数学建模logistic人口
基于logistic模型对中国未来人口的预测分析
基于logistic模型对中国未来人口的预测分析随着中国经济和社会的快速发展,人口问题一直是备受关注的话题之一。
中国正从一个人口大国向老龄化社会转型,这对中国的经济和社会发展带来了挑战。
因此,对未来人口的预测分析对政府制定相关政策具有重要意义。
首先,我们需要了解logistic模型是如何工作的。
logistic模型是一种广义线性模型。
它使用一个S形函数来描述两个变量之间的关系,这个函数被称为logistic函数,其方程式如下:$y=\frac{1}{1+e^{-ax+b}}$其中,y是因变量,a、b是模型参数,x是自变量。
当x趋近于负无穷时,y趋近于0;当x趋近于正无穷时,y趋近于1。
logistic模型可以用于分析二元分类问题,例如预测人口是否超过一定数量等。
其中,P是人口占比,t是年份,$\alpha$和$\beta$是模型参数。
使用历史人口数据,我们可以通过拟合这个模型来预测未来人口的变化情况。
为了拟合这个模型,我们需要首先收集历史人口数据。
根据中国国家统计局发布的数据,从1949年至今,中国的总人口数量一直在增加。
但是,随着计划生育政策的实施,人口增长率已经逐渐放缓。
因此,我们可以使用过去的数据来拟合这个模型,以预测未来人口的变化趋势。
使用最小二乘法,我们可以求出模型参数$\alpha$和$\beta$。
对于中国未来人口的预测,我们可以将t值设定为未来年份,使用logistic模型得到未来人口占比,并乘以预计总人口数量,即可预测未来人口的数量。
需要注意的是,logistic模型的精确性取决于所采用的数据、变量和参数。
在中国未来人口预测中,我们需要考虑到如下因素:1. 经济发展水平:经济发展水平是人口变化的重要驱动因素。
随着经济水平的提高,人们的生活水平得到提升,对孩子的需求逐渐减少,这会对人口增长率产生影响。
2. 计划生育政策:计划生育政策对人口数量的控制具有重要作用。
政策对于第一胎和第二胎的限制已经大大减少,但对于第三胎及以上仍然存在一定的限制。
人口预测的数学模型与预测方法分析
人口预测的数学模型与预测方法分析人口预测是对未来一定时期内人口数量和结构的变动进行估计和预测的过程。
人口预测在社会经济发展规划、城市规划、教育医疗资源配置等方面具有重要的参考价值。
为了准确预测人口的变动趋势,需要建立合理的数学模型和选择适当的预测方法。
人口预测的数学模型主要包括线性回归模型、指数模型、Logistic模型等。
线性回归模型是一种用来描述两个变量之间线性关系的统计模型,可以用来预测人口随时间的变化。
指数模型假设人口数量按照指数规律增长或减少,适用于人口增长较快的情况。
Logistic模型则适用于人口增长速度放缓后的情况,它是一种描述增长速度逐渐趋近于饱和的模型。
在选择数学模型时,需要综合考虑以下几个因素:人口历史变动趋势、人口自然增长率、人口迁移和流动情况、政策调控等因素。
同时,还需根据实际情况对模型的参数进行合理的设定和修正,以提高预测的准确性。
在预测方法上,常用的有趋势线法、复合增长率法、比较推理法、时间序列分析法和系统动力学方法等。
趋势线法是基于历史数据的发展趋势来进行预测,适用于人口变动趋势比较稳定的情况。
复合增长率法是将历史数据中的增长率按一定规则进行加权平均,再用来推算未来人口的增长率。
比较推理法通过对不同因素的比较和推理,来估计未来人口的变化。
时间序列分析法是根据时间序列数据的历史模式来预测未来的变化趋势。
系统动力学方法则是通过对不同因素的动态关系建立模型,用来探索人口变动的内在机制和规律。
在具体应用时,可以结合不同的数学模型和预测方法,进行多角度的分析和预测。
同时,还需要不断对模型进行修正和优化,以适应不断变化的人口变动趋势和社会经济背景。
此外,还应该注意对预测结果的不确定性进行评估和把握,提供多种可能性的预测结果,为决策者提供科学的参考依据。
基于logistic模型对中国未来人口的预测分析
基于logistic模型对中国未来人口的预测分析随着中国人口的快速增长和老龄化趋势的加剧,人口预测成为了一个重要的研究领域。
在这样的背景下,基于logistic模型的人口预测分析成为了一种广泛采用的方法。
在本文中,我们将介绍logistic模型以及如何使用它来预测中国未来的人口趋势。
Logistic模型是一种经典的数学模型,它常用于描述一种随时间变化的现象。
在人口预测中,logistic模型也可以用来描述人口随时间变化的趋势。
首先,我们需要对logistic模型有一定的了解。
Logistic模型的表达式如下:P(t) = K / (1 + b exp(-r(t-T)))其中,P(t)表示t时刻的人口数量,K表示人口数量的上限,b、r、T分别是与增长速率相关的系数。
Logistic模型的意义在于,当t接近无穷大时,P(t)会趋近于K。
在中国的人口预测中,logistic模型的应用主要分为两步:首先,我们需要拟合一条曲线,以描述人口数量随时间变化的趋势;其次,我们需要使用该曲线来预测未来的人口数量。
对于中国的人口预测,我们可以将logistic模型应用于历史人口数据,然后将该模型应用于未来的人口预测。
以下是中国历史人口数据的示例:| 年份 | 人口数量(单位:亿) ||-----|--------------------|| 1950 | 5.2 || 1960 | 6.7 || 1970 | 8.5 || 1980 | 9.9 || 1990 | 11.2 || 2000 | 12.1 || 2010 | 13.3 || 2020 | 14.4 |使用这些历史数据,我们可以建立一个logistic模型,并使用该模型来预测未来的人口趋势。
在此之前,我们需要先对历史数据进行处理,以便进行拟合和预测。
我们可以将历史数据做如下处理:1. 将人口数量除以10亿,以便人口数量接近1。
2. 将年份减去1950,将起始年份变为0。
基于logistic模型对中国未来人口的预测分析
基于logistic模型对中国未来人口的预测分析中国人口是世界上最多的国家之一,人口数量的变化对中国社会经济的发展具有重大影响。
本文将基于logistic模型对中国未来人口的预测分析进行探讨。
我们需要了解logistic模型的基本原理。
logistic模型是一种常用的人口增长模型,它基于人口增长的两个关键因素:增长速率和容量。
增长速率表示人口每年的增长率,容量表示人口可以达到的最大数量。
logistic模型的基本形式如下:N(t) = K / [1 + (K/N0 - 1) * exp(-r * t)]N(t)表示时间t时刻的人口数量,K表示最大人口容量,N0表示初始人口数量,r表示人口增长速率。
在对中国未来人口进行预测分析时,我们需要确定模型的参数。
初始人口数量可以根据历史数据进行估计。
人口增长速率可以根据过去几十年的人口增长率进行计算。
最大人口容量需要根据中国国情和可持续发展的要求进行估算。
中国的人口增长速率在过去几十年一直处于较高水平,但随着经济社会发展和计划生育政策的实施,人口增长速率逐渐趋缓。
在未来,可以预计中国的人口增长速率将继续下降。
根据logistic模型对中国未来人口的预测分析,可以得出以下结论:随着时间的推移,中国人口数量将继续增长,但增长速率将逐渐减缓。
最终,人口数量将趋于一个稳定的最大容量,同时与资源和环境保持平衡。
需要注意的是,logistic模型是基于过去数据进行的预测分析,未来人口发展受到许多因素的影响,例如经济、政策、社会文化等,这些因素可能会引起人口变动的不确定性。
基于logistic模型的预测分析可以为中国未来人口发展提供一定的指导和参考,但在制定政策和决策时,还需要综合考虑多种因素,并及时更新模型参数,以保证预测结果的准确性和可靠性。
人口指数增长模型和Logistic模型
表1 美国人口统计数据指数增长模型:rt e x t x 0)(=Logistic 模型:()011mrtm x x t x e x -=⎛⎫+- ⎪⎝⎭解:模型一:指数增长模型。
Malthus 模型的基本假设下,人口的增长率为常数,记为r ,记时刻t 的人口为 )(t x ,(即)(t x 为模型的状态变量)且初始时刻的人口为0x ,因为⎪⎩⎪⎨⎧==0)0(x x rxdt dx由假设可知0()rt x t x e = 经拟合得到:}2120010120()ln ()ln ,ln (),,ln rt a y a t a x t x e x t x rt r a x ey x t a r a x =+=⇒=+⇒=====程序:t=1790:10:1980;x(t)=[ ]; y=log(x(t));a=polyfit(t,y,1) r=a(1),x0=exp(a(2)) x1=x0.*exp(r.*t);plot(t,x(t),'r',t,x1,'b') 结果:a =r= x0=所以得到人口关于时间的函数为:0.02140()t x t x e =,其中x0 = , 输入:t=2010;x0 = ;x(t)=x0*exp*t)得到x(t)= 。
即在此模型下到2010年人口大约为 610⨯。
模型二:阻滞增长模型(或 Logistic 模型) 由于资源、环境等因素对人口增长的阻滞作用,人口增长到一定数量后,增长率会下降,假设人口的增长率为 x 的减函数,如设)/1()(m x x r x r -=,其中 r 为固有增长率 (x 很小时 ) ,m x 为人口容量(资源、环境能容纳的最大数量), 于是得到如下微分方程:⎪⎩⎪⎨⎧=-=0)0()1(xx x x rx dt dxm 建立函数文件function f=curvefit_fun2 (a,t)f=a(1)./(1+(a(1)/*exp(-a(2)*(t-1790))); 在命令文件中调用函数文件 % 定义向量(数组) x=1790:10:1990; y=[ 76 ... 92 204 ];plot(x,y,'*',x,y); % 画点,并且画一直线把各点连起来 hold on;a0=[,1]; % 初值% 最重要的函数,第1个参数是函数名(一个同名的m 文件定义),第2个参数是初值,第3、4个参数是已知数据点 a=lsqcurvefit('curvefit_fun2',a0,x,y); disp(['a=' num2str(a)]); % 显示结果 % 画图检验结果 xi=1790:5:2020; yi=curvefit_fun2(a,xi); plot(xi,yi,'r'); % 预测2010年的数据 x1=2010;y1=curvefit_fun2(a,x1) hold off 运行结果: a= y1 =其中a(1)、a(2)分别表示()011mrtm x x t x e x -=⎛⎫+- ⎪⎝⎭中的m x 和r ,y1则是对美国美国2010年的人口的估计。
数学建模人口模型
实验一 人口模型与混沌实验目的1.了解Logistic 模型的基本概念。
2.了解的1(1)n n n x rx x +=-分叉和混沌现象。
3.学习、掌握MATLAB 软件有关命令。
实验步骤及结果1. 根据离散Logistic 模型)t (x )x )t (x (r )t (x x )t (x )t (x m -+=+=+11∆t=0,1,2,…,预测出2005-2011年我国的人口总数,其中r =0.029,=m x1950838861。
实验结果如下图所示:r =0.029,=m x 19508388612. 讨论简化的logistic 迭代方程))t (x )(t (rx )t (x -=+11,对于不同的r 和x0观察数列的收敛情况,分别给出t-x 坐标系下图形。
当x(1)=0.4,r 分别为0.7,1.5,3.2时实验结果如下图所示:3、绘制Feigenbaum 图过程:为了观察r 对迭代格式))t (x )(t (rx )t (x -=+11的影响,将区间(0,4]以步长r ∆离散化。
对每个离散的r 值进行迭代,忽略前50个迭代值,把点5152100(,),(,),,(,)r x r x r x 显示在坐标平面上。
实验结果如下:实验代码:1.x=[2005:1:2011];y(1)=126743;r=0.029;k=1950838861;for i=1:11y(i+1)=y(i)+r*(1-y(i)/k)*y(i); endplot(x,y(6:12),'+');hold on2.x=[1:19];y(1)=0.4;r=3.2;for i=1:18y(i+1)=r*(1-y(i))*y(i);plot(x(i),y(i),'+');hold onendxlabel('t');ylabel('x');title('r=3.2,x(1)=0.4')3.for r=[0.005:0.005:4]x(1)=0.6;t=linspace(r,r,100);for j=1:99x(j+1)=r*x(j)*(1-x(j));endhold onplot(t,x,'r+','markersize',0.5); endxlabel('t');ylabel('x');title('r(0,4),x(0.6)')。
数学建模 人口增长详解
摘要:人口的增长是当前世界上引起普遍关注的问题作为世界上人口最多的国家,我国的人口问题是十分突出的由于人口基数大尽管我国已经实行了20多年的计划生育政策人口的增长依然很快,巨大人口压力会给我国的社会 政治经济医疗就业等带来了一系列的问题。
因此研究和解决人口问题在我国显得尤为重要。
我们经常在报刊上看见关于人口增长预报,说到本世纪,或下世纪中叶,全世界的人口将达到多少亿。
你可能注意到不同报刊对同一时间人口的预报在数字商场有较大的区别,这显然是由于用了不同的人口整张模型计算出来的结果。
人类社会进入20世纪以来,在科学和技术和生产力飞速发展的同时世界人口也以空前的规模增长。
人口每增加十亿的时间,有一百年缩短为十几年。
我们赖以生存的地球已经携带着他的60亿子民踏入下一个世纪。
长期以来,人类的繁殖一直在自然地进行着,只是由于人口数量的迅速膨胀和环境质量的急剧恶化,人们才猛然醒悟,开始研究人类和自然的关系、人口数量的变化规律以及如何惊醒人口控制等问题。
本文件里两个模型: (1):中国人口的指数增长模型,并用该模型进行预测,与实际人口数据进行比较。
(2):中国人口的Logistic 图形,标出中国人口的实际统计数据进行比较。
而且利用MATLAB 图形 ,标出中国人口的实际统计数据,并画出两种模型的预测曲线和两种预测模型的误差比较图,并分别标出其误差。
关键词:指数增长模型 Logistic 模型 MATLAB 软件 人口增长预测1.问题的提出下表列出了中国1982-1998年的人口统计数据,取1982年为起始年(0=t ),1016540=N 万人,200000=m N 万人。
要求:(1)建立中国人口的指数增长模型,并用该模型进行预测,与实际人口数据进行比较。
(2)建立中国人口的Logistic 模型,并用该模型进行预测,与实际人口数据进行比较。
(3)利用MA TLAB 图形,标出中国人口的实际统计数据,并画出两种模型的预测曲线。
Logistic模型的参数估计及人口预测
Logistic模型的参数估计及人口预测一、本文概述本文旨在探讨Logistic模型的参数估计及其在人口预测中的应用。
Logistic模型是一种广泛应用于生物学、生态学、社会科学等领域的统计模型,尤其在人口增长预测中发挥着重要作用。
本文将首先介绍Logistic模型的基本原理和参数估计方法,包括模型的构建、参数求解以及模型的检验与评估。
随后,本文将重点分析Logistic模型在人口预测中的应用。
通过收集相关人口数据,运用Logistic模型进行参数估计,并对未来人口增长趋势进行预测。
本文还将探讨不同参数设置对预测结果的影响,以提高预测的准确性和可靠性。
本文将对Logistic模型在人口预测中的优势和局限性进行分析,并提出相应的改进建议。
通过本文的研究,旨在为人口预测提供更为科学、有效的方法,为政府决策、人口规划和社会经济发展提供有力支持。
二、Logistic模型的基本原理Logistic模型,也称为逻辑增长模型,是一种广泛应用于生态学和人口学等领域的数学模型。
该模型基于生物种群增长规律,尤其是当种群增长受到环境资源限制时的情况。
Logistic模型的基本原理在于它假设种群的增长速度在开始时由于资源充足而迅速增加,但随着种群密度的增加,资源限制和种内竞争导致增长速度逐渐减慢,直到最终种群达到其最大可能规模,即环境容纳量。
\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right) ]其中,(N) 是种群数量,(t) 是时间,(r) 是种群的内禀增长率(即在没有环境限制时的最大增长率),而 (K) 是环境容纳量,即种群数量的最大可能值。
这个模型的核心在于其非线性项 (1 - \frac{N}{K}),它反映了种群增长速度随种群密度的变化。
当种群数量 (N) 远小于环境容纳量 (K) 时,(1 - \frac{N}{K}) 接近1,种群增长迅速。
随着 (N) 接近 (K),这个项趋于0,种群增长速度减慢,最终停止增长。
人口增长logistic模型的拟合1
人口增长logistic模型的拟合李月200911131952谭结200911131959刘延卿200911131915问题摘要关于人口模型的研究,我们已经有很多方法。
这个题目要求我们用LOGISTIC模型来拟合美国人口数据。
了解到LOGISTIC模型的性质和原理之后,我们根据老师给出的数据:分为以下几个步骤来进行估计。
首先,我们把离散的数据全部利用起来,已经知道,LOGISTIC模型中,x’=rx(1-x/k)是关键的函数,我们需要做的事情就是通过离散的数据来估计函数中出现的系数,r以及k,先拟合线性模型un=r-m*yn,其中un= (yn+1-yn)/yn得到r和k=r/m的近似值,我们编写了一个for循环语句,在MATLAB中实现对方程的参数的估计。
其次,我们以此近似值为参数的初值拟合非线性函数y=k/[1+(k/y(0)-1)*exp(-r*t)]需要做的就是能够尽量好的估计参数k,r。
同样我们利用非线性拟合,就可以得到一个更加好的参数估计。
在MATLAB中实现。
最终我们得到结果:(需要完善的部分)1 关键词LOGISTIC模型非线性拟合循环语句参数估计内禀增长率2 问题的重述3 问题的分析问题的关键是要做一个LOGISTIC模型。
在模型的建立中,至关重要的是对参数的估计。
我们知道的LOGISTIC模型,x’=rx(1-x/k)是这个模型的基础,所以我们最重要的任务就是要合理估计参数。
分为以下几个步骤来进行估计。
1我们把离散的数据全部利用起来,已经知道,LOGISTIC模型中,x’=rx(1-x/k)是关键的函数,我们需要做的事情就是通过离散的数据来估计函数中出现的系数,r以及k,2先拟合线性模型un=r-m*yn,其中un= (yn+1-yn)/yn得到r和k=r/m的近似值,我们编写了一个for循环语句,在MATLAB中实现对方程的参数的估计。
3我们以此近似值为参数的初值拟合非线性函数y=k/[1+(k/y(0)-1)*exp(-r*t)]需要做的就是能够尽量好的估计参数k,r。
Logistic人口阻滞增长模型
Logistic 人口阻滞增长模型一、模型的准备阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。
阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降。
若将r 表示为x 的函数)(x r 。
则它应是减函数。
于是有:0)0(,)(x x x x r dtdx== (1)对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即 )0,0()(>>-=s r sxr x r (2)设自然资源和环境条件所能容纳的最大人口数量m x ,当m x x =时人口不再增长,即增长率0)(=m x r ,代入(2)式得mx rs =,于是(2)式为)1()(mx x r x r -= (3)将(3)代入方程(1)得:⎪⎩⎪⎨⎧=-=0)0()1(x x x x rx dtdxm (4)解方程(4)可得:rtm me x xx t x --+=)1(1)(0(5)二、模型的建立我国从1954年到2005年全国总人口的数据如表1总人口 100.1 101.654 103.008 104.357 105.851 107.5 109.3 111.026 112.704年份 1990 1991 1992 1993 1994 1995 1996 1997 1998 总人口 114.333 115.823 117.171 118.517 119.850 121.121 122.389 123.626 124.761 年份 1999 2000 2001 2002 2003 2004 2005 总人口 125.786 126.743 127.627 128.453 129.227 129.988 130.7561、将1954年看成初始时刻即0=t ,则1955为1=t ,以次类推,以2005年为51=t 作为终时刻。
人口增长的Logistic模型分析及其应用资料讲解
人口增长的L o g i s t i c模型分析及其应用人口增长的Logistic模型分析及其应用作者:熊波来源:《商业时代》2008年第27期◆中图分类号:C923 文献标识码:A内容摘要:本文运用迭代的方法计算出人口极限值xm和人口增长率r,用 Logistic模型预测了我国人口未来的发展趋势,并根据预测的结果提出了相应的对策与建议。
关键词:人口 Logistic模型迭代人口增长问题相关研究最早注意人口问题的是英国经济学家马尔萨斯,他在1798 年提出了人口指数增长模型。
这个模型的基本假设是:人口的增长率是一个常数。
记t时刻的人口总数为x(t)。
初始时刻t=0时的人口为x0。
人口增长率为r,r表示单位时间内x(t)的增量与x(t)的比例系数。
那么,时刻t到时刻t+Δt内人口的增量为x(t+Δt)-x(t)=rx(t)Δt。
于是x(t)满足下列微分方程的初值问题,他的解为x(t)=x0ert。
在r>0时,人口将按指数规律增长。
但是不管生物是按算术级数、几何级数还是按指数曲线变化,随着时间增长生物数量将趋于无穷大。
然而,实际情况却不然,实验指出在有限的空间内,一开始生物以较快速度增长,到一定时期生物增长量就会减缓,生物数量趋于稳定。
历史上的人口统计数据也表明,当一个国家的社会稳定时,一定时期内马尔萨斯模型是符合实际的,但是如果时间比较长或社会发生动荡时,马尔萨斯模型就不能令人满意了。
原因是随着人口的增加,自然资源、环境条件等因素对人口增长开始起阻滞作用,因而人口增长率不断下降。
基于以上考虑荷兰生物学家Verhaust对原人口发展模型进行了改造,于1838 年提出了以昆虫数量为基础的Logistic 人口增长模型。
这个模型假设增长率r是人口的函数,它随着x的增加而减少。
最简单的假定是r是x的线性函数,其中r称为固有增长率,表示x→0时的增长率。
由r(x)的表达式可知,x=xm时r=0。
xm表示自然资源条件能容纳的最大人口数。
(完整版)Logistic人口阻滞增长模型
Logistic 人口阻滞增长模型一、模型的准备阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。
阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降。
若将r 表示为x 的函数)(x r 。
则它应是减函数。
于是有:0)0(,)(x x x x r dtdx== (1)对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即 )0,0()(>>-=s r sxr x r (2)设自然资源和环境条件所能容纳的最大人口数量m x ,当m x x =时人口不再增长,即增长率0)(=m x r ,代入(2)式得mx rs =,于是(2)式为)1()(mx x r x r -= (3)将(3)代入方程(1)得:⎪⎩⎪⎨⎧=-=0)0()1(x x x x rx dtdxm (4)解方程(4)可得:rtm me x xx t x --+=)1(1)(0(5)二、模型的建立我国从1954年到2005年全国总人口的数据如表1总人口 100.1 101.654 103.008 104.357 105.851 107.5 109.3 111.026 112.704年份 1990 1991 1992 1993 1994 1995 1996 1997 1998 总人口 114.333 115.823 117.171 118.517 119.850 121.121 122.389 123.626 124.761 年份 1999 2000 2001 2002 2003 2004 2005 总人口 125.786 126.743 127.627 128.453 129.227 129.988 130.7561、将1954年看成初始时刻即0=t ,则1955为1=t ,以次类推,以2005年为51=t 作为终时刻。
中国人口增长预测数学模型
中国人口增长预测数学模型
中国人口增长可以用人口增长率来描述。
人口增长率是指一个国家的出生率、死亡率和移民率产生的净人口变化的比率。
一般来说,一个国家的人口增长率越高,其人口增长速度越快,反之亦然。
由于中国的出生率和死亡率一直在变化,因此需要建立一个数学模型来预测中国的人口增长。
常见的模型有以下几种:
1. 指数模型
指数模型假设人口增长率是一个恒定值,因此未来的人口数量可以通过不断累乘现有人口数量和人口增长率来预测。
这种模型适用于人口增长迅速的情况,但并不适用于中国的情况,因为中国的人口增长率不是恒定的。
2. Logistic 模型
Logistic 模型假设人口增长率随着人口数量的变化而变化,即当人口数量增加到某一点时,人口增长率会逐渐降低。
这种模型适用于人口数量增长迅速的情况,适用于中国的情况。
3. 随机游走模型
随机游走模型假设人口增长率是一个随机变量,可以根据历史发展趋势来预测未来的变化。
这种模型适用于人口数量变化不规律的情况,但对于中国这样的大国而言,其复杂性较高,难以建立准确的模型。
总之,预测中国的人口增长需要考虑许多因素,例如出生率、死亡率、移民率等等,而且这些因素也会受到其它因素的干扰,例如经济、社会政治等因素。
因此,建立准确的模型需要大量的数据和正确的假设。
数学建模论文-基于GM(1-1)模型与Logistic模型的中国人口分析
2011高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):西安理工大学参赛队员(打印并签名) :1.2.3._____________________________________________ 指导教师或指导教师组负责人(打印并签名):日期: 2011年7 月24日赛区评阅编号(由赛区组委会评阅前进行编号):2011高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):基于GM(1,1)模型与Logistic模型的中国人口分析摘要人口预测在社会经济实践中占有十分重要的地位。
当前,我国正处于全面建设小康社会的重要时期,而且未来几十年是我国进行社会主义市场经济建设的关键时期,人口增长的稳定与否必将关系到我国经济建设的成败。
因此认识我国人口数量的变化规律,建立人口模型,做出较准确的预报是有效控制人口增长的前提,从而在理论上对人口的控制提供理论依据,这对于我们这样一个人口大国将有着非常重大的意义。
要解决这个问题,寻找适当的人口增长模型,并确立模型的相关参数是非常关键的。
数学建模在人口统计学中的应用
数学建模在人口统计学中的应用人口统计学是研究人口数量、结构和变动等方面的学科,它对于社会发展、经济增长以及政策制定都具有重要意义。
而数学建模则是利用数学模型对现实问题进行描述、分析和预测的一种方法。
本文将介绍数学建模在人口统计学中的应用,并探讨其对人口问题的解决和决策制定的重要性。
一、人口增长模型人口增长是人口统计学中的一个核心研究内容,数学建模可以帮助我们理解和预测人口增长的趋势。
常见的人口增长模型有指数增长模型、Logistic增长模型等。
指数增长模型假设人口增长速率与当前人口数量成正比,可以用如下的微分方程来描述:$$\frac{dN}{dt} = rN$$其中,N表示人口数量,r表示人口增长率。
利用这个模型,我们可以预测未来人口数量的变化趋势,从而为人口规划与管理提供依据。
二、人口结构模型人口结构指的是不同年龄、性别和种族等群体在人口总数中所占的比例和分布情况。
人口结构模型可以帮助我们分析和预测不同人口群体的变化趋势,从而为社会政策制定提供科学依据。
其中,常见的人口结构模型有Alvarez-Mathieson模型和Lee-Carter模型等。
Alvarez-Mathieson模型基于生态位模型,通过设定生育率、死亡率和迁移率等参数,来预测不同年龄和性别群体的人口数量。
这种模型可以帮助我们评估不同年龄段人口对经济、教育、医疗等方面的需求,为社会资源的分配提供依据。
Lee-Carter模型则是基于周期性的波动来描述人口结构变化的。
通过将人口死亡率和出生率等数据作为输入,可以预测未来不同年龄群体的人口数量。
这种模型在养老金制度、医疗保健等方面的政策制定中有着重要的应用价值。
三、人口流动模型人口流动是指人口从一个区域或国家向另一个区域或国家的迁移和流动。
人口流动模型可以帮助我们分析和预测人口迁移的趋势,为政策制定提供参考。
常见的人口流动模型有迁移概率模型和重力模型等。
迁移概率模型主要使用迁移率数据来预测人口流动的规模和方向。
数学建模在人口增长中的应用
数学建模在人口增长中的应用人口增长一直是全球面临的重要问题之一。
面对人口的迅速增加,我们需要寻找有效的方法来预测和控制人口的增长趋势。
数学建模作为一种重要的工具,可以帮助我们分析和理解人口增长的规律,并提供科学的解决方案。
1. 人口增长模型人口增长可以使用不同的数学模型来描述和预测。
其中,最常用的人口增长模型之一是指数增长模型。
指数增长模型假设人口增长的速度与当前人口数量成正比。
简单来说,人口数量每过一段时间就会翻倍。
这种模型可以用以下公式表示:N(t) = N(0) * e^(rt)其中,N(t)是时间t时刻的人口数量,N(0)是初始人口数量,r是人口增长率,e是自然对数的底数。
2. 人口增长趋势预测利用指数增长模型,我们可以根据过去的人口数据来预测未来的人口增长趋势。
通过对已有数据进行拟合和分析,可以确定合适的增长率,并利用该增长率来预测未来的人口数量。
除了指数增长模型,还有其他一些常用的人口增长模型,如Logistic模型和Gompertz模型。
这些模型考虑了人口增长的上限和减缓因素,更符合实际情况。
3. 人口政策制定数学建模不仅可以帮助我们预测人口增长趋势,还可以为人口政策的制定提供支持。
通过建立人口增长模型,我们可以模拟不同的政策措施对人口增长的影响。
例如,我们可以模拟采取计划生育政策后的人口增长情况,评估政策的有效性和可行性。
此外,数学建模还可以用于评估不同人口政策的长期影响。
通过引入更多因素,如医疗水平、经济发展和教育水平等,我们可以建立更为复杂的人口增长模型,从而更全面地评估政策的效果和潜在风险。
4. 人口分布和迁移模型除了人口增长模型,数学建模还可以用于研究人口分布和迁移的模型。
通过建立人口分布模型,我们可以分析不同地区人口的分布规律和变化趋势。
这些模型可以为城市规划、资源配置和社会发展提供重要参考。
在人口迁移方面,数学建模可以帮助我们研究人口的流动和迁移规律。
例如,我们可以建立迁移网络模型来描述不同地区之间的人口流动情况,从而预测人口迁移的趋势和影响因素。
数学建模人口模型
中国人口增长预测模型班级:071221姓名:***学号:********摘要以2010年11月1日零时为标准时点,中国大陆31个省、自治区、直辖市和现役军人的人口共13.397亿。
13亿是一个忧虑的数字。
13亿人要吃饭、要穿衣、要上学、要就业、要住房……,消费的需求乘以13亿,就是一个庞大的数目,而我国的耕地、水资源、森林以及矿产资源本来就稀缺,再除以13亿,就少得可怜。
平均每人耕地面积只有1.4亩,水资源只相当于世界人均水平的1/4…….、中国是世界上人口最多的发展中国家,人口多,底子薄,人均耕地少,人均占有资源相对不足,是我国的基本国情,人口问题一直是制约中国经济发展的首要因素。
当前中国的人口存在着最为明显的三大特点:(1)人口基数大,人口数量的控制难度仍很大。
(2)人口整体素质不高,特别是县域及以下农村人口素质普遍偏低。
(3)人口结构不合理,城乡差别、地区差别和人口素质差别很大。
人口数量、质量和年龄分布直接影响一个地区的经济发展、资源配置、社会保障、社会稳定和城市活力。
在我国现代化进程中,必须实现人口与经济、社会、资源、环境协调发展和可持续发展,进一步控制人口数量,提高人口质量,改善人口结构。
对此,单纯的人口数量控制(如已实施多年的计划生育)不能体现人口规划的科学性。
政府部门需要更详细、更系统的人口分析技术,为人口发展策略的制定提供指导和依据。
我国是世界第一人口大国,地球上每九个人中就有二个中国人,在20世纪的一段时间内我国人口的增长速度过快,如下表:有效地控制人口的增长,不仅是使我国全面进入小康社会、到21世纪中叶建成富强民主文明的社会主义国家的需要,而且对于全人类社会的美好理想来说,也是我们义不容辞的责任。
长期以来,对人口年龄结构的研究仅限于粗线条的定性分析,只能预测年龄结构分布的大致范围,无法用于分析年龄结构的具体形态。
随着对人口规划精准度要求的提高,通过数学方法来定量计算各种人口指数的方法日益受到重视,这就是人口控制和预测。
(完整版)数学建模logistic人口增长模型
Logistic 人口发展模型一、题目描述建立Logistic 人口阻滞增长模型 ,利用表1中的数据分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测我国未来50年的人口情况.并把预测结果与《国家人口发展战略研究报告》中提供的预测值进行分析比较。
分析那个时间段数据预测的效果好?并结合中国实情分析原因。
表1 各年份全国总人口数(单位:千万)二、建立模型阻滞增长模型(Logistic 模型)阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。
阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降。
若将r 表示为x 的函数)(x r 。
则它应是减函数。
于是有:0)0(,)(x x x x r dt dx== (1)对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即 )0,0()(>>-=s r sxr x r (2) 设自然资源和环境条件所能容纳的最大人口数量mx ,当mx x =时人口不再增长,即增长率)(=m x r ,代入(2)式得m x rs =,于是(2)式为)1()(mx x r x r -= (3)将(3)代入方程(1)得:⎪⎩⎪⎨⎧=-=0)0()1(x x x x rx dtdxm (4)解得:rt mme x x x t x --+=)1(1)(0(5)三、模型求解用Matlab 求解,程序如下: t=1954:1:2005;x=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756];x1=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988];x2=[61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756];dx=(x2-x1)./x2; a=polyfit(x2,dx,1);r=a(2),xm=-r/a(1)%求出xm 和rx0=61.5;f=inline('xm./(1+(xm/x0-1)*exp(-r*(t-1954)))','t','xm','r','x0');%定义函数 plot(t,f(t,xm,r,x0),'-r',t,x,'+b');title('1954-2005年实际人口与理论值的比较') x2010=f(2010,xm,r,x0) x2020=f(2020,xm,r,x0) x2033=f(2033,xm,r,x0)解得:x(m)= 180.9516(千万),r= 0.0327/(年),x(0)=61.5得到1954-2005实际人口与理论值的结果:根据《国家人口发展战略研究报告》我国人口在未来30年还将净增2亿人左右。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模logistic人口增长模型Logistic人口发展模型一、题目描述建立Logistic人口阻滞增长模型,利用表1中的数据分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测我国未来50年的人口情况.并把预测结果与《国家人口发展战略研究报告》中提供的预测值进行分析比较。
分析那个时间段数据预测的效果好?并结合中国实情分析原因。
年份195419551956195719581959196019611962总人口60.2 61.5 62.8 64.6 66.0 67.2 66.2 65.9 67.3年份1963 1964 1965 1966 1967 1968 1969 1970 1971总人口69.1 70.4 72.5 74.5 76.3 78.5 80.7 83.0 85.2年份1972 1973 1974 1975 1976 1977 1978 1979 1980总人口87.1 89.2 90.9 92.4 93.7 95.0 96.259 97.5 98.705年份1981 1982 1983 1984 1985 1986 1987 1988 1989总人口100.1 101.654 103.008 104.357 105.851 107.5 109.3 111.026 112.704 年份1990 1991 1992 1993 1994 1995 1996 1997 1998总人口114.333 115.823 117.171 118.517 119.850 121.121 122.389 123.626 124.761 年份1999 2000 2001 2002 2003 2004 2005总人口125.786 126.743 127.627 128.453 129.227 129.988 130.756表1 各年份全国总人口数(单位:千万)二、建立模型阻滞增长模型(Logistic模型)阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。
阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降。
若将r 表示为x 的函数)(x r 。
则它应是减函数。
于是有:0)0(,)(x x x x r dtdx== (1)对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即)0,0()(>>-=s r sxr x r (2)设自然资源和环境条件所能容纳的最大人口数量mx ,当mx x =时人口不再增长,即增长率)(=m x r ,代入(2)式得mx r s =,于是(2)式为)1()(mx x r x r -= (3)将(3)代入方程(1)得:⎪⎩⎪⎨⎧=-=0)0()1(x x x x rx dtdxm(4)解得:rt mme x x x t x --+=)1(1)(0(5)三、模型求解用Matlab 求解,程序如下: t=1954:1:2005;x=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756];x1=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.7 43,127.627,128.453,129.227,129.988];x2=[61.5,62.8,64.6,66,67.2,66.2,65.9,67.3 ,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85 .2,87.1,89.2,90.9,92.4,93.7,95,96.259,97. 5,98.705,100.1,101.654,103.008,104.357,10 5.851,107.5,109.3,111.026,112.704,114.333 ,115.823,117.171,118.517,119.85,121.121,1 22.389,123.626,124.761,125.786,126.743,12 7.627,128.453,129.227,129.988,130.756];dx=(x2-x1)./x2;a=polyfit(x2,dx,1);r=a(2),xm=-r/a(1)%求出xm和rx0=61.5;f=inline('xm./(1+(xm/x0-1)*exp(-r*(t-1954 )))','t','xm','r','x0');%定义函数plot(t,f(t,xm,r,x0),'-r',t,x,'+b');title('1954-2005年实际人口与理论值的比较')x2010=f(2010,xm,r,x0)x2020=f(2020,xm,r,x0)x2033=f(2033,xm,r,x0)解得:x(m)= 180.9516(千万),r= 0.0327/(年),x(0)=61.5得到1954-2005实际人口与理论值的结果:根据《国家人口发展战略研究报告》我国人口在未来30年还将净增2亿人左右。
过去曾有专家预测(按照总和生育率 2.0),我国的人口峰值在2045年将达到16亿人。
根据本课题专家研究,随着我国经济社会发展和计划生育工作加强,20世纪90年代中后期,总和生育率已降到1.8左右,并稳定至今。
实现全面建设小康社会人均GDP达到3000美元的目标,要求把总和生育率继续稳定在1.8左右。
按此预测,总人口将于2010年、2020年分别达到13.6亿人和14.5亿人,2033年前后达到峰值15亿人左右(见图1)。
劳动年龄人口规模庞大。
我国15-64岁的劳动年龄人口2000年为8.6亿人,2016年将达到高峰10.1亿人,比发达国家劳动年龄人口的总和还要多。
在相当长的时期内,中国不会缺少劳动力,但考虑到素质、技能等因素,劳动力结构性短缺还将长期存在。
同时,人口与资源、环境的矛盾越来越突出。
而据模型求解:2010年人口:x(2010)= 137.0200(千万)专家预测13.6亿误差为0.7%2020年人口:x(2020)= 146.9839(千万)专家预测14.5亿误差为1.3%2033年人口:x(2033)= 157.2143(千万)专家预测 15亿误差为4.8%2045年人口:x(2045)= 164.6959(千万)专家预测 16亿误差为4.1%五、预测1. 1954-2005总人口数据建立模型:r=0.0327 xm=180.95162010年人口:x(2010)= 137.0200(千万)专家预测13.6亿误差为0.7%2020年人口:x(2020)= 146.9839(千万)专家预测14.5亿误差为1.3%2033年人口:x(2033)= 157.2143(千万)专家预测 15亿误差为4.8%2045年人口:x(2045)= 164.6959(千万)专家预测 16亿误差为4.1%2. 1963-2005总人口数据建立模型:r=0.0493 xm=150.52612010年人口:x(2010)= 134.1612(千万)专家预测13.6亿误差为1.4%2020年人口:x(2020)= 140.0873(千万)专家预测14.5亿误差为3.4%2033年人口:x(2033)= 144.8390(千万)专家预测 15亿误差为3.4%2045年人口:x(2045)= 147.3240(千万)专家预测 16亿误差为7.6%3.1980-2005总人口数据建立模型:r=0.0441 xm=156.32972010年人口:x(2010)= 135.2885(千万)专家预测13.6亿误差为0.5%2020年人口:x(2020)= 142.1083(千万)专家预测14.5亿误差为2.0%2033年人口:x(2033)= 147.9815(千万)专家预测 15亿误差为1.3%2045年人口:x(2045)= 151.3011(千万)专家预测 16亿误差为5.4%总体来看,1980-2005这一组数据拟合出的人口模型比较好,即与已有数据吻合,又与专家预测误差较小。
从历史原因来分析:1954年之后的1959-1961年间,有三年自然灾害故而使得实际人口数据与估计有所偏颇。
1960年之后为过渡时期。
1983年之后开始实施“计划生育政策”,一直至今,所以1980-2005年间的数据与预测分析最好。