圆的参数方程及参数方程与普通方程的互化课件
圆的参数方程PPT教学课件
y=b+rsinθ
可得圆的普通方程 (x-a)2 +(y-b)2 =r2
例1、把下列参数方程化为普通方程
x 12cos (1)y 32sin
(为参数)
(2)xy a2b2((tt
1)
t (为参数, ab0)
1) t
例2、讨论下列两圆的位置关系:
练习: 1、若点P在圆(x-3)2 +(y+4)2 =25上,试求x+2y
的取值范围。 2、对于圆x2+(y-1)2=1上任一点P(x,y),不等 式X+y+m≥0恒成立,求实数m的取值范围。
PPT精品课件
谢谢观看
Thank You For Watching
10
x=f(t) ③并且对于t的每一个允许值,由方程
y=g(t)
组 ③所确定的点M(x,y)都在这条曲线上,那么方 程组 ③就叫做这条曲线的参数方程, 联系x,y之间 关系的变数t叫做参变数,简称参数 (参数方程中的参数可以是有物理、几何意义
的变数,也可以是没有明显意义的变数。)
练习:(1)
概念:相对于参数方程来说,以前所学的直接给出 曲线上点的坐标关系的方程叫做曲线的普通方程。
y=rsinθ y
P
rθ
O
Po x
方程, θ为参数。
追问:圆心为O1(a,b),半径为r的圆的参数方程 是什么? (a,b)=(x,y)-(rcosθ, rsinθ)
x=a+rcosθ ②y
y=b+rsinθ
O
O1(a,b) P(x,y)
P1(rcosθ ,rsinθ) x
定义:一般地,在取定的坐标系中,如果曲线上 任意一点的坐标x,y都是某个变数 t 的函数,即
参数方程的概念及圆的参数方程 课件
类型三 圆的参数方程及应用
例3 如图,圆O的半径为2,P是圆O上的动 点,Q(4,0)在x轴上.M是PQ的中点,当点P绕 O作匀速圆周运动时, (1)求点M的轨迹的参数方程,并判断轨迹所 表示的图形;
(2)若(x,y)是M轨迹上的点,求x+2y的取值范围. 解 x+2y=cos θ+2+2sin θ= 5sin(θ+φ)+2,tan φ=12. ∵-1≤sin(θ+φ)≤1, ∴- 5+2≤x+2y≤ 5+2.
类型二 求曲线的参数方程
例2 如图,△ABP是等腰直角三角形动,求点P在第一象限的轨迹的参数方程.
反思与感悟 求曲线参数方程的主要步骤 (1)画出轨迹草图,设M(x,y)是轨迹上任意一点的坐标. (2)选择适当的参数,参数的选择要考虑以下两点 ①曲线上每一点的坐标x,y与参数的关系比较明显,容易列出方程; ②x,y的值可以由参数惟一确定. (3)根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐 标与参数的函数关系式,证明可以省略.
参数方程的概念及圆的参数方程
知识点一 参数方程的概念
思考 在生活中,两个陌生的人通过第三方建立联系,那么对于曲线上 点的坐标(x,y),直接描述它们之间的关系比较困难时,可以怎么办呢? 答案 可以引入参数,作为x,y联系的桥梁.
梳理 参数方程的概念
(1)参数方程的定义
在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某 个变数t(θ,φ,…)的函数xy= =fgtt,,①并且对于t的每一个允许值, 由方程组①所确定的点M(x,y) 都在这条曲线上 ,那么方程①
就叫做这条曲线的 参数方程 ,t叫做 参数,相对于参数方程而言,
直接给出点的坐标间关系的方程叫普通方程 .
(2)参数的意义 参数 是联系变数x,y的桥梁,可以是有物理 意义或 几何意义的变数, 也可以是没有明显实际意义的变数. 特别提醒:普通方程和参数方程是同一曲线的两种不同表达形式,参数 方程可以与普通方程进行互化.
圆的参数方程精选教学PPT课件
P
M
由线段中点坐标公式得点M的轨迹
的参数方程为xy
6 2c
2 sin
os
O
4B
10 A(12,0)
解法2(动点转移法或代入法) : 设点M的坐标是(x, y),点P的坐标为
(x1, y1).因为点P在圆x2 y2 16上,所以有x12 y12 16.1
由线段中点坐标公式得x
x f (t)
y
g(t)
并且对于t的每一个允许值,由上述方程组所 确定的点M(x,y)都在这条曲线上,那么上述 方程组就叫做这条曲线的参数方程 ,联系x、 y之间关系的变数叫做参变数,简称参数。参 数方程的参数可以是有物理、几何意义的变数, 也可以是没有明显意义的变数。
相对于参数方程来说,前面学过的直接给 出曲线上点的坐标关系的方程,叫做曲线的普 通方程。
生死教会她锐利果敢。所以她说,那一刻,没有一个母亲,会如苏珊般高贵沉着。 九天九夜的追捕,孩子们找到了。不在暗夜不在森林,而沉在冰冷的湖底。苏珊,终于向警方自首,的确是她,因为一点情欲的贪念,亲手杀了自己的孩子。
1994年的事了。偶尔在一本书里,读到前因后果,和那陌生女子的信。我低一低头,其实并没有泪。我想我懂。 我尚不及为人母,也不曾遭逢死亡,我却曾站在高处林下,看着爱人轻快远去,仿佛有鹳雀在他鞋底翻飞,他是急着赶另一个女子的约会吧?真相凄厉地直逼眼前。不是不知道,在泪落之前应该说再见,我却做不到。因为我爱他。
x a r cos y b r sin
课件制作:湘潭县一中 李小清
1.参数方程的概念
(1)圆心在原点
2.圆的参数方程 的圆参数方程 (2)圆心不在原 点的圆的参数方程
参数方程普通方程的互化
由参数方程
x y
cos sin
3,
(
为参数)直接判断点M的轨迹的
曲线类型并不容易,但如果将参数方程转化为熟悉的普通
方程,则比较简单。
由参数方程得:
cos sin
x y
3,sin2
cos2
(x
3)2
y2
1
所以点M的轨迹是圆心在(3,0),半径为1的圆。
知识点分析
1.参数方程和普通方程的互化:
参数方程和普通方程的互化:
(2)普通方程化为参数方程需要引入参数
如:①直线L 的普通方程是2x - y+2= 0,可以化为参数方程
x
y
t, 2t
(t为参数)
2.
②在普通方程xy=1中,令x = tan,可以化为参数方程
x tan ,
y
cot .
(为参数)
示例分析
例3 求椭圆 x2 y2 1的参数方程。 94
x y
t2 t4
B 、
x y
sin sin
t
t
C、x t y t
D、
x y
t t
2
分析: 在y=x2中,x∈R, y≥0, 在A、B、C中,x,y的范围都
发生了变化,因而与 y=x2不等价; 而在D中,
x,y范围与y=x2中x,y的范围相同,
x t
且以
y
t2
代入y=x2后满足该方程,从而D是曲线y=x2的一种参数方程.
注意:在参数方程与普通方程的互化中,必须使x,y的
取值范围保持一致。否则,互化就是不等价的.
示例分析
示例1、把下列参数方程化为普通方程,并说明它们 各表示什么曲线?
圆的参数方程及参数方程与普通方程的互化 课件
解析:由曲线的参数方程xy==-1+2+2co2ssitn,t
得yx+-21==22scions
t, t.
∵cos2t+sin2t=1,
∴(x-1)2+(y+2)2=4.
由于 0≤t≤π,
∴0≤sin t≤1,从而 0≤y+2≤2, 即-2≤y≤0. ∴所求的曲线的参数方程为 (x-1)2+(y+2)2=4(-2≤y≤0). 这是一个半圆,其圆心为(1,-2),半径为 2.
(t 为参数).
题型1 圆的参数方程与普通方程互化
例 1 已知曲线的参数方程yx==-1+2+2co2ssitn,t (0≤t≤π),把 它化为普通方程,并判断该曲线表示什么图形.
分析:把曲线的参数方程化为普通方程,就是将参数 方程中的参变量消去,常用的消参法有代入法、加减消元 法、乘除消元法、三角消元法,但要注意消去参数时变量 范围的一致性.
5cos θ-12+5sin θ2 = 26+10cos θ+ 26-10cos θ
= ( 26+10cos θ+ 26-10cos θ)2
= 52+2 262-100cos2θ. 当 cos θ=π2时,(|PC|+|PD|)max= 52+52=2 26. 所以|PC|+|PD|的最大值为 2 26.
题型2 圆的参数方程应用
例 2 圆的直径 AB 上有两点 C、D,且|AB|=10,|AC| =|BD|=4,P 为圆上一点,求|PC|+|PD|的最大值.
分析:本题应考虑数形结合的方法,因此需要先建立 平面直角坐标系,将P点坐标用圆的参数方程的形式表示 出来,θ为参数,那么|PC|+|PD|就可以用只含有θ的式子 来表示,再利用三角函数等相关知识计算出最大值.
圆的参数方程及参数方程与普通方程的互化
圆的参数方程及参数方程与普通方程的互化
圆的参数方程及参数方程与普通方程的互化圆是平面几何学中最基本的几何形状之一、在直角坐标系下,圆可以使用普通方程或者参数方程来表示。
参数方程是一种使用参数来表示平面上每个点的方程形式,它与普通方程之间存在一种互化关系,可以通过互相转换来描述同一个圆。
下面我们将详细介绍圆的参数方程以及参数方程与普通方程的互化关系。
一、圆的参数方程1.确定圆心和半径设圆心为(a,b),半径为r。
2.使用参数表示圆上每个点设参数t为圆上任意一点与圆心的连线之间的夹角,以及圆心到该点的线段的长度与半径r的比值。
3.圆的参数方程x = a + r * cos(t)y = b + r * sin(t)这个参数方程描述了圆上每个点的坐标。
参数方程和普通方程是用不同的数学表达形式来描述同一个几何对象的方式。
通过互相转换,我们可以在这两种方程之间进行转换。
1.从参数方程转换为普通方程在参数方程中,我们可以通过消去参数t来得到普通方程。
具体步骤如下:- 在参数方程中,将 x 和 y 分别表示为 x = a + r * cos(t) 和 y = b + r * sin(t)。
-将上述两个方程平方,并对它们求和,得到(x-a)^2+(y-b)^2=r^2-整理上述方程,可以得到普通方程形式(x-a)^2+(y-b)^2=r^2,它描述了圆的方程。
2.从普通方程转换为参数方程在普通方程中,我们可以通过引入参数t来得到参数方程。
具体步骤如下:-在普通方程中,将(x-a)^2+(y-b)^2=r^2表示为(x-a)^2+(y-b)^2-r^2=0。
-使用参数t来表示(x-a)^2+(y-b)^2-r^2=0的参数方程。
- 令 x = a + r * cos(t) 和 y = b + r * sin(t),则 (x - a)^2 + (y - b)^2 - r^2 = 0 成立。
- 这样我们就得到了参数方程 x = a + r * cos(t) 和 y = b + r * sin(t),描述了圆的方程。
高中数学第二讲参数方程一第二课时参数方程和普通方程的互化课件新人教A版
1
2
3
4
5
答案
2 x = 2 + sin θ, 2.将参数方程 (θ为参数)化成普通方程为 2 y=sin θ
A.y=x-2
B.y=x+2
C.y=x-2(2≤x≤3) √
∴y=x-2.
D.y=x+2(0≤y≤1)
解析 由x=2+sin2θ,得sin2θ=x-2,代入y=sin2θ, 又sin2θ=x-2∈[0,1],∴x∈[2,3].
解答
(2)若点P是曲线C上任意一点,P点的直角坐标为(x,y),求x+2y的最 大值和最小值.
解
x=2+ 2cos θ, 由(1)知曲线 C 的参数方程为 (θ 为参数), y=2+ 2sin θ
所以 x+2y=(2+ 2cos θ)+2(2+ 2sin θ)
1 =6+ 2(cos θ+2sin θ)=6+ 10sin(θ+φ),tan φ=2.
两式平方相加得(x-2)2+y2=9, 即普通方程为(x-2)2+y2=9.
解答
类型二 普通方程化为参数方程
例2 程.
已知圆C的方程为x2+y2-2x=0,根据下列条件,求圆C的参数方
(1)以过原点的直线的倾斜角θ为参数;
解答
(2)设x=2m,m为参数. 解 把x=2m代入圆C的普通方程,得4m2+y2-4m=0,
普通方程,求出另一个变数与参数的关系 ,那么 就是曲 x = f t , y=g(t) 线的参数方程. y=gt,
(2)参数方程化为普通方程的三种常用方法 ①代入法:利用解方程的技巧求出参数t,然后代入消去参数; ②三角函数法:利用三角恒等式消去参数; ③整体消元法:根据参数方程本身的结构特征,从整体上消去. 特别提醒:化参数方程为普通方程F(x,y)=0,在消参过程中注意变量 x,y的取值范围,必须根据参数的取值范围,确定f(t) 和g(t)的值域得x , y的取值范围.
参数方程的概念 圆的参数方程ppt课件
3,32 是否在曲线C上?若在曲线上,求出点对应的参
数的值.
上一页
返回首页
下一页
【解】
把点A(2,0)的坐标代入yx==32scions
θ, θ,
得cos θ=1且sin θ=0,
由于0≤θ<2π,解之得θ=0,
因此点A(2,0)在曲线C上,对应参数θ=0.
同理,把B-
3,32代入参数方程,得
- 3=2cos θ, 32=3sin θ,
[小组合作型]
已知曲线C的参数方程是
x=1+2t y=at2
(t为参数,a∈R),点M(-3,4)
在曲线C上.
(1)求常数a的值;
(2)判断点P(1,0),Q(3,-1)是否在曲线C上?
上一页
返回首页
下一页
【思路探究】 (1)将点M的横坐标和纵坐标分别代入参数方程中的x,y, 消去参数t,求a即可;
(θ为参数)
上一页
返回首页
下一页
圆的参数方程为:yx==22s+in2θcos θ (θ为参数),则圆的圆心坐标为(
)
A.(0,2)
B.(0,-2)
C.(-2,0)
D.(2,0)
【解析】 圆的普通方程为(x-2)2+y2=4, 故圆心坐标为(2,0).
【答案】 D
上一页
返回首页
下一页
参数方程的概念
(2)要判断点是否在曲线上,只要将点的坐标代入曲线的普通方程检验即 可,若点的坐标是方程的解,则点在曲线上,否则,点不在曲线上.
上一页
返回首页
下一页
【自主解答】
(1)将M(-3,4)的坐标代入曲线C的参数方程
x=1+2t, y=at2,
参数方程参数方程和普通方程的互化ppt
参数方程和普通方程的优缺点比较
03
参数方程和普通方程的应用场景
03
电磁学
在研究电磁场时,参数方程可以用来描述电场和磁场的变化。
物理问题中的参数方程应用
01
运动学
参数方程常用于描述物体的运动轨迹,例如,物体质点的位置随时间的变化。
02
波动
参数方程可以用来描述波的传播,例如,振幅随时间的变化。
解析几何
参数方程通常用于描述具有某些特定变化规律的问题,如运动轨迹、物理实验数据等。
参数方程的定义
普通方程又叫直角坐标方程,它是一种以x、y坐标轴为基准的平面图形表示方式,通过x、y坐标轴上点的坐标来表示图形上的点。
普通方程通常用于描述几何图形、函数图像等平面图形。
普通方程的定义
将参数方程转化通方程更加直观易懂。
案例二:圆方程的参数形式
椭圆方程的参数形式通过使用两个参数,描述椭圆在坐标系中的位置和形状。
总结词
椭圆方程的一般形式是 (x - a)2/b2 + (y - c)2/d2 = 1,其中 (a, c) 是椭圆中心的坐标,b 和 d 是椭圆的长半轴和短半轴
详细描述
案例三:椭圆方程的参数形式
05
总结与展望
2023
参数方程参数方程和普通方程的互化
目录
contents
参数方程和普通方程的基本概念参数方程和普通方程的互化方法参数方程和普通方程的应用场景参数方程和普通方程的案例分析总结与展望
01
参数方程和普通方程的基本概念
参数方程是一种描述某一变化过程的数学表达方式,其中包含一个或多个参数,这些参数是变化的,而参数的变化规律则由参数方程来描述。
参数方程的优势
圆方程转化为参数方程
圆的一般方程为(x−ℎ)2+(y−k)2=r2,其中(ℎ,k)是圆心的坐标,r是半径。
将这个方程转化为参数方程可以通过参数化x和y来表示圆上的点。
假设参数为t,则参数方程为:
x=ℎ+rcos(t)
y=k+rsin(t)
这里的参数t可以在区间[0,2π)上变化,以覆盖整个圆。
具体步骤:
1.一般方程:
圆的一般方程为(x−ℎ)2+(y−k)2=r2。
2.完成平方:
将一般方程展开并完成平方,得到x2−2ℎx+ℎ2+y2−2ky+k2=r2。
3.分离变量:
将x和y的项分开,得到x2−2ℎx+ℎ2+y2−2ky+k2=r2。
4.将ℎ2和k2移到一边:
得到x2−2ℎx+y2−2ky=r2−ℎ2−k2。
5.完全平方:
将x2−2ℎx+ℎ2和y2−2ky+k2表示为完全平方,得到(x−ℎ)2+
(y−k)2=r2−ℎ2−k2。
6.参数方程:
将r2−ℎ2−k2表示为r2cos2(t)+r2sin2(t),并将x−ℎ表示为rcos(t)和
y−k表示为rsin(t),得到参数方程:
x=ℎ+rcos(t)
y=k+rsin(t)
这样,就成功将圆的一般方程转化为参数方程。
在参数方程中,当t在区间[0,2π)
上变化时,会覆盖整个圆。