2010年广州执信中学初一上学期数学第三章单元复习资料

合集下载

七年级上册数学第三张知识梳理

七年级上册数学第三张知识梳理

七年级上册数学第三章知识梳理一、整数的认识与加减运算1. 整数的概念整数是指包括正整数、负整数和零在内的数集合。

正整数、负整数之间存在大小关系,绝对值越大,数值越大。

2. 整数的加法整数的加法遵循“同号相加取共同符号,异号相加取绝对值大的符号”的规律。

3. 整数的减法整数的减法可以理解为加上被减数的相反数,即a-b=a+(-b)。

若减数与被减数符号相同,则相加;符号相反则取绝对值大的符号。

4. 整数加减混合运算在整数的加减混合运算中,先按照运算符号进行加减,再计算绝对值大小,最后根据计算结果确定符号。

二、分数的认识与四则运算1. 分数的概念分数是指一个整数与另一个整数的比值,通常写成a/b的形式,其中a为分子,b为分母。

2. 分数的加法与减法分数的加法减法需要先找到公共分母,然后按照公共分母进行加减运算。

3. 分数的乘法分数的乘法直接将分子相乘,分母相乘。

4. 分数的除法分数的除法可以理解为乘以倒数,即a/b÷c/d=a/b×d/c。

三、代数式的认识与加减乘除1. 代数式的概念代数式是用字母和数字以及加减乘除号等运算符号表示的数学式子。

2. 代数式的加减法代数式的加减法需要按照相同的字母项进行合并,然后进行加减运算。

3. 代数式的乘法代数式的乘法需要按照分配律展开式子,然后合并同类项,最后进行乘法运算。

4. 代数式的除法代数式的除法可以理解为乘以倒数,即a/b÷c/d=a/b×d/c。

四、方程与方程组1. 方程的概念方程是含有未知数的等式,通常用字母表示未知数。

2. 一元一次方程一元一次方程是指只含有一个未知数,并且未知数的最高次数为1的方程。

3. 解一元一次方程的方法解一元一次方程的常见方法有等式两边同乘或除相同的数,或者两边同时加减同一个数。

4. 一元一次方程组一元一次方程组是指含有两个未知数的线性方程组,解方程组的方法可以是代入法、消元法、加减法等。

初一数学上册第三章知识点

初一数学上册第三章知识点

第三章整式及其加减一、字母表示用字母表示数的优点:用字母表示数解决了特殊与一般的关系,更具有一般性和简明性,用字母表示问题中的数量关系与用数来表示数量关系,在本质上是 相同的,首先要弄清题意,,并根据题目中所提供的条件发现其中所蕴含的数量关系和规律,然后利用字母列出式子,将其表达出来.注意:(1),同一题问题中,相同字母必须表示相同的量,不同的量必须用不同的字母表示,(2)用字母表示实际问题中的某个数量时,字母的取值必须使式子有意义且符合实际情况.2.字母表示的公式:加法交换律 a b b a +=+加法结合律 )()(c b a c b a ++=++乘法交换律 ba ab =乘法结合律 )()(bc a c ab =乘法对加法的分配律 ac ab c b a +=+)( 变形公式 ()ab ac a b c +=+二、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

三、整式概念:数与字母的乘积这样的代数式叫做单项式《如10/9X, 0.8(1+15%)a 》 注意:(1)单项式中数与字母之间都是乘积关系,凡是字母出现在分母中的试子一定不是单项式。

如1/x 不是单项式。

(2)单项式中不含加减法运算,如(2+x)/2,2a-3都不是单项式。

(3)π是常数,在单项式中相当于数字因数(4)定义中的“数”可以是小数,亦可以是分数,整数。

单项式的系数:单项式中的数字因数叫做单项式的系数。

(1) 单项式的系数包括它前面的符号。

(2)单项式的系数是带分数的时,通常写成假分数的。

单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。

多项式:几个单项式的和叫做多项式。

多项式的项:在多项式中,每个单项式叫做多项式的项。

多项式的次数:在一个多项式中,次数最高的项的次数叫做这个多项式的次数。

多项式的项数:多项式中各单项式的个数叫做多项式的项数。

注意:(1)多项式中各项单项式前的“+”或“—”是这个单项式的性质符号,多项式中的“和”指省略加号的代数和,故确定多项式的项时,不要忽略它的符号。

七年级数学上册第三单元的必背知识点

七年级数学上册第三单元的必背知识点

七年级数学上册第三单元的必背知识点一、代数式1. 定义:用基本运算符号 (如加、减、乘、除、乘方等)把数和字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

2. 单项式:表示数与字母乘积的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

系数:单项式中的数字因数叫做单项式的系数。

次数:单项式中所有字母的指数和叫做单项式的次数。

如果某个字母没有指数,则默认其指数为1;常数的次数为0。

3. 多项式:几个单项式的和叫做多项式。

项:多项式中的每个单项式叫做多项式的项。

次数:多项式里次数最高项的次数,叫做这个多项式的次数。

常数项:不含字母的项叫做常数项,其次数为0。

4. 整式:单项式和多项式统称为整式。

注意,分母上含有字母的式子不是整式。

5. 代数式的书写规范:数与字母、字母与字母相乘时,乘号可以省略不写或用“·”表示,并把数字放到字母前。

出现除式时,用分数表示。

带分数与字母相乘时,带分数要化成假分数。

若运算结果为加减的式子,当后面有单位时,要用括号把整个式子括起来。

二、整式的加减1. 同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

2. 合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

合并同类项的法则是同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。

3. 整式的加减运算步骤:如果有括号,先去括号(注意去括号法则)。

识别并合并同类项。

写出合并后的结果。

三、运算律和计算公式1. 加法交换律和结合律:交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)2. 乘法交换律和结合律:交换律:ab=ba结合律:(ab)c=a(bc)3. 乘法对加法的分配律:a(b+c)=ac+bc4. 基本计算公式:长方形周长:C=2(a+b);面积:S=ab正方形周长:C=4a;面积:S=a^2平行四边形面积:S=ah三角形面积:S=(1/2)ah梯形面积:S=(1/2)(a+b)h圆形周长:C=πd(或2πr);面积:S=πr^2四、其他注意事项在进行整式的加减运算时,要注意去括号和合并同类项的正确性。

七年级上册第三章知识点

七年级上册第三章知识点

七年级上册第三章知识点七年级上册第三章主要学习了数与式的基本概念和运算,包括整数的加减乘除运算、加法、减法、乘法、除法的运算规则、等式与不等式的比较、数式与方程式的概念、算式与运算法则等知识点。

下面将逐一介绍这些知识点。

1.整数的加减乘除运算:整数包括正整数、负整数和零。

整数的加法、减法、乘法和除法运算在数轴上是很直观的,正数向右移动,负数向左移动。

加法和减法的运算规则类似,符号相同则取同号,符号不同则取绝对值大的数的符号。

乘法的运算结果规则与正数乘积相同,符号相同则结果为正,符号不同则结果为负。

除法的运算结果规则是正数除以正数或负数除以负数结果为正,正数除以负数或负数除以正数结果为负。

2.加法、减法、乘法、除法的运算规则:加法满足交换律和结合律,减法满足反运算律。

乘法满足交换律和结合律,除法满足乘法的逆运算。

3.等式与不等式的比较:等式是指两个数或算式之间相等的关系,例如4 + 3 = 7。

不等式是指两个数或算式之间大小关系的表示,例如3 > 2。

在进行不等式比较时,需要注意不等式的方向。

4.数式与方程式的概念:数式是指含有数或数的运算符号的式子,例如3x + 4 = 10。

方程式是指含有一个或多个未知数的等式,例如2x - 5 = 7。

5.算式与运算法则:算式是用数或代数式表示与运算有关的式子,例如3 + 4、5 - 2、6 × 8、9 ÷ 3。

运算法则包括加法法则、减法法则、乘法法则和除法法则。

加法法则是指两个数相加的运算规则,减法法则是指两个数相减的运算规则,乘法法则是指两个数相乘的运算规则,除法法则是指一个数除以另一个数的运算规则。

以上就是七年级上册第三章的主要知识点。

掌握了这些知识点,学生可以进行整数的基本运算,理解等式与不等式的比较关系,解决简单的方程问题,以及进行算式的运算等。

这些知识点是数学学习的基础,为后续学习奠定了坚实的基础。

希望同学们能够加强练习,巩固掌握这些知识点,为接下来的学习打下良好的基础。

七年级上学期数学第三章 一元一次方程复习复习资料

七年级上学期数学第三章 一元一次方程复习复习资料

第三章 一元一次方程复习知识点1:方程、方程的解知识回顾: (1)含有未知数的等式,叫做方程。

(2)使方程两边相等的未知数的值叫做方程的解。

巩固练习:1.方程2x -1=3x+2的解为( ) A .x=1;B .x=﹣1;C .x=3;D .x=﹣3。

2.已知5是关于x 的方程3x -2a=7的解,则a 的值为 . 3.关于x 的方程2x -3m=-1解为x=-1,则m=___. 4.若x=2是方程mx+3=x -5的解,则m 的值为 .5.某同学解方程5x ﹣1=□x+3时,把□处数字看错得x=2,它把□处看成了( ) A .3; B .﹣9; C .8; D .﹣8。

6.方程2+3x=1与3a -(1+x)=0的解相同,则a= .知识点2:列方程 知识回顾:列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含未知数的等式——方程。

巩固练习:1.某中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天.设该中学库存x 套桌椅根据题意列方程是__.2.一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利28元,如果设这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是( )A .0.8(1+0.5)x=x+28;B .0.8(1+0.5)x=x -28;C .0.8(1+0.5x)=x -28;D .0.8(1+0.5x)=x+28。

3.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,设这个班有学生x 人,下列方程正确的是( )A .3x+20=4x -25;B .3x -25=4x+20;C .4x -3x=25-20;D .3x -20=4x+25。

4.甲乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米,甲让乙先跑5米,设x 秒后,甲可以追上乙,则下列方程不正确结果是( )A .7x=6.5x+5;B .7x -5=6.5;C .(7-6.5)x=5;D .6.5x=7x -5。

七年级上册数学第三章的知识梳理

七年级上册数学第三章的知识梳理

七年级上册数学第三章的知识梳理七年级上册数学第三章主要讲述了有理数的加法、减法、绝对值、数轴以及有理数的乘除法等内容。

下面对该章节的知识进行梳理,包括基本概念、性质和计算方法等。

一、有理数的加法和减法1.有理数的加法:-同号相加,绝对值相加,符号不变。

-异号相加,绝对值相减,符号由绝对值较大的数的符号决定。

2.有理数的减法:将减法问题转化为加法问题,即a-b=a+(-b)。

二、数轴和绝对值1.数轴:数轴是表示有理数的一条直线,在数轴上,正数在右边,负数在左边。

原点0表示0。

2.绝对值:-正数的绝对值等于它本身。

-负数的绝对值等于它的相反数。

- 0的绝对值等于0。

三、有理数的乘法和除法1.有理数的乘法:-同号相乘,积为正数。

-异号相乘,积为负数。

2.有理数的除法:-正数除以正数,商为正数。

-负数除以负数,商为正数。

-正数除以负数,商为负数。

-负数除以正数,商为负数。

- 0除以任何非零数,商为0。

四、加减法的综合运用可通过列竖式和解方程等方法解决加减数混合在一起的问题。

对于复杂情况,可以运用变形等技巧化简计算。

五、绝对值的综合运用在计算中,绝对值经常与加减法一起使用。

对于绝对值相关的题目,要多加练习以看到规律。

六、定理与证明在有理数的计算中,还包括一些定理的应用和证明,如有理数加法交换律、加法结合律、乘法交换律、乘法结合律等。

对于这些定理的理解和运用,有助于提高解题能力。

七、乘方与算术根在第三章的最后,还介绍了乘方的定义和性质,如a的n次方、零的n次方、一个负数的偶次方等。

同时,还引入了算术根的概念,并探讨了算术平方根和算术立方根的求解方法。

该章内容较为综合,需要注意掌握每个知识点的概念和性质,并进行相关的练习。

在实际的解题过程中,要善于灵活运用所学知识,通过对题目的分析和转化,选用合适的方法来解决问题。

此外,还需要注意理解和记忆数学定理及其证明,掌握基本的数学思想和方法,以便能够灵活运用。

初一上册数学第三章复习要点解方程的一般步骤

初一上册数学第三章复习要点解方程的一般步骤

初一上册数学第三章复习要点解方程的一般步骤初一上册数学第三章复习要点解方程的一般步骤知识点对朋友们的学习非常重要,大家一定要认真掌握,为大家整理了人教版初一上册数学第三章复习要点:解方程的一般步骤,让我们一起学习,一起进步吧!初一上册数学第三章复习要点解方程的一般步骤:1.去分母(方程两边同乘各分母的最小公倍数)2.去括号(按去括号法则和分配律)3.移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4.合并(把方程化成ax=b(a≠0)形式)5.系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=a(b)只要这样踏踏实实完成每天的计划和小目标,就可以自如地应对新学习,达到长远目标。

由为您提供的人教版初一上册数学第三章复习要点:解方程的一般步骤,祝您学习愉快!解方程,求方程的解的过程叫做解方程。

⒈含有未知数的等式叫方程,也可以说是含有未知数的等式是方程。

⒉使等式成立的'未知数的值,称为方程的解,或方程的根。

⒊解方程就是求出方程中所有未知数的值的过程。

⒋方程一定是等式,等式不一定是方程。

不含未知数的等式不是方程。

⒌验证:一般解方程之后,需要进行验证。

验证就是将解得的未知数的值代入原方程,看看方程两边是否相等。

如果相等,那么所求得的值就是方程的解。

⒍注意事项:写“解”字,等号对齐,检验。

⒎方程依靠等式各部分的关系,和加减乘除各部分的关系(加数+加数=和,和-其中一个加数=另一个加数,差+减数=被减数,被减数-减数=差,被减数-差=减数,因数×因数=积,积÷一个因数=另一个因数,被除数÷除数=商,被除数÷商=除数,商×除数=被除数) 小学数学解方程的步骤:一、利用等式的性质解方程。

因为方程是等式,所以等式具有的性质方程都具有。

1、方程的左右两边同时加上或减去同一个数,方程的解不变。

2、方程的左右两边同时乘同一个不为0的数,方程的解不变。

数学七年级上册第三章知识点归纳

数学七年级上册第三章知识点归纳

数学七年级上册第三章知识点归纳
数学七年级上册第三章知识点归纳如下:
1. 确定物体的位置:用有顺序的数字来表示物体位置的确定。

可以用一组有序实数来描述物体的位置。

2. 数对表示位置:在平面内确定位置有两个条件,一是基本顺序,二是两个方向。

在确定一个点的位置时,我们把它的横坐标和纵坐标结合起来。

一个有序数对可以简称为记为($x$,$y$),$x$为横坐标,$y$为纵坐标。

3. 坐标的方法:为了简便,常把横坐标相同的点连成一条直线,叫做横轴或$x$轴;把纵坐标相同的点连成一条直线,叫做纵轴或$y$轴。

对于平面内任一点,过它可以画一条水平直线与一条铅垂线,这样就可以用两个有序实数来确定一个点。

4. 平面直角坐标系内的点的坐标:了解在平面直角坐标系内($x$,$y$)两点间的距离公式:
距离=√[($x_2 - x_1$)^2+($y_2 - y_1$)^2]
5. 图形上的特殊点到点的距离:了解在直角三角形中,30度角所对的直角边等于斜边的一半。

同时了解点到线的距离也用类似的方式进行描述。

以上内容供参考,请咨询老师获取更准确的信息。

七年级上册数学第三单元知识点

七年级上册数学第三单元知识点

七年级上册数学第三单元知识点七年级上册数学第三单元通常涉及基础的代数概念、方程式和图形的初步认识。

以下是该单元的核心知识点概述,旨在提供一个清晰的学习框架。

# 知识点概述1. 代数表达式- 定义: 代数表达式是由数字、字母(代表未知数或变量)、和运算符(加、减、乘、除)组成的式子。

- 创建和简化: 学习如何创建基本的代数表达式,并通过合并同类项来简化它们。

- 变量: 变量是用来表示未知数的字母,如 x, y, z 等。

2. 一元一次方程- 定义: 一元一次方程是只含有一个未知数,且未知数的最高次数为一的方程。

- 解方程: 学习如何通过加、减、乘、除等运算来解一元一次方程。

- 方程的解: 理解方程的解即为使方程左右两边相等的未知数的值。

3. 图形的初步认识- 点、线、面: 介绍点、线和面的基本性质。

- 直线、射线和线段: 区分并定义直线、射线和线段。

- 角: 学习角的概念,包括直角、锐角和钝角。

- 平行线和相交线: 探讨平行线的性质和相交线形成的角关系。

4. 平面图形- 定义和分类: 介绍平面图形的基本概念和分类,如三角形、四边形、圆等。

- 图形的性质: 学习不同平面图形的性质,例如三角形的内角和定理。

- 面积计算: 掌握计算简单图形(如矩形、三角形)面积的方法。

5. 几何图形的变换- 平移: 理解图形的平移变换,并能执行平移操作。

- 旋转: 学习图形的旋转变换,包括旋转的角度和方向。

- 对称: 探讨轴对称和中心对称的概念及其在图形中的应用。

# 学习目标- 理解并能够创建和简化代数表达式。

- 掌握解一元一次方程的步骤和方法。

- 认识基本的平面图形及其性质。

- 能够进行图形的平移、旋转和对称变换。

- 应用所学知识解决实际问题。

# 教学建议- 通过实际例子引入新概念,帮助学生形成直观理解。

- 组织小组讨论和合作解题,提高学生的问题解决能力。

- 利用图形软件工具辅助教学,增强学生对几何变换的理解。

- 定期进行小测验和练习,巩固学生的知识点掌握。

广州执信中学七年级数学上册第三单元《一元一次方程》-解答题专项提高卷

广州执信中学七年级数学上册第三单元《一元一次方程》-解答题专项提高卷

一、解答题1.由于施工,需要拆除学校图书馆,七年级同学主动承担图书馆整理图书的任务,如果由一个人单独做要用30小时完成,现先安排一部分人用1小时整理,随后又增加6人和他们一起又做了2小时,恰好完成整理工作,假设每个人的工作效率相同,那么先按排整理的人员有多少?解析:6人【分析】设先安排整理的人员有x 人,根据工作效率×工作时间×工作人数=工作总量结合题意,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设先安排整理的人员有x 人, 根据题意得:()1126=13030x x +⨯+, 解得:x =6.答:先安排整理的人员有6人.【点睛】本题考查了一元一次方程的应用,找准等量关系正确列出一元一次方程是解题的关键. 2.10.3x -﹣20.5x + =1.2. 解析:4【解析】 试题分析:先将分母化成整数后,再去分母,去括号,移项,系数为1的步骤解方程即可; 试题12 1.20.30.5x x -+-=10103x --10205x +=6550x-50-30x-60=1820 x=128x=6.4 3.在十一黄金周期间,小明、小华等同学随家长共15人一同到金丝峡游玩,售票员告诉他们:大人门票每张100元,学生门票8折优惠.结果小明他们共花了1400元,那么小明他们一共去了几个家长、几个学生?解析:10个家长,5个学生【分析】设小明他们一共去了x 个家长,则有(15﹣x )个学生,根据“大人门票购买费用+学生门票购买费用=1400”列式求解即可.【详解】解:设小明他们一共去了x个家长,(15﹣x)个学生,根据题意得:100x+100×0.8(15﹣x)=1400,解得:x=10,15﹣x=5,答:小明他们一共去了10个家长,5个学生.【点睛】本题考查了一元一次方程的应用.4.某家具厂生产一种课桌和椅子,课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子;方案二:课桌和椅子都按定价的80%付款.某校计划添置100张课桌和x把椅子.(1)若x=100,请计算哪种方案划算;(2)若x>100,请用含x的代数式分别把两种方案的费用表示出来;(3)若x=300,如果两种方案可以同时使用,请帮助学校设计一种最省钱的方案.解析:(1)方案一省钱;(2)见解析;(3)见解析.【分析】(1)分别按两种方案结合已知数据计算、比较即可得到结论;(2)分别根据两种方案列出对应的表达式并化简即可;(3)按以下三种方式分别计算出各自所需费用并进行比较即可:①全按方案一购买;②全按方案二购买;③先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子.【详解】(1)当x=100时,按方案一购买所需费用为:100×200=20000(元);按方案二购买所需费用为:100×(200+80)×80%=22400(元),∵20000<22400,∴方案一省钱;(2)当x>100时,按方案一购买所需费用为:100×200+80(x﹣100)=80x+12000(元);按方案二购买所需费用为:(100×200+80x)×80%=64x+16000(元),答:方案一、方案二的费用为:(80x+12000)元、(64x+16000)元;(3)当x=300时,①全按方案一购买:100×200+80×200=36000(元);②全按方案二购买:(100×200+80×300)×80%=35200(元);③先按方案一购买100张课桌,同时送100把椅子;再按方案二购买200把椅子,100×200+80×200×80%=32800(元),∵36000>35200>32800,∴先按方案一购买100张桌子,同时送100把椅子;再按方案二购买200把椅子最省.【点睛】(1)读题题意,弄清各数据间的关系是解答第1、2小题的关键;(2)解第3小题时,需分以下三种情况分别计算所需费用:①全按方案一购买;②全按方案二购买;③先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子;解题时不要忽略了其中任何一种.5.解下列方程:(1)2(x-1)=6;(2)4-x=3(2-x);(3)5(x+1)=3(3x+1)解析:(1)x=4;(2)x=1;(3)x=1 2【分析】(1)方程去括号,移项合并,将未知数系数化为1,即可求出解;(2)方程去括号,移项合并,将未知数系数化为1,即可求出解;(3)方程去括号,移项合并,将未知数系数化为1,即可求出解;【详解】(1)去括号,得2x-2=6.移项,得2x=8.系数化为1,得x=4.(2)去括号,得4-x=6-3x.移项,得-x+3x=6-4.合并同类项,得2x=2.系数化为1,得x=1.(3)去括号,得5x+5=9x+3.移项,得5x-9x=3-5.合并同类项,得-4x=-2.系数化为1,得x=1 2 .【点睛】此题考查了解一元一次方程,其步骤为:去括号,移项合并,将未知数系数化为1,求出解.6.解下列方程(1)5m-8m-m=3-11;(2)3x+3=2x+7解析:(1)m=2;(2)x=4【分析】(1)先合并同类项,再化系数为1解一元一次方程即可;(2)先移项,再合并同类项解一元一次方程即可.【详解】(1)合并同类项,得 :﹣4m=﹣8,系数化为1,得: m=2,(2)移项,得:3x ﹣2x=7﹣3,合并同类项,得: x=4.【点睛】本题考查解一元一次方程,熟练掌握一元一次方程的解法及步骤是解答的关键. 7.设a ,b ,c ,d 为有理数,现规定一种新的运算:a bad bc c d =-,那么当35727x-=时,x 的值是多少? 解析:x =-2【分析】 根据新定义的运算得到关于x 的一元一次方程,解方程即可求解.【详解】解:由题意得:21 - 2(5 - x )=7即21-10+2x =7x =-2.【点睛】本题考查了新定义,解一元一次方程,根据新定义的运算列出方程是解题关键. 8.王叔叔十月份的工资为8000元,超过5000元的部分需要交3%的个人所得税。

广州执信中学七年级数学上册第三单元《一元一次方程》-填空题专项经典题(专题培优)

广州执信中学七年级数学上册第三单元《一元一次方程》-填空题专项经典题(专题培优)

一、填空题1.一般情况下2323m n m n ++=+不成立,但也有数可以使得它成立,例如:m =n =0.使得2323m n m n ++=+成立的一对数m 、n 我们称为“相伴数对”,记为(m ,n ).若(x ,1)是“相伴数对”,则x 的值为_____.﹣【分析】利用新定义相伴数对列出方程解方程即可求出x 的值【详解】解:根据题意得:去分母得:15x+10=6x+6移项合并得:9x =﹣4解得:x =﹣故答案为:﹣【点睛】本题考查解一元一次方程正确理解相解析:﹣49. 【分析】 利用新定义“相伴数对”列出方程,解方程即可求出x 的值.【详解】 解:根据题意得:11235x x , 去分母得:15x+10=6x+6,移项合并得:9x =﹣4, 解得:x =﹣49. 故答案为:﹣49. 【点睛】本题考查解一元一次方程,正确理解“相伴数对”的定义是解本题的关键.2.某商品按标价八折出售仍能盈利b 元,若此商品的进价为a 元,则该商品的标价为_________元.(用含a ,b 的代数式表示).【解析】【分析】首先设标价x 元由题意得等量关系:标价×打折﹣利润=进价代入相应数值再求出x 的值【详解】设标价x 元由题意得:80x ﹣b=a 解得:x=故答案为:【点睛】此题主要考查了列代数式解决问题的关解析:5()4a b + 【解析】【分析】首先设标价x 元,由题意得等量关系:标价×打折﹣利润=进价,代入相应数值,再求出x 的值.【详解】设标价x 元,由题意得:80%x ﹣b=a ,解得:x=5()4a b +, 故答案为:5()4a b +. 【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,标价×打折﹣利润=进价.3.关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程,则其解为_____.或或x=-3【分析】利用一元一次方程的定义判断即可【详解】解:关于的方程如果是一元一次方程(1)当即即解得:(2)当m=0时解得:(3)当2m-1=0即m=时方程为解得:x=-3故答案为x=2或x=解析:2x =或2x =-或x=-3.【分析】利用一元一次方程的定义判断即可.【详解】 解:关于x 的方程2m 1mx m 1x 20+﹣(﹣)﹣=如果是一元一次方程,(1)当2m 11﹣=,即m 1=, 即x 20﹣=解得:x 2=,(2)当m=0时,x 20--=,解得:x 2=-(3)当2m-1=0,即m=12时, 方程为112022x --= 解得:x=-3, 故答案为x=2或x=-2或x=-3.【点睛】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键. 4.小亮用40元钱买了5千克苹果和2千克香蕉,找回4元.已知每千克香蕉的售价是每千克苹果售价的2倍,则每千克苹果的售价是________元.4【解析】【分析】直接设每千克苹果的售价是x 元则每千克香蕉售价2x 元利用40元钱买了5千克苹果和2千克香蕉找回4元得出方程求出答案【详解】设每千克苹果的售价是x 元则每千克香蕉售价2x 元根据题意可得:解析:4【解析】【分析】直接设每千克苹果的售价是x 元,则每千克香蕉售价2x 元,利用40元钱买了5千克苹果和2千克香蕉,找回4元得出方程求出答案.【详解】设每千克苹果的售价是x 元,则每千克香蕉售价2x 元,,根据题意可得:5×x+2×2x=40-4,解得:x=4.即:每千克香蕉售价4元.故答案为:4.【点睛】此题主要考查了一元一次方程的应用,正确表示出两种水果的价格是解题关键. 5.把方程|21|5x -=化成两个一元一次方程是___________________.【解析】【分析】数轴上表示数的点到原点的距离叫做这个数的绝对值根据绝对值的性质可得一个数的绝对值是5则这个数是5或-5【详解】根据绝对值的性质将方程方程化成两个一元一次方程是故答案为:【点睛】本题主解析:215x -=,215x -=-【解析】【分析】数轴上表示数的点到原点的距离叫做这个数的绝对值,根据绝对值的性质可得,一个数的绝对值是5,则这个数是5或-5.【详解】根据绝对值的性质,将方程方程|21|5x -=化成两个一元一次方程是215x -=,215x -=-,故答案为: 215x -=,215x -=-.【点睛】本题主要考查绝对值的基本性质,解决本题的关键是要熟练掌握绝对值的基本性质. 6.已知关于x 的方程3223x m -=+的解是x m =,则m 的值为_________.5【解析】【分析】此题用m 替换x 解关于m 的一元一次方程即可【详解】∵x =m ∴3m−2=2m+3解得:m =5故答案为:5【点睛】本题考查一元一次方程的解的定义方程的解就是能够使方程左右两边相等的未知数解析:5【解析】【分析】此题用m 替换x ,解关于m 的一元一次方程即可.【详解】∵x =m ,∴3m−2=2m+3,解得:m =5.故答案为:5.【点睛】本题考查一元一次方程的解的定义.方程的解就是能够使方程左右两边相等的未知数的值.7.如果ma mb =,那么下列等式一定成立的是_______.①a b =;②66ma mb -=-;③1122ma mb -=-;④88ma mb +=+;⑤3131ma mb -=-;⑥33ma mb -=+.②③④⑤【解析】【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母等式仍成立即可解决【详解】当m =0时a =b 不一定成立故解析:②③④⑤【解析】【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立; ②等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.即可解决.【详解】当m =0时,a =b 不一定成立.故①错误;ma =mb ,根据等式的性质1,两边同时减去6,就得到ma−6=mb−6.故②正确;根据等式的性质2,两边同时乘以−12,即可得到1122ma mb -=-,故③正确; 根据等式的性质1,两边同时加上8就可得到ma +8=mb +8.故④正确; 根据等式的性质2,两边同时乘以3,即可得到33ma mb =,根据等式的性质1,两边同时减去1就可得到3ma-1=3mb-1,故⑤正确;根据等式的性质1,ma mb =两边同时加或减3,结果仍相等,故⑥错误,故答案为:②③④⑤.【点睛】本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.8.完成下面的填空:一家商店将某种服装按成本价提高40%后标价,又以八折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?我们知道,每件商品的利润是商品售价与商品成本价的差,如果设每件服装的成本价为x 元,那么每件服装的标价为_________元;每件服装的实际售价为___________元; 每件服装的利润为____________元.由此,列出方程_________________.解这个方程,得x =______________.因此每件服装的成本价是___________元.【解析】【分析】根据题意可得每件衣服的标价售价利润关于x 的代数式根据售价-标价=利润列出方程求解即可【详解】每件服装的标价为:(1+40)x 每件服装的实际售价为:(1+40)x×80每件服装的利润为解析:(140%)x + (140%)80%x +⋅ (140%)80%x x +⋅-(140%)80%15x x +⋅-= 125 125【解析】【分析】根据题意可得每件衣服的标价、售价、利润关于x 的代数式,根据售价-标价=利润列出方程求解即可.【详解】每件服装的标价为:(1+40%)x ,每件服装的实际售价为:(1+40%)x×80%,每件服装的利润为:(1+40%)x×80%−x ,列出方程:(1+40%)x×80%−x=15,解方程得:x=125,因此每件服装的成本价是125元.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找出等量关系.9.在某张月历表上,若前三个星期日的数字之和是42,则第一个星期_______号.【解析】【分析】根据题意先设中间一个的数字为x 即可解答【详解】设中间一个的数字为x 其他两个为x+7x-7则x+7+x+x-7=42解答x=14所以第一个是14-7=7日故答案为:7【点睛】此题考查一解析:7【解析】【分析】根据题意先设中间一个的数字为x ,即可解答.【详解】设中间一个的数字为x ,其他两个为x+7,x-7,则x+7+x+x-7=42,解答x=14,所以第一个是14-7=7日,故答案为:7.【点睛】此题考查一元一次方程的应用,解题关键在于找出等量关系.10.方程3622y y y -+=,左边合并同类项后,得____________.y=6【解析】【分析】先合并同类项再进行化简即可【详解】合并同类项得:y=6【点睛】本题考查合并同类项熟练掌握计算法则是解题关键解析:y=6【解析】【分析】先合并同类项,再进行化简即可.【详解】3622y y y -+= 合并同类项,得:13-1+=622y ⎛⎫⎪⎝⎭ y=6【点睛】本题考查合并同类项,熟练掌握计算法则是解题关键.11.小明说小红的年龄比他大两岁,他们的年龄和为18岁,两人年龄各是多少岁?若设小明x 岁,则小红的年龄为__________岁.根据题意,列出的方程是______________________.【解析】【分析】若设小明x 岁则小红的年龄(x+2)岁根据小明和小红的年龄和为18岁可列一元一次方程求解【详解】(1)根据题意设小明岁则小红的年龄为(2)设小明x 岁则可列方程:【点睛】本题考查一元一次解析:(2)x +, (2)18x x ++=【解析】【分析】若设小明x 岁,则小红的年龄 (x+2)岁,根据小明和小红的年龄和为18岁,可列一元一次方程求解.【详解】(1)根据题意,设小明x 岁,则小红的年龄为(2)x +(2)设小明x 岁,则可列方程:(2)18x x ++=【点睛】本题考查一元一次方程的应用,根据题意列出正确的一元一次方程是解题关键. 12.如果代数式453m -的值等于5-,那么m 的值是_________.【解析】【分析】根据题意列出方程求出方程的解即可得出m 的值【详解】由题意得:=去分母得:4m-5=-15解得m=【点睛】本题考查解一元一次方程熟练掌握计算法则是解题关键 解析:52-【解析】【分析】根据题意列出方程,求出方程的解即可得出m 的值.【详解】由题意得:453m -=5- 去分母得:4m-5=-15 解得m=52-【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.13.(1)如果33x y -=,那么x =_________;(2)如果2m n =,那么3m =___________.-y 【解析】【分析】(1)根据等式性质2把等式两边都除以−3即可得到x =−y ;(2)根据等式性质2把等式两边都除以3即可得到【详解】(1)∵−3x =3y ∴x =−y ;故答案为:−y ;(2)∵∴;故答案解析:-y23n 【解析】【分析】(1)根据等式性质2把等式两边都除以−3即可得到x =−y ;(2)根据等式性质2把等式两边都除以3即可得到3m =23n . 【详解】(1)∵−3x =3y ,∴x =−y ;故答案为:−y ;(2)∵2m n =, ∴3m =23n ; 故答案为:23n 【点睛】 本题考查了等式的性质:等式两边加同一个数(或式子)结果仍得等式;等式两边乘同一个数或除以一个不为零的数,结果仍得等式.14.关于x 的方程()232523m a x x -++-=是一元一次方程,则a m +=__________2【解析】【分析】根据一元一次方程的定义分别得到关于a 和关于m 的一元一次方程解之代入a+m 计算求值即可【详解】根据题意得:a+2=0解得:a=−2m−3=1解得:m=4a+m=−2+4=2故答案为:解析:2【解析】根据一元一次方程的定义,分别得到关于a和关于m的一元一次方程,解之,代入a+m,计算求值即可.【详解】根据题意得:a+2=0,解得:a=−2,m−3=1,解得:m=4,a+m=−2+4=2,故答案为:2【点睛】此题考查一元一次方程的定义,难度不大15.开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券,也不得找零. 小明只购物买了单价别为60元,80元和120元的物品各一件,使用购物券后,他的实际花费为_________元.200元或210元【分析】根据购物顺序不同分类讨论即可【详解】①若先买单价为120元的物品赠送一张50元购物券再去买单价为60元和80元的物品实际花费为:120+60+80-50=210元;②若先买解析:200元或210元【分析】根据购物顺序不同分类讨论即可.【详解】①若先买单价为120元的物品,赠送一张50元购物券,再去买单价为60元和80元的物品,实际花费为:120+60+80-50=210元;②若先买60元和80元的物品,赠送一张50元购物券,再去买120元的物品,实际花费为:60+80+120-50=210元;③若先买60元和120元的物品,赠送一张50元购物券,再去买80元的物品,实际花费为:60+120+80-50=210元;④若先买80元和120元的物品,赠送两张50元购物券,再去买60元的物品,此时购物券可抵扣60元,实际花费为:120+80=200元;故答案为200元或210元.【点睛】此题考查的是分类讨论的数学思想.16.一件衣服进价120元,按标价的八折出售仍能赚32元,则标价是__元.190【分析】设标价为元根据题意列方程即可求解【详解】解:设标价为元由题意可知:解得:故答案为:190【点睛】此题主要考查列一元一次方程解应用题解题的关键是根据题意找出等量关系【分析】设标价为x 元,根据题意列方程即可求解.【详解】解:设标价为x 元,由题意可知:0.812032x -=,解得:190x =,故答案为:190.【点睛】此题主要考查列一元一次方程解应用题,解题的关键是根据题意找出等量关系. 17.日历中同一竖列相邻三个数的和是63,则这三个数分别是______________.142128【分析】根据日历同一竖列相邻三个数依次相差7的关系设中间的数为x 则上面的为x-7下面的是x+7然后根据题意列出方程求解进一步计算即可【详解】设中间的数为x 则上面的为x-7下面的是x+7则解析:14,21,28【分析】根据日历同一竖列相邻三个数依次相差7的关系设中间的数为x ,则上面的为x-7,下面的是x+7,然后根据题意列出方程求解进一步计算即可.【详解】设中间的数为x ,则上面的为x-7,下面的是x+7,则:77x x x -+++=63,解得:21x =,∴其余两个数为:14,28.所以答案为14,21,28.【点睛】本题主要考查了一元一次方程的实际运用,掌握日历中竖列相邻数的排列关系是解题关键. 18.若关于x 的方程23360m x m --+=是一元一次方程,则这个方程的解是__________.x=1【分析】利用一元一次方程的定义求解即可【详解】∵关于x 的方程3xm-2-3m+6=0是一元一次方程∴m-2=1解得:m=3此时方程为3x-9+6=0解得:x=1故答案为x=1【点睛】此题考查一解析:x=1【分析】利用一元一次方程的定义求解即可.【详解】∵关于x 的方程3x m-2-3m+6=0是一元一次方程,∴m-2=1,解得:m=3,此时方程为3x-9+6=0,解得:x=1,【点睛】此题考查一元一次方程的定义以及解一元一次方程,熟练掌握一元一次方程的定义是解题的关键.19.对于数a ,b 定义这样一种运算:*2a b b a =-,例如1*3231=⨯-,若()3*11x +=,则x 的值为______.1【分析】根据新定义的运算法则代入计算即可得到答案【详解】解:∵∴∴∴;故答案为:1【点睛】本题考查了新定义的运算法则解题的关键是熟练掌握新定义的运算法则进行运算解析:1【分析】根据新定义的运算法则,代入计算即可得到答案.【详解】解:∵*2a b b a =-,∴()3*12(1)31x x +=+-=,∴211x -=,∴1x =;故答案为:1.【点睛】本题考查了新定义的运算法则,解题的关键是熟练掌握新定义的运算法则进行运算. 20.某校组织七年级学生参加研学活动,如果单独租用45座车若干辆,则刚好坐满;如果单独租用60座客车,则可少租2辆,并且剩余15座.该校参加研学活动的有_______人.405【分析】设租用45座车x 辆则租用60座客车为(x-2)辆根据等量关系列出方程即可求解【详解】设租用45座车x 辆则租用60座客车为(x-2)辆根据题意得:45x=60(x-2)-15解得:x=9解析:405【分析】设租用45座车x 辆,则租用60座客车为(x-2)辆,根据等量关系,列出方程,即可求解.【详解】设租用45座车x 辆,则租用60座客车为(x-2)辆,根据题意得:45x=60(x-2)-15,解得:x=9,45×9=405(人),答:该校参加研学活动的有405人.故答案是:405.【点睛】本题主要考查一元一次方程的实际应用,找出等量关系,列出方程,是解题的关键. 21.猪是中国十二生肖排行第十二的动物,对应地支为“亥”.现规定一种新的运算,a 亥b ab b =-,则满足等式123x -亥61=-的x 的值为__________.【分析】原式利用题中的新定义计算即可求出值【详解】根据题中的新定义得亥故答案为:【点睛】本题考查了一元一次方程的解法掌握解一元一次方程的解法是解题的关键 解析:34- 【分析】原式利用题中的新定义计算即可求出值.【详解】根据题中的新定义得123x -亥61=- 126613x -⨯-=- 2461x --=-43x -=34x =- 故答案为:34-. 【点睛】本题考查了一元一次方程的解法,掌握解一元一次方程的解法是解题的关键. 22.对任意四个有理数a ,b ,c ,d ,定义:a bad bc c d =-,已知24181-=x x ,则x =_____.3【分析】首先看清这种运算规则将转化为一元一次方程2x -(﹣4x)=18然后通过去括号移项合并同类项系数化为1解方程即可【详解】由题意得2x -(﹣4x)=186x =18解得:x =3故答案为:3【点睛解析:3【分析】 首先看清这种运算规则,将24181-=x x 转化为一元一次方程2x -(﹣4x) =18,然后通过去括号、移项、合并同类项、系数化为1,解方程即可.【详解】由题意得,2x -(﹣4x) =186x =18解得:x =3故答案为:3【点睛】本题主要考查解一元一次方程,关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.23.若x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则m n +的值是_________.45【分析】取一切有理数时均成立则化简以后方程的一次项系数以及常熟项都是0分别求出mn 的值即可【详解】解:取一切有理数时均成立则化简以后方程的一次项系数以及常熟项都是0移项得:合并同类项得:∴∴m= 解析:45【分析】x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则化简以后方程的一次项系数以及常熟项都是0,分别求出m ,n 的值即可.【详解】解:x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则化简以后方程的一次项系数以及常熟项都是0,移项得:(23)251(3)+-=+-m x x m n ,合并同类项得:(222)13-=+-m x m n ,∴222=0-m ,13=0+-m n ,∴m=11,n=34,∴m+n=45,故答案为:45.【点睛】本题考查了解一元一次方程,理解若x 取一切有理数时,(23)(3)251m x m n x +--=+均成立的条件是解决本题的关键.24.定义一种运算:1(1)(1)x a b a b a b *=++++,若设5213*=,则34*=________.【分析】根据定义新运算及求出x 的值即可求出的值【详解】解:∵∴∴∴∴故答案为:【点睛】本题主要考查定义新运算的知识解答此题的关键是根据所给出的式子得出x 的值再利用新的运算方法解决问题 解析:1935【分析】 根据定义新运算及5213*=,求出x 的值,即可求出34*的值. 【详解】解:∵1(1)(1)x a b a b a b *=++++,5213*= ∴15=21(21)(11)3++++x∴=8x ∴18(1)(1)*=++++a b a b a b ∴181934=34(31)(41)35*=++++ 故答案为:1935【点睛】 本题主要考查定义新运算的知识,解答此题的关键是,根据所给出的式子,得出x 的值,再利用新的运算方法解决问题.25.当3x =时,式子22x +与5x k +的值相等,则k 的值是______.-7【分析】把x=3代入两个式子即可表示出两个式子的值就可得到一个关于k 的方程从而求得k 的值【详解】解:由题意得:8=15+k 解得:k=-7故答案为:-7【点睛】本题要注意列出方程求出未知数的值解析:-7【分析】把x=3代入两个式子即可表示出两个式子的值,就可得到一个关于k 的方程,从而求得k 的值.【详解】解:由题意得:8 =15+k ,解得:k=-7,故答案为:-7【点睛】本题要注意列出方程,求出未知数的值.26.如果3m -与21m +互为相反数,则m =________.-4【分析】根据互为相反数的两个数的和为0列出方程解方程即可【详解】∵3-m 与2m+1互为相反数∴3-m=-(2m+1)去括号得:3-m=-2m-1移项并合并同类项得:m=-4故答案是:-4【点睛】解析:-4【分析】根据互为相反数的两个数的和为0列出方程,解方程即可.【详解】∵3-m 与2m+1互为相反数,∴3-m=-(2m+1)去括号,得:3-m=-2m-1移项并合并同类项,得:m=-4.故答案是:-4.【点睛】考查了用一元一次方程解决相反数的问题;用到的知识点为:a的相反数为-a,则它们的和为0.27.解方程213412208x x x-+-=-1,去分母时,方程两边应都乘____,得______________________,这一变形的依据是________________.10x-6(2x-1)=15(3x +4)-120等式的性质2【分析】找出方程两边分母的最小公倍数根据等式的性质2即可得答案【详解】∵12208的最小公倍数是120∴去分母时方程两边应都乘120得10解析:10x-6(2x-1)=15(3x+4)-120 等式的性质2【分析】找出方程两边分母的最小公倍数,根据等式的性质2即可得答案.【详解】∵12、20、8的最小公倍数是120,∴去分母时,方程两边应都乘120,得10x-6(2x-1)=15(3x+4)-120,这一变形的依据是:等式的性质2故答案为:120,10x-6(2x-1)=15(3x+4)-120,等式的性质2【点睛】本题考查解一元一次方程及等式的性质,等式的性质2:等式两边同时乘(或除)相等的数或式子,两边依然相等;熟练掌握相关知识是解题关键.28.若关于x的方程2mx+3m=-1与3x+6x=-3的解相同,则m的值为_____.【分析】分别解出两方程的解两解相等就得到关于m的方程从而可以求出m的值【详解】解:由3x+6x=-3可得:x=-由2mx+3m=-1可得:x=所以可得:解得:故答案为:【点睛】本题考查了同解方程本题解析:3 7 -【分析】分别解出两方程的解,两解相等,就得到关于m的方程,从而可以求出m的值.【详解】解:由3x+6x=-3可得:x=-13,由2mx+3m=-1可得:x=132mm--,所以可得:131 23mm--=-,解得:37m=-,故答案为:37 -.【点睛】本题考查了同解方程,本题解决的关键是能够求解关于x的方程,要正确理解方程解的含义.29.学校组织一次数学知识竞赛,共有20道题,每一题答对得5分,答错或不答都倒扣1分,小明最终得到76分,那么他答对了______道题.16【分析】由题意可知小明的得分=答对题目的得分-答错或不答所扣的分据此列方程求解即可【详解】解:设小明答对了x道题则答错或没答的题有(20-x)道由题意得5x-(20-x)=76解得x=16故答案解析:16【分析】由题意可知,小明的得分=答对题目的得分-答错或不答所扣的分,据此列方程求解即可.【详解】解:设小明答对了x道题,则答错或没答的题有(20-x)道,由题意得5x-(20-x)=76,解得x=16.故答案为:16.【点睛】本题考查了一元一次方程的应用,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.30.在方程1322x-=-的两边同时_________,得x=__________.加【解析】【分析】根据等式的性质2方程的两边加即可【详解】方程的两边同时加得:x=-1故答案为:加;【点睛】本题考查了对等式的性质的应用主要检查学生对所学知识的掌握情况解析:加121-【解析】【分析】根据等式的性质2,方程的两边加12即可.【详解】方程1322x-=-的两边同时加12得:x=-1,故答案为:加12;1-.【点睛】本题考查了对等式的性质的应用,主要检查学生对所学知识的掌握情况.。

广州执信中学七年级数学上册第三单元《一元一次方程》-填空题专项提高卷

广州执信中学七年级数学上册第三单元《一元一次方程》-填空题专项提高卷

一、填空题1.所谓方程的解就是使方程中等号左右两边相等的未知数的值。

观察下面关于未知数x 的方程:221144x x +=+,请写出此方程的解:____________。

x=或【分析】利用然后整理成完全平方公式然后开方求值即可【详解】解:∴两边开方得当时整理得解得当时整理得解得故此方程的解为:x=或【点睛】本题主要考查了完全平方公式的应用根据已知条件得出是解题的关键解析:x=2±或12±【分析】 利用221144x x +=+然后整理成完全平方公式21254x x ⎛⎫+= ⎪⎝⎭,然后开方求值即可. 【详解】 解:221144x x +=+ ∴21254x x ⎛⎫+= ⎪⎝⎭两边开方得152x x ⎛⎫+=± ⎪⎝⎭ 当152x x +=时,整理得22520x x -+=解得121,22x x == 当152x x +=-时,整理得22520x x ++=解得121,22x x =-=- 故此方程的解为:x=2±或12± 【点睛】 本题主要考查了完全平方公式的应用,根据已知条件得出21254x x ⎛⎫+= ⎪⎝⎭是解题的关键. 2.某商品按标价八折出售仍能盈利b 元,若此商品的进价为a 元,则该商品的标价为_________元.(用含a ,b 的代数式表示).【解析】【分析】首先设标价x 元由题意得等量关系:标价×打折﹣利润=进价代入相应数值再求出x 的值【详解】设标价x 元由题意得:80x ﹣b=a 解得:x=故答案为:【点睛】此题主要考查了列代数式解决问题的关解析:5()4a b + 【解析】首先设标价x元,由题意得等量关系:标价×打折﹣利润=进价,代入相应数值,再求出x 的值.【详解】设标价x元,由题意得:80%x﹣b=a,解得:x=5()4a b+,故答案为:5()4a b+.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,标价×打折﹣利润=进价.3.在甲处工作的有27人,在乙处工作的有19人,现另外调20人去支援,使在甲处工作的人数是乙处的2倍,则往甲处调_____人,乙处调_____人.3【解析】【分析】设调往甲处的人数为x则调往乙处的人数为20-x根据甲处的人数是在乙处人数的2倍列方程求解【详解】设应调往甲处x人依题意得:27+x=2(19+20−x)解得:x=17∴20−x=3解析:3【解析】【分析】设调往甲处的人数为x,则调往乙处的人数为20-x,根据甲处的人数是在乙处人数的2倍列方程求解.【详解】设应调往甲处x人,依题意得:27+x=2(19+20−x),解得:x=17,∴20−x=3,答:应调往甲处17人,调往乙处3人【点睛】此题考查一元一次方程的应用,解题关键在于列出方程.4.要使代数式154t+与15()4t-的值互为相反数,则t的值是_________.【解析】【分析】只有符号不同的两个数是互为相反数且互为相反数的两个数的和等于0根据相反数的性质可列方程求解【详解】因为代数式与的值互为相反数所以+=0解得:t=【点睛】本题主要考查列方程解方程解决本解析:1 10【解析】只有符号不同的两个数是互为相反数,且互为相反数的两个数的和等于0,根据相反数的性质可列方程求解.【详解】 因为代数式154t +与15()4t -的值互为相反数, 所以154t ++15()4t -=0, 解得:t =110, 【点睛】本题主要考查列方程解方程,解决本题的关键是要熟练根据相反数的性质列出方程即可求解. 5.将一个底面直径是10cm 、高为40cm 的圆柱锻压成底面直径为16cm 的圆柱,则锻压后圆柱的高为________cm.625【解析】【分析】利用等量关系:锻压前的圆柱的体积=锻压后的圆柱的体积根据圆柱的体积计算公式表示出体积列出方程解答即可【详解】解:设锻压后圆柱的高为x 厘米由题意得:解得:x=15625答:锻压后解析:625【解析】【分析】利用等量关系:锻压前的圆柱的体积=锻压后的圆柱的体积,根据圆柱的体积计算公式表示出体积列出方程解答即可.【详解】解:设锻压后圆柱的高为x 厘米,由题意得:221016()40()22x ππ⨯=解得:x=15.625.答:锻压后圆柱的高为15.625厘米.故答案为:15.625.【点睛】此题考查一元一次方程的实际运用,关键是掌握体积公式,并找准题中的等量关系. 6.用5个同样大小的小长方形恰好可以拼成如图所示的大长方形,若大长方形的周长是14,则小长方形的长是_______,宽是________. 1【解析】【分析】观察图形找出大长方形与小长方形的关系设小长方形的宽为x 列出方程即可求出其长和宽的值【详解】解:设小长方形的宽为x 则长=(14-10x )=2x 解得x=1即小长方形的宽为1长为2;故答解析:1【解析】【分析】观察图形找出大长方形与小长方形的关系,设小长方形的宽为x,列出方程即可求出其长和宽的值.【详解】解:设小长方形的宽为x,则长=12(14-10x)=2x,解得x=1,即小长方形的宽为1,长为2;故答案为:2;1.【点睛】本题考查了一元一次方程的应用,准确识图并列出方程是解题的关键.7.在某张月历表上,若前三个星期日的数字之和是42,则第一个星期_______号.【解析】【分析】根据题意先设中间一个的数字为x即可解答【详解】设中间一个的数字为x其他两个为x+7x-7则x+7+x+x-7=42解答x=14所以第一个是14-7=7日故答案为:7【点睛】此题考查一解析:7【解析】【分析】根据题意先设中间一个的数字为x,即可解答.【详解】设中间一个的数字为x,其他两个为x+7,x-7,则x+7+x+x-7=42,解答x=14,所以第一个是14-7=7日,故答案为:7.【点睛】此题考查一元一次方程的应用,解题关键在于找出等量关系.8.方程3622yy y-+=,左边合并同类项后,得____________.y=6【解析】【分析】先合并同类项再进行化简即可【详解】合并同类项得:y=6【点睛】本题考查合并同类项熟练掌握计算法则是解题关键解析:y=6【解析】【分析】先合并同类项,再进行化简即可.【详解】3622y y y -+= 合并同类项,得:13-1+=622y ⎛⎫⎪⎝⎭ y=6【点睛】本题考查合并同类项,熟练掌握计算法则是解题关键.9.在公式5(32)9c f =-中,已知20c =,则f =_____________.68【解析】【分析】把C=20代入C 与f 之间的关系式解方程就可以求出f 的值【详解】由题意得当C=20时20=180=5f−160−5f=−340f=68故答案为:68【点睛】本题考查解一元一次方程熟解析:68【解析】【分析】把C=20代入C 与f 之间的关系式5(32)9c f =-,解方程就可以求出f 的值. 【详解】由题意,得当C=20时, 20=5(32)9f -, 180=5f−160,−5f=−340,f=68.故答案为:68.【点睛】 本题考查解一元一次方程,熟练掌握运算法则是解题关键.10.如果代数式453m -的值等于5-,那么m 的值是_________.【解析】【分析】根据题意列出方程求出方程的解即可得出m 的值【详解】由题意得:=去分母得:4m-5=-15解得m=【点睛】本题考查解一元一次方程熟练掌握计算法则是解题关键 解析:52-【解析】根据题意列出方程,求出方程的解即可得出m 的值.【详解】 由题意得:453m -=5- 去分母得:4m-5=-15 解得m=52-【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.11.喜欢集邮的小惠共有中、外邮票145张,其中中国邮票的张数比外国邮票的张数的2倍少5张,问小惠有中国邮票______张,外国邮票_____张.50【解析】【分析】据题意可得到等量关系式:外国邮票的张数×2-5=中国邮票的张数设外国邮票x 张把未知数和相关数据代入等量关系式进行解答即可得到答案【详解】解:设外国邮票x 张2x-5=145-x3x解析:50【解析】【分析】据题意,可得到等量关系式:外国邮票的张数×2-5=中国邮票的张数,设外国邮票x 张,把未知数和相关数据代入等量关系式进行解答即可得到答案.【详解】解:设外国邮票x 张,2x-5=145-x3x=150x=50中国邮票:145-50=95答:中国邮票95张,外国邮票有50张.【点睛】解答此题的关键是确定等量关系式,然后再列方程解答即可.12.一批玩具,如果3个小朋友玩1个,还剩2个玩具;如果2个小朋友玩1个,还有9人没有分到玩具.若设有x 个玩具,根据题意可列方程______.【解析】【分析】依据题意分析可得等量关系:两总分法实际上球的个数不变【详解】解:若设有个玩具由题意得【点睛】本题考查了一元一次方程的应用解答本题的关键是读懂题意找出等量关系列方程求解解析:3(2)29x x -=+【解析】【分析】依据题意分析,可得等量关系: 两总分法实际上球的个数不变.解:若设有x 个玩具,由题意得,3(2)29x x -=+【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,找出等量关系,列方程求解.13.开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券,也不得找零. 小明只购物买了单价别为60元,80元和120元的物品各一件,使用购物券后,他的实际花费为_________元.200元或210元【分析】根据购物顺序不同分类讨论即可【详解】①若先买单价为120元的物品赠送一张50元购物券再去买单价为60元和80元的物品实际花费为:120+60+80-50=210元;②若先买 解析:200元或210元【分析】根据购物顺序不同分类讨论即可.【详解】①若先买单价为120元的物品,赠送一张50元购物券,再去买单价为60元和80元的物品,实际花费为:120+60+80-50=210元;②若先买60元和80元的物品,赠送一张50元购物券,再去买120元的物品,实际花费为:60+80+120-50=210元;③若先买60元和120元的物品,赠送一张50元购物券,再去买80元的物品,实际花费为:60+120+80-50=210元;④若先买80元和120元的物品,赠送两张50元购物券,再去买60元的物品,此时购物券可抵扣60元,实际花费为:120+80=200元;故答案为200元或210元.【点睛】此题考查的是分类讨论的数学思想.14.关于x 的方程()232523m a x x -++-=是一元一次方程,则a m +=__________2【解析】【分析】根据一元一次方程的定义分别得到关于a 和关于m 的一元一次方程解之代入a+m 计算求值即可【详解】根据题意得:a+2=0解得:a=−2m−3=1解得:m=4a+m=−2+4=2故答案为:解析:2【解析】【分析】根据一元一次方程的定义,分别得到关于a 和关于m 的一元一次方程,解之,代入a+m ,计算求值即可.【详解】根据题意得:解得:a=−2,m−3=1,解得:m=4,a+m=−2+4=2,故答案为:2【点睛】此题考查一元一次方程的定义,难度不大15.已知222a b c k b c a c a b===+++,则k =______.1或-2【分析】分类讨论:①当时将等式变形即可求出k 的值;②当时则代入原等式即可求出k 的值【详解】解:①当时∵∴∴∴∴∴;②当时则∴故答案为:1或-2【点睛】此题考查的是等式的基本性质根据等式的基本解析:1或-2【分析】分类讨论:①当0a b c ++≠时,将等式变形,即可求出k 的值;②当0a b c ++=时,则a b c +=-,代入原等式即可求出k 的值.【详解】解:①当0a b c ++≠时, ∵222a b c k b c a c a b===+++, ∴()()()2,2,2a k b c b k a c c k a b =+=+=+,∴()222a b c k b c a c a b ++=+++++,∴()()22a b c k a b c ++=++,∴22k =,∴1k =;②当0a b c ++=时,则a b c +=-. ∴222c c k a b c===-+- 故答案为:1或-2【点睛】 此题考查的是等式的基本性质,根据等式的基本性质将等式变形是解决此题的关键. 16.我们规定:若关于x 的一元一次方程ax =b 的解为b +a ,则称该方程为“和解方程“. 例如:方程2x =﹣4的解为x =﹣2,而﹣2=﹣4+2,则方程2x =﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x 的一元一次方程3x =a 是“和解方程”,则a 的值为_____;(2)已知关于x 的一元一次方程﹣2x =ab +b 是“和解方程“,并且它的解是x =b ,则a +b的值为_____.【详解】解:(1)解方程3x =a 得x =∵关于x 的一元一次方程3x =a 是和解方程∴=3+a 解得a =﹣;(2)∵方程﹣2x =ab+b 的解是x =b ∴﹣2b =ab+b ∵方程﹣2x =ab+b 是和解方程∴b =a 解析:92- 113- 【详解】解:(1)解方程3x =a 得x =, ∵关于x 的一元一次方程3x =a 是“和解方程”,∴=3+a ,解得a =﹣;(2)∵方程﹣2x =ab +b 的解是x =b ,∴﹣2b =ab +b ,∵方程﹣2x =ab +b 是“和解方程“,∴b =ab +b ﹣2,即b =﹣2b ﹣2,解得b =﹣,∴a =﹣3,∴a +b =﹣3﹣=﹣. 故答案为﹣,﹣.17.某商品每件标价为150元,若按标价打8折后,仍可获利20%,则该商品每件的进价为______元.100【分析】根据利润率(售价进价)进价先利用售价标价折数10求出售价进而代入利润率公式列出关于进价的方程即得【详解】商品每件标价为150元按标价打8折后售价为:(元/件)设该商品每件的进价为元由题 解析:100【分析】根据利润率=(售价-进价) ÷进价100%⨯,先利用售价=标价⨯折数÷10求出售价,进而代入利润率公式列出关于进价的方程即得.【详解】商品每件标价为150元∴按标价打8折后售价为:1500.8120⨯=(元/件)∴设该商品每件的进价为x 元由题意得:()120100%20%-⨯=x x解得:100x =答:该商品每件的进价为100元.故答案为:100【点睛】本题考查一元一次方程应用中的销售问题,通常利润率计算公式为销售问题等量关系是解题关键点.18.对任意四个有理数a ,b ,c ,d ,定义:a bad bc c d =-,已知24181-=x x ,则x =_____.3【分析】首先看清这种运算规则将转化为一元一次方程2x -(﹣4x)=18然后通过去括号移项合并同类项系数化为1解方程即可【详解】由题意得2x -(﹣4x)=186x =18解得:x =3故答案为:3【点睛解析:3【分析】 首先看清这种运算规则,将24181-=x x 转化为一元一次方程2x -(﹣4x) =18,然后通过去括号、移项、合并同类项、系数化为1,解方程即可.【详解】由题意得,2x -(﹣4x) =186x =18解得:x =3故答案为:3【点睛】本题主要考查解一元一次方程,关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.19.若2a +1与212a +互为相反数,则a =_____.﹣1【分析】利用相反数的性质列出方程求出方程的解即可得到a 的值【详解】根据题意得:去分母得:a+2+2a+1=0移项合并得:3a=﹣3解得:a=﹣1故答案为:﹣1【点睛】本题考查了解一元一次方程的应解析:﹣1【分析】利用相反数的性质列出方程,求出方程的解即可得到a 的值.【详解】根据题意得:a 2a 11022+++= 去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:﹣1【点睛】 本题考查了解一元一次方程的应用、解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,是解题的关键,此外还需注意移项要变号.20.5个人用5天完成了某项工程的14,如果再增加工作效率相同的10个人,那么完成这项工作前后共用_____天.10【分析】由已知5个人用5天完成了某项工程的那么1个人用的天数为5×5再增加工作效率相同的10个人完成剩下的设用x 天则1个人用(5+10)x 因为工作效率相同根据题意列方程求解【详解】设增加10人再 解析:10【分析】由已知5个人用5天完成了某项工程的14,那么1个人用的天数为5×5,再增加工作效率相同的10个人完成剩下的34,设用x 天,则1个人用(5+10)x ,因为工作效率相同,根据题意列方程求解.【详解】设增加10人再完成剩余的34为x 天,根据题意列方程得: (5+10)x =3×5×5,解得:x =5,5+5=10(天).故答案为:10.【点睛】本题考查的是一元一次方程的应用,解答此题的关键是根据已知找出等量关系,其等量关系是后面的工作量是前面的工作量的3倍.21.若x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则m n +的值是_________.45【分析】取一切有理数时均成立则化简以后方程的一次项系数以及常熟项都是0分别求出mn 的值即可【详解】解:取一切有理数时均成立则化简以后方程的一次项系数以及常熟项都是0移项得:合并同类项得:∴∴m= 解析:45【分析】x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则化简以后方程的一次项系数以及常熟项都是0,分别求出m ,n 的值即可.【详解】解:x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则化简以后方程的一次项系数以及常熟项都是0,移项得:(23)251(3)+-=+-m x x m n ,合并同类项得:(222)13-=+-m x m n ,∴222=0-m ,13=0+-m n ,∴m=11,n=34,∴m+n=45,故答案为:45.【点睛】本题考查了解一元一次方程,理解若x 取一切有理数时,(23)(3)251m x m n x +--=+均成立的条件是解决本题的关键.22.若关于x 的方程1253n ax bx x x +-+=+是一元一次方程,则a n +=_________ ,b_________.4或0≠-1【分析】根据一元一次方程的定义可知二次项系数为0则求出n 的值再根据二次项系数为0一次项系数不等于0求出a 的值即可【详解】解:根据一元一次方程的定义可知二次项系数为0则解得n=1或-3把代 解析:4或0 ≠-1【分析】根据一元一次方程的定义可知,二次项系数为0,则12+=n ,求出n 的值,再根据二次项系数为0,一次项系数不等于0,求出a 的值即可.【详解】解:根据一元一次方程的定义可知,二次项系数为0,则12+=n ,解得n=1或-3, 把12+=n 代入方程得:2253-+=+ax bx x x ,整理得:()()23150-+--+=a x b x , ∴a-3=0,-b-1≠0,解得:a=3,b≠-1,∴a+n=4或0,故答案为:4或0;≠,-1.【点睛】本题是对一元一次方程定义的考查,熟练掌握一元一次方程是解决本题的关键. 23.如果34x x =-+,那么3x +________4=.x 【分析】根据题意得第一个等式等号右边为-x+4第二个等式等号右边为4因为(-x+4)+x=4所以等号两边同时加x【详解】两边同时加x 得3x+x=4故答案为:x 【点睛】本题考查的是等式的性质熟知等式解析:x【分析】根据题意,得第一个等式等号右边为-x+4 ,第二个等式等号右边为4,因为(-x+4)+x=4 ,所以等号两边同时加x .【详解】两边同时加x ,得3x+x=4,故答案为:x【点睛】本题考查的是等式的性质,熟知等式两边加或减同一个数或式子,结果仍相等是解答此题的关键.24.用等式的性质解方程:155x -=,两边同时________,得x =________;245y =,两边同时________,得y =________.加1520除以10【分析】根据等式的基本性质解答即可解方程时将方程变形的原则是左边不含常数项右边不含未知项【详解】等式左边有-15则两边需加15得;等式两边都除以(或乘)得故答案为:加1520除以1解析:加15 20 除以25 10 【分析】根据等式的基本性质解答即可,解方程时将方程变形的原则是左边不含常数项,右边不含未知项.【详解】等式155x -=,左边有-15,则两边需加15,得20x; 等式245y =,两边都除以25(或乘52),得10y =. 故答案为:加15,20,除以25,10 【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立. 25.已知方程2224m x m +-+=是关于x 的一元一次方程,则方程的解是________.【分析】先求出m 的值再代入求出x 的值即可【详解】因为原方程是关于x 的一元一次方程所以移项得合并同类项得把代入原方程得移项得合并同类项得系数化为1得故答案为:【点睛】本题考查了解一元一次方程的问题掌握解析:3x =-【分析】先求出m 的值,再代入求出x 的值即可.【详解】因为原方程是关于x 的一元一次方程,所以21+=m ,移项,得12m =-.合并同类项,得1m =-.把1m =-代入原方程,得224x --=.移项,得242x -=+.合并同类项,得26x -=.系数化为1,得3x =-.故答案为:3x =-.本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键. 26.某信用卡上的号码由17位数字组成,每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,则x+y 的值等于______.11【分析】把9的后面2的前面的数字用字母表示出来根据任何相邻的三个数字之和都等于20确定出x 与y 的值即可求出x+y 的值【详解】解:如下图标注表格中的数:由题意得:则有9+x+2=20即x=9所以表解析:11【分析】把9的后面,2的前面的数字用字母表示出来,根据任何相邻的三个数字之和都等于20,确定出x 与y 的值,即可求出x+y 的值.【详解】解:如下图标注表格中的数:由题意得:9,2,a b a b c d e f e f ++=++++=++9,2,c d ∴==则有9+x+2=20,即x=9,所以表格中的数字为9,9,2,9,9,2,9,9,2,9,9,2,9,9,2,9,9, 即y=2,则x+y=11.故答案为:11.【点评】本题考查了有理数的加法,简单的一元一次方程的解法,熟练掌握运算法则是解本题的关键.27.某商贩卖出两双皮鞋,相比进价,一双盈利30%,另一双亏本10%,两双共卖出200元.商贩在这次销售中要有盈利,则亏本的那双皮鞋的进价必须低于_________元【分析】设亏本的那双皮鞋的进价为x 元则亏本的那双皮鞋的售价为(1-10)x 元盈利的那双皮鞋的售价为200-(1-10)x 元盈利的那双皮鞋的进价为元根据商贩在这次销售中要有盈利即可得出关于x 的一元一次解析:150【分析】设亏本的那双皮鞋的进价为x 元,则亏本的那双皮鞋的售价为(1-10%)x 元,盈利的那双皮鞋的售价为[200-(1-10%)x]元,盈利的那双皮鞋的进价为200(110%)130%x --+元,根据商贩在这次销售中要有盈利,即可得出关于x 的一元一次不等式,解之即可得出结论.解:设亏本的那双皮鞋的进价为x 元,则亏本的那双皮鞋的售价为(1-10%)x 元,盈利的那双皮鞋的售价为[200-(1-10%)x]元,盈利的那双皮鞋的进价为200(110%)130%x --+元, 依题意,得:(1-10%)x-x+[200-(1-10%)x]200(110%)130%x ---+>0, 解得:x <150.故答案为:150.【点睛】本题考查了一元一次不等式的应用,找准等量关系,正确列出一元一次不等式是解题的关键.28.已知一个角的补角是这个角的4倍,那么这个角的度数是_________.36°【分析】设这个角的度数为根据补角的性质列出方程求解即可【详解】设这个角的度数为可得解得故答案为:36°【点睛】本题考查了一元一次方程的应用掌握解一元一次方程的解法补角的性质是解题的关键解析:36°【分析】设这个角的度数为x ,根据补角的性质列出方程求解即可.【详解】设这个角的度数为x ,可得1804x x ︒-=解得36x =︒故答案为:36°.【点睛】本题考查了一元一次方程的应用,掌握解一元一次方程的解法、补角的性质是解题的关键.29.如果3m -与21m +互为相反数,则m =________.-4【分析】根据互为相反数的两个数的和为0列出方程解方程即可【详解】∵3-m 与2m+1互为相反数∴3-m=-(2m+1)去括号得:3-m=-2m-1移项并合并同类项得:m=-4故答案是:-4【点睛】解析:-4【分析】根据互为相反数的两个数的和为0列出方程,解方程即可.【详解】∵3-m 与2m+1互为相反数,∴3-m=-(2m+1)去括号,得:3-m=-2m-1移项并合并同类项,得:m=-4.故答案是:-4.【点睛】考查了用一元一次方程解决相反数的问题;用到的知识点为:a 的相反数为-a,则它们的和为0.30.在等式“2×( )-3×( )= -15”的括号中分别填入一个数,使这两个数满足:互为相反数.则这两个数依次是______,____________.-33【分析】先设第一个空填m 则第二个空就填-m 最后形成一个方程接着解出方程进一步求出答案即可【详解】设第一个空填m 则第二个空就填-m ∴解得:∴故答案为:3【点睛】本题主要考查了一元一次方程的运用熟解析:-3, 3【分析】先设第一个空填m ,则第二个空就填-m ,最后形成一个方程,接着解出方程进一步求出答案即可.【详解】设第一个空填m ,则第二个空就填-m ,∴2315m m +=-,解得:3m =-,∴3m -=.故答案为:3-,3.【点睛】本题主要考查了一元一次方程的运用,熟练掌握根据题意设出未知数求解是解题关键.。

七年级数学上册第三单元重难点知识全汇总

七年级数学上册第三单元重难点知识全汇总

七年级数学上册第三单元重难点知识全汇总第三章一元一次方程3.1 一元一次方程1、方程是含有未知数的等式。

2、方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。

注意:判断一个方程是否是一元一次方程要抓住三点:(1)未知数所在的式子是整式(方程是整式方程);(2)化简后方程中只含有一个未知数;(3)经整理后方程中未知数的次数是1.3、解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

4、等式的性质(1)等式两边同时加(或减)同一个数(或式子),结果仍相等;(2)等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。

注意:运用性质时,一定要注意等号两边都要同时变;运用性质2时,一定要注意0这个数.3.2 、3.3解一元一次方程在实际解方程的过程中,以下步骤不一定完全用上,有些步骤还需重复使用. 因此在解方程时还要注意以下几点:①去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;去分母与分母化整是两个概念,不能混淆;②去括号:遵从先去小括号,再去中括号,最后去大括号;不要漏乘括号的项;不要弄错符号;③移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(移项要变符号)移项要变号;④合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写成连等的形式;⑤系数化为1:字母及其指数不变,系数化成1,在方程两边都除以未知数的系数a,得到方程的解。

不要把分子、分母搞颠倒。

3.4 实际问题与一元一次方程一.概念梳理列一元一次方程解决实际问题的一般步骤是:①审题,特别注意关键的字和词的意义,弄清相关数量关系;②设出未知数(注意单位);③根据相等关系列出方程;④解这个方程;⑤检验并写出答案(包括单位名称)。

二、思想方法(本单元常用到的数学思想方法小结)⑴建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想.⑵方程思想:用方程解决实际问题的思想就是方程思想.⑶化归思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a的形式. 体现了化“未知”为“已知”的化归思想.⑷数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性.⑸分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.三、数学思想方法的学习1. 解一元一次方程时,要明确每一步过程都作什么变形,应该注意什么问题.2. 寻找实际问题的数量关系时,要善于借助直观分析法,如表格法,直线分析法和图示分析法等.3. 列方程解应用题的检验包括两个方面:⑴检验求得的结果是不是方程的解;⑵是要判断方程的解是否符合题目中的实际意义.四、应用(常见等量关系)行程问题:s=v×t工程问题:工作总量=工作效率×时间盈亏问题:利润=售价-成本利率率=利润÷成本×100%售价=标价×折扣数×10%储蓄利润问题:利息=本金×利率×时间本息和=本金+利息。

数学七年级上册第三章知识点

数学七年级上册第三章知识点

数学七年级上册第三章知识点
第三章的主要知识点如下:
1. 同号数的加减:同号数相加(减)的结果仍为同号。

2. 异号数的加减:异号数相加(减)的结果的符号取绝对值较大的数的符号。

3. 数轴上的数:数轴是按照一定比例划分的直线,可以用来表示实数的大小关系。

4. 整数比较:在数轴上,数越大,数所在的位置越向右。

5. 负数:负数是小于零的整数。

6. 负数的表示:可以用带负号的数字表示,如-5,-3等。

7. 相反数:两个数的和为零时,互为相反数。

8. 数量的相反数:表示相反意义的带正负号的数。

9. 相反数的性质:两个数的相反数相加等于零。

10. 原点与坐标轴:原点是数轴上的零点,数轴分为正半轴和负半轴,分别表示正数和负数。

11. 爬虫问题:爬虫可以向上(正方向)和向下(负方向)爬行,根据爬行的时间和速度可以计算爬行的距离。

12. 温度问题:温度可以用摄氏温标和华氏温标表示,不同温标之间的转换可以用一定的公式计算。

以上是第三章的主要知识点,希望对你有帮助。

如有需要进一步了解某个具体知识点,请告诉我。

七年级上册数学三章知识点

七年级上册数学三章知识点

七年级上册数学三章知识点数学作为一门基础学科,是一所学校必修的科目,对于中小学学生来说,数学的学习是很重要的。

而在七年级上册中,数学主要分为三章,在这些章节中我们将学习的知识点就是以下:
第一章:有理数
1. 有理数的概念
有理数由整数和分数组成,可以用数轴表示。

2. 有理数的比较
判断两个有理数的大小,可以进行通分后比较分子大小、相反数大小等方法。

3. 有理数的运算
基本的加、减、乘、除、幂运算,以及括号的运用和策略。

4. 有理数的应用
在实际生活中的应用,例如表示温度和时间差等。

第二章:代数式及其运算
1. 代数式的概念
由数字、字母和运算符号构成的式子。

2. 代数式的运算
包括加、减、乘、除、幂运算以及合并同类项,分配律,消
去公因数等等操作。

3. 代数式的应用
在解决实际问题时,代数式的使用是非常常见的,如解方程,统计,图形。

第三章:图形与分数
1. 直线,线段及其分类
直线是无限延伸的,线段是有限长的,两者的分类以及平行、垂直线的关系。

2. 三角形及其分类
基本性质、分类、三角形内角的求法、三角形面积以及在三
角形中的运用。

3. 直角三角形及其应用
直角三角形的三边及其性质,在计算中应用三角形比的定义等。

4. 分数的运算
分数加减乘除,分数大小的比较及简化分数。

以上是在七年级数学课程的三个章节当中所涵盖的知识点,通
过学习这些知识点,我们将掌握有关数学的基本概念、基本原理、应用解决问题的方法,也为在以后的更深入学习奠定了坚实的基础,希望在今后的学习中获得更好的成绩。

初一数学上册第三章知识点总结

初一数学上册第三章知识点总结

初一数学上册第三章知识点总结第三章一元一次方程*内容是代数学的核心,也是所有代数方程的基础。

丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法。

一.知识框架二.知识概念1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.2.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a0).3.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1 …… (检验方程的解).4.列一元一次方程解应用题:(1)读题分析法:…………多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: …………多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:(1)行程问题:距离=速度时间 ;(2)工程问题:工作量=工效工时 ;(3)比率问题:部分=全体比率 ;(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价折,利润=售价-成本, ;(6)周长、面积、体积问题:C圆=2R,S圆=R2,C长方形=2(a+b),S长方形=ab, C正方形=4a,S正方形=a2,S环形=(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=R2h ,V圆锥= R2h.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010学年广州执信中学初一上学期数学第三章复习资料
班级: 姓名: 学号: 成绩:
一、选择题:(本大题满分30分,每小题3分) 1.方程02
1 ,313
2
,831
,12=+
=-=-=+a y y x x
y x 中,是一元一次方程的有( )
A.1个
B. 2个
C. 3个
D. 4个
2.若m 使得代数式2)35(1--m 取得最大值,则关于x 的方程54320m x -=+的解是( ) A.7-
B.7
C.
7
1 D.7
1-
3.一项工程,甲单独做需x 天完成,乙单独做需y 天完成,两人合做这项工程所需天数为( ) A.
1x y
+ B.
11x
y
+
C.
1xy
D.
111x y
+
4.一个两位数,个位与十位上的数字之和为12,如果交换个位与十位数字,则所得新数比原数大36,则原两位数为( ) A.39
B.93
C.48 D.84
5.已知方程233
m x x -=+的解满足10x -=,则m 的值是( )
A.6-
B.12- C.6-或12- D.任何数
6.已知当1a =,2b =-时,代数式10ab bc ca ++=,则c 的值为( ) A.12
B.6
C.6-
D.12-
7.某件商品连续两次8折降价销售,降价后每件商品售价为a 元,则该商品每件原价为( ) A.a 64.0元
B.a 44.1元
C.
44
.1a 元 D.
64
.0a 元
8.下面方程变形中,正确的是 ( ) A.
12133=+-
+x x 可变形为63362=+-+x x
B.
12
13
3=+-+x x 可变形为13362=--+x x
C.
362-=+-x 可变形为632+=x
D.
12
.013
.03=--
+x x 可变形为
10
2
10
103
30
10=--
+x x
9.若b a ,互为相反数,0≠a ,则关于x 的一元一次方程0=+b ax 的解是( )
A .1
B .-1
C .-1或1
D .任意有理数
10.聪明中学的“跳蚤市场”里,初一级某班摊位同时卖出两套杯具,每套60元,以成本计算,其中一套盈利50%,另一套亏本20%,则这次交易中该班( )
A .不赔不赚
B .赚20元
C .赚5元
D .赔5元 二、填空题:(本大题满分24分,每小题3分) 11.关于x 的方程0342=--n
x 是一个一元一次方程,则=n _______.
12.关于x 的方程
()11243
6
x x m +=-
+的解是116
-
,则()2002
1
m -=_______.
13.观察一列数: ,13,10,7,4,依此规律,在这一列数中2011出现的位置是第_______个. 14.假定每个工人的工作效率相同,如果x 个工人y 天生产m 支牙刷,那么y 个工人做x 支牙刷要_______天. 15.已知0)2
523(122
=-
-++y x x ,则2010
)
(1xy -的值为 _______.
16.校办厂2009年的产值为a 万元,2010年的产值预计比2009年增长10%,则2010年的产值为_______万元. 17.当x =_______时,代数式
2
1-x 与113
x +-
互为相反数.
18. 甲水池有31吨,乙水池有水11吨,甲池的水每小时流入乙池2吨,_______小时后,甲池的水与乙池的水一样多.
三、解答题(本大题满分46分)
19、解方程:(本题16分,每小题4分)
(1)3467-=+x x (2)x x 3.15.67.05.0-=-
(3)
15142
3=+-
-x x (4)2.15
.02.03
.01.0=+-
--
x x
20.(8分)已知
2
y m m y m +=-.
(1)当4m =时,求y 的值;(2)当4y =时,求m 的值.
21.(10分)列方程解应用题:
(1)某厂要加工一批零件,若6人加工,每人每天生产10个,则需100天才能完成任务。

现在为了赶进度,用20人加工,每人每天生产12个,需要多少天才能完成任务?
(2)A 、B 两地相距50千米,甲从A 地以每小时5千米的速度向B 地行走,乙从B 地以每小时10千米的速度向A 地运动。

若两人恰好在中点相遇,那么乙比甲慢多少小时出发呢?
22.(12分)某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元.为了减少环境污染,市场推出一种叫“CNG ” 改烧汽油为天然气的装置,每辆车改装价格为4000元.公司第一次改装了部分车辆后核算:已改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费用的
20
3,公司第二次再改装同样多的车辆后,所有改装后的车辆每天的燃料费
占剩下未改装车辆每天燃料费用的5
2.问:
(1)公司共改装了多少辆出租车?改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了百分之多少?
(2)若公司一次性全部出租车改装,多少天后就可以从节省的燃料费中收回成本?
11.1 12.-10 13.670 14.
m
x
2
15.0 16.1.1a 17.-1 18. 5
19.(1)3-=x (2)4=x (3)9-=x (4)20
29=x
20. (1)7
16=
y (2)1=m
21.(1)设需要x 天才能完成任务 …………1分 根据题意,得 20×12x=6×10×100 …………2分 解这个方程,得 x=25
…………1分 答:需要25天才能完成任务。

…………1分
(2)设乙比甲慢x 小时出发, …………1分 根据题意,得 5
25010
250⨯=
⨯+
x
…………2分
解这个方程,得 x=2.5 …………1分 答:乙比甲慢2.5小时出发。

…………1分
22. 解:(1)出租车公司每次改装x 辆出租车,改装后每辆的燃料费为y 元,由题意得,
%
4080
4880)(4840220)
2100(805
2)100(8020
32)
2100(8052
2)100(80203=-===-⨯=
-⨯⨯
⎪⎩
⎪⎨

-⨯=-⨯=元用整体代换得y x x x x x xy x xy
(2)设全部改装需要z 天收回成本,由题意得
125
1004000100)4880(=⨯=⨯-z z
答:公司共改装了40辆出租车,改装后的每辆出租车平均每天的燃料费比改装前的燃料费
下降了40%.
全部改装需要125天收回成本.。

相关文档
最新文档