第四章抽样与参数估计1

合集下载

抽样分布与参数估计

抽样分布与参数估计

抽样分布与参数估计首先,我们来了解什么是抽样分布。

在统计学中,抽样分布是指从总体中多次抽样得到的样本统计量的分布。

假设我们的总体是指所有感兴趣的个体的集合,而样本是从总体中选取的一部分个体。

抽样分布的形状和性质取决于总体的分布和样本的大小。

通过分析抽样分布,可以得到有关总体参数的有用信息。

例如,我们想要知道一些城市成年人的平均年收入。

在实际情况下,我们无法调查每个人的收入情况,因此我们需要从总体中随机抽取一部分个体作为样本,并计算他们的平均年收入。

如果我们多次从总体中抽取样本并计算平均年收入,然后绘制这些平均值的分布图,我们就可以得到平均年收入的抽样分布。

这个抽样分布将给我们提供有关总体平均年收入的估计和推断。

接下来,我们将讨论参数估计。

参数估计是指使用样本数据来估计总体参数的过程。

总体参数是用于描述总体特征的数值,如总体平均值、总体标准差等。

通过从总体中抽取样本,并计算样本统计量,我们可以利用样本统计量来估计总体参数。

常用的参数估计方法有点估计和区间估计。

点估计是指用单个数值来估计总体参数,例如用样本均值来估计总体均值。

点估计给出了一个单一的值,但不能提供关于估计的精度的信息。

因此,我们常常使用区间估计。

区间估计是指给出一个区间,这个区间内有一定的置信水平使得总体参数落在这个区间内的概率最高。

区间估计能够向我们提供关于估计的精确程度的信息。

区间估计依赖于抽样分布的性质。

中心极限定理是制定抽样分布理论的一个重要原则。

根据中心极限定理,当样本容量足够大时,样本均值的抽样分布将近似于正态分布。

这使得我们可以使用正态分布的性质来计算置信区间。

构建置信区间的一种常用方法是使用样本均值的标准误差。

标准误差是样本均值的标准差,它用来衡量样本均值和总体均值之间的误差。

根据正态分布的性质,当样本容量足够大时,样本均值与总体均值之间的误差可以用标准误差来估计。

通过计算标准误差并结合正态分布的性质,我们可以得到样本均值的置信区间。

教育与心理统计学 第四章 抽样理论与参数估计考研笔记-精品

教育与心理统计学  第四章 抽样理论与参数估计考研笔记-精品

第四章抽样理论与参数估计第一节抽样理论的基本知识分层抽样,又叫分层随机抽样,这种抽样方法是按照总体已有的某些特征,承认总体中已有的差异,按差异将总体分为几个不同的部分,每一部分称为一个层,在每一个层中实行简单随机抽样。

它充分利用了总体的已知信息,因而是一种非常适用的抽样方法,其样本代表性及推论的精确性一般优于简单随机抽样。

分层的原则是层与层之间的变异越大越好,各层内的变异要小。

试述分层抽样的原则和方法?分层抽样是按照总体上已有的某些特征,将总体分成几个不同部分,在分别在每一部分中随机抽样。

分层的总的原则是:各层内的变异要小,而层与层之间的变异越大越好。

在具体操作中,没有一成不变的标准,研究人员可根据研究需要依照多个分层标准,视具体情况而定。

⑷两阶段随机抽样两阶段随机抽样首先将总体分成M个部分,每一部分叫做一个"集团"(或"群"),第一步从M个集团中随机抽取m个"集团”作为第一阶段样本,第二步是分别从所选取的m个"集团”中抽取个体(g构成第二阶段样本。

一般而言,两阶段抽样相对于简单随机抽样,标准误要大些,但是,两阶段抽样简便易行,节省经草贼,因而它是大规模调查研究中常被使用的抽样方法。

例如,如果我们要了解全国城市初中二年级学生的身高,第一步我们可以从全国几百个城市中随机抽取几十个城市作为第一阶段的样本。

第二步,在第一阶段随机抽取出来的城市中再随机抽取初中二年级的学生。

(二)非旃抽样非概率抽样不是完全按随机原则选取样本,有方便抽样、判断抽样。

方便抽样是由调查人员自由、方便地选择被调查者的非随机选样。

判断抽样是通过某些条件过滤,然后选择某些被调查者参与调查的抽样法。

当采取非概率抽样的方法选取样本时,研究者要说明采用此种方取样的原因以及对研究结果可能造成的影响。

第二节抽样分布[统计量分布、基本随机变量函数的分布]总体:又称母全体、全域,指具有某种特征的一类事物的全体。

第四章习题及参考答案

第四章习题及参考答案

第四章习题及参考答案第四章抽样与抽样估计⼀、单项选择题1、实际⼯作中,⼩样本是指()A、样本容量⼤于30的样本B、样本容量⼩于30的样本C、样本容量等于30的样本D、样本容量⼩于等于30的样本2、从5个字母中随机抽取2个字母作为样本,采⽤重复抽样,考虑顺序,则可能的样本个数为()A、10个B、20个C、25个D、30个3、当总体⽅差未知,且样本容量⼩于30时,进⾏正态总体均值的区间估计应采⽤的临界值为()A、F值B、Z值C、t值D、2x值4、当总体⽅差已知,⽆论样本容量n的⼤⼩如何,进⾏正态总体均值的区间估计应采⽤的临界值为()A、F值B、Z值C、t值D、2x值5、在总体内部情况复杂、且各单位之间差异程度⼤、单位数⼜多的情况下,宜采⽤()A、等距抽样B、整群抽样C、简单随机抽样D、类型抽样6、根据重复抽样的资料,甲单位⼯⼈⼯资⽅差为25,⼄单位为100,⼄单位抽的⼈数⽐甲单位多3倍,则抽样平均误差()A、甲单位较⼤B、甲单位较⼤C、⽆法判断D、甲、⼄单位相同7、某学校在全校学⽣中随机重复抽取100⼈调查⾝⾼,计算出抽样平均误差为5cm。

如果改⽤不重复抽样⽅法,在其他条件不变时,其抽样平均误差将会()A、⼤于5cmB、⼩于5cmC、等于5cmD、不确定8、纯随机重复抽样条件下,样本容量扩⼤为原来的9倍,其它条件不变,则()A、抽样允许误差不变B、抽样允许误差缩⼩为原来的九分之⼀C、抽样允许误差缩⼩为原来的三分之⼀D、抽样允许误差增⼤为原来的九倍⼆、多项选择题1、影响抽样平均误差的因素主要有()A、总体⽅差或标准差B、样本容量C、抽样⽅法D、抽样组织⽅式E、抽样的对象2、下列说法中错误的有()A、抽样误差是不可避免的B、抽样误差是可以避免的C、抽样误差可以计算但不能加以控制机D、抽样误差是由于抽样的随机性⽽产⽣的样本估计量与总体参数之间的代表性误差 E、抽样误差是指登记性误差3、评价估计量的优劣常⽤下列三个标准()A、⼀致性B、有效性C、合理性D、代表性E、⽆偏性4、抽样推断过程包括相互联系的三项内容()A、随机抽样B、统计估计C、假设检验D、抽样精度E、置信度5、下列说法正确的有()A、总体参数是唯⼀的、确定的,但⼜是未知的B、总体参数是随机变量C、样本统计量是随机变量D、样本统计量是唯⼀的、确定的E、样本所包含的总体单位个数称为样本容量6、概率抽样最基本的组织⽅式有()A、简单随机抽样B、分层抽样C、等距抽样D、整群抽样E、配额抽样7、抽样估计中的抽样误差()A、⽆法避免B、可以控制C、只能在估计结束才能知道D、可以计算E、不可控制8、抽样平均误差是指()A、所有可能样本的样本指标与总体指标的平均离差B、所有可能样本的样本指标对总体指标的标准差C、已抽出样本的标准差D、等价于极限误差E、已抽出样本的平均差三、填空题1、概率抽样也叫随机抽样,是指按照原则抽取样本。

第四章 参数估计

第四章 参数估计

x
n
总体标准差,若 未知,可用样本
标准差代替
36
总体均值的置信区间引例
(2 未知)
例:某商场从一批袋装食品中随机抽取10袋,测得 每袋重量(单位:克)分别为789,780,794, 762,802,813,770,785,810,806,要 求以95%的把握程度,估计这批食品的平均每袋 重量的区间范围。假定食品重量服从正态分布。
0.95,Z/2=1.96
x Z 2
n
,
x
Z
2
n
26 1.96 6 ,26 1.96 6
100
100
24.824,27.176
我们可以95%的概率保证平均每天 参加锻炼的时间在24.824~ 27.176 分钟之间。
一般置信水平
一般使用的置信水平是:90%, 95%, 99%
Confidence Level
▪ 总体服从正态分布,且总体方差(2)已知 ▪ 如果不是正态分布,可以由正态分布来近似 (n 30)
2. 使用正态分布统计量Z
Z
x s
m ~ N (0,1)
n
3. 总体均值 在1-置信水平下的置信区间为
s
s
x
Za 2
,x n
Za 2 n
总体均值的置信区间
(2 已知)
抽样极限误差:
s x Za 2 n
❖ 定理1
当总体 X ~ N ( m , s 2 ) 时,抽自该总体
的简单随机样本 x1 , x 2 , , x n 的样本平均数
服从数学期望为 ,方差为 s2的正态分布,
n
即 x ~ N (m, s2 ) 。
n
Z x ~ N (0,1) n

抽样与参数估计

抽样与参数估计

第四章抽样与参数估计推断统计:利用样本统计量对总体某些性质或数量特征进行推断。

从数据得到对现实世界的结论的过程就叫做统计推断(statistical inference)。

这个调查例子是估计总体参数(某种意见的比例)的一个过程。

估计(estimation) 是统计推断的重要内容之一。

统计推断的另一个主要内容是本章第二节要介绍的假设检验(hypothesis testing) 。

因此本节内容就是由样本数据对总体参数进行估计,即:学习目标:了解抽样和抽样分布的基本概念理解抽样分布与总体分布的关系了解点估计的概念和估计量的优良标准掌握总体均值、总体比例和总体方差的区间估计第一节抽样与抽样分布回顾相关概念:总体、个体和样本抽样推断:从所研究的总体全部元素(单位)中抽取一部分元素(单位)进行调查,并根据样本数据所提供的信息来推断总体的数量特征。

总体(Population):调查研究的事物或现象的全体参数个体(Item unit):组成总体的每个元素样本(Sample):从总体中所抽取的部分个体统计量样本容量(Sample size):样本中所含个体的数量一般将样本单位数不少于三十个的样本称为大样本,样本单位数不到三十个的样本称为小样本。

一、抽样方法及抽样分布1、抽样方法(1)、概率抽样:根据已知的概率选取样本①、简单随机抽样:完全随机地抽选样本,使得每一个样本都有相同的机会(概率)被抽中。

注意:在有限总体的简单随机抽样中,由抽样是否具有可重复性,又可分为重复抽样与不重复抽样。

而且,根据抽样中是否排序,所能抽到的样本个数往往不同。

②、分层抽样:总体分成不同的“层”(类),然后在每一层内进行抽样③、整群抽样:将一组被调查者(群)作为一个抽样单位④、等距抽样:在样本框中每隔一定距离抽选一个被调查者(2)非概率抽样:不是完全按随机原则选取样本①、非随机抽样:由调查人员自由选取被调查者②、判断抽样:通过某些条件过滤来选择被调查者(3)、配额抽样:选择一群特定数目、满足特定条件的被调查者2、抽样分布一般地,样本统计量的所有可能取值及其取值概率所形成的概率分布,统计上称为抽样分布(sampling distribution)。

第四章 抽样

第四章 抽样

• 3.设计抽样方案 • 4.制定抽样框
– 制定抽样框就是依据已经明确界定的总体范围,收集总体中全部抽样单位 的名单,并统一编号。
• 5.实际抽取样本 • 6.样本评估
– 样本评估就是对样本的质量和代表性进行检验,其目的是防止因样本的偏 差过大而导致的失误。
– 实际抽取样本就是在上述几个步骤的基础上,严格按照所选定的抽样方法, 从抽样框中抽取一个个的抽样单位,构成样本。
运用:
• 从侨光分校的7000位学生中,抽取100位学 生进行调查查,以研究学生对学校教学条 件的满意度。之前所做的普查表现出的对 学校教学条件的平均满意度为85%,现通 过抽查统计后的满意度为80%。 • 请说出本次抽查中的总体、样本、抽样元 素、抽样单位、抽样框、参数值、统计值、 抽样误差。
二、抽样的作用
• 分类抽样有着突出的优点: 第一,分类抽样能够克服简单随机抽样的缺 点,适用于总体内个体数目较多,结构较复杂, 内部差异较大的情况。 第二,精确度较高。 第三,便于对不同层面的问题进行探索。 第四,便于分工,使工作效率提高。 分类抽样的缺点是,如何分类通常由人们主 观判定,因此要求调查者具备较高的素质与能力, 并且必须事先对总体各单位的情况有较多的了解, 而它们在实际工作中有时难以完全实现,这就会 影响分类的科学性和精确性。
三、抽样的类型
• 概率抽样 • 非概率抽样
– 根据抽取对象的具体方式,人们把抽样分为许多不同 的类型。总的来说,各种抽样都可以归为概率抽样与 非概率抽样两大类。这是两种有着本质区别的抽样类 型。概率抽样是依据概率论的基本原理,按照随机原 则进行的抽样,因而它能够避免抽样过程中的人为误 差,保证样本的代表性;而非概率抽样则主要是依据 研究者的主观意愿、判断或是否方便等因素来抽取对 象,它不考虑抽样中的等概率原则,因而往往产生较 大的误差,难以保证样本的代表性。 概率抽样与非概率抽样又各自包括了许多具体类 型。分别适用于不同调查对象。联系实际认识概率抽 样的不同类型及其适用性是掌握抽样方法的关键。

统计学抽样与参数估计

统计学抽样与参数估计

12
12
2

N
n )
1.25
(
4
2)
5
n N -1 2 4 1 12
样本平均数的标准差又称为抽样平均误差(或抽样标 准差)。
第19页/共87页
样本均值的分布与总体分布的比较
总体分布
.3
.2
.1 0
1
234
= 2.5
σ2 =1.25
.3 P ( X ) 抽样分布
.2
.1
0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 X

x
n
N n ,即均值推断的抽样误差 N 1
第25页/共87页
样本均值抽样分布的实际应用

样本统计量的估计值与其所要测度的总体参数值之
间的绝对差距,被称为抽样误差(sampling error)。
• 抽样分布能够用来提供抽样误差大小的可能性(概
率)。
在例1中,如果人事部经理认为
在一次抽样中所得到的中层干部的
第22页/共87页
B、当总体分布未知时,需要用到中心极 限定理(Central limit Theorem)
对容量为n 的简单随机样本,样本均值的分 布随样本容量的增大而趋于正态分布。
经验上验证,当样本容量等于或大于30时,无 论总体的分布如何,样本均值的分布则非常接近正 态分布。
因此统计上常称容量在30(含30)以上的样本 为大样本(large-sample-size)。
n+1)
Nn
32、、不考考虑虑顺顺序序的的重不复重抽复样抽:样:
C
n N
N! n!(N n)!
4、不考虑顺序的重复抽样:

西南大学 统计学课后答案

西南大学 统计学课后答案

第四章 抽样分布与参数估计3.某地区粮食播种面积5000亩,按不重复抽样方法随机抽取了100亩进行实测,调查结果,平均亩产450公斤,亩产量标准差为52公斤。

试以95%的置信度估计该地区粮食平均亩产量和总产量的置信区间。

解:已知X =450公斤,n =100(大样本),n/N=1/50,11≈-Nn,不考虑抽样方式的影响,用重复抽样计算。

s =52公斤,1-α=95%,α=5%。

这时查标准正态分布表,可得临界值:96.1025.02/==z z α该地区粮食平均亩产量的置信区间是:1005296.14502⨯±=±nsz x α=[439.808,460.192] (公斤) 总产量的置信区间是:[439.808⨯5000,460.192⨯5000] (公斤) =[2199040,2300960](公斤)4.已知某种电子管使用寿命服从正态分布。

从一批电子管中随机抽取16只,检测结果,样本平均寿命为1490小时,标准差为24.77小时。

试以95%的置信度估计这批电子管的平均寿命的置信区间。

解:(1)已知X =1490小时,n =16,s =24.77小时,1-α=95%,α=5%。

这时查t 分布表,可得 2.13145)1(2/=-n t α该批电子管的平均寿命的置信区间是:1677.2413145.214902⨯±=±nst x α=[ 1476.801,1503.199](小时)因此,这批电子管的平均寿命的置信区间在1476.801小时与1503.199小时之间。

6.采用简单随机重复抽样的方法,从2 000件产品中抽查200件,其中合格品190件。

要求:(1)计算合格品率及其抽样平均误差。

(2)以95.45%的置信度,对合格品率和合格品数量进行区间估计。

(3)如果极限误差为2.31%,则其置信度是多少? 解:(1)合格品率:P=190/200⨯100%=95% 抽样平均误差:np p p )1()(-=σ=0.015(2)%3%95%100015.02%95)(22/02275.02/±=⨯⨯±=±==p Z P Z Z σαα]19601840[]2000%982000%92[(%]98%92[,,的置信区为:件合格品数量,:合格品率的置信区间为=⨯⨯)(3)%64.87)(8764.01,54.1%31.2%100015.0%31.2)(2/2/2/==-==⨯⨯==∆z F Z Z p Z ασααα查表得 7.从某企业工人中随机抽选部分进行调查,所得工资分布数列如下:试求:(1)以95.45%的置信度估计该企业工人平均工资的置信区间,以及该企业工人中工资不少于800元的工人所占比重的置信区间;(2)如果要求估计平均工资的允许误差范围不超过30元,估计工资不少于800元的工人所占比重的允许误差范围不超过10%,置信度仍为95.45%,试问至少应抽多少工人? 解(1)通过EXCEL 计算可得: X =816元,n =50人,s =113.77元。

第四章统计假设检验与参数估计.ppt

第四章统计假设检验与参数估计.ppt
多 ,常用的有u检验、t检验、F检验和2检
验等。尽管这些检验方法的用途及使用条件 不同,但其检验的基本原理是相同的。
参数估计有点估计(point
estimation)和区 间 估计(interval
estimation)。 2020-11-9
感谢你的观看
2
上一张 下一张 主 页 退 出
1 统计假设检验概述
了黑球,那么,自然会使人对H0的正确性产生 怀疑,从而否定H0。也就是说箱中不止1个黑 球。
2020-11-9
感谢你的观看
4
以上这几种问题的判断均是由样本去推断
总体的,属于统计假设检验问题,均是来判断 数据差异、分布差异是由处理引起,还是由于 随机误差引起的。
样本虽然来自于总体,但样本平均数并非 是总体平均数。由于抽样误差的影响(随机误 差的存在),样本平均数与总体平均数之间往 往有偏差。因此,仅由表面效应 x 0 是不能 判断它们之间是否有显著差异。其根本原因在 于 试 验 误差(或抽样误差)的不可避免性。
例3:小麦良种的千粒重x~N(33.5,1.62),现 由外地引进一高产品种,在8个小区种植,得千粒 重(g):35.6,37.6,33.4,35.1,32.7,36.8
,35.9,34.6,平均数为 x=35.2,试问新引进
的品种千粒重与当地品种有无显著差异?如果有
显著差异,是否显著高于当地品种?
曲种好于原曲种?
食醋醋酸含量的差异是由于采用新曲种引起的还是由于试验误差引起的?
2020-11-9
感谢你的观看
3
上一张 下一张 主 页 退 出
例2:A,B两种肥料,在相同条件下各施用于5 个小区的水稻上,水稻产量平均分别为
xA=500 kg,xB=520 kg ,二者相差20kg,那么 20kg差异究竟是由于两种肥料的不同而造成的 还是由试验的随机误差造成的?

抽样和参数估计习题及答案

抽样和参数估计习题及答案

抽样和参数估计习题及答案抽样和参数估计习题及答案在统计学中,抽样和参数估计是非常重要的概念和技巧。

通过抽样,我们可以从总体中选择一部分样本,并通过对这些样本的观察和分析来推断总体的特征。

参数估计则是根据样本数据来估计总体的参数值。

下面,我们将介绍一些与抽样和参数估计相关的习题,并提供相应的答案。

习题一:某公司有1000名员工,你想估计他们的平均工资。

你随机选择了50名员工,并得到了他们的工资数据。

计算这些员工的平均工资,并给出对总体平均工资的估计。

答案:根据题目所给的信息,我们可以计算这50名员工的平均工资。

然后,我们可以将这个平均工资作为总体平均工资的估计。

例如,假设这50名员工的平均工资为5000元,那么我们就可以估计总体平均工资为5000元。

习题二:一家电商公司想估计他们网站上每天的访问量。

他们在连续的7天中记录了每天的访问量,并得到了以下数据:1000, 1200, 800, 1500, 900, 1100, 1300。

计算这7天的平均访问量,并给出对总体平均访问量的估计。

答案:根据题目所给的数据,我们可以计算这7天的平均访问量。

然后,我们可以将这个平均访问量作为总体平均访问量的估计。

例如,将这7天的访问量相加得到8000,再除以7得到平均访问量约为1143。

因此,我们可以估计总体平均访问量为1143。

习题三:某城市有100个小区,你想估计这些小区的平均房价。

你随机选择了10个小区,并得到了每个小区的房价数据。

计算这10个小区的平均房价,并给出对总体平均房价的估计。

答案:根据题目所给的信息,我们可以计算这10个小区的平均房价。

然后,我们可以将这个平均房价作为总体平均房价的估计。

例如,假设这10个小区的平均房价为200万元,那么我们就可以估计总体平均房价为200万元。

习题四:一家公司想估计他们产品的市场份额。

他们随机选择了100个消费者,并调查了他们对该产品的购买意向。

其中有80个消费者表示愿意购买该产品。

抽样分布与参数估计

抽样分布与参数估计
X1 X 2 X n D( ) n 1 2 2 D( X 1 ) D( X 2 ) D( X n ) n n
2 x
(5.7)
(5.8)
x

n
(5.9)
【例 5-3】计算例 5-2 中 10 名推销员平均的任职年限 及其标准差, 并与例 5-2 求得的样本平均数的期望值与方差 作比较。 解: (1 2+3+4+5+6+7+8+9+10)/10=5.5
2
正态分布时,所需的样本容量 n 可以较小,反之则需 要较大的样本容量。通常将样本单位数不少于 30 的 称为大样本。
二、样本比例的抽样分布

(一)样本比例的期望值与方差
设随机变量 X 服从二点分布,其总体平均数为 , 又
称为总体比例,总体方差 2 ( ) ( 1 ) 。现对其进行 n 次独立重复观测,得到下列样本:(X1,X 2,…,X n),其中, 观测结果为“成功”的次数是 N1。 我们把样本中“成功”的次数所占比例定义作样本比例 P。
一、样本平均数的抽样分布

(一)样本平均数的期望值与方差
在放回抽样的情形下,设从总体中抽出的 样本为 x1 , x 2 , , x n ,其是相互独立的,并且 为 ,则可推导出样本平均数的期望值与方
2
与总体服从同一分布。设总体均值为 ,方差 差、标准差分别为:
X1 + X 2 + + X n E( X ) E( ) n 1 E ( X 1 ) E ( X 2 ) E ( X n ) n
0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10

第四章 抽样调查

第四章 抽样调查

p
p1 p
n
0.2 0.8 0.02 400
即:根据样本资料推断全部学生中戴眼镜的学 生所占的比重时,推断的平均误差为2%。
例: :
一批食品罐头共60000桶,随机抽查300桶,发 现有6桶不合格,求合格品率的抽样平均误差?
解: 已知 N 60000 n 300 n1 6
解:
x xf 12600 126件 f 100
s x x 2 f 4144 6.47件
f 1
99
x
s 2 1 n n N
6.472 1 100 0.614件
100 1000
x
通过例题可说明以下几点:
①样本平均数的平均数等于总体平均数。 ②抽样平均数的标准差仅为总体标准差的 1
n
③可通过调整样本单位数来控制抽样平均误差。
例:假定抽样单位数增加 2 倍、0.5倍时, 抽样平均误差怎样变化?
解:抽样单位数增加 2 倍,即为原来的 3 倍
则:
x

3n
1 0.577 3
二、抽样调查的特点
1、 是专门组织的一次性的非全面调查 2、 抽选样本单位遵循随机原则 3、 用样本指标数值去推断总体指标数值 (与重点调查的区别) 4、 抽样误差可计算并控制在一定范围内 (与典型调查的区别)
三、抽样调查的几个基本概念 (一) 全及总体和抽样总体
全及总体 指研究对象的全体。其单位数 (总体) 用N 表示。
即:当根据样本学生的平均体重估计全部学生的平均 体重时,抽样平均误差为1公斤。
例: 某厂生产一种新型灯泡共2000只,随机抽出 400只作耐用时间试验,测试结果平均使用寿 命为4800小时,样本标准差为300小时,求抽 样推断的平均误差?

统计学 第四章 参数估计

统计学 第四章  参数估计

由样本数量特征得到关于总体的数量特征 统计推断(statistical 的过程就叫做统计推断 的过程就叫做统计推断 inference)。 统计推断主要包括两方面的内容一个是参 统计推断主要包括两方面的内容一个是参 数估计(parameter estimation),另一个 数估计 另一个 假设检验 。 是假设检验(hypothesis testing)。
ˆ P(θ )
无偏 有偏
A
B
θ
ˆ θ
估计量的无偏性直观意义
θ =µ



• •
• • • •

2、有效性(efficiency)
有效性:对同一总体参数的两个无偏点估计 有效性: 量,有更小标准差的估计量更有效 。
ˆ P(θ )
ˆ θ1 的抽样分布
B A
ˆ θ2 的抽样分布
θ
ˆ θ
பைடு நூலகம்
3、一致性(consistency)
置信区间与置信度
1. 用一个具体的样本 所构造的区间是一 个特定的区间, 个特定的区间,我 们无法知道这个样 本所产生的区间是 否包含总体参数的 真值 2. 我们只能是希望这 个区间是大量包含 总体参数真值的区 间中的一个, 间中的一个,但它 也可能是少数几个 不包含参数真值的 区间中的一个
均值的抽样分布
总体均值的区间估计(例题分析)
25, 95% 解 : 已 知 X ~N(µ , 102) , n=25, 1-α = 95% , zα/2=1.96。根据样本数据计算得: x =105.36 96。 总体均值µ在1-α置信水平下的置信区间为 σ 10 x ± zα 2 = 105.36 ±1.96× n 25 = 105.36 ± 3.92

统计学第四章的教材

统计学第四章的教材

几个直观的结论
1. 样本均值的均值(数学期望)等于总体均值(式中:M为样本 n 数目); xi 22 23 28 i 1 25 X M 16 2. 抽样误差是随样本不同而不同的随机变量。抽样误差均值 等于0; xX 0


3. 样本均值的方差等于总体方差的1/n。
3
(二)抽样估计的一般步骤 1、设计抽样方案 2、 随机抽取样本(从总体随机抽取部分单位构成样本) 3、搜集样本资料(对样本单位进行调查登记) 4、整理样本资料(审查、分组汇总、计算样本指标的
数值,即计算估计量的具体数值)
5、估计总体指标(即估计总体参数)
总体参数与样本估计量的关系——对于特定的目 的,总体是惟一的,所以参数也是惟一的;而由 于样本是随机的,所以样本估计量是随机变量。
(3)抽样方法。相同条件下,重复抽样的抽样平均误 差大比不重复抽样的抽样平均误差大。
(4)抽样组织方式。由于不同抽样组织方式有不同的 抽样误差,所以,在误差要求相同的情况下,不同抽 样组织方式所必需的抽样数目也不同。
21
不知道总体方差时如何计算
用样本方差代替计算 用过去(总体或样本)方差代替计算 用同类现象(当前 或过去、总体或样本) 方 代替计算 有若干个方差可选择时,选方差最大者 (注意:对比率,即选择最接近0.5的值所 得的方差最大)
进无偏估计量。
29
二、区间估计
(一)区间估计的原理 区间估计就是根据样本估计量以一定 可靠程度推断总体参数所在的区间范围。 特点:考虑了估计量的分布,所以它能 给出估计精度,也能说明估计结果的把握 程度(置信度)。
30
(一)总体均值的置信区间
(1)假定条件

总体服从正态分布,且总体方差(2)已知

第四章分层随机抽样

第四章分层随机抽样

第四章分层随机抽样第一节分层随机抽样概述分层抽样也叫做类型抽样,它是实际工作中最常用的抽样技术之一。

分层抽样是在抽样之前,先将总体按一定标志划分为若干个层(组),后在各层内分别独立地进行抽样。

由此所抽得的样本称之为分层样本。

各层所抽的样本也是互相独立的。

如果每层中的抽样都是简单随机的,则这种抽样就叫做分层随机抽样。

由此所得到的样本称做分层随机样本。

从以上概念可以看出,分层抽样的实质是在各层间作全面调查,而在各层内作抽样调查。

因此,分层抽样的误差只与各层内的差异有关,而同各层间的差异无关。

所以,为了能有效地降低抽样误差,提高抽样效果,在分层时应遵循“尽可能使层内差异小,而使层间差异大”的原则,同时要使分层的结果既无重复又无遗漏。

进行分层抽样时应注意:①层内抽样设计的选择;②分层变量的选择;③各层样本量的分配;④层数;⑤层的分界。

以前只重视③,近年来,④和⑤引起了越来越多的关注。

同简单随机抽样相比,分层抽样具有以下特点:①分层抽样能够充分地利用关于总体的各种已知信息进行分层,因此抽样的效果一般比简单随机抽样要好。

但当对总体缺乏较多的了解时,则无法分层或不能保证分层的效果。

②在分层抽样中,总体的方差一般可以分解为层间方差和层内方差两部分。

由于分层抽样的误差只与层内差异有关,而与层间差异无关,因此,分层抽样可以提高估计量的精度。

③由于分层抽样是在每层内独立地进行抽样,因此,使得分层样本能够比简单随机样本更加均匀地分布于总体之内,所以其代表性也更好些。

④分层抽样的随机性具体体现在层内各单元的抽取过程之中,也即在各层内部的每一个单元都有相同的机会被抽中,而在层与层之间则是相互独立的。

⑤分层抽样适合于调查标志在各单元的数量分布差异较大的总体。

因为对这样的总体进行合理的分层后可将其差异较多地转化为层间差异,从而使层内差异大大减弱。

⑥分层抽样中除了可以推断总体参数外,还可以推断各不同层的数量特征,并进一步作对比分析,从而满足不同方面的需要,也能帮助人们对总体作更全面、更深入的了解。

第4章 抽样估计

第4章 抽样估计

• 解:根据题意,在重复抽样条件下,合格 率的抽样平均误差为:
p=
P(1-P)= n
0.9 0.1 50
=4.24%
在不重复抽样的条件下,合格率的抽样平均误差为:
p
P(1 P)(1 n )
n
N
0.9 0.1(1 50 )
50
5000
4.22%
答:抽取50件产品进行检验,该产品合格率的抽样平均误差 为4.22%。
• 例:2008年我国谷物平均产量为5548千克/公顷, 假如通过抽样调查得到的平均产量为5580千克/ 公顷或5534千克/公顷,则样本平均每公顷产量 与实际平均每公顷产量之间的误差分别为32千克 或−14千克。
1、抽样误差的种类
• 统计调查误差按产生的原因可以分为登记性误差和代 表性误差两大类。
• 例如在省抽县、县抽乡、乡抽村、村抽户的农产量 四阶抽样中,凡未被抽中的县、乡、村、户就不必 编制关于乡、村、户的抽样框。
4、整群抽样(Cluster sampling)
• 在二阶抽样中如果把初级抽样单元称作由次级抽样单 元组成的群,在抽中的群内不再对次级单元进行抽样 而是进行普查,那么这种抽样方法就称为整群抽样。
• 时间表抽样框:把总体的时间过程分为若干个小的时 间单位,并按时间顺序对总体单位进行抽样。如流水 线产品质量检查。
二、抽样误差及其度量
• 一般地说,抽样误差是指样本指标与被它估计未 知的总体参数(总体特征值)之差。具体地是指样 本平均数 x 与总体平均数μ的差,样本成数P与总 体成数π的差(P-π)。
2、抽样误差的度量
• 实际抽样误差:某一具体样本的样本估计值 与ˆ 总 体参数的真实值 之差( -ˆ )。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

☺☺ 第四章抽样与参数估计1
•11
分层抽样:抽样前先将总体的元素按不同
特征划分为若干层(strata),在每一层中抽
取一定的元素组成一个样本。
◦ 性别、行业、年龄等
优点:分层抽样的样本分布在各个层内, 使样本在总体中的分布比较均匀,样本更 具代表性,精度高。
PPT文档演模板
第四章抽样与参数估计1
•12
(1)样本均值的数学期望是多少?
(2)样本均值的标准差是多少?
PPT文档演模板
第四章抽样与参数估计1
•36
正态分布函数的性质
1. 图形是关于x=对称钟形曲线,且峰值在x= 处
2. 均值和标准差一旦确定,分布的具体形
式也唯一确定
3. 正态随机变量在特定区间上的取值概率由 正态曲线下的面积给出,而且其曲线下的 总面积等于1
•均值和方差
•2.5
•1.25
PPT文档演模板
第四章抽样与参数估所有样本的均值如何分布?
•共有42=16个样本:
所有可能的n = 2 的样本(共16个)
第一个
第二个观察值
观察值
1
2
3
4
1
1,1
1,2
1,3
1,4
2
2,1
2,2
2,3
2,4
•总 体
PPT文档演模板
•样
•样本统计量

•例如:样本均
值、比例、方

第四章抽样与参数估计1
• 第4章 抽样与参数估计
PPT文档演模板
第四章抽样与参数估计1
主要内容:
4.1 抽样与抽样分布
4.2 参数估计的基本原理
4.3 总体均值的区间估计
4.4 总体比例的区间估计
4.5 样本量的确定
PPT文档演模板
可用于探索性的研究
PPT文档演模板
第四章抽样与参数估计1
•19
4.1 抽样与抽样分布
4.1.1 概率抽样方法 4.1.2 抽样分布
PPT文档演模板
第四章抽样与参数估计1
•20
三种不同性质的分布
总体分布 样本分布
频数分布表、图等
抽样分布:样本统计量的概率分布。结 果来自容量相同的所有可能样本。
PPT文档演模板
PPT文档演模板
第四章抽样与参数估计1
正态分布的概率
•概率是曲线下的面积! •f(x)
PPT文档演模板
•a •b
•x
第四章抽样与参数估计1
一般正态分布X ~ N (μ, σ2 )
标准正态分布 •z=•X-•~•N••(0••,1•)
•一般正态分

PPT文档演模板
•X
•标准正态分布
=1
=
PPT文档演模板
第四章抽样与参数估计1
•17
自愿抽样
◦ 有偏,反映某类群体的一般看法。
滚雪球抽样
◦ 特定群体的研究。
PPT文档演模板
第四章抽样与参数估计1
•18
概率抽样与非概率抽样的比较
概率抽样依据随机原则抽取样本,可
用于对总体给出很准确的估计情况 非概率抽样得到的统计量的分布是不
确定的,因而不能用于总体参数的推断,
对于无限总体或有限总体当N很大时,不重复抽样可以 按照重复抽样来处理;
PPT文档演模板
第四章抽样与参数估计1
•32
如果原有总体是正态分布,那么无论样本容量大 小,样本均值的抽样分布均服从正态分布;
如果原有总体是非正态分布,则要看样本容量的 大小而定。
PPT文档演模板
第四章抽样与参数估计1
•33
抽样分布与总体分布的关系
PPT文档演模板
第四章抽样与参数估计1
•22
•某车间50名工人日加工零件数分组表
按零件数分组 105~110 110~115 115~120 120~125 125~130 130~135 135~140 合计
PPT文档演模板
频数(人) 3 5 8 14 10 6 4 50
频率(%) 6 10 16 28 20 12 8
频数 1 4 6
分组 35-40 40-45 45-50
频数 14 9 6
PPT文档演模板
第四章抽样与参数估计1
•25
抽样分布
1. 样本统计量的概率分布 2. 例如:样本均值、比例、方差的分布 3. 结果来自容量相同的所有可能样本 4. 一种理论分布
PPT文档演模板
第四章抽样与参数估计1
•26
•【例】设一个总体,含有4个元素(个体),即总体 单位数N=4。4 个个体分别为X1=1、X2=2、X3=3 、 X4=4 。总体的均值、方差?
约有95.45%的数据在平均数加减2个标准差的范围之

•99.73
%
约有99.73%的数据在平•95均.45数加减3个标准差的范围之
•Z
第四章抽样与参数估计1
标准化的例子
P(2.9 X 7.1)
•一般正态分布
• = 10
PPT文档演模板
•2.9 •5 •7.1 •X
•标准正态分布
•=1
•.1664
•.0832•.0832
•-.21 •0 •.21 •Z
第四章抽样与参数估计1
一般正态分布X ~ N (μ,σ2 )
标准正态分布 •z=•X-•~•N••(0••,1•)
•α/
2
•α/
2
•z =•1••.645•,•z =•1••.96•,•z =•2••.58
•0••.05
•0••.025
•0••.005
PPT文档演模板
1.645
1.96 2.58
1-a
a
90%
0.10
95%
0.05
99%
0.01
•41
第四章抽样与参数估计1
中心极限定理
• 从均值为,方差为σ2的一个任意总体中抽 取容量为n的样本,当n充分大时(通常要求 n≥30),样本均值的抽样分布近似服从均值为μ 、方差为σ2/n的正态分布。
41 25 29 47 38 34 30 38 42 40 46 36 45 37 37 36 45 44 33 44 35 28 46 33 30 23 44 26 38 44 42 36 37 37 49 39 42 32 36 35
以此推断一年365天的销售额情况?
分组 20-25 25-30 30-35
第四章抽样与参数估计1
•7
4.1 抽样与抽样分布
4.1.1 概率抽样方法 4.1.2 抽样分布
PPT文档演模板
第四章抽样与参数估计1
•8
抽样方法
概率抽样方法
非概率抽样方法
一般的抽样推断都是建立在概率 抽样的基础上
PPT文档演模板
第四章抽样与参数估计1
•9
概率抽样
指遵循随机原则进行的抽样,总体中的 每个个体都有被抽到的可能,完全排除 人的主观因素的影响。
PPT文档演模板
第四章抽样与参数估计1
•42
一般正态分布X ~ N (μ, σ2 )
标准正态分布 •z=•X-•~•N••(0••,1•) 样本统计量的分布:
PPT文档演模板
第四章抽样与参数估计1
•43
经验法则
经验法则表明:当一组数据对称分布时
约有68.27%的数据在平均数加减1个标准差的范围之 内
•······ •·•·•·•·•·•·
PPT文档演模板
•优点:具有简单随机抽样的特征,能比 较均匀地抽到总体中各个部分的单位, 简单易行。
第四章抽样与参数估计1
•14
非概率抽样
根据研究人员的主观判断来抽取样本, 研究人员有意识地选取样本单位,样本 单位的抽取不是随机的。
PPT文档演模板
•方便抽样 •判断抽样 •自愿抽样 •滚雪球抽样
100
第四章抽样与参数估计1
•为 研 究 广 告 市 场 的 状 况,一家广告公司在某 城 市 随 机 抽 取 200 人 就 广告问题做了邮寄问卷 调查,其中的一个问题 是“您比较关心下列哪 一类广告?”
• 1.商品广告;2. 服务广告;3.金融广 告;4.房地产广告;5 .招生招聘广告;6. 其他广告。
•给出样本均值的抽样分布
个数
概率P( )
1.0
1
1/16
1.5
2
2/16
2.0
3
3/16
2.5
4
4/16
3.0
3
3/16
3.5
2
2/16
4.0
1
1/16
•P ( x )
•1. 0
•1. •2. •2. •3. •3. •4.
•5样本0 均值5 的0抽样5 分布0
•x
PPT文档演模板
第四章抽样与参数估计1
PPT文档演模板
第四章抽样与参数估计1
•35
Exercises
1.从均值为200、标准差为50的总体中,抽取n=100的简 单随机样本,用样本均值估计总体均值。
(1)样本均值的数学期望是多少?
(2)样本均值的标准差是多少?
(3)样本均值的抽样分布是什么?
2.假定总体共有1000个单位,均值为32,标准差为5。 从中抽取一个容量为30的简单随机样本用于获得总体 信息。
•2
统计方法
•分析数据方式
•描述统计
•推断统计
PPT文档演模板
•参数估计 •假设检验
第四章抽样与参数估计1
•3
•总体
☺☺☺☺☺☺☺☺
•样本
☺☺ ☺
PPT文档演模板
•参数 • • •
相关文档
最新文档