元素灵敏度因子法原子灵敏度因子
电子能谱定量分析和深度分析
1
1 3
电离截面计算值(Scofield)
U的相关结合能和电离截面
Scofield vs. Wagner?
两数据库都在用 – 但对同一套数据可能有不同结果!! 它们必须以稍有不同的方式来使用 Scofield – 理论灵敏度因子数据库, 基于 C1s = 1 为此我们需要增加一项来说明分析的深度 (即 λ 并通常取 KE0.6) Wagner -实验灵敏度因子数据库, 基于 F1s = 1 为此我们需要增加一项来修正不同(仪器)类型分析器 产生的因子 (A CMA rather than our HSA). 这可通过乘 以峰动能来实现。(λ项已包含在里面)
1、一级原理模型(First Principle Model)
l
l
从光电子发射的“三步模型”出发,将所观测到的谱线强 度和激发源,待测样品的性质以及谱仪的检测条件等统 一起来考虑,形成一定的物理模型。 由于模型涉及较多的因素,目前还缺乏必要精度的实验 数据,因此一级原理模型计算还未得到真正应用。
I ij = K ⋅ T ( E ) ⋅ Lij (γ ) ⋅ σ ij ⋅ ∫ ni ( z ) ⋅ e
−z λ ( E ) cos θ
dz ⋅
其中: Iij为i元素j峰的面积,K为仪器常数,T(E)为分析器的传输函数,Lij(γ)是i 元素j轨道的角不对称因子,σij为表面i元素j轨道的的光电离截面,ni(z)为表面i 元素在表面下距离z处的原子浓度,λ(E)为光电子的非弹性平均自由程,θ是测 量的光电子相对于表面法线的夹角。
l
深度剖析 l 离子束在样品表面扫描 l 样品表面物质被逐渐刻蚀掉 l 在刻蚀周期间采集XPS谱 l 建立起样品成分随深度变化的剖析图 l 剖析深度可达 1µm l 结构破坏技术
Avantage_-_定量分析与数据处理方法
3
3、定量分析方法步骤
z
z
z
z
z
扣除背景 z 线性, Shirley, Smart(Tougaard) 测量峰面积 z 必要时进行峰拟合 应用传输函数 z 随不同的仪器而变 应用灵敏度因子 z 随不同元素(及厂商)而变 计算原子浓度
定义峰-本底类型及误差
z
z
z z
定义峰:为进行定量分析而计算峰面 积,就要确定峰的起点和终点,此两 点间的本底将被扣除。定义峰的起点 和终点位置对于定量计算的精确性是 重要的。 在实际加峰到谱峰表(Peak Table)中 之前,必须要考虑选取不同的本底类 型及其可能带来的误差。 有四种本底扣除的方法可选:Linear, Shirley,Tougaard和Smart。 应根据谱峰的实际峰型和情况来正确 选取本底类型
z
λ值有多大 (nm)?
z
对元素硅 λm=0.41(aE)0.5 monolayers (元素) λm= 8 monolayers
换算成nm: λn=aλm z (a3 =(A/1000ρnNA)) z A= 原(分)子量, ρ = 密度, n=分子中原子数 NA = Avogadro’s 常数
z
定义峰-本底类型及误差
z
Linear: 定义峰的的起点和终点间直线本底扣除方法。 通常在峰两端本底高度差别不大时适用。
定义峰-本底类型及误差
Shirley: 适用于峰两端较 为平坦的台阶状峰形本底。
•
定义峰-本底类型及误差
z
Smart: 源于Shirley本底,但会反复调整本底位置使得本 底不会跑到数据曲线之上。当对有较宽能量范围的双峰 进行定量时这是十分有用的。
1
1 3
材料测试与表征总结
最常见表面分析技术为三种:XPS、AES和SIMS。
(1)AES —空间分辨率最高。
适合做导体和半导体材料表面的微区成分、化学态和元素分布分析;(2)XPS —破坏性最小,化学信息丰富,定量分析较好。
适合做导体和非导体,有机和无机体材料的表面成分和化学态分析。
(3)SIMS—灵敏度最高。
可以做导体和非导体,有机和无机体材料中H、He以及元素同位素分析。
此三种技术相互补充,相互配合,可获得最有用的搭配。
AES俄歇电子能谱:1、俄歇电子能谱(AES)当采用聚焦电子束激发源时,亦称为:扫描俄歇微探针( SAM)AES分析是以e束(或X-射线束)为激发源, 激发出样品表面的Auger电子, 分析Auger电子的能量和强度,可获元素种类、含量与分布、以及化学态等信息。
2、AES的主要特点与局限性:主要特点:(1)由于e束聚焦后其束斑小,AES的分辨率高,适于做微区分析:可进行点分析,线和面扫描。
(2)仅对样品表面2nm以浅的化学信息灵敏。
(3)俄歇电子的能量为物质特有,与入射粒子能量无关。
(4)可分析除H和He以外的各种元素,轻元素的灵敏度较高.(5)AES可分析元素的价态。
由于很难找到化学位移的标准数据,因此谱图的解释比较困难。
(6)可借助离子刻蚀进行深度分析,实现界面和多层材料的剖析,深度分辨率较XPS更好。
局限:(1)e束带电荷,对绝缘材料分析存在荷电影响。
(2)e束能量较高,对绝热材料易致损伤。
(3)定量分析的准确度不高3、从Auger电子能谱图可以看出:(1)峰位(能量),由元素特定原子结构确定;(2)峰数,由元素特定原子结构确定(可由量子力学估计);(3)各峰相对强度大小,也是该元素特征;以上3点是AES定性分析的依据,这些数据均有手册可查.4、AES具有五个有用的特征量:①特征能量;②强度;③峰位移;④谱线宽;⑤线型。
由AES的这五方面特征,可获如下表面特征:化学组成、覆盖度、键中的电荷转移、电子态密度和表面键中的电子能级等。
XPS基础知识、有机材料分析及Avantage软件功能介绍
何本桥
一、XPS基本介绍 X-ray Photoelectron
Spectroscope X-射线光电子能谱仪
ESCA Electron Spectroscope of Chemical Analysis
化学分析电子能谱仪
1954年,瑞典皇家科学院院士、Uppsala大学物理研究所所长Kai. Siegbahn教授研制出世界上第一台Photoelectron Spectroscopy (XPS), 精确测定了元素周期表中各种原子的内层电子结合能。
3.2 定量分析方法(QUANTIFICATION)
• 在表面分析研究中我们不仅需要定性地确定试样的元素种类及其化学状态, 而且希望能测得它们的含量。对谱线强度作出定量解释。
• XPS定量分析的关键是要把所观测到的信号强度转变成元素的含量,即将谱 峰面积转变成相应元素的含量。这里我们定义谱峰下所属面积为谱线强度。
什么是表面?
物体与真空或气体的界面称为表面,我们着重研究固体表面
表面层的厚度?
第一原子层?最上面几个原子层?或是厚度达几微米的表面层
一般认为:表面层为一到两个单层,表层的信息深度来自零点几纳米到几纳米
表面是固体的终端,其物理、化学性质与体相不同。在热力学平衡的前提下, 表面的化学组成、原子排列、原子振动状态均有别于体相。
元素结合能位移的某些经验规律
通常认为结合能位移随该元素的化合价升高而增加!!!
1.同一周期主族元素符合上述规律,但过渡金属元素则不然,如:Cu 、 Ag等 2.位移量与同和该原子相结合的原子的电负性之和有一定的线性关系 3.对某些化合物,位移与由NMR和Moessbauer测得的各自特征位移量有一 定线性关系 4.位移与宏观热化学参数有一定联系
聚合物表面与界面技术.1
第1章聚合物表面的表征物体的表面是物质存在的一种客观形式,固体从体相延伸到表面,最终在表面形成原子及其电子分布的终端,从而导致表面具有体相所不具备的新的特点和新的特征。
同时也破坏了物体的连续性,因此,研究物体的表面比研究物体的体相有更大的难度。
在表面分析中,由于表面层的光学干涉、表面缺陷、粒度大小等表面变化为微观变化,实测结果往往与常规观察的判断有很大的区别。
表面分析实际上是物质的近表面区域的分析(表面分析、薄膜分析和体相分析)。
聚合物因自身的特点,其表面的特性在许多技术中都是非常重要的。
就聚合物商品的最终用途而言,许多情况下表面性质是关键,其中包括黏结性能、电性能、光学性能和生物体的相容性,以及透气性、化学反映能力等。
这些性质的优劣将取决于聚合物表面具有的物理和化学结构。
而理解表面特性就需要对聚合物的表面从成分和结构上进行表征,对聚合物进行改性及加入添加剂以满足所需的要求同样需要对聚合物表面进行分析。
聚合物表面分析研究的范围很广,主要包括:①表面的组成和表面状态的研究,即对表面上的元素定性、定量分析、元素存在的价态及化学键的研究;②表面电子结构和几何结构的研究;③聚合物的黏性、改性、老化、接枝等的性能和结构方面的信息。
现在应用于聚合物表面分析的技术有很多,基于一个时期以来谱仪的开发,仪器性能及谱图阐释方面的诸多进展,许多表面表征方法趋于成熟。
本章将分别介绍红外光谱、X射线能谱、二次质子离谱、扫描电镜显微镜、透射电子显微镜、原子力显微镜等技术在聚合物表面表征方面的应用。
1.1 红外光谱1.1.1 红外光谱基本原理红外光谱简称IR。
通过红外光照射到物质分子只能激发分子内原子核之间的振动和转动能级的跃迁,因此红外光谱是通过测定这两种能级跃迁的信息来研究分子结构。
在红外光谱中,以波长或波数为横坐标,以强度或其他随波长变化的性质为纵坐标。
红外辐射光的波数可分为近红外区(10000—4000cm-1)、中红外区(4000—400cm-1)和远红外区(400—10 cm-1)。
XPS仪器介绍分析 第二部分
5.1 样品的制备 3. 挥发性材料
• 对于含有挥发性物质的样品,在样品 进入真空系统前必须清除掉挥发性物 质。 一般可以通过对样品加热, 抽真空, 或用溶剂清洗等方法。 处理样品时,应该保证样品中的成份 不发生化学变化。
5.1 样品的制备 4. 污染样品
• 对于表面有油等有机物污染的样品,在进入真 空系统前必须用油溶性溶剂如环己烷、丙酮等 清洗掉样品表面的油污。最后再用乙醇清洗掉 有机溶剂, • 对于无机污染物,可以采用表面打磨以及离子 束溅射的方法来清洁样品。 • 为了保证样品表面不被氧化,一般采用自然干 燥。
5.1 样品的制备 5. 带有磁性的材料
• 由于光电子带负电荷,在微弱的磁场作用下,也可以发 生偏转。当样品具有磁性时,由样品表面出射的光电子 就会在磁场的作用下偏离接收角,最后不能到达分析器, 因此,得不到正确的XPS谱。
• 此外,当样品的磁性很强时,还有可能使分析器头及样 品架磁化的危险,因此,绝对禁止带有磁性的样品进入 分析室。
依据化学位移,获得各种终态效应以及价电子能带结构信息。
1. 光电子谱线化学位移(Photoelectron line chemical shifts and separations).
除惰性气体元素与少数位移较小的元素外,大部分元素的单 质、态氧化态与还原态之间都有明显的化学位移。 与用核磁共振分析非等效C和H一样,XPS光电子线的 位移还非常普遍地用来区别分子中非等效位置的原子。在有 机化合物的结构分析上,XPS比NMR更优越的是能分析周 期表中除H 、He以外的元素。 内层电子结合能的化学位移反映了原子上电荷密度的变 化,有机分子中各原子的电荷密度受有机反应历程中各种效 应的影响,因而利用内层电子的光电子线位移可以研究有机 反应中的取代效应、配位效应、相邻基团效应、共扼效应、 混合价效应和屏蔽效应等的影响。有机分子的基团位移法更 直接地根据化学位移给出分子结构。
XPS数据处理步骤_北京科技大学
X射线光电子能谱数据处理北京科技大学冶金生态楼109冯婷2011.3元素组成鉴别元素定量分析3仪器型号及主要参数12元素化学态分析4仪器型号及主要参数1仪器型号及参数X射线光电子能谱仪型号:AXIS ULTRA DLD(岛津集团Kratos公司生产)X射线源:单色化Al靶,Al Kα hυ=1486.6eV样品分析区域:700µm×300µm信息采样深度:无机材料<5nm,有机材料<10nmX射线工作功率:一般为150WContent2元素组成鉴别操作步骤:1.使用Excel打开原始数据。
将表格中数据向下拉,依次为宽谱(wide)及各个元素的窄扫谱图数据。
2.选取所要分析元素图谱的数据区域(如,wide下面的数据)3.将数据拷入Origin软件,以Binding Energy(BE)作为横坐标,Intensity(I)作为纵坐标作图,得到宽谱。
4.不同元素对应有唯一的结合能数值(BE),可与X射线光电子标准谱图进行比对(NIST网址:/xps/selEnergyType.aspx )5.首先鉴别总是存在的元素谱线,如C、O的谱线6.鉴别样品中主要元素的强谱线和有关的次强谱线7.鉴别剩余的弱谱线假设它们是未知元素的最强谱线X YContent3元素定量分析采用元素灵敏度因子法:对清洁(无污染层)均匀样品表面,有I=n·F·A·δ·λ·β(θ) ·T·D 其中,I—所检测光电子强度,即峰强,可用峰的积分面积得到n—样品中待测元素原子浓度令S=F·A ·δ·λ·β(θ) ·T·D定义为原子灵敏度因子RSF因此,对某一样品中两个元素i和j,其原子浓度比为:n i/n j=(I i/S i)/(I j/S j)操作步骤:1.打开原始数据后,以Binding Energy(BE)作为横坐标,以Intensity列/Transmission Value列得到的有效强度I’作为纵坐标,在Origin软件中作图。
JYT017—1996元素分析仪方法通则
项
目
技术指标
热导检测器炉温温度精度 整机稳安性:系统空白值差值
空白分析值差值 灵敏度因子 K 值差值 分析准确度
±0.1℃ ≤40μV ≤50μV 符合仪器操作规程的规定
≤0.3ω×102(C、H、N);≤0.5ω×102(O、S)
6 样品
样品应是不含吸附水分的均匀固体微粒或液体。挥发性样品用低熔点合金容器密封称 量。腐蚀性液体用低熔点玻璃毛细管密封称量,氧化时应有防爆措施。
7 分析步骤
7.1 开机
按仪器操作规程开机。检查整机操作条件及电子天平的性能。让整机逐步达到样品测定
的条件。
7.2 仪器校正
7.2.1 系统空白 按样品测定程序,连续测定系统空白值两次以上,直到其差值达到测定程序,运行一次标准样品测定,接着测定空白分析值两次以上,
4 试剂和材料
4.1 标准物质:
苯甲酸 benzoic acid
有机元素分析标
准
乙酰苯胺 acetanilide
有机元素分析标
准
环己酮-2,4-二硝基苯腙
cyclohexanone-2,4-dinitro-phenylhydrazone
有机元素分析
标准
氯化S-苄硫脲 S-benzylthiuronium chloride
MV_RR_CNJ_0017 元素分析仪方法通则
1. 元素分析仪方法通则的说明
编号 名称
归口单位 起草单位 主要起草人 批准日期 实施日期 替代规程号 适用范围
主要技术要求
是否分级 检定周期(年) 附录数目 出版单位 检定用标准物质
JY/T 017—1996 (中文) 元素分析仪方法通则 (英文) General rules for elemental analyzer
XPS在催化剂研究中的应用
XPS在催化剂研究中的应用摘要 (1)Abstract (1)1引言 (2)2 XPS的基本原理 (2)3 XPS应用基础 (3)4 X射线光电子能谱在催化剂研究中的应用 (5)5 展望 (11)6结论 (11)参考文献 (12)致谢 ........................................................................................ 错误!未定义书签。
摘要X射线光电子能谱(XPS)是一种能够测定材料表面中元素的构成、实验式,以及其中所含元素化学态的表面化学分析技术。
它的灵敏性,非结构破坏性测试能力和可获得化学态信息的能力,使其成为表面分析的极有力工具。
本文简介XPS的原理并举出一些XPS在催化剂表征技术中的应用的实例。
关键词: XPS;催化剂;表面分析;AbstractX-ray Photoelectron Spectroscopy (XPS) is one of tile common techniques on surface analysis, which can determine the elements of the materials and also can give the information of the elements chemical states. Its sensitive,non-destructive testing capability and structural chemical state information available capacity,making it an extremely powerful tool for surface analysis. This article introduces the principle of XPS and analyses its application in catalyst characterization techniques.Keywords: XPS;catalyst;Surface analysis1引言X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。
Avantage 数据处理方法
Sn
Ta Te Tl V W Y Zn Zr
285.2
284.8 284.8 285.4 285.1 285.0 286.7 285.8 285.9
284.8
284.6 284.2 285.2 285.2 285.1 286.7 284.9 285.4
0.4
0.2 0.6 0.2 -0.1 -0.1 ±0.0 0.9 0.5 [FO] [FO] [FO]
其中
x = log10(KE/PE), KE为电子动能,PE为通过能(Pass Energy)
y = log10[Peak Area/(PE*XSF)]
惰性气体外标:向样品注入Ar作外标物有良好 的效果。
Ar具有极好的化学稳定性,适合于Ar离子溅射后和 深度剖面分析,且操作简便易行。
荷电校正方法
內标法:利用样品材料中已知状态主成分元 素的结合能值作为参考值进行荷电校准。
碳內标:含碳材料
石墨:284.5 eV Hydrocarbon(芳香) :284.6 eV Hydrocarbon(脂肪) :285.0 eV
Avantage: 数据处理方法
2014X射线光电子能谱冬季学苑
麻茂生
主要内容(Outline)
谱图的一般处理 定量分析方法 谱峰拟合方法 深度剖析数据处理方法
一、谱图的一般处理
数据平滑:Savitzky-Golay, 高斯或傅立叶 本底去除:线性, Shirley, Tougaard,Smart 微分与积分 谱图比较/覆盖 (Light Box Compare) Spike Edit 能量去卷积(Deconvolution) 校正荷电位移
衬底参考
涉及导电衬底上的薄膜研究工作,常以导电衬底元素 的结合能作为绝缘覆盖层材料的参考。
灵敏度因子表
PD
F-
XC
h a n g e Vi e
w
N
w
.d o
c u -tr a c k
.c
附:单色器Al靶测定时元素灵敏度因子(RSF)表
原子序数 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 元素 Li 1s B 1s N 1s F 1s Na 1s Al 2p P 2p Cl 2p K 2p Sc 2p V 2p Mn 2p Co 2p Cu 2p Ga 2p As 3d 灵敏度因子RSF 0.025 0.159 0.477 1.000 1.685 0.193 0.486 0.891 1.466 1.875 2.116 2.659 3.590 5.321 5.581 0.677 原子序数 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 元素 Be 1s C 1s O 1s Ne 1s Mg 1s Si 2p S 2p Ar 2p Ca 2p Ti 2p Cr 2p Fe 2p Ni 2p Zn 2p Ge 3d Se 3d 灵敏度因子RSF 0.074 0.278 0.780 1.340 2.260 0.328 0.668 1.155 1.833 2.001 2.427 2.957 4.044 5.589 0.536 0.853
灵敏度因子RSF 2.463 2.451 2.639 3.523 4.461 5.575 6.915 8.329 11.013 13.109 15.020 12.725 18.051 1.000
o
m
w
w
w
w
y
bu
to
k
lic
C
m
电子能谱分析(1)
出功 sp代替试样逸出功s:
试样谱仪未连接 试样谱仪连接
电子能谱分析(1)
EKsp EK
EK + s = EKsp+ sp
EKsp
仪器的sp 是给定不变的, 可通过实测EKsp来求得试样的结合能Eb.
这些复杂现象的出现同体系的电子结构密切相关,它们在XPS谱图上 表现为除正常光电子主峰外,还会出现若干伴峰,使得谱图变得复杂。 解释谱图并由此判断各种可能的相互作用,获得体系的结构信息,这是 当前推动XPS发展的重要方面,也是实用光电子谱经常遇到的问题。
电子能谱分析(1)
1.1.8 非导电样品的荷电校正
因此,在实际应用中,人们要对材料和器件工作表面的宏 观性能做出正确的评价与理解,首先必须对各种条件下表面 的化学组成和化学状态进行定性和定量的测定和分析。
电子能谱分析(1)
• 固体表面状态,包括表面成分、结构、配位、化学键性、 能带、电子态等等,对材料的许多物性以及相关的应用和 理论都有非常重要的意义。
电子能谱分析(1)
2020/11/28
电子能谱分析(1)
固体表面的化学组成和体内不完全相同,甚至完全不同, 造成这种差别的原因主要有:
★ 表面原子(或离子)化学键部分断裂(悬挂键), 能量状态与体内不同;
★ 外来物在表面的吸附、污染; ★ 表面的氧化、腐蚀和摩擦; ★ 人为加工的表面,如离子注入、钝化和各种涂层。
则可将其激发电离为二次电子,并以一定动能 EK(kinetic energy, EK) 逸出,可见信息产生是基于爱因斯坦光电效应。
电子能谱分析(1)
1.1.2 信息能量
Avantage 数据处理方法
[FO]
元素 Nb Ni Pb Pd Re Rh Sb Sc Se Si Sn Ta Te Tl V W Y Zn Zr
C (1s) BE of Hydrocarbons
自然氧化物 离子刻蚀金属
285.1
284.9
285.4
284.9
285.6
285.2
285.3
284.2
284.5
285.0
284.6
Savitzky-Golay,其次可采用高斯函数。 当平滑点数取谱图中可分辨的最窄峰的FWHM
所含的数据点数时,Savitzky-Golay函数效 果最佳,失真低。
2、本底去除
在XPS谱中,通常为较小的谱峰叠加在大的 本底之上。如果要检查谱峰的细节,在某些 情况下就需要进行本底去除(如定量时测量 谱峰强度时)。
最简单的本底去除方法是在用户感兴趣的谱 峰两端指定点间作直线—线性。
线性本底通常误差较大,是非物理的。 线性本底的改进涉及到的物理真实逼近—
Shirly本底。
线性本底
非线性本底 - Shirley Method
使用最普遍的非线性背景扣除方法
该方法认为能量损失是常数, 谱线上任 一点由非弹性散射电子引起的背景, 只 来源于更高动能电子的散射, 正比于更 高动能的积分光电子强度(面积)
原子百分数的计算
归一化面积(NA)由谱峰面积(IA)来计算
NA = IA /NF
因而样品中任一元素的原子浓度由下式算出:
CA = (At%)A = (NA/(NA + NB + NC..)) X 100 或
CA
N A 100 Ni
1
i
13
2.1、灵敏度因子
Avantage_-_定量分析与数据处理方法
−z
λ ( E ) cos θ
dz ⋅
其中: Iij为i元素j峰的面积,K为仪器常数,T(E)为分析器的传输函数, Lij(γ)是i元素j轨道的角不对称因子,σij为表面i元素j轨道的的光电离截 面,ni(z)为表面i元素在表面下距离z处的原子浓度,λ(E)为光电子的非弹 性平均自由程,θ是测量的光电子相对于表面法线的夹角。 此外,样品 表面粗糙度,检测面积,电子探测器效率等。
i
3
3、定量分析方法步骤
z
z
z
z
z
扣除背景 z 线性, Shirley, Smart(Tougaard) 测量峰面积 z 必要时进行峰拟合 应用传输函数 z 随不同的仪器而变 应用灵敏度因子 z 随不同元素(及厂商)而变 计算原子浓度
定义峰-本底类型及误差
z
z
z z
定义峰:为进行定量分析而计算峰面 积,就要确定峰的起点和终点,此两 点间的本底将被扣除。定义峰的起点 和终点位置对于定量计算的精确性是 重要的。 在实际加峰到谱峰表(Peak Table)中 之前,必须要考虑选取不同的本底类 型及其可能带来的误差。 有四种本底扣除的方法可选:Linear, Shirley,Tougaard和Smart。 应根据谱峰的实际峰型和情况来正确 选取本底类型
[例] PET的定量分析
7.00E+04 C1s Scan
C1s-C 6 C-O 2 O=C-O 2
6.00E+04 5.00E+04 Counts / s 4.00E+04 3.00E+04 2.00E+04 1.00E+04 0.00E+00 294 292 290 288 286 284 282 280 Binding Energy (eV)
X射线光电子能谱
(2) 弛豫过程——二次过程(secondary process)
由电离过程产生的终态离子(A+*)是不稳定的, 处于高激发态它会自发发生弛豫(退激发)而变为稳 定状态。这一弛豫过程分辐射弛豫和非辐射弛豫两 种。 (i) X荧光过程(辐射弛豫) ,处于高能级上的电子向电 离产生的内层电子空穴跃迁,将多余能量以光子形 式放出。 A+*→A++hν′ (特征射线) (ii) 俄歇过程(非辐射弛豫) A+* → A++* + e− (分立能量—Auger) 俄歇电子能量并不依赖于激发源的能量和类型
XPS谱的一般特性
在XPS谱图中可观察到几种类型的谱峰一部
分是基本的并总可观察到另一些依赖于样品 的物理和化学性质 光电发射过程常被设想为三步(三步模型) (I). 吸收和电离(初态效应) (II). 原子响应和光电子产生(终态效应) (III). 电子向表面输运并逸出(外禀损失) 所有这些过程都对XPS谱的结构有贡献
ii. 震激谱线(shake-up lines). 震激特征在与顺磁物质关联的过渡金属氧 化物中是十分普遍的。有机物中碳的震激峰 与芳香或不饱和结构相关C 1s(π→π*) = 291.7 eV。 iii. 多重分裂(multiplet splitting). 偶尔会看到s轨道的分裂。与价壳层中 存在未配对电子相关。在存在开壳层的情形 下,发生在来自于闭壳层的光电发射之中。
XPS定量分析的关键是要把所观测到的 信号强度转变成元素的含量,即将谱峰面积 转变成相应元素的含量,这里我们定义谱峰 下所属面积为谱线强度。
1. 一级原理模型
一级原理模型(First Principle Model)是从 光电子发射的“三步模型”出发,将所观测到 的谱线强度和激发源,待测样品的性质以 及谱仪的检测条件等统一起来考虑形成一 定的物理模型。 由于模型涉及较多的因素,目前还缺乏 必要精度的实验数据,因此一级原理模型 计算还未得到真正应用。
定义为原子灵敏度因子课件
2023
REPORTING
THANKS
感谢观看
在高温下,原子间的相互作用增强,导致原子灵敏度因子增大。因此,在高温条 件下,原子灵敏度因子通常较高。
压力的影响
压力对原子灵敏度因子的影响主要体现在原子间的碰撞频率 和碰撞能量上。随着压力的增加,原子间的碰撞频率增加, 碰撞能量增大,导致原子灵敏度因子增大。
在高压力条件下,原子间的相互作用更加频繁和剧烈,使得 原子更容易被检测到,从而提高了原子灵敏度因子。
在环境科学中的应用
总结词
评估污染物影响
详细描述
原子灵敏度因子在环境科学中用于评估污染物对环境和生态系统的影响,通过对污染物在环中迁移、转化和降 解过程的模拟和分析,可以预测其对生态系统和人体健康的潜在危害。
2023
PART 03
原子灵敏度因子的影响因 素
REPORTING
温度的影响
温度对原子灵敏度因子的影响主要体现在原子扩散和热激活过程上。随着温度的 升高,原子扩散速度加快,原子从基态跃迁到激发态的机率增大,从而提高了原 子灵敏度因子。
2023
定义为原子灵敏度因 子课件
REPORTING
• 原子灵敏度因子的应用 • 原子灵敏度因子的影响因素 • 原子灵敏度因子的实验测定 • 原子灵敏度因子的研究展望
2023
PART 01
原子灵敏度因子定 义
REPORTING
原子灵敏度因子的概念
原子灵敏度因子是描述原子在特定物理过程中对外部刺激的响应程度的一个物理量。 它反映了原子在受到外部作用力或电场等物理场的影响时,其状态和行为的变化情况。
原子灵敏度因子的计算方法
原子吸收分光光度计各项参数名词解释
原子吸收分光光度计各项参数名词解释原子吸收分光光度计各项参数名词解释基态:自由原子、离子或分子内能最低的能级状态。
通常将此能级的能量定位零。
激发态:在外界能量的作用下,原子外层的一个或几个电子可转移到离核较远的轨道上,这种新的原子运动状态叫激发态(一般指最低激发态)。
能级:具有特定内能的自由原子、离子或分子的量子状态。
该能量常用电子伏特表示。
电子跃迁:一个原子、离子或分子中的一个电子从能级E1到另一个能级E2的过程。
共振能:原子通过吸收一个光子从基态转变为共振能级时所需的能量。
电离能:从一个基态原子中移去一个电子所需的最小能量。
激发能:原子由基态转变到高于基态的给定能级所需的能量。
共振线(分析线):对应与共振能级和基态间跃迁的谱线。
当电子从基态跃迁到一激发态时,于所吸收能量对应的光谱线叫做共振吸收线。
而由一激发态跃迁回基态时,于所释放能量对应的光谱线叫做共振发射线。
特征谱线:用原子发射、原子吸收或原子荧光光谱法测定气相中的待测元素浓度时所用的谱线。
包括共振线和其他谱线。
原子吸收光谱:处于基态或者能量较低的激发态的原子,受到光辐射时仅吸收其特征波长的辐射而跃迁至较高能级。
把原子所吸收的特征谱线按波长和频率的次序进行排列的谱线组。
原子吸收光谱法:基于测量蒸汽中原子对特征电磁辐射的吸收测定化学元素的方法。
原子化作用:将含有待测元素的化合物转变成原子蒸汽。
原子蒸汽:含有待测元素自由原子的蒸汽火焰:是一种状态稳定、连续流动的热气体混合物。
其热量来自燃料和氧化剂之间强烈的、放热的、不可逆的化学反应。
通常由一燃烧区、第二燃烧区和椎间区组成。
燃料:为原子化作用和激发作用提供所需能量而采用的一种能与氧化剂反应的还原剂。
放电灯:此种灯充有能被高电压下通过的电流激发的蒸汽或气体,并产生所含元素的特征线。
空心阴极灯:属于放电灯的一种,其阴极是含有一种或多种元素的空心体。
操作时能使阴极溅射,产生的元素蒸汽发射出特别窄的特征线。
第七章X射线光电子能谱
使用单色器只有被分析的区域受到X射线的辐射, 可以实现多样品分析,也可以在同一稳定性差的 样品上进行多点分析。
电子能量分析器
(1)半球型电子能量分析器 改变两球面间的电位差,不 同能量的电子依次通过分析 器;分辨率高;
(2)筒镜式电子能量分析器 (CMA)
化学位移的影响因素
定性分析 对所研究的样品的表面化学分析的第一步是识别 所含元素。通常是采集全谱或宽谱扫描。范围一 般选择0-1200eV。
周期表中每个元素的电子层结构是不同的,所以 每个元素可以用它的电子结合能来表征。对于同 一个能级,不同元素具有不同的电子结合能,根 据光电子谱峰的位置,就能鉴定样品中某种元素 的存在。
例:用变角X光电子能谱技术对非均相高分 子材料进行非损伤的层结构分析
软段结构 —O—CH2—CH2—CH2—CH2—n 硬段结构—HN—CO—NH— —CH2—
—NH—CO—NH—CH2—CH2 —n 由于N1s,O1s峰在动能1000eV左右,所以当射 线垂直人射时,d≈3≈3 EK ≈10nm。改变入射 角θ,可以得到不同深度的信息。
同轴圆筒,外筒接负压、内 筒接地,两筒之间形成静电 场; 灵敏度高、分辨率低;二级 串联;
对半球型分析器而言:
Ek
eVR外 R内 R外 2 R内2
其分辨率为:
E
W
2
Ek R 2
E 光电子能谱峰的半高宽,即绝对分辨率 W 狭缝宽度 R 分析器中心线半径
狭缝入口角
检测器
产生的光电流:10-3~10-9mA; 电子倍增器作为检测器; 单通道电子倍增器;多通道电子倍增器;
应用范围
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
式中Sij=KT(E)Lij()ij(E)cos T(E)ij(E) 定义为 原子灵敏度因子,它可用适当的方法加以计算,一般通 过实验测定。可取SF1s=1作为标准来确定其它元素的相 对灵敏度因子。 ni ∝ Iij / Sij =Ni
ni Iij {K T E Lij ( ) ij ( E)cos} Iij Sij
原子百分数的计算
归一化面积(NA)由谱峰面积(IA)来计算
NA = IA / Si 因而样品中任一元素的相对原子浓度由下式算出:
CA NA 100 Ni
i
1
1
3
7.2.2 灵敏度因子
灵敏度因子(归一化因子)包括下面几项:
X射线电离截面项 (特定跃迁将产生多少光电子) 分析深度项 (并入值中)
1
1
3
Scofield vs. Wagner?
两数据库都在用 – 但对同一套数据可能有不同结果!! 它们必须以稍有不同的方式来使用
Scofield – 理论灵敏度因子数据库, 基于 C1s = 1 为此我们需要增加一项来说明分析的深度 (即 并通常 取 KE0.6)
Wagner -实验灵敏度因子数据库, 基于 F1s = 1 为此我们需要增加一项来修正不同(仪器)类型分析器 产生的因子 (A CMA rather than our HSA). 这可通过乘 以峰动能来实现。(项已包含在里面)
7.7.1、第一性原理模型(First Principle Model)
从光电子发射的“三步模型”出发,将所观测到的谱线 强度和激发源,待测样品的性质以及谱仪的检测条件等 统一起来考虑,形成一定的物理模型。 由于模型涉及较多的因素,目前还缺乏必要精度的实验 数据,因此一级原理模型计算还未得到真正应用。
角不对称因子
元素轨道角不对称因子:
LA () = 1 - bA (3cos2 - 1) / 4
where: = source-detector angle b = constant for a given sub-shell and X-ray photon
= 54.7º ‘魔角’
LA = 1
一般定量分析方法
一般实用XPS定量方法可以概括为标样法,元素 灵敏度因子法和第一性原理方法。
标样法需制备一定数量与被测样品相近的标准样 品作为参考,同时进行比较测量。且标样的表面 结构和组成难于长期稳定和重复使用,故一般实 验研究均不采用。 目前XPS定量分析常采用元素灵敏度因子法。该 方法利用特定元素谱线强度作参考标准,测得其 它元素相对谱线强度,求得各元素的相对含量。
第7章、定量分析方法
1.
2.
3. 4.
5.
一般定量分析方法 元素灵敏度因子法 定量分析方法步骤 定量精确度与误差来源 定量分析例子
7.1、一般定量分析方法
定量可分成两类:绝对定量和相对定量。绝对定量 一般需要检定的标准样品,通常并不常用。相对定 量更为常用,并包括一批多个样品间的比较。 在表面分析研究中我们不仅需要定性地确定试样的 元素种类及其化学状态,而且希望能测得它们的含 量。对谱线强度作出定量解释。 XPS由于其对均相固体材料容易得到极好的定量精 确性,常用于获取实验式。 XPS定量分析的关键是要把所观测到的信号强度转 变成元素的含量,即将谱峰面积转变成相应元素的 含量。这里我们定义谱峰下所属面积为谱线强度。
7.2.1、元素灵敏度因子法原理
若某一固体试样中两个元素i和j,如已知它们的灵 敏度因子Si和Sj,并测出各自特定谱线强度Ii和Ij, 则它们的原子浓度之比为: 一般情况下:
ni I S i i nj I j Sj
Ci I i Si I j Sj
j
H和He的原子灵敏度因子非常小——在传统XPS中 不可测。
Elemental Symbol
电离截面计算值(Scofield)
U的相关结合能和电离截面
灵敏度因子数据库
一般使用下列两个数据库: (客户也可产生其自己的数据库, 大多数不必) Scofield – 理论灵敏度因子数据库, 基于 C1s = 1 (即一定量的光子作用到样品上后所产生光电子数目的 一个相对计算值) Wagner – 实验灵敏度因子数据库, 基于 F1s = 1 (即在某种谱仪上真实测量大量的已知化合物并计算出 相对灵敏度因子)
7.2、元素灵敏度因子法
原子灵敏度因子--由标样得出的经验校准常数。 该方法利用特定元素谱线强度作参考标准,测得其它元 素相对谱线强度,求得各元素的相对含量。 元素灵敏度因子法是一种半经验性的相对定量方法。 对于单相均匀无限厚固体表面: Iij K T E Lij ( ) ij ni ( E)cos 因此,
I ij K T E Lij ( ) ij ni ( z ) e
z
( E )cos
dz
其中: Iij为i元素j峰的面积,K为仪器常数,T(E)为分析器的传输函数,Lij()是i 元素j轨道的角不对称因子,ij为表面i元素j轨道的的光电离截面,ni(z)为表面i 元素在表面下距离z处的原子浓度,(E)为光电子的非弹性平均自由程,θ是测 量的光电子相对于表面法线的夹角。
传输函数项 (谱仪对特定动能电子检测的能力)
不同仪器得出的灵敏度因子之间的归一化 (比如 CMA和HAS之间 )
1
1
3
元素的相对灵敏度因子
12
10
3d
Relative Sensitivity
8
4f
6
2p
4 2
1s
4d
0 Li B N F Na Al P Cl K Sc V M Co Cu G As Br Rb Y Nb Tc Rh Ag In Sb I Cs La Pr P Eu Tb Ho T Lu Ta Re Ir Au Tl Bi Be C O Ne M Si S Ar Ca Ti Cr Fe Ni Zn G Se Kr Sr Zr M Ru Pd Cd Sn Te Xe Ba Ce Nd S G Dy Er Yb Hf W Os Pt Hg Pb