最新浙教初中数学七年级上《1.4 有理数大小比较》word教案 (2)
浙教版七年级数学上册:1.4 有理数的大小比较 学案
1 / 3有理数的大小比较【学习目标】1.掌握有理数大小的比较法则。
2.会比较有理数的大小,并能正确地使用“>”或“<”号连结。
3.初步会进行有理数大小比较的推理和书写。
【学习重难点】重点:有理数的大小比较法则。
难点:两个负数比较大小的绝对值法则。
两个负分数比较大小的推理过程。
【学习过程】一、自学指导1.两个负数比较大小和两个整数比较大小有什么不同之处?2.有理数在数轴上的位置有什么关系二、课堂检测1.比较- 和- 的大小。
2.比较-0.5,- ,0.5的大小,应有( ) A .- >-0.5>0.5 B .0.5>- >-0.5 C .-0.5>- >0.5 D .0.5>-0.5>-3.将有理数0,-3.14,- ,2.7,-4,0.14按从小到大的顺序排列,用“<•”号连接起来。
4.把-3.5,│-2│,-1.5,0的绝对值,3,- ,3.5•的相反数按从大到小的顺序排列起来。
5.比较- 与0.626363.6.设a=- ,b=- ,试比较a ,b 的大小。
151515151********13581919919119912 / 37.在有理数-π, 0,│-(-3 )│,-│+1000│,-(-5)中最大的数是( ) A .0 B .-(-5) C .-│+1000│ D .-π8.比较下列每对数大小:(1)-(-5)与-│-5│; (2)-(+3)与0;(3)- 与-│- │; (4)-π与-│3.14│。
三、快乐晋级1.在7,-6,- ,0,- , 0.01中,绝对值小于1的数是________。
2.绝对值最小的有理数是_______,绝对值最小的负整数是________。
3.│-2005│的倒数是________。
4.若a<0,b<0,且│a │>│b │,那么a ,b 的大小关系是________。
【最新浙教版精选】浙教初中数学七上《1.4 有理数大小比较》word教案 (2).doc
1.4 有理数的大小比较一、教学目标1、使学生能说出有理数大小的比较法则2、能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。
3、能正确运用符号“<”“>”“∵”“∴”写出表示推理过程中简单的因果关系。
二、重点、难点。
重点:运用法则借助数轴比较两个有理数的大小。
难点:利用绝对值概念比较两个负分数的大小。
三、教学准备:多媒体课件 四、教学设计(一)交流对话,探究新知1、说一说(多媒体显示)某一天我国5个城市的最低气温从刚才的图片中你获得了哪些信息? 比较这一天下列两个城市间最低气温的高低(填“高于”或“低于”)广州_______上海;北京________上海;北京________哈尔滨;武汉________哈尔滨;武汉__________广州。
2、画一画:(1)把上述5个城市最低气温的数表示在数轴上,(2)观察这5个数在数轴上的位置,从中你发现了什么?(3)温度的高低与相应的数在数轴上的位置有什么? (通过学生自己动手操作,观察、思考,发现原点左边的数都是负数,原点右边的数都是正数;同时也发现5在0右边,5比0大;10在5右边,10比5大,初步感受在数轴上原点右边的两个数,右边的数总比左边的数大。
教师趁机追问,原点左边的数也有这样的规律吗?)由小组讨论后,教师归纳得出结论: 在数轴上表示的两个数,右边的数总比左边的数大。
正数都大于零,负数都小于零,正数大于负数。
(二)应用新知,体验成功1、例1:在数轴上表示数5,0,-4,-1,并比较它们的大小,将它们按从小到大的顺序用“<”号连接。
(师生共同完成)分析:本题意有几层含义?应分几步?小组讨论归纳,本题解题时的一般步骤:①画数轴②描点;③有序排列;④不等号连接。
()2、做一做(1)在数轴上表示下列各对数,并比较它们的大小①2和7 ②-6和-1 ③-6和-36 ④-12和-1.5 (2)求出图中各对数的绝对值,并比较它们的大小。
浙教版七上《有理数的大小比较》word教案
1.5有理数的大小比较【课前热身】1.数轴上表示的两个数,________的数比________的数大(填写左边和右边).2.正数都___________零,____________都小于零,正数_______负数.3.两个正数比较大小,______的数大,两个负数比较大小,___________的数反而小.4.比较大小:0_____0.01,-5________-4.(填“<” “>”)5.在0,-2,1,2四个数中,最小的数是 ( )A .0B .1C .-2D .26.下列说法不正确的是 ( )A .正数大于—切负数B .零大于—切负数C .零小于—切正数D .有理数的绝对值都太于零【课堂讲练】典型例题1 比较20101-与-20091的大小.巩固练习1 比较 20092010-与19992000-的大小.典型例题 2 有理数a ,b 在数轴上的位置如图所示,请你比较-a,-b,a,b,的大小,并“<”连接.巩固练习2 观察下图,再比较大小:(1)将“a ,b ,c ,0”这四个数按从小到大的顺序排列:________________.(2)将“-a ,b ,| c |,0”这四个数按从小到大的顺序排列:-__________________________.【跟踪演练】一、选择题1.在数轴上,-2,-21,-31,0这四个数所对应的点从左到右排列的顺序是 ( )A .0,-31,-21,-2B .-2,-21,-31,0C .0,-31,-21,-2D .-2,-31,-21,0 2.下列各式中,正确的是 ( )A .-|-16 |>0B .| 0.2 |>|-0.2 |c .-74 >-75 D .|-6| < 03.大于-3的负整数的个数是 ( )A .2B .3C .4D .无数个4.若a=- ,b = -3.14,c =331,则下列结论正确的是 ( )A .a<b<cB .c<a<bC .| a |>| b |>| c |D .| c |>| b |>| a |二、填空题5.比较大小:-2_______-3,0_____|-821|,-32_________-436.大于-l .5且小于4.2的整数有_________个,它们分别是_______________________.7.将-1918,-199198,-19991998按从小到大的顺序排列起来:-____________________________三、解答题8.先把3.5,-2.5,0,-l ,3表示在数轴上,再按从小到大的顺序用“<”连接.9.有理数X ,Y 在数轴上的对应点,如图所示:(1)在数轴上表示-x ,-y ;(2)试把x ,y ,0,-x ,-y 这五个数按从大到小的顺序用“>”连接起来.10.对于—个数,给定条件A :负整数,且大于-3;条件B :绝对值等于2.(1)分别写出满足条件A ,B 的数.存在,求出该数;若不存在,说明理由.参考答案:【课前热身】1.右边左边2.大于负数大于3.绝对值大绝对值大4.< <5.C6.D 【课堂讲练】典型例题1 解析:只需比较这两个数的绝对值的大小即可. 【答案】因为|-20101|=20101﹤|-20091|=20091,-20101﹥-20091 巩固练习1 解:-20092010>-19992000 典型例题2 解析:只需要将四个数标在数轴上,再利用数轴进行比较. 解:因为a 与-a ,b 与-b 都是互为相反数,可以根据在数轴上它们离开原点的距离是一样的来把它们标在数轴上,所以由数轴可得:a<-b<b<-a.巩固练习2 (1)a<b<0<c (2)b<0<|c|<-a【跟踪演练】1.B2.C3.A4.B5.> < >6.6 -1,0,1,2,3,47.-19991998 < -199198< -1918.数轴略,-2.5 < -1 < 0 < 3 < 3.5 9.(1)图略(2) x > -y > 0 > y > -x 10.(1)满足条件A 的数是:-2,-1.满足条件B 的数:±2. (2)存在,是-2.。
浙教版数学七年级上册1.5《有理数的大小比较》教学设计
浙教版数学七年级上册1.5《有理数的大小比较》教学设计一. 教材分析浙教版数学七年级上册1.5《有理数的大小比较》是学生在学习了有理数的概念之后,进一步探究有理数的大小关系。
本节课的主要内容是通过比较有理数的大小,让学生掌握有理数大小比较的方法和法则,为后续的数学学习打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的概念有了初步的了解。
但是,对于有理数的大小比较,他们可能还存在着一些困惑和模糊的地方。
因此,在教学过程中,教师需要耐心引导学生,让学生通过观察、思考、操作、交流等活动,自主探索有理数大小比较的方法。
三. 教学目标1.理解有理数大小比较的法则。
2.能运用有理数大小比较的方法,解决实际问题。
3.培养学生的逻辑思维能力和数学语言表达能力。
四. 教学重难点1.教学重点:有理数大小比较的法则。
2.教学难点:有理数大小比较的方法和应用。
五. 教学方法采用问题驱动法、案例分析法、合作交流法等,引导学生主动探究,合作学习,提高学生的数学素养。
六. 教学准备1.准备相关的教学案例和问题。
2.准备多媒体教学设备,如投影仪、电脑等。
七. 教学过程1.导入(5分钟)教师通过向学生提出问题:“你们在日常生活中,有没有遇到过需要比较大小的情况?比如,比较两个苹果的大小,比较两条线段的长度等。
”让学生思考,引出本节课的主题——有理数的大小比较。
2.呈现(10分钟)教师通过PPT或黑板,向学生展示一些具体的有理数,如2、-3、1/2、-1/3等,引导学生观察这些数的大小关系,让学生初步感知有理数的大小比较。
3.操练(10分钟)教师提出一些有关有理数大小比较的问题,让学生分组讨论,共同探究。
比如:“比较2和-3的大小,比较1/2和-1/3的大小。
”学生通过实际操作,得出有理数大小比较的法则:正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的其值反而小。
4.巩固(10分钟)教师通过一些练习题,让学生运用刚学到的有理数大小比较的方法,解决实际问题。
最新版初中数学教案《有理数的大小比较 2》精品教案(2022年创作)
绝对值第2课时有理数的大小比较一、新课导入1.课题导入:看教材第12页未来一周天气预报图,你能将这一周的温度按从低到高的顺序排列吗?这节课我们学习有理数的大小比较.2.学习目标:〔1〕知识与技能会利用绝对值比较两个有理数的大小.〔2〕过程与方法利用绝对值概念比较有理数的大小,培养学生的逻辑思维能力. 〔3〕情感态度敢于面对数学活动中的困难,有学好数学的自信心.3.学习重、难点:重点:进一步理解绝对值的意义;掌握有理数的大小比较方法. 难点:两个负数的大小比较方法.二、分层学习1.自学指导:〔1〕自学内容:教材第12页“思考〞到教材第13页第4行的内容.〔2〕自学时间:8分钟.〔3〕自学要求:借助数轴来归纳比较两个数大小的方法,看数轴上的点表示的数的大小有什么规律.〔4〕自学参考提纲:①说出数轴上各点所表示的数的大小顺序.a.把温度按从低到高的顺序排列后,在温度计上所对应的点是从下到上的;按照这个顺序把这些数表示在数轴上,表示它们的各点的顺序应该是从左到右的.b.数学中规定,在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数.②根据数轴上的点表示数的特征(原点右边的数表示正数,原点左边的数表示负数)和上述规定(即左边的数小于右边的数),可得到有理数的大小比较法那么一:正数大于0,0大于负数,正数大于负数.对于两个负数,在数轴上的对应点离原点越远,说明这个数的绝对值越大(填“大〞或“小〞),表示该数的点越往左(填“左〞或“右〞),因此可以得到有理数的大小比较法那么二:两个负数,绝对值大的反而小.③填空:〔填“>〞或“<〞〕-100<0 -50<12④-78和-89这两个负数谁大?怎样来比较?解:∵-|78|<|-89|,∴-78>-89⑤你能总结两个有理数的大小比较的根本思路和方法吗?相互交流一下.2.自学:同学们可结合自学指导进行自学和交流探讨.3.助学:〔1〕师助生:①明了学情:巡视课堂、关注学生的自学过程,了解学生的学习方法和进度,收集自学中存在的问题。
浙教版-数学-七年级上册-1.4 有理数的大小比较 教学设计
有理数大小的比较教学目标:会比较两个有理数的大小重点难点:重点:有理数大小比较的方法;难点:比较两个负数的大小教学过程:一、激情引趣,导入新课1.什么叫一个数的绝对值?(在数轴上,表示一个数的点离开原点的距离)2. (1)比较大小:5>3, 0.01>0, -1<0 ,(2)怎样比较下列每对数的大小? 3与-4,与 下面就让我们通过具体的问题来感受正数与正数、负数与负数的大小比较。
二、合作交流,探究新知1 观察与思考(1)(1)如图,珠穆朗玛峰海拔高度是8844.43米,吐鲁番盆地的海拔高度是-155米,哪个地方高?因此8844.43与-155那个大?珠穆朗玛峰高,前者大(2)今天的气温是30度,我冰箱里的气温调节为-1度,室外温度和我冰箱里的温度谁高?你是怎么知道的呢?因此30与-1哪个大?室外高,30大(3)某一天,老师对小亮和小明两位同学进行量化评估,老师给小亮记-3分,给小明记1分,,这天哪位同学表现好一些?因此-3与1哪个大?小明表现好,1大从上面几个问题,你发现了什么?正数大于负数做一做:比较大小:-1000<0.001,>-10,- <,0>-1,5>0观察与思考(2)(1)设海平面高度为0米,潜水员甲潜入海平面下方10米,记作-10米,潜水员乙潜入海1-22-31100012138844.43米 吐鲁番盆地 珠穆朗玛峰 -155米平面下方20米,记作-20米,哪位潜水员的位置低?由此看出:-10与-20哪个大?乙的位置低,-10大(2)今年1月1日,北京最低气温零下10°C,记作-10°C,浙江最低气温零下3℃,记作-3℃,哪个地方更冷?由此看出-10与-3哪个大?请你结合下面的数轴思考,你会发现什么?把结论填入下表。
两个负数绝对值大的数越小.在以向右为正方向的数轴上的两点,右边的点表示的数,总比比左边的点表示的数大. 做一做:1 比较下列两个数的大小:-100<-3,-4>-4.5, -1.5<-1.4,三、应用迁移,拓展提高1 比较两个负分数的大小例1 比较-和-的大小 = = - <- 2 求满足条件的数例2 若a 是整数,且,符合条件的a 有(A ) A 6个 B 5个 C 4个 D 3个例3(1) 整数x 满足<3,则x=-2,-1,0,1,2,(2)负整数x 满足,则x=-4,-5,-63 分类讨论例4 有人说2个多于1个,因此2a>a,你认为对吗?为什么? 不对,当a=0的时候2a=a 当a<0的时候2a<a四、反思小结,巩固升华有理数大小的比较有哪些方法?五作业:课本练习233521-4132a <<x 3x <≤6,352310156152335。
浙教版数学七年级上《有理数大小比较》精品教案2
浙教版数学七年级上《有理数大小比较》精品教案2Ⅰ.教学目标:1.知识目标:学生通过本节课的学习,能够掌握有理数大小比较的方法。
2.能力目标:培养学生比较有理数大小的能力。
3.情感目标:培养学生对有理数比较的兴趣,增强学生的学习主动性。
Ⅱ.教学重点和难点:1.教学重点:学习有理数大小比较的方法。
2.教学难点:培养学生比较有理数大小的能力。
Ⅲ.教学过程:步骤内容师生活动方式效果评价Step1.导入新课复习让学生回答为什么7/6>6/5?呈现一些真分数,讨论它们的大小,总结出判断真分数大小的方法。
课前布置,学生积极回答”若两个真分数,a/b与m/n(m<n),a/b翻倍后大于或等于m/n,那么a/b>m/n。
”得出公式a/b>m/n.回答问题正确Step2. 新知预告学生通过前面的讨论,了解了判断两个真分数大小的方法,那么对于两个有理数呢?我们再设判断有理数大小的方法。
呈现出两个有理数的分数形式,引导学生讨论。
学生积极讨论、思考问题有理数大小的确定,我们还可以通过它们的小数形式来比较。
解释清楚Step3. 学习新课设置情境,用例子引进它们的小数形式来判断它们的大小。
呈现一些小数,讨论它们的大小,总结出判断小数大小的方法。
总结得出”若两个小数,a与b(0<a<1,0<b<1),a和b的整数部分相同,小数部分中其中一位上a大于b,那么a>b;小数部分中其中一位上a等于b,小数部分中后面一些上有数,a大于b”.让学生再回答本节课我们所学两个判断有理数大小的方法。
引导学生回答问题学生解答正确Step4. 例题讲解老师板书一些例子。
老师在黑板上解释步骤内容师生活动方式效果评价学生先自己借助纸笔进行计算比较,然后与同桌进行讨论。
两位同学彼此讨论,并改正犯的错误Step5. 学生展示评价出示一些题目,学生将自己的答案告诉老师并说明答题思路。
学生将自己的答案向老师汇报Step6. 课堂作业布置将书上的作业做完,并算出答案。
七年级数学上册1.4有理数的大小比较教案
有理数的大小比较教学目标知识目标:掌握利用数轴和绝对值来比较有理数的大小的方法,初步学会数形结合的思想方法。
过程目标:经历从现实问题中来探索有理数的大小比较,从数形两个侧面理解与解决问题,使学生体会到数形结合数学思想方法的美。
情感目标:从学生熟悉的现实环境中学习有理数的大小比较,体会数学知识与现实世界的联系;通过自主探索、归纳来发现知识,使学生体验成功的乐趣。
教学重点与难点教学重点:利用数轴和绝对值来比较有理数的大小。
教学难点:比较两个负有理数的大小。
教学过程一、创设情境,引出新课下面是一组图片,表示某一天我国5个城市的最低气温。
(如P21 图1-11)请同学当天气播报员并体会这几个城市气温的高低。
再请同学们填写:(1)比较这一天下列各城市间的最低气温的高低(填“高于”或“低于”)广州-----上海上海-----北京北京-----哈尔滨哈尔滨-----武汉武汉-----广州10℃比0℃高0℃比-10℃高 -10℃比-20℃高 -10℃比-20℃高-20℃比5℃低话音刚落学生很快就说出结果,兴趣很高。
[师问]:如果任意给出两个有理数,如:4与-5,-99与-100,同学们怎麽来比较它们的大小?[生]:学生思考1分钟后,有些答出但不明确,有些学生根据气温的比较发现一点规律。
[师]:这节课我们就来讨论如何比较有理数的大小。
引入并揭示课题。
二、师生互动,讲授新课1、利用数轴比较有理数大小问题:把表示上述5个城市的最低气温的数表示在数轴上,观察这5个数在数轴上的位置,温度的高低与相应的数在数轴上的位置有什么关系?-20 -15 -10 -5 0 5 10 15[生]:画数轴并表示,观察、思考、总结数轴上数的特点。
学生讨论:联想温度计显示的温度,上边的温度比下边的温度高,如-5℃比-7℃高;同样,在数轴上右边的点表示的数总比左边的点表示的数大,如-5>-7。
[师]:请同学们思考一下:正数,0和负数三者的大小关系?[生]:请个别学生回答其他学生补充[学生总结]:数轴上的两个点表示的数,右边的数总比左边的大,正数大于0,负数小于0,正数大于负数。
《1.4有理数的大小比较》作业设计方案-初中数学浙教版12七年级上册
《有理数的大小比较》作业设计方案(第一课时)一、作业目标本作业设计旨在通过实践操作和理论应用,使学生能够熟练掌握有理数大小比较的基本方法和技巧,理解数轴的概念及其在比较大小中的应用,并能够运用所学知识解决实际问题。
二、作业内容1. 复习数轴概念:学生需回顾数轴的定义及数轴上点与数的一一对应关系,理解数轴上点表示的数值大小。
2. 掌握有理数分类:学生需根据数的性质,将有理数分为正数、负数和零,并理解各类数的特点及其在数轴上的位置。
3. 大小比较练习:学生需完成一组有理数的大小比较练习题,包括正整数、负整数、正小数和负小数等不同类型的数,通过比较练习加深对有理数大小关系的理解。
4. 运用数轴比较:学生需运用数轴比较两组数的大小关系,包括两个单独的数以及多个数的组合。
在操作过程中理解数轴对比较的辅助作用。
5. 实例应用:结合实际生活情境,解决一些涉及有理数大小比较的实际问题,如温度比较、成绩排名等。
三、作业要求1. 完成速度:学生需在规定时间内独立完成作业,培养时间管理能力和自主学习的习惯。
2. 准确性:学生需保证答案的准确性,理解每一步骤的逻辑和原因,并正确应用数学知识。
3. 规范性:书写应规范工整,计算过程应清晰明了,步骤齐全。
4. 独立思考:鼓励学生在解题过程中独立思考,培养分析问题和解决问题的能力。
5. 团队合作:可适当进行小组讨论,共同解决问题,促进团队合作能力的发展。
四、作业评价1. 完成情况:评价学生是否按时完成作业,以及完成的质量和态度。
2. 正确性:评价学生答案的正确性,包括计算过程和最终结果的准确性。
3. 创新性:鼓励学生尝试不同的解题方法,对于有创新性的答案给予积极评价。
4. 合作能力:评价学生在小组合作中的表现,如团队协作、沟通交流等。
五、作业反馈1. 反馈及时:教师需及时批改作业,对于错误的地方给予指出和纠正。
2. 指导性意见:根据学生的作业情况,给予具体的指导和建议,帮助学生更好地掌握知识。
浙教版-数学-七年级上册-1.4 有理数的大小比较 导学案
法则,另一种是利用数轴,当两个数比较时一般选用第一种,当多个 有理数比较大小时,一般选用第二种较好。
5、师生共同完成例 2 后,学生完成课内练习 2、3、4。
问:本堂课你有什么收获?(根据学生的回答作点评)
四、 作业 布置
1、作业本、 2、书中作业题。P20A组、B组(基础好的 A、B 两组都做,基础较 差的同学选做 A 组。)
“﹤”号连接。
不知不
——这种利用数轴对数排序,我们称作数轴比较法。在什么时候,用数 觉获得
轴比较法恰当?基本步骤又如何?
了知
——基本步骤:①把要比较的数表示在数轴上。②根据这些数在 识。
数轴上的位置,按自左向右,或自右向左重新排列。③用“﹤”或“﹥”
中的一种将它们连接。
1、练一练(师生共同完成例 1 后,学生完成随堂练习 1)
例 1:在数轴上表示数 5,0,-4,-1,并比较它们的大小,将它
们按从小到大的顺序用“<”号连接。(师生共同完成)
分析:本题意有几层含义?应分几步?
初中-数学-打印版
初中-数学-打印版
教学环节
教学内容
教师活动
学生活动
预期目标
二、 要点总结:小组讨论归纳,本题解题时的一般步骤:①画数轴②描点;
(让
则。
思考。)
(1)正数都大于零,负数都小于零,正数大于负数。
(2)两个正数比较大小,绝对值大的数大。
(3)两个负数比较大小,绝对值大的数反而小。
(4)在数轴上表示的两个数,右边的数总比左边的数大。
(数轴比较法适合多个有理数大小比较,法则适合两个有理数
三、 小结 回 顾, 反思 提高
【教案】1.4有理数的大小比较
1.4 有理数的大小比较
一、教学目标:
知识与技能:
1、使学生能说出有理数大小的比较法则
2、能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。
过程与方法:
通过有理数大小比较的探究活动,培养学生观察和动手操作的能力。
情感态度与价值观:
通过本课学习使学生感受到有理数大小比较与现实生活密切联系,体会比较数的大小在解决实际问题中的作用。
二、教学重点:运用法则借助数轴比较两个有理数的大小
三、教学难点:利用绝对值概念比较两个负数的大小
四、教材分析:有理数大小比较的提出是从学生生活熟悉的情境入手,借助于气温的高低及数轴得出有理数的大小比较方法,课本安排了“做一做”等形式的教学活动,让学生通过观察思考和自己动手操作,体验有理数大小比较法则的探索过程。
五、教学方法:情境教学法
六、教具:幻灯片
七、课时安排:1课时
八、教学过程:
附板书设计:
教学反思:在传授知识的同时,要重视学科基本思想方法的教学。
为了使学生掌握必要的数学思想和方法,需要在教学中结合内容逐步渗透,而不能脱离内容形式地传授。
浙教版(2024)数学七年级上册《有理数的大小比较》教案及反思
浙教版(2024)数学七年级上册《有理数的大小比较》教案及反思一、教学目标:【知识与技能目标】:1.掌握有理数大小比较的方法,会比较两个有理数的大小。
2.能利用数轴比较有理数的大小,体会数形结合的思想。
【过程与方法目标】:1.经历有理数大小比较的探索过程,培养学生的观察、分析、归纳能力。
2.通过小组合作交流,培养学生的合作意识和表达能力。
【情感价值观目标】:1.让学生在自主探索、合作交流中感受数学的乐趣,增强学习数学的信心。
2.体会数学知识的实用性,培养学生应用数学的意识。
二、教材分析:《有理数的大小比较》是浙教版(2024)数学七年级上册的内容。
主要是在学生学习了有理数的概念、数轴等知识的基础上进行的。
有理数的大小比较是有理数运算的重要基础,也是后续学习实数大小比较的基础,具有承上启下的作用。
教材通过数轴上的点表示有理数,引导学生观察数轴上有理数的位置关系,从而得出有理数大小比较的方法。
同时介绍了利用绝对值比较有理数大小的方法,进一步加深学生对有理数大小比较的理解。
二、学情分析:七年级学生已经掌握了有理数的概念和数轴的知识,为学习有理数的大小比较奠定了基础。
也具有一定的观察、分析、归纳能力,但思维还不够严密,需要教师引导。
学生对数学学习有一定的兴趣,但在学习过程中可能会遇到困难,需要教师及时鼓励和引导。
四、教学重难点:【教学重点】:1.掌握有理数大小比较的方法。
2.利用数轴和绝对值比较有理数的大小。
【教学难点】:1.利用绝对值比较两个负数的大小。
2.理解有理数大小比较的方法与数轴、绝对值的关系。
五、教学方法和策略:【教学方法】:1.讲授法:讲解有理数大小比较的方法和原理。
2.演示法:通过数轴演示有理数的大小比较,帮助学生理解。
3.讨论法:组织学生小组讨论,交流比较有理数大小的方法。
4.练习法:通过练习巩固有理数大小比较的方法。
【教学策略】:1.创设情境:通过实际问题引入有理数的大小比较,激发学生的学习兴趣。
1.4有理数的大小比较-浙教版七年级数学上册教案
1.4 有理数的大小比较-浙教版七年级数学上册教案一、教学目标1.掌握有理数的大小比较方法;2.学会对有理数进行大小比较并且能够熟练地应用;3.在实际生活中能够运用所学的方法进行大小比较。
二、教学重点1.掌握有理数的大小比较方法;2.学会对有理数进行大小比较并且能够熟练地应用。
三、教学难点1.在实际生活中能够运用所学的方法进行大小比较。
四、教学内容及过程1. 知识点讲解1.1 有理数的大小比较方法有理数的大小比较时,可以先将它们化为带分数的形式,然后将它们的整数部分放在数轴上,比较它们的大小即可。
例如,比较-2.5和-3.2的大小,先将它们化为带分数形式,即-2\frac{1}{2}和-3\frac{1}{5},然后将它们的整数部分-2和-3放在数轴上,可得:-2.5和-3.2的大小比较可以看出,-3.2比-2.5小,因此-3.2< -2.5。
1.2 有理数的相等性两个有理数相等,当且仅当它们的分数表示相等。
例如:-3\frac{2}{3}=-\frac{11}{3}1.3 有理数的相反数任何一个有理数a都有唯一的相反数-b,使得a+b=0。
例如:-3的相反数为3,3的相反数为-3。
1.4 有理数的绝对值任何一个有理数a的绝对值|a|都符合以下规律:•若a>0,则|a|=a;•若a=0,则|a|=0;•若a<0,则|a|=-a。
例如:|-3\frac{2}{3}|=3\frac{2}{3},|0|=0,|2|=2。
2. 讲解练习2.1 基础练习1.比较大小:-7和-5;2.比较大小:-6\frac{3}{4}和-5\frac{1}{2};3.比较大小:-3\frac{2}{5}和-2\frac{9}{10}。
2.2 提高练习1.比较大小:-4\frac{5}{6}和-5\frac{1}{3};2.比较大小:-0.8和-0.75;3.比较大小:-3\frac{3}{4}和-3.75。
1.4有理数的大小比较课件(浙教版)
知识要点
1. 有理数的大小比较可以用比较法则进行:正数都大于 0,负数都小于 0,正数大于负数.两个正数比较大小, 绝对值大的数大;两个负数比较大小,绝对值大的数 反而小.
2.有理数的大小比较还可以利用数轴来进行:在数轴上 表示的两个数,右边的数总比左边的数大.
重要提示
1.用比较法则比较两个有理数的大小,在比较之前应先 判断它们的符号,再进行分类比较,可分为以下 3 种 情况:
解题指导
【例 1】 (2014·浙江绍兴)比较-3,1,-2 的大小,正
确的是
()
A. -3<-2<1
B. -2<-3<1
C. 1<-2<-3
D.3 和-2 是负数,1 是正数, 根据“正数大于负数”,可知 1 是这 3 个数中最大的数. ∵|-3|>|-2|,∴-3<-2. ∴-3<-2<1.
(1)两正;(2)一正一负;(3)两负. 2.在比较两个负数的大小时,一般有以下三个步骤:
第一步:先求两个负数的绝对值; 第二步:比较绝对值的大小; 第三步:根据比较法则作出判断. 3.比较多个有理数的大小时,往往先将比较的数在数轴 上表示出来,再比较它们的大小.
4.有理数的大小比较的常用方法: (1)先用特殊方法:即正数都大于 0,负数都小于 0,正 数都大于负数. (2)如特殊方法不行,再用有理数的大小比较法则或利 用数轴来比较有理数的大小. (3)有的不能直接比较两个数的大小,还可以采用作差 法、作商法以及寻找第三等量(也叫中间量)的方法.
32的相反数是-32,0 的相反数是 0,-2 的相反数是 2.把32, -32,0,-2,2 表示在数轴上如解图所示.
∴-2<-32<0<32<2.
浙教版数学七年级上册1.4 有理数的大小比较.docx
1.4 有理数的大小比较一、选择题(共20小题;共100分)1. −12的绝对值等于( )A. −2B. 2C. −12D. 122. −2的绝对值是( )A. 2B. −2C. 0D. 123. 给出四个数:0,√7,−2,3.14,其中最小的是( )A. 0B. √7C. −2D. 3.144. 下列各数中,比−2大的数是( )A. −3B. 0C. −2D. −2.15. ∣−7∣=( )A. −7B. 7C. ±7D. 176. −2的绝对值等于( )A. 2B. −2C. 12D. ±27. 下列四个数中,比−2小的数是( )A. 2B. −3C. 0D. −1.58. 在−4,−2,−1,0这四个数中,比−3小的数是( )A. −4B. −2C. −1D. 09. 下列四个数中,最小的数是( )A. −2B. −1C. 0D. √210. −2016的绝对值是( )A. 2016B. −2016C. 12016D. −1201611. −8的绝对值是( )A. 8B. −8C. −18D. 1812. 数轴上有两点A、B分别表示实数a、b,则线段AB的长度是( )A. a−bB. a+bC. ∣a−b∣D. ∣a+b∣13. −8的绝对值是( )A. 8B. 18C. −18D. −814. 已知整数a1,a2,a3,a4,⋯满足下列条件:a1=0,a2=−∣∣a1+1∣∣,a3=−∣∣a2+2∣∣,a4=−∣a3+3∣,⋯,依次类推,则a2012的值为( )A. −1005B. −1006C. −1007D. −201215. 若实数a满足a−∣a∣=2a,则( )A. a>0B. a<0C. a≥0D. a≤016. 若a是有理数,则∣a∣+(−a)的值( )A. 一定是正数B. 一定是负数C. 可能是正数,也可能是负数D. 不可能是负数17. 如果∣a−5∣=−(a−5),那么a的取值范围是( )A. a>5B. a<5C. a≤5D. a≥518. 使式子∣−2012+m∣=∣−2012∣+∣m∣成立的m必为( )A. 正数B. 正数或0C. 负数D. 负数或019. 如果对于某一特定范围内x的任意允许值,s=∣2−2x∣+∣2−3x∣+∣2−5x∣的值恒为一常数,则此常数值为( )A. 0B. 2C. 4D. 620. 不相等的有理数a,b,c在数轴上的对应点分别是A,B,C,如果∣a−b∣+∣b−c∣=∣a−c∣,那么点B( )A. 在A,C点的右边B. 在A,C点的左边C. 在A,C点之间D. 上述三种均可能二、填空题(共20小题;共100分)21. (i)若∣a∣=−a,则a0.(ii)若a为有理数,则∣a∣0.22. 绝对值小于3的非负整数为.23. 绝对值小于2001的所有整数的和是,所有整数的积是.24. 与原点的距离为2.5个单位的点所表示的有理数是.25. 比较大小:①−140;−34−45;③−∣−3∣−(−3).26. 已知0≤a≤4,那么∣a−2∣+∣3−a∣的最大值等于.27. 化简:∣−8∣+∣6.3∣−∣−10.3∣=.28. 已知数轴上有A,B两点,A,B之间的距离为1,点A与原点O的距离为2,则所有满足条件的点B与原点O的距离的和为.29. 若有理数m,n,p满足∣m∣m +∣n∣n+∣p∣∣p=1,则2mnp∣∣3mnp∣∣.30. 有理数a、b、c在数轴上的位置如图所示,则∣a−b∣−∣2a−c∣=.31. 绝对值小于2013的所有整数的和是,所有整数的积是.32. 已知a与b互为相反数,且∣a+2b∣=2,b>0,则代数式2a−aba2+ab+b−1的值是.33. 已知∣a∣>∣b∣,a>0,b<0,把a,b,−a,−b按由小到大的顺序排列为.34. 已知 m ,n ,p 都是整数,且 ∣m −n∣3+∣p −m ∣5=1,则 ∣p −m ∣+∣m −n∣+2∣n −p ∣= .35. 在数轴上, A 和 B 是两个定点,坐标分别是 −3 和 2 ,点 P 到点 A 、 B 的距离的和等于 6 ,那么点 P 的坐标是 .36. 若 a <0 , ab <0 ,那么 ∣b −a +1∣−∣a −b −5∣ 等于 . 37. 有理数 a 、 b 、 c 、 d 各自对应着数轴上 X 、 Y 、 Z 、 R 四个点,且 ① ∣b −d∣ 比 ∣a −b∣,∣a −c∣ 、 ∣a −d∣ 、 ∣b −c∣ 、 ∣c −d∣ 都大; ② ∣d −a∣+∣a −c∣=∣d −c∣;③ c 是 a 、 b 、 c 、 d 中第二大的数.则点 X 、 Y 、 Z 、 R 从左到右依次是 .38. 彼此不等的有理数 a , b , c 在数轴上的对应点分别为 A , B , C ,如果 ∣a −b∣+∣b −c∣=∣a −c∣ ,那么 A , B , C 的位置关系是 .39. 若 x =220012002,则 ∣x ∣+∣x −1∣+∣x −2∣+∣x −3∣+∣x −4∣+∣x −5∣= . 40. 如果 ∣a∣=a +1,∣a −1∣x =a −1,那么 ∣x +a∣−∣x −a∣= . 三、解答题(共5小题;共65分)41. 阅读:∣5−2∣ 表示 5 与 2 的绝对值,也可理解为 5 与 2 两个数在数轴上所对应的两点之间的距离;∣5+2∣ 可以看做 ∣5−(−2)∣,表示 5 与 −2 的差的绝对值,也可理解为 5 与 −2 两个数在数轴上所对应的两点之间的距离.探索: Ⅰ ∣5−(−2)∣= .Ⅱ 利用数轴,找出所有符合条件的整数 x ,使 x 所表示的点到 5 和 −2 的距离之和为 7. 42. 阅读材料,解答下列问题.例题:当 a >0 时,如 a =6,则 ∣a∣=∣6∣=6,故此时 a 的绝对值是它本身;当 a =0 时,∣a∣=0,故此时 a 的绝对值是 0;当 a <0 时,如 a =−6,则 ∣a∣=∣−6∣=6=−(−6),故此时 a 的绝对值是它的相反数.所以综合起来可知,一个数的绝对值要分 ∣a∣={a (a >0),0(a =0),−a (a <0) 三种情况,即这种分析方法渗透了数学的分类讨论思想.Ⅰ 比较大小:∣−7∣ 7,∣3∣ −3(填“ > ”“ < ”或“ = ”);Ⅱ 请仿照例题中的分类讨论的方法,分析猜想 ∣a∣ 与 −a 的大小关系.43. 在数轴上,表示数 m 与 n 的点之间的距离可以表示为 ∣m −n∣.例如:在数轴上,表示数 −3 与2 的点之间的距离是 5=∣−3−2∣,表示数 −4 与 −1 的点之间的距离是 3=∣−4−(−1)∣.利用上述结论解决如下问题:Ⅰ 若 ∣x −5∣=3,求 x 的值;Ⅱ 点 A 、 B 为数轴上的两个动点,点 A 表示的数是 a ,点 B 表示的数是 b ,且 ∣a −b ∣=6(b >a ),点 C 表示的数为 −2,若 A 、 B 、 C 三点中的某一个点是另两个点组成的线段的中点,求 a 、 b 的值.44. a ,b 是两个任意有理数,比较:Ⅰa+b与a−b的大小;Ⅱ∣a−b∣与a−b的大小.45. 已知:b是最小的正整数,且a,b满足(c−5)2+∣a+b∣=0.Ⅰ请求出a,b,c的值;Ⅱa,b,c所对应的点分别为A,B,C,点P为动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:∣x+1∣−∣x−1∣+2∣x+3∣;(写出化简过程)Ⅲ在(1)、(2)的条件下,点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC−AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.答案第一部分1. D2. A3. C4. B5. B6. A7. B8. A9. A 10. A11. A 12. C 13. A 14. B 15. D 16. D 17. C 18. D 19. B 20. C 第二部分21. ≤;≥22. 0,1,223. 0;024. ±2.525. <;>;<26. 527. 428. 829. −2330. a+b−c31. 0;032. 033. −a<b<−b<a34. 335. −72或5236. −437. R、X、Z、Y38. 点B位于点A与点C之间(包括A,C两点).39. 940. 1第三部分41. (1)∣5−(−2)∣=∣5+2∣=∣7∣=7.(2)根据题意画出数轴,如图所示.所以符合条件的整数x的值有−2,−1,0,1,2,3,4,5.42. (1)=;>(2)当a>0时,∣a∣=a>−a;当a=0时,∣a∣=0,−a=−0=0,所以∣a∣=−a;当 a <0 时,∣a∣=−a . 综上可知,∣a∣≥−a .43. (1) 因为 ∣x −5∣=3,所以在数轴上,表示数 x 的点与数 5 的点之间的距离为 3, 所以 x =8 或 x =2.(2) 因为 ∣a −b∣=6(b >a ),所以在数轴上,点 B 与 点 A 之间的距离为 6,且点 B 在点 A 的右侧.①当点 C 为线段 AB 的中点时,如图所示,AC =BC =12AB =3. ∵ 点 C 表示的数为 −2,∴a =−2−3=−5,b =−2+3=1. ② 当点 A 为线段 BC 的中点时,如图所示,AC =AB =6. ∵ 点 C 表示的数为 −2,∴a =−2+6=4,b =a +6=10. ③ 当点 B 为线段 AC 的中点时,如图所示,BC =AB =6. ∵ 点 C 表示的数为 −2,∴b =−2−6=−8,a =b −6=−14.综上,a =−5,b =1 或 a =4,b =10 或 a =−14,b =−8.44. (1) 当 b >0 时,a +b >a −b ;当 b =0 时,a +b =a −b ;当 b <0 时,a +b <a −b . (2) 当 a >b 时,∣a −b∣=a −b ;当 a =b 时,∣a −b∣=a −b ;当 a <b 时,∣a −b∣>a −b .故 ∣a −b∣≥a −b .45. (1) ∵b 是最小的正整数, ∴b =1.∵(c −5)2≥0,∣a +b∣≥0,(c −5)2+∣a +b∣=0,∴{c −5=0,a +b =0.∴a =−1,b =1,c =5.(2) 当 0≤x ≤1 时,x +1>0,x −1≤0,x +3>0,∴ ∣x +1∣−∣x −1∣+2∣x +3∣=x +1−(1−x )+2(x +3)=x +1−1+x +2x +6=4x +6.当1<x≤2时,x+1>0,x−1>0,x+3>0.∴ ∣x+1∣−∣x−1∣+2∣x+3∣=x+1−(x−1)+2(x+3)=x+1−x+1+2x+6=2x+8.(3)不变.∵点A以每秒1个单位长度的速度向左运动,点B每秒2个单位长度向右运动,∴AB=3t+2.∵点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴BC=3t+4.∴BC−AB=2,BC−AB的值不随着时间t的变化而改变.初中数学试卷。
七年级数学上册 1.4 有理数大小比较教案 (新版)浙教版
1.4 有理数的大小比较教学目标:知识与技能目标:1、通过实例形成对有理数大小的概念的认识.2、掌握有理数大小的比较法则.3、会比较有理数的大小,并能正确地使用“>”或“<”号连结.4、初步会进行有理数大小比较的推理和书写.过程与方法目标:经历从现实问题中来探索有理数的大小比较,从数形两个侧面理解与解决问题,使学生体会到数形结合数学思想方法的美.情感与态度目标:1、从学生熟悉的现实环境中学习有理数的大小比较,体会数学知识与现实世界的联系.2、通过自主探索、归纳来发现知识,使学生体验成功的乐趣.教学重、难点:教学重点:有理数的大小比较法则.教学难点:1、两个负数比较大小的绝对值法则.2、例2第(3)题中两个负分数比较大小的推理过程.教学设计过程:一、创设情境:(多媒体演示)下面是一组图片,表示某一天我国5个城市的最低气温.(见P21图1-10)比较这一天下列两个城市间最低气温的高低(填“高于”或“低于”):广州(10℃)上海(0℃);上海(0℃)北京(-10℃);武汉(5℃)广州(10℃);哈尔滨(-20℃)武汉(5℃);北京(-10℃)哈尔滨(-20℃).同学们的答案是否正确呢?这就需要数学知识“有理数的大小比较”(点出课题). 二、探究新知:把表示上述5个城市最低气温的数表示在数轴上.观察这5个数在数轴上的位置,你发现了什么?温度的高低与相应的数在数轴上的位置有什么关系?(在数轴表示的数的位置与气温的高低有关.气温越高,在数轴上表示的数就越靠右.)一般地,我们有:在数轴上表示的两个数,右边的数总比左边的数大.例 1 在数轴上表示数5,0,-4,-1,并比较它们大小,将它们按从小到大的顺序用“<”号连接.将它们按从小到大的顺序排列为:-4<-1<0<5.我们知道:有理数可分为正数、负数和零三类,那么两个有理数的大小比较有哪几种情况呢?(两个有理数的大小比较有如下几种情况:一正一零;一负一零;两负;一正一负;两正.)请同学们观察数轴思考一下:正数、零和负数三者的大小关系如何?正数大于零,负数小于零,正数大于负数.那么,同号(同正或同负)的两数的大小关系又如何呢?(若学生有困难,则提示:求例1中同号(同正或同负)各数的绝对值,并比较它们的大小,然后说明它们的大小与它们的绝对值的大小有什么关系?)引导学生归纳得出:两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小. 例2 比较下列每对数的大小,并说明理由:(1)1与-10; (2)-0. 001与0; (3)3243与--. 解:(1)1>10(正数大于一切负数);(2)-0.001<0(负数都小于零);(3)∵1283232,1294343==-==-, ∴3243-〉-, ∴-43<-32(两个负数比较大小,绝对值大的数反而小).三、巩固练习:1、P 19 “课内练习”1(板演)2、P 19 “课内练习”2,3(口答)3、P 19 “课内练习”4(师生互动完成)四、小结:通过这节课的学习,你有哪些收获? (比较有理数大小的两种方法:一、数轴比较法;二、绝对值法.两个数比较时,常用绝对值法;多个数比较时,常用数轴比较法.)五、作业:1、作业本§1.52、P 19 “作业题A 组”3,4;“作业题B 组”63、有理数a ,b ,c 在数轴上的位置如图所示,请比较a ,b ,-c 的大小,并用“<”号 连接: 教后反思:o a b c。
《有理数大小比较》word教案 (公开课获奖)2022浙教版 (1)
1.4 有理数的大小比较教学目标:知识与技能目标:1、通过实例形成对有理数大小的概念的认识.2、掌握有理数大小的比较法则.3、会比较有理数的大小,并能正确地使用“>”或“<”号连结.4、初步会进行有理数大小比较的推理和书写.过程与方法目标:经历从现实问题中来探索有理数的大小比较,从数形两个侧面理解与解决 问题,使学生体会到数形结合数学思想方法的美.情感与态度目标:1、从学生熟悉的现实环境中学习有理数的大小比较,体会数学知识与现实世界的联系.2、通过自主探索、归纳来发现知识,使学生体验成功的乐趣. 教学重、难点:教学重点:有理数的大小比较法则.教学难点:1、两个负数比较大小的绝对值法则.2、例2第(3)题中两个负分数比较大小的推理过程.教学设计过程:一、创设情境:(多媒体演示)下面是一组图片,表示某一天我国5个城市的最低气温.(见P 21 图1-10) 比较这一天下列两个城市间最低气温的高低(填“高于”或“低于”):广州(10℃) 上海(0℃); 上海(0℃) 北京(-10℃); 武汉(5℃) 广州(10℃); 哈尔滨(-20℃) 武汉(5℃); 北京(-10℃) 哈尔滨(-20℃).同学们的答案是否正确呢?这就需要数学知识“有理数的大小比较”(点出课题).二、探究新知:把表示上述5个城市最低气温的数表示在数轴上.观察这5个数在数轴上的位置,你发现了什么?温度的高低与相应的数在数轴上的位置有什么关系?(在数轴表示的数的位置与气温的高低有关.气温越高,在数轴上表示的数就越靠右.) 一般地,我们有:在数轴上表示的两个数,右边的数总比左边的数大.例 1 在数轴上表示数5,0,-4,-1,并比较它们大小,将它们按从小到大的顺序用“<”号连接.解:如图,将它们按从小到大的顺序排列为:-4<-1<0<5.我们知道:有理数可分为正数、负数和零三类,那么两个有理数的大小比较有哪几种情况呢?(两个有理数的大小比较有如下几种情况:一正一零;一负一零;两负;一正一负;两正.)请同学们观察数轴思考一下:正数、零和负数三者的大小关系如何?正数大于零,负数小于零,正数大于负数.那么,同号(同正或同负)的两数的大小关系又如何呢?(若学生有困难,则提示:求例1中同号(同正或同负)各数的绝对值,并比较它们的大小,然后说明它们的大小与它们的绝对值的大小有什么关系?)引导学生归纳得出:-4 -1 5 0 1两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小. 例2 比较下列每对数的大小,并说明理由:(1)1与-10; (2)-0. 001与0; (3)3243与--. 解:(1)1>10(正数大于一切负数); (2)-0.001<0(负数都小于零);(3)∵1283232,1294343==-==-, ∴3243-〉-, ∴-43<-32(两个负数比较大小,绝对值大的数反而小).三、巩固练习:1、P 19 “课内练习”1(板演)2、P 19 “课内练习”2,3(口答)3、P 19 “课内练习”4(师生互动完成) 四、小结:通过这节课的学习,你有哪些收获?(比较有理数大小的两种方法:一、数轴比较法;二、绝对值法.两个数比较时,常用绝对值法;多个数比较时,常用数轴比较法.)五、作业:1、作业本§1.52、P 19 “作业题A 组”3,4;“作业题B 组”63、有理数a ,b ,c 在数轴上的位置如图所示,请比较a ,b ,-c 的大小,并用“<”号 连接:教后反思:1.2定义与命题(1)教学目标:知识目标:了解定义的含义.了解命题的含义.能力目标:了解命题的结构,会把命题写成“如果……那么……”的形式. 情感目标:通过本节学习,培养学生树立科学严谨的学习方法。
东溪村七年级数学上册 1.4 有理数大小的比较教案 浙教版(2021学年)
浙江省宁波市象山县新桥镇东溪村七年级数学上册1.4 有理数大小的比较教案(新版)浙教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省宁波市象山县新桥镇东溪村七年级数学上册1.4 有理数大小的比较教案(新版)浙教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省宁波市象山县新桥镇东溪村七年级数学上册1.4有理数大小的比较教案(新版)浙教版的全部内容。
1.4有理数大小的比较一、教学目标:1.借助数轴,理解有理数大小关系,会比较两个有理数的大小。
2、能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列.二、教学重点和难点:重点:比较两个有理数的大小难点:有理数大小比较法则中两个负数比较法则的理解。
三、教学过程1、新课引入:(多媒体显示)某一天我们5个城市的最低气温(1)比较这一天下列两个城市间最低气温的高低(填“大于”或“小于")广州_______上海;北京________上海;北京________哈尔滨;武汉________哈尔滨;武汉__________广州.(2)把上述5个城市最低气温的数表示在数轴上,将这5个城市的气温用“<”连接起来;(3)观察这5个数在数轴上的位置,从中你发现了什么?温度的高低与相应的数在数轴上的位置有什么关系?(由小组讨论后,教师归纳得出结论)结论:在数轴上表示的两个数,右边的数总比左边的数大。
正数都大于零,负数都小于零,正数大于负数.2例题讲解:例1:在数轴上表示数5,0,-4,-1,并比较它们的大小,将它们按从小到大的顺序用“〈”号连接。
有理数的大小比较教案浙教版七年级数学上册
有理数的大小比较(教案)课题 1.4有理数的大小比较单元第1章从自然数到有理数学科数学年级七年级学习目标情感态度和价值观目标1.体会数学来源于生活,激发学生探究数学的兴趣;2.增强学生的数学应用意识,提高学生学习数学的积极性.能力目标结合学生的生活体验,培养学生观察,比较和归纳的能力.知识目标1.理解利用数轴上的点的位置关系比较有理数的大小的法则和正数、零、与负数的比较法则;2.能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列.重点会用两种方法比较有理数的大小.难点理解用数轴比较有理数的大小方法的形成.学法合作探究法.教法引导发现法、直观演示法.教学过程教学环节教师活动学生活动设计意图导入新课复习回顾1、什么叫做绝对值?2、到原点的距离为3的点有几个?它们分别表示什么数?3、求绝对值等于的数?4、请比较下列几组数的大小:(1)0.1 ___ 0 ;(2)3 ___5;(3)12___13.导入新课请比较这一天下列各个城市间最低气温的高低(填“高于”或“低于”)哈尔滨-20℃北京-10℃回顾学过的知识.观察图片,完成填空.为本节课的学习做铺垫.通过生活中的实际问题引入有理广州10℃武汉5℃上海0℃广州_______上海;北京________上海;北京________哈尔滨;武汉________哈尔滨;武汉__________广州.的数大小比较.讲授新课数轴比较法把表示上述五个城市这一天最低气温的数表示在数轴上.观察这五个数在数轴上的位置,你发现了什么?温度的高低与相应的数在数轴上的位置有什么关系?五个城市温度的高低如下:哈尔滨北京上海武汉广州-20℃<-10 ℃<0 ℃<5 ℃<10 ℃归纳:1、在数轴上表示的两个数,右边的总比左边的数大.2、正数大于零,负数小于零,正数大于负数.用数轴比较法比较有理数大小的步骤:(1)画出数轴,把要比较的数在数轴上表示出来;利用数轴比较五个城市的温度.完成例题和练习.归纳出利用数轴比较有理数大小的方法.通过例题和练习的解决掌握利用数轴上的点的位置关系比较有理数的大小的法则.2、两个负数比较:绝对值大的数反而小;3、一正一负比较:正数大于负数;4、正数与零比较:正数都大于零;5、负数与零比较:负数都小于零.巩固提升1、在-2,-5,5,0这四个数中,最小的数是()A.-2 B.-5 C.5 D.02、下面是几个城市某年一月份的平均温度,其中平均温度最低的城市是()A.利川℃B.广州℃C.北京℃D.兰州℃3、如果点A、B、C、D所对应的数为a、b、c、d,则a、b、c、d的大小关系是()A.a<c<d<b B.b<d<a<cC.b<d<c<a D.d<b<c<a4、把下列各数在数轴上表示出来,并用“>”连接各数.1 3 2,-4,122,0,-1,1.完成练习.通过练习,进一步提高学生分析问题和解决问题的能力.。
浙教版数学七年级上册1.4 有理数的大小比较 (2)
1.4 有理数的大小比较一、选择题(共20小题;共100分)1. −12的绝对值等于 ( )A. −2B. 2C. −12D. 122. −2的绝对值是 ( )A. 2B. −2C. 0D. 123. 给出四个数:0,√7,−2,3.14,其中最小的是 ( )A. 0B. √7C. −2D. 3.144. 下列各数中,比−2大的数是 ( )A. −3B. 0C. −2D. −2.15. ∣−7∣= ( )A. −7B. 7C. ±7D. 176. −2的绝对值等于 ( )A. 2B. −2C. 12D. ±27. 下列四个数中,比−2小的数是 ( )A. 2B. −3C. 0D. −1.58. 在−4,−2,−1,0这四个数中,比−3小的数是( )A. −4B. −2C. −1D. 09. 下列四个数中,最小的数是( )A. −2B. −1C. 0D. √210. −2016的绝对值是( )A. 2016B. −2016C. 12016D. −1201611. −8的绝对值是( )A. 8B. −8C. −18D. 1812. 数轴上有两点A、B分别表示实数a、b,则线段AB的长度是 ( )A. a−bB. a+bC. ∣a−b∣D. ∣a+b∣13. −8的绝对值是 ( )A. 8B. 18C. −18D. −814. 已知整数a1,a2,a3,a4,⋯满足下列条件:a1=0,a2=−∣∣a1+1∣∣,a3=−∣∣a2+2∣∣,a4=−∣a3+3∣,⋯,依次类推,则a2012的值为 ( )A. −1005B. −1006C. −1007D. −201215. 若实数a满足a−∣a∣=2a,则 ( )A. a>0B. a<0C. a≥0D. a≤016. 若a是有理数,则∣a∣+(−a)的值 ( )A. 一定是正数B. 一定是负数C. 可能是正数,也可能是负数D. 不可能是负数17. 如果∣a−5∣=−(a−5),那么a的取值范围是 ( )A. a>5B. a<5C. a≤5D. a≥518. 使式子∣−2012+m∣=∣−2012∣+∣m∣成立的m必为 ( )A. 正数B. 正数或0C. 负数D. 负数或019. 如果对于某一特定范围内x的任意允许值,s=∣2−2x∣+∣2−3x∣+∣2−5x∣的值恒为一常数,则此常数值为 ( )A. 0B. 2C. 4D. 620. 不相等的有理数a,b,c在数轴上的对应点分别是A,B,C,如果∣a−b∣+∣b−c∣=∣a−c∣,那么点B ( )A. 在A,C点的右边B. 在A,C点的左边C. 在A,C点之间D. 上述三种均可能二、填空题(共20小题;共100分)21. (i)若∣a∣=−a,则a0.(ii)若a为有理数,则∣a∣0.22. 绝对值小于3的非负整数为.23. 绝对值小于2001的所有整数的和是,所有整数的积是.24. 与原点的距离为2.5个单位的点所表示的有理数是.25. 比较大小:①−140;−34−45;③−∣−3∣−(−3).26. 已知0≤a≤4,那么∣a−2∣+∣3−a∣的最大值等于.27. 化简:∣−8∣+∣6.3∣−∣−10.3∣=.28. 已知数轴上有A,B两点,A,B之间的距离为1,点A与原点O的距离为2,则所有满足条件的点B与原点O的距离的和为.29. 若有理数m,n,p满足∣m∣m +∣n∣n+∣p∣∣p=1,则2mnp∣3mnp∣∣.30. 有理数a、b、c在数轴上的位置如图所示,则∣a−b∣−∣2a−c∣=.31. 绝对值小于2013的所有整数的和是,所有整数的积是.32. 已知a与b互为相反数,且∣a+2b∣=2,b>0,则代数式2a−aba2+ab+b−1的值是.33. 已知∣a∣>∣b∣,a>0,b<0,把a,b,−a,−b按由小到大的顺序排列为.34. 已知m,n,p都是整数,且∣m−n∣3+∣p−m∣5=1,则∣p−m∣+∣m−n∣+2∣n−p∣=.35. 在数轴上,A和B是两个定点,坐标分别是−3和2,点P到点A、B的距离的和等于6,那么点P的坐标是.36. 若a<0,ab<0,那么∣b−a+1∣−∣a−b−5∣等于.37. 有理数a、b、c、d各自对应着数轴上X、Y、Z、R四个点,且①∣b−d∣比∣a−b∣,∣a−c∣、∣a−d∣、∣b−c∣、∣c−d∣都大;②∣d−a∣+∣a−c∣=∣d−c∣;③c是a、b、c、d中第二大的数.则点X、Y、Z、R从左到右依次是.38. 彼此不等的有理数a,b,c在数轴上的对应点分别为A,B,C,如果∣a−b∣+∣b−c∣=∣a−c∣,那么A,B,C的位置关系是.39. 若x=220012002,则∣x∣+∣x−1∣+∣x−2∣+∣x−3∣+∣x−4∣+∣x−5∣=.40. 如果∣a∣=a+1,∣a−1∣x=a−1,那么∣x+a∣−∣x−a∣=.三、解答题(共5小题;共65分)41. 阅读:∣5−2∣ 表示 5 与 2 的绝对值,也可理解为 5 与 2 两个数在数轴上所对应的两点之间的距离;∣5+2∣ 可以看做 ∣5−(−2)∣,表示 5 与 −2 的差的绝对值,也可理解为 5 与 −2 两个数在数轴上所对应的两点之间的距离.探索: Ⅰ ∣5−(−2)∣= . Ⅱ 利用数轴,找出所有符合条件的整数 x ,使 x 所表示的点到 5 和 −2 的距离之和为 7.42. 阅读材料,解答下列问题.例题:当 a >0 时,如 a =6,则 ∣a∣=∣6∣=6,故此时 a 的绝对值是它本身;当 a =0 时,∣a∣=0,故此时 a 的绝对值是 0;当 a <0 时,如 a =−6,则 ∣a∣=∣−6∣=6=−(−6),故此时 a 的绝对值是它的相反数.所以综合起来可知,一个数的绝对值要分 ∣a∣={a (a >0),0(a =0),−a (a <0) 三种情况,即这种分析方法渗透了数学的分类讨论思想.Ⅰ 比较大小:∣−7∣ 7,∣3∣ −3(填“ > ”“ < ”或“ = ”); Ⅱ 请仿照例题中的分类讨论的方法,分析猜想 ∣a∣ 与 −a 的大小关系.43. 在数轴上,表示数 m 与 n 的点之间的距离可以表示为 ∣m −n∣.例如:在数轴上,表示数 −3与 2 的点之间的距离是 5=∣−3−2∣,表示数 −4 与 −1 的点之间的距离是 3=∣−4−(−1)∣.利用上述结论解决如下问题: Ⅰ 若 ∣x −5∣=3,求 x 的值;Ⅱ 点 A 、 B 为数轴上的两个动点,点 A 表示的数是 a ,点 B 表示的数是 b ,且 ∣a −b ∣=6(b >a ),点 C 表示的数为 −2,若 A 、 B 、 C 三点中的某一个点是另两个点组成的线段的中点,求 a 、 b 的值.44. a ,b 是两个任意有理数,比较:Ⅰ a +b 与 a −b 的大小; Ⅱ ∣a −b∣ 与 a −b 的大小.45. 已知:b 是最小的正整数,且 a ,b 满足 (c −5)2+∣a +b∣=0.Ⅰ 请求出 a ,b ,c 的值;Ⅱ a ,b ,c 所对应的点分别为 A ,B ,C ,点 P 为动点,其对应的数为 x ,点 P 在 0 到 2 之间运动时(即 0≤x ≤2 时),请化简式子:∣x +1∣−∣x −1∣+2∣x +3∣;(写出化简过程)Ⅲ在(1)、(2)的条件下,点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC−AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.答案第一部分1. D2. A3. C4. B5. B6. A7. B8. A9. A 10. A11. A 12. C 13. A 14. B 15. D16. D 17. C 18. D 19. B 20. C第二部分21. ≤;≥22. 0,1,223. 0;024. ±2.525. <;>;<26. 527. 428. 829. −2330. a+b−c31. 0;032. 033. −a<b<−b<a34. 335. −72或5236. −437. R、X、Z、Y38. 点B位于点A与点C之间(包括A,C两点).39. 940. 1第三部分41. (1)∣5−(−2)∣=∣5+2∣=∣7∣=7.(2)根据题意画出数轴,如图所示.所以符合条件的整数x的值有−2,−1,0,1,2,3,4,5.42. (1)=;>(2)当a>0时,∣a∣=a>−a;当a=0时,∣a∣=0,−a=−0=0,所以∣a∣=−a;当a<0时,∣a∣=−a.综上可知,∣a∣≥−a.43. (1)因为∣x−5∣=3,所以在数轴上,表示数x的点与数5的点之间的距离为3,所以x=8或x=2.(2)因为∣a−b∣=6(b>a),所以在数轴上,点B与点A之间的距离为6,且点B在点A 的右侧.①当点C为线段AB的中点时,如图所示,AC=BC=1AB=3.2∵点C表示的数为−2,∴a=−2−3=−5,b=−2+3=1.②当点A为线段BC的中点时,如图所示,AC=AB=6.∵点C表示的数为−2,∴a=−2+6=4,b=a+6=10.③当点B为线段AC的中点时,如图所示,BC=AB=6.∵点C表示的数为−2,∴b=−2−6=−8,a=b−6=−14.综上,a=−5,b=1或a=4,b=10或a=−14,b=−8.44. (1)当b>0时,a+b>a−b;当b=0时,a+b=a−b;当b<0时,a+b<a−b.(2)当a>b时,∣a−b∣=a−b;当a=b时,∣a−b∣=a−b;当a<b时,∣a−b∣>a−b.故∣a−b∣≥a−b.45. (1)∵b是最小的正整数,∴b=1.∵(c−5)2≥0,∣a+b∣≥0,(c−5)2+∣a+b∣=0,∴{c−5=0,a+b=0.∴a=−1,b=1,c=5.(2)当0≤x≤1时,x+1>0,x−1≤0,x+3>0,∴ ∣x+1∣−∣x−1∣+2∣x+3∣=x+1−(1−x)+2(x+3)=x+1−1+x+2x+6=4x+6.当1<x≤2时,x+1>0,x−1>0,x+3>0.∴ ∣x+1∣−∣x−1∣+2∣x+3∣=x+1−(x−1)+2(x+3)=x+1−x+1+2x+6=2x+8.(3)不变.∵点A以每秒1个单位长度的速度向左运动,点B每秒2个单位长度向右运动,∴AB=3t+2.∵点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴BC=3t+4.∴BC−AB=2,BC−AB的值不随着时间t的变化而改变.初中数学试卷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4 有理数的大小比较
一、教学目标
1、使学生能说出有理数大小的比较法则
2、能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。
3、能正确运用符号“<”“>”“∵”“∴”写出表示推理过程中简单的因果关系。
二、重点、难点。
重点:运用法则借助数轴比较两个有理数的大小。
难点:利用绝对值概念比较两个负分数的大小。
三、教学准备:多媒体课件
四、教学设计
(一)交流对话,探究新知
1、说一说
(多媒体显示)某一天我国5个城市的最低气温
从刚才的图片中你获得了哪些信息?
比较这一天下列两个城市间最低气温的高低(填“高于”或“低于”)
广州_______上海;北京________上海;北京________哈尔滨;武汉________哈尔滨;
武汉__________广州。
2、画一画:(1)把上述5个城市最低气温的数表示在数轴上,(2)观察这5个数在数轴上的
位置,从中你发现了什么?
()
(3)温度的高低与相应的数在数轴上的位置有什么?
(通过学生自己动手操作,观察、思考,发现原点左边的数都是负数,原点右边的数都是正数;同时也发现5在0右边,5比0大;10在5右边,10比5大,初步感受在数轴上原点右边的两个数,右边的数总比左边的数大。
教师趁机追问,原点左边的数也有这样的规律吗?)由小组讨论后,教师归纳得出结论:
在数轴上表示的两个数,右边的数总比左边的数大。
正数都大于零,负数都小于零,正数大于负数。
(二)应用新知,体验成功
1、例1:在数轴上表示数5,0,-4,-1,并比较它们的大小,将它们按从小到大的顺序用“<”号连接。
(师生共同完成)
分析:本题意有几层含义?应分几步?
小组讨论归纳,本题解题时的一般步骤:①画数轴②描点;③有序排列;④不等号连接。
2、做一做
(1)在数轴上表示下列各对数,并比较它们的大小
①2和7 ②-6和-1 ③-6和-36 ④-12 和-1.5 (2)求出图中各对数的绝对值,并比较它们的大小。
(3)由①、②从中你发现了什么?
总结:两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。
在学生讨论的基础上,由学生总结得出有理数大小的比较法则。
(1)正数都大于零,负数都小于零,正数大于负数。
(2)两个正数比较大小,绝对值大的数大。
(3)两个负数比较大小,绝对值大的数反而小。
3、例2比较下列每对数的大小,并说明理由:(师生共同完成) (1)1与-10,(2)-0.001与0,(3)-8与+2;(4)-34与-23 ;(5)-(+35
)与-|-0.8|
分析:第(4)(5)题较难,第(4)题应先通分,第(5)题应先化简,再比较。
同时在讲解时,要注意格式。
注:绝对值比较时,分母相同,分子大的数大;分子相同,则分母大的数反而小;分子分母都不相同时,则应先通分再比较,或把分子化相同再比较。
两个负数比较大小时的一般步骤:①求绝对值;②比较绝对值的大小;③比较负数的大小。
思考:还有别的方法吗?
4、想一想:我们有几种方法来判断有理数的大小?你认为它们各有什么特点?
由学生讨论后,得出比较有理数的大小共有两种方法,一种是法则,另一种是利用数轴,当两个数比较时一般选用第一种,当多个有理数比较大小时,一般选用第二种较好。
练一练:p19,p20
5、考考你:请你回答下列问题:
(1)有没有最大的有理数,有没有最小的有理数,为什么?
(2)有没有绝对值最小的有理数?若有,请把它写出来?
(3)在于-1.5且小于4.2的整数有_____个,它们分别是____。
(4)若a>0,b<0,a<|b|,则你能比较a 、b 、-a 、-b 这四个数的大小吗?
6、议一议,谈谈本节课你有哪些收获
(由师生共同完成本节课的小结)本节课主要学习了有理数大小比较的两种方法,一种是按照法则,两两比较,另一种是利用数轴,运用这种方法时,首先必须把要比较的数在数轴上表示出来,然后按照它们在数轴上的位置,从左到右(或从右到左)用“<”(或“>”)连接,这种方法在比较多个有理数大小时非常简便。
五、布置作业:作业本 六、教学反思。