P (x 0,y 0)经过平移后对应点为P 1(x 0+4,y 0-1), 将三角形ABC 作同样的平移得到三角形A 1B 1C 1;16141210 8 6 4 2跳绳次数(1)写出A 1的坐标; (2)画出三角形A 1B 1C 1.24.(本题满分7分)“六·一”国际儿童节期间,某文具商场举行促销活动,所有商品打相同的折扣.促销前,买6支签字笔和2本笔记本用了28元,买5支签字笔和1本笔记本用了20元.促销后,买5支签字笔和5本笔记本用了32元.请问该商场在这次促销活动中,商品打几折?25.(本题满分7分) 已知1,2x x ny m y ==⎧⎧⎨⎨==⎩⎩都是关于x ,y 的二元一次方程y x b =+的解,且224m n b b -=+-,求b 的值.26.(本题满分11分)如图6,AD ∥BC ,BE 平分∠ABC 交AD 于点E ,BD 平分∠EBC .(1)若∠DBC =30°,求∠A 的度数;(2)若点F 在线段AE 上,且7∠DBC -2∠ABF =180°,请问图6中是否存在与∠DFB 相等的角?若存在,请写出这个角,并说明理由;若不存在,请说明理由.27.(本题满分12分)如图7,在平面直角坐标系中,原点为O ,点A (0,3),B (2,3),C (2,-3),D (0,-3).点P ,Q 是长方形ABCD 边上的两个动点,BC 交x 轴于点M . 点P 从点O 出发以每秒1个单位长度沿O →A →B →M 的路线做匀速运动,同时点Q 也从点O 出发以每秒2个单位长度沿O →D →C →M 的路线做匀速运动. 当点Q运动到点M 时,两动点均停止运动.设运动的时间为t 秒,四边形OPMQ 的面积为S .(1)当t =2时,求S 的值;(2)若S <5时,求t 的取值范围.2017—2018学年(下)七年级质量检测数学参考答案F A B CD E 图6 图7x说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后续部分但未改变后继部分的测量目标,视影响的程度决定后继部分的给分,但原则上不超过后续部分应得分数的一半. 3.解答题评分时,给分或扣分均以1分为基本单位.二、 填空题(每空4分)11.22 12.1000 13. 7 14.35.5 15. -1,2,-2 (写出-1得2分,±2各得1分)16. (3,0) ,(-1,0), (0,2) , (0,-6) . (写对1个坐标得1分) 三、解答题17. 解:122x y x y -=⎧⎨+=⎩①②①+②,得3x =3, ………………………………2分 ∴x =1. ………………………………4分 把x =1代入①得1-y =1, …………………………… 5分 ∴y =0. ………………………………6分 所以原方程组的解为⎩⎨⎧==01y x …………………………… 7分图4FEDCBA18. 1312).x x x +⎧⎨-+⎩≤①<4(②解不等式①,得2≤x . ………………………………2分 解不等式②,得3->x . ………………………………4分 在数轴上正确表示解集. ………………………………6分 所以原不等式组的解集为 23-≤<x ……………………………7分19. 解:(1)a=2; ……………………………2分 (2)正确补全频数分布直方图. ……………………………4分 (3)全班人数=2+4+12+16+8+3=45人 ……………………………5分 优秀学生人数=16+8+3=27人 …………………………6分2760%45=答:优秀的学生人数占全班总人数的60%.………………………7分20.解:(1)a = 4; ………………2分(2)………………4分在平面直角坐标系中正确描点. ………………7分【备注】1.写对1个坐标,并正确描出该点给1分;2.写对2个坐标给1分;3.正确描出2个点给 1分. 21.证明:过点E 作EF ∥AB .∵EF ∥AB ,∴∠BEF=∠B ( 两直线平行,内错角相等). ………2分 ∵∠BED =∠B +∠D ,又∵∠BED =∠BEF +∠FED ,∴∠FED =( ∠D ) .………………4分 ∴EF ∥CD (内错角相等,两直线平行).………………5分∴AB ∥CD (如果两条直线都与第三条直线平行,那么这两条直线也互相平行). …7分【备注】最后一个依据,写成平行线的传递性不扣分.22.解:设今年空气质量优的天数要比去年增加x ,依题意得202+x >366⨯60% …………………3分 解得,x >17.6 …………………5分 由x 应为正整数,得x ≥18. …………………6分 答:今年空气质量优的天数至少要比去年增加18.…… 7分 【备注】用算术解法,能叙述清楚,按相应步骤给分. 23.解: A 1(4, 1) ……………………3分 画出正确三角形A 1 B 1 C 1………………7分【备注】三角形的三个顶点A 1(4, 1),B 1(1, 0),C 1(2, -3),在坐标系中描对每点给1分,连接成三角形A 1B 1C 1给1分.24. 解:设打折前每支签字笔x 元,每本笔记本 y 元,依题意得,⎩⎨⎧=+=+2052826y x y x ……………………3分 解得⎩⎨⎧==53y x ……………………5分∴5540x y += ……………………6分∴8.04032= 答:商场在这次促销活动中,商品打八折. ……………7分 25. 解:∵1,2x x ny m y ==⎧⎧⎨⎨==⎩⎩都是关于x ,y 的二元一次方程y x b =+的解, ∴⎩⎨⎧+=+=b n bm 21 …………………………………………2分∴12-=-b n m ………………………………………4分 又∵224m n b b -=+-∴22421b b b +-=-,………………………………5分化简得 23b = ………………………………6分∴b = ………………………………7分26.解:(1)∵BD 平分∠EBC ,∠DBC =30°,∴∠EBC=2∠DBC =60°.……………………1分 ∵BE 平分∠ABC,∴∠ABC=2∠EBC =120°.……………………2分 ∵AD ∥BC,∴∠A+∠ABC =180°.………………………3分 ∴∠A=60°. ……………………… 4分(2)存在∠DFB =∠DBF . …………………………5分设∠DBC =x °,则∠ABC=2∠ABE= (4x )°………………6分 ∵7∠DBC -2∠ABF =180°, ∴7x-2∠ABF =180°.∴∠ABF =)9027(-x °. ……………………………7分 ∴∠CBF =∠ABC -∠ABF =)9021(+x ° ; …………8分 ∠DBF =∠ABC -∠ABF -∠DBC=)2190(x -°. ……………9分∵AD ∥BC ,∴∠DFB +∠CBF=180°. ………………………………10分 ∴∠DFB =)2190(x -° ………………………………11分 ∴∠DFB =∠DBF .27.解:设三角形OPM 的面积为S 1,三角形OQM 的面积为S 2 ,则S =S 1 +S 2.(1)当t =2时,点P (0,2),Q (1,-3). …………2分 过点Q 作QE ⊥x 轴于点E .∴S 1=1122222OP OM ⨯=⨯⨯=. …………3分FABCDE图7xS 2=1132322QE OM ⨯=⨯⨯=. …………4分 ∴S =S 1 +S 2=5. ……………5分【备注】第一步,如果能在图上正确标出点P 、Q 的位置也给2分(以下类似步骤同).(2)设点P 运动的路程为t ,则点Q 运动的路程为2t .①当5.10≤<t 时,点P 在线段OA 上,点Q 在线段OD 上, 此时四边形OPMQ 不存在,不合题意,舍去. ②当5.25.1≤<t 时,点P 在线段OA 上,点Q 在线段DC 上. S=33221221+=⨯⨯+⨯t t………………………6分 ∵5<s ,∴53<+t ,解得2<t .此时25.1<<t . ………………………7分 ③当35.2≤<t 时,点P 在线段OA 上,点Q 在线段CM 上. S=t t t -=-⨯+⨯8)28(221221………………………8分 ∵5<s ,∴58<-t 解得3>t .此时t 不存在. ………………………9分 ④当43<<t 时,点P 在线段AB 上,点Q 在线段CM 上. S=t t 211)28(2213221-=-⨯+⨯⨯…………………10分 ∵5<s ,∴52-11<t 解得3>t此时43<<t . ……………………11分④当4=t 时,点P 是线段AB 的中点,点Q 与M 重合,两动点均停止运动。
人教版2017-2018学年七年级下期末数学试卷含答案解析
人教版2017-2018学年七年级下期末数学试卷含答案解析1. 下列说法正确的是()A. 有且只有一条直线垂直于已知直线B. 互补的两个角一定是邻补角C. -2的绝对值是-22. 已知是方程kx+y=3的一个解,那么k的值是()A. 7B. 1C. -13. 在-2,,,3.14,,,这6个数中,无理数共有()A. 4个B. 3个C. 2个4. 下列说法正确的是()A. 同位角相等B. 在同一平面内,如果a⊥b,b⊥c,则a⊥cC. 相等的角是对顶角5. 若x>y,则下列式子错误的是()A. x-3>y-3B. 3-x>3-yC. x+3>y+26. 下列各式中,是一元一次不等式的是()A. 5+4>8B. 2x-1C. 2x≤57. 如图的两个统计图,女生人数多的学校是()A. 甲校B. 乙校C. 甲、乙两校女生人数一样多8. 如果∠A与∠B的两边分别平行,∠A比∠B的3倍少36°,则∠A的度数是(A. 18°B. 126°C. 18°或126°16. 求符合下列各条件中的x的值。
(1)(x-4)^2=4解:(x-4)^2=4x-4=±2x=4±2x=6或2(2)(x+3)^2-9=0解:(x+3)^2-9=0(x+3-3)(x+3+3)=0(x+0)(x+6)=017. 解不等式组,并把解集在数轴上表示出来。
-3<x-1<2x+3解:-3<x-1,x-1<2x+3-2<x,-1<x<418. 若5a+1和a-19是数m的平方根,求m的值。
解:5a+1和a-19是数m的平方根,则m^2=5a+1,m^2=a-195a+1=a-19+m^24a+20=m^2(m-2)(m+10)=0m=2或m=-10由m^2=5a+1,得m=2,代入可得a=5。
19. 如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F。
2017-2018学年人教版七年级下数学整册综合检测卷(含答案)
2017-2018学年人教版七年级下数学期末检测卷一、选择题(共10小题,每题3分,共30分) 1.在平面直角坐标系中,点A (-2, 3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B 【解析】试题分析:利用平面直角坐标系知第一象限为(+,+),第二象限为(-,+)第三象限为(-,-)第四象限为(+,-).可知点A (-2, 3)在第二象限; 故选B.2.已知点A (m-1,m+4)在y 轴上,则点A 的坐标是( ) A .(0,3) B .(0,5) C .(5,0) D .(3,0) 【答案】B3.和数轴上的点一一对应的是( )A .整数B .有理数C .无理数D .实数 【答案】D 【解析】试题分析:数轴上的任意一点都可以表示一个实数,反之,任何一个实数都可以用数轴上的一个点来表示,因此,数轴上的点与实数是一一对应的; 故选D .4.在3.14,2917,,0.23,0.2020020002…这五个数中,既是正实数也是无理数的个数是( ) A .1 B .2 C .3 D .4 【答案】A 【解析】试题分析:根据实数的分类可得,正实数有:3.14,2917,0.23,0.2020020002…;无理数有:,0.2020020002….所以既是正实数也是无理数的是0.2020020002…. 故选A5.如图,AB ∥CD ,如果∠B =20°,那么∠C 为( )A.40°B.20°C.60°D.70°【答案】B6.如图所示,∠1=70°,有下列结论:①若∠2=70°,则AB∥CD;②若∠5=70°,则AB∥CD;③若∠3=110°,则AB∥CD;④若∠4=110°,则AB∥CD.其中正确的有()A.1个B.2个C.3个D.4个【答案】B7.某县有近6千名考生参加中考,为了解本次中考的数学成绩,从中抽取100名考生的数学成绩进行统计分析,以下说法正确的是()A.这100名考生是总体的一个样本B.近6千名考生是总体C.每位考生的数学成绩是个体D.100名学生是样本容量【答案】C8.方程组的解是()A.B.C.D.【答案】C.【解析】试题分析:,①﹣②得:3y=30,即y=10,将y=10代入①得:x+10=60,即x=50,则方程组的解为.故选C.9.为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x元,每副乒乓球拍为y元,列二元一次方程组得()A.506()320x yx y+=⎧⎨+=⎩B.50610320x yx y+=⎧⎨+=⎩C.506320x yx y+=⎧⎨+=⎩D.50106320x yx y+=⎧⎨+=⎩【答案】B10.不等式组5030xx-⎧⎨->⎩≤整数解的个数是()A.1个B.2个C.3个D.4个【答案】C.二、填空题(共10小题,每题3分,共30分)1.点P(-5,1),到x轴距离为__________.【答案】1【解析】试题分析:点P(-5,1),到x轴距离为1.2.如图,是象棋盘的一部分,若“帅”位于点(2,-1)上,“相”位于点(4,-1)上,则“炮”所在的点的坐标是。
新课标人教版2017-2018学年七年级(下)期末质量调研数学试卷附答案
2017-2018学年七年级(下)期末质量调研数学试卷一、选择题(本题共有10个小题,每小题3分,共30分.每小题给出的四个选项中,只有个是正确的)1.(3分)的算术平方根是()A.±B.﹣C.D.2.(3分)下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状3.(3分)下列各数是无理数的为()A.﹣9 B. C.4.121121112 D.4.(3分)如图,若象棋盘上建立直角坐标系,使“将”位于点(1,﹣2),“象”位于点(3,﹣2),那么“炮”位于点()A.(1,﹣1)B.(﹣1,1)C.(﹣1,2)D.(1,﹣2)5.(3分)如图,现有图1所示的长方形纸板360张和正方形纸板140张,制作图2所示的A,B两种长方体形状的无盖纸盒,刚好全部用完.问能制作A型盒子、B型盒子各多少个?若设能做成x个A型盒子,y个B型盒子,则依题意可列出方程组.如果设做A型盒子用了正方形纸板x张,做B型盒子用了正方形纸板y张,则以下列出的方程组中正确的为()A.B.C.D.6.(3分)不等式组的解集在数轴上表示正确的是()A.B.C. D.7.(3分)已知△ABC内任意一点P(a,b)经过平移后对应点P1(c,d),已知A(﹣3,2)在经过此次平移后对应点A1(4,﹣3),则a﹣b﹣c+d的值为()A.12 B.﹣12 C.2 D.﹣28.(3分)甲、乙两人同求方程ax﹣by=7的整数解,甲正确地求出一个解为,乙把ax﹣by=7看成ax﹣by=1,求得一个解为,则a,b的值分别为()A.B.C.D.9.(3分)如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F.∠F的度数为()A.120°B.135°C.150°D.不能确定10.(3分)如图,矩形BCDE的各边分别平行于x轴与y轴,物体甲和物体乙由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2018次相遇地点的坐标是()A.(1,﹣1)B.(2,0)C.(﹣1,1)D.(﹣1,﹣1)二、填空题(本题有6个小题,每小题3分,共18分)11.(3分)=.12.(3分)将一长方形纸条按如图所示折叠,∠2=55°,则∠1=.13.(3分)已知方程x m﹣3+y2﹣n=6是二元一次方程,则m﹣n=.14.(3分)某宾馆在重新装修后,准备在大厅的主楼梯上铺上红色地毯,已知这种红色地毯的售价为每平方米32元,主楼道宽2米,其侧面与正面如图所示,则购买地毯至少需要元.15.(3分)在平面直角坐标系中,对于不在坐标轴上的任意一点P (x,y),我们把点P′(,)称为点P的“倒影点”.若点A在x 轴的下方,且点A的“倒影点”A′与点A是同一个点,则点A的坐标为.16.(3分)对非负实数x“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果n﹣≤x<n+,则<x>=n.如:<0.48>=0,<3.5>=4.如果<2x﹣1>=3,则实数x的取值范围为,如果<x>=x,则x=.三、解答题(本题有9个小题,共72分)17.(6分)计算:+﹣(﹣1)2017.18.(6分)解方程组:.19.(6分)解不等式组:并把解集在数轴上表示出来.20.(8分)自从北京获得2008年夏季奥运会申办权以来,奥运知识在我国不断传播,小刚就本班学生的对奥运知识的了解程度进行了一次调查统计.A:熟悉,B:了解较多,C:一般了解.图1和图2是他采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)该班共有名学生;(2)在条形图中,将表示“一般了解”的部分补充完整;(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数为;(4)如果全年级共1000名同学,请你估算全年级对奥运知识“了解较多”的学生人数有名.21.(6分)如图,已知直线AB∥CD,直线MN分别交AB、CD于M、N两点,若ME、NF分别是∠AMN、∠DNM的角平分线,试说明:ME∥NF解:∵AB∥CD,(已知)∴∠AMN=∠DNM(两直线平行,内错角相等)∵ME、NF分别是∠AMN、∠DNM的角平分线,(已知)∴∠EMN=∠AMN,∠FNM=∠DNM (角平分线的定义)∴∠EMN=∠FNM(等量代换)∴ME∥NF(内错角相等,两直线平行)由此我们可以得出一个结论:两条平行线被第三条直线所截,一对内错角的平分线互相平行.22.(8分)如图,在平面直角坐标系中,已知点A(3,3),B(5,3).(1)在y轴的负方向上有一点C(如图),使得四边形AOCB的面积为18,求C点的坐标;(2)将△ABO先向上平移2个单位,再向左平移4个单位,得△A1B1O1①直接写出B1的坐标:B1()②求平移过程中线段OB扫过的面积.23.(8分)某市计划对A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.(1)问:改造一所A类学校的校舍和一所B类学校的校舍所需资金分别是多少万元?(2)该市决定首批先向A、B两类共8所学校提供改造资金,资金由国家和地方共同承担.若国家投入的资金不超过770万元,地方投入的资金不少于210万元,且地方决定投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出各种可供选择的方案.24.(12分)问题情境:在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1=x2,则AB∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB的长度为|x1﹣x2|;【应用】:(1)若点A(﹣1,1)、B(2,1),则AB∥x轴,AB的长度为(2)若点C(1,0),且CD∥y轴,且CD=2,则点D的坐标为.【拓展】:我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:图1中,点M(﹣1,1)与点N(1,﹣2)之间的折线距离为d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解决下列问题:(1)如图1,已知E(2,0),若F(﹣1,﹣2),则d(E,F);(2)如图2,已知E(2,0),H(1,t),若d(E,H)=3,则t=.(3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,则d(P,Q)=.25.(12分)如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限一点,CB⊥y轴,交y轴负半轴于B(0,b),且(a﹣3)2+|b+4|=0,S四边形AOBC=16.(1)求C点坐标;(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数.(3)如图3,当D点在线段OB上运动时,作DM⊥AD交BC于M 点,∠BMD、∠DAO的平分线交于N点,则D点在运动过程中,∠N 的大小是否变化?若不变,求出其值,若变化,说明理由.参考答案CBBBC CB8.解:把代入ax﹣by=7中得:a+b=7 ①,把代入ax﹣by=1中得:a﹣2b=1 ②,把①②组成方程组得:,解得:,选:B.9.解:∵∠1+∠2=90°,∴∠EAM+∠EDN=360°﹣90°=270°.∵∠EAM和∠EDN的平分线交于点F,∴∠EAF+∠EDF=×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠FAD+∠FDA=135°﹣90°=45°,∴∠F=180°﹣(∠FAD+∠FDA)=180﹣45°=135°.选:B.10.解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在A点相遇;此时甲乙回到原出发点,则每相遇三次,甲乙两物体回到出发点,∵2018÷3=672…2,∴两个物体运动后的第2018次相遇地点的是DE边相遇,且甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,此时相遇点的坐标为:(﹣1,﹣1),选:D.11.﹣4.12.70°.13.=3.14.512元.15.(1,﹣1),(﹣1,﹣1).16.≤x<,0,,.解:由<2x﹣1>=3可得.解不等式①,得:x≥,解不等式②,得:x<,∴≤x<;设x=k(k为非负整数),则x=k,根据题意可得:k﹣≤k<k+,即﹣2<k≤2,则k=0,1,2,x=0,,,答案为:≤x<;0,,.17.解:原式=3﹣4+1=0.18.解:②×3﹣①,得11y=22,解得y=2,将y=2代入①,得3x=3,解得x=1,原方程组的解为.19.解:∵解不等式①得:x<3,解不等式②得:x≥﹣2,∴不等式组的解集是﹣2≤x<3,在数轴上表示为.20.(1)40(3)108°;(4)有300名.解:(1)20÷50%=40名;(2)C组人数为40×20%=8名;如图:(3)B组所占圆心角为:360°×(1﹣50%﹣20%)=108°.(4)1000×30%=300名.21.解:∵AB∥CD,(已知),∴∠AMN=∠DNM(两直线平行,内错角相等),∵ME、NF分别是∠AMN、∠DNM的角平分线(已知),∴∠EMN=∠AMN,∠FNM=∠DNM(角平分线的定义),∴∠EMN=∠FNM(等量代换),∴ME∥NF(内错角相等,两直线平行),由此我们可以得出一个结论:两条平行线被第三条直线所截,一对内错角的平分线互相平行,答案为:两直线平行,内错角相等,,,内错角相等,两直线平行,内错,平行.22.①B1((1,5))解:(1)设点C的坐标为(0,﹣a),∵S=S△BCD﹣S△AOD=18,四边形AOCB∴×5×(a+3)﹣×3×3=18,解得:a=6,所以点C的坐标为(0,﹣6);(2)①如图所示,△A1B1O1即为所求,B1(1,5 );②线段OB扫过的面积=2×5+4×3=22.答案为:(1,5 ).23.解:(1)设改造一所A类学校的校舍需资金x万元,改造一所B 类学校的校舍所需资金y万元,则,解得;答:改造一所A类学校的校舍需资金90万元,改造一所B类学校的校舍所需资金130万元.(2)设A类学校应该有a所,则B类学校有(8﹣a)所,则,解得由①的a≤3,由②得a≥1,则1≤a≤3,即a=1,2,3.答:有3种改造方案.24.解:【应用】:(1)AB的长度为|﹣1﹣2|=3.答案为:3.(2)由CD∥y轴,可设点D的坐标为(1,m),∵CD=2,∴|0﹣m|=2,解得:m=±2,∴点D的坐标为(1,2)或(1,﹣2).答案为:(1,2)或(1,﹣2).【拓展】:(1)d(E,F)=|2﹣(﹣1)|+|0﹣(﹣2)|=5.答案为:=5.(2)∵E(2,0),H(1,t),d(E,H)=3,∴|2﹣1|+|0﹣t|=3,解得:t=±2.答案为:2或﹣2.(3)由点Q在x轴上,可设点Q的坐标为(x,0),∵三角形OPQ的面积为3,∴|x|×3=3,解得:x=±2.当点Q的坐标为(2,0)时,d(P,Q)=|3﹣2|+|3﹣0|=4;当点Q的坐标为(﹣2,0)时,d(P,Q)=|3﹣(﹣2)|+|3﹣0|=8.答案为:4或8.25.解:(1)∵(a﹣3)2+|b+4|=0,∴a﹣3=0,b+4=0,∴a=3,b=﹣4,∴A(3,0),B(0,﹣4),∴OA=3,OB=4,∵S=16.四边形AOBC∴(OA+BC)×OB=16,∴(3+BC)×4=16,∴BC=5,∵C是第四象限一点,CB⊥y轴,∴C(5,﹣4)(2)如图,延长CA,∵AF是∠CAE的角平分线,∴∠CAF=∠CAE,∵∠CAE=∠OAG,∴∠CAF=∠OAG,∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=∠ADO,∵DP是∠ODA的角平分线∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠PAG,∴∠PAG=∠ADP,∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°即:∠APD=90°(3)不变,∠ANM=45°理由:如图,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∵DM⊥AD,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM,∵NA是∠OAD的平分线,∴∠DAN=∠DAO=∠BDM,∵CB⊥y轴,∴∠BDM+∠BMD=90°,∴∠DAN=(90°﹣∠BMD),∵MN是∠BMD的角平分线,∴∠DMN=∠BMD,∴∠DAN+∠DMN=(90°﹣∠BMD)+∠BMD=45°在△DAM中,∠ADM=90°,∴∠DAM+∠DMA=90°,在△AMN中,∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)]=180°﹣(45°+90°)=45°,∴D点在运动过程中,∠N的大小不变,求出其值为45°。
2017-2018年人教版七年级下数学期末试卷(有答案)
初一年下学期期末质量检测数 学 试 题(满分:150分;考试时间:120分钟)一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答. 1.方程63-=x 的解是( )A .2-=xB .6-=xC .2=xD .12-=x 2.若a >b ,则下列结论正确的是( ).A.55-<-b aB. b a 33>C. b a +<+22D. 33ba < 3.下列图案既是中心对称图形,又是轴对称图形的是( )4.现有3cm 、4cm 、5cm 、7cm 长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是( ) A . 1B . 2C . 3D . 45.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购 其中某一种地砖镶嵌地面,可供选择的地砖共有( )A .1种B .2种C .3种D .4种6.一副三角板如图方式摆放,且∠1的度数比∠2的度数大50°,设1,2x y ︒︒∠=∠=,则可得方程组为( )50.180x y A x y =-⎧⎨+=⎩ 50.180x y B x y =+⎧⎨+=⎩ 50.90x y C x y =+⎧⎨+=⎩ 50.90x y D x y =-⎧⎨+=⎩7.已知,如图,△ABC 中,∠B =∠DAC ,则∠BAC 和∠ADC 的关系是( ) A .∠BAC <∠ADC B .∠BAC =∠ADC C . ∠BAC >∠ADCD . 不能确定二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8.若25x y -+=,则________=y (用含x 的式子表示). 9.一个n 边形的内角和是其外角和的2倍,则n = . 10.不等式93-x <0的最大整数....解是 .第6题图11.三元一次方程组⎪⎩⎪⎨⎧=+=+=+895x z z y y x 的解是 .12.如图,已知△ABC ≌△ADE ,若AB =7,AC =3,则BE 的值为 .13.如图,在△ABC 中,∠B =90°,AB =10.将△ABC 沿着BC 的方向平移至△DEF ,若平移的距离是3,则图中阴影部分的面积为 .14.如图,CD 、CE 分别是△ABC 的高和角平分线,∠A =30°,∠B =60°,则∠DCE = ______度.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了 道题.16.如图,将长方形ABCD 绕点A 顺时针旋转到长方形AB ′C ′D ′的位置,旋转角为α (90<<αo ),若∠1=110°,则α=______°.10米后向左转30°,再沿直线前进18.(9分)解方程:62221+-=--y y y 19.(9分)解不等式3315+≤-x x ,并把解集在数轴上表示出来.20.(9分)解方程组:⎩⎨⎧=+=-16323y x y x21.(9分)解不等式组: 338213(1)8x x x-⎧+≥⎪⎨⎪--<-⎩(注:必须通过画数轴求解集)22.(9分)如图,在△ABC 中,点D 是BC 边上的一点,∠B =50°,∠BAD =30°,将△ABD 沿AD 折叠得到△AED ,AE 与BC 交于点F .ADEA BCB第12题图第13题图第14题图第17题图(1)填空:∠AFC = 度; (2)求∠EDF 的度数.23.(9分)如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1; (2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2; (3)在直线m 上画一点P ,使得||2PC PA 的值最大.24.(9分)为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:⑴分割后的整个图形必须是轴对称图形;⑵四块图形形状相同;⑶四块图形面积相等.现已有两种不同的分法:⑴分别作两条对角线(如图中的图⑴);⑵过一条边的四等分点作这边的垂线段(图⑵)(图⑵中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图⑶、图⑷两个正方形中画出另外两种不同的分割方法.............(正确画图,不写画法)25.(13分)小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息: 营业员A :月销售件数200件,月总收入2400元; 营业员B :月销售件数300件,月总收入2700元;假设营业员的月基本工资为x 元,销售每件服装奖励y 元. (1)求x 、y 的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?26.(13分)在ABC ∆中,已知A α∠=.(1)如图1,ACB ABC ∠∠、的平分线相交于点D .①当70α=时,∠②BDC ∠α的代数式表示);(2)如图2,若ABC ∠的平分线与ACE ∠角平分线交于点F ,求BFC ∠的度数(用含α的代数式表示). (3)在(2)的条件下,将FBC ∆以直线BC 为对称轴翻折得到GBC ∆,GBC ∠的角平分线与GCB ∠的角平分线交于点M (如图3),求BMC ∠的度数(用含α的代数式表示).说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分. (二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面得分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确做完涉及应得的累计分数.一、选择题(每题3分,共21分)1.A2.B3.D4.C5.C6.C7.B 二、填空题(每题4分,共40分)8.52+x ;9.6;10.2; 11.⎪⎩⎪⎨⎧===632z y x ;12.4;13.30;14.15;15.5;16.20; 17.(1)11; (2)120.三、解答题:(89分) 18.(9分)解: 62221+-=--y y y )2(12)1(36+-=--y y y ………………3分BAC BAA图1图2212336--=+-y y y ………………5分 321236--=+-y y y74=y …………………………8分 47=y …………………………9分 19.(9分)解不等式3315+≤-x x ,并把解集在数轴上表示出来. 解:1335+≤-x x ……………………2分 42≤x ………………………4分 2≤x ………………………6分它在数轴上的表示(略)(数轴正确1分,实心及方向2分)………………9分 20.(9分)解方程组:⎩⎨⎧⋯⋯=+⋯⋯⋯⋯=-)()(2163213y x y x21.(9分)解:由(1)得13≥x ……………………3分由(2)得2->x ……………………6分在数轴上表示两个解集(略)………7分 所以原不等式组的解是:13≥x …………9分22.(9分)解:(1)110; ………………………………………… 3分 (2)解法一:∵∠B=50°,∠BAD=30°, ∴∠ADB=180°-50°-30°=100°, ……… 5分 ∵△AED 是由△ABD 折叠得到,∴∠ADE=∠ADB=100°, …………………… 7分方法一:用代入法解的得分步骤解:由(1)得 3+=y x (3)……3分 把(3)代入(2) 得1633(2=++y y ) 解得2=y ………6分把2=y 代入(3) 得5=x ……8分 所以原方程的解为⎩⎨⎧==25y x ……9分方法二:用加减法解的得分步骤解:由(2)-(1)×2得 105=y …………………4分 2=y ……………6分 把2=y 代入(1)得5=x ……………………8分 所以原方程的解为⎩⎨⎧==25y x ……9分ACDBF∴∠EDF=∠EDA+∠BDA-∠BDF=100°+100°-180°=20°. … 9分解法二:∵∠B=50°,∠BAD=30°,∴∠ADB=180°-50°-30°=100°, ……………………………………… 5分 ∵△AED 是由△ABD 折叠得到,∴∠ADE=∠ADB=100°, …………………………………………………… 6分 ∵∠ADF 是△ABD 的外角,∴∠ADF=∠BAD+∠B=50°+30°=80°,…………………………………… 7分 ∴∠EDF=∠ADE-∠ADF=100°-180°=20°. ……………………………… 9分(注:其它解法按步给分)23.(9分)解:作图如下:24.(9分)答案不惟一.(注:画对一个得5分,两个得9分)P(1)正确画出△A 1B 1C 1. ………………3分 (2)正确画出△A 2B 2C 2. ………………6分 (3)正确画出点P . ……………………9分∴m 最小为434答:他当月至少要卖434件.………………………………………………10分 (3)设一件甲为a 元,一件乙为b 元,一件丙为c 元,则⎩⎨⎧=++=++3703235023c b a c b a …………………………………………………………11分 将两等式相加得720444=++c b a 则180=++c b a答:购买一件甲、一件乙、一件丙共需180元.………………………………13分26.(13分)解:(1)①125;②α2190+;………………………………4分 (2)∵BF 和CF 分别平分ABC ∠和ACE ∠ ∴ABC FBC ∠=∠21,ACE FCE ∠=∠21……………5分 ∴FBC FCE BFC ∠-∠=∠……………………………6分 )(21ABC ACE ∠-∠= A ∠=21……………………………………………7分 即α21=∠BFC ………………………………………………8分(3)由轴对称性质知:α21=∠=∠BFC BGC ………………10分 由(1)②可得BGC BMC ∠+=∠2190………………12分 ∴α4190+=∠BMC .……………………………………13分。
新人教版2017-2018学年七年级(下)期末质量分析数学试卷
2017-2018学年七年级(下)期末质量分析数学试卷一、选择题(本大题共10小题,共30.0分)1.下列图形中,不是轴对称图形的是()A. B. C. D.2.用科学记数法表示:0.0000108是()A. 1.08×10−5B. 1.08×10−6C. 1.08×10−7D. 10.8×10−63.下列长度的三条线段能组成三角形的是()A. 2,3,5B. 7,4,2C. 3,4,8D. 3,3,44.下列事件是随机事件的是()A. 每周有7天B. 袋中有三个红球,摸出一个球一定是红球C. 任意购买一张车票,座位刚好靠窗口D. 在同一平面内,垂直于同一条直线的两条直线互相垂直5.在△ABC中,∠A=80∘,∠B=50∘,则∠C的余角是()A. 130∘B. 50∘C. 40∘D. 20∘6.计算(a−3)(−a+1)的结果是()A. −a2−2a+3B. −a2+4a−3C. −a2+4a+3D.a2−2a−37.如图所示,小明课本上的三角形被墨水污染了,他根据所学知识在另一张纸上画出了完全一样的一个三角形,他根据的定理是()A. SSSB. ASAC. AASD. SAS8.下列运算正确的是()A. x2⋅x5=x10B. (−x2)5=x10C. x5+x2=x7D.x5÷x2=x3(x≠0)9.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为()A. 1.5B. 2C. 3D. 410.甲、乙两人分别骑自行车和摩托车从A地到B地,两人所行驶的路程与时间的关系如图所示,下面的四个说法:①甲比乙早出发了3小时;②乙比甲早到3小时;③甲、乙的速度比是5:6;④乙出发2小时追上了甲.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)11.计算:a(x−4)2=______.x2−1,则当x=−2时,y的值为______.12.变量x与y之间的关系式为y=1213.如图,已知AB//CD,∠1=150∘,则∠2=______.14.如图,C、D点在BE上,∠1=∠2,BD=EC请补充一个条件:______,使△ABC≌△FED.15.盒中有6枚黑棋和n枚白棋,从中随机取一枚棋子,恰好是白棋的概率为1,则n的值4为______.16.如图,△ABE和△ACD是△ABC分别沿着AB、AC翻折而成的,若∠1=140∘,∠2=25∘,则∠α度数为______.三、计算题(本大题共1小题,共6.0分)17.计算:0.25×(−2)−2÷(16)−1−(π−3)0.四、解答题(本大题共8小题,共64.0分)18.先化简,再求值:(x+y)(x−y)−(4x3y−8xy3)÷2xy,其中x=−1,y=1.219.如图,已知△ABC.(1)用尺规作BC边的垂直平分线MN;(2)在(1)的条件下,设MN与BC交于点D,与AC交于点E,连结BE,若∠EBC=40∘,求∠C的度数.20.如图,已知AD//CE,∠1=∠2.(1)试说明AB//CD;(2)若点D为线段BE中点,试说明△ABD≌△CDE.21.一粒木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是年平的.将它从一定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下.由于棋子的两面不均“”(2)画出“兵”字面朝上的频率分布折线图;(3)如果实验继续进行下去,根据上表的数据,这个实验的频率将稳定在它的概率附近,请你估计这个概率是多少?22.文具店出售书包和文具盒,书包每个定价为30元,文具盒每个定价为5元.该店制定了两种优惠方案:①买一个书包赠送一个文具盒;②按总价的九折(总价的90%)付款.某班学生需购买8个书包、若干个文具盒(不少于8个),如果设文具盒个数为x(个),付款数为y(元).(1)分别求出两种优惠方案中y与x之间的关系式;(2)购买文具盒多少个时,两种方案付款相同?23.已知:在△ABC中,∠C=90∘,AC=6cm,BC=8cm.(1)如图1,若点B关于直线DE的对称点为点A,连接AD,试求△ACD的周长;(2)如图2,将直角边AC沿直线AM折叠,使点C恰好落在斜边AB上的点N,且BN=4cm,求CM的长.24.已知:如图,将边长分别为a和b的两个正方形拼在一起,B、C、G三点在同一直线上,连接BD和BF.(1)记图中的阴影部分的面积为S,请用两种方法求S(用含a,b的代数式表示);(2)若两正方形的边长满足a+b=10,ab=20,求(1)中S的值.25.如图,在△ABC中,∠BAD=∠DAC,DF⊥AB于点F,DM⊥AC于点M,AF=10cm,AC=14cm,已知动点E以2cm/s的速度从A点向F点运动,同时动点G以1cm/s的速度从C点向A点运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t.(1)CM=______;(2)求S△AED的值;S△DGC(3)在整个运动过程中,当t取何值时,△DFE与△DMG全等.参考答案DADCC BBDCB11 ax2−8ax+16a解:原式=a(x2−8x+16)=ax2−8ax+16a,12 1解:把x=−2代入y=12x2−1,得:y=12×(−2)2−1=1,13 30∘解:如图,∵∠1=150∘,∴∠3=180∘−∠1=180∘−150∘=30∘,∵AB//CD,∴∠2=∠3=30∘.14 AC=DF解:条件是AC=DF,理由是:∵BD=CE,∴BD−CD=CE−CD,∴BC=DE,在△ABC和△FED中,AC=DF∠1=∠2BC=DE,∴△ABC≌△FED(SAS),15 2解:由题意可得:n6+n =14,解得:n=2.16 80∘解:∵∠1=140∘,∠2=25∘,∴∠3=15∘,由折叠可得,∠2=∠EBA=25∘,∠3=∠ACD=15∘,∴∠EBC=50∘,∠BCD=30∘,∴由三角形外角性质可得,∠α=∠EBC+∠DCB=80∘,17 解:原式=0.25×14÷116−1=0.18 解:(x+y)(x−y)−(4x3y−8xy3)÷2xy =x2−y2−(2x2−4y2)=x2−y2−2x2+4y2=−x2+3y2,当x=−1,y=12时,原式=−(−1)2+3×(12)2=−1+34=−14.19 解:(1)如图所示:MN即为所求;(2)∵MN垂直平分BC,∴BE=EC,∴∠EBC=∠C,∵∠EBC=40∘,∴∠C=40∘.20 解:(1)∵AD//CE,∴∠ADC=∠2,∵∠1=∠2,∴∠ADC=∠1,∴AB//CD;(2)∵AD//CE,∴∠ADB=∠CED,∵D是BE中点,∴BD=DE,在△ABD和△CDE中,∠1=∠2∠ADB=∠CDEBD=DE∴△ABD≌△CDE(AAS).21 解:(1)所填数字为:40×0.45=18,66÷120=0.55;(2)折线图:(3)根据表中数据,试验频率为0.7,0.45,0.63,0.59,0.52,0.55,0.56,0.55稳定在0.55左右,故估计概率的大小为0.55.22 解:(1)方案①:y1=30×8+5(x−8)=200+5x;方案②:y2=(30×8+5x)×90%=216+4.5x;(2)由题意可得:y1=y2,即200+5x=216+4.5x,解得:x=32,23 解:(1)依题意,可得:DE垂直平分AB.∴BD=AD.∴△ACD的周长=AC+CD+AD=AC+CD+BD=AC+BC.∵AC=6cm,BC=8cm∴△ACD的周长=6+8=14cm.(2)由题意得:MN=CM,∠MNA=∠C=90∘,AN=AC=6cm.∵BN=4cm,∴AB=BN+AN=4+6=10cm.设CM=MN=xcm,则BM=BC−CM=(8−x)cm∵S△ABM=12BM⋅AC=12AB⋅MN,∴12(8−x)⋅6=12⋅10⋅x,解得:x=3,∴CM=3cm.24 解:(1)如图,连接BE,方法一:S=S△BDE+S△BEF=12BC×DE+12GF×EF=12a(a−b)+12b2=12a2−12ab+12b2;方法二:S=S正方形ABCD+S正方形CGFE−S△ABD−S△BGF=AB×BC+CG×GF−12AB×AD−12GF×BG=a2+b2−1a2−1b(a+b)=a2+b2−1a2−1ab−1b2=12a2−12ab+12b2.(2)因为S=12a2−12ab+12b2=12(a+b)2−32ab,而a+b=10、ab=20,所以S=12×102−32×20.25 4cm解:(1)∵∠BAD=∠DAC,DF⊥AB于点F,DM⊥AC于点M,AF=10cm,AC=14cm,∴AM=AF=10cm,∴CM=AC−AM=14−10=4cm;故答案为:4cm.(2)∵∠BAD=∠DAC,DF⊥AB,DM⊥AC∴DF=DM依题可得S△AED=12AE⋅DF,S△DGC=12CG⋅DM,∴S△AEDS△DGC =AECG,∵点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,∴AE=2t,CG=t.∴S△AEDS△DGC =AECG=2,(3)∵点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,当一个点到达终点时,另一个点随之停止运动,运动时间为t,而AC=14,AF=10,∴0≤t≤5.①当G点在线段CM上时,EF=AF−AE=10−2t,GM=CM−CG=4−t如果△DFE≌△DMG;那么必有EF=GM,∴10−2t=4−t解得t=6(由0≤t≤5可知不合题意,舍去)②当G点在线段AM上时,GM=CG−CM=t−4同理由△DFE≌△DMG可得EF=GM∴10−2t=t−4解得t=143<5综上所述,当t=143时,△DFE和△DMG全等.(1)根据由角平分线的性质可知AM=AF,进而解答即可;(2)由角平分线的性质可知DF=DM,所以△AED和△DEG的面积转化为底AE和CG的比值,根据路程=速度×时间求出AE和CG的长度即可得出S△AED=2S△DGC,进而解答即可.(3)分两种情况进行讨论:①当0<t<4时,②当4<t<5时,分别根据△DFE≌△DMG,得出EF=GM,据此列出关于t的方程,进行求解即可.本题考查了全等三角形的判定和性质、角平分线的性质、三角形的面积公式以及动点问题,解题的难点在于第二问中求运动的时间,此题容易漏解和错解.。
2017-2018学年度下学期七年级下册期末教学质量检测(二)数学试题(有答案)
⎨x - y = 1 ⎨2 y - z = 4 ⎨x - y = 1⎩ ⎩⎩⎨x + y = 3 2017-2018学年度第二学期七年级数学下册教学质量检测(二)一、选择题(本大题共 10 小题,每小题 3 分,共 30 分) 1. 下列方程组中属于二元一次方程组的是(▲)A . ⎧xy = 4 ⎩B . ⎧4x + y = 6⎩C . ⎧x + y = 6⎩ ⎧x - y = 3 D . ⎨x 2 + y 2= 132. 若 a > b ,则下列各式中正确的是(▲)A . -2a +1 < -2b +1B . a 2 > b 2C . -4a > -4bD . a - 1 < b - 15 5⎧ y = x - 7①3. 用代入法解方程组⎨2x - 3y = 1② 时,用①代入②得(▲)A . 2 - x (x - 7) = 1B . 2x -1 - 7 = 1C . 2x - 3(x - 7) = 1D . 2x - 3x - 7 = 14. 不等式2x - 3 ≤1的解集在数轴上表示正确的是(▲)A.B .C .D . ⎧4x + 7 y = -19①5. 已知二元一次方程组⎨4x - 5 y = 17② ,用方程①减去方程②,得(▲)A . 2 y = -2B . 2 y = -36C .12 y = -2D .12 y = -36 6. 下列说法正确的个数为(▲)(1)5 是不等式5 + x > 10 的一个解; (2) x = 6 是不等式 x - 5 > 0 的解集; (3) x ≥ 5 是不等式-x ≤ -5 的解集; (4)二元一次方程 x + 2 y = 9 有无数个解; (5)方程组⎧x - y = 5只有一个解; (6)不等式 x < 3 的整数解有无数个.⎩ A .5 B .4C .3D .2 7. 方程3x + y = 7 的正整数解的个数是(▲)A .1 个B .2 个C .3 个D .4 个⎨y - 5 =m⎨x +y = 2000⎨x = 2000 +y⎨x = 2000 +y⎩⎨y =4⎨y = 38.已知x,y 满足方程组⎧x+m = 4,则无论m 取何值,x,y 恒有关系式是(▲) ⎩A.x +y = 9B.x -y = 9C.x -y =-1D.x +y =19.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000 元钱,一种是年利率为2.75%的教育储蓄,另一种年利率为4.25%的一年定期存款,一年后可取出2126.75 元,设第一种方式存款为x 元,第二种方式存款为y 元,根据题意列出二元一次方程组为(▲)A.⎧2.75% x + 4.25% y = 2126.75⎩⎧⎪(1 + 2.75%)x +(1 + 4.25%)y = 2126.75 B.⎨⎪x +y = 2000C.⎧2.75% x + 4.25% y = 2126.75⎩D.⎧2.75% x + 4.25% y = 2126.75 - 2000⎩10.若实数a<1,则实数M=a,N =a + 2,P =2a +1的大小关系为(▲) 3 3A.P>N>M B.M>N>P C.N>P>M D.M>P>N 二、填空题(本大题共10 小题,每小题 2 分,共20 分)11.写一个解为⎧x =-5的二元一次方程组▲.⎩12.已知关于x,y 的二元一次方程x - 6 y=1,用含x 的式子表示y,得▲.13.如图,数轴上表示关于x 的不等式解集是▲.第13 题图14.⎧x =1是二元一次方程2x +ay = 3 的一个解,则a 的值为▲.⎩15.若解x 的不等式(a - 3)x < 3 -a 的解集为x>−1,则a 的取值范围▲.⎨x - y = 3m -1 ⎨2x = y - 416. 小东将一张长方形纸折过来,该角顶点 A 落在 F 处,BC 为折痕,如图所示,若 DB 平分∠FBE ,∠DBE 比∠CBA 小 30°,设∠CBA 和∠DBE 分别为 x °、y °,那么可求出这两个角的度数的方程组是 ▲ .第 16 题图第 18 题图17. 若关于 x ,y 的方程组⎧x + y = m + 1 ⎩的解满足 x >y ,则 m 的最小整数值为 ▲ .18. 如图,在大长方形中,嵌入六个相同的小长方形,设小长方形的长为 x ,宽为 y ,那么阴影部分的面积为 ▲ .2a - 3b = 13 a = 8.3 ⎧⎪2( x + 2) - 3( y -1) = 13若方程组⎨3a + 5b = 30.9 的解是⎨b = 1.2,则方程组⎨ 的解是 ▲ .⎪⎩3( x + 2) + 5( y -1) = 30.919. 如果关于 x 的不等式2x <a −5 的解都是不等式−2x >6 的解,那么 a 的取值范围是 ▲ .三、解答题(共 6 小题,共 50 分,第 21 题 8 分,第 22 题 8 分,第 23 题 6 分,第 24 题 9分,第 25 题 9 分,第 26 题 10 分) 21. 解方程组:(1) ⎧4x - 3 y = -2⎩+2 y = 2-3y =522. (1)解不等式: 6 - (x - 3) > 2x .(2)当 x 为怎样时,x 43与3x 12的差不大于 1.23. 笑一笑,想一想,算一算:小明:我今天买了苹果 8 袋,450 元.大明:吹牛!450 元的“苹果 8 代”一定是山寨货. 小明:是呀,就是长在山上的,而且是野生的! 大明:……小明:每袋苹果 5 千克,其中小苹果 10 元/千克,大苹果 15 元/千克,你知道我买了小苹果和大苹果分别为多少千克吗?根据对话内容,请你利用二元一次方程组的知识帮“二明”解决一下这个问题吧.⎩ ⎨a - b + 2c = -4 ⎧ 2∠α + ∠β = 235o如图,∠α 和∠þ的度数满足方程组 ⎨⎪∠β - ∠α = 70.(1) 求∠α 与∠β 的度数;(2) 如果 CD ∥EF ,判断 AB 与 CD 的位置关系,并说明理由; (3) 在(2)条件下如果 AC ⊥AE ,求∠C 的度数.24. 在平面直角坐标系中,O 为坐标原点,点 A 的坐标为(a ,−a ),点 B 坐标为(b ,c ),a ,b ,c 满足⎧3a + 2b + c = 8 .⎩(1) 若 a <0,判断点 A 在第几象限,并说明理由;(2) 若点 B 在 y 轴的左侧,求出 a 的取值范围;(3) 若点 D 的坐标为(2,−4),三角形 OAB 的面积是三角形 DAB 面积的 2 倍,求点 B 的坐标.25. 某果品公司急需将一批不易存放的水果从 A 市运到 B 市销售,现有三家运输公司可供选择,这三家运输公司提供的信息如下:解答下列问题:(1) 求 a 的值和 A 、B 两市之间的距离. (2) 乙公司的合计费用为 ▲元.(3) 这批水果在运输及包装与装卸的过程中损耗费用为 300 元/时,那么要使果品公司支付的总费用(合计费用及损耗费用之和)最少,应选择哪家公司?(4) 该果品公司仍运输这类水果从 A 市到 C 市,如果 A 、C 两市的距离为 S 千米,那么要使果品公司支付的总费用最少,应如何选择?⎩ ⎨x - y = ⎨y = ⎩ ⎩ 七年级数学教学质量检测(二)参考答案及评分建议一、选择题(每小题 3 分,共 30 分)二、填空题(每小题 2 分,共 20 分)11. x + y = -1等(答案不唯一)12. y =x 16y - x = 913.x <214. 1315.a <316. ⎧x + y = 90 ⎩17.118.4419. ⎧ x = 6.3 ⎩20. a ≤ -1三、解答题(本题 6 小题,第 21 题 8 分,第 22 题 8 分,第 23 题 6 分,第 24 题 9 分,第25 题 9 分,第 26 题 10 分,共 50 分)21.(1)②代入①,得 2(y -4) -3y =-2,y =-6,x =-5,⎧x = -5 ∴ ⎨y = -6(2)①-②×2,得 2y +6y =2-10,y =-1,x = 12,⎧x = 12 ∴ ⎨y = -122.(1)6-x +3>2x ,-x -2x >-9,-3x >-9,x <3. (2)x 43-3x 12≤ 1, 2x + 8 - 9x + 3 ≤ 6 , -7x ≤ -5 , x ≥57.⎨⎩ ⎩⎨a -b + 2c 23.设买了小苹果和大苹果分别为 x 千克,y 千克,则⎧x + y = 5⨯ 8⎩10x +15y = 450答:略⎧x = 30 ,解得⎨ y = 10α = 55︒24.(1) β = 125︒ ,(2)AB ∥CD ,过程略, (3)∠C =35°,过程略25.解:(1)点 A 在第二象限.理由如下:∵a <0,则-a >0, ∴点 A 在第二象限.(2) 解方程组⎧3a + 2b + c = 8用 a 表示 b ,c 得 c =-a ,b =4-a ,⎩∴点 B 的坐标为(4-a ,-a ). ∵点 B 到 y 轴左侧, ∴ 4-a <0,∴a >4.(3) ∵点 A 的坐标为(a ,-a ),点 B 的坐标为(4-a ,-a ), ∴ AB = 4 - 2a ,AB 与 x 轴平行.∵点 D 的坐标为(2,-4),三角形 OAB 的面积是三角形 DAB 面积的 2 倍, ∴点 A ,B 在 x 轴下方,即-a <0,a >0.依题意有1 ⨯ 4 - 2a ⨯ -a = 2 ⨯1⨯ 4 -2a ⨯ -4 +a ,即 -a = 2 a - 42 2当 a =2(a -4)时,解得 a =8, ∴4-a =-4,∴点 B 坐标为(-4,-8);当 a =-2(a -4)时,解得a = 83,∴ 4 - a = 4,3 ∴点 B 坐标为(43,- 83).综上所述,点 B 坐标为(-4,-8)或(43,- 83)⎨ ⎩26.(1)设 A ,B 两市之间相距 S 千米⎧⎪6S + a = 4500 ⎪⎩10S + (a - 800) = 5700 ⎧a = 1500 解得⎨S = 500 (2)8×500+1000=5000 (元)(3)甲公司: 4500 +50060+ 4)⨯ 300 = 8200 (元) 乙公司: 5000 +50050+ 2)⨯ 300 = 8600 (元)丙公司: 5700 +500100+ 3)⨯ 300 = 8100 (元) 丙公司的费用最便宜.(4) 设选择三家运输公司所需的总费用分别为 y 1,y 2,y 3,由于三家运输公司包装装卸及运输所需的时间分别为:甲公司 s 60+4)乙公司 s 2 ) h ,丙公司 s + 3) h ,∴ y 1= 6s +1500 +s +4))⨯ 300 = 11s + 2700∴y 2=8s +1000+ s2 )14s +1600∴y = 10s + 700 +s+ 3)⨯ 300 = 13s +1600 .3 100 ⎪∵s>0,∴y2>y3恒成立.∴只要比较y1与y3的大小.y1-y3=-2s+1100,解方程:2S+1100=0,S=550①当s<550(km)时,y1>y3,又∵y2>y3,∴此时选丙公司较好.②当s=550(km)时,y2>y1=y3,此时选择甲公司或丙公司较好.③当s>550(km)时,y2>y3>y1,此时选择甲公司较好.。
新课标人教版2017-2018学年七年级(下)期末学期分析数学试卷附答案
2017-2018学年七年级(下)期末学期分析数学试卷一、选择题:(每小题3分,共36分)1.(3分)下列各数中,,﹣,,﹣π,,﹣0.1010010001,无理数有()A.2个B.3个C.4个D.5个2.(3分)在平面直角坐标系中,点P(﹣2,﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)如图,直线a,b被直线c所截,与∠1是同位角的角是()A.∠2 B.∠3 C.∠4 D.∠54.(3分)方程组的解是()A.B.C.D.5.(3分)如果a>b,m<0,那么下列不等式中成立的是()A.am>bm B.C.a+m>b+m D.﹣a+m>﹣b+m.6.(3分)下列调查中,调查方式选择合理的是()A.调查你所在班级同学的身高,采用抽样调查方式B.调查市场上某品牌电脑的使用寿命,采用普查的方式C.调查嘉陵江的水质情况,采用抽样调查的方式D.要了解全国初中学生的业余爱好,采用普查的方式7.(3分)如图,已知:AB∥CD,AE平分∠BAC交CD于E,若∠C=110°,则∠CAE的度数为()A.70°B.35°C.30° D.45°8.(3分)2﹣的相反数是()A.﹣2﹣B.2﹣C.﹣2 D.2+9.(3分)将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A.(﹣2,1)B.(﹣2,﹣1)C.(2,1)D.(2,﹣1)10.(3分)如图,不等式组的解集在数轴上表示正确的是()A.B.C.D.11.(3分)收集某班50名同学的身高根据相应数据绘制的频数分布直方图中各小长开的高比为2:3:4:1,那么第二组的频数是()A.10 B.20 C.15 D.512.(3分)某校春季运动会比赛中,八年级(1)班、(5)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(5)班得分比为6:5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x分,(5)班得y分,根据题意所列的方程组应为()A.B.C.D.二、填空题:(每小题3分,共18分)13.(3分)9的算术平方根是.14.(3分)如图,AC⊥BC,AC=6,BC=8,AB=10,则点C到线段AB 的距离是.15.(3分)已知直线m∥n,将一块含有30°角的直角三角板ABC按如图方式放置,其中A、B两点分别落在直线m、n上,若∠1=20°,则∠2=度.16.(3分)方程组的解适合方程x+y=﹣2,则k的值为.17.(3分)如图,点A、B的坐标分别为(1,2)、(4,0),将△AOB 沿x轴向右平移,得到△CDE,已知DB=1,则点C的坐标为.18.(3分)不等式组的解集是3<x<a+2,若a是整数,则a等于.三、解答题:(共46分)19.(4分)计算:﹣12+(﹣2)3×﹣×(﹣)20.(4分)解下列方程组:21.(4分)如图,在△ABC中,∠ACB=90°,过点C作CD∥AB,BD 平分∠ABC,若∠ABD=20°,求∠ACD的度数.22.(4分)解不等式组:,并写出该不等组的整数解.23.(5分)为了解学生体育训练的情况,某市从全市九年级32000名学生中随机抽取部分学生进行了一次体育测试(把测试结果分为四个等级:A级、B级、C积、D级),并就测试的结果绘成如图两幅不完整的统计图.请根椐统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是.(2)扇形统计图中∠1的度数是,计算C级的人数并把条形图补充完整;(3)请估计该市九年级学生体育测试成绩为D级的人数.24.(8分)莫小贝在襄阳北街租了一家商铺专门销售各种旅游纪念品.本月初他在进货时发现:若购进甲种纪念品3件,乙种纪念品2件,需要400元,若购进甲种纪念品4件,乙种纪念品5件,需要650元.(1)求购进甲乙两种纪念品每件各需要多少元?(2)若莫小贝决定购进这两种纪念品共100件,其中甲种纪念品的数量不少于65件.考虑到资金周转,用于购买这些纪念品的资金不超过9000元,那么莫小贝共有几种进货方案?(3)若每卖出一件甲种纪念品可获利润20元,一件乙种纪念品可获利润35元.在(2)的条件下,所购的100件纪念品可以全部销售完,怎样进货才能使得获得的利润最大?最大利润是多少元?25.(8分)如图,已知AM∥BN,点P是射线AM上一动点(不与点A重合)BC、BD分别平分∠ABP与∠PBN,分别交射线AM于点C、D.(1)若∠A=50°,求∠CBD的度数;(2)当点P运动到使∠ACB=∠ABD时,探究∠ABC与∠DBN的数量关系,并证明你的结论.26.(9分)如图,在平面直角坐标系中,点A在x轴上,线段OC上所有点的横坐标x以及与之对应的纵坐标y都是二元一次方程x﹣4y=0的解,同时线段AC上的所有点的横坐标x以及与之对应的纵坐标y都是二元一次方程x+y=50的解,过点C作x轴的平行线,交y 轴于点B,点D是线段CB上的动点,由点C出发以每秒2个单位的速度向终点B平移,点E是线段OA上的动点,由点O出发以每秒2.5个单位的速度向终点A平移.(1)求点A与点C的坐标(按要求完成填空即可);(2)若点D与点E同时出发,平移时间为t,当CD>AE时,求t的取值范围;(3)是否存在一段时间使得梯形DEOB的面积不小于梯形DEAC的面积?若存在,请求出t的取值范围;若不存在请说明理由.解(1)∵点A在x轴上∴点A对应的纵坐标y=0又∵线段AC上的所有点的横坐标x以及与之对应的纵坐标y都是二元一次方程x+y=50的解∴将y=0代入上式可解得x=50即点A的坐标为(50,0)∵点C既在线段OC上又在线段AC上∴点C的坐标(x,y)同时满足x+y=50与x﹣4y=0∴由,可解得x=40,y=10即点C的坐标为(40,10)参考答案BCBAC CBCAB10.解:,由①得,x>﹣1,由②得,x≤1,不等式组的解集为:﹣1<x≤1.在数轴上表示为:.选:B.11 C.12.D.【解答】根据(1)班与(5)班得分比为6:5,有:x:y=6:5,得5x=6y;根据(1)班得分比(5)班得分的2倍少40分,得x=2y﹣40.可列方程组为.选:D.13.3.14. 4.8.解:设点C到线段AB的距离是x,∵BC⊥AC,∴S△ABC=AB•x=AC•BC,即×10•x=×6×8,解得x=4.8,即点C到线段AB的距离是4.8.答案为4.815.∠2=50度.16.﹣3.17.(4,2).18.2或3.解:∵不等式组的解集是3<x<a+2,∴,解得:1<a≤3,∵a为整数,∴a=2或3,答案为:2或3.19.解:原式=﹣1﹣8×+3×(﹣)=﹣1﹣1﹣1=﹣3.20.解:(1),①+②×2得:7x=28,解得:x=4,把x=4代入①得:y=﹣3,则方程组的解为.21.解:∵BD平分∠ABC,∠ABD=20°,∴∠ABD=2∠ABD=40°,∵∠ACB=90°,∴∠A=180°﹣∠ABC﹣∠ACB=50°,∵CD∥AB,∴∠ACD=∠A=50°.22.解:,∵解不等式①得:x≥﹣1,解不等式②得:x<2,∴原不等式组的解集为:﹣1≤x<2,∴不等式组的整数解是:﹣1、0、1 23.解:(1)160÷40%=400(人),答案为400人.(2)A的百分比:=30%,360°×30%=108°,C级人数:400﹣120﹣160﹣40=80,条形图如图所示:(3)32000×=3200,∴该市九年级学生体育测试成绩为D级的人数3200人.24.解:(1)设甲种纪念品每件需要x 元,乙种纪念品每件需要y 元,根据题意可得,解得,答:甲种纪念品每件需要100元,乙种纪念品每件需要50 元;(2)设购进甲种纪念品m 件,则购进乙种纪念品(100﹣m)件,根据题意可得,解得65≤m≤80,∵m 取整数∴m=65,66,67……78;79;80 共16 种答:莫小贝共有16 种进货方案;(3)设100 件纪念品全部销售后的利润为w 元,w=20m+35(100﹣m)=﹣15m+3500∵k=﹣15<0,∴w 随着m 的增大而减小,∴当m=65 时,w 有最大值,此时w=﹣15×65+3500答:购进甲种65 件、乙种35 件时获得最大利润2525 元.25.解:(1)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°﹣50°=130°,∴∠ABP+∠PBN=100°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=130°,∴∠CBD=∠CBP+∠DBP=65°;(2)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN.26.解:(1)∵点A在x轴上∴点A对应的纵坐标y=0又∵线段AC上的所有点的横坐标x以及与之对应的纵坐标y都是二元一次方程x+y=50的解∴将y=0代入上式可解得x=50即点A的坐标为(50,0)∵点C既在线段OC上又在线段AC上∴点C的坐标(x,y)同时满足x+y=50与x﹣4y=0∴由,可解得x=40,y=10即点C的坐标为(40,10).答案为0,50,(50,0),40,10,(40,10);(2)由题意CD=2t,AE=50﹣2.5t,∵CD>AE,∴2t>50﹣2.5t,∴t>,∵t≤20,∴<t≤20.(3)存在,理由如下:由题意:(40﹣2t+2.5t)×10≥(40+50)×10﹣(40﹣2t+2.5t)×10,解得t≥10,∴10≤t<20时,梯形DEOB的面积不小于梯形DEAC的面积;。
2017-2018学年度新人教版初中数学七年级下册期末教学质量检测及答案解析-精品试卷
2017-2018学年度下学期初中期末教学质量抽查初一年数学试题(满分:150分;时间:120分钟)题号一二 三总分1-78-17 18 19 20 21 22 23 24 25 26 得分一、选择题(单项选择,每小题3分,共21分). 1.若a >b ,则下列结论正确的是( ).A.55-<-b aB.b a +<+22C. b a 33>D. 33ba < 2.下列电视台的台标,是中心对称图形的是( ). A .B .C .D .3.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,瓷砖形状不可以...是( ). A .正三角形; B .正四边形; C .正六边形; D .正八边形.4. 把不等式组123x x >-⎧⎨+≤⎩的解集表示在数轴上,下列选项正确的是( ).A .B .C .D .5. 如图,若∠1=100°,∠C=70°,则∠A 的度数为( ).A .020 B .030 C .070 D .0806. 二元一次方程组⎩⎨⎧=-=+31y x y x 的解为( ).A .21x y ⎧⎨⎩=-=-B .21x y ⎧⎨⎩=-= C .21x y ⎧⎨⎩==-D . 21x y ⎧⎨⎩==7. 等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( ).A .12B .15C .18D .12或15 二、填空题(每小题4分,共40分).8. 不等式3x ﹣2>4的解集是_______________.9. 已知一个多边形的内角和是900°,这个多边形的边数是_______________. 10. 在方程31x y +=中,用含x 的代数式表示y ,则y =_______________.11. 若⎩⎨⎧==23y x 是方程1=-ay x 的解,则a =_______________.12. 如图所示的图案绕其旋转中心旋转后能够与自身重合,那么它的旋转角的度数可能是_______________(填写一个你认为正确的答案) . 13. 根据“a 的3倍与2的差不小于...0”列出的不等式是:_______________.14. 如图,C B A '''∆是由ABC ∆沿射线AC 方向平移得到,若5,'C 2AC cm A cm ==,则所平移的距离为___________cm .15. 如图,AD 是ABC ∆的一条中线,若BD =3,则BC =_______________.16. 如图,ABC ∆≌DEF ∆,请根据图中提供的信息,写出x =_______________. 17. 如图所示,在折纸活动中,小明制作了一张ABC △纸片,点D E 、分别在边AB 、AC 上,将ABC △沿着DE 折叠压平,使点A 与点N 重合. (1)若035=∠B ,060=∠C ,则A ∠的度数为________; (2)若070=∠A ,则21∠+∠的度数为______________.三、解答题(共89分).18. 解不等式(组)(每小题7分,共14分). (1)3(1)64x x +-≤(2)211314x x -≥-⎧⎨+<⎩,并把解集在数轴上表示出来.19.(7分)解方程组:⎩⎨⎧=-=+3273y x y x20.(7分)解方程组:⎪⎩⎪⎨⎧=-=+++=9310y x z y x z y x .21.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC 的三个顶点都在格点上,请按要求完成下列各题.(1)画出△ABC 向左平移6个单位长度得到的图形△A 1B 1C 1;(2)将△ABC 绕点O 按逆时针方向旋转180°得到△A 2B 2C 2,请画出△A 2B 2C 2.22.(9分)如图,在△ABC 中,︒=∠90ACB ,CD ⊥AB , 垂足为D ,︒=∠35BCD . 求:(1)EBC ∠的度数;(2)A ∠的度数.对于上述问题,在以下解答过程的空白处填上适当的内容(理由或数学式). 解:(1)∵AB CD ⊥(已知)∴CDB ∠= ∵EBC ∠是BCD ∆的外角∴BCD CDB EBC ∠+∠=∠( ) ∴=∠EBC +35°= . (等量代换) (2)∵EBC ∠是ABC ∆的外角∴ACB A EBC ∠+∠=∠∴ACB EBC A ∠-∠=∠( ) ∵︒=∠90ACB (已知)∴A ∠= -90°= . (等量代换)23.(9分)小明家新房装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块. (1)两种型号的地砖各采购了多少块?(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过...3200元,那么彩色地砖最多能采购多少块?24.(9分)如图, 正方形ABCD 中, ADE ∆经顺时针...旋转后与ABF ∆重合. (1)旋转中心是点_________,旋转了__________度;(2)如果8,4CF CE ==,求:四边形AFCE 的面积.25.(13分)某商店收银台现有零钱1元、5元、10元三种纸币,共计130张,合计300元,其中10元纸币比5元纸币少10张.假设一元纸币数量为x张,5元纸币数量为y 张.(1)根据题意,填写下表中的空格:1元5元10元合计数量(张)x y130钱数(元)x5y300 (2)求出x、y的值;(3)现有一名顾客拿一张100元纸币要向收银员换取1元或5元的零钱,要求1元的张数不超过5元的张数,求收银员在分配1元、5元的张数时共有哪几种方案?26.(13分)在ABC ∆中,已知A α∠=.(1)如图1,ACB ABC ∠∠、的平分线相交于点P .①当70α=时,∠BPC 的度数=_____________°(直接写出结果); ②BPC ∠的度数为 (用含α的代数式表示);(2)如图2,ACB ABC ∠∠、的平分线相交于点P ,作ABC ∆外角NCB ∠∠、MBC的角平分线交于点Q .求BQC ∠的度数(用含α的代数式表示).(3)拓展:如图3,点M N 、分别为AB AC 、延长线上的一点, 点P 、Q 分别在ABC ∆内部、外部,且满足ABC n PBC ∠=∠,n ACB PCB ∠=∠,MBC n QBC ∠=∠, QCB n NCB ∠=∠.求:BPC ∠、BQC ∠的度数(用含n α、的代数式表示)._ P_ A_ B_ C(图1)_ A_ B_ C _ P_ Q_ M_ N(图3)_ Q_ P_ A_ B_ C _ M_ N(图2)南安市2014—2015学年度下学期期末教学质量抽查初一数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一步没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确作完该步应得的累计分数. (四)评分最小单位是1分,得分或扣分都不出现小数. 一、选择题(每小题3分,共21分)1.C ; 2.B ; 3.D ; 4.A ; 5.B ; 6.C ; 7.B ; 二、填空题(每小题4分,共40分)8、x >2 9、7 10、x 31- 11、1 12、答案不唯一,如072 等 13、023≥-a 14、3 15、6 16、20 17、(1)085 (2)0140 三、解答题(9题,共89分) 18.(1)(本小题7分)(1)解:3364x x +-≤……………………………………………………………(2分)3643-≤-x x ……………………………………………………………(4分)3x -≤……………………………………………………………(5分) 3x ≥-……………………………………………………………(7分)(2)(本小题7分)解:解不等式①,得x ≥0;……………………………………………(2分) 解不等式②得,x<1,……………………………………………(4分) 在数轴上表示为:……………………………………(5分)故此不等式的解集为:0≤x ≤1.……………………………………………(7分) 19、(本小题7分) 解:,①+②得:5x =10,∴ x =2,…………………………………………………………(3分) 将x =2代入①得:y =1,…………………………………………………………(6分)∴方程组的解为.…………………………………………………………(7分)20、(本小题7分)⎪⎩⎪⎨⎧=-=+++=9310y x z y x z y x 解法1:把①分别代入②、③得,⎩⎨⎧=+=+9321022z y z y ……………………………………………(2分) 解得,⎩⎨⎧-==16z y ……………………………………………(4分) 把⎩⎨⎧-==16z y 代入①得 5=x ……………………………………………(6分)∴方程组的解为⎪⎩⎪⎨⎧-===165z y x .……………………………………………(7分)解法2:把①代入②得,102=x ……………………………………………(2分) 解得,5=x…………………① …………………②…………………③把5=x 代入③得 915=-y ……………………………………………(4分) 解得,6=y把5=x ,6=y 代入①得,1-=z ……………………………………………(6分)∴方程组的解为⎪⎩⎪⎨⎧-===165z y x .……………………………………………(7分)21、解:(1)如图所示:△A 1B 1C 1,即为所求; (2)如图所示:△A 2B 2C 2,即为所求.22、解:(1)∵AB CD ⊥∴CDB ∠=90° ………………………………………(2分) ∵BCD CDB EBC ∠+∠=∠ (三角形的外角等于与它不相邻两个内角的和)…(4分) ∴=∠EBC 90°+35°=125°. …………………………(6分) (2)∵ACB A EBC +∠=∠∴ACB EBC A ∠-∠=∠.(等式的性质)……(7分 )∵︒=∠90ACB (已知)∴A ∠=125°-90°=35°. (等式的性质) ..............................(9分) 23、解:(1)设彩色地砖采购x 块,单色地砖采购y 块,由题意,得 (1)),……………………………………………(3分)解得:.……………………………………………(5分)答:彩色地砖采购40块,单色地砖采购60块;(2)设购进彩色地砖a 块,则单色地砖购进(60﹣a )块,由题意得………………(6分)80a +40(60﹣a )≤3200,……………………………………………(8分)解得:a ≤20.∴彩色地砖最多能采购20块.……………………………………………(9分)24、解:(1)A ,90………………………………………………………………………(4分)(2)解法1:ADE ∆经顺时针...旋转后与ABF ∆重合 ADE ABF ∆≅∆∴,ADE ABF S S ∆∆=……………………………………………(5分) 设DE x =,y CD =,则BF DE x ==,y CD BC ==,又8,4CF CE ==∴⎩⎨⎧=-=+48x y x y ……………………………………………(6分) ∴⎩⎨⎧==26x y …………………………………………………(7分) .3662A BCD A BCE A BCE A FCE ===+=+=∴∆∆正方形四边形四边形四边形S S S S S S AD E ABF (9分)解法2:ADE ∆经顺时针...旋转后与ABF ∆重合 ADE ABF ∆≅∆∴,ADE ABF S S ∆∆=………………………………………………………(5分)设DE x =,则BF DE x ==又8,4CF CE ==8,4BC x CD x ∴=-=+………………………………………………………(6分) 四边形ABCD 为正方形BC CD ∴=,即84x x -=+…………………………………………………………(7分) 解得2x =……………………………………………………………………………(8分) .3662A BCD A BCE A BCE A FCE ===+=+=∴∆∆正方形四边形四边形四边形S S S S S S AD E ABF 9分25. 解:(1)1元 5元 10元 总和 张数x y 10y - 130 钱数 x5y 10(10)y - 300………………(2分)(2)由(1)可列出方程组 10130510(10)300x y y x y y ++-=⎧⎨++-=⎩ ………………………(4分) 即214015400x y x y +=⎧⎨+=⎩解得10020x y =⎧⎨=⎩…………………(6分) (3)设分配1元纸币a 张,5元纸币b 张,由题意得5100a b +=,………………(7分) 所以1005a b =-,………………………………………………………………………(8分)又因为a b ≤,所以1005b b -≤,解得503b ≥………………………………………(9分) 由(2)知5元纸币数量最多为20张,所以取17181920b =、、、……………………(10分) 对应的151050a =、、、 答:收银员在分配1元、5元的张数时共有四种方案:1元15张,5元17张;1元10张,5元18张; 1元5张,5元19张;1元0张, 5元20张. ………………………(13分)26.解:(1)① 125;……………………………………………………………………(2分)②1902BPC α∠=+. ……………………………………………………(4分)(2)由(1)得1902BPC α∠=+; 四边形 BPCQ 中 ,1180902PBQ PCQ ∠=∠=⨯=………………(6分) 360Q PBQ PCQ P ∴∠=-∠-∠-∠………………………………………(7分)11180180(90)9022P αα=-∠=-+=-………………………(8分) (3)①BPC ∠的度数为180180n nα-+,理由如下: ABC ∆中,180A ABC ACB ∠+∠+∠=,A α∠= 180ABC ACB α∴∠+∠=- …………………………………………………(9分) ,ABC n PBC ACB n PCB ∠=∠∠=∠,180n PBC n PCB α∴∠+∠=- 180PBC PCB n nα∴∠+∠=-……………………………………………………(10分) 180180()180BPC PBC PCB n n α∴∠=-∠+∠=-+…………………………(11分)②BQC ∠的度数为180180n nα--,理由如下: 由①得180180BPC n nα∠=-+ ,ABC n PBC MBC n CBQ ∠=∠∠=∠180ABC MBC n PBC n CBQ ∴∠+∠=∠+∠= 180PBC CBQn∴∠+∠=,即180PBQ n ∠= 同理可得180PCQn∠=………………………………………………………(12分)四边形 BPCQ 中,180PBQ PCQ n ∠=∠=,180180BPC n n α∠=-+ 360Q PBQ PCQ P ∴∠=-∠-∠-∠180180180360(180)n n n nα=----+ 180180180360180n n n nα=---+- 180180n n α=--………………………………………………………(13分)。
2017-2018学年度新人教版初中数学七年级下册期末模拟试卷及答案解析13-精品试卷
2017-2018学年七年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)观察下面图案,在A、B、C、D四幅图案中,能通过图案(如图所示)的平移得到的是()A.B.C.D.考点:生活中的平移现象.分析:根据平移不改变图形的形状和大小可知.解答:解:将题图所示的图案平移后,可以得到的图案是C选项.故选:C.点评:本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生容易混淆图形的平移、旋转或翻转的概念.2.(3分)(2015春•双城市期末)4的算术平方根是()A. 2 B.±C.D.±2考点:算术平方根.分析:根据算术平方根解答即可.解答:解:4的算术平方根是2,故选A.点评:此题考查算术平方根,关键是根据算术平方根只有一个,为非负数.3.(3分)(2015春•双城市期末)若m<n,则下列各式正确的是()A.2m>2n B.m﹣2>n﹣2 C.﹣3m>﹣3n D.>考点:不等式的性质.分析:根据不等式的性质,分别分析后直接得出答案.解答:解:A、∵m<n,∴2m<2n,故本选项错误;B、∵m<n,∴m﹣2<n﹣2,故本选项错误;C、正确;D、∵m<n,∴,故本选项错误;故选:C.点评:此题主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.(3分)(2015春•双城市期末)平面直角坐标系中,点A(﹣1,﹣3)在第()象限.A.一B.二C.三D.四考点:点的坐标.分析:根据各象限内点的坐标特征解答.解答:解:点A(﹣1,﹣3)在第三象限.故选C.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.(3分)(2011•崇川区校级模拟)如图,直线AB、CD被直线EF所截,则∠3的同位角是()A.∠1 B.∠2 C.∠4 D.∠5考点:同位角、内错角、同旁内角.分析:根据同位角的定义进行分析解答即可,两个角都在截线的同旁,又分别处在被截的两条直线同侧,具有这样位置关系的一对角叫做同位角.解答:解:A、∠3与∠1属于同位角,故本选项正确;B、∠3与∠2属于同旁内角,故本选项错误;C、∠3与∠4于邻补角,故本选项错误;D、∠3与∠5于内错角,故本选项错误.故选A.点评:本题主要考查同位角的定义,关键在于运用相关的定义正确地进行分析.6.(3分)(2015春•双城市期末)下列各图中,∠1与∠2是对顶角的是()A.B.C.D.考点:对顶角、邻补角.分析:A:因为∠1与∠2没有公共顶点,所以∠1与∠2不是对顶角,据此判断即可.B:因为∠1的两边不分别是∠2的两边的反向延长线,所以∠1与∠2不是对顶角,据此判断即可.C:因为∠1与∠2有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,所以∠1与∠2是对顶角,据此判断即可.D:因为∠1的两边不分别是∠2的两边的反向延长线,所以∠1与∠2不是对顶角,据此判断即可.解答:解:∵∠1与∠2没有公共顶点,∴∠1与∠2不是对顶角,∴选项A不正确;∵∠1的两边不分别是∠2的两边的反向延长线,∴∠1与∠2不是对顶角,∴选项B不正确;∵∠1与∠2有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,∴∠1与∠2是对顶角,∴选项C正确;∵∠1的两边不分别是∠2的两边的反向延长线,∴∠1与∠2不是对顶角,∴选项D不正确.故选:C.点评:此题主要考查了对顶角的特征和应用,要熟练掌握,解答此题的关键是要明确:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.7.(3分)(2015春•双城市期末)点M(﹣2,﹣5)向上平移4个单位后得到的点M′的坐标为()A.(﹣6,﹣5)B.(2,﹣5)C.(﹣2,﹣1)D.(﹣2,﹣9)考点:坐标与图形变化-平移.分析:让点的横坐标不变,纵坐标加4即可.解答:解:平移后点M的横坐标为﹣2;纵坐标为﹣5+4=﹣1;∴点P(﹣2,﹣5)向上平移4个单位后的点的坐标为(﹣2,﹣1).故选C.点评:本题考查图形的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.8.(3分)(2015春•双城市期末)是下列哪个方程组的解()A.B.C.D.考点:二元一次方程组的解.分析:把分别代入四个选项中的方程组进行验证即可.解答:解:A、当x=4,y=2时,则有2x﹣y=8﹣2=6≠1,故不是该方程组的解;B、当x=4,y=2时,则有2x+y=8+2=10,3x+4y=12+8=20,故是该方程组的解;C、当x=4,y=2时,则有2x﹣y=8﹣2=6≠1,故不是该方程组的解;D、当x=4,y=2时,则有2x+y=8+2=10,故不是该方程组的解;故选B.点评:本题主要考查方程组解的定义,掌握方程组的解满足方程组中的每一个方程是解题的关键.9.(3分)(2015春•双城市期末)下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中错误的有()A.1个B.2个C. 3个D. 4个考点:平行线的判定.分析:根据对顶角的性质和平行线的判定定理,逐一判断.解答:解:①是正确的,对顶角相等;②正确,在同一平面内,垂直于同一条直线的两直线平行;③错误,角平分线分成的两个角相等但不是对顶角;④错误,同位角只有在两直线平行的情况下才相等.故①②正确,③④错误,所以错误的有两个,故选B.点评:平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要学会区分不同概念之间的联系和区别.10.(3分)(2015春•双城市期末)如图,如果AB∥EF,EF∥CD,下列各式正确的是()A.∠1+∠2﹣∠3=90°B.∠1﹣∠2+∠3=90°C.∠1+∠2+∠3=90°D.∠2+∠3﹣∠1=180°考点:平行线的性质.分析:由平行线的性质可用∠2、∠3分别表示出∠BOE和∠COF,再由平角的定义可找到关系式.解答:解:∵AB∥EF,∴∠2+∠BOE=180°,∴∠BOE=180°﹣∠2,同理可得∠COF=180°﹣∠3,∵O在EF上,∴∠BOE+∠1+∠COF=180°,∴180°﹣∠2+∠1+180°﹣∠3=180°,即∠2+∠3﹣∠1=180°,故选D.点评:本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.二、填空题(共10小题,每小题3分,满分30分)11.(3分)(2015春•双城市期末)已知∠1与∠2是对顶角,∠2与∠3是邻补角,则∠1+∠3= 180°.考点:对顶角、邻补角.分析:根据对顶角、邻补角的性质,可得∠1=∠2,∠1+∠3=180°,则∠2+∠3=∠1+∠3=180°.解答:解:∵∠1与∠2是对顶角,∴∠1=∠2,又∵∠2与∠3是邻补角,∴∠1+∠3=180°,等角代换得∠2+∠3=180°,故答案为:180°.点评:本题主要考查对顶角的性质以及邻补角的定义,熟记对顶角和邻补角的性质是解题的关键.12.(3分)(2015春•双城市期末)若方程组的解是,那么|a﹣b|= 55 .考点:二元一次方程的解.分析:把方程组的解代入可分别求得a、b的值,可求得答案.解答:解:∵方程组的解是,∴把代入方程组可得,解得,∴|a﹣b|=|﹣47﹣8|=|﹣55|=55,故答案为:55.点评:本题主要考查方程组解的定义,根据方程组解的定义求得a、b的值是解题的关键.13.(3分)(2014•北仑区模拟)27的立方根是 3 .考点:立方根.分析:根据立方根的定义进行运算即可.解答:解:27的立方根为3.故答案为:3.点评:本题考查了立方根的运算,属于基础题,注意一个数的立方根只有一个.14.(3分)(2015春•双城市期末)3+4﹣8= ﹣.考点:实数的运算.专题:计算题.分析:原式合并同类二次根式即可得到结果.解答:解:原式=(3+4﹣8)=﹣,故答案为:﹣点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.15.(3分)(2015春•双城市期末)不等式组的解集是﹣2≤x<0 .考点:解一元一次不等式组.分析:根据不等式的解集求出不等式组的解集即可.解答:解:不等式组的解集为﹣2≤x<0,故答案为:﹣2≤x<0.点评:本题考查了解一元不等式组的应用,能根据不等式的解集求出不等式组的解集是解此题的关键.16.(3分)(2015春•双城市期末)已知点P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,则(a+b)2= 1 .考点:关于x轴、y轴对称的点的坐标.分析:利用关于x轴对称点的性质分别得出a,b的值进而求出即可.解答:解:∵点P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,∴a﹣1=2,﹣5=b﹣1,解得:a=3,b=﹣4,则(a+b)2=(3﹣4)2=1.故答案为:1.点评:此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.17.(3分)(2015春•双城市期末)如图,AB∥CD,∠BAC的平分线和∠ACD的平分线交于点E,则AE与CE的位置关系是互相垂直.考点:平行线的性质.分析:先根据平行线的性质得出∠BAC+∠ACD=18°,再由角平分线的性质可得出∠EAC+∠ACE=90°,根据三角形内角和定理即可得出结论.解答:解:∵AB∥CD,∴∠BAC+∠ACD=180°.∵∠BAC的平分线和∠ACD的平分线交于点E,∴∠EAC+∠ACE=(∠BAC+∠ACD)=90°,∴∠AEC=180°﹣90°=90°,∴AE与CE互相垂直.故答案为:互相垂直.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.18.(3分)(2009•梅州)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于50 °.考点:翻折变换(折叠问题).分析:首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.解答:解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性质知,∠DEF=∠FED′=65°,∴∠AED′=180°﹣2∠FED=50°.故∠AED′等于50°.点评:此题考查了翻折变换的知识,本题利用了:1、折叠的性质;2、矩形的性质,平行线的性质,平角的概念求解.19.(3分)(2015春•双城市期末)扇形统计图中,其中一个扇形的圆心角为72°,则这个扇形所表示的占总体的比值为.考点:扇形统计图.分析:利用这个扇形的圆心角除以前360°就是这个扇形所表示的占总体的比值求解即可.解答:解:这个扇形所表示的占总体的比值为=.故答案为:.点评:本题主要考查了扇形统计图,解题的关键是理解题意.20.(3分)(2015春•双城市期末)甲乙两人从相距1500米的A、B两地同时出发相向而行,甲骑自行车,速度是7.5米/秒,乙步行,速度是2.5米/秒,甲出发1分钟后忘记带东西,迅速返回去取(掉头时间及取东西时间不计),则在乙出发283或323 秒后,两人相距100米.考点:一元一次方程的应用.分析:由题意可知:甲出发1分钟后忘记带东西,迅速返回去取,相当于乙提前2分钟,由此分两种情况探讨:①乙在甲前面100米;②甲在乙前面100米;由此设出未知数,列出方程解答即可.解答:解:乙出发x秒后,两人相距100米.由题意得①乙在甲前面100米;2.5x+1500﹣7.5(x﹣2)=100解得:x=283②甲在乙前面100米;7.5(x﹣2)﹣(2.5x+1500)=100解得x=323答:则在乙出发283或323秒后,两人相距100米.故答案为:283或323.点评:此题考查一元一次方程的实际运用,掌握行程问题中的追击问题的基本数量关系是解决问题的关键.三、解答题(共8小题,满分60分)21.(6分)(2015春•双城市期末)(1)(2).考点:解一元一次不等式组;解二元一次方程组.分析:(1)①+②×5得出13x=13,求出x=1,把x的值代入②求出y即可;(2)求出每个不等式的解集,再根据不等式组的解集即可.解答:解:(1)①+②×5得:13x=13,解得:x=1,把x=1代入②得:3+5y=8,解得:y=1,所以原方程组的解为:;(2)∵解不等式①得:x≤2,解不等式②得:x≥﹣4,∴不等式组的解集为﹣4≤x≤2.点评:本题考查了解一元一次不等式组和解二元一次方程组的应用,解(1)小题的关键是能把二元一次方程组转化成一元一次方程,解(2)小题的关键是能根据不等式的解集求出不等式组的解集.22.(6分)(2015春•双城市期末)如图:(1)将△ABO向右平移4个单位,画出平移后的图形.(2)求△ABO的面积.考点:作图-平移变换.分析:(1)根据图形平移不变性的性质画出平移后的三角形即可;(2)利用正方形的面积减去三个顶点上三角形的面积即可.解答:解:(1)如图所示;(2)S△ABO=4×4﹣×2×4﹣×2×2﹣×2×4=16﹣4﹣2﹣4=6.点评:本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.23.(6分)(2015春•双城市期末)如图所示,已知直线AB、CD相交于点O,OE、OF 为射线,∠AOE=90°,OF平分∠AOC,∠AOF+∠BOD=51°,求∠EOD的度数.考点:对顶角、邻补角;角平分线的定义;垂线.分析:根据对顶角相等得到∠AOC=∠BOD,由角平分线的性质得到∠AOF=∠AOC=∠BOD,求得∠AOF=17°,∠BOD=34°,再根据邻补角的性质即可得到结论.解答:解:∵∠AOC=∠BOD,∵OF平分∠AOC,∴∠AOF=∠AOC=∠BOD,∵∠AOF+∠BOD=51°,∴∠AOF=17°,∠BOD=34°,∵∠AOE=90°,∴∠BOF=180°﹣∠AOE=90°,∴∠DOE=90°+34°=124°.点评:本题考查了角平分线的定义,对顶角相等的性质,角的计算,是基础题,准确识图,理清图中各角度之间的关系是解题的关键.24.(6分)(2015春•双城市期末)x取哪些正整数时,代数式的值不小于代数式﹣3的值.考点:一元一次不等式的整数解.分析:代数式的值不小于代数式﹣3的值,即:﹣3,解不等式求得解集,然后确定正整数解即可.解答:解:根据题意得:﹣3,解得:x≤.∵x是正整数,∴x=1、2、3.点评:本题考查了不等式的解法,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.25.(8分)(2014•益阳)如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.考点:平行线的性质.分析:根据两直线平行,同旁内角互补求出∠BAF,再根据角平分线的定义求出∠CAF,然后根据两直线平行,内错角相等解答.解答:解:∵EF∥BC,∴∠BAF=180°﹣∠B=100°,∵AC平分∠BAF,∴∠CAF=∠BAF=50°,∵EF∥BC,∴∠C=∠CAF=50°.点评:本题考查了平行线的性质,角平分线的定义,熟记性质并准确识图是解题的关键.26.(8分)(2014•呼和浩特)为鼓励居民节约用电,我市自2012年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格.我市一位同学家今年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.已知我市的一位居民今年4、5月份的家庭用电量分别为160和410千瓦时,请你依据该同学家的缴费情况,计算这位居民4、5月份的电费分别为多少元?考点:二元一次方程组的应用.专题:应用题.分析:设基本电价为x元/千瓦时,提高电价为y元/千瓦时,根据2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元,列方程组求解.解答:解:设基本电价为x元/千瓦时,提高电价为y元/千瓦时,由题意得,,解得:,则四月份电费为:160×0.6=96(元),五月份电费为:180×0.6+230×0.7=108+161=269(元).答:这位居民四月份的电费为96元,五月份的电费为269元.点评:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.27.(10分)(2015春•双城市期末)某校为了解2015年八年级学生课外书籍借阅情况,从中随机抽取了40名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类册数占这40名学生借阅总册数的40%.类别科普类教辅类文艺类其他册数(本)128 80 m 48(1)求表格中字母m的值及扇形统计图中“文艺类”所对应的圆心角α的度数;(2)该校2015年八年级有500名学生,请你估计该年级学生共借阅教辅类书籍约多少本?考点:扇形统计图;用样本估计总体;统计表.分析:(1)利用借阅总册数=科普类册数÷对应的百分比,教辅类的圆心角=360°×教辅类的百分比求解即可,(2)设该年级学生共借阅教辅类书籍约x本,根据题意列出方程求解即可.解答:解:(1)观察扇形统计图知识:科普类有关128册,占有率0%,∴借阅总册数为了128÷40%=320(本)∴m=320﹣128﹣80﹣48=64,教辅类的圆心角为:360°×=90°;(2)设该年级学生共借阅教辅类书籍约x本,根据题意得=,解得x=1000,∴该年级学生共借阅教辅类书籍约1000本.点评:本题主要考查了扇形统计图,解题的关键是读懂统计图,获得准确信息.28.(10分)(2014•邵阳)小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.(1)两种型号的地砖各采购了多少块?(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?考点:二元一次方程组的应用;一元一次不等式的应用.专题:应用题.分析:(1)设彩色地砖采购x块,单色地砖采购y块,根据彩色地砖和单色地砖的总价为5600及地砖总数为100建立二元一次方程组求出其解即可;(2)设购进彩色地砖a块,则单色地砖购进(60﹣a)块,根据采购地砖的费用不超过3200元建立不等式,求出其解即可.解答:解:(1)设彩色地砖采购x块,单色地砖采购y块,由题意,得,解得:.答:彩色地砖采购40块,单色地砖采购60块;(2)设购进彩色地砖a块,则单色地砖购进(60﹣a)块,由题意,得80a+40(60﹣a)≤3200,解得:a≤20.故彩色地砖最多能采购20块.点评:本题考查了列二元一次方程组解实际问题的运用,列一元一次不等式解实际问题的运用,解答时认真分析单价×数量=总价的关系建立方程及不等式是关键.。
新课标人教版2017-2018学年七年级(下)期末学业水平测试数学试卷
2017-2018学年七年级(下)期末学业水平测试数学试卷一、选择题:(共8个小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个是符合题意的.1.(2分)意大利物理学家马尔科•德拉戈收到来自激光干涉引力波天文台(LIGO)的系统自动提示邮件,一股宇宙深处的引力波到达地球,在位于美国华盛顿和烈文斯顿的两个LIGO探测器上产生了4×10﹣18米的空间畸变(如图中的引力波信号图象所示),也被称作“时空中的涟漪”,人类第一次探测到了引力波的存在,“天空和以前不同了…你也听得到了.”这次引力波的信号显著性极其大,探测结果只有三百五十万分之一的误差.三百五十万分之一约为0.0000002857.将0.0000002857用科学记数法表示应为()A.2.857×10﹣8B.2.857×10﹣7C.2.857×10﹣6D.0.2857×10﹣62.(2分)下列各式中,从左到右的变形是因式分解的是()A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2C.x2﹣6x+5=(x﹣5)(x﹣1)D.x2+y2=(x﹣y)2+2xy3.(2分)如图,∠1和∠2不是同位角的是()A.B.C. D.4.(2分)不等式x+1≥2的解集在数轴上表示正确的是()A.B.C.D.5.(2分)下列运算正确的是()A.(2a2)3=6a6 B.a3•a2=a5 C.2a2+4a2=6a4D.(a+2b)2=a2+4b26.(2分)若a>b,则下列不等式正确的是()A.3a<3b B.ma>mb C.﹣a﹣1>﹣b﹣1 D.+1>+17.(2分)下列命题中,真命题的个数有()①如果两条直线都与第三条直线平行,那么这两条直线也互相平行.②过直线外一点有且只有一条直线与这条直线平行.③两条直线被第三条直线所截,同旁内角互补.④内错角相等,两直线平行.A.4 B.3 C.2 D.18.(2分)如图的统计图反映了我国2013年到2017年国内生产总值情况.(以上数据摘自国家统计局《中华人民共和国2017年国民经济和社会发展统计公报》)根据统计图提供的信息,下列推断不合理的是()A.与2016年相比,2017年我国国内生产总值有所增长B.2013﹣2016年,我国国内生产总值的增长率逐年降低C.2013﹣2017年,我国国内生产总值的平均增长率约为6.7%D.2016﹣2017年比2014﹣2015年我国国内生产总值增长的多二、填空题(共8小题,每小题2分,满分16分)9.(2分)计算6m5÷(﹣2m2)的结果为.10.(2分)已知l1∥l2,一个含有30°角的三角板按照如图所示位置摆放,则∠1+∠2的度数为.11.(2分)写出解为的一个二元一次方程:.12.(2分)如图,请你添加一个条件,使AB∥CD,这个条件是.13.(2分)妫川宝塔位于延庆区夏都东湖公园,红墙碧瓦,飞檐翘拱,雕梁画栋,显现了我国古代建筑风格超凡脱俗的光彩,异常雄奇壮观而绚丽华贵.塔内每一层都有壁画,这些壁画具体生动的描绘了妫川大地从古至今动人的历史事和神话传说,展示了妫川儿女的勤劳与智慧.为了测量塔外墙底部的底角∠AOB 的度数,小明同学设计了如下测量方案:作AO,BO的延长线OD,OC,量出∠COD的度数,从而得到∠AOB的度数.这个测量方案的依据是.14.(2分)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?设共有x人买鸡,鸡价为y文钱,可列方程组为.15.(2分)如图的框图表示解不等式3﹣5x>4﹣2x的流程,其中“系数化为1”这一步骤的依据是.16.(2分)已知∠ABC与其内部一点D,过D点作DE∥BA,作DF∥BC,则∠EDF与∠B的数量关系是.三、解答题17.(4分)计算:(﹣1)2016﹣(3﹣π)0+2﹣118.(4分)解不等式组,并求该不等式组的非负整数解.19.(4分)解方程组:.20.(5分)先化简再求值:(x﹣1)2﹣(x+2)(x﹣2)+(x﹣4)(x+5),其中x2﹣x﹣5=0.21.(6分)分解因式:(1)a3b﹣5a2b2;(2)3a2﹣12a+12.22.(5分)补全解答过程:已知:如图,直线AB∥CD,直线EF与直线AB,CD分别交于点G,H;GM 平分∠FGB,∠3=60°.求∠1的度数.解:∵EF与CD交于点H,(已知)∴∠3=∠4.()∵∠3=60°,(已知)∴∠4=60°.()∵AB∥CD,EF与AB,CD交于点G,H,(已知)∴∠4+∠FGB=180°.()∴∠FGB=.∵GM平分∠FGB,(已知)∴∠1=°.(角平分线的定义)23.(6分)如图,已知△ABC.请你按下列步骤画图:(用圆规、三角板、量角器等工具画图,不写画法,只保留画图痕迹)①画∠BAC的平分线交线段BC于点D;②过点C画AB的平行线交射线AD于点E;③延长线段AC到点F,使CF=AC;④连接EF;(1)请你测量∠AEF,则∠AEF=°;(2)请你通过测量线段CE与线段CF的长度,写出它们的数量关系.CE CF(填“>”,“<”或“=”)24.(8分)阅读材料2001年,康庄中心小学就提出了“小足球,大教育“的校园足球理念,确立了以足球育人的思想.2017年6月,全国小学校园足球联盟启动大会在康庄中心小学举行.联盟响应习总书记“足球进校园”的号召,旨在以“康庄小学足球模式”为基础,加强校园足球的实践与研究,以此推动校园足球健康发展.2017年9月,学校到商场购买A,B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元;已知购买一个B种品牌的足球比购买一个A种品牌的足球多花30元.(1)学校购买一个A种品牌、一个B种品牌的足球各需多少元.(2)2018年3月,学校决定再次购进A,B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售.如果学校此次购买A,B两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个.学校第二次购买足球有哪几种方案?(3)请你直接写出学校在第二次购买活动中最多需要多少资金?25.(4分)我们经常利用图形描述问题和分析问题.借助直观的几何图形,把问题变得简明、形象,有助于探索解决问题的思路.(1)小明为了解释某一公式,构造了几何图形,如图1所示,将边长为a的大正方形剪去一个边长为b的小正方形,并沿图中的虚线剪开,拼接后得到图2,显然图1中的图形与图2中的图形面积相等,从而验证了公式.则小明验证的公式是.(2)计算:(x+a)(x+b)=;请画图说明这个等式.26.(7分)我们知道:任何有理数的平方都是一个非负数,即对于任何有理数a,都有a2≥0成立,所以,当a=0时,a2有最小值0.【应用】:(1)代数式(x﹣1)2有最小值时,x=;(2)代数式m2+3的最小值是;【探究】:求代数式n2+4n+9的最小值,小明是这样做的:n2+4n+9=n2+4n+4+5=(n+2)2+5∴当n=﹣2时,代数式n2+4n+9有最小值,最小值为5.请你参照小明的方法,求代数式a2﹣6a﹣3的最小值,并求此时a的值.【拓展】:(1)代数式m2+n2﹣8m+2n+17=0,求m+n的值.(2)若y=﹣4t2+12t+6,直接写出y的取值范围.27.(8分)已知:如图1,DE∥AB,DF∥AC.(1)求证:∠A=∠EDF.(2)点G是线段AC上的一点,连接FG,DG.①若点G是线段AE的中点,请你在图2中补全图形,判断∠AFG,∠EDG,∠DGF之间的数量关系,并证明.②若点G是线段EC上的一点,请你直接写出∠AFG,∠EDG,∠DGF之间的数量关系.28.(7分)阅读下面材料:小明在数学课外小组活动时遇到这样一个问题:如果一个不等式中含有绝对值,并且绝对值符号中含有未知数,我们把这个不等式叫做绝对值不等式,求绝对值不等式|x|>3的解集.小明同学的思路如下:先根据绝对值的定义,求出|x|恰好是3时x的值,并在数轴上表示为点A,B,如图所示.观察数轴发现,以点A,B为分界点把数轴分为三部分:点A左边的点表示的数的绝对值大于3;点A,B之间的点表示的数的绝对值小于3;点B右边的点表示的数的绝对值大于3.因此,小明得出结论绝对值不等式|x|>3的解集为:x<﹣3或x>3.参照小明的思路,解决下列问题:(1)请你直接写出下列绝对值不等式的解集.①|x|>1的解集是.②|x|<2.5的解集是.(2)求绝对值不等式2|x﹣3|+5>13的解集.(3)直接写出不等式x2>4的解集是.参考答案一、选择题1.B.2.C.3.B.4.A.5.B.6.D 7.B 8.C 二、填空题9.﹣3m3.10.90°.11.x+y=﹣1.此题答案不唯一.12.∠CDA=∠DAB 13.对顶角相等.14.,15.不等式的两边同时乘以或除以一个负数,不等式方向改变.16.相等或互补.三、解答题17.解:原式=1﹣1+=.18.解:解不等式3(x+2)≥x+4,得:x≥﹣1,解不等式<1,得:x<3,∴原不等式解集为﹣1≤x<3,∴原不等式的非负整数解为0,1,2.19.解:,①+②×3得:10x=50,解得:x=5,把x=5代入②得:y=3,则方程组的解为.20.解:原式=x2﹣2x+1﹣(x2﹣4)+(x2+x﹣20)=x2﹣2x+1﹣x2+4+x2+x﹣20=x2﹣x﹣15∵x2﹣x﹣5=0,∴x2﹣x=5∴原式=5﹣15=﹣1021.解:(1)a3b﹣5a2b2=a2b(a﹣5ab);(2)3a2﹣12a+12=3(a2﹣4a+4)=3(a﹣2)2.22.解:∵EF与CD交于点H,(已知)∴∠3=∠4.(对顶角相等)∵∠3=60°,(已知)∴∠4=60°.(等量代换)∵AB∥CD,EF与AB,CD交于点G,H,(已知)∴∠4+∠FGB=180°.(两直线平行,同旁内角互补)∴∠FGB=120°.∵GM平分∠FGB,(已知)∴∠1=60°.(角平分线的定义)答案为:对顶角相等,等量代换,两直线平行,同旁内角互补,120°,60.23.解:(1)如图所示,通过测量,∠AEF=90°.答案为90.(2)通过测量可知:CE=CF,答案为=.24.解:(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,依题意得:,解得:.答:购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元.(2)设第二次购买A种足球m个,则购买B种足球(50﹣m)个,依题意得:,解得:25≤m≤27.这次学校购买足球有三种方案:方案一:购买A种足球25个,B种足球25个;方案二:购买A种足球26个,B种足球24个;方案三:购买A种足球27个,B种足球23个.(3)∵第二次购买足球时,A种足球单价为50+4=54(元),B种足球单价为80×0.9=72(元),∴当购买方案中B种足球最多时,费用最高,即方案一花钱最多.∴25×54+25×72=3150(元).答:学校在第二次购买活动中最多需要3150元资金.25.解:(1)由图1可得,图形面积=a2﹣b2,由图2可得,图形面积=(a+b)(a﹣b),∴(a+b)(a﹣b)=a2﹣b2答案为:(a+b)(a﹣b)=a2﹣b2;(2)(x+a)(x+b)=x2+ax+bx+ab,证明:如图所示,图形面积=(x+a)(x+b),图形面积=x2+ax+bx+ab,∴(x+a)(x+b)=x2+ax+bx+ab,答案为:x2+ax+bx+ab.26.解:(1)代数式(x﹣1)2有最小值时,x=1,答案为:1;(2)代数式m2+3的最小值是在m=0时,最小值为3,答案为:3.(3)∵m2+n2﹣8m+2n+17=0,∴(m﹣4)2+(n+1)2=0,则m=4、n=﹣1,∴m+n=3;(4)y=﹣4t2+12t+6=﹣4(t2﹣3t)+6=﹣4(t2﹣3t+﹣)+6=﹣4(t﹣)2+15,∵(t﹣)2≥0,∴﹣4(t﹣)2≤0,则﹣4(t﹣)2+15≤15,即y≤15.27.解:(1)∵DE∥AB,DF∥AC,∴∠EDF+∠AFD=180°,∠A+∠AFD=180°,∴∠EDF=∠A;(2)①∠AFG+∠EDG=∠DGF.如图2所示,过G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②∠AFG﹣∠EDG=∠DGF.如图所示,过G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG﹣∠EDG=∠FGH﹣∠DGH=∠DGF.28.解:(1)①|x|>1的解集是x>1或x<﹣1.②|x|<2.5的解集是﹣2.5<x<2.5.答案是:①x>1或x<﹣1;②﹣2.5<x<2.5;(2)2|x﹣3|+5>132|x﹣3|>8∴|x﹣3>4的解集可表示为x﹣3>4或x﹣3<﹣4∴2|x﹣3|+5>13的解集为x>7或x<﹣1;(3)不等式x2>4的解集是x>2或x<﹣2.答案是:x>2或x<﹣2.。
2017-2018学年度人教版七年级下数学期末测评试卷(含答案)
期末测评( 时间:120分钟满分:120分 )一、选择题( 每小题3分,共30分 )1.下列命题中,真命题是( )A.互补两角若相等,则此两角都是直角B.直线是平角C.不相交的两条直线叫做平行线D.和为180°的两个角叫做邻补角2.( 2017·辽宁辽阳中考 )下列事件中适合采用抽样调查的是( )A.对乘坐飞机的乘客进行安检B.学校招聘教师,对应聘人员进行面试C.对“天宫2号”零部件的检査D.对端午节期间市面上粽子质量情况的调查3.如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为( )A.( 2,3 )B.( 0,3 )C.( 3,2 )D.( 2,2 )4.下列各数:1.414,√2,-13,0,其中是无理数的为( )A.1.414B.√2C.-13D.05.( 2017·黑龙江绥化中考 )如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB∥CD的是( )A.∠2=35°B.∠2=45°C.∠2=55°D.∠2=125°6.( 2017·河南漯河郾城区期末 )如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是( )A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格7.( 2017·河南校级模拟 )已知x>y,若对任意实数a,以下结论:甲:ax>ay;乙:a2-x>a2-y;丙:a2+x≤a2+y;丁:a2x≥a2y.其中正确的是( )A.甲B.乙C.丙D.丁8.在平面直角坐标系中,将点A ( m-1,n+2 )先向右平移3个单位,再向上平移2个单位,得到点A',若点A'位于第二象限,则m ,n 的取值范围分别是 ( ) A .m<0,n>0 B .m<1,n>-2 C .m<0,n<-2 D .m<-2,n>-4 9. ( 2017·黑龙江龙东中考 )“双11”促销活动中,小芳的妈妈计划用1 000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有( ) A.4种 B.5种 C.6种 D.7种10.三个连续正整数的和小于39,这样的正整数中,最大一组的和是( ) A .39 B .36 C .35 D .34 二、填空题( 每小题4分,共24分 ) 11. ( 2017·山西太原期中 )如图,直线AB 与CD 相交于点O ,且∠1+∠2=60°,∠AOD 的度数为 .12.早上8点钟时室外温度为2 ℃,我们记作( 8,2 ),则晚上9点时室外温度为零下3 ℃,我们应该记作 . 13.( 2017·江苏扬州江都区三模 )如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1 000人,则根据此估计步行上学的有 人.14.若实数x 满足等式( x+4 )3=-27,则x= . 15.( 2017·河南周口商水期末 )如图所示,同位角有a 对,内错角有b 对,同旁内角有c 对,则a+b+c 的值是 .16.( 2017·广西柳州校级期末 )如图,已知A 1( 1,0 ),A 2( 1,1 ),A 3( -1,1 ),A 4( -1,-1 ),A 5( 2,-1 ),…,则点A 2 017的坐标为 .三、解答题( 共66分 )17. ( 7分 )已知2a+1的平方根是±3,3a+2b-4的立方根是-2,求4a-5b+8的立方根.18.( 8分 )( 2017·山东泰安肥城期末 )解方程组:{0.3x -1.5y 0.3+3y -2x4=6,x 2+y -13=24.19.( 8分 )( 2017·湖南常德中考 )求不等式组{4( 1+x )3-1≤5+x2,①x -5≤32( 3x -2 )②的整数解.20. ( 8分 )( 2017·山东临沂期中 )如图,已知直线AB ∥DF ,∠D+∠B=180°, ( 1 )求证:DE ∥BC ;( 2 )如果∠AMD=75°,求∠AGC 的度数.21.( 8分 )( 2017·山东临沂中考 )为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x 名学生进行调查统计( 要求每名学生选出并且只能选出一个自己最喜爱的节目 ),并将调查结果绘制成如下统计图表:根据以上提供的信息,解答下列问题: ( 1 )a= ,b= ; ( 2 )补全下面的条形统计图;( 3 )若该校共有学生1 000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.学生最喜欢的节目人数条形统计图22. ( 8分 )如图,三角形AOB是由三角形A1O1B1平移后得到的,已知点A的坐标为( 2,-2 ),点B的坐标为( -4,2 ),若点A1的坐标为( 3,-1 ).求:( 1 )O1,B1的坐标.( 2 )三角形AOB的面积.23.( 9分 )( 2017·贵州六盘水中考 )甲乙两个施工队在六安( 六盘水—安顺 )城际高铁施工,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x米,乙队每天铺设y米.( 1 )依题意列出二元一次方程组;( 2 )求出甲乙两施工队每天各铺设多少米?24. ( 10分 )( 2017·山东东营中考 )为解决中小学班额问题,东营市各区县今年将改扩建部分中小学,某县计划对A,B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7 800万元,改扩建3所A类学校和1所B类学校共需资金5 400万元.( 1 )改扩建1所A类学校和1所B类学校所需资金分别是多少万元?( 2 )该县计划改扩建A,B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11 800万元;地方财政投入资金不少于4 000万元,其中地方财政投入到A,B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?期末测评答案解析( 时间:120分钟满分:120分 )一、选择题( 每小题3分,共30分 )1.下列命题中,真命题是( A )A.互补两角若相等,则此两角都是直角B.直线是平角C.不相交的两条直线叫做平行线D.和为180°的两个角叫做邻补角2.( 2017·辽宁辽阳中考 )下列事件中适合采用抽样调查的是( D )A.对乘坐飞机的乘客进行安检B.学校招聘教师,对应聘人员进行面试C.对“天宫2号”零部件的检査D.对端午节期间市面上粽子质量情况的调查3.如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为( D )A.( 2,3 )B.( 0,3 )C.( 3,2 )D.( 2,2 )4.导学号14154138下列各数:1.414,√2,-13,0,其中是无理数的为( B ) A.1.414 B.√2C.-13D.05.( 2017·黑龙江绥化中考 )如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB∥CD的是( C )A.∠2=35°B.∠2=45°C.∠2=55°D.∠2=125°6.( 2017·河南漯河郾城区期末 )如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是( A )A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格7.( 2017·河南校级模拟 )已知x>y,若对任意实数a,以下结论:甲:ax>ay;乙:a2-x>a2-y;丙:a2+x≤a2+y;丁:a2x≥a2y.其中正确的是( D )A.甲B.乙C.丙D.丁8.在平面直角坐标系中,将点A( m-1,n+2 )先向右平移3个单位,再向上平移2个单位,得到点A',若点A'位于第二象限,则m,n的取值范围分别是( D ) A.m<0,n>0 B.m<1,n>-2C.m<0,n<-2D.m<-2,n>-49.导学号14154139( 2017·黑龙江龙东中考 )“双11”促销活动中,小芳的妈妈计划用1 000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有( A )A.4种B.5种C.6种D.7种10.三个连续正整数的和小于39,这样的正整数中,最大一组的和是( B )A.39B.36C.35D.34二、填空题( 每小题4分,共24分 )11.导学号14154140( 2017·山西太原期中 )如图,直线AB与CD相交于点O,且∠1+∠2=60°,∠AOD的度数为150°.12.早上8点钟时室外温度为2 ℃,我们记作( 8,2 ),则晚上9点时室外温度为零下3 ℃,我们应该记作( 21,-3 ).13.( 2017·江苏扬州江都区三模 )如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1 000人,则根据此估计步行上学的有400人.14.若实数x满足等式( x+4 )3=-27,则x=-7.15.( 2017·河南周口商水期末 )如图所示,同位角有a对,内错角有b对,同旁内角有c对,则a+b+c的值是14.16.( 2017·广西柳州校级期末 )如图,已知A1( 1,0 ),A2( 1,1 ),A3( -1,1 ),A4( -1,-1 ),A5( 2,-1 ),…,则点A2 017的坐标为( 505,-504 ).三、解答题( 共66分 )14154141( 7分 )已知2a+1的平方根是±3,3a+2b-4的立方根是-2,求4a-5b+8的立方根.2a+1的平方根是±3,3a+2b-4的立方根是-2,∴2a+1=9,3a+2b-4=-8,解得a=4,b=-8,∴4a-5b+8=4×4-5×( -8 )+8=64,∴4a-5b+8的立方根是4.18.( 8分 )( 2017·山东泰安肥城期末 )解方程组:{0.3x-1.5y0.3+3y-2x4=6,x2+y-13=24.{2x-17y=24,①3x+2y=146,②②×2-①×3,得55y=220,解得y=4.把y=4代入①,得2x-68=24,解得x=46,原方程组的解为{x=46,y=4.19.( 8分 )( 2017·湖南常德中考 )求不等式组{4( 1+x )3-1≤5+x2,①x-5≤32( 3x-2 )②的整数解.①,得x≤135,解不等式②,得x ≥-47,∴不等式组的解集为-47≤x ≤135. ∴不等式组的整数解是0,1,2.20.导学号14154142( 8分 )( 2017·山东临沂期中 )如图,已知直线AB ∥DF ,∠D+∠B=180°, ( 1 )求证:DE ∥BC ;( 2 )如果∠AMD=75°,求∠AGC 的度数.( 1 )证明∵AB ∥DF ,∠BHD=180°, ∵∠D+∠B=180°, ∴∠B=∠DHB , ∥BC.DE ∥BC ,∠AMD=75°,AGB=∠AMD=75°, ∴∠AGC=180°-∠AGB =180°-75° =105°. 21.( 8分 )( 2017·山东临沂中考 )为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x 名学生进行调查统计( 要求每名学生选出并且只能选出一个自己最喜爱的节目 ),并将调查结果绘制成如下统计图表:根据以上提供的信息,解答下列问题: ( 1 )a= ,b= ; ( 2 )补全下面的条形统计图;( 3 )若该校共有学生1 000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.学生最喜欢的节目人数条形统计图30( 2 )中国诗词大会的人数为20,补全条形统计图,如图所示:学生最喜欢的节目人数条形统计图( 3 )根据题意,得1000×40%=400( 名 ),则估计该校最喜爱《中国诗词大会》节目的学生有400名.22.导学号14154143( 8分 )如图,三角形AOB 是由三角形A 1O 1B 1平移后得到的,已知点A 的坐标为( 2,-2 ),点B 的坐标为( -4,2 ),若点A 1的坐标为( 3,-1 ).求:( 1 )O 1,B 1的坐标. 三角形AOB 的面积.点O 1的横坐标为0+( 3-2 )=1;纵坐标为0+[-1-( -2 )]=1;点B 1的横坐标为-4+( 3-2 )=-3;纵坐标为2+[-1-( -2 )]=3; 所以点O 1的坐标为( 1,1 ),点B 1的坐标为( -3,3 );( 1 )三角形AOB 的面积为12×1×2+12×1×2=2. 23.( 9分 )( 2017·贵州六盘水中考 )甲乙两个施工队在六安( 六盘水—安顺 )城际高铁施工,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x 米,乙队每天铺设y 米.( 1 )依题意列出二元一次方程组;求出甲乙两施工队每天各铺设多少米?根据题意,得{x -y =100,5x =6y .( 2 ){x -y =100,5x =6y ,解得{x =600,y =500.答:甲队每天铺设600米,乙队每天铺设500米. 24.导学号14154144( 10分 )( 2017·山东东营中考 )为解决中小学班额问题,东营市各区县今年将改扩建部分中小学,某县计划对A ,B 两类学校进行改扩建,根据预算,改扩建2所A 类学校和3所B 类学校共需资金7 800万元,改扩建3所A 类学校和1所B 类学校共需资金5 400万元.( 1 )改扩建1所A 类学校和1所B 类学校所需资金分别是多少万元?( 2 )该县计划改扩建A ,B 两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11 800万元;地方财政投入资金不少于4 000万元,其中地方财政投入到A ,B 两类学校的改扩建资金分300万元和500万元.请问共有哪几种改扩建方案?设改扩建一所A 类和一所B 类学校所需资金分别为x 万元和y 万元,由题意,得{2x +3y =7800,3x +y =5400,解得{x =1200,y =1800.答:改扩建一所A 类学校和一所B 类学校所需资金分别为1200万元和1800万元.( 2 )设今年改扩建A 类学校a 所,则改扩建B 类学校( 10-a )所,由题意,得{( 1200-300 )a +( 1800-500 )( 10-a )≤11800,300a +500( 10-a )≥4000,解得3≤a ≤5,∵x 取整数,∴x=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年度下学期初中期末教学质量抽查初一年数学试题(满分:150分;时间:120分钟)题号一二 三总分1-78-17 18 19 20 21 22 23 24 25 26 得分一、选择题(单项选择,每小题3分,共21分). 1.若a >b ,则下列结论正确的是( ).A.55-<-b aB.b a +<+22C. b a 33>D. 33ba < 2.下列电视台的台标,是中心对称图形的是( ). A .B .C .D .3.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,瓷砖形状不可以...是( ). A .正三角形; B .正四边形; C .正六边形; D .正八边形.4. 把不等式组123x x >-⎧⎨+≤⎩的解集表示在数轴上,下列选项正确的是( ).A .B .C .D .5. 如图,若∠1=100°,∠C=70°,则∠A 的度数为( ).A .020 B .030 C .070 D .0806. 二元一次方程组⎩⎨⎧=-=+31y x y x 的解为( ).A .21x y ⎧⎨⎩=-=-B .21x y ⎧⎨⎩=-= C .21x y ⎧⎨⎩==-D . 21x y ⎧⎨⎩==7. 等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( ).A .12B .15C .18D .12或15 二、填空题(每小题4分,共40分).8. 不等式3x ﹣2>4的解集是_______________.9. 已知一个多边形的内角和是900°,这个多边形的边数是_______________. 10. 在方程31x y +=中,用含x 的代数式表示y ,则y =_______________.11. 若⎩⎨⎧==23y x 是方程1=-ay x 的解,则a =_______________.12. 如图所示的图案绕其旋转中心旋转后能够与自身重合,那么它的旋转角的度数可能是_______________(填写一个你认为正确的答案) . 13. 根据“a 的3倍与2的差不小于...0”列出的不等式是:_______________.14. 如图,C B A '''∆是由ABC ∆沿射线AC 方向平移得到,若5,'C 2AC cm A cm ==,则所平移的距离为___________cm .15. 如图,AD 是ABC ∆的一条中线,若BD =3,则BC =_______________.16. 如图,ABC ∆≌DEF ∆,请根据图中提供的信息,写出x =_______________. 17. 如图所示,在折纸活动中,小明制作了一张ABC △纸片,点D E 、分别在边AB 、AC 上,将ABC △沿着DE 折叠压平,使点A 与点N 重合. (1)若035=∠B ,060=∠C ,则A ∠的度数为________; (2)若070=∠A ,则21∠+∠的度数为______________.三、解答题(共89分).18. 解不等式(组)(每小题7分,共14分). (1)3(1)64x x +-≤(2)211314x x -≥-⎧⎨+<⎩,并把解集在数轴上表示出来.19.(7分)解方程组:⎩⎨⎧=-=+3273y x y x20.(7分)解方程组:⎪⎩⎪⎨⎧=-=+++=9310y x z y x z y x .21.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC 的三个顶点都在格点上,请按要求完成下列各题.(1)画出△ABC 向左平移6个单位长度得到的图形△A 1B 1C 1;(2)将△ABC 绕点O 按逆时针方向旋转180°得到△A 2B 2C 2,请画出△A 2B 2C 2.22.(9分)如图,在△ABC 中,︒=∠90ACB ,CD ⊥AB , 垂足为D ,︒=∠35BCD . 求:(1)EBC ∠的度数;(2)A ∠的度数.对于上述问题,在以下解答过程的空白处填上适当的内容(理由或数学式). 解:(1)∵AB CD ⊥(已知)∴CDB ∠= ∵EBC ∠是BCD ∆的外角∴BCD CDB EBC ∠+∠=∠( ) ∴=∠EBC +35°= . (等量代换) (2)∵EBC ∠是ABC ∆的外角∴ACB A EBC ∠+∠=∠∴ACB EBC A ∠-∠=∠( ) ∵︒=∠90ACB (已知)∴A ∠= -90°= . (等量代换)23.(9分)小明家新房装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块. (1)两种型号的地砖各采购了多少块?(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过...3200元,那么彩色地砖最多能采购多少块?24.(9分)如图, 正方形ABCD 中, ADE ∆经顺时针...旋转后与ABF ∆重合. (1)旋转中心是点_________,旋转了__________度;(2)如果8,4CF CE ==,求:四边形AFCE 的面积.25.(13分)某商店收银台现有零钱1元、5元、10元三种纸币,共计130张,合计300元,其中10元纸币比5元纸币少10张.假设一元纸币数量为x张,5元纸币数量为y 张.(1)根据题意,填写下表中的空格:1元5元10元合计数量(张)x y130钱数(元)x5y300 (2)求出x、y的值;(3)现有一名顾客拿一张100元纸币要向收银员换取1元或5元的零钱,要求1元的张数不超过5元的张数,求收银员在分配1元、5元的张数时共有哪几种方案?26.(13分)在ABC ∆中,已知A α∠=.(1)如图1,ACB ABC ∠∠、的平分线相交于点P .①当70α=时,∠BPC 的度数=_____________°(直接写出结果); ②BPC ∠的度数为 (用含α的代数式表示);(2)如图2,ACB ABC ∠∠、的平分线相交于点P ,作ABC ∆外角NCB ∠∠、MBC的角平分线交于点Q .求BQC ∠的度数(用含α的代数式表示).(3)拓展:如图3,点M N 、分别为AB AC 、延长线上的一点, 点P 、Q 分别在ABC ∆内部、外部,且满足ABC n PBC ∠=∠,n ACB PCB ∠=∠,MBC n QBC ∠=∠, QCB n NCB ∠=∠.求:BPC ∠、BQC ∠的度数(用含n α、的代数式表示)._ P_ A_ B_ C(图1)_ A_ B_ C _ P_ Q_ M_ N(图3)_ Q_ P_ A_ B_ C _ M_ N(图2)南安市2014—2015学年度下学期期末教学质量抽查初一数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一步没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确作完该步应得的累计分数. (四)评分最小单位是1分,得分或扣分都不出现小数. 一、选择题(每小题3分,共21分)1.C ; 2.B ; 3.D ; 4.A ; 5.B ; 6.C ; 7.B ; 二、填空题(每小题4分,共40分)8、x >2 9、7 10、x 31- 11、1 12、答案不唯一,如072 等 13、023≥-a 14、3 15、6 16、20 17、(1)085 (2)0140 三、解答题(9题,共89分) 18.(1)(本小题7分)(1)解:3364x x +-≤……………………………………………………………(2分)3643-≤-x x ……………………………………………………………(4分)3x -≤……………………………………………………………(5分) 3x ≥-……………………………………………………………(7分)(2)(本小题7分)解:解不等式①,得x ≥0;……………………………………………(2分) 解不等式②得,x<1,……………………………………………(4分) 在数轴上表示为:……………………………………(5分)故此不等式的解集为:0≤x ≤1.……………………………………………(7分) 19、(本小题7分) 解:,①+②得:5x =10,∴ x =2,…………………………………………………………(3分) 将x =2代入①得:y =1,…………………………………………………………(6分)∴方程组的解为.…………………………………………………………(7分)20、(本小题7分)⎪⎩⎪⎨⎧=-=+++=9310y x z y x z y x 解法1:把①分别代入②、③得,⎩⎨⎧=+=+9321022z y z y ……………………………………………(2分) 解得,⎩⎨⎧-==16z y ……………………………………………(4分) 把⎩⎨⎧-==16z y 代入①得 5=x ……………………………………………(6分)∴方程组的解为⎪⎩⎪⎨⎧-===165z y x .……………………………………………(7分)解法2:把①代入②得,102=x ……………………………………………(2分) 解得,5=x…………………① …………………②…………………③把5=x 代入③得 915=-y ……………………………………………(4分) 解得,6=y把5=x ,6=y 代入①得,1-=z ……………………………………………(6分)∴方程组的解为⎪⎩⎪⎨⎧-===165z y x .……………………………………………(7分)21、解:(1)如图所示:△A 1B 1C 1,即为所求; (2)如图所示:△A 2B 2C 2,即为所求.22、解:(1)∵AB CD ⊥∴CDB ∠=90° ………………………………………(2分) ∵BCD CDB EBC ∠+∠=∠ (三角形的外角等于与它不相邻两个内角的和)…(4分) ∴=∠EBC 90°+35°=125°. …………………………(6分) (2)∵ACB A EBC +∠=∠∴ACB EBC A ∠-∠=∠.(等式的性质)……(7分 )∵︒=∠90ACB (已知)∴A ∠=125°-90°=35°. (等式的性质) ..............................(9分) 23、解:(1)设彩色地砖采购x 块,单色地砖采购y 块,由题意,得 (1)),……………………………………………(3分)解得:.……………………………………………(5分)答:彩色地砖采购40块,单色地砖采购60块;(2)设购进彩色地砖a 块,则单色地砖购进(60﹣a )块,由题意得………………(6分)80a +40(60﹣a )≤3200,……………………………………………(8分)解得:a ≤20.∴彩色地砖最多能采购20块.……………………………………………(9分)24、解:(1)A ,90………………………………………………………………………(4分)(2)解法1:ADE ∆经顺时针...旋转后与ABF ∆重合 ADE ABF ∆≅∆∴,ADE ABF S S ∆∆=……………………………………………(5分) 设DE x =,y CD =,则BF DE x ==,y CD BC ==,又8,4CF CE ==∴⎩⎨⎧=-=+48x y x y ……………………………………………(6分) ∴⎩⎨⎧==26x y …………………………………………………(7分) .3662A BCD A BCE A BCE A FCE ===+=+=∴∆∆正方形四边形四边形四边形S S S S S S AD E ABF (9分)解法2:ADE ∆经顺时针...旋转后与ABF ∆重合 ADE ABF ∆≅∆∴,ADE ABF S S ∆∆=………………………………………………………(5分)设DE x =,则BF DE x ==又8,4CF CE ==8,4BC x CD x ∴=-=+………………………………………………………(6分) 四边形ABCD 为正方形BC CD ∴=,即84x x -=+…………………………………………………………(7分) 解得2x =……………………………………………………………………………(8分) .3662A BCD A BCE A BCE A FCE ===+=+=∴∆∆正方形四边形四边形四边形S S S S S S AD E ABF 9分25. 解:(1)1元 5元 10元 总和 张数x y 10y - 130 钱数 x5y 10(10)y - 300………………(2分)(2)由(1)可列出方程组 10130510(10)300x y y x y y ++-=⎧⎨++-=⎩ ………………………(4分) 即214015400x y x y +=⎧⎨+=⎩解得10020x y =⎧⎨=⎩…………………(6分) (3)设分配1元纸币a 张,5元纸币b 张,由题意得5100a b +=,………………(7分) 所以1005a b =-,………………………………………………………………………(8分)又因为a b ≤,所以1005b b -≤,解得503b ≥………………………………………(9分) 由(2)知5元纸币数量最多为20张,所以取17181920b =、、、……………………(10分) 对应的151050a =、、、 答:收银员在分配1元、5元的张数时共有四种方案:1元15张,5元17张;1元10张,5元18张; 1元5张,5元19张;1元0张, 5元20张. ………………………(13分)26.解:(1)① 125;……………………………………………………………………(2分)②1902BPC α∠=+. ……………………………………………………(4分)(2)由(1)得1902BPC α∠=+; 四边形 BPCQ 中 ,1180902PBQ PCQ ∠=∠=⨯=………………(6分) 360Q PBQ PCQ P ∴∠=-∠-∠-∠………………………………………(7分)11180180(90)9022P αα=-∠=-+=-………………………(8分) (3)①BPC ∠的度数为180180n nα-+,理由如下: ABC ∆中,180A ABC ACB ∠+∠+∠=,A α∠= 180ABC ACB α∴∠+∠=- …………………………………………………(9分) ,ABC n PBC ACB n PCB ∠=∠∠=∠,180n PBC n PCB α∴∠+∠=- 180PBC PCB n nα∴∠+∠=-……………………………………………………(10分) 180180()180BPC PBC PCB n n α∴∠=-∠+∠=-+…………………………(11分)②BQC ∠的度数为180180n nα--,理由如下: 由①得180180BPC n nα∠=-+ ,ABC n PBC MBC n CBQ ∠=∠∠=∠180ABC MBC n PBC n CBQ ∴∠+∠=∠+∠= 180PBC CBQn∴∠+∠=,即180PBQ n ∠= 同理可得180PCQn∠=………………………………………………………(12分)四边形 BPCQ 中,180PBQ PCQ n ∠=∠=,180180BPC n n α∠=-+ 360Q PBQ PCQ P ∴∠=-∠-∠-∠180180180360(180)n n n nα=----+ 180180180360180n n n nα=---+- 180180n n α=--………………………………………………………(13分)。