2019-2020学年河南省焦作市九年级上学期期末考试数学试卷及答案解析
2019-2020学年河南省焦作市武陟县九年级(上)第一次质检物理试卷(附答案详解)
2019-2020学年河南省焦作市武陟县九年级(上)第一次质检物理试卷1.春天里,实验中学的紫藤花开了,花香袭人沁人心脾。
从物理学的角度理解这是______现象,该现象表明了______。
2.天然气热水器将40kg的水由22℃加热到42℃,水的内能增加了______J,水的内能增加是通过______方式实现的,若天然气燃烧放出的热量有84%被水吸收,需要消耗______kg.的天然气。
【已知c水=4.2×103J/(kg⋅℃),q天然气=4×107J/kg。
】3.有如图所示的两套相同装置,分别在两个燃烧皿中放入质量相同的不同燃料,点燃后加热质量相等的同种液体,通过比较燃料______(选填“燃烧相同时间”或“全部燃烧”)后温度计示数的变化,来判断两种燃料的热值的大小。
燃料燃烧,______转化为内能,用比热容______的液体可以使实验现象更明显。
(实验中液体没有沸腾)4.在四冲程汽油机工作时,其压缩冲程是将机械能转化为______能。
飞轮转速为30r/s,则该汽油机每分钟内对外做功______次。
5.在四川邛徕窑遗址中出土了一种唐朝“省油灯”。
这种省油灯的灯盏是铜质的,在灯盏下增加了一层夹层,又叫夹层灯。
夹层留一小孔,可以从小孔向夹层中加水。
灯点燃后,热会由灯盏通过______方式使油的内能增加,温度升高,增加耗油量。
在夹层中加水,降低油温,达到省油的目的,这是利用水的______较大的特性。
6.如图所示为某宾馆的房卡,只有把房卡插入槽中,房间内的灯和插座才能有电。
房卡的作用相当于一个______(填电路元件)接在电路中。
若房间内有日光灯5盏,工作电流均为180mA;电视机一台,工作电流为500mA;空调一台,工作电流为5A。
这些用电器同时使用时总电流是______A。
7.如图所示的各种现象,能说明分子间存在引力的是()A. 冷天搓手会感觉暖和些B. 气体的扩散C. 闻到香皂的香味D. 两块表面干净的铅块压紧后“粘”在一起8.寒冷的冬天,手常常会感到冷,小明和小红为了使自己的手更暖和一些,分别采用了如图所示的方法,从物理学的角度看,小明和小红改变手的内能的方法分别是()A. 做功、做功B. 热传递、热传递C. 做功、热传递D. 热传递、做功9.甲、乙两物体的比热容之比为2:3,吸收热量之比为3:1时,它们升高的温度相同,则甲、乙两物体的质量之比是()A. 9:2B. 2:9C. 1:2D. 2:110.甲、乙两台热机,甲的效率比乙的低,其含义是()A. 甲热机消耗的燃料多B. 甲热机比乙热机做功少C. 甲热机的功率比乙热机的小D. 做相同的有用功,甲损失的能量比乙损失的多11.如图所示的电路中,开关只控制灯L2的电路是()A. B. C. D.12.如图,比较的读数大小()A. I1>I2>I3B. I1<I2<I3C. I1=I2=ID. I2<I1<I313.关于温度、内能、热量三者之间的关系,下列说法正确的是()A. 热量总是从高温物体传递给低温物体,或者从物体的高温部分传向低温部分B. 物体温度升高,一定吸收了热量C. 物体吸收了热量,温度一定升高D. 物体温度升高,内能一定增加14.下列对热学知识进行的归纳总结中,正确的是()A. 下滑时通过热传递增加了物体内能B. 空气推动塞子时内能增加C. 海边昼夜温差小是因为水的比热容大D. 小蒸汽轮机利用机械能转化成内能来工作15.根据实物图画出相应的电路图:16.按电路图连接实物电路。
2022-2023学年河南省焦作市温县第一高级中学高二上学期期末数学试题(解析版)
2022-2023学年河南省焦作市温县第一高级中学高二上学期期末数学试题一、单选题1.若复数()1i 1i z -=+,则z =( )A B .1 C D .2【答案】B【分析】由复数的除法运算求出复数z ,然后根据复数模长公式即可求解. 【详解】解:因为复数()1i 1i z -=+,所以()21i 1i 2i i 1i 22z ++====-, 所以1z =, 故选:B.2.已知函数()422y x x x =+>-,则此函数的最小值等于( )AB C .4 D .6【答案】D【分析】将函数配凑为4222y x x =-++-,利用基本不等式可求得结果. 【详解】2x >,20x ∴->,44222622y x x x x ∴=+=-++≥=--(当且仅当422x x -=-,即4x =时取等号),()422y x x x ∴=+>-的最小值为6. 故选:D.3.要得到函数sin 43y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数sin4y x =的图象( )A .向左平移12π个单位长度 B .向右平移3π个单位长度 C .向左平移3π个单位长度D .向右平移12π个单位长度 【答案】D【分析】由三角函数图象变换判断.【详解】sin 4sin 4()312y x x ππ⎛⎫=-=- ⎪⎝⎭,因此将函数sin4y x =的图象向右平移12π个单位.故选:D .4.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同工作,则选派方案共有 A .180种 B .360种 C .15种 D .30种【答案】B【详解】试题分析:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四种不同工作,利用排列的意义可得:选派方案有46A .详解:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四种不同工作,则选派方案有46A =360种. 故选B .点睛:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手.(1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”;(2)“分辨”就是辨别是排列还是组合,对某些元素的位置有、无限制等;(3)“分类”就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决;(4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组合问题,然后逐步解决.5.若3262020C C x x ++=,则正整数x 的值是( ) A .2 B .3 C .4 D .2或3【答案】D【分析】直接根据组合数的性质求解即可.【详解】3262020C C x x ++=,326x x ∴+=+或者32620x x +++=,解得2x =或3x =, 经检验,都成立, 故选:D6.已知()212nx n N x *⎛⎫-∈ ⎪⎝⎭的展开式中各项的二项式系数之和为64,则其展开式中3x 的系数为( )A .160B .160-C .60D .60-【答案】B【分析】由二项式系数的性质求出n ,写出二项展开式的通项公式,令x 的指数为3,即可得出答案. 【详解】由展开式中各项的二项式系数之和为64,得264n =,得6n =.∵6212x x ⎛⎫- ⎪⎝⎭的展开式的通项公式为()626123166r 1C 2(1)C 2(1)rr r r rr r r T x x x ---+⎛⎫=-=- ⎪⎝⎭, 令1233r -=,则3r =,所以其展开式中3x 的系数为()333621160C -=-.故选:B.7.甲,乙两人独立地破解同一个谜题,破解出谜题的概率分别为1223,,则谜题没被破解的概率为( )A .16B .13C .56D .1【答案】A【分析】根据相互独立事件的乘法公式即可得解.【详解】解:设“甲独立地破解出谜题”为事件A ,“乙独立地破解出谜题”为事件B ,()()12,23P A P B ==,故()()12,23P A P B ==,所以()111236P AB =⨯=,即谜题没被破解的概率为16.故选:A.8.某产品的广告费用x 与销售额y 的统计数据如表:根据如表可得回归方程ˆˆˆybx a =+中的b 为7.根据此模型预测广告费用为10万元时销售额为( )万元A .63.6 B .75.5 C .73.5 D .72.0【答案】C【分析】线性回归方程.根据回归方程必过样本中心点,求出回归系数,再将10x =代入,即可得到预报销售额.【详解】解:由题意,3456 4.54x +++==,25304045354y +++==, 由回归方程ˆˆˆybx a =+中的b 为7可得,ˆ357 4.5a =⨯+,解得ˆ 3.5a =, 所以,回归方程为7 3.5ˆyx =+, 所以10x =时,710 3.5 3.ˆ75y=⨯+=元. 故选:C .9.圆22:(1)(1)2C x y -+-=关于直线:1l y x =-对称后的圆的方程为( ) A .22(2)2x y -+= B .22(2)2x y ++= C .22(2)2x y +-= D .22(2)2x y ++=【答案】A【分析】由题可得圆心关于直线的对称点,半径不变,进而即得.【详解】圆22:(1)(1)2C x y -+-=的圆心(1,1),由:1l y x =-得1l k =, 设圆心关于直线对称点的坐标为(,)m n ,则 111111022n m m n -⎧=-⎪⎪-⎨++⎪--=⎪⎩,解得20m n =⎧⎨=⎩, 所以对称圆的方程为22(2)2x y -+=. 故选:A.10.设随机变量X ,Y 满足:31Y X =-,12,3X B ⎛⎫~ ⎪⎝⎭,则()D Y =( )A .4B .5C .6D .7【答案】A【分析】二项分布与n 次独立重复试验的模型.先利用二项分布的数学期望公式求出()D X ,再利用方差的性质求解即可. 【详解】解:因为12,3XB ⎛⎫= ⎪⎝⎭,则()11421339D X ⎛⎫=⨯⨯-= ⎪⎝⎭,又31Y X =-,所以()()()224313349D Y D X D X =-==⨯=.故选:A .11.2022年北京冬奥会的顺利召开,引起大家对冰雪运动的关注.若A ,B ,C 三人在自由式滑雪、花样滑冰、冰壶和跳台滑雪这四项运动中任选一项进行体验,则不同的选法共有( ) A .12种 B .16种 C .64种 D .81种【答案】C【分析】按照分步乘法计数原理计算可得;【详解】解:每个人都可在四项运动中选一项,即每人都有四种选法,可分三步完成, 根据分步乘法计数原理,不同的选法共有44464⨯⨯=种. 故选:C12.某市新冠疫情封闭管理期间,为了更好的保障社区居民的日常生活,选派6名志愿者到甲、乙、丙三个社区进行服务,每人只能去一个地方,每地至少派一人,则不同的选派方案共有( ) A .540种 B .180种 C .360种 D .630种【答案】A【分析】首先将6名志愿者分成3组,再分配到3个社区.【详解】首先将6名志愿者分成3组,再分配到3个社区,可分为3种情况,第一类:6名志愿者分成123++,共有12336533C C C A 360=(种)选派方案,第二类:6名志愿者分成114++,共有1143654322C C C A 90A =(种)选派方案, 第三类:6名志愿者分成222++,共有2223642333C C C A 90A =(种)选派方案, 所以共3609090540++=(种)选派方案, 故选:A.二、填空题13.已知()523450123451x a a x a x a x a x a x -=+++++,则0a =______.【答案】-1【分析】由二项式定理,结合二项式展开式的系数的求法求解即可. 【详解】令0x =,则()50011a =-=-, 故答案为:-1.14.在空间直角坐标系中,已知()2,1,3OA =,()5,1,1OB =-,则AB =_______. 【答案】5【分析】根据题意,求得AB ,再根据空间向量的模的计算公式,即可求得结果. 【详解】因为()2,1,3OA =,()5,1,1OB =-,故可得()3,0,4AB OB OA =-=-, 故235AB ==. 故答案为:5.15.重庆八中某次数学考试中,学生成绩X 服从正态分布()2105,δ.若()1901202P X =,则从参加这次考试的学生中任意选取3名学生,至少有2名学生的成绩高于120的概率是__________. 【答案】532##0.15625 【分析】结合正态分布特点先求出()120P X >,再由独立重复试验的概率公式即可求解. 【详解】因学生成绩符合正态分布()2105,N δ,故()()190120112024P X P X ->==,故任意选取3名学生,至少有2名学生的成绩高于120的概率为23231315C 44432P ⎛⎫⎛⎫=⋅+=⎪ ⎪⎝⎭⎝⎭. 故答案为:53216.设1F ,2F 分别是椭圆()2222:10x y E a b a b+=>>的左右焦点,过点1F 的直线交椭圆E 与A ,B 两点,123AF AF =,2AF x ⊥轴,则椭圆的离心率为___________.【分析】根据椭圆的定义结合123AF AF =,求得21,AF AF ,再利用勾股定理构造齐次式即可得解. 【详解】解:由123AF AF =, 得12242a AF AF AF +==,所以213,22A a F aF A ==, 因为2AF x ⊥轴,所以2222121AF F F AF +=,即2229444a a c +=,所以c a =三、解答题17.甲袋中有2个黑球,4个白球,乙袋中有3个黑球,3个白球,从两袋中各取一球. (1)求“两球颜色相同”的概率;(2)设ξ表示所取白球的个数,求ξ的概率分布列. 【答案】(1)12 (2)分布列答案见解析【分析】(1)利用独立事件和互斥事件的概率公式可求得所求事件的概率;(2)分析可知随机变量ξ的可能取值有0、1、2,计算出随机变量ξ在不同取值下的概率,可得出随机变量ξ的分布列.【详解】(1)解:从甲中取出黑球的概率为13,取出白球的概率为23,从乙中取出黑球的概率为12,取出白球的概率为12,故“两球颜色相同”的概率1211232213P ⨯+⨯==.(2)解:由题意可得,ξ所有可能取值为0、1、2,()1110326P ξ==⨯=,()11211132322P ξ==⨯+⨯=,()2112323P ξ==⨯=,故ξ的分布列如下表所示:ξ0 12P 16121318.某校所在省市高考采用新高考模式,学生按“3+1+2”模式选科参加高考:“3”为全国统一高考的语文、数学、外语3门必考科目;“1”由考生在物理、历史2门中选考1门科目;“2”由考生在思想政治、地理、化学、生物学4门中选考2门科目,(1)为摸清该校本届考生的选科意愿,从本届750名学生中随机抽样调查了100名学生,得到如下部分数据分布:请在答题卡的本题表格中填好上表中余下的5个空,并判断是否有99.9%的把握认为该校“学生选科的方向”与“学生的性别”有关;(2)已选物理方向的甲、乙两名同学,在“4选2”的选科中,求他们恰有一门选择相同学科的概率.附:22(),n ad bcK n a b c d-==+++.【答案】(1)填表答案见解析,有99.9%的把握认为该校“学生选科的方向”与“学生的性别”有关(2)2 3【分析】(1)根据题意完善列联表,计算2K,即可得出结论.(2)先求出已选物理方向的甲、乙两名同学,在“4选2”的选科中,所有的基本事件的总数,再求出在“4选2”的选科中,他们恰有一门选择相同学科的事件总数,由古典概率的公式代入即可得出答案. 【详解】(1)根据题意可得,列联表如下:由于2K 的观测值2100(30402010)5016.66710.828406050503k ⨯⨯-⨯==≈>⨯⨯⨯,所以有99.9%的把握认为该校“学生选科的方向”与“学生的性别”有关.(2)已选物理方向的甲、乙两名同学,在“4选2”的选科中,所有的基本事件(记为事件Ω)列举如下:(政,地;政,地),(政,地;政,化),(政,地;政,生),(政,地;化,地),(政,地;生,地),(政,地;生,化),(政,化;政,地),(政,化;政,化),(政,化;政,生),(政,化;化,地),(政,化;生,地),(政,化;生,化),(政,生;政,地),(政,生;政,化),(政,生;政,生),(政,生;化,地),(政,生;生,地),(政,生;生,化),(地,化;政,地),(地,化;政,化),(地,化;政,生),(地,化;化,地),(地,化;生,地),(地,化;生,化),(地,生;政,地),(地,生;政,化),(地,生;政,生),(地,生;化,地),(地,生;生,地),(地,生;生,化),(化,生;政,地),(化,生;政,化),(化,生;政,生),(化,生;化,地),(化,生;生,地),(化,生;生,化),共36种,设事件{A =在“4选2”的选科中,他们恰有一门选择相同学科},有24种, 则()242()(Ω)363n A P A n ===.19.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c sin cos C c c A =+. (1)求角A 的大小;(2)若a =ABC ∆ABC ∆的周长.【答案】(1) 3A π=(2) 【详解】试题分析:(1)由正弦定理,将边长转化为正弦,由内角的范围和特殊三角函数值,求出角A ;(2)由余弦定理以及三角形面积公式求出b c +的值,再求出周长.试题解析:(1sin sin sin cos A C C C A =+()0,C π∈,sin 0C ∴≠,1cos A A =+;1sin 62A π⎛⎫∴-= ⎪⎝⎭;5,666A πππ⎛⎫-∈- ⎪⎝⎭,663A A πππ∴-=⇒= (2)()22222cos 312a b c bc A b c bc =+-⇒+-=;1sin 342ABC S bc A bc ∆==⇒=;26b c ∴+=;∴ ABC ∆的周长为2326+20.如图,正四棱柱1111ABCD A B C D -中,124AA AB ==,点E 在上且.(Ⅰ)证明:1A C ⊥平面BED ; (Ⅱ)求二面角1A DE B --的余弦值. 【答案】(Ⅰ)证明见解析. (Ⅱ)1442【详解】试题分析:(1)以为坐标原点,射线为轴的正半轴,建立如图所示的空间直角坐标系.可得各点坐标,从而可得各向量坐标,根据向量数量积为0则两向量垂直,可得,根据线面垂直的判定定理可证得平面.(2)根据向量垂直数量积等于0可求得平面的一个法向量,由数量积公式可求得两法向量所成角的二面角.两法向量所成的角与二面角的平面角相等或互补,所以观察图像可得所求二面角的平面角为锐角,所以所求二面角的平面角的余弦值等于两法向量余弦值的绝对值. 试题解析:以为坐标原点,射线为轴的正半轴,建立如图所示的空间直角坐标系.依题设,.11(0,2,1),(2,2,0),(2,2,4),(2,0,4)DE DB AC DA ===--= . (1)1122220(4)0,0(2)221(4)0AC DB AC DE ⋅=-⨯+⨯+⨯-=⋅=⨯-+⨯+⨯-= ,11,AC DB AC DE ⊥⊥,即又BD DE D ⋂=,平面. (2)由(1)知1(2,2,4)AC =--为面的一个法向量. 设向量(,,)n x y z =是平面的法向量,则1,n DE n DA ⊥⊥,. 令,则,. 所以1112421(4)(2)14cos ,42||||44161614AC n AC n AC n ⋅-⨯+⨯+-⨯-<>===⋅++⨯++ 观察可知二面角的平面角为锐角,∴二面角的余弦值为.【解析】1线面垂直;2用空间向量法解决立体几何问题.【方法点晴】本题主要考查的是线线垂直、线面垂直、空间直角坐标系和空间向量在立体几何中的应用,属于中档题.用空间向量法解题时一定要注意二面角的余弦值等于两法向量夹角的余弦值或其绝对值,否则很容易出现错误.证明线面垂直的关键是证明线线垂直,证明线线垂直常用的方法是直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.21.已知圆221:4C x y +=,圆()222:31C x y -+=,直线l 过点()1,2M .(1)若直线l 被圆1C 所截得的弦长为l 的方程;(2)若直线l 与圆2C 相交于A ,B 两点,求线段AB 的中点P 的轨迹方程.【答案】(1)1x =或3450x y -+=(2)224230x y x y +--+=x y <<<<⎝⎭【分析】(1)根据题意,由直线与圆的位置关系可得圆心1C 到直线l 的距离d ,进而分直线l 的斜率存在与否两种情况讨论,求出直线的方程,综合即可得答案; (2)根据题意,设P 的坐标为(,)x y ,分析可得2C P MP ⊥,则P 在以2C M 为直径上为圆上,据此分析可得答案.【详解】(1)解:根据题意,圆221:4C x y +=,圆心为(0,0),半径2r =,若直线l 被圆1C 所截得的弦长为1C 到直线l 的距离1d ==, 分2种情况讨论:()i 当直线的斜率不存在时,1x =,显然满足题意,()ii 当直线的斜率存在时,可设直线方程2(1)y k x -=-即20kx y k -+-=,则圆心(0,0)到直线20kx y k -+-=的距离d1=,解得34k =,此时直线方程为3450x y -+=, 综上可得满足题意的直线1x =或3450x y -+=,(2)解:根据题意,设P 的坐标为(,)x y ,P 为线段AB 的中点,则有2C P MP ⊥,则P 在以2C M 为直径的圆上,又由圆222:(3)1C x y -+=,其圆心2C 的坐标为(3,0)且(1,2)M ,因为()23,C P x y =-,()1,2MP x y =--,所以2(3)(1)(2)0C P MP x x y y ⋅=--+-=,变形可得224230x y x y +--+=;故P 的轨迹方程为224230x y x y +--+=,显然点P 位于圆2C 内部,由224230x y x y +--+=且22(3)1x y -+=,解得x y ⎧=⎪⎪⎨⎪=⎪⎩或x y ⎧=⎪⎪⎨⎪=⎪⎩,所以P 的轨迹方程为224230x y x y +--+=x y <<<<⎝⎭. 22.已知椭圆C :22221(0)x y a b a b +=>>3122⎛⎫ ⎪⎝⎭,. (1)求椭圆C 的方程.(2)过点()02P ,的直线交椭圆C 于A 、B 两点,求AOB 为原点)面积的最大值. 【答案】(1)2213x y +=【分析】(1)由题意可得2222291144c e a a b a b c ⎧==⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得a ,b ,即可得出答案. (2)由题意可知直线l 的斜率存在,设直线:2l y kx =+,1(A x ,1)y ,2(B x ,2)y ,联立直线l 与椭圆的方程,结合韦达定理可得12x x +,12x x ,由弦长公式可得||AB ,点到直线的距离公式可得点O 到直线l 的距离d ,再计算AOB 的面积,利用基本不等式,即可得出答案.【详解】(1)解:由题意可得2222291144c e a a b a b c ⎧==⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得1a b ==,所以椭圆C 的标准方程为2213x y +=. (2)解:由题意可知直线l 的斜率存在,设直线:2l y kx =+,1(A x ,1)y ,2(B x ,2)y ,联立22213y kx x y =+⎧⎪⎨+=⎪⎩,得22(31)1290k x kx +++=, 222Δ14436(31)36(1)0k k k =-+=->, 所以21k >,即1k >或1k <-, 则121222129,3131k x x x x k k +=-=++, 故2222212226(1)(1)12911()43131k k k AB k x x k k k +-+-+--⨯=++, 点O 到直线l 的距离21d k =+所以AOB 的面积21612k S AB d -=⋅= 设210t k ->,则221k t =+, 故2666343(1)12123t S t t t ===+++23t =时,等号成立, 所以AOB 3。
2020-2021学年河南省焦作市九年级(上)期末数学试卷(北师大版)
2020-2021学年河南省焦作市九年级(上)期末数学试卷(北师大版)一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案前的代号字母填涂在答题卷上指定位置.1.(3分)泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度,金字塔的影长,推算出金字塔的高度,这种测量原理,就是我们所学的()A.图形的平移B.图形的旋转C.图形的轴对称D.图形的相似2.(3分)某几何体的主视图和左视图完全一样均如图所示,则该几何体的俯视图不可能是()A.B.C.D.3.(3分)如图,小彬收集了三张除正面图案外完全相同的卡片,其中两张印有中国国际进口博览会的标志,另外一张印有进博会吉祥物“进宝”.现将三张卡片背面朝上放置,搅匀后从中一次性随机抽取两张,则抽到的两张卡片图案不相同的概率为()A.B.C.D.4.(3分)如果存在一条线把一个图形分割成两个部分,使其中一个部分沿某个方向平移后能与另一个部分重合,那么我们把这个图形叫做平移重合图形.下列图形中,平移重合图形是()A.平行四边形B.等腰梯形C.正六边形D.圆5.(3分)关于x的方程(x﹣3)(x+2)=p2(p为常数)的根的情况,下列结论中正确的是()A.两个正根B.两个负根C.一个正根,一个负根D.无实数根6.(3分)在如图所示的网格中,四边形ABCD的位似图形是四边形NPMQ,位似中心是点O,则四边形ABCD与四边形NPMQ的位似比是()A.1:2B.2:1C.1:D.:17.(3分)如图,点A,B,C在正方形网格的格点上,则sin∠BAC=()A.B.C.D.8.(3分)如图,面积为S的菱形ABCD中,点O为对角线的交点,点E是线段BC的中点,过点E作EF⊥BD于F,EG⊥AC于G,则四边形EFOG的面积为()A.S B.S C.S D.S9.(3分)如图,在▱ABCD中,AB=5,BC=8.E是边BC的中点,F是▱ABCD内一点,且∠BFC=90°.连接AF并延长,交CD于点G.若EF∥AB,则DG的长为()A.B.C.3D.210.(3分)如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AD,若AD平分∠OAE,反比例函数y=(k>0,x>0)的图象经过AE上的两点A,F,且AF=EF,若△ABE的面积为24,则k的值为()A.6B.12C.16D.24二、填空题(每小题3分,共15分)11.(3分)关于x的方程mx2﹣2x﹣1=0有两个不相等的实数根,那么m的取值范围是.12.(3分)一个密闭不透明的口袋中只有质地均匀大小相同的白球若干个,在不允许将球倒出来的情况下,为估计白球的个数,小华往口袋中放入10个红球,将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有71次摸到红球,估计这个口袋中白球的个数约为个.13.(3分)如图,在边长为4cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为cm2.14.(3分)如图,在△ABC中,AB=AC,点A在反比例函数y=(k>0,x>0)的图象上,点B,C在x轴上,OC=OB,延长AC交y轴于点D,连接BD,若△BCD的面积等于2,则k的值为.15.(3分)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△P AB=S矩形ABCD,则点P到A、B两点距离之和P A+PB的最小值为.三、解答题(本大题共8题,共75分)16.(8分)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.17.(9分)国庆黄金周期间,甲、乙两名同学分别想从云台山、青天河、青龙峡3个景点中随机选择2个景点去游览.(1)求甲同学选择的2个景点是云台山、青天河的概率是.(2)甲、乙两名同学选择的2个景点恰好相同的概率是多少?请用树状图或表格表示.18.(9分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测(结果精确到0.1m).得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.19.(9分)请阅读下列材料,并完成相应的任务.三等分角是古希腊三大几何问题之一.如图1,任意锐角ABC可被看作矩形BCAD的对角线BA和边BC的夹角,以B为端点的射线BF交CA于点E,交DA的延长线于点F,若EF=2AB,则射线BF是∠ABC的一条三等分线.证明:如图2取EF的中点G,连接AG…任务:(1)完成材料中的证明过程.(2)如图3,矩形ABCD中,对角线AC的延长线与外角∠CBE的平分线交于点F.若BF=AC,求∠F的度数.20.(9分)如图1是一种手机平板支架.由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE =90mm,托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离.(结果保留小数点后一位,参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,≈1.732)21.(10分)在平面直角坐标系xOy中,反比例函数y=(x>0)的图象经过点A(2,6),过点A的直线y=kx+b与x轴,y轴分别交于B,C两点.(1)求反比例函数的表达式;(2)若△AOB的面积为△BOC的面积的3倍,求此直线的函数表达式.22.(10分)某商场销售A、B两种新型小家电,A型每台进价40元,售价50元,B型每台进价32元,售价40元,4月份售出A型40台,且销售这两种小家电共获利不少于800元.(1)求4月份售出B型小家电至少多少台?(2)经市场调查,5月份A型售价每降低1元,销量将增加10台;B型售价每降低1元,销量将在4月份最低销量的基础上增加15台.为尽可能让消费者获得实惠,商场计划5月份A、B两种小家电都降低相同价格,且希望销售这两种小家电共获利965元,则这两种小家电都应降低多少元?23.(11分)如图,射线AB和射线CB相交于点B,∠ABC=α(0°<α<180°),且AB =CB.点D是射线CB上的动点(点D不与点C和点B重合),作射线AD,并在射线AD上取一点E,使∠AEC=α,连接CE,BE.(1)如图①,当点D在线段CB上,α=90°时,则∠AEB=;线段AE,EC,BE的数量关系为.(2)如图②,当点D在线段CB上,α=120°时,请写出∠AEB的度数及线段AE,BE,CE之间的数量关系,并说明理由.(3)当α=120°,tan∠DAB=时,请直接写出的值.2020-2021学年河南省焦作市九年级(上)期末数学试卷(北师大版)参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案前的代号字母填涂在答题卷上指定位置.1.(3分)泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度,金字塔的影长,推算出金字塔的高度,这种测量原理,就是我们所学的()A.图形的平移B.图形的旋转C.图形的轴对称D.图形的相似【解答】解:泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度,金字塔的影长,推算出金字塔的高度,这种测量原理,就是我们所学的图形的相似,故选:D.2.(3分)某几何体的主视图和左视图完全一样均如图所示,则该几何体的俯视图不可能是()A.B.C.D.【解答】解:几何体的主视图和左视图完全一样均如图所示则上面的几何体从正面看和左面看的长度相等,只有等边三角形不可能,故选:C.3.(3分)如图,小彬收集了三张除正面图案外完全相同的卡片,其中两张印有中国国际进口博览会的标志,另外一张印有进博会吉祥物“进宝”.现将三张卡片背面朝上放置,搅匀后从中一次性随机抽取两张,则抽到的两张卡片图案不相同的概率为()A.B.C.D.【解答】解:用A1、A2分别表示两张印有中国国际进口博览会的标志,用B表示一张印有进博会吉祥物“进宝”.一次性随机抽取两张,所有可能出现的情况如下:共有6种等可能出现的结果,有4种两张卡片图案不相同,∴P(两张卡片图案不相同)==,故选:D.4.(3分)如果存在一条线把一个图形分割成两个部分,使其中一个部分沿某个方向平移后能与另一个部分重合,那么我们把这个图形叫做平移重合图形.下列图形中,平移重合图形是()A.平行四边形B.等腰梯形C.正六边形D.圆【解答】解:如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF.∵四边形ABEF向右平移可以与四边形EFDC重合,∴平行四边形ABCD是平移重合图形,故选:A.5.(3分)关于x的方程(x﹣3)(x+2)=p2(p为常数)的根的情况,下列结论中正确的是()A.两个正根B.两个负根C.一个正根,一个负根D.无实数根【解答】解:∵(x﹣3)(x+2)=p2(p为常数),∴x2﹣x﹣6﹣p2=0,∴△=b2﹣4ac=1+24+4p2=25+4p2>0,∴方程有两个不相等的实数根,根据根与系数的关系,方程的两个根的积为﹣6﹣p2<0,∴一个正根,一个负根.故选:C.6.(3分)在如图所示的网格中,四边形ABCD的位似图形是四边形NPMQ,位似中心是点O,则四边形ABCD与四边形NPMQ的位似比是()A.1:2B.2:1C.1:D.:1【解答】解:如图,连接OD,OQ,∵四边形ABCD的位似图形是四边形NPMQ,位似中心是点O,∴四边形ABCD与四边形NPMQ的位似比=OD:OQ=:2=1:2.故选:A.7.(3分)如图,点A,B,C在正方形网格的格点上,则sin∠BAC=()A.B.C.D.【解答】解:如图,过点B作BD⊥AC于D,由勾股定理得,AB==,AC==3,∵S△ABC=AC•BD=×3•BD=×1×3,∴BD=,∴sin∠BAC===.故选:B.8.(3分)如图,面积为S的菱形ABCD中,点O为对角线的交点,点E是线段BC的中点,过点E作EF⊥BD于F,EG⊥AC于G,则四边形EFOG的面积为()A.S B.S C.S D.S【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,S=AC×BD,∵EF⊥BD于F,EG⊥AC于G,∴四边形EFOG是矩形,EF∥OC,EG∥OB,∵点E是线段BC的中点,∴EF、EG都是△OBC的中位线,∴EF=OC=AC,EG=OB=BD,∴矩形EFOG的面积=EF×EG=AC×BD=S;故选:B.9.(3分)如图,在▱ABCD中,AB=5,BC=8.E是边BC的中点,F是▱ABCD内一点,且∠BFC=90°.连接AF并延长,交CD于点G.若EF∥AB,则DG的长为()A.B.C.3D.2【解答】解:如图,延长BF交CD的延长线于H,∵四边形ABCD是平行四边形,∴AB=CD=5,AB∥CD,∴∠H=∠ABF,∵EF∥AB,∴EF∥CD,∵E是边BC的中点,∴EF是△BCH的中位线,∴BF=FH,∵∠BFC=90°,∴CF⊥BF,∴CF是BH的中垂线,∴BC=CH=8,∴DH=CH﹣CD=3,在△ABF和△GHF中,,∴△ABF≌△GFH(ASA),∴AB=GH=5,∴DG=GH﹣DH=2,故选:D.10.(3分)如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AD,若AD平分∠OAE,反比例函数y=(k>0,x>0)的图象经过AE上的两点A,F,且AF=EF,若△ABE的面积为24,则k的值为()A.6B.12C.16D.24【解答】解:连接BD,∵四边形ABCD为矩形,∴O为对角线AC,BD交点,OA=OD,∴∠OAD=∠ODA,∵AD平分∠OAE,∴∠OAD=∠EAD,∴∠ODA=∠EAD,∴BD∥AE,∴S△ABE=S△AOE=24.设点A坐标为(m,),∵AF=EF,即F为AE中点,∴点F纵坐标为,将y=代入y=得x=2m,∴点F坐标为(2m,),∴点E横坐标为2×2m﹣m=3m,即点E坐标为(3m,0).∴S△AOE=OE•y A=×3m×=24,解得k=16.故选:C.二、填空题(每小题3分,共15分)11.(3分)关于x的方程mx2﹣2x﹣1=0有两个不相等的实数根,那么m的取值范围是m >﹣1且m≠0.【解答】解:∵关于x的方程mx2﹣2x﹣1=0有两个不相等的实数根,∴△>0且m≠0,∴4+4m>0且m≠0,∴m>﹣1且m≠0,故答案为:m>﹣1且m≠0.12.(3分)一个密闭不透明的口袋中只有质地均匀大小相同的白球若干个,在不允许将球倒出来的情况下,为估计白球的个数,小华往口袋中放入10个红球,将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有71次摸到红球,估计这个口袋中白球的个数约为4个.【解答】解:设袋子中白球有x个,根据题意,得:=,解得x≈4,经检验x=4是分式方程的解,所以袋子中白球的个数约为4个,故答案为:4.13.(3分)如图,在边长为4cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为8cm2.【解答】解:连接BF,BE,过点A作AT⊥BF于T∵ABCDEF是正六边形,∴CB∥EF,AB=AF,∠BAF=120°,∴S△PEF=S△BEF,∵AT⊥BF,AB=AF,∴BT=FT,∠BAT=∠F AT=60°,∴BT=FT=AB•sin60°=2(cm),∴BF=2BT=4(cm),∵∠AFE=120°,∠AFB=∠ABF=30°,∴∠BFE=90°,∴S△PEF=S△BEF=•EF•BF=×4×4=8(cm2),故答案为8.14.(3分)如图,在△ABC中,AB=AC,点A在反比例函数y=(k>0,x>0)的图象上,点B,C在x轴上,OC=OB,延长AC交y轴于点D,连接BD,若△BCD的面积等于2,则k的值为6.【解答】解:设OC=a,则C(a,0),∵OC=OB,∴B(5a,0),CB=4a,过点A作AE⊥x轴于点E,则∠AEC=∠DOC=90°,∵∠ACE=∠DCO,∴△COD∽△CEA,∴,∵AB=AC,点A在反比例函数图象上,∴A(3a,),CE=2a,∴,∴OD=,∵S△BCD==2,∴k=6.故答案为:6.15.(3分)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△P AB=S矩形ABCD,则点P到A、B两点距离之和P A+PB的最小值为.【解答】解:设△ABP中AB边上的高是h.∵S△P AB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即P A+PB的最小值为.故答案为:.三、解答题(本大题共8题,共75分)16.(8分)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.【解答】证明:(1)∵DB平分∠ADC,∴∠ADB=∠CDB,且∠ABD=∠BCD=90°,∴△ABD∽△BCD∴∴BD2=AD•CD(2)∵BM∥CD∴∠MBD=∠BDC∴∠ADB=∠MBD,且∠ABD=90°∴BM=MD,∠MAB=∠MBA∴BM=MD=AM=4∵BD2=AD•CD,且CD=6,AD=8,∴BD2=48,∴BC2=BD2﹣CD2=12∴MC2=MB2+BC2=28∴MC=2∵BM∥CD∴△MNB∽△CND∴,且MC=2∴MN=17.(9分)国庆黄金周期间,甲、乙两名同学分别想从云台山、青天河、青龙峡3个景点中随机选择2个景点去游览.(1)求甲同学选择的2个景点是云台山、青天河的概率是.(2)甲、乙两名同学选择的2个景点恰好相同的概率是多少?请用树状图或表格表示.【解答】解:把云台山、青天河、青龙峡3个景点分别记为A、B、C,(1)画树状图如图:共有6个等可能的结果,甲同学选择的2个景点是云台山、青天河的结果有2个,∴甲同学选择的2个景点是云台山、青天河的概率为=,故答案为:;(2)画树状图如图:共有9种等可能出现的结果,其中甲、乙两名同学选择的2个景点恰好相同的有3种,∴甲、乙两名同学选择的2个景点恰好相同的概率为=.18.(9分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测(结果精确到0.1m).得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.【解答】解:设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=x米,∴△ABN∽△ACD,∴=,即=,解得:x=6.125≈6.1.经检验,x=6.125是原方程的解,∴路灯高CD约为6.1米19.(9分)请阅读下列材料,并完成相应的任务.三等分角是古希腊三大几何问题之一.如图1,任意锐角ABC可被看作矩形BCAD的对角线BA和边BC的夹角,以B为端点的射线BF交CA于点E,交DA的延长线于点F,若EF=2AB,则射线BF是∠ABC的一条三等分线.证明:如图2取EF的中点G,连接AG…任务:(1)完成材料中的证明过程.(2)如图3,矩形ABCD中,对角线AC的延长线与外角∠CBE的平分线交于点F.若BF=AC,求∠F的度数.【解答】(1)证明:如图2,取EF的中点G,连接AG,∵四边形BCAD是矩形,∴AD∥BC,∠DAC=90°,∴∠F=∠CBF,∠EAF=90°,∵点G是EF的中点,∴AG=EF=FG,∴∠F=∠GAF,∵EF=2AB,∴AG=AB,∴∠ABG=∠AGB=∠F+∠GAF=2∠F=2∠CBF,∴∠ABC=3∠CBF,∴射线BF是∠ABC的一条三等分线;(2)解:取AC的中点H,连接BH,如图2所示:∵四边形BCAD是矩形,∴∠CBA=∠CBE=90°,∵BF是∠CBE的角平分线,∴∠FBE=∠CBE=×90°=45°,∵∠FBE=∠F AB+∠F,∴∠F AB+∠F=45°,∵∠CBA=90°,点H是AC的中点,∴BH=AH=BF=AC,∴∠HAB=∠HBA,∠BHF=∠F,∴∠BHF=2∠HAB,∴∠F=2∠HAB,∴∠F AB=∠F,∴∠F+∠F=45°,∴∠F=30°.20.(9分)如图1是一种手机平板支架.由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE =90mm,托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离.(结果保留小数点后一位,参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,≈1.732)【解答】解:如图2,过A作AM⊥DE,交ED的延长线于点M,过点C作CF⊥AM,垂足为F,过点C作CN⊥DE,垂足为N,由题意可知,AC=80,CD=80,∠DCB=80°,∠CDE=60°,在Rt△CDN中,CN=CD•sin∠CDE=80×=40mm=FM,∠DCN=90°﹣60°=30°,又∵∠DCB=80°,∴∠BCN=80°﹣30°=50°,∵AM⊥DE,CN⊥DE,∴AM∥CN,∴∠A=∠BCN=50°,∴∠ACF=90°﹣50°=40°,在Rt△AFC中,AF=AC•sin40°=80×0.643≈51.44(mm),∴AM=AF+FM=51.44+40≈120.7(mm),答:点A到直线DE的距离约为120.7mm.21.(10分)在平面直角坐标系xOy中,反比例函数y=(x>0)的图象经过点A(2,6),过点A的直线y=kx+b与x轴,y轴分别交于B,C两点.(1)求反比例函数的表达式;(2)若△AOB的面积为△BOC的面积的3倍,求此直线的函数表达式.【解答】解:(1)∵反比例函数y=(x>0)的图象经过点A(2,6),∴m=2×6=12,∴反比例函数的表达式为y=;(2)∵直线y=kx+b过点A,∴2k+b=6,∵过点A的直线y=kx+b与x轴、y轴分别交于B,C两点,∴B(﹣,0),C(0,b),∵△AOB的面积为△BOC的面积的3倍,∴×6×|﹣|=3××|﹣|×|b|,∴b=±2,当b=2时,k=2,当b=﹣2时,k=4,∴直线的函数表达式为:y=2x+2或y=4x﹣2.22.(10分)某商场销售A、B两种新型小家电,A型每台进价40元,售价50元,B型每台进价32元,售价40元,4月份售出A型40台,且销售这两种小家电共获利不少于800元.(1)求4月份售出B型小家电至少多少台?(2)经市场调查,5月份A型售价每降低1元,销量将增加10台;B型售价每降低1元,销量将在4月份最低销量的基础上增加15台.为尽可能让消费者获得实惠,商场计划5月份A、B两种小家电都降低相同价格,且希望销售这两种小家电共获利965元,则这两种小家电都应降低多少元?【解答】解:(1)设4月份售出B型小家电x台,根据题意,得(50﹣40)×40﹣(40﹣32)x≥800.解得x≥50.答:4月份售出B型小家电至少50台;(2)设两种型号的小家电都降价y元,根据题意得:(50﹣y﹣40)(40+10y)+(40﹣y﹣32)(50+15y)=965.整理,得5y2﹣26y+33=0.解得y1=3,y2=2.2.为了让消费者得到更多的实惠,所以y=3符合题意.答:两种型号的小家电都降价3元.23.(11分)如图,射线AB和射线CB相交于点B,∠ABC=α(0°<α<180°),且AB =CB.点D是射线CB上的动点(点D不与点C和点B重合),作射线AD,并在射线AD上取一点E,使∠AEC=α,连接CE,BE.(1)如图①,当点D在线段CB上,α=90°时,则∠AEB=45°;线段AE,EC,BE的数量关系为AE=EC+BE.(2)如图②,当点D在线段CB上,α=120°时,请写出∠AEB的度数及线段AE,BE,CE之间的数量关系,并说明理由.(3)当α=120°,tan∠DAB=时,请直接写出的值.【解答】解:(1)连接AC,如图①所示:∵α=90°,∠ABC=α,∠AEC=α,∴∠ABC=∠AEC=90°,∴A、B、E、C四点共圆,∴∠AEB=∠ACB,∵∠ABC=90°,AB=CB,∴△ABC是等腰直角三角形,∴∠ACB=45°,∴∠AEB=45°,∴AE=EC+BE;故答案为:45°;AE=EC+BE.(2)AE=BE+CE,理由如下:在AD上截取AF=CE,连接BF,过点B作BH⊥EF于H,如图②所示:∵∠ABC=∠AEC,∠ADB=∠CDE,∴180°﹣∠ABC﹣∠ADB=180°﹣∠AEC﹣∠CDE,∴∠A=∠C,在△ABF和△CBE中,,∴△ABF≌△CBE(SAS),∴∠ABF=∠CBE,BF=BE,∴∠ABF+∠FBD=∠CBE+∠FBD,∴∠ABD=∠FBE,∵∠ABC=120°,∴∠FBE=120°,∵BF=BE,∴∠BFE=∠BEF=×(180°﹣∠FBE)=×(180°﹣120°)=30°,∵BH⊥EF,∴∠BHE=90°,FH=EH,在Rt△BHE中,BH=BE,FH=EH=BH=BE,∴EF=2EH=2×BE=BE,∵AE=EF+AF,AF=CE,∴AE=BE+CE;(3)分两种情况:①当点D在线段CB上时,在AD上截取AF=CE,连接BF,过点B作BH⊥EF于H,如图②所示:由(2)得:FH=EH=BE,∵tan∠DAB=,∴AH=3BH=BE,∴CE=AF=AH﹣FH=BE﹣BE=BE,∴;②当点D在线段CB的延长线上时,在射线AD上截取AF=CE,连接BF,过点B作BH⊥EF于H,如图③所示:同①得:FH=EH=BE,AH=3BH=BE,∴CE=AF=AH+FH=BE+BE=BE,∴;综上所述,当α=120°,tan∠DAB=时,的值为或.。
2019-2020学年河南省洛阳市九年级上学期期末考试数学试卷及答案解析
2019-2020学年河南省洛阳市九年级上学期期末考试数学试卷一、选择题(每小题3分,共30分).
1.(3分)下列图形是中心对称图形的是()
A.B.C.D.
2.(3分)一元二次方程x(x﹣2)=2﹣x的根是()
A.﹣1B.2C.1和2D.﹣1和2
3.(3分)下列事件中,是随机事件的是()
A.两条直线被第三条直线所截,同位角相等
B.任意一个四边形的外角和等于360°
C.早上太阳从西方升起
D.平行四边形是中心对称图形
4.(3分)二次函数图象上部分点的坐标对应值列表如下:则该函数图象的对称轴是()x……﹣3﹣2﹣101……
y……﹣17﹣17﹣15﹣11﹣5……
A.x=﹣3B.x=﹣2.5C.x=﹣2D.x=0
5.(3分)在同平面直角坐标系中,函数y=x﹣1与函数y=1
x的图象大致是()
A.B.
C.D.
6.(3分)某果园2017年水果产量为100吨,2019年水果产量为144吨,则该果园水果产量的年平均增长率为()
A.10%B.20%C.25%D.40%
第1 页共23 页。
2024年河南省焦作市中考第一次模拟考试数学模拟试题(含解析)
2023-2024学年焦作市九年级第一次模拟测试试卷数学注意事项:1.本试卷共4页,三个大题,满分120分,考试时间100分钟2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上答在试卷上的答案无效一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.下列各数中比大的数是( )A .B .C .D2.如图是焦作市博物馆的四件特色藏品,其中主视图与左视图相同的是( )A .汉“山阳”陶罐B .东汉五层彩绘陶仓楼C .东汉彩绘陶房D .西汉铜提梁卣3.记者1月19日从焦作海关了解到,2023年我市实现进出口总值亿元,进出口规模创历史新高数据“亿”用科学记数法表示为( )A .B .C .D .4.如图,直线相交于点平分,若,则的度数为( )12-0.6181-221.4221.492.21410⨯102.21410⨯922.1410⨯110.221410⨯,AB CD ,O OE BOD ∠113AOE ∠=︒BOC ∠A .B .C .D .5.化简的结果为( )A .B .C .D .6.如图,在中,,以为直径作,分别交于,,连接,若,则的度数为( )A .B .C .D .7.下图为某商家2023年1月至10月“人工智能机器人”的月销售量,下列说法错误的是( )A .这10个月的月销售量的众数为28B .这10个月中7月份的月销售量最高C .前5个月的月销售量的方差大于后5个月的月销售量的方差D .4月至7月的月销售量逐月增加8.二次函数的图象如图所示,则关于的一元二次方程的根的情况是( )46︒56︒67︒77︒2111m m m -⋅+1m m +11m m -+1m m -1m m+ABC AB AC =AC O ,AB BC D E ,DE CD 70B ∠=︒CDE ∠10︒20︒30︒40︒2y ax bx c =++x 20x ax b +-=A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根9.如图,已知矩形的顶点,若矩形绕点逆时针旋转,每次旋转,则第75次结束时,矩形对角线交点的坐标为( )A .B .C .D .10.如图1,点从等腰直角三角形的顶点出发,沿直线运动到三角形内部一点,再从该点沿直线运动到的中点.设点运动的路程为的面积为,图2是点运动时随变化的关系图象,则的长为( )A .1B .2CD .二、填空题(每小题3分,共15分)11.代数式可表示的实际意义是 .12.方程组的解为 .13.焦作市两部优秀作品人选河南省2023年度重点文艺创作项目名单,某校七、八、九年级分别从如图所示文艺项目中随机选择一部组织本年级学生欣赏,则这三个年级选择的文艺项目相同的概率为 .OABC ()()0,0,B 4,4O O 45︒D ()2,2(0,()-()2,2-P ABC A AC D P ,x PBC △y P y x BC 3n 25238x y x y +=⎧⎨+=⎩14.如图,在中,以为直径作交于点,过点作的切线交于点.则的长为 .15.如图,在矩形中,,点为的中点,取的中点,连接,当为直角三角形时,的值为 .三、解答题(本大题共8个小题,共75分)16.(1;(2)化简:.17.某学校为了解学生“消防安全知识”的掌握情况,从七、八年级各随机抽取名同学进行测试,并对成绩(百分制)进行整理,描述和分析,下面给出部分信息:a .七年级成绩的频数分布直方图如下:b .七年级成绩在这一组的是:80 80.5 82 82 82 82 83.5 84ABC 4120AB AC BAC ==∠=︒,AB O BC D D O AC E DE ABCD 1,AB BC a ==E CD AE F ,BE BF BEF △a 1132-+-()2(2)4x y x x y +-+508090x ≤<84 85 86 86.5 87 88 89 89c .七、八年级学生成绩的平均数、中位数如下:年级平均数中位数七年级85.3八年级87.285根据以上信息,回答下列问题:(1)在这次测试中,七年级测试成绩的中位数是______分,七年级成绩的众数不可能在_______组;(2)甲同学侧试成绩为分,在他所在的年级,他的成绩超过了一半以上被调查的同学,请判断甲同学是哪个年级的学生,并说明理由;(3)七年级共有名学生,若成绩在分以下(不含分)的同学需要参加消防安全知识培训,请你估计七年级有多少名同学需要参加消防安全知识培训.18.如图,是等边三角形,是边上一点,连接.(1)请用无刻度的直尺和圆规在的上方作等边(保留作图痕迹,不写作法);(2)连接,求证:.19.小晃同学借助反比例函数图像设计一个轴对称图形.如图,正方形的中心与平面直角坐标系的原点重合,边分别与坐标轴平行,反比例函数的图象经过正方形的顶点,以点为圆心,的长为半径作扇形交于点;以为对角线作正方形,再以点为圆心,的长为半径作扇形.m m 835008080ABC D AB CD CD CDE AE BD AE =ABCD k y x=()2,2A C CB ,BCD BDAC F CF CEFG C CE ECG(1)求反比例函数的解析式;(2)求的长;(3)直接写出图中阴影部分面积之和.20.南水北调第一楼位于山阳故城乐南,是一座具有汉代风格,可以望山、观水、展陈的文化地标.某小组利用无人机测量第一楼高度,如图是测量第一楼高度的示意图,无人机在距地面136.65米的P 处测得第一楼顶部A 的俯角为,测得第一楼底部B 的俯角为.求南水北调第一楼的高度(结果精确到).21.为庆祝中华人民共和国成立75周年,某平台店计划购进A ,B 两种纪念币,进价和售价如下表所示:品名A B 进价(元/枚)4560售价(元/枚)6690(1)第一次购进A 种纪念币80枚,B 种纪念币40枚,求全部售完后获利多少元?(2)第二次计划购进两种纪念币共150枚,且A 种纪念币的进货数量不超过B 种纪念币的进货数量的2倍,应如何设计进货方案才能获得最大利润,最大利润为多少?22.根据以下素材,探索完成任务设计小区大门灯笼的悬挂方案EG 11.3︒45︒AB 0.1m,sin11.30.196,cos11.30.980,tan11.30.200︒≈︒≈︒≈素材一图1是某小区的正门,图2是正门的示意图,小航查阅相关资料获得以下信息:①正门是由一个矩形和一个抛物线形拱组成的轴对称图形,②矩形的宽为,高为,抛物线形拱的高为.素材二为迎接龙年春节,拟在图1正门抛物线形拱上悬挂直径为的灯笼,如图3为了美观,要求悬挂灯笼的数量为双数,且平均分布,间隔在之间.问题解决任务1确定拋物线形拱形状在图2中建立合适的直角坐标系,求抛物线的函数表达式任务2探究悬挂数量给出符合所有悬挂条件的灯笼数量.任务3拟定设计方案根据你建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标23.在综合实践课上,老师设计下面问题,请你解答.10m 12m 2m 1m 0.8-1.5m(1)观察发现如图1,在平面直角坐标系中,过点作轴的对称点,再分别作点关于直线和轴的对称点,则点可以看作是点绕点顺时针旋转得到的,旋转角的度数为___________;点可以看作是点关于点___________的对称点.(2)探究迁移如图2,正方形中,为直线下方一点,作点关于直线的对称点,再分别作关于直线和直线的对称点和,连接,,请仅就图2的情况解决以下问题:①请判断的度数,并说明理由;②若,求两点间的距离.(3)拓展应用在(2)的条件下,若,请直接写出的长.()1,3A -y 1A 1A y x =x 23,A A 2A A O 3A A ABCD P AD P CD 1P 1P BD AD 2P 3P PD 2PD 2PDP ∠PD m =23,PP 30PD PDC =∠=︒12PP参考答案与解析1.D 【分析】本题考查实数比较大小,解题关键在于对二次根式进行正确的估算.【解答】A 、,不符合题意,选项错误;B 、,不符合题意,选项错误;C 、,不符合题意,选项错误;D,符合题意,选项正确.故选:D .2.A【分析】本题考查了三视图,培养了学生的观察能力和对几何体三种视图的空间想象能力.根据从正面看到的图形是主视图,从左边看到的图形是左视图,可得答案.【解答】解:根据主视图和左视图的定义,结合A 选项各个面的形状都一样,因此主视图与左视图相同.故选:A .3.B【分析】本题考查用科学记数法表示绝对值大于1的数.科学记数法的表示形式为的形式,其中为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值时,n 是正数;当原数的绝对值时,n 是负数.熟记相关结论即可.【解答】解:∵亿,故选:B4.A【分析】本题考查几何图形中角度的计算,与角平分线有关的计算,利用邻补角和角平分线的定义进行求解即可.【解答】解:平分,21-<0.6181<11-<1.4141≈>10n a ⨯110a n ≤<,1>1<221.41022140000000 2.21410==⨯113AOE ∠=︒ ,18011367BOE ∴∠=︒-︒=︒,OE BOD ∠67,BOE DOE ∴∠=∠=︒故选:A5.C【分析】本题主要考查了分式的乘除法,利用分式的乘法法则解答即可.【解答】解:原式.故选:C .6.B【分析】本题主要考查了圆周角定理,等腰三角形的性质,圆心角、弧、弦的关系等知识点,正确作出辅助线是解题的关键.【解答】解:连接,,,,,,,故选:B7.C【分析】本题考查了折线图,众数、方差等知识,解题的关键知道方差是描述波动程度的量,方差越大,波动越大.【解答】解:A .这10个月的月销售量的众数为28出现了两次,出现次数最多,故众数为28,选项说法正确,不符合题意;18026746BOC ∴∠=︒-⨯︒=︒1(1)(1)1m m m m +-=⋅+1m m-=OE AB AC = 70ACB B ∴∠=∠=︒OE OC = 70CEO ACE ∴∠=∠=︒180707040COE ∴∠=︒-︒-︒=︒1202CDE COE ∴∠=∠=︒B .这10个月中7月份的月销售量为40,为最高,选项说法正确,不符合题意;C .前5个月的月销售量的波动程度小于后5个月的波动程度,故方差小于后5个月的方差,选项说法错误,符合题意;D .4月至7月的折线图是上升的,故月销售量逐月增加,选项说法正确,不符合题意;故选:C .8.A【分析】本题考查抛物线与轴的交点、根据判别式判断一元二次方程根的情况以及二次函数图象与各项系数符号,由函数图象可知,根据可以得到关于的一元二次方程的根的情况.【解答】函数图象开口向上.对称轴在轴左侧故一元二次方程有两个不相等的实数根故选:A .9.C【分析】本题考查了矩形的性质,点的坐标特点,旋转的性质,根据求出,进而求出,每次旋转,8次一个循环,,第75次结束时,矩形的对角线交点D 与第3次的点D 的坐标相同,第3次点D 落在x 轴的负半轴上,由此可得结论.【解答】解:∵四边形是矩形,,∴∴∵每次旋转,8次一个循环,,∴点D 在x 轴的负半轴上,∴点D 的坐标为.x 0,0a b >>24b ac =- x 20x ax b +-= 0a ∴> y 02b a∴-<0a >0b ∴>()224140a b a b ∴=-⨯⨯-=+> 0x ax b +-=()B 4,4OB OD 45︒75893÷=L L ABCO ()B 4,4OB ==OD =45︒75893÷=L L ()-故选:C .10.B【分析】本题考查了动点问题的函数图象.由图象知,时,的面积为,当点在()上运动时,的面积不变,为,当点位于点时,此时为等腰直角三角形,据此,利用的面积,求解即可.【解答】解:由图象知,当点在点,即时,的面积为,当点运动到点,此时时,的面积为,而在运动到的过程中,的面积不变,为,如图,当点在()上运动时,的面积不变,为,∴当点位于点时,此时为等腰直角三角形,,∵,∴,∴,∴,∴,∴,∵的面积,即,∴,∴,故选:B .11.一支笔3元,支笔的钱数(答案不唯一)【分析】本题考查了代数式表示的实际意义,结合实际生活即可求解.【解答】解:可表示一支笔3元,支笔的钱数,0x =PBC 2y a =P DE DE BC ∥PBC y a =P E AED △EBC 12BC EF a ⨯=P A 0x =PBC 2y a =P D 2x a =PBC y a =x a =2x a =PBC y a =P DE DE BC ∥PBC y a =P E AED △AE ED x a ===DE BC ∥1AE AD EF CD==AF EF a ==AD ==2AC AD ==4BC a ==EBC 12BC EF a ⨯=142a a a ⨯⨯=12a =1422BC =⨯=n 3n n故答案为:一支笔3元,支笔的钱数(答案不唯一)12.【分析】本题考查了二元一次方程组的求解,掌握消元法是解题关键.【解答】解:由①得:③,将③代入②得:,解得:,将代入①得:∴原方程组的解为:,故答案为:13.【分析】本题主要考查了树状图法或列表法求解概率,先画出树状图得到所有等可能性的结果数,再找到这三个年级选择的文艺项目相同的结果数,最后依据概率计算公式求解即可.【解答】解:设用A 、B 表示两部文艺项目,画树状图如下:由树状图可知,一共有8种等可能性的结果数,其中这三个年级选择的文艺项目相同的结果数有2种,n 12x y =⎧⎨=⎩25238x y x y +=⎧⎨+=⎩①②52x y =-()25238y y -+=2y =2y =5221x =-⨯=12x y =⎧⎨=⎩12x y =⎧⎨=⎩14∴这三个年级选择的文艺项目相同的概率为,故答案为:.14【分析】本题考查了切线的性质,圆周角定理,解直角三角形,等腰三角形的性质等,作出辅助线,构造直角三角形,是求解的关键.连接,,根据等腰三角形可求出,可证 ,求出,为等边三角形,根据切线的性质,可证,再证,在直角三角形中,解直角三角形即可求解.【解答】解:如图,连接,∵,,∴,∵为直径,∴,在中,,,∴,∵∴是等边三角形,∴,∵是切线,∴,∴,∴,又∵,,∴,∴2184=14OD AD 30B ∠=︒AD BD ⊥2AD =OAD △30ADE ∠=︒DE AE ⊥ADE ,OD OA AB AC =120BAC ∠=︒30B C ∠=∠=︒AB AD BD ⊥Rt ABD 30B ∠=︒4AB =2AD =2OA OD AD ===OAD 60ADO ∠=︒DE OD DE ⊥90ODA ADE ∠+∠=︒30ADE ∠=︒AB AC =AD BD ⊥1260DAE BAC ∠=∠=︒90AED ∠=︒在中,,,∴,15.【分析】本题考查了矩形的性质,全等三角形的判定与性质,等边三角形的性质,掌握分类讨论是解题的关键.先证明,当时,;当时,为正三角形,运用勾股定理求解即可.【解答】解:,,,,,,分情况解答:①时,则,,;②时,,,为正三角形,,,则③,不存在,故答案为:Rt ADE 30ADE ∠=︒2AB =1AE =DE ==12() ≌ADE BCE SAS 90BEF ∠=︒1122BC CE CD ===90BFE ∠=︒BEF △AD BC = DE CE =D C ∠=∠(SAS)ADE BCE ∴△≌△AE BE ∴=AED BEC ∠=∠90BEF ∠=︒45AED BEC ∠=∠=︒1122BC CE CD ∴===12α∴=90BFE ∠=︒1122EF AE BE ∴==60BEF ∴∠=︒BEA ∴ 1BE AB ∴==12CE ∴=BC ==α∴90FBE ∠=︒12α=16.(1);(2)【分析】本题考查了实数的混合运算,整式的化简,完全平方公式,解题的关键是熟练掌握实数的运算法则,(1)根据实数的运算法则即可解答;(2)先去括号再合并即可,【解答】解:(1)原式;(2)原式17.(1),(2)七年级,见解析(3)210人【分析】本题考查频数分布直方图,中位数、众数及用样本估计总体,理解中位数、众数的定义,掌握中位数的计算方法是正确解答的关键.(1)根据中位数、众数的定义直接求解即可;(2)从七、八年级的中位数进行分析,即可得出甲同学是七年级的同学;(3)先求出从抽取的50名学生中参加消防安全知识竞赛得人数,再结合统计图给出的数据,即可得出答案.【解答】(1)解:∵从七年级随机抽取名同学进行测试,∴中位数是第,名学生的成绩的平均数,∵,,三组的数据为、、,∴第,名学生的成绩在这一组,由这一组的成绩可知:第,名学生的成绩为、,∴,∵这一组中,82出现4次,次数最多,∴七年级成绩的众数不能小于4,由七年级成绩的频数分布直方图可知:成绩在一组的人数为,232y 111232=-+23=2224444x xy y x xy=++--2y =825060x ≤<5025265060x ≤<6070x ≤<7080x ≤<251425268090x ≤<8090x ≤<252682828282822m +==8090x ≤<5060x ≤<24<∴七年级成绩的众数不可能在组.故答案为:,(2)甲同学是七年级的同学,理由如下:∵,八年级成绩的中位数为,,∴甲同学是七年级的同学.(3)∵七年级成绩在分以下的有(人),∴七年级需要参加消防安全知识培训的人数为(人),答:七年级名同学需要参加消防安全知识培训.18.(1)见解析(2)见解析【分析】本题主要考查作等边三角形,等边三角形的性质以及全等三角形的判定与性质:(1)分别以点C ,D 为圆心,为半径画弧,两弧在的上方相交于点E ,连接,则等边三角形即为所求作;(2)根据证明,可得【解答】(1)解:如图,即为所求作;(2)证明:是等边三角形,即,19.(1)(3)5060x ≤<825060x ≤<82m =85828385<<80251421++=2150021050⨯=210CD CD ,CE DE CDE SAS BCD ACE ≌BD AE=CDE ,ABC CDE △△,,60CA CB CE CD ACB ECD ∴==∠=∠=︒ACB ACD ECD ACD ∴∠-∠=∠-∠BCD ACE∠=∠即BCD ACE ∴ ≌BD AE∴=4y x=246π-【分析】(1)将代入,可求,进而可得反比例函数的解析式;(2)由题意知,,计算求解即可;(3)根据,计算求解即可.【解答】(1)解:将代入得,,解得,,∴反比例函数的解析式为;(2)解:由题意知,∴,∴;(3)解:由题意知,,∴图中阴影部分面积之和为.【点拨】本题考查了反比例函数解析式,反比例函数与几何综合,弧长,扇形面积等知识.熟练掌握反比例函数解析式,反比例函数与几何综合,弧长,扇形面积是解题的关键.20.南水北调第一楼的高度约为109.3米【分析】本题考查了解直角三角形的应用,过P 作交的延长线于点D ,则米,根据等腰直角三角形的性质可得,在中,利用锐角三角形函数求解即可.【解答】解:过P 作交的延长线于点D ,则米,在中,,∴,在中,,∴,.()2,2A k y x=4k =CE OC OA ==== EG ABCD CEFG BGD ECG S S S S S =-+-阴影正方形正方形扇形扇形()2,2A k y x =22k =4k =4y x=CE OC OA ==== EG == EG ABCD CEFG BGD ECGS S S S S =-+-阴影正方形正方形扇形扇形(2229044360π⋅=-+246π=-246π-AB PD BA ⊥BA 136.65BD PC ====136.65PD BD Rt PAD PD BA ⊥BA 136.65BD PC ==Rt PBD 45BPD ∠=︒==136.65PD BD Rt PAD 11.3APD ∠=︒tan11.3136.650.20027.33AD PD =⋅≈⨯=︒136.6527.33109.32109.3AB BD AD ∴=-=-=≈答:南水北调第一楼的高度约为109.3米.21.(1)2880元(2)按照A 种纪念币购进100枚,B 种纪念币购进50枚的进货方案,才能使利润最大,最大利润为3600元【分析】本题考查了一元一次不等式的应用、一次函数的应用,解题的关键是:(1)根据题意分别计算两种纪念币的利润,即可求解;(2)设购进x 枚A 种纪念币,则购进枚B 种纪念币,获利y 元,根据题意分别列出关于y 与x 的一次函数,关于x 的一元一次不等式,从而求得,再根据一次函数的性质求解即可.【解答】(1)解:由题意得,(元),答:全部售完后获利2880元;(2)解:设购进x 枚A 种纪念币,则购进枚B 种纪念币,获利y 元.由题意得:,∵A 种纪念币的进货数量不超过B 种纪念币的进货数量的2倍,,∴,∵,,∴y 随x 的增大而减小,当时,(元),∴B 种纪念币的数量为(枚),答:按照A 种纪念币购进100枚,B 种纪念币购进50枚的进货方案,才能使利润最大,最大利润为3600元.AB (150)x -100x ≤()()6645809060402880-⨯+-⨯=(150)x -()()()6645906015094500y x x x =-+--=-+()2150x x ∴≤-100x ≤=94500y x -+90k =-<100x =910045003600y =-⨯+=最小15010050-=22.任务1:见解析,;任务2:4个;任务3:最左边一盏灯笼悬挂点的横坐标为【分析】本题考查了二次函数的应用,一元一次不等式组的应用;任务1:以中点为原点,以所在直线为轴建立平面直角坐标系,可得抛物线的顶点,且过点,然后利用待定系数法求解即可;任务2:设悬挂个灯笼,先根据“间隔在之间”列不等式求解,再根据“悬挂灯笼的数量为双数”得出答案;任务3:先求出间隔的距离,然后计算即可.【解答】解:任务1:以中点为原点,以所在直线为轴,建立如图所示的平面直角坐标系,∵矩形的宽为,高为,抛物线形拱的高为,∴抛物线的顶点,且过点,设抛物线的解析式为:,把点代入得:,解得:,所以抛物线的解析式为:;任务2:设悬挂个灯笼,依题意得:,解得:,因为灯笼的个数为双数,所以符合悬挂条件的灯笼数量为4个;221425y x =-+3310-BC O BC x ()0,14P ()5,12D x 0.8-1.5m BC O BC x 10m 12m 2m ()0,14P ()5,12D 214y ax =+()5,12D 122514a =+225a =-221425y x =-+x ()()0.8110 1.51x x x +≤-≤+213559x ≤≤任务3:由题意得间隔为,所以最左边一盏灯笼悬挂点的横坐标为.23.(1)(2)①90°,见解析;【分析】本题主要考查勾股定理以及逆定理,一次函数图象,轴对称的性质,中心对称的性质(1)根据轴对称和中心对称的性质以及勾股定理以及逆定理求解即可;(2)①连接,可得,进而即可求解;②先推出,再根据勾股定理求解即可;(3)分当点P 在正方形外部时,当点P 在正方形内部时,结合勾股定理求解即可【解答】(1)解:连接,∵,∴,∴,∴点可以看作是点绕点顺时针旋转得到的,旋转角的度数为,∵共线,∴点可以看作是点关于点的对称点,故答案为:;()61045m 5-÷=613355210-++=-90,O︒1112323PD P D P D P P 、、、112PDC PDC PDB P DB ∠=∠∠=∠,3290P DP ∠=︒322OA OA OA AA ,,,22OA OA AA =====22222OA OA AA =+290AOA ∠=︒2A A O 90︒3O A A O ===3A O A 、、3A A O 90O ︒,(2)①解:连接由对称性可得:,∴;②由(1)可知:共线,∴∵,∴;(3)解:①当点P 在正方形外部时,连接,过点作,则,,∴,∴∴;②当点P 在正方形内部时,连接,过点作,则,,12323PD P D P D P P 、、、112PDC PDCPDB P DB ∠=∠∠=∠,()2112224590PDP PDC PDB BDC ∠=∠+∠=∠=⨯︒=︒3P D P 、、321809090P DP ∠=︒-︒=︒32DP DP DP m ===23P P ==12PP 1P12PH DP ⊥()122453030PDP ∠=⨯︒-︒=︒12DP DP DP ===1HP HD ==2HP =121PP ==-12PP 1P12PH DP ⊥()1223045150PDP ∠=⨯︒+︒=︒12DP DP DP ==∴,∴,∴∴,综上所述:130PDH ∠=︒1HP HD ==2HP =121PP ==121PP =1。
2019-2020学年河南省洛阳市九年级(上)期中数学试卷(解析版)
2019-2020学年河南省洛阳市九年级(上)期中数学试卷一、选择题(每小题3分,共30分) 1.比22-小1的数是( ) A .3-B .3C .5D .5-2.为改善城市交通,洛阳市地铁1号线开工建设,工程自谷水西至文化街,线路长约23公里,设站19座,投资171亿元,把“171亿”用科学记数法表示为( ) A .21.7110⨯B .101.7110⨯C .91.7110⨯D .817110⨯3.如图,//AB CD ,2B D ∠=∠,22E ∠=︒,则D ∠的度数为( )A .22︒B .44︒C .68︒D .30︒4.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,//CE BD ,//DE AC ,AD =,2DE =,则四边形OCED 的面积为( )A .B .4C .D .85.在平面直角坐标系中,点A 的坐标是(1,3)-,将原点O 绕点A 顺时针旋转90︒得到点O ',则点O '的坐标是( ) A .(3,1)B .(3,1)--C .(4,2)-D .(2,4)6.一元二次方程(1)1x x x +-=的根是( ) A .121x x ==-B .121x x ==C .11x =,21x =-D .120x x ==7.某市为扶持绿色农业发展,今年4月投入的扶持基金为3600万元,按计划第二季度的总投入要达到12000万元,设该市5、6两月投入的月平均增长率为x ,根据题意列方程,则下列方程正确的是( )A .3600(1)12000x +=B .23600(1)12000x +=C .23600(1)3600(1)12000x x +++=D .236003600(1)3600(1)12000x x ++++=8.已知抛物线2y x bx c =++的部分图象如图所示,若12x -<<,则y 的取值范围是( )A .30y -<B .43x -<-C .40y -<<D .40y -<9.若点(,)m n 在坐标系中的第四象限,则一次函数(2)4y m x n =++-的图象一定不经过() A .第一象限B .第二象限C .第三象限D .第四象限10.如图,等边三角形ABC 的边长是2,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60︒得到BN ,连接MN ,则在点M 运动过程中,线段MN 长度的最小值是( )A .12B .1CD 二、填空题(每小题3分,共15分)11.计算23--= .12.不等式组1274xx ⎧-⎪⎨⎪-+>⎩的解集是 .13.二次函数224y x x =-+的顶点坐标是 .14.已知抛物线2y ax bx c =++在坐标系中的位置如图所示,它与x ,y 轴的交点分别为A ,B ,P 是其对称轴1x =上的动点,根据图中提供的信息给出以下结论:①20a b +=;②3x =是20ax bx c ++=的一个根;③若PA PB =,PA PB ⊥,则4a b c ++=.其中正确的有 个.15.如图,在矩形ABCD 中,1AB =,BC a =,将点B 绕点A 逆时针旋转,点B 的对应点为B ',BAB ∠'的平分线交BC 于E ,且35BE a =.若点B '落在矩形ABCD 的边上,则a 的值为 .三、解答题(本大题共8个小题,满分75分)16.先化简再求值:2234(1)121x x x x x ---÷+++,其中x 是方程:220x x -=的一个根. 17.某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了 名学生,其中最喜爱戏曲的有 人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是 .(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.18.如图,直线y =+A 、B 两点. (1)求ABO ∠的度数;(2)过A 的直线l 交x 轴正半轴于C ,AB AC =,求直线l 的函数解析式.19.已知关于x 的一元二次方程2(1)220k x kx k +-+-=有两个不相等的实数根. (1)求实数k 的取值范围;(2)写出满足条件的k 的最小整数值,并求此时方程的根. 20.如图,ABC ∆三个顶点的坐标分别为(1,1)A ,(4,2)B ,(3,4)C (1)请画出将ABC ∆向左平移4个单位长度后得到的图形△111A B C ; (2)请画出ABC ∆关于点(1,0)成中心对称的图形△222A B C ;(3)若△111A B C 绕点M 旋转可以得到△222A B C ,请直接写出点M 的坐标; (4)在x 轴上找一点P ,使PA PB +的值最小,请直接写出点P 的坐标;21.坚持农业农村优先发展,按照产业兴旺、生态宜居的总要求,统筹推进农村经济建设洛宁县某村出售特色水果(苹果).规定如下:如果购买新红星40箱,红富士60箱,需付款4300元;如果购买新红星100箱,红富士35箱,需付款4950元(1)每箱新红星、红富士的单价各多少元?(2)某单位需要购置这两种苹果120箱,其中红富土的数量不少于新红星的一半,并且不超过60箱,如何购买付款最少?请说明理由;22.如图,将ABC ∆绕点A 逆时针旋转90︒得到ADE ∆. (1)观察猜想小明发现,将DAC ∆绕点A 逆时针旋转90︒,如图1,他发现ACD ∆的面积1S 与BAE ∆的面积2S 之间有一定的数量关系,请直接写出这个关系: . (2)类比探究如图2,M 是CD 的中点,请写出AM 与BE 之间的数量关系和位置关系,并说明理由; (3)解决问题如图3,AB AD =,AB AD ⊥,AC AE =,AC AE ⊥,C 在线段BD 上,AH BE ⊥交CD 于H ,若2BC =,3CD =,请直接写出AH 的长.23.如图,抛物线2y x bx c=-++交x轴于A,B两点,交y轴于点C直线122y x=-+经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC上方抛物线上一动点,设点P的横坐标为m.①求PBC∆面积最大值和此时m的值;②Q是直线BC上一动点,是否存在点P,使以A、B、P、Q为顶点的四边形是平行四边形,若存在,直接写出点P的坐标.2019-2020学年河南省洛阳市九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分) 1.比22-小1的数是( ) A .3-B .3C .5D .5-【解答】解:224-=-, 则比22-小1的数是5-, 故选:D .2.为改善城市交通,洛阳市地铁1号线开工建设,工程自谷水西至文化街,线路长约23公里,设站19座,投资171亿元,把“171亿”用科学记数法表示为( ) A .21.7110⨯B .101.7110⨯C .91.7110⨯D .817110⨯【解答】解:171亿17= 100 000 10000 1.7110=⨯. 故选:B .3.如图,//AB CD ,2B D ∠=∠,22E ∠=︒,则D ∠的度数为( )A .22︒B .44︒C .68︒D .30︒【解答】解://AB CD ,B EFC ∴∠=∠,2E EFC D B D D D D ∴∠=∠-∠=∠-∠=∠-∠=∠,22E ∠=︒, 22D ∴∠=︒,故选:A .4.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,//CE BD ,//DE AC ,AD =,2DE =,则四边形OCED 的面积为( )A .B .4C .D .8【解答】解:连接OE ,与DC 交于点F , 四边形ABCD 为矩形,OA OC ∴=,OB OD =,且AC BD =,即OA OB OC OD ===, //OD CE ,//OC DE , ∴四边形ODEC 为平行四边形,OD OC =,∴四边形ODEC 为菱形,DF CF ∴=,OF EF =,DC OE ⊥, //DE OA ,且DE OA =, ∴四边形ADEO 为平行四边形,2AD =,2DE =,OE ∴=,即OF EF ==在Rt DEF ∆中,根据勾股定理得:1DF ==,即2DC =,则11222ODEC S OE DC =⋅=⨯=菱形.故选:A .5.在平面直角坐标系中,点A 的坐标是(1,3)-,将原点O 绕点A 顺时针旋转90︒得到点O ',则点O '的坐标是( ) A .(3,1)B .(3,1)--C .(4,2)-D .(2,4)【解答】解:观察图象可知(4,2)O '-,故选:C .6.一元二次方程(1)1x x x +-=的根是( ) A .121x x ==- B .121x x ==C .11x =,21x =-D .120x x ==【解答】解:(1)10x x x +--=,(1)(1)0x x x ∴+-+=,则(1)(1)0x x +-=, 10x ∴+=或10x -=,解得11x =-,21x =, 故选:C .7.某市为扶持绿色农业发展,今年4月投入的扶持基金为3600万元,按计划第二季度的总投入要达到12000万元,设该市5、6两月投入的月平均增长率为x ,根据题意列方程,则下列方程正确的是( ) A .3600(1)12000x += B .23600(1)12000x +=C .23600(1)3600(1)12000x x +++=D .236003600(1)3600(1)12000x x ++++=【解答】解:根据题意列出方程,得236003600(1)3600(1)12000x x ++++=. 故选:D .8.已知抛物线2y x bx c =++的部分图象如图所示,若12x -<<,则y 的取值范围是( )A .30y -<B .43x -<-C .40y -<<D .40y -<【解答】解:抛物线的对称轴为直线1x =,抛物线与x 轴的一个交点坐标为(1,0)-, ∴抛物线与x 轴的另一个交点坐标为(3,0), ∴抛物线的解析式可设为(1)(3)y a x x =+-,把(0,3)-代入得31(3)a -=-,解得3a =,∴抛物线的解析式为(1)(3)y x x =+-,即223y x x =--,2(1)4y x =--,1x ∴=时,y 有最小值4-, 2x =时,2233y x x =--=-,∴当12x -<<,y 的取值范围是40y -<.故选:D .9.若点(,)m n 在坐标系中的第四象限,则一次函数(2)4y m x n =++-的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【解答】解:点(,)m n 在坐标系中的第四象限, 0m ∴>,0n <, 20m ∴+>,40n -<,∴一次函数(2)4y m x n =++-的图象经过第一、三、四象限.故选:B .10.如图,等边三角形ABC 的边长是2,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60︒得到BN ,连接MN ,则在点M 运动过程中,线段MN 长度的最小值是( )A .12B .1 CD【解答】解:由旋转的特性可知,BM BN =, 又60MBN ∠=︒, BMN ∴∆为等边三角形. MN BM ∴=,点M 是高CH 所在直线上的一个动点,∴当BM CH ⊥时,MN 最短(到直线的所有线段中,垂线段最短). 又ABC ∆为等边三角形,且2AB BC CA ===,∴当点M 和点H 重合时,MN 最短,且有112MN BM BH AB ====. 故选:B .二、填空题(每小题3分,共15分) 11.计算23--= 12- . 【解答】解:原式93=-- 12=-.故答案为:12-.12.不等式组1274xx ⎧-⎪⎨⎪-+>⎩的解集是 2x - .【解答】解:解不等式12x-,得:2x -,解不等式74x -+>,得:3x <, 则不等式组的解集为2x -, 故答案为:2x -.13.二次函数224y x x =-+的顶点坐标是 (1,3) .【解答】解:224y x x =-+,∴12ba-= 244144344ac b a -⨯⨯-==, 即顶点坐标为(1,3), 故答案为:(1,3).14.已知抛物线2y ax bx c =++在坐标系中的位置如图所示,它与x ,y 轴的交点分别为A ,B ,P 是其对称轴1x =上的动点,根据图中提供的信息给出以下结论:①20a b +=;②3x =是20ax bx c ++=的一个根;③若PA PB =,PA PB ⊥,则4a b c ++=.其中正确的有 3 个.【解答】解:①因为抛物线的对称轴1x =, 所以12ba-=,即20b a +=, 所以①正确;②因为(1,0)A -,对称轴1x =,所以设抛物线与x 轴的另一个交点为E , 所以(3,0)E ,所以3x =时,0y =,即3x =是20ax bx c ++=的一个根. 所以②正确; ③如图:过点B 作BD ⊥对称轴于点D ,设对称轴交x 轴于点C , AP BP ⊥, 90APB ∴∠=︒, 90APC BPD ∴∠+∠=︒, 90BPD PBD ∠+∠=︒, PBD APC ∴∠=∠,AP BP =,Rt APC Rt PBD(AAS)∴∆≅∆ 1PC BD ∴==,2DP AC ==, 3DC ∴=, 3OB ∴=,(0,3)B ∴.又(3,0)E ,(1,0)A -.设抛物线解析式为(1)(3)y a x x =+-, 把(0,3)B 代入,解得1a =-, ∴抛物线解析式为223x x -++,当1x =时,4y =, 即4a b c ++=. 所以③正确. 故答案为3.15.如图,在矩形ABCD 中,1AB =,BC a =,将点B 绕点A 逆时针旋转,点B 的对应点为B ',BAB ∠'的平分线交BC 于E ,且35BE a =.若点B '落在矩形ABCD 的边上,则a 的【解答】解:分两种情况: ①当点B '落在AD 边上时,如图1. 四边形ABCD 是矩形, 90BAD B ∴∠=∠=︒,将ABE ∆沿AE 折叠,点B 的对应点B '落在AD 边上, 1452BAE B AE BAD ∴∠=∠'=∠=︒,AB BE ∴=, ∴315a =, 53a ∴=; ②当点B '落在CD 边上时,如图2. 四边形ABCD 是矩形,90BAD B C D ∴∠=∠=∠=∠=︒,AD BC a ==.将ABE ∆沿AE 折叠,点B 的对应点B '落在CD 边上, 90B AB E ∴∠=∠'=︒,1AB AB ='=,35EB EB a ='=,DB ∴'==,3255EC BC BE a a a =-=-=.90B AD EB C AB D ∠'=∠'=︒-∠', 90D C ∠=∠=︒,ADB ∴∆'∽△B CE ',∴DB AB CE B E ''='12355a =,解得1a =2a =. 综上,所求a 的值为53或故答案为53三、解答题(本大题共8个小题,满分75分)16.先化简再求值:2234(1)121x x x x x ---÷+++,其中x 是方程:220x x -=的一个根. 【解答】解:解方程220x x -=得:0x =或2,2234(1)121x x x x x ---÷+++2(2)(2)(1)1(2)(2)x x x x x x +-+=++- 1x =+,当2x =时,原式没有意义,舍去; 当0x =时,原式1=.17.某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了 50 名学生,其中最喜爱戏曲的有 人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是 .(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.【解答】解:(1)本次共调查学生:48%50÷=(人),最喜爱戏曲的人数为:506%3⨯=(人);“娱乐”类人数占被调查人数的百分比为:18100%36%50⨯=, ∴ “体育”类人数占被调查人数的百分比为:18%30%36%6%20%----=, ∴在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是36020%72︒⨯=︒;故答案为:50,3,72︒.(2)20008%160⨯=(人),答:估计该校2000名学生中最喜爱新闻的人数约有160人.18.如图,直线y =+A 、B 两点. (1)求ABO ∠的度数;(2)过A 的直线l 交x 轴正半轴于C ,AB AC =,求直线l 的函数解析式.【解答】解:(1)对于直线y =+,令0x =,则y = 令0y =,则1x =-,故点A 的坐标为,点B 的坐标为(1,0)-,则AO =1BO =, 在Rt ABO ∆中,tan AOABO BO∠==,60ABO ∴∠=︒;(2)在ABC ∆中, AB AC =,AO BC ⊥, AO ∴为BC 的中垂线,即BO CO =,则C 点的坐标为(1,0),设直线l 的解析式为:(y kx b k =+,b 为常数),则0b k b ==+⎪⎩,解得:k b ⎧=⎪⎨=⎪⎩即函数解析式为:y =+.19.已知关于x 的一元二次方程2(1)220k x kx k +-+-=有两个不相等的实数根. (1)求实数k 的取值范围;(2)写出满足条件的k 的最小整数值,并求此时方程的根.【解答】解:(1)关于x 的一元二次方程2(1)220k x kx k +-+-=有两个不相等的实数根, ∴210(2)4(1)(2)0k k k k +≠⎧⎨=--+->⎩, 解得:2k >-且1k ≠-,∴实数k 的取值范围为2k >-且1k ≠-.(2)2k >-且1k ≠-,∴满足条件的k 的最小整数值为0,此时原方程为220x -=,解得:1x =,2x =.20.如图,ABC ∆三个顶点的坐标分别为(1,1)A ,(4,2)B ,(3,4)C (1)请画出将ABC ∆向左平移4个单位长度后得到的图形△111A B C ; (2)请画出ABC ∆关于点(1,0)成中心对称的图形△222A B C ;(3)若△111A B C 绕点M 旋转可以得到△222A B C ,请直接写出点M 的坐标;(4)在x轴上找一点P,使PA PB+的值最小,请直接写出点P的坐标;【解答】解:(1)如图,△A B C即为所求.111(2)如图,△A B C即为所求.222(3)如图,点M即为所求,点M的坐标(1,0)-.(4)如图,点P即为所求,点P的坐标(2,0).21.坚持农业农村优先发展,按照产业兴旺、生态宜居的总要求,统筹推进农村经济建设洛宁县某村出售特色水果(苹果).规定如下:如果购买新红星40箱,红富士60箱,需付款4300元;如果购买新红星100箱,红富士35箱,需付款4950元(1)每箱新红星、红富士的单价各多少元?(2)某单位需要购置这两种苹果120箱,其中红富土的数量不少于新红星的一半,并且不超过60箱,如何购买付款最少?请说明理由;【解答】解:(1)设每箱新红星a 元,每箱红富士b 元,由题意可得: 40600.943001000.9354950a b a b +⨯=⎧⎨⨯+=⎩, 解得4050a b =⎧⎨=⎩,答:每箱新红星40元,每箱红富士50元;(2)设购置新红星x 箱,则购置红富士(120)x -箱,所需的总费用为y 元, 由题意可得:1(120)2x x -, 解得:40x , 又60x ,所以新红星箱数x 的取值范围:4060x , 当4050x <时, 40500.8(120)y x x =+⨯- 804800x =+,所以40x =时,y 有最小值80000元,当5060x 时,0.840500.8(120)724800y x x x =⨯+⨯-=+, 所以50x =时,y 有最小值8400元, 80008400<,∴购买新红星40箱,红富士80块,费用最少,最少费用为8000元.22.如图,将ABC ∆绕点A 逆时针旋转90︒得到ADE ∆. (1)观察猜想小明发现,将DAC ∆绕点A 逆时针旋转90︒,如图1,他发现ACD ∆的面积1S 与BAE ∆的面积2S 之间有一定的数量关系,请直接写出这个关系: 12S S = . (2)类比探究如图2,M 是CD 的中点,请写出AM 与BE 之间的数量关系和位置关系,并说明理由; (3)解决问题如图3,AB AD =,AB AD ⊥,AC AE =,AC AE ⊥,C 在线段BD 上,AH BE ⊥交CD 于H ,若2BC =,3CD =,请直接写出AH 的长.【解答】解:(1)结论:12S S =.理由:如图1中,作EH BA ⊥交BA 的延长线于H ,CM AD ⊥于M .由题意CA AE =,AD AB =,90CAE DAF ∠=∠=︒, EAH CAM ∴∠=∠, sin sin CAM EAH ∴∠=∠,111sin 22S AD CM AD AC CAM ==∠,211sin 22S AB EH AB AE EAH ==∠, 12S S ∴=.故答案为12S S =.(2)结论:2BE AM =.理由:如图2中,延长AM 到T ,使得MT AM =,连接CT ,DT .CM DM =,AM MT =,∴四边形ADTC 是平行四边形,//AC DT ∴,AC DT =,180CAD ADT ∴∠+∠=︒,90CAE BAD ∠=∠=︒,180BAE CAD ∴∠+∠=︒,BAE ADT ∴∠=∠,AE AC DT ==,BA AD =,()BAE ADT SAS ∴∆≅∆,BE AT ∴=,AM MT =,2BE AM ∴=.(3)作//DT AC 交AH 的延长线于T .连接DE .=,AC AEAB AD∠=∠=︒,=,90BAD CAE∴∠=∠=︒,BAC DAE∠=∠,ABD ADB45∴∆≅∆,BAC DAE SAS()BC DE==,∴∠=∠=︒,2ADE ABC45∴∠=∠+∠=︒,BDE BDA ADE90BE∴===,∠=∠=︒,BAD CAE90∴∠+∠=︒,180CAD BAEAC DT,//∴∠+∠=︒,CAD ADT180∴∠=∠,BAE ADTAH BE⊥,∠+∠=︒,ABE BAT90DAT BAT∴∠+∠=︒,90∴∠=∠,DAT ABE=,AB AD∴∆≅∆,()ABE DAT ASA=,∴=,AE DTBE AT=,AC AE∴=,AC DT∠=∠,∠=∠,AHC DHTCAH T∴∆≅∆,()AHC THD AAS∴=,AH HT12AH BE ∴==. 23.如图,抛物线2y x bx c =-++交x 轴于A ,B 两点,交y 轴于点C 直线122y x =-+经过点B ,C .(1)求抛物线的解析式;(2)点P 是直线BC 上方抛物线上一动点,设点P 的横坐标为m . ①求PBC ∆面积最大值和此时m 的值; ②Q 是直线BC 上一动点,是否存在点P ,使以A 、B 、P 、Q 为顶点的四边形是平行四边形,若存在,直接写出点P 的坐标.【解答】解:(1)直线122y x =-+经过点B ,C ,则点B 、C 的坐标分别为:(4,0)、(0,2), 将点B 、C 的坐标代入抛物线表达式并解得:72b =,2c =, 故抛物线的表达式为:2722y x x =-++; (2)①过点P 作y 轴的平行线交直线BC 于点H ,则点27(,2)2P m m m -++,点1(,2)2H m m -+, PBC ∆面积2211714(22)282222PH OB m m m m m =⨯⨯=⨯⨯-+++-=-+, 20-<,∴面积存在最大值为8,此时,2m =;②设27(,2)2P m m m -++,点1(,2)2Q n n -+,当AB 是平行四边形的边时, 点A 向右平移92个单位得到B ,同样点()P Q 向右平移92个单位得到()Q P , 则92m n ±=,2712222m m n -++=-+,解得:m =,n =当AB 是平行四边形的对角线时, 由中点公式得:4m n +=,27122222m m n -++-+=,解得:0m =或4(舍去4);综上点P 的坐标为,或,或,或或(0,2).。
2024河南省焦作市初三二模数学试题及答案
2023–2024学年九年级第二次模拟测试试卷数 学注意事项:1.本试卷共4页,三个大题,满分120分,考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上.答在试卷上的答案无效.一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.下列各数中最大的数是A.3B.-3.14C.−52 D.-π2.2024年一季度我国国民经济实现良好开局,一季度国内生产总值296299亿元,按不变价格计算,同比增长5.3%,比上年四季度环比增长1.6%.其中296299亿用科学记数法表示为 A.2.96299×10¹² B.2.96299×10¹³ C.29.6299×10¹² D.2.96299×10¹⁴3.“陀螺”一词的正式出现是在明朝时期,打陀螺是一项深受各民族群众喜爱的体育运动.如图是一个水平放置的木陀螺(上面是圆柱体,下面是圆锥体)玩具,它的主视图是4.下列运算正确的是A.(−2x )²=−4x⁴B.6x⁶÷2x²=3x⁴C.x²+2x²=3x⁴D.(x +2y )²=x²+4xy +2y²5.如图是一款手推车的平面示意图,其中AB ∥CD,∠1=24°,∠2=76°,则∠3的度数为A.128°B.138°C. 100°D.108°6.为庆祝神舟十八号载人飞船的成功发射,某学校“鲲鹏”航天社团开展航天知识竞赛活甲乙丙丁平均数96969898方差1.00.40.20.6如果要选一名成绩好且状态稳定的同学参赛,那么应该选择 A.甲 B.乙 C.丙 D.丁7.已知a 、b 为常数,且点A(a,b)在第二象限,则关于x 的一元二次方程 ax²−x +b =0的根的情况为A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断8.若二次函数 y =mx²+n 的图象如图所示,则一次函数y=mx+n 的图象可能是该社团参加比赛,经过统计,四名同学成绩的平均数(单位:分)动.经过筛选,决定从甲、乙、丙、丁四名同学中选择一名同学代表及方差(单位:分²)如表所示:9.如图1,正方形ABCD 的边长为2,点 E 为CD 边的中点,动点 P 从点 A 出发沿AB→BC 匀速运动,运动到点 C 时停止.设点 P 的运动路程为x ,线段PE 的长为y ,y 与x 的函数图象如图2所示,则点 M 的坐标为A.(2,3)B.(2,2)C.(2,5) D.(2,2.5)10.如图1所示是烟雾报警器的简化原理图,其中电源电压保持不变,R₀为定值电阻,R 为光敏电阻,R 的阻值随光照强度的变化而变化(如图2),射向光敏电阻的激光(恒定)被烟雾遮挡时会引起光照强度的变化,进而引起电压表示数变化,当指针停到某区域时,就会触动报警装置.下列说法错误的是A.该图象不是反比例函数图象B. R 随E 的增大而减小C.当烟雾浓度增大时,电压表①示数变小D.当光照强度增大时,电路中消耗的总功率增大二、填空题(每小题3分,共15分)11.如果分式 1x +1有意义,那么实数x 的取值范围是 .12.不等式组 2+x >02x−4≤0的最大整数解是 .13.2024年3月31日,郑开马拉松赛在郑开大道郑东新区举行.本赛事某岗位还需要2名志愿者参与服务工作,共有4人参加了这一岗位的遴选,其中大学生2名,快递员1名,老师1名,2名大学生恰好被录取的概率是 .14.如图,把△ABC 沿着直线BC 向右平移至△A'B'C'处, BB ′:B ′C =1:2,连接A'C,若 S △A'BC=4,AB=4,则点 B'到AB 的距离是 .15.如图,四边形ABCD 是边长为2的正方形,点E 是CD 的中点,连接AE ,点 F 是射线CB 上的一个动点(不与点C 重合),连接 DF 交AE 于点M,若△DME 是以DM 为腰的等腰三角形,则BF= .三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算: 3×(−15)+|−4|;(2)化简:( (x +2y )(x−2y )−(x−3y )².17.(9分)为庆祝中华人民共和国成立 75周年,某校举行了“中国近现代史”知识竞赛(百分制),为了解七、八年级学生的答题情况,从中各随机抽取了40名学生的成绩,并对数据(成绩)进行了整理、描述和分析,下面给出了部分信息:a.七年级学生竞赛成绩的频数分布表:成绩频数频率50≤x<6020.0560≤x<704m 70≤x<80100.2580≤x<90140.3590≤x<100100.25合计401.00b.八年级学生竞赛成绩的扇形统计图:c.八年级学生竞赛成绩在80≤x<90这一组的数据是:80,80,82,83,83,84,86,86,87,88,88,89,89,89(1)写出表中m,n 的值,m= , n= ;(2)此次竞赛中,若抽取的一名学生的成绩为83分,在他所在的年级,他的成绩超过了一半以上被抽取的学生的成绩,他是哪个年级的学生?请说明理由;(3)该校八年级有1200名学生,估计八年级竞赛成绩80分及80分以上的学生共有多少人?18.(9分)如图,直线l 和⊙O 相交,交点分别为A 、B.(1)请用无刻度的直尺和圆规过点 A 作直线l 的垂线(保留作图痕迹,不写作法).(2)点 P 是⊙O 外一点,分别连接PA 、PB,PA 交⊙O 于点 C,连接BC.(1)中所作垂线和⊙O 交于点D,若AB=AD,且△PAB ∽△PBC,求∠ABP 的度数.19.(9分)如图,一次函数y=k₁x+b 的图象与反比例函数 y =k 2x 的图象交于A(1,3),B(3,m)两点,k₁,k₂,b 为常数.(1)求一次函数和反比例函数的解析式;(2)根据图象直接写出不等式 kx +b>k 2x 的解集为 ;(3)点P 为γ轴上一点,若△PAB 的面积为1,请直接写出点P 的坐标.20.(9分)实际应用材料中位数七年级81八年级n根据以上信息,回答下列问题:d.七、八年级学生竞赛成绩的中位数如右:太阳高度:太阳高度指太阳光线与地平面的夹角,记作H,当地地方时 12时的太阳高度称为正午太阳高度.一天中正午时太阳高度最大,日出和日落时太阳高度为0°.H的计算公式:H=90°-I纬差|(纬差是指某地的地理纬度与当日太阳直射点所在纬度的差值,特别地,南纬北纬地区的纬差为其数值之和)例如,如图所示,C地的纬度为60°N,求C地夏至日(太阳直射北回归线235°N)的正午太阳高度?解:夏至日太阳直射的纬度为∠AOB=23.5°N,与C地的纬度差∠BOC=∠AOC-∠AOB=60°-23.5°=36.5°,那么H=∠DCE=90°-36.5°=53.5°应用(1)深圳纬度约为22.5°N,一年中会有两次太阳直射,一般在每年的6月 18日和6月 26日两天,则当天正午太阳高度 H= (填角度);冬至太阳直射南回归线 23.5°S,则当天正午深圳的太阳高度 H=(填角度)(2)如图,小明家住在河南焦作(35°N),一年中正午太阳光线与地平面夹角最小在冬至,约为31.5°,即α=31.5°,夹角最大在夏至,约为78.5°,即β=78.5°,测得他家窗高约为2.3m,即∧B=2.3m.如图所示的直角遮阳篷,在冬至能最大限度地使阳光射入室内,在夏至又能最大限度地遮挡炎热的阳光,请求出此遮阳篷两直角边BC,CD的长度.(精确到0.1m,参考数据:sin31.5°≈0.52,c931.5°=0.85,tan31.5°=0.61,sin78.5°=0.98,cos78.5°≈0.20,tan78.5°=4.9221.(9分)为了有效落实河南省教育厅颁布的《关于推进中小学生研学旅行的实施方案》,某中学进行研学活动.在此次活动中,若每位老师带30名学生,则还剩7名学生没有老师带,若每位老师带31名学生,就会有一位老师少带1名学生.甲型客车乙型客车载客量(人/辆)3530租金(元/辆)400320(1)参加此次研学活动的老师和同学各有多少名?(2)现有甲、乙两种型号客车,它们的载客量和租金如右表所示.学校要求每位老师负责一辆车的组织工作,因此需按老师人数租车.甲、乙两种型号的客车各租几辆,学校租车总费用最少?并求出最少的费用.22.(10分)已知抛物线y=ax²−2ax+a+2的顶点为 D.(1)若抛物线经过原点,求a的值及顶点 D 的坐标;(2)在(1)的条件下,把x≥0时函数. y=ax²−2ax+a+2的图象记为M₁,将图象M₁绕原点旋转180°,得到新图象 M₂,设图象 M₁与图象 M₂组合成的图象为M.①图象M₂的解析式 (写出自变量的取值范围);②若直线y=x+m与图象M有3个交点,请直接写出m的取值范围.23.(10分)综合与实践课上,同学们以“矩形的折叠”为主题开展数学活动.(1)如图1,将矩形纸片ABCD沿过点A 的直线折叠,使点 B落在AD边上的点. B′处,折痕为AE,则四边形ABEB'的形状为 .(2)如图2,矩形纸片ABCD的边长AB:BC=2:3,用图1中的方法折叠纸片,折痕为AE,接着沿过点 D 的直线折叠纸片,使点 C落在. EB′上的点C′处,折痕为DF.则. ∠B′DC′=,∠CDF= .(3)如图3,矩形纸片ABCD的长为6cm,宽为3cm,用图1的方法折叠纸片,折痕为AE,在线段CE上取一点 F(不与点 C,E重合),沿 DF折叠△CDF,,点 C的对应点为( C′,延长FC′交直线AD于点 G.①判断 GD 与 GF的数量关系,并证明;②当射线 FG 经过△AB'E的直角边的中点时,请直接写出 CF的长.2023–2024学年九年级第二次模拟测试试卷数学参考答案及评分标准一、选择题(每小题3分,共30分)1. A2. B3. A4. B5. A6. C7. B8. B9. C 10. C 二、填空题(每小题3分,共15分) 11. x≠-1 12.2 13. 16 14.1 15.2或 23三、解答题(本大题共8个小题,共75分)16.解:(1)原式: =−35−3+4=−35+1…5分(2)原式 =x²−4y²−x²−6xy +9y²=−13y²+6xy …………10分17.解:(1)0.185………………………………………4分(2)他是七年级的学生,………………………………5分理由如下:∵八年级学生的分数不超过83分的有19人,小于被抽取学生人数的一半.∴他不可能在八年级∴他在七年级……………6分(3)1200×(30%+35%)=780(人)……………8分即估计八年级竞赛成绩80分及80分以上的学生大约共有780人…………9分18.解:(1)如右图如图所示即为所求………………4分(2)如图,连接BD,由(1)知∠DAB=90°,∵AB=AD ∴∠ABD=∠ADB=45°∵△PAB ∽△PBC ∴∠CBP=∠CAB,……6分∵CD=CD,∴∠CAD=∠CBD∵∠CAD+∠CAB=90°∴∠CBD+∠CBP=∠DBP=90°,∴∠ABP=∠ABD+∠DBP=135°……9分19.解:(1)将点A(1,3)代入 y =k 2x 得k₂=3,∴反比例函数的解析式为 y =3x 将B(3,m)代入反比例函数 y =3x 得 m=1 ∴点 B 的坐标为(3,1),将点A(1,3),B(3,1)代入 y =k₁x +b 得 k 1+b =33k 1+b =1 解得 k 1=−1b =4,∴一次函数的解析式为y=-x+4…………5分(2)x<0或1<x<3…………7分(3)P(0,3)或P(0,5)…………9分20.解:(1)90° 44°……2分(2)由题意可得∠ADC=β=78.5°,∠CDB=α=31.5°,AB=2.3m,在RT △ACD 中, tan ∠ADC =tan78.5∘=ACCD =AB +BCCD,∴2.3+BC =CD ×tan78.5∘circle1在RT △BCD 中, tan ∠CDB =tan31.5∘=BC CD ,∴BC =CDx tan31.5∘circle2将②代入到①得:CD=CD=ABtan78.5−tan31.5≈ 2.34.31≈0.5m∴BC=CDxtan31.5°≈0.3m∴遮阳篷直角边BC约为0.3m,CD约为0.5m……9分21.解:(1)设参加此次研学活动的老师有x位,则参加此次研学活动的学生有y名,根据题得:30x+7=y31x−y=1解得x=8y=247(这里也可列一元一次方程)∴参加此次研学活动的老师有8名,学生有247名;…………4分(2)设租用m辆甲型客车,则租用(8-m)辆乙型客车,设租车的总费用为 W元根据题意得:35m+30(8-m)≥8+247,…………5分∴m≥3…………6分∵W=400m+320(8-m)=80m+2560,80>0,∴W随m的增大而增大,……7分∴当m=3时, W频水=240+2560=2800,∴租甲型车3辆,乙型车5辆费用最少,最少是2800元……………9分22.解:(1)∵抛物线y=ax²−2ax+a+2经过原点∴将(0,0)代入得a+2=0,∴a=-2…2分∴抛物线的解析式为y=−2x²+4x=−2(x−1)²+2.∴顶点D的坐标为(1,2)…5分(2)①y=2x²+4x(x≤0)…………8分②m的取值范围−98<m<9810分23.解:(1)正方形…………1分(2)60°,15°…………3分(3)①GD=GF,…………4分理由如下:由折叠可得:△DCF≌△DC'F,∴∠DFC=∠DFC'…………6分由已知条件可得AD∥BC,∴∠GDF=∠DFC∴∠GDF=∠DFC',∴GD=GF…………8分②1cm或9−352cm…………10分。
2020-2021学年河南省焦作市七年级(下)期末数学试卷(人教版)(解析版)
2020-2021学年河南省焦作市七年级(下)期末数学试卷(人教版)一、选择题(共10小题).1.在下列图形中,线段PQ的长度表示点P到直线L的距离的是()A.B.C.D.2.4的算术平方根是()A.2B.±2C.4D.﹣43.如图,俄罗斯方块游戏中,图形A经过平移使其填补空位,则正确的平移方式是()A.先向右平移5格,再向下平移3格B.先向右平移4格,再向下平移5格C.先向右平移4格,再向下平移4格D.先向右平移3格,再向下平移5格4.既是方程x﹣y=1,又是方程2x+y=5的解是()A.B.C.D.5.若a,b是正整数,且a+b≤6,则以(a,b)为坐标的点共有()个.A.12B.15C.21D.286.为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,某班实践活动小组的同学给出了以下几种调查方案:方案一:在多家旅游公司随机调查400名导游;方案二:在恭王府景区随机调查400名游客;方案三:在北京动物园景区随机调查400名游客;方案四:在上述四个景区各随机调查400名游客.在这四种调查方案中,最合理的是()A.方案一B.方案二C.方案三D.方案四7.如果m是任意实数,则点P(m﹣4,m﹣1)一定不在第()象限.A.一B.二C.三D.四8.如果不等式组无解,那么m的取值范围是()A.m>8B.m≥8C.m<8D.m≤89.如图,△OAB的边OB在x轴的正半轴上,点B的坐标为(3,0),把△OAB沿x轴向右平移2个单位长度,得到△CDE,连接AC,DB,若△DBE的面积为3,则图中阴影部分的面积为()A.B.1C.2D.10.已知AB∥CD,∠EAF=∠EAB,∠ECF=∠ECD,若∠E=66°,则∠F为()A.23°B.33°C.44°D.46°二、填空题(每小题3分,共15分)11.请写出一个大于1且小于2的无理数.12.在平面直角坐标系中,若点P(2x+6,5x)在第四象限,则x的取值范围是.13.王老师对本班40个学生所穿校服尺码的数据统计如下:尺码S M L XL XXL XXXL频率0.050.10.20.3250.30.025则该班学生所穿校服尺码为“L”的人数有个.14.一种苹果的进价是每千克1.9元,销售中估计有5%的苹果正常损耗,商家把售价至少定为元,才能避免亏本.15.如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F=.三、解答题(本大题8个小题,共75分)16.如图,已知∠EDC=∠GFD,∠DEF+∠AGF=180°.(1)请判断AB与EF的位置关系,并说明理由;(2)请过点G作线段GH⊥EF,垂足为H,若∠DEF=30°,求∠FGH的度数.17.解不等式组.18.解方程组:.19.在平面直角坐标系中,O为原点,点A(0,2),B(﹣2,0),C(4,0).(Ⅰ)如图①,则三角形ABC的面积为;(Ⅱ)如图②,将点B向右平移7个单位长度,再向上平移4个单位长度,得到对应点D.①求三角形ACD的面积;②点P(m,3)是一动点,若三角形PAO的面积等于三角形CAO的面积.请直接写出点P坐标.20.某学校在疫情期间的复学准备工作中,为了贯彻落实“生命重于泰山,安全至关重要”的思想计划购买室内、室外两种型号的消毒液.已知每桶室外消毒液的价格比每桶室内消毒液的价格多30元,买2桶室内消毒液和3桶室外消毒液共需340元.(1)求室内、室外两种型号消毒液每桶的价格;(2)根据学校实际情况,需购买室内、室外两种型号的消毒液共200桶,总费用不高于1.4万元,问室内消毒液至少要购买多少桶?21.已知19683的立方根是一个整数,请求出这个整数.22.我市为加强学生的安全意识,组织了全市学生参加安全知识竞赛,为了解此次知识竞赛成绩的情况,随机抽取了部分参赛学生的成绩,整理并制作出如下的不完整的统计表和统计图,如图所示,请根据图表信息解答以下问题.组别成绩x/分频数A组60≤x<70aB组70≤x<808C组80≤x<9012D组90≤x<10014(1)一共抽取了个参赛学生的成绩;表中a=;(2)补全频数分布直方图;(3)计算扇形统计图中“B”对应的圆心角度数;(4)若成绩在80分以上(包括80分)的为“优”等,则所抽取学生成绩为“优”的占所抽取学生的百分比是多少?23.一项调查显示,全世界每天平均有13000人死于与吸烟有关的疾病,我国吸烟者约3.56亿人,占世界吸烟人数的四分之一,比较一年中死于与吸烟有关的疾病的人数占吸烟者总数的百分比,我国比世界其他国家约高0.1%.根据上述资料,试用二元一次方程组解决以下问题:我国及世界其他国家一年(按365天计算)中死于与吸烟有关的疾病的人数分别是多少?(只需设出未知数,列出方程组即可)参考答案一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,请将正确答案前的代号字母填涂在答题卷上指定位置。
2019年河南省焦作市九年级数学第二次质量抽测试题及答案
数学精品复习资料河南省焦作市九年级第二次质量抽测数学试卷一、选择题(每小题3分,共24分)下列各小题均有四个答案,其.中只有一个是正确的,将正确答案的代号字母填人题后的括号内。
1.一12的相反数是A.12B.一12C.一2 D.22.下列图形中,既是轴对称图形又是中心对称图形的是A B C D 3.已知点P(3-m,m-1)在第二象限,则m的取值范围在数轴上表示正确的是A B C D4.关于反比例函数y=2X的图象,下列说法正确的是A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小5.如右图是交警在一个路口统计的某个时段来往辆的车速(单位:千米/时)情况,则这些车的车速的众数、中位数分别是A. 8,6B.8,5C. 52,53D.52,526.如图是一个几何体的三视图,则这个几何体的侧面积是cm 2 cm 2 C. 6πcm 2 D .3πcm 27.如图,点P 在以AB 为直径的半圆内,连接AP 、BP ,并延长分别交半圆于点C 、D ,连接AD 、BC 并延长交于点F ,作直线PF ,下列说法一定正确的是① AC 垂直平分BF ;②AC 平分∠BAF;③FP ⊥AB ;④BD ⊥AF.A.①③B.①④C.②④D.③④8.当-2≤x ≤1时,二次函数y=-(x-m)2+m 2+1有最大值4,则实数m 的值为A.一74 D.2或一74二、填空题(每小题3分,共21分) 9.计算:(一1)0一(12)-1=_____________. 10.如图,已知函数y=2x+b 与函数y=kx-3的图像交于点P ,则不等式kx-3>2x+b 的解集是____________.11.如图,直线a 与直线b 交于点A ,与直线c 交于点B ,∠1=120°,∠2=45°,若使直线b 与直线c 平行,则可将直线b 绕点A 逆时针旋转_______________.12.如图,二次函数y=ax 2 +bx+c(a>0)的图象的顶点为点D ,其图象与x 轴的交点A 、B的横坐标分别为-1,3,与y 轴负半轴交于点C .在下面五个结论中:①2a -b=0;②a+b+c>o ;③c=- 3a ;④只有当a=12时,△ABD 是等腰直角三角形;⑤使△ACB 为等腰三角形的a 的值可以有四个.其中正确的结论是_____________.(只填序号)10题图 11题图 12题图 14题图13.某市实验中学从三名男生和两名女生中选出两名同学作为“伏羲文化节”的志愿者,则选出一男一女的概率为_____________.14.如图,菱形ABCD的对角线AC、BD相交于点O,AC-8,BD-6,以AB为直径作一个半圆,则图中阴影部分的面积为____________.15.如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为__________________cm.三、解答题(本大题8个小题,共75分)16.(8分)化简求值:(1+1a)÷21aa--22121aaa--+,其中a取=1、0、1、2中的—个数。
2019--2020第一学期九年级数学期末考试及答案
2019-2020学年度第一学期期末调研考试九年级数学试卷注意:本试卷共8页,三道大题,26小题。
总分120分。
时间120分钟。
题号 一 二 20 21 22 23 24 25 26 总分 得分一、 选择题(本题共16小题,总分42分。
1~10小题,每题3分;11~16小题,每题2分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
请将正确选项的代号填写在下面的表格中)题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 答案1.“抛一枚均匀硬币,落地后正面朝上”这一事件是( ) A .必然事件 B .随机事件 C .确定事件D .不可能事件2. 如图,该图形围绕自己的旋转中心,按下列角度旋转后,不能与自身重合的是( ) A .72° B .108° C .144° D .216° 3.反比例函数ky x=的图象经过点P(-1,2),则这个函数的图象位于( ) A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限4.用配方法将方程0142=--x x 变形为m x =-2)2(,则m 的值是( )A. 4B. 5C. 6D. 75. 在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )A.B.C.D.6. 一元二次方程220200x +=的根的情况是( )A .有两个相等的实根B .有两个不等的实根C .只有一个实根D .无实数根 7. 如图,在正方形网格上有两个相似三角形△ABC 和△EDF ,则∠BAC 的度数为( )得分 评卷人A .105°B .115°C .125°D .135°8. 已知三角形面积一定,则它的底边a 上的高h 与底边a 之间的函数关系图象是( )9. 下列对二次函数2y x x =-图象的描述,正确的是( )A .开口向下B .对称轴是y 轴C .经过原点D .在对称轴右侧部分是下降的 10. 参加一次聚会的每两人都握了一次手,所有人共握手10次。
2018-2019学年九年级上学期期末数学试题(解析版)
2018—2019学年度上学期期末教学质量监测试题九年级数学温馨提示:1.本试题共4页,考试时间120分钟.2.答题前务必将自己的姓名、考号、座位号涂写在答题卡上;选择题答案选出后,请用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,请先用橡皮擦拭干净,再改涂其他答案;非选择题,请用0.5毫米的黑色签字笔笔直接答在答题卡上.试卷上作答无效.3.请将名字与考号填写在本卷相应位置上.一、选择题(共12小题,下列各题的四个选项中只有一个正确)1. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的定义求解.【详解】解:A.是轴对称图形,不是中心对称图形,故该选项错误;B.是轴对称图形,不是中心对称图形,故该选项错误;C.既是轴对称图形又是中心对称图形,故该选项正确;D.既不轴对称图形,又不是中心对称图形,故该选项错误.故选C.【点睛】本题主要考查了轴对称图形与中心对称图形的定义. 轴对称图形的关键是找对称轴,图形两部分折叠后可完全重合,中心对称图形是要找对称中心,旋转180°后两部分能够完全重合.2. 下列方程中是关于x的一元二次方程的是( )A. x2+3x=0 B. y2-2x+1=0C. x2-5x=2D. x2-2=(x+1)2【答案】C【解析】【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高指数是2的整式方程,即可进行判定,【详解】A选项,x2+3x=0,因为未知数出现在分母上,是分式方程,不符合题意,B选项,y2-2x+1=0,因为方程中含有2个未知数,不是一元二次方程,不符合题意,C选项,x2-5x=2,符合一元二次方程的定义,符合题意,D选项,将方程x2-2=(x+1)2整理后可得:-2x-3=0,是一元一次方程,不符合题意,故选C.【点睛】本题主要考查一元二次方程的定义,解决本题的关键是要熟练掌握一元二次方程的定义.3. “明天降水概率是30%”,对此消息下列说法中正确的是()A. 明天降水的可能性较小B. 明天将有30%的时间降水C. 明天将有30%的地区降水D. 明天肯定不降水【答案】A【解析】【分析】根据概率表示某事情发生的可能性的大小,依此分析选项可得答案.【详解】解:A. 明天降水概率是30%,降水的可能性较小,故选项正确;B. 明天降水概率是30%,并不是有30%的时间降水,故选项错误;C. 明天降水概率是30%,并不是有30%的地区降水,故选项错误;D. 明天降水概率是30%,明天有可能降水,故选项错误.故选:A.【点睛】本题考查概率的意义,随机事件是指在一定条件下,可能发生也可能不发生的事件.概率表示随机事件发生的可能性的大小.4. 如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A. 30°B. 45°C. 90°D. 135°【答案】C【解析】【分析】根据勾股定理求解.【详解】设小方格的边长为1,得,=,=,AC=4,∵OC 2+AO 2=22+=16, AC 2=42=16,∴△AOC 是直角三角形, ∴∠AOC=90°. 故选C .【点睛】考点:勾股定理逆定理.5. 圆外一点P 到圆上最远的距离是7,最近距离是3,则圆的半径是( ) A. 4 B. 5C. 2或5D. 2【答案】C 【解析】【分析】分两种情况:点在圆外,直径等于两个距离的差;点在圆内,直径等于两个距离的和. 【详解】解:∵点P 到⊙O 的最近距离为3,最远距离为7,则: 当点在圆外时,则⊙O 的直径为7-3=4,半径是2; 当点在圆内时,则⊙O 直径是7+3=10,半径为5, 故选:C .【点睛】本题考查了点与圆的位置关系,注意此题的两种情况.从过该点和圆心的直线中,即可找到该点到圆的最小距离和最大距离.6. 关于x 的方程kx 2+2x -1=0有实数根,则k 的取值范围是( ) A. k >-1且k≠0 B. k≥-1且k≠0C. k >-1D. k ≥-1【答案】D 【解析】【分析】由于k 的取值范围不能确定,故应分0k =和0k ≠两种情况进行解答. 【详解】解:(1)当0k =时,原方程为:210x -=,此时12x =有解,符合题意; (2)当0k ≠时,此时方程式一元二次方程∵关于x 的一元二次方程2210kx x +-=有实数根, ∴()2242410b ac k =-=--≥即44k ≥- 解得1k ≥-综合上述两种情况可知k 的取值范围是1k ≥- 故选D .【点睛】本题考查了根的判别式,解答此题时要注意分0k =和0k ≠两种情况进行分类讨论解答. 7. 如图,AB 是⊙O 的弦,半径OC⊥AB 于点D ,若⊙O 的半径为5,AB=8,则CD 的长是( )A. 2B. 3C. 4D. 5【答案】A 【解析】【详解】试题分析:已知AB 是⊙O 的弦,半径OC⊥AB 于点D ,由垂径定理可得AD=BD=4,在Rt△ADO 中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A. 考点:垂径定理;勾股定理.8. 用配方法解一元二次方程x 2﹣6x ﹣4=0,下列变形正确的是( ) A. (x ﹣6)2=﹣4+36 B. (x ﹣6)2=4+36C. (x ﹣3)2=﹣4+9D. (x ﹣3)2=4+9【答案】D 【解析】【分析】配方时,首先将常数项移到方程的右边,然后在方程的左右两边同时加上一次项系数一半的平方,据此进行求解即可. 【详解】x 2﹣6x ﹣4=0, x 2﹣6x=4, x 2﹣6x+9=4+9,(x ﹣3)2=4+9, 故选D.9. 抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A. 23(1)2y x =++ B. 23(1)2y x =+- C. 23(1)2=--y x D. 23(1)2y x =-+【答案】C 【解析】【分析】根据二次函数的图象平移判断即可;【详解】23y x =向右平移1个单位得到()231y x =-,再向下平移2个单位得到()2312x y =--; 故答案选C .【点睛】本题主要考查了二次函数的图像平移,准确分析判断是解题的根据.10. 在一个不透明的布袋中,红色、黑色、白色的小球共50个,除颜色不同外其他完全相同,通过多次摸球实验后,摸到红色球、黑色球的频率分别稳定在26%和44%,则口袋中白色球的个数可能是( ) A. 20 B. 15C. 10D. 5【答案】B 【解析】【分析】利用频率估计概率得到摸到红色球、黑色球的概率分别为0.26和0.44,则摸到白球的概率为0.3,然后根据概率公式求解.【详解】解:∵多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.26和0.44, ∴摸到红色球、黑色球的概率分别为0.26和0.44, ∴摸到白球的概率为1-0.26-0.44=0.3, ∴口袋中白色球的个数可能为0.3×50=15. 故选:B .【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确. 11.()A. 2B. 1C. 3D.3 【答案】B 【解析】【分析】根据题意可以求得半径,进而解答即可. 【详解】因为圆内接正三角形的面积为3, 所以圆的半径为23, 所以该圆的内接正六边形的边心距23×sin60°=23×3=1, 故选B .【点睛】本题考查正多边形和圆,解答本题的关键是明确题意,求出相应的图形的边心距.12. 如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A. 1B. 2C. 3D. 4【答案】C 【解析】【分析】由开口方向可判断①;由对称轴为直线x=1可判断②;由x=1时y >0可判断③;由1-<x <3时,函数图像位于x 轴上方可判断④. 【详解】解:∵抛物线的开口向下∴a <0,故①错误; ∵抛物线的对称轴x=2b a-=1 ∴b=-2a ,即2a+b=0,故②正确;由图像可知x=1时,y=a+b+c >0,故③正确;由图像可知,当1-<x <3时,函数图像位于x 轴上方,即y >0,故④正确;故选C .【点睛】本题主要考查图像与二次函数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(共6小题)13. 在平面直角坐标系中,点P(-2,3)关于原点对称点的坐标为________. 【答案】(2,-3) 【解析】【分析】直接利用点关于原点对称点的性质,平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),从而可得出答案.得出答案.【详解】解:点P (-2,3),关于原点对称点坐标是:(2,-3). 故答案为:(2,-3).【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键. 14. 如图,在⊙O 中,点C 是弧AB 的中点,∠A =50°,则∠BOC 等于_____度.【答案】40. 【解析】【分析】由于点C 是弧AB 的中点,根据等弧对等角可知:∠BOC 是∠BOA 的一半;在等腰△AOB 中,根据三角形内角和定理即可求出∠BOA 的度数,由此得解. 【详解】△OAB 中,OA =OB , ∴∠BOA =180°﹣2∠A =80°, ∵点C 是弧AB 的中点, ∴AC BC =, ∴∠BOC =12∠BOA =40°, 故答案为40.【点睛】本题考查了圆心角、弧的关系,熟练掌握在同圆或等圆中,等弧所对的圆心角相等是解题的关键. 15. 方程的()()121x x x +-=+解是______.【答案】11x =-,23x = 【解析】【分析】先移项,再分解因式,即可得出两个一元一次方程,求出方程的解即可. 【详解】解:()()121x x x +-=+,()()12(1)0x x x +--+=, ()()1210x x +--=,即10x +=或210x --=,解得121,3x x =-=, 故填:121,3x x =-=.【点睛】本题考查因式分解法解一元二次方程,解决本题时需注意:用因式分解法解方程时,含有未知数的式子可能为零,所以在解方程时,不能在两边同时除以含有未知数的式子,以免丢根. 需通过移项,将方程右边化为0.16. 已知扇形的圆心角为120°,半径为3cm ,则这个扇形的面积为_____cm 2. 【答案】3π 【解析】【分析】根据扇形的面积公式即可求解.【详解】解:扇形的面积=21203360π⨯=3πcm 2.故答案是:3π.【点睛】本题考查了扇形的面积公式,正确理解公式是解题的关键.17. 分别写有-1,0,-3,2.5,4的五张卡片,除数字不同,其它均相同,从中任抽一张,则抽出负数的概率是___ 【答案】25【解析】【分析】根据概率的计算公式直接得到答案.【详解】解:-1,0,-3,2.5,4五张卡片中是负数的有:-1,-3, ∴P (抽出负数)=25,故答案为:25. 【点睛】此题考查概率的计算公式,负数的定义,熟记概率的计算公式是解题的关键. 18. 正方形边长3,若边长增加x ,则面积增加y ,y 与x 的函数关系式为______. 【答案】y=x 2+6x 【解析】【详解】解:22(3)3y x =+-=26x x +,故答案为26y x x =+.三、解答题(共7小题)19. 解方程:x 2-4x -7=0.【答案】12211211x x ,=+=- 【解析】【详解】x²-4x -7=0, ∵a=1,b=-4,c=-7, ∴△=(-4)²-4×1×(-7)=44>0, ∴x=--4444211211±±==±() , ∴12211,211x x =+=-.20. 如图,P A 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P =50º,求∠BAC 的度数.【答案】25° 【解析】【分析】由PA ,PB 分别为圆O 的切线,根据切线长定理得到PA=PB ,再利用等边对等角得到一对角相等,由顶角∠P 的度数,求出底角∠PAB 的度数,又AC 为圆O 的直径,根据切线的性质得到PA 与AC 垂直,可得出∠PAC 为直角,用∠PAC-∠PAB 即可求出∠BAC 的度数. 【详解】解:∵P A ,PB 分别切⊙O 于A ,B 点,AC 是⊙O 的直径, ∴∠P AC =90°,P A =PB , 又∵∠P =50°,∴∠PAB =∠PBA =180502︒︒-=65°,∴∠BAC =∠P AC ﹣∠P AB =90°﹣65°=25°.【点睛】此题考查了切线的性质,切线长定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.21. 某种商品每件的进价为30元,在某段时向内若以每件x 元出售,可卖出(100-x )件,应如何定价才能使利润最大?最大利润是多少?【答案】当定价为65元时,才能获得最大利润,最大利润是1225元 【解析】【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价-每件进价.再根据所列二次函数求最大值. 【详解】解:设最大利润为y 元, y=(100-x)(x -30)=-(x -65)2+1225 ∵-1<0,0<x <100,∴当x=65时,y 有最大值,最大值是1225∴当定价为65元时,才能获得最大利润,最大利润是1225元.【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.22. 一个不透明的袋子中装有大小、质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字. (1)从袋中随机摸出一只小球,求小球上所标数字为奇数的概率;(2)从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,求两次摸出的小球上所标数字之和为5的概率. 【答案】(1)12;(2)13. 【解析】【详解】试题分析:(1)用奇数的个数除以总数即可求出小球上所标数字为奇数的概率;(2)首先根据题意画出表格,然后由表格求得所有等可能的结果与两次摸出的小球上所标数字之和为5的情况数即可求出其概率.试题解析:(1)∵质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字,∴袋中随机摸出一只小球,求小球上所标数字为奇数的概率=24=12;(2)列表得:∵共有12种等可能的结果,两次摸出的小球上所标数字之和为5的情况数为4,∴两次摸出的小球上所标数字之和为5的概率=412=13.考点:列表法与树状图法;概率公式.23. 如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.【答案】(1)证明见解析(22【解析】【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以22BD=BE﹣DE求解.【详解】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩∴△ACF≌△ABE∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴∴BD=BE﹣1.考点:1.旋转的性质;2.勾股定理;3.菱形的性质.24. 有一条长40m的篱笆如何围成一个面积为275m的矩形场地?能围成一个面积为2101m的矩形场地吗?如能,说明围法;如不能,说明理由.【答案】能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由见解析【解析】【分析】设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,根据矩形场地的面积为75m2,即可得出关于x的一元二次方程,解之即可得出结论;不能围成一个面积为101m2的矩形场地,设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,根据矩形长度的面积为101m2,即可得出关于y 的一元二次方程,由根的判别式△=-4<0,可得出不能围成一个面积为101m2的矩形场地.【详解】解:设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,依题意得:x(20-x)=75,整理得:x2-20x+75=0,解得:x1=5,x2=15,当x=5时,20-x=15;当x=15时,20-x=5.∴能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由如下:设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,依题意得:y(20-y)=101,整理得:y2-20y+101=0,∵△=(-20)2-4×1×101=-4<0,∴不能围成一个面积为101m2的矩形场地.【点睛】本题考查了一元二次方程的应用以及根的判别式,找准等量关系,正确列出一元二次方程是解题的关键.25. 如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=5,CD=4,求BE的长.【答案】(1)见解析(2)6【解析】【详解】分析:(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODC 为直角,即可得证;(2)过O作OM垂直于BE,可得出四边形ODCM为矩形,在直角三角形OBM中,利用勾股定理求出BM的长,由垂径定理可得BE=2BM.详解:(1)连接OD.∵OD=OB,∴∠OBD=∠ODB.∵BD是∠ABC的角平分线,∴∠OBD=∠CBD.∵∠CBD=∠ODB,∴OD∥BC.∵∠C=90º,∴∠ODC=90º,∴OD⊥AC.∵点D在⊙O上,∴AC是⊙O的切线.(2)过圆心O作OM⊥BC交BC于M.∵BE为⊙O的弦,且OM⊥BE,∴BM=EM,∵∠ODC=∠C=∠OMC= 90°,∴四边形ODCM为矩形,则OM=DC=4.∵OB=5,∴BM =22-=3=EM,54∴BE=BM+EM=6.点睛:本题考查了切线的判定,平行线的判定与性质,以及等腰三角形的性质,熟练掌握切线的判定方法是解答本题的关键.26. 已知,二次函数y=x2+bx+c 的图象经过A(-2,0)和B(0,4).(1)求二次函数解析式;(2)求AOB S;(3)求对称轴方程;(4)在对称轴上是否存在一点P,使以P,A,O,B为顶点的四边形为平行四边形?若存在,求P点坐标;若不存在,请说明理由.【答案】(1)y=x2+4x+4;(2)4;(3)x=-2;(4)存在,(﹣2,4)或(﹣2,﹣4)【解析】【分析】(1)由待定系数法,把点A、B代入解析式,即可求出答案;(2)由题意,求出OA=2,OB=4,即可求出答案;(3)由2bxa=-,即可求出答案; (4)由题意,可分为两种情况进行讨论:①当点P 在点A 的上方时;②当点P 在点A 的下方时;分别求出点P 的坐标,即可得到答案.【详解】解:(1)∵y=x 2+bx+c 的图象经过A (-2,0)和B (0,4)∴42b 04c c +=⎧⎨=⎩- 解得:b 44c =⎧⎨=⎩;∴二次函数解析式为:y=x 2+4x+4; (2)∵A (﹣2,0),B (0,4), ∴OA=2,OB=4, ∴S △AOB =12OA•OB=12×2×4=4; (3)对称轴方程为直线为:4221x =-=-⨯; (4)∵以P ,A ,O ,B 为顶点的四边形为平行四边形, ∴AP=OB=4,当点P 在点A 的上方时,点P 的坐标为(﹣2,4), 当点P 在点A 的下方时,点P 的坐标为(﹣2,﹣4),综上所述,点P 的坐标为(﹣2,4)或(﹣2,﹣4)时,以P ,A ,O ,B 为顶点的四边形为平行四边形. 【点睛】本题考查了二次函数的性质,平行四边形的性质,待定系数法求二次函数的解析式,解题的关键是熟练掌握二次函数的性质进行解题,注意运用分类讨论的思想进行分析.新人教部编版初中数学“活力课堂”精编试题。
2019-2020年初三第一次阶段性测试数学试卷及答案
2019-2020年初三第一次阶段性测试数学试卷及答案一、填空题:(本大题每题2分,共20分,把答案填写在题中横线上)1、┃π-14.3┃=_____________;若a <0,则3322a a a a +++=____________.2、当a __________时,42-a 无意义;22--x x有意义的条件是_____________. 3、已知一个样本1,2,3,x ,5,它的平均数是3,则这个样本的极差是___________;方差是____________.4、某校九年级上学期期末统一考试后,甲、乙两班的数学成绩(单位:分)的统计情况如下表所示:从各统计指标(平均分、中位数、众数、方差)综合来看,你认为______班的成绩较好。
5、若关于x 的方程22)2()1(2+=--b x a x 有两个相等的实根,则=a ________;=b ________.6、已知菱形ABCD 中对角线AC 、BD 相交于点O ,添加条件______________或_____________可使菱形ABCD 成为正方形.7、已知点C 为线段AB 的黄金分割点,且AC=1㎝,则线段AB 的长为____________________.8、如图,E 为□ABCD 中AD 边上的一点,将△ABE 沿BE 折叠使得点A 刚好落在BC 边上的F 点处,若AB 为4,ED 为3,则□ABCD 的周长为_________.9、已知:如图,矩形ABCD 的对角线相交于O ,AE 平分∠BAD 交BC 于E ,∠CAE=15°, 则∠BOE=_______°.第8题图 第9题图 第10题图10、如图,折叠直角梯形纸片的上底AD ,点D 落在底边BC 上点F 处,已知DC=8㎝,FC = 4㎝,则EC 长 ㎝.二、选择题:(下列各题都给出代号为A 、B 、C 、D 的四个答案,其中有且只有一个是正确的,把正确答案的代号填在题后【 】内,每小题2分,共18分) 11、下列各式中与327x --是同类二次根式的是【 】.A 、327x B 、273x - C 、2391x -- D 、3x12、在下列各式的化简中,化简正确的有【 】. ①3a =a a ;②5x x -x x =4x x ;③6a2b a =ab ab 23 ;④24+61=86 A 、1个 B 、2个 C 、3个 D 、4个 13、下面是李刚同学在一次测验中解答的填空题,其中答对的是【 】. A 、若x 2=4,则x =2B 、方程x (2x -1)=2x -1的解为x =1C 、若x 2+2x +k =0的一个根为1,则3-=kD 、若分式1232-+-x x x 的值为零,则x =1,214、若关于x 的方程06)(22=+--x k x x 无实根,则k 可取的最小整数为【 】. A 、5- B 、4- C 、3- D 、2-15、甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后填入下表:某同学根据上表分析得出如下结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀);(3)甲班成绩比乙班成绩波动大。
2023-2024学年河南省焦作市高二(上)期中数学试卷【答案版】
2023-2024学年河南省焦作市高二(上)期中数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={−3,−2,1,3},B ={x|3x <19},则A ∩B =( ) A .{﹣3,﹣2}B .{﹣3}C .{3}D .{1,3}2.已知双曲线C :x 24−y 2b2=1(b >0)的一条渐近线与直线x ﹣3y ﹣2=0平行,则b =( )A .36B .4√2C .6D .233.已知a ,b ∈R ,若z 1=a−i1+i与z 2=b ﹣3i 是共轭复数,则a =( ) A .﹣7B .﹣4C .2D .54.图1所示的明矾晶体可近似看作一个正八面体P ﹣ABCD ﹣Q (图2),其中P ﹣ABCD ,Q ﹣ABCD 均为所有棱长都相等的正四棱锥,若AB →=a →,AD →=b →,AP →=c →,则PQ →=( )A .a →+b →+2c →B .2a →+2b →+2c →C .−a →−b →+2c →D .a →+b →−2c →5.已知直线l :y =2x 与圆C :x 2+y 2+2x ﹣4ay +1=0(a ≠0)交于A ,B 两点,且点C 到直线l 的距离等于|AB |,则a 的值为( ) A .1 B .2√5+4C .1或−13D .2√5+4或2√5−46.已知椭圆C :x 225+y 29=1的右焦点为F ,点E (0,2),点P 是C 上的动点,则|PF |+|PE |的最小值为( ) A .5B .10−2√5C .10D .10+2√57.已知点A (﹣3,0),B (3,0),若在直线l 上有唯一点P 满足P A ⊥PB ,且有唯一点Q 满足|QA |=2|QB |,则符合条件的l 有( ) A .4条B .3条C .2条D .1条8.已知正六边形ABCDEF ,把四边形ABCD 沿直线AD 翻折,使得点B ,C 到达B 1,C 1且二面角B 1﹣AD﹣E 的平面角为120°.若点A ,B 1,C 1,D ,E ,F 都在球O 1的表面上,点O 1,B 1,C 1,E ,F 都在球O 2的表面上,则球O 2与球O 1的表面积之比为( ) A .34B .43C .√3D .√32二、选择题(共4小题,每小题5分,满分20分) 9.已知双曲线C :x 2a 2−y 24=1(a >0),当a 变动时,下列结论正确的是( ) A .C 的焦点恒在x 轴上 B .C 的焦距恒大于4C .C 的离心率恒大于2D .C 的一个焦点到其中一条渐近线的距离不变10.已知在平面直角坐标系中,点A (x 1,y 1),B (x 2,y 2)是不重合的两点,则下列结论错误的是( ) A .直线AB 的方程为y−y 1x−x 1=y 2−y 1x 2−x 1B .若2x 1﹣y 1﹣1=0,2x 2﹣y 2﹣1=0,则直线AB 的方程为2x ﹣y ﹣1=0C .若3x 1﹣y 1﹣1=0,3x 2﹣y 2+4=0,则|AB |的值可以是√2D .若x 12+y 12=x 22+y 22=4,y 1x 1−3=y2x 2−3,且|AB |是定值,则直线AB 有2条11.已知空间直角坐标系O ﹣xyz 中,点A (1,0,1),B (﹣1,﹣1,2),C (0,1,2),则下列结论正确的是( )A .直线AB 的一个方向向量的坐标为(2,1,﹣1)B .直线AC 与平面xOy 的交点坐标为(2,1,0) C .点B 关于平面yOz 的对称点为B ′(1,﹣1,2)D .∠BAC 为钝角12.已知函数f(x)={sin 2x cosx ,x ≠π2+kπ,cosx ,x =π2+kπ(k ∈Z),则下列结论正确的是( ) A .f (x )在区间(0,π2)上单调递增 B .若f (α)=1,则cos α有2个不同的取值 C .f (x )的图象关于点(π2,0)对称D .若f (x )在区间(0,x 0)上有且仅有10个零点,则x 0的取值范围是(5π,11π2) 三、填空题(共4小题,每小题5分,满分20分)13.若函数f(x)=log 3(9x +1)+(ax +3)2是偶函数,则实数a = .14.已知点O (0,0,0),A (2,0,1),B (﹣1,0,2),则△OAB 的面积为 .15.著名数学家笛卡尔曾经给出一个四圆相切的定理:半径分别为r 1,r 2,r 3的三个圆两两外切,同时又都与半径为r 4的圆外切,则2(1r 1r 2+1r 1r 3+1r 1r 4+1r 2r 3+1r 2r 4+1r 3r 4)=1r 12+1r 22+1r 32+1r 42.已知O 1(﹣2,0),O 2(2,0),O 3(0,32),若圆O 1,O 2,O 3两两外切,且都与圆O 4外切,其中圆O 1,O 2的半径相等,则圆O 4的标准方程为 . 16.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与抛物线C 2:y 2=2px (p >0)交于点A ,B ,直线AB 与x 轴的交点既是C 1的右焦点,也是C 2的焦点,点A ,B 关于原点的对称点分别为A ',B ',点P 是C 1上与A ,A ',B ,B '均不重合的点,记直线P A ,P A '的斜率分别为k ,k ',则kk '−4kk′= . 四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)某沙漠地区每年有2个月属于雨季,10个月属于旱季.经过初步治理该沙漠地区某年旱季的月降水量(单位:mm )依次达到12.1,12.0,10.4,10.5,12.5,14.1,14.3,14.3,16.7,18.1.记这组数据的第40百分位数与平均数分别为m ,x . (1)求m ,x ;(2)已知雨季的月降水量均大于旱季的月降水量,该沙漠地区人工种植了甲、乙两种植物,当月降水量低于12.0mm 时甲种植物需要浇水,当月降水量低于15.0mm 时乙种植物需要浇水,求这一年的某月甲、乙两种植物都需要浇水的概率及二者中有植物需要浇水的概率.18.(12分)在平面直角坐标系xOy 中,已知点F (﹣2,0),直线l :x =3,动点P (x ,y )(x ≤0)到l 的距离等于|PF |+1.设动点P 的轨迹为曲线C . (1)求C 的方程;(2)若直线x =my ﹣4与曲线C 交于A ,B 两点,证明:OA →⋅OB →为定值.19.(12分)如图,在三棱柱ABC ﹣A 1B 1C 1中,侧面ABB 1A 1与侧面ACC 1A 1都是菱形,AA 1=AB 1=2,∠BAC =∠AA 1C 1=120°.记AB →=a →,AA 1→=b →,AC →=c →. (1)用a →,b →,c →表示AB 1→,BC 1→,并证明BC 1⊥AB 1; (2)若D 为棱A 1C 1的中点,求线段BD 的长.20.(12分)在△ABC 中,点D 是BC 边上一点,BD =2AD ,AD =2DC . (1)求证:5AB 2+20AC 2=8BC 2;(2)若∠BAC 是锐角,∠BAD =∠CAD 且AB +AC =5,△ABC 的面积为4825,求sin B .21.(12分)如图,在四棱台ABCD ﹣A 1B 1C 1D 1中,四边形ABCD 是边长为4的正方形,AA 1=5,A 1B 1=3,AA 1⊥平面ABCD ,E 为CC 1的中点. (1)求直线AC 1与平面B 1CD 1所成角的正弦值;(2)若平面α经过BE 且与AC 1平行,求点B 1到平面α的距离.22.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过A 1(√2,0),A 2(√2,1),A 3(√2,−1),A 4(0,√2)中的3个点. (1)求C 的方程.(2)若直线x =ty +√2(t ≠0)与C 交于点M ,N ,点M 关于x 轴的对称点为M ',点D 是△MNM '的外接圆圆心,判断在x 轴上是否存在定点P ,使得|DP||MN|为定值.若存在,求出点P 的坐标及|DP||MN|的值;若不存在,请说明理由.2023-2024学年河南省焦作市高二(上)期中数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={−3,−2,1,3},B ={x|3x <19},则A ∩B =( ) A .{﹣3,﹣2}B .{﹣3}C .{3}D .{1,3}解:因为不等式3x <19可化为3x <3﹣2,解得x <﹣2,则B =(﹣∞,﹣2),所以A ∩B ={﹣3}. 故选:B .2.已知双曲线C :x 24−y 2b 2=1(b >0)的一条渐近线与直线x ﹣3y ﹣2=0平行,则b =( )A .36B .4√2C .6D .23解:由题设,双曲线渐近线为y =±b2x (b >0),其中一条与y =13x −23平行,所以b2=13⇒b =23.故选:D .3.已知a ,b ∈R ,若z 1=a−i1+i与z 2=b ﹣3i 是共轭复数,则a =( ) A .﹣7B .﹣4C .2D .5解:由题设z 1=a−i1+i =(a−i)(1−i)(1+i)(1−i)=a−1−(a+1)i2,与z 2=b ﹣3i 是共轭复数, 所以a+12=−3⇒a =−7.故选:A .4.图1所示的明矾晶体可近似看作一个正八面体P ﹣ABCD ﹣Q (图2),其中P ﹣ABCD ,Q ﹣ABCD 均为所有棱长都相等的正四棱锥,若AB →=a →,AD →=b →,AP →=c →,则PQ →=( )A .a →+b →+2c →B .2a →+2b →+2c →C .−a →−b →+2c →D .a →+b →−2c →解:连接AC ,BD 交于点O ,如图所示:则AO →=12AC →=12(AB →+AD →),PQ →=2PO →=2(AO →−AP →)=2[12(AB →+AD →)−AP →]=AB →+AD →−2AP →=a →+b →−2c →.故选:D .5.已知直线l :y =2x 与圆C :x 2+y 2+2x ﹣4ay +1=0(a ≠0)交于A ,B 两点,且点C 到直线l 的距离等于|AB |,则a 的值为( ) A .1 B .2√5+4C .1或−13D .2√5+4或2√5−4解:圆C :x 2+y 2+2x ﹣4ay +1=0(a ≠0)即(x +1)2+(y ﹣2a )2=4a 2(a ≠0), 所以圆心C (﹣1,2a ),半径r =|2a |, 则圆心到直线l :y =2x 的距离d =|−2−2a|5, 因为点C 到直线l 的距离等于|AB |,所以d 2+(d2)2=r 2, 即(|−2−2a|√5)2+(|−1−a|√5)2=4a 2,解得a =1或a =−13. 故选:C . 6.已知椭圆C :x 225+y 29=1的右焦点为F ,点E (0,2),点P 是C 上的动点,则|PF |+|PE |的最小值为( ) A .5B .10−2√5C .10D .10+2√5解:设F 1为椭圆的左焦点,则F 1(﹣4,0), 由椭圆的定义可得|PF 1|+|PF |=2×5=10, 则|PF |=10﹣|PF 1|,即|PF |+|PE |=10+|PE |﹣|PF 1|, 又||PE|−|PF 1||≤|EF 1|=√(−4)2+22=2√5, 则−2√5≤|PE|−|PF 1|≤2√5,则|PF |+|PE |=10+|PE |﹣|PF 1|≥10−2√5,当且仅当点P 在EF 1的延长线上时取等号, 即|PF |+|PE |的最小值为10−2√5. 故选:B .7.已知点A (﹣3,0),B (3,0),若在直线l 上有唯一点P 满足P A ⊥PB ,且有唯一点Q 满足|QA |=2|QB |,则符合条件的l 有( ) A .4条B .3条C .2条D .1条解:若P A ⊥PB ,则P 在以AB 为直径的圆上,对应方程为x 2+y 2=9,令Q (x ,y ),由题设有(x +3)2+y 2=4(x ﹣3)2+4y 2,整理得(x ﹣5)2+y 2=16, 所以直线l 与圆x 2+y 2=9、(x ﹣5)2+y 2=16均有且只有一个交点,即直线与两圆都相切, 又两圆圆心距离为5,半径之和为7,故两圆相交,它们的公切线有2条, 所以符合条件的l 有2条. 故选:C .8.已知正六边形ABCDEF ,把四边形ABCD 沿直线AD 翻折,使得点B ,C 到达B 1,C 1且二面角B 1﹣AD ﹣E 的平面角为120°.若点A ,B 1,C 1,D ,E ,F 都在球O 1的表面上,点O 1,B 1,C 1,E ,F 都在球O 2的表面上,则球O 2与球O 1的表面积之比为( ) A .34B .43C .√3D .√32解:由题设,若O 1为AD 中点,则OA =OB 1=OC 1=OD =OE =OF , 令正六边形的边长为2,则球O 1的半径r =2,过C 1作C 1G ⊥DO 1于G ,连接EG ,由正六边形性质,△DC 1O 1,△EDO 1都为等边三角形, 所以G 为DO 1的中点,故EG ⊥DO 1,则二面角B 1﹣AD ﹣E 的平面角为∠EGC 1=120°, GC 1=EG =√3,故C 1E =3,又C 1G ∩EG =G ,C 1G ,EG ⊂面EGC 1,故DO 1⊥面EGC 1,即DA ⊥面EGC 1, C 1E ⊂面EGC 1,则DA ⊥C 1E ,而B 1C 1∥DA ∥EF ,故B 1C 1⊥C 1E ,EF ⊥C 1E , 由B 1C 1=EF =2,故B 1C 1EF 为矩形,其对角线长为√13,由O 2是O 1﹣B 1C 1EF 外接球球心,故O 2必在O 1与底面B 1C 1EF 中心的连线上, 设球O 2的半径O 1O 2=B 1O 2=C 1O 2=EO 2=FO 2=R ,如上图示,所以O 1O 2=√C 1O 12−(132)2+√C 1O 22−(132)2,即R =√4−134+√R 2−134=√32+√R 2−134,故(R −√32)2=R 2−134⇒R 2−√3R +34=R 2−134⇒R =43, 所以球O 1与球O 1的表面积之比为R 2r 2=43.故选:B .二、选择题(共4小题,每小题5分,满分20分) 9.已知双曲线C :x 2a 2−y 24=1(a >0),当a 变动时,下列结论正确的是( ) A .C 的焦点恒在x 轴上 B .C 的焦距恒大于4C .C 的离心率恒大于2D .C 的一个焦点到其中一条渐近线的距离不变解:由双曲线C :x 2a2−y 24=1(a >0),焦点在x 轴上,A 对;c =√a 2+4>2,故焦距2c >4,B 对; 离心率e =c a =√1+4a2∈(1,+∞),C 错; 由渐近线为y =±2ax ,即ay ±2x =0,焦点坐标为(±c ,0),所以一个焦点到其中一条渐近线的距离d =2√a 2+4√4+a 2=2,D 对.故选:ABD .10.已知在平面直角坐标系中,点A (x 1,y 1),B (x 2,y 2)是不重合的两点,则下列结论错误的是( ) A .直线AB 的方程为y−y 1x−x 1=y 2−y 1x 2−x 1B .若2x 1﹣y 1﹣1=0,2x 2﹣y 2﹣1=0,则直线AB 的方程为2x ﹣y ﹣1=0C .若3x 1﹣y 1﹣1=0,3x 2﹣y 2+4=0,则|AB |的值可以是√2D .若x 12+y 12=x 22+y 22=4,y 1x 1−3=y2x 2−3,且|AB |是定值,则直线AB 有2条解:A :当x 1=x 2时,直线方程不能用y−y 1x−x 1=y 2−y 1x 2−x 1表示,错;B :由题设,不重合的点A ,B 在直线2x ﹣y ﹣1=0上,故直线AB 的方程为2x ﹣y ﹣1=0,对;C :由题设,A (x 1,3x 1﹣1),B (x 2,3x 2+4),则|AB|=√(x 1−x 2)2+[3(x 1−x 2)−5]2, 所以|AB|=√10[(x 1−x 2)−32]2+52≥√102>√2,错; D :由题设,不重合的点A ,B 在圆x 2+y 2=4上,且与点C (3,0)所成直线斜率相同, 所以A ,B ,C 共线,而C 在圆x 2+y 2=4外,只需过C 的直线y =k (x ﹣3)与圆有两个交点即可,如下图示,若|AB |是定值且为4时,结合圆的性质知:此时直线AB 有1条,而定值不为4时有2条,错.故选:ACD .11.已知空间直角坐标系O ﹣xyz 中,点A (1,0,1),B (﹣1,﹣1,2),C (0,1,2),则下列结论正确的是( )A .直线AB 的一个方向向量的坐标为(2,1,﹣1)B .直线AC 与平面xOy 的交点坐标为(2,1,0) C .点B 关于平面yOz 的对称点为B ′(1,﹣1,2)D .∠BAC 为钝角解:对于A ,由AB →=(−2,−1,1),而−AB →=(2,1,−1), 故直线AB 的一个方向向量为(2,1,﹣1),故A 正确;对于B ,由AC →=(−1,1,1),令直线AC 与平面xOy 的交点D (x ,y ,0), 则AD →=(x −1,y ,−1), ∴x−1−1=y 1=−11⇒{x =2y =−1,即交点D (2,﹣1,0),故B 错误;对于C ,点B 关于平面yOz 的对称点为B ′(1,﹣1,2),故C 正确; 对于D ,由cos ∠BAC =AB →⋅AC →|AB →||AC →|=2√6×√30,故∠BAC 为锐角,故D 错误. 故选:AC .12.已知函数f(x)={sin 2x cosx ,x ≠π2+kπ,cosx ,x =π2+kπ(k ∈Z),则下列结论正确的是( ) A .f (x )在区间(0,π2)上单调递增 B .若f (α)=1,则cos α有2个不同的取值 C .f (x )的图象关于点(π2,0)对称D.若f(x)在区间(0,x0)上有且仅有10个零点,则x0的取值范围是(5π,11π2)解:当x≠π2+kπ时,f(x)=1−cos2xcosx=1cosx−cosx,f(x+2π)=1cos(x+2π)−cos(x+2π)=1cosx−cosx,所以f(x+2π)=f(x),当x=π2+kπ,k∈Z时,f(x+2π)=f(x)也成立,故f(x)是周期为2π的函数,f′(x)=sinxcos2x +sinx=sinx(1+1cos2x),当x∈(0,π2)时,f′(x)>0,则f(x)单调递增,且f(x)>0,故A正确;当x∈(π2,π)时,f′(x)>0,则f(x)单调递增,且f(x)<0,当x∈(π,32π)时,f′(x)<0,则f(x)单调递减,且f(x)<0,当x∈(32π,2π)时,f′(x)<0,则f(x)单调递减,且f(x)>0,且f(0)=f(π)=f(2π)=0,又x=π2+kπ,k∈Z时,f(x)=cos x,则f(π2)=f(32π)=0,可得函数f(x)的图象如图所示,若f(α)=1,f(α)=1cosα−cosα=1,则cos2α+cosα﹣1=0,解得cosα=−1+√52或cosα=−1−√52(舍),故cosα只有一个值,故B错误;当x≠π2+kπ,k∈Z时,f(x+π)=1cos(x+π)−cos(x+π)=−1cosx+cosx=−f(x),当x=π2+kπ,k∈Z时,f(x+π)=﹣f(x)也成立,所以f(x)的图象关于点(π2,0)对称,故C正确;因为f(π2)=f(π)=f(3π2)=f(2π)=0,所以f (x )在(0,2π]上只有四个零点, 若f (x )在区间(0,x 0)上有且仅有10个零点,则x 0的取值范围是(5π,11π2],故D 错误. 故选:AC .三、填空题(共4小题,每小题5分,满分20分)13.若函数f(x)=log 3(9x +1)+(ax +3)2是偶函数,则实数a = −16 . 解:f(x)=log 3(9x +1)+(ax +3)2的定义域为R ,所以f(x)=log 3(9x +1)+(ax +3)2=log 3(9−x +1)+(−ax +3)2=f(−x), 故log 3(9x +1)−log 3(9−x +1)+12ax =0,进而log 3(9x+1)−log 39x+19x +12ax =0,所以2x +12ax =0,解得a =−16. 故答案为:−16.14.已知点O (0,0,0),A (2,0,1),B (﹣1,0,2),则△OAB 的面积为 52.解:由题意可知OA →=(2,0,1),OB →=(−1,0,2),显然OA →⋅OB →=0⇒OA ⊥OB ,故△OAB 的面积为S =12|OA →|⋅|OB →|=12×√5×√5=52.故答案为:52.15.著名数学家笛卡尔曾经给出一个四圆相切的定理:半径分别为r 1,r 2,r 3的三个圆两两外切,同时又都与半径为r 4的圆外切,则2(1r 1r 2+1r 1r 3+1r 1r 4+1r 2r 3+1r 2r 4+1r 3r 4)=1r 12+1r 22+1r 32+1r 42.已知O 1(﹣2,0),O 2(2,0),O 3(0,32),若圆O 1,O 2,O 3两两外切,且都与圆O 4外切,其中圆O 1,O 2的半径相等,则圆O 4的标准方程为 x 2+(y −56)2=136 . 解:设圆O 1,O 2,O 3,O 4的半径分别为r 1,r 2,r 3,r 4,由题意可得:{r 1=r 2r 1+r 2=|O 1O 2|=4r 1+r 3=|O 1O 3|=52,解得{r 1=r 2=2r 3=12, 又因为2(1r 1r 2+1r 1r 3+1r 1r 4+1r 2r 3+1r 2r 4+1r 3r 4)=1r 12+1r 22+1r 32+1r 42,即2(14+1+12r 4+1+12r 4+112r 4)=14+14+114+1r 42,解得r 4=16, 由|O 1O 4|=|O 2O 4|,可知点O 4在线段O 1O 2的中垂线上,即y 轴上,设O 4(0,a ),由题意可得{|O 1O 4|=√4+a 2=2+16|O 3O 4|=|32−a|=12+16,解得a =56, 即圆O 4的圆心O 4(0,56),半径r 4=16,所以圆O 4的方程为x 2+(y −56)2=136. 故答案为:x 2+(y −56)2=136. 16.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与抛物线C 2:y 2=2px (p >0)交于点A ,B ,直线AB 与x 轴的交点既是C 1的右焦点,也是C 2的焦点,点A ,B 关于原点的对称点分别为A ',B ',点P 是C 1上与A ,A ',B ,B '均不重合的点,记直线P A ,P A '的斜率分别为k ,k ',则kk '−4kk′= 4 . 解:如图,令椭圆C 1半焦距为c ,由C 1的右焦点,也是C 2的焦点,得c =p2,又直线AB 过点F(p2,0),由椭圆、抛物线的对称性知,点A ,B 关于x 轴对称,即直线AB ⊥x 轴,由{x =p 2y 2=2px ,得|y |=p ,由{x =cx 2a 2+y 2b 2=1,得|y|=b2a , 于是b 2a=2c ,即b 2=2ac ,则a 2﹣c 2=2ac ,解得ca=√2−1,不妨令A (c ,2c ),则A ′(﹣c ,﹣2c ),设P (x 0,y 0),x 0≠±c ,显然y 02=b 2−b 2a2x 02=2ac −2c a x 02,所以kk ′=y 0−2c x 0−c ⋅y 0+2c x 0+c =y 02−4c 2x 02−c 2=2ac−2c a x 02−4c 2x 02−c 2 =−2c a ⋅x 02−(a 2−2ac)x 02−c 2=−2c a ⋅x 02−c 2x 02−c2=−2c a =−2(√2−1), 所以kk ′−4kk′=−2(√2−1)4−2(2−1)=4. 故答案为:4.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)某沙漠地区每年有2个月属于雨季,10个月属于旱季.经过初步治理该沙漠地区某年旱季的月降水量(单位:mm )依次达到12.1,12.0,10.4,10.5,12.5,14.1,14.3,14.3,16.7,18.1.记这组数据的第40百分位数与平均数分别为m ,x . (1)求m ,x ;(2)已知雨季的月降水量均大于旱季的月降水量,该沙漠地区人工种植了甲、乙两种植物,当月降水量低于12.0mm 时甲种植物需要浇水,当月降水量低于15.0mm 时乙种植物需要浇水,求这一年的某月甲、乙两种植物都需要浇水的概率及二者中有植物需要浇水的概率.解:(1)由数据从小到大为10.4,10.5,12.0,12.1,12.5,14.1,14.3,14.3,16.7,18.1, 又10×40%=4,则第40百分位数为m =12.1+12.52=12.3mm , 平均数x =10.4+10.5+12.0+12.1+12.5+14.1+14.3+14.3+16.7+18.110=13.5mm . (2)由数据及题设知:12个月中降水量低于12.0mm 有2个月,降水量低于15.0mm 有8个月, 所以甲、乙两种植物都需要浇水的概率为16,二者中有植物需要浇水的概率为23.18.(12分)在平面直角坐标系xOy 中,已知点F (﹣2,0),直线l :x =3,动点P (x ,y )(x ≤0)到l 的距离等于|PF |+1.设动点P 的轨迹为曲线C . (1)求C 的方程;(2)若直线x =my ﹣4与曲线C 交于A ,B 两点,证明:OA →⋅OB →为定值.解:(1)由点F (﹣2,0),直线l :x =3,动点P (x ,y )(x ≤0)到l 的距离等于|PF |+1, 可得|x ﹣3|=1+√(x +2)2+y 2,即为(2﹣x )2=x 2+y 2+4x +4, 化为y 2=﹣8x ;(2)证明:联立{x =my −4y 2=−8x ,可得y 2+8my ﹣32=0,设A (−y 128,y 1),B (−y 228,y 2),则y 1y 2=﹣32, OA →•OB →=164(y 1y 2)2+y 1y 2=16﹣32=﹣16,即为定值.19.(12分)如图,在三棱柱ABC ﹣A 1B 1C 1中,侧面ABB 1A 1与侧面ACC 1A 1都是菱形,AA 1=AB 1=2,∠BAC =∠AA 1C 1=120°.记AB →=a →,AA 1→=b →,AC →=c →. (1)用a →,b →,c →表示AB 1→,BC 1→,并证明BC 1⊥AB 1; (2)若D 为棱A 1C 1的中点,求线段BD 的长.解:(1)根据题意可得: AB 1→=AB →+AA 1→=a →+b →,BC 1→=BA →+AC →+CC 1→=−AB →+AC →+AA 1→=−a →+b →+c →,证明:∵BC 1→⋅AB 1→=(−a →+b →+c →)⋅(a →+b →)=−a →2−a →⋅b →+a →⋅b →+b →2+a →⋅c →+b →⋅c →=﹣4+4+2×2×cos120°+2×2×cos60°=0, ∴BC 1⊥AB 1;(2)∵D 为棱A 1C 1的中点,∴根据题意可得: BD →=BA →+AA 1→+A 1D →=−a →+b →+12c →, ∴BD →2=a →2+b →2+14c →2−2a →⋅b →−a →⋅c →+b →⋅c →=4+4+1﹣2×2×2×cos120°﹣2×2×cos120°+2×2×cos60° =17, ∴|BD →|=√17.20.(12分)在△ABC 中,点D 是BC 边上一点,BD =2AD ,AD =2DC . (1)求证:5AB 2+20AC 2=8BC 2;(2)若∠BAC 是锐角,∠BAD =∠CAD 且AB +AC =5,△ABC 的面积为4825,求sin B .解:(1)由题设,令BD =4DC =4x ,则AD =2x ,BC =5x ,△ADB 中cos ∠ADB =AD 2+BD 2−AB 22AD⋅BD ,△ADC 中cos ∠ADC =AD 2+DC 2−AC 22AD⋅DC,又∠ADB +∠ADC =π,故cos ∠ADB +cos ∠ADC =0, 所以4x 2+16x 2−AB 22⋅2x⋅4x+4x 2+x 2−AC 22⋅2x⋅x=0,即AB 2+4AC 2=40x 2,则5AB 2+20AC 2=200x 2=8BC 2,得证. (2)设∠BAD =∠CAD =θ,在△ABD 中BD sinθ=AB sin∠ADB,在△ACD 中CDsinθ=AC sin∠ADC,而∠ADB +∠ADC =π,故sin ∠ADB =sin ∠ADC ,则AB AC=BD CD=4,又AB +AC =5,故AB =4,AC =1,又12AB ⋅ACsin2θ=4825,所以sin2θ=2425,由∠BAC =2θ为锐角,则cos2θ=1−2sin 2θ=725⇒sinθ=35,由BD sinθ=AD sinB⇒4x sinθ=2x sinB⇒sinB =sinθ2=310.21.(12分)如图,在四棱台ABCD ﹣A 1B 1C 1D 1中,四边形ABCD 是边长为4的正方形,AA 1=5,A 1B 1=3,AA 1⊥平面ABCD ,E 为CC 1的中点. (1)求直线AC 1与平面B 1CD 1所成角的正弦值;(2)若平面α经过BE 且与AC 1平行,求点B 1到平面α的距离.解:(1)根据题意,可建系如图,则A (0,0,0),B (4,0,0),C (4,4,0),B 1(3,0,5),D 1(0,3,5),C 1(3,3,5),E (72,72,52),∴AC 1→=(3,3,5),B 1C →=(1,4,−5),CD 1→=(−4,−1,5),BE →=(−12,72,52), 设平面面B 1CD 1所的法向量为m →=(x ,y ,z),则{m →⋅B 1C →=x +4y −5z =0m →⋅CD 1→=−4x −y +5z =0,取m →=(1,1,1), ∴直线AC 1与平面B 1CD 1所成角的正弦值为:|cos <AC 1→,m →>|=|AC 1→⋅m →||AC 1→||m →|=11√9+9+25×3=11√129129;(2)∵平面α经过BE 且与AC 1平行,又根据(1)可知AC 1→=(3,3,5),BE →=(−12,72,52),BB 1→=(−1,0,5),设平面α的法向量为n →=(a ,b ,c),则{n →⋅BE →=−12a +72b +52c =0n →⋅AC 1→=3a +3b +5c =0,取n →=(1,1,−65), ∴点B 1到平面α的距离为:|BB 1→||cos <BB 1→,n →>|=|BB 1→⋅n →||n →|=7√1+1+3625=35√8686. 22.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过A 1(√2,0),A 2(√2,1),A 3(√2,−1),A 4(0,√2)中的3个点. (1)求C 的方程.(2)若直线x =ty +√2(t ≠0)与C 交于点M ,N ,点M 关于x 轴的对称点为M ',点D 是△MNM '的外接圆圆心,判断在x 轴上是否存在定点P ,使得|DP||MN|为定值.若存在,求出点P 的坐标及|DP||MN|的值;若不存在,请说明理由.解:(1)因为A 2(√2,1),A 3(√2,−1)关于x 轴对称, 所以这2个点在椭圆上,此时2a 2+1b 2=1,①当A 1(√2,0)在椭圆上时,2a 2+0b 2=1,②由①②知,方程无解; 当A 4(0,√2)在椭圆上时,0a 2+1b 2=1,③联立①③,解得a 2=4,b 2=2, 因为a >b >0,所以a 2=4,b 2=2, 则椭圆C 的方程为x 24+y 22=1;(2)不妨设M (x 1,y 1),N (x 2,y 2),可得M '(x 1,﹣y 1), 联立{x =ty +√2x 24+y 22=1,消去x 并整理得(t 2+2)y 2+2√2ty −2=0,由韦达定理得y 1+y 2=−2√2t t 2+2,y 1y 2=−2t 2+2, 所以|MN |=√1+t 2|y 1−y 2|=√1+t 2⋅√(y 1+y 2)2−4y 1y 2 =√1+t 2⋅√(−2√2t t 2+2)2−4×(−2t 2+2)=4t 2+4t 2+2,由外接圆的定义知,点D 为线段MM ',MN 垂直平分线的交点, 因为线段MM '的垂直平分线为x 轴, 所以线段MN 垂直平分线为y −y 1+y 22=−t(x −x 1+x 22),令y =0,解得x D =y 1+y 22t =x 1+x 22=(t 2+1)(y 1+y 2)+2√2t2t=(t 2+1)(−2√2t t 2+2)+2√2t2t=√2t 2+2,不妨设P (x 0,0), 此时|DP||MN|=|x 0−√2t 2+2|4t 2+4t 2+2=|x 0t 2+2x 0−√2|4t 2+4,所以当x 0=2x 0−√2, 即x 0=√2时,|DP||MN|为定值,定值为√24, 故当在x 轴上存在定点P (√2,0),使得|DP||MN|为定值,定值为√24.。
河南省焦作市2024小学数学一年级上学期部编版期末测试(摸底卷)完整试卷
河南省焦作市2024小学语文一年级上学期部编版期末测试(摸底卷)完整试卷一、填一填(共10小题,28分) (共10题)第(1)题把6个放在两个盘子里,一个盘子里放5个,另一个盘子里放( )个。
如果两个盘子放得同样多,每个盘子放( )个。
第(2)题在括号里填合适的数。
3-3=( ) 4-2=( ) 3+( )=5 ( )+0=( )( )+0=3 ( )-0=5 ( )-( )=0 0+( )=( )第(3)题这几杯水—样甜,哪杯中放糖最多?在( )里画“√”,其余的在()里画“×”.( ) ( ) ( ) ( )第(4)题在括号里填上合适的数。
2+( )=6 ( )-7=0 3+( )=9( )+4=8 9+( )=9 ( )-2=7第(5)题在括号里填上合适的数。
4>( ) 3<( ) 5>( ) 1<( )第(6)题有( )个,有( )个,有( )个,有( )个。
第(7)题填一填,画一画。
______________________4+( )=8第(8)题比11多3的数是( ),比17少4的数是( )。
第(9)题在少的后面画√.()()第(10)题5能分成( )和( )或( )和( ) ,任意写两种。
二、轻松选择(共4题,12分) (共4题)兔妈妈拔了6根胡萝卜,兔宝宝和兔妈妈拔的胡萝卜一样多,兔妈妈和兔宝宝一共拔了()根胡萝卜。
A.11B.12C.13第(2)题将0,8,3,18,11,20按从小到大的顺序排列是()。
A.0<8<3<18<11<20B.20>18>11>8>3>0C.0<3<8<11<18<20第(3)题下面物体中,容易滚动的是()。
A.B.C.第(4)题在计数器上拨20,一共要用多少颗珠子?()A.1颗B.2颗C.20颗三、算一算(共4题,32分) (共4题)第(1)题算一算。
0+10= 18-4= 13+4= 10-7-3=0+20= 18-7= 2+13= 13+5-6=15-0= 6+9= 9+7= 10+5+3=10+5= 19-4= 9+9= 10-8+5=第(2)题看图列算式。
河南省焦作市2024小学数学一年级上学期统编版期末考试(自测卷)完整试卷
河南省焦作市2024小学数学一年级上学期统编版期末考试(自测卷)完整试卷一、填一填(共10小题,28分) (共10题)第(1)题在括号里填上“>”“<”或“=”。
7( )8 12( )10 6( )59+3( )12 8+7( )14 15-10( )7+6第(2)题把下面的物体分成两类,填序号。
________________ ________________第(3)题正确填空。
第(4)题把0、1、2、3、4、5填在下面的括号里,每个数只能用一次。
( )-( )=( )-( )=( )-( )第(5)题想一想,填一填。
第(6)题在括号里填上合适的数。
( )-4=4 3+( )=93+( )=8 9-( )=2第(7)题17和19中间的数是( ),和19相邻的数是( )和( )。
第(8)题同学们排队做操,小军前面有3个同学,后面有5个同学,这一队共有( )位同学。
第(9)题填空。
第(10)题在天平的另一端填上合适的算式,使天平平衡。
二、轻松选择(共4题,12分) (共4题)第(1)题下图中,()多?A.草莓B.香蕉第(2)题与10相邻的数是()。
A.11B.9C.11和9第(3)题计算8+5=时,思考错误的是()。
A.先计算8+2=10,再算10+3=13B.先计算5+5=10,再算10+8=18 C.先计算5+5=10,再算10+3=13第(4)题小力在做一道减法算式时,把减数6看成了9,算出的得数是8。
原来正确的得数为()。
A.17B.15C.11D.5三、算一算(共4题,32分) (共4题)第(1)题看图列式计算。
(个)第(2)题看图列式计算。
第(3)题直接写出得数。
10-7= 8-4= 8-0= 9-2= 1+3+3=5-5= 6+2= 1+8= 10-1= 6+2-2=3+5= 4-4= 9-5= 7+2= 3+2+5=第(4)题直接写得数。
3+9= 5+9= 4+7= 9-7= 8+8= 18-3= 5+7=0+10= 8+6= 18-7= 6+12= 14-4-3= 4+0+7= 16-10+4=四、解答题(共4题,28分) (共4题)第(1)题王老师要做10面,已经做了7面,还要做多少面?(面)第(2)题小美和小芳一共读了多少本课外书?(本)第(3)题从右数,是第6支,一共有多少支笔?画一画:算一算:第(4)题篮子里原来有几个西瓜?。
河南省焦作市2023-2024学年高二下学期4月期中考试数学试题
河南省焦作市2023-2024学年高二下学期4月期中考试数学试题一、单选题1.已知数列{}n a 的前5项依次为16a =( ) A .8B .12C .16D .322.已知集合399|1xA x ⎧=≤<⎫⎨⎬⎩⎭,{}3,1,0,2,4B =--,则A B =I ( )A .{}1,0-B .{}1,0,2-C .{}3,1,0--D .{0,2}3.已知函数()31sin 3f x x x =-,则Δ0ππΔ22lim 2Δx f x f x →⎛⎫⎛⎫+-⎪ ⎪⎝⎭⎝⎭=( )A .2π4-B .2π4C .2π8-D .2π84.某次高三统考共有12000名学生参加,若本次考试的数学成绩X 服从正态分布2(100,)N σ,已知数学成绩在70分到130分之间的人数约为总人数的45,则此次考试中数学成绩不低于130分的学生人数约为( ) A .2400B .1200C .1000D .8005.如图所示,AD 为ABC V 的BC 边上的高,1,43B AD BC π==,则tan BAC ∠=( )A .3B .4C .3-D .4-6.类比数列,我们把一系列向量按照一定的顺序排列,可得到向量列.已知向量列{}n a u u r满足12n n a a d +=+u u u r u u r u r ,且满足1||1a d d ⋅==u r u r u r ,则n a d ⋅u u r u r的值为( )A .12n -B .21n -C .124n +-D .2n7.拉格朗日中值定理是微分学的基本定理之一,内容为:如果函数()f x 在区间[,a b ]上的图象连续不断,导数为()f x ',那么在区间(,)a b 内至少存在一点c ,使得()()f b f a -=()()f c b a '-成立,其中c 叫做()f x 在区间[,a b ]上的“拉格朗日中值点”.已知函数()f x =32x x -在区间[1,](1)m m ->-上的拉格朗日中值点为13-,则m =( )A .0B .13C .1D .28.若对任意2ln 2(0,1),ex a x x ax x ++∈<恒成立,则实数a 的取值范围是( ) A .11[,]22-B .[0,)+∞C .[1,)-+∞D .1[,)2-+∞二、多选题9.已知函数π()2cos (0)3f x x ωω⎛⎫=-> ⎪⎝⎭的最小正周期为π,则( )A .2ω=B .()f x 的图象与y 轴交于点10,2⎛⎫⎪⎝⎭C .()f x 的图象关于直线2π3x =对称 D .()f x 在区间π,03⎛⎫- ⎪⎝⎭上单调递增10.已知等差数列 a n 满足2455,20a a a =+=,等比数列 b n 满足1232,32b b b ==,则下列说法中正确的是( )A .数列{}n n a b 的前3项和为86B .数列(){}1nn a -的前50项和为50C .若数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则16n T <D .若()1ln n n n c b b +=+,则{}n c 是公差为ln3的等差数列11.已知直线:10l kx y k +--=过定点P ,且与圆22:4O x y +=相交于,A B 两点,则( )A .点P 的坐标为()1,1B .AB的最小值是C .OA OB ⋅u u u r u u u r的最大值是0D .2PA PB ⋅=-u u u r u u u r三、填空题12.某快餐厅推出一种双人组合套餐,每份套餐包括2份主食和2杯材料,主食有5种可供选择,饮料有4种可供选择,且每份套餐中主食和饮料均不能重复,则这种双人套餐的不同搭配有种.(用数字作答)13.若直线y x =与曲线1e ax y -=相切,则a =.14.记数列{}n a 的前n 项和为n S ,前n 项积为n T ,若1211n na a ++=-且252T =,则24S =.四、解答题15.在数列{}n a 中,23135213n a a a n a n ++++=-L . (1)求{}n a 的通项公式;(2)设[]n n b a =,求数列{}n b 的前12项和,其中[]x 表示不超过x 的最大整数,如[]0.90=,[]2.62=.16.某中学为贯彻“阳光体育校园”的办学理念,鼓励全体同学参加春季运动会,随机调研了100名同学并统计他们的意愿后得到下面的22⨯列联表.(1)完善22⨯列联表,并判断是否有99%的把握认为该校男生和女生参加春季运动会的意愿有差异;(2)用频率估计概率,从全校同学中随机抽取3人,记其中愿意参加该运动会的人数为X ,求X 的分布列和数学期望. 附:22()n ad bc χ-=.17.如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PD ⊥平面,2,ABCD AB BC PD E ==为棱DC 的中点.(1)证明:AE ⊥平面PBD ;(2)若F 为棱PC 的中点,求平面ABF 与平面PBC 的夹角的余弦值.18.已知双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为F ,左顶点为M ,虚轴的上端点为P ,且PF PM ==(1)求C 的方程;(2)若直线l 的斜率是C 的斜率为正的渐近线的斜率的2倍,且l 与C 交于,A B 两点,直线,PA PB 的斜率之和为1017,求l 的方程. 19.已知函数()1e xf x ax -=-存在两个零点.(1)求实数a 的取值范围;(2)若当0x >时,()ln 1x f x ax k x ⎛⎫+>+ ⎪⎝⎭恒成立,求实数k 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 19 页
2019-2020学年河南省焦作市九年级上学期期末考试数学试卷
一.选择题(满分24分,每小题3分)
1.(3分)菱形具有而矩形不具有的性质是( )
A .对角相等
B .四个角相等
C .对角线相等
D .四条边相等 2.(3分)如果关于x 的一元二次方程x 2﹣x +14m ﹣1=0有实数根,那么m 的取值范围是( )
A .m >2
B .m ≥3
C .m <5
D .m ≤5
3.(3分)如图所示几何体的左视图正确的是( )
A .
B .
C .
D . 4.(3分)如果双曲线y =k x 经过点(3、﹣4),则它也经过点( )
A .(4、3)
B .(﹣3、4)
C .(﹣3、﹣4)
D .(2、6)
5.(3分)在平面直角坐标系中,以原点O 为圆心的⊙O 交x 轴正半轴为M ,P 为圆上一点,
坐标为(√3,1),则cos ∠POM =( )
A .√32
B .12
C .√33
D .√22
6.(3分)如图,在周长为10m 的长方形窗户上钉一块宽为1m 的长方形遮阳布,使透光部
分正好是一正方形,则钉好后透光面积为( )
A .9 m 2
B .25 m 2
C .16 m 2
D .4 m 2 7.(3分)在同一直角坐标系中,函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是( )。