SPSS数据分析——农民人均生活收入及消费支出分析资料

合集下载

spss统计分析三大检验回归诊断因子分析知识

spss统计分析三大检验回归诊断因子分析知识

• 旋转后的各个因子 的含义更加突出。 每个公因子都有反 映几个方面的变动 情况。
• 第一个公因子反映 交大载荷的有外商、 国有、港澳台、股 份制、集体经济单 位;第二个有联营 经济单位;第三个 则是其他经济单位。
• 该表列出来采用回 归法估计得因子得 分系数。根据表中 的内容可写出因子 得分系数。
实例分析:全国各地区不同所有制单位平均 收入排名
• 下图是全国各地区不同所有制单位平均收入情况,具体包 括国有经济单位、集体经济单位、联营经济单位等7个部 分。利用主成分分析探讨各地区按所有制类别分类的排名。
• 进行因子分析前,可以 计算相关系数矩阵、巴 特李特球度检验和KMO 检验等方法来检验候选 数据是否适合采用因子 分析。
因子分析:主成分分析的内在原理和过程
• 方法概述:因子分析法就是从研究变量内部相关的依赖关系出发,把 一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量 统计分析方法。
• 基本思想:对原始的数据进行分类归并,将相关比较密切的变量分别 归类,归出多个综合指标,这些综合指标互不相关,即它们所综合的 信息互相不重叠。这些综合指标就称为因子或公共因子,就能相对容 易地以较少的几个因子反映原资料的大部分信息。
模型汇总即对方程拟合情况的描述, R方就是自变量所能解释的方差在 总方差中所占的百分比,值越大说 明模型的效果越好。案例计算的回 归模型中R方等于0.994,模型拟合 效果较好。
• 方差分析表是对 回归模型进行方 差分析的检验结 果,主要用于分 析整体模型的显 著性。可以看到
方差分析结果中F 统计量等于4123, 概率p,0.000小于 显著性水平0.05, 所以该模型是有 统计学意义的, 人均可支配收入 与人均消费性支 出之间的线性关

计量经济学农村人均生活消费支出与农村人均收入关系的计量分析

计量经济学农村人均生活消费支出与农村人均收入关系的计量分析

计量经济学农村人均生活消费支出与农村人均收入关系的计量分析文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]我国农村人均生活消费支出与农村人均收入关系的计量分析摘要:增加农民收入是我国扩大内需的关键,本文运用2007年我国农村人均生活消费支出与农村人均收入的数据,运用异方差的相关知识进行计量分析,通过建立回归模型的基本操作过程和借助于统计软件,建立我国农民人均生活消费支出的初步模型,以便更好的了解我国农村居民的消费支出与人均收入的关系。

根据《2007年中国统计年鉴》的数据,对农民人均生活消费支出做了回归分析,并得出了系列结论。

关键词:农村人均消费支出一元线性回归异方差一、问题提出我国是一个大国,至今仍有9亿农村,占全国人口总数的70%,农民是我国最大的消费群体,农村消费能力的提升直接关系到国民的全局。

从农村看,中国有近六成人口(约8亿)生活在农村。

农村城镇化的进程对经济增长的带动作用是非常明显的,世界上还没有哪个国家有规模如此巨大的城镇化。

农村居民的收入虽然低于城市居民,但是基数巨大,且农村人口的收入也在稳定增长。

据测算,目前1个城镇居民的消费水平大体相当于3个农民的消费;城市化率提高1个百分点,就会有100万~120万人口从农村到城市。

由于城市人口的消费是农村的~3倍,约拉动最终消费增长个百分点。

随着经济的发展,我国农民的消费水平和结构也发生了很大变化,农民生活水平的提高和消费的增加对于实现国民经济又好又快发展、正确处理好内需和外需的关系至关重要。

但从总体来看,农民消费水平仍然较低,显示有的地区都不及城市居民人均消费支出的三分之一。

而且消费结构不合理,局限于食品类等生存基本需求品,消费在衣着装饰等方面的极少。

而影响农民消费水平的根本原因是农民的收入。

本文主要研究收入对支出的影响。

二、经济理论我国是发展中的农业大国,全面建设小康目标能否实现,重点、难点在于提高农村居民的人均收入。

SPSS数据分析:我国各省城镇和农村居民人均收入数据分析

SPSS数据分析:我国各省城镇和农村居民人均收入数据分析

2010年我国各省城镇与农村居民人均收入数据分析学院工商管理专业班级人力资源0910学生姓名赵飞飞学号0802091033一、选题理由:在我国,城乡收入差距一直是国家和社会公众关注的热点问题。

城乡收入差距问题关系到民生,关系到社会主义和谐社会的建设和发展,关系到社会主义市场经济的发展和完善。

本次调研的数据来自国家统计局发布的2010年城镇与农村人均收入水平,目的是通过SPSS软件进行数据分析,对我国2010年城乡收入情况有一个全面细致的认识。

二、原始数据资料(2010年城乡居民人均收入)从表中可以看出,在经济平稳较快增长、社会保障进一步加强以及各项惠农政策贯彻落实到位等积极因素作用下,2010年各地区城乡居民收入继续稳定增加。

全年城镇居民和农村居民人均纯收入分别为19109 元和5919 元,增幅分别为11.3%和14.9%,2010 年农村居民实际收入增幅首次高于城镇居民实际收入增幅。

但是,一方面,不管是城镇还是农村,各省份之间的差距还比较大。

尤其像上海、北京、浙江等比较发达的省市,人均收入非常高;而像西藏、青海、甘肃这样的省份,人均收入又非常的低。

另一方面,每个省份的城乡收入差距也比较大。

三、SPSS统计数据分析城镇人均收入分为4组:第1组10000元—15000元;第2组15000元——20000元;第3组20000元——25000元;第4组25000元以上。

农村人均收入分为3组:第1组0元——5000元;第2组5000元——10000元:第3组10000元以上。

1.城镇人均收入和农村人均收入水平分布状况分析(1)城镇人均收入依据表格,2010年,全国31个省市(除港、澳、台地区)中,城镇人均收入在10000—15000元的有6个,15000—20000元的有18个,20000—25000元的有4个,25000元以上的有3个。

从以上数据可以得出,各省市城镇人均收入水平集中在15000—20000元这个区间,说明整体水平都比较高。

农民收入问题调查报告精选

农民收入问题调查报告精选

农民收入问题调查报告精选农民收入问题调查报告篇1一、农民收入状况分析1.农村土地利用率低,创造的价值少种田收益少,土地利用率低。

由于生产成本过高,生产的产品价格低,90%的农民认为种地越来越不合算,所以农民种地的进取性不高。

今年状况稍有好转。

农村土地利用率低,所利用的土地创造的价值很少。

农民大多从田间收入一些传统的粮食作物,从单位面积土地收益来看,除去成本以后,所剩不多。

2.农民实际收入低调查结果显示,农民的实际收入很低,人均年节余仅125元。

按家庭收入有否节余分布看,无节余甚至是入不敷出的农户比例占61%,收入高的农户集中在少数。

有33%的农户基本无节余,每年的收支勉强能持平。

在无节余的农户中28%的农户则是每年辛苦劳动不仅仅无剩余,反而要靠借款、欠债维持生计。

这部分农户中,约有8%的家庭是因为家中有孩子上大学的费用过多而造成负债;而剩下的20%的家庭的情景则让人心痛:家中没有象样的家具,房子低矮、漆黑,有许多人还表示因为缺钱,除非万不得已是不会上医院看病的。

节余的农户占39%,其中人均节余额在500元以上的农户比例为6%;人均节余额在200―500元的农户比例为9%;剩下的24%的农户人均节余额都在200元以内。

3.农产品转化率低、加工增值少农产品商品转化率低。

调查结果证明,农民生产的农产品作为商品部分的(占农产品总量的28%)是自我食用部分(占农产品总量的72%)的约13。

农产品加工增值少。

对于出售的产品,95%无任何加工而直接销售。

在5%的加工部分,加工程度很低,如将黄豆加工成豆腐,将大米加工成年糕等,创造的农产品附加值少。

4.农村劳动力就业机会少,外出打工收入低调查中发现,农村劳动力就业面临困境:一是农村劳动力已经出现了较大的剩余。

尤其是在以产水稻为主的江夏区大桥乡,村民们说:“我们每年就忙那么几阵子,合起来也就两三个月吧。

”二是农民在非农领域就业难。

在所调查的地区,乡镇企业数量少、规模小、不景气,吸纳剩余劳动力的容量有限;农民自身资金积累少,缺乏技术,做生意、办工厂困难很大。

SPSS聚类分析实验报告

SPSS聚类分析实验报告

SPSS聚类分析实验报告摘要:本实验旨在利用SPSS软件进行聚类分析,并通过实验结果分析数据的分布情况,揭示数据中的隐含规律。

通过聚类分析,我们将数据样本划分为不同的类别,以便更好地理解数据的特征、相似性以及群组之间的差异。

实验结果表明,SPSS软件在聚类分析方面具有较高的可靠性和准确性,能够有效地提取数据的特征和隐含信息,为数据分析提供有力支持。

1.引言2.实验方法2.1数据收集与准备本实验使用到的数据集是从公开渠道获取的一份包含各个地区收入、消费、教育等特征的数据集。

为了保护数据安全和隐私,将被分析的数据进行了匿名化处理。

2.2SPSS操作步骤(1)导入数据集:将数据集导入SPSS软件,并进行数据检查和处理,确保数据的完整性和准确性。

(2)选择合适的聚类算法:根据实验目的和数据特点选择适合的聚类算法,这里选择了k-means算法作为聚类算法。

(3)设置聚类参数:设置聚类的类别数、迭代次数等参数,以得到最优的聚类结果。

(4)进行聚类分析:运行聚类分析模块,观察聚类结果和聚类中心的分布情况。

(5)结果解释与分析:根据聚类结果,对不同类别的数据进行特征分析和差异比较,以更好地理解数据的特点和分布规律。

3.实验结果与分析通过SPSS软件进行聚类分析,得到了数据样本的聚类结果。

根据平均轮廓系数和间隔分析等指标,确定了最优的聚类类别数,并得到了每个类别的聚类中心和分布情况。

3.1聚类类别数的确定为了确定合适的聚类类别数,使用平均轮廓系数方法和间隔分析方法进行评估。

通过计算不同聚类类别数下的平均轮廓系数和间隔分析值,选择具有最大平均轮廓系数和最小间隔分析值的类别数作为最优的聚类类别数。

经过计算分析,确定了聚类类别数为33.2聚类结果与分析根据聚类类别数为3的聚类结果,将数据样本分为了三组。

分别对每组数据进行了特征分析和差异比较。

3.2.1类别1:高收入、高教育水平、低消费该类别的个体具有较高的收入水平和教育水平,但消费水平较低。

我国城镇居民人均消费的SPSS统计分析

我国城镇居民人均消费的SPSS统计分析

2013年我国城镇居民人均消费的SPSS 统计分析一、搜集到的2013年我国31个城市城镇居民人均消费水平的数据二、数据来源:国家统计局对数据的基本分析在数据文件建立好后,通常还需要对待分析的数据进行必要的预加工处理,这是数据分析过程中不可缺少的一个关键环节.(一)、对数据按人均消费(expend )进行降序排列 操作步骤:(1):选择“数据”→“排序个案”菜单项(2):将“人均消费(expend )”选入“排序依据”列表框,选中“降序”(3):点击“确认”按钮,生成如下降序排列的数据集由数据的降序排列可以看出,全国只有上海、北京、广东等九个城市的城镇人均消费在全国城镇人均消费水平以上.(二)、作出人均收入和人均消费的直方图操作步骤:(1):选择“图形”,打开“图表构建程序”菜单项(2):从“库”中选择“直方图”将其拉入“图表预览使用数据实例” (3):将变量“地区”设置为x 轴,将“人均收入”和“人均消费”设置为y 轴(4):点击“确认”按钮,即生成如下直方图通过一个复合条形图,可以很明确的发现我国城镇居民生活水平存在很大的地区差异,地区发展很不平衡,从图中的生活消费支出和人均收入来看,北京,上海,浙江这些省市城镇居民消费水平最高,人均收入也是最高的,各省市的城镇居民消费水平差异较大,大多数省份城镇居民人均消费集中在15000元左右. (三)、对数据按照人均消费作出直方图,以统计我国农村人均消费的水平 1、首先对数据分组,分组数目的确定. 按照Sturges 提出的经验公式来确定组数K,K=1+2lg lg n,计算得组数为6. 2、确定组距组距=(最大值-最小值)/组数=()/6=,可近似取值为元.操作步骤:(1):选择“转换”→“可视离散化”菜单项,将“人均消费”选入“要离散的变量”列表框中,单击“继续”按钮进入主对话框.(2):单击“生成分割点”按钮,设定分割点数量为6,宽度为,可见系统会自动会填充第一个分割点的位置为,单击“应用”返回到主对话框. (3):此时可以看到下部数值标签网格里的“值”列已被自动填充,单击“生成标签”按钮,是标签列也得到自动填充. (4):将离散的变量名设定为expendNew.(5):单击“确定”按钮.3、频数分析操作步骤:(1):选择“分析”→“描述统计”→“频率”,打开频率对话框.(2):选定“expendNew”,点击“图表”,选择“条形图”点击继续.由上图的频数分析可以看出,我国2013年城镇居民人均消费支出集中在第二组和第三组,大约占到百分之七十.由于在表格中不存在缺失值,因此频数分布表中的百分比和有效百分比相同.从此次分析中可以看出,我国城镇家庭居民人均消费的总体水平比较集中,大约在12000元--18000元之间,还有少数省市的消费水平处在中等阶段,而有上海、北京、浙江等一些经济较发达的地区的城镇家庭居民人均消费达到了21000元以上.三、对数据的回归分析(一)、作出人均收入与消费支出散点图,以观察他们的线性关系如何操作步骤:(1):选择“图形”,打开“图表构建程序”菜单项(2):从“库”中选择“散点图”将其拖入“图表预览使用数据实例”(3):将“人均收入”选定为x轴,将“人均消费”选定为y轴(4):点击“确认”生成如下散点图由散点图可以看出,人均消费Y和人均收入X大概呈一元线性关系,因此可以建立一元线性模型进行回归分析.(二)假设回归模型为Y=a+b X,其中,Y表示城镇人均消费支出,为被解释变量,X表示人均收入,为解释变量,b为回归系数.操作步骤:(1)选择“分析”→“回归”→“线性”菜单项,打开“线性回归”对话框.(2)将“人均消费”选入“因变量”列表框,将“人均收入”选入“自变量”列表框.(3)单击“确定”按钮.得到如下(1)、(2)、(3)、(4)四张表格,依次分析如下:表(1):移入/移出的变量从上表可以看出,放入模型的变量只有一个即“人均收入”,选择变量的方法为强行进入法,也就是说将所有的自变量都放入模型中,模型的因变量为“人均消费”.表(2):模型汇总以知道相关系数R=,决定系数2R=,调整决定系数2R=,和回归系数的标准误=.由于决定系数接近于1,说明模型的拟合程度较好.人均消费Y=+人均收入X上述回归方程给出了如下信息:2013年中国城镇居民人均可支配收入增加1元,人均消费支出增加元.四、单样本的T检验(一):由频数分析可知,分组后,全国31个省市的城镇家庭居民平均每人生活消费支出合计,大约有23个城市都集中在第一组,数额主要——元之间,其中在 - 之间的占到了百分之四十,因此可推断,全国农村家庭居民平均每人生活消费支出的平均数应该在元之间,假设为18000元,由于该问题涉及的是单个总体,且要进行总体均值检验,同时农村家庭居民平均每人消费的总体可近似认为服从正态分布,因此,应采用单样本t检验来分析推断全国农村家庭居民人均消费的平均值是否为18000元.分析结果如下:(二):操作步骤:1、选择“分析”→“比较均值”→“单样本天t检验”菜单项,打开“单样本t检验”对话框如下图所示:2、单击“确定”按钮.生成如下两张图表:表(1):One-Sample StatisticsN Mean Std. Deviation Std. Error Mean人均消费32表(2):由表(2)为单样本t检验的分析结果,第一行注明了用于比较的假设总体均数为18000,下面从左到右依次为t值、自由度、p值、两均数的差值、差值.根据上面的检测结果t=,p=,由于p>,所以不能拒绝原假设,可以认为人均消费水平在18000元.同时,可知全国城镇居民2013年人均消费在95%的置信水平下的置信区间为:(,).五、非参数检验——多配比样本分参数检验数据中我国城镇家庭居民人均消费包括食品、衣着、居住、家庭设备、交通及通讯、文教娱乐、医疗保健、和其他8个指标,为了比较清楚的了解这8项指标对我国城镇居民人均消费总体的影响,以及其大概的消费动向,可以利用多配比样本的非参数检验Friedman 检验对各个指标进行检验.(一):操作步骤:(1)选择“分析”→“非参数检验”→“旧对话框”→“k个相关样本”菜单项,打开如下对话框:(2):单击“确定”按钮,得到如下两张表格:表(1):文教娱乐其它表(2):(二)、结果分析检验结果中的p值小于给定水平,故拒绝原假设,认为八个指标对我国城镇居民人均消费的影响是有显着差异的.由表(1)知食物消费对人均消费的影响最大,其次是交通通讯和衣物消费,而影响最小的是其它.六、因子分析在研究我国城镇居民的消费情况时收集了食物、衣物、居住等八个影响居民消费情况的因素,以期对问题能够有比较全面、完整的把握和认识.由于数据过多,在实际建模时,这些变量未必能真正发挥预期的作用,会给统计分析带来许多问题,可以表现在:计算量的问题和变量间的相关性问题.为了解决这些问题,最简单和最直接的解决方案是削减变量个数,但这又必然会导致信息丢失和信息不完整等问题的产生.为此,人们希望探索一种更有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失.因子分析正是解决这种问题的方法.(一)操作步骤(1)、选择菜单“分析”→“降维”→“因子分析”,出现因子分析对话框;(2)、把参与因子分析的样本选到变量对话框中,如下图:(3)单击“确定”按钮,得到如下11张图:医疗保健 .295 .694 .505 .441 .479 .414 .600交通通讯 .787 .368 .849 .830 .479 .860 .782文教娱乐 .782 .374 .750 .853 .414 .860 .831其它.732 .634 .771 .767 .600 .782 .831从上图可以看到,大部分的相关系数都较高,各变量呈较强的线性关系,能够从中提取公共因子,适合进行因子分析. 图(2)巴特利特球度检验和KMO 检验KMO and Bartlett's TestKaiser-Meyer-Olkin Measure of Sampling Adequacy. .833Bartlett's Testof SphericityApprox. Chi-Squaredf 28 Sig..000由上图知,巴特利特球度检验统计量的观测值为,相应的概率p 为0.如果给出的显着性水平为,由于概率p 小于显着性水平,应拒绝零假设,认为相关系数矩阵与单位阵有显着地差异.同时,KMO 值为,根据Kaiser 给出了KMO 度量标准可知原有变量适合进行因子分析. 图(3)因子分析的初始解CommunalitiesInitialExtraction食物消费 .798 衣物消费 .862 居住消费 .750 家居设备 .812 医疗保健 .821 交通通讯 .897 文教娱乐 .885 其它.872 ExtractionMethod:PrincipalComponent Analysis.由上图第二列可知,所有变量的共同度均较高,各个变量的信息丢失较少.因此,本次因子提取的总体效果较理想.上图◎第一组数据项描述了初始因子解的情况.可以看到,第一个因子解的特征根值为,解释原有八个变量总方差的%,累计方差贡献率为%.其余数据含义类似.在初始解中由于提取了八个因子,因此原有变量的总方差均被解释掉.◎第二组数据项描述了因子解的情况.可以看到,由于指定提取两个因子,两个因子共解释了原有变量总方差的%.总体上,原有变量的信息丢失较少,因子分析效果较理想.◎第三组数据项描述了最终因子解的情况.可见,因子旋转后,累计方差比没有改变,也就是没有影响原有变量的共同度,但却重新分配了各个因子解释原有变量的方差,改变了各因子的方差贡献,使得因子更容易解释.图(5)因子的碎石图:上图横坐标为因子数目,纵坐标为特征根.可以看到,第一个因子的特征根值很高,对原有变量的贡献最大;第3个以后的因子特征根都较小,对解释原有变量的贡献很小,已经成为可被忽略的“高山脚下的碎石”,因此提取两个因子是合适的.图(6)因子载荷矩阵:Component Matrix aComponent12其它.929.097交通通讯.921文教娱乐.909家居设备.895居住消费.854食物消费.822衣物消费.599.710医疗保健.635.646a. 2 components extracted.上图因子载荷矩阵是因子分析的核心内容.根据该表可以写出本案例的因子分析模型:其它=1f +2f 交通通讯=1f 2f 文教娱乐=1f 2f 家居设备=1f 2f 居住消费=1f 2f 食物消费=1f 2f 衣物消费=1f +2f 医疗保健=1f +2f由上表知,八个变量在第一个因子上的载荷都很高,意味着他们与第一个因子的相关度高,第一个因子很重要. 图(7)旋转后的因子载荷矩阵:Rotated Component Matrix aComponent1 2交通通讯 .915 .244 文教娱乐 .914.222 食物消费 .889 .084 家居设备 .836 .336 居住消费 .819 .281 其它 .770 .528 衣物消费 .188 .909 医疗保健 .250.871a. Rotation converged in 3 iterations.由上图知,交通通讯、文教娱乐、食物消费、家居设备、居住消费、其它在第一个因子上有较高的载荷,第一个因子主要解释了这几个变量;衣物消费、医疗保健在第二个因子上的载荷较高,第二个因子主要解释了这几个变量. Component Score Covariance Matrix Component 12 1 .0002 .000从上表可以看出,两因子没有线性相关性,实现了因子分析的设计目标.图(10)旋转后的因子载荷图:由上图可以直观的看出,衣物消费和食物消费比较靠近两个因子坐标轴,表明如果分别用第一个因子刻画食物消费,用第二个因子刻画衣物消费,信息丢失较少,效果较好.图(11)因子得分系数矩阵:Component Score CoefficientMatrixComponent12食物消费.271衣物消费.576居住消费.194家居设备.184.001医疗保健.532交通通讯.236文教娱乐.241其它.110.152根据上表可以得到以下因子得分函数:F=食物消费衣物消费+居住消费+家居设备医疗设备+交通通讯+文教娱乐+其它1F=食物消费+衣物消费居住消费+家居设备+医疗设备交通通讯文教娱乐+其它2可见计算两个因子得分变量的变量值时,食物消费和衣物消费的权重较高,但方向恰好相反,这与因子的实际含义是相吻合的.七、实验心得本科的时候有概率统计和数理分析的基础,但是从来没有接触过应用统计分析的东西,SPSS也只是听说过,从来没有学过.一直以为这一块儿会比较难,这学期最初学的时候,因为没有认真看教材,课下也没有认真搜集相关资料,所以学起来有些吃力,总感觉听起来一头雾水.老师说最后的考核是通过提交学习报告,然后我从图书馆里借了些教材查了些资料,发现很多问题都弄清楚了.结合软件和书上的例子,实战一下,发现SPSS的功能相当强大.这门课要学习完了,整个学习的过程是充满曲折和挑战的,我见证了自己从一无所知到困惑迷茫再到略懂再到会用的过程.甚至学完之后有些问题还没有彻底搞清楚,自己接下来还会不断的探索的.SPSS是个很神奇的工具,结合AMOS和EXCEL更是如虎添翼,相信学习了SPSS在以后的论文和数据分析中很有用.这门课给我的感觉是看起来很难,但是实际学起来就好很多,因为当我结合具体实例和软件的时候,很多抽象的问题就豁然开朗了.但是想给老师一个建议,这门课需要很强的统计和概率论的基础,要不然就会很难听懂或者听得半懂.然后这门课的很多方法的相关资料都是用在医疗卫生、自然科学领域的,在管理中的应用的资料不怎么多.老师希望我们上课的时候结合在管理中的应用来学习,但是资料有限,希望老师在这个方面多给学生一些引导.。

spss实践题分析及答案(二)

spss实践题分析及答案(二)

s p s s实践题分析及答案(二)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March期末实践考查一、一家消费者调查有限公司,它为许多企业提供消费者态度和消费者行为的调查。

在一项研究中,客户要求调查消费者的消费特征,此特征可以用来预测用户使用信用卡的支付金额。

研究人员收集了50位消费者的年收入、家庭人口和每年使用信用卡支付的金额数据。

试按照客户要求进行分析,给出分析报告(数据见附表)。

Descriptive StatisticsMean Std. Deviation N消费金额(元)50年收入(元)50家庭人口(人)50Correlations消费金额(元)年收入(元)家庭人口(人)Pearson Correlation消费金额(元).631.753年收入(元).631.173家庭人口(人).753.173Sig. (1-tailed)消费金额(元)..000.000年收入(元).000..115家庭人口(人).000.115.N消费金额(元)505050年收入(元)505050家庭人口(人)505050Model Summary bModel R R Square Adjusted R Square Std. Error of the Estimate1.909a.826.818ANOVA bModel Sum of SquaresdfMean SquareFSig. 1Regression .6722 .836.000aResidual 47Total.82049Coefficients aModel Unstandardized CoefficientsStandardizedCoefficients tSig. BStd. ErrorBeta1(Constant).000 年收入(元) .033.004.516 .000 家庭人口(人).664.000结果分析:由题目可知客户要求,是根据消费者年收入、家庭人口来预测其每年使用信用卡支付的金额数据,属于多元线性回归问题,其中年收入和家庭人口看作两个自变量,每年信用卡支付金额看作因变量。

农民人均生活收入及消费支出分析-SPSS统计分析

农民人均生活收入及消费支出分析-SPSS统计分析

农民人均生活收入及消费支出分析论文摘要: spss在经济、管理、医学及心理学等方面的研究起着很重要的作用,在我国的国民经济问题中,增加农民收入是我国扩大内需的关键,通过运用SPSS分析方法对我国农民的收入及消费支出进行了各种分析, 以便能够更好地了解我国农村居民的收入结构和消费结构与消费行为等。

关键词:农民生活收入消费支出线性回归分析一、农民人均生活收入及消费支出分析今年以来,全国上下认真贯彻落实科学发展观,以农业增产、农民增收为目的,加大各项惠农政策措施落实力度,多措并举做好农村劳动力转移就业工作,克服金融危机和严重干旱等自然灾害带来的不利影响,使全市农村经济保持了稳定发展的良好态势,农民现金收入持续增长,生活消费水平继续提高。

我国是一个农业大国,至今仍有9亿农村人口,占全国人口总数的70%,农民是我国最大的群体,农村消费能力的提升直接关系到国民经济的全局。

从农村市场看,中国有近六成人口生活在农村。

农村城镇化的进程对经济增长的带动作用是非常明显的,世界上还没有哪个国家有规模如此巨大的城镇化。

农村居民的收入虽然低于城市居民,但是基数巨大,且农村人口的收入也在稳定增长。

随着经济的发展,我国农民的收入水平和消费水平的结构也发生了很大变化,农民生活水平的提高和消费的增加对于实现国民经济又好又快发展、正确处理好内需和外需的关系至关重要。

但从总体来看,农民消费水平仍然较低,调查显示有的地区都不及城市居民人均消费支出的三分之一。

而且消费结构不合理,局限于食品类等生存基本需求品,消费在衣着装饰等方面的极少。

而影响农民消费水平的根本原因是农民的收入。

农民生活消费支出主要包括食品、衣着、医疗卫生、教育文化、家庭设备、交通等方面,本文只挑选了四种典型的消费支出作为代表来分析农村居民的消费结构。

二、数据来源说明1、农村居民家庭基本情况. 数据来源于《2008中国统计年鉴》。

2、下表是要进行处理的31个省市的农村居民消费相关的原始数据,数据来源于《2008中国统计年鉴》。

农村居民人均消费支出的计量经济学分析

农村居民人均消费支出的计量经济学分析

t ( 一0 . 4 0 5 7 9 0 ) ( 3 2 . 7 9 5 1 0 ) ( 0 . 2 3 5 0 7 7 )
R = 0 . 9 9 2 36 2
纯收 入及 农 民价 格 消费指 数 与 消费 支 出的 关 系, 并 就扩 大农 村居 民消 费给 出相 应建议 。 【 关键 词】 农 村居 民 消费支 出; OS L分析 ; 建议
的原因及对策 。

由 OS L分析 结 果 可 知 R 2 =0 . 9 9 2 3 6 2 , A d j u s t e d R - s q u a r e d =0 . 9 9 0 9 7 3 , 十分接近于 l , 表 明模型对样本数据的拟合优 度高。
( 二) 显 著 性 检 验
4 20 2 . 4 9 45 4 - 0 3 2 5 28 5 . 1 7 62 3 2 . 2l
1 08 . 7 99 . 4 1 03 . 4 1 05 . 9
F — s t a t i s t i c l 2 . 0 2 2 2 9 5 I P r o b a b i l i t y l 0 . 1 7 4 7 4
s t a t i s t i c = 3 2. 79 51 0

l 3 3 3 . 0 5 1 3 0 2 . 4 8 1 3 21 . 5 1 41 2. 4 1 4 7 5. 8 1 5 9 6 . 2 7 1 81 3 . 71 2l 9 6 . 2 3 24 2 0 . 9 4
农村居 民人均消费支出的计量经济 学分析
孙 婷
( 江西财经大 学财税 与公共 管理 学院
【 摘 要】 本文 以安徽 省 1 4 年 的 经济数 据, 用计 量的 方 法分析 该 省农 民

spss案例大数据分析报告

spss案例大数据分析报告

Spss期末作业关于我国城镇居民消费结构及趋势的数据分析本次分析采用的数据来源于《中国统计年鉴—2011》,我选用的是其中的第十篇章—人民生活下的城镇居民家庭基本情况的相关数据,用以研究城镇居民消费结构及其趋势。

(附数据部分截图)(A)下面是我对该数据做的相关分析。

表一给出的是基本的描述性统计图,表中显示各个变量的全部观测量的均值、标准差和观测值总数N,表2给出的是相关系数矩阵表,其中显示4个变量两两之间的pearson相关系数,以及关于相关关系等于零的假设的单侧显著性检验概率。

描述性统计量均值标准差N表1 描述性统计表相关性食品衣着居住家庭设备用品及服务食品Pearson 相关性 1 .998**.991**.995**显著性(单侧).000 .001 .000平方与叉积的和 1.300E7 4000739.197 4039135.855 2468266.142协方差3250108.892 1000184.799 1009783.964 617066.535N 5 5 5 5 衣着Pearson 相关性.998** 1 .985**.994**显著性(单侧).000 .001 .000平方与叉积的和4000739.197 1235103.975 1238672.922 760246.419协方差1000184.799 308775.994 309668.230 190061.605N 5 5 5 5 居住Pearson 相关性.991**.985** 1 .996**显著性(单侧).001 .001 .000平方与叉积的和4039135.855 1238672.922 1279080.565 775005.410协方差1009783.964 309668.230 319770.141 193751.352N 5 5 5 5 家庭设备用品及服务Pearson 相关性.995**.994**.996** 1 显著性(单侧).000 .000 .000平方与叉积的和2468266.142 760246.419 775005.410 473179.063协方差617066.535 190061.605 193751.352 118294.766N 5 5 5 5相关性食品衣着居住家庭设备用品及服务食品Pearson 相关性 1 .998**.991**.995**显著性(单侧).000 .001 .000平方与叉积的和 1.300E7 4000739.197 4039135.855 2468266.142协方差3250108.892 1000184.799 1009783.964 617066.535N 5 5 5 5 衣着Pearson 相关性.998** 1 .985**.994**显著性(单侧).000 .001 .000平方与叉积的和4000739.197 1235103.975 1238672.922 760246.419协方差1000184.799 308775.994 309668.230 190061.605N 5 5 5 5 居住Pearson 相关性.991**.985** 1 .996**显著性(单侧).001 .001 .000平方与叉积的和4039135.855 1238672.922 1279080.565 775005.410协方差1009783.964 309668.230 319770.141 193751.352N 5 5 5 5 家庭设备用品及服务Pearson 相关性.995**.994**.996** 1 显著性(单侧).000 .000 .000平方与叉积的和2468266.142 760246.419 775005.410 473179.063协方差617066.535 190061.605 193751.352 118294.766N 5 5 5 5 **. 在 .01 水平(单侧)上显著相关。

SPSS统计分析练习及答案

SPSS统计分析练习及答案

4000
3000
2000
Y人 均 消 费
1000
2000
3000
4000
5000
6000
7000
8000
9000
X人均 国民收 入
4.某餐饮业连锁店对店员服务效率进行随机抽查,以下是店员 A、B、C、D 完成配餐的三
3
次时间记录(单位:秒)。根据下面的数据计算方差分析表,以及相应的概率值。
A
B
C
D
喂 养 率 -2.346 .518
-.897 -4.529
a.Dependent Variable: 死 亡 率
Sig. .000 .006
ANOVbA
Model
Sum of Squares
1
Regre1s4s3io1n1.54
Resid3u4a8l 8.462
Total17800.00
df Mean Square F 114311.538 20.513 5 697.692 6
等级
节目 乙 甲 乙 乙 乙 甲 乙 乙 甲 乙 甲 乙 甲 甲 甲 甲
类型
根据实验数据,检验节目乙是否比节目甲效果更好?
P>0.05,因此不能认为乙节目效果比甲节目好。
Hale Waihona Puke 8.某公司在 15 个商业地区销售一种化妆品,有关销售量、目标人口以及人均可支配收入的 数据如下表所示。为了用目标人口和人均可支配收入来预测商业地区的销售量,要拟合一个 Y 对 X1 和 X2 的二元线性回归方程。试利用 SPSS 求解这一方程。
本题采用秩相关系数比较合适,r=0.9021
6.大学和研究生毕业的一个随机样本给出了学生所获取学位类别与性别的分类数据,如下

spss数据分析作业-中国区域经济类型的聚类和判别分析

spss数据分析作业-中国区域经济类型的聚类和判别分析

应用数理统计(论文)中国区域经济类型的聚类和判别分析指导老师:**院系名称:材料科学与工程学号:SY********名:***2014年12月20日摘要区域经济发展的指标体系,包括人口总数、第一产业总产值、第二产业总产值、第三产业总产值、财政收入、社会消费品零售总额、货物进出口总额、平均工资、人均可支配收入和居民消费水平等。

本文主要通过系统类聚的方法,将全国31 个省市(自治区)的2013年经济发展状况进行归类分析,得出全国区域经济发展水平的一些基本情况,并进行了相应的判别分析,为我国经济在快速发展的前提下,做好协调发展提供一些启示。

关键字:区域经济聚类分析判别分析中国区域经济类型的聚类和判别分析目录1引言 (4)2数据收集 (5)3聚类分析 (8)3.1聚类分析概述 (8)3.2聚类分析过程及结果输出 (8)3.3讨论 (12)4判别分析 (14)4.1判别分析概述 (14)4.2判别分析过程及结果输出 (14)4.3讨论 (17)5结论 (18)参考文献 (19)应用数理统计(论文)1引言在制定国民经济和社会发展规划时,通常需要按照行政区域进行经济类型的划分,这有助于对不同地区经济发展存在的差异进行宏观调控,从而因地制宜出台相应的经济政策,促进各地区经济的协调发展,为国民经济持续协调健康发展奠定了坚实基础。

明确当前我国发达地区和落后地区的区间格局, 对于进一步的研究和分析我国各区域间经济发展的状况,并探求切实可行的区域协调发展政策以实现我国经济的可持续发展有着极为重要的现实意义。

在多元统计分析中,常常使用聚类分析和判别分析来解决样本的分类问题。

在事先并不知道应将样品或指标分为几类的情况下,可以使用聚类分析根据样本或指标的相似程度,将样本或指标归组分类;而在事先已经建立了样品分类,需要将新样本归入到已知分类的样本组中时,就可以使用判别分析。

本文试图通过聚类分析的方法,分析2013 年中国31 个省市(区域)经济发展发展状况和差异情况,从中寻找一些有用的信息,提出对我国经济如何在快速发展的基础上,做到协调发展的一些思考。

我国农户的边际消费倾向与消费需求收入弹性分析

我国农户的边际消费倾向与消费需求收入弹性分析

我国农户的边际消费倾向与消费需求收入弹性分析我国农户的边际消费倾向与消费需求收入弹性分析曾寅初陈书贵提要:本文通过对我国农户的边际消费倾向与农户各类生活消费希求的收入弹性,以及各地区农户消费需求的收入弹性分析,探讨收入增长对农村消费需求扩大的影响,从而为启动农村市场、增加我国的有效需求有关政策提供依据。

关键词:消费需求消费的收入弹性中国农户经济我国经济从总体上已经告别了短缺经济时代,由卖方市场转向买方市场,有效需求不足成为经济持续高速增长的制约因素。

我国农民人数8.7亿多,占全国总人口的近70%,是我国最大的消1978年农村率先推行的以家庭联产承包责任制为主要内容的经济体制改革,为农村居民收入持续快速增长带来新的契机,我国农村居民收入打破了过去较长时期的停滞,转为总体上快速但有波动的新增长态势。

农村居民纯收入由1978年的134元增加到2000年的2253元,收入增加额是2119元,1978年—2000年期间,农村名义人均纯收入增长了约16倍,年平均增长14.7%。

从1978年到2000年的农民人均纯收入增长变化看,1978年至1984年,人均纯收入年增长16.5%,呈上升趋势,到1984年高居顶点,尔后逐渐下降。

1989年至1991年降到谷底,1989年出现实际负增长,1991年增长2.0%,旋即稳步上扬到1996年的9.1%后,又进入新一轮的减速增长期;1997年,农民实际人均纯收入增长4.6%,1998年仅增长4.3%,1999年,在国家的积极财政政策下促进了非农产业收入的增加,农民收入继续缓慢增长,实际增长为3.8%,2000年增长则下降至2.1%。

2000年据国家统计局对全国31个省(自治区、直辖市)6.7万个农村居民家庭的抽样调查,农村居民人均纯收入为2253元,比上年增加43元,增长1.9%,扣除物价影响,实际增长2.1%,增速比上年回落1.7个百分点。

其中,现金纯收入为1640元,增长4%;实物纯收入613元,下降9%。

SPSS统计分析报告案例(我国城镇居民消费结构及趋势地统计分析报告)

SPSS统计分析报告案例(我国城镇居民消费结构及趋势地统计分析报告)

合用标准文案SPSS统计解析案例专业:经济学姓名: 000学号: 00000000一、我国城镇居民现状近来几年来 , 我国宏观经济形势发生了重要变化 , 经济睁开速度加快 , 居民收入牢固增加 , 在国家连续出台住所、教育、医疗等各项改革措施和推行“刺激花销、扩大内需、拉动经济增加〞经济政策的影响下 , 全国居民的花销支出也激烈增加 , 花销结构发生了明显变化 , 花销结构不合理现象获取了必然程度的改进。

本文经过相关数据解析总结出了我国城镇居民花销表现丰饶型、娱乐教育文化效劳类花销爬升的趋势特点。

二、我国居民花销结构的横向解析第一 , 食品花销支出比重随收入增加表现出明显的下降趋势, 这与恩格尔定律的表述一致。

但最低收入户与最高收入恩格尔系数相差过分悬殊, 城镇最低收入户方才解决了饱暖问题,而最高收入户的生活水平依照恩格尔系数的议论标准早已到达了丰饶型, 甚至凑近最丰饶型。

第二 , 穿着花销支出比重随收入增加缓慢上升, 到高收入户又有所下降, 但各收入组支出比重相差不大。

穿着支出比重没有更多的递加且最高收入户的支出比重有所下降, 这些都符合恩格尔定律关于穿着花销的引申。

随着收入的增加, 穿着支出比重表现先上升后下降的走势。

事实上 , 在当前的价格水平和服饰业的睁开水平下, 城镇居民的穿着是有必然限度的, 而且居民对穿着的需求也不是无量膨胀的, 即使收入水平连续提升, 也不需要将更大的比率用于购置服饰用品了。

第三, 家庭设备用品及效劳、交通通讯、娱乐教育文化效劳和杂项商品与效劳的支出比重呈逐组上升趋势, 说明居民的生活水平随收入的增加而不断提升和改进。

第四 , 医疗保健支出比重随收入水平提升表现一种两端高、中间低的走势。

这是由于医疗保健支出作为生活必定支出, 无论居民生活水平上下, 都要将必然比率的收入用于保持自己健康, 而且由于医疗制度改革 , 加重了个人负担的同时 , 也减小了旧制度可能造成的不同样行业、不同样系统下居民医疗保健支出的差异, 所以不同样收入等级的居民在医疗保健支出比重上差异不大。

SPSS统计分析报告—基于各省市GDP、财政收入及财政支出数据的 SPSS分析

SPSS统计分析报告—基于各省市GDP、财政收入及财政支出数据的 SPSS分析

论文题目:基于各省市GDP、财政收入及财政支出数据的SPSS分析姓名:学号:班级:内容摘要:本文首先通过国家统计局官方网站收集了我国大陆31省市2010-2013年GDP、各省常年居住人口数、财政收入、社会保障与就业支出、交通运输支出、医疗卫生支出、教育支出等数据;而后根据要求对数据进行适当的处理,并选择了SPSS作为工具进行分析。

这其中既有东中西三个地区的地区生产总值之间的分布类型检验,又有关于GDP与各省常年居住人口数、财政收入、社会保障与就业支出、交通运输支出、医疗卫生支出、教育支出的相关性分析,以及各省GDP的方差分析。

根据分析的结果对我国GDP水平进行适当的探讨以及给出一些经济发展规划的建议。

1、题目要回答的问题自1978年改革开放以来,我国经济飞速发展,国内生产总值日趋上升,虽然经历了1997金融风暴和2008金融危机,但是我国经济发展前景一片大好,2011年,我国经济创造奇迹,GDP总量超过日本,一跃成为世界第二大经济体。

国内生产总值(简称GDP)是指在一定时期内(一个季度或一年),一个国家或地区的经济中所生产出的全部最终产品和劳务的价值,常被公认为衡量国家经济状况的最佳指标。

它不但可反映一个国家的经济表现,更可以反映一国的国力与财富。

一个国家或地区的经济究竟处于增长抑或衰退阶段,从这个数字的变化便可以观察到。

中共十八大报告指出中国现代化步入转型攻坚阶段,要继续坚持经济转型。

同时由于我国自身的一些发展条件限制,我国经济发展速度逐渐放缓,因而对我国GDP水平的研究就显得尤为必要。

由于对GDP的研究是一个非常复杂和庞大的过程,在这里,我们仅对以下几个问题做研究:1、分布类型检验①、正态分布检验采用假设检验方法对地区生产总值进行分布特征的检验,检验31个省市区的数据是否服从正态分布。

H0: 31个省市区的地区生产总值样本来自于一个正态分布的总体。

H1: 31个省市区的地区生产总值样本并非来自于一个正态分布总体。

spss对数据进行相关性分析实验分析报告

spss对数据进行相关性分析实验分析报告

spss对数据进行相关性分析实验报告作者:日期: 2管理统计实验报告实验一一.实验目的掌握用SPSS软件对数据进行相关性分析,熟悉其操作过程,并能分析其结果。

二.实验原理相关性分析是考察两个变量之间线性关系的一种统计分析方法。

更精确地说,当一个变量发生变化时,另一个变量如何变化,此时就需要通过计算相关系数来做深入的定量考察。

P值是针对原假设H0:假设两变量无线性相关而言的。

一般假设检验的显著性水平为0.05,你只需要拿p值和0.05进行比较:如果p 值小于0.05,就拒绝原假设H0,说明两变量有线性相关的关系,他们无线性相关的可能性小于0.05 ;如果大于0.05,则一般认为无线性相关关系,至于相关的程度则要看相关系数R 值,r越大,说明越相关。

越小,贝U相关程度越低。

而偏相关分析是指当两个变量同时与第三个变量相关时,将第三个变量的影响剔除,只分析另外两个变量之间相关程度的过程,其检验过程与相关分析相似。

三.实验内容掌握使用spss软件对数据进行相关性分析,从变量之间的相关关系,寻求与人均食品支出密切相关的因素。

(1) 检验人均食品支出与粮价和人均收入之间的相关关系。

a.打开spss软件,输入“回归人均食品支出”数据。

地区人均億出粮食单价|人均收入|1 3927025122772.67 20083 963 1.012139412G7 1 373329537472 2106G639731G411&21 .7716118 71172 16049 &54.7019511D54074153211&44.84161212787 70172713 723.63204514 763 75 1963151072 1.21 267517 665701603W 1234 .98 292519 575.65169120733 1929r 21963 1.43203222717 .8019062371B72 170524527 .61 154225829 .731987261015 1.04235926050 73 17&427 929 1.0120B728050.83 1939P~ 29 852 .7221 DI30S09 ,631877)b.在spssd 的菜单栏中选择点击Analyze correlate Bivariate 弹出一个对话窗口。

SPSS数据分析——农民人均生活收入及消费支出分析

SPSS数据分析——农民人均生活收入及消费支出分析

对农民人均生活收入及消费支出的统计分析论文摘要: spss在经济、管理、医学及心理学等方面的研究起着很重要的作用,在我国的国民经济问题中,增加农民收入是我国扩大内需的关键,通过运用SPSS分析方法对我国农民的收入及消费支出进行了各种分析, 以便能够更好地了解我国农村居民的收入结构和消费结构与消费行为等。

关键词:农民生活收入消费支出线性回归分析一、引言今年以来,全国上下认真贯彻落实科学发展观,以农业增产、农民增收为目的,加大各项惠农政策措施落实力度,多措并举做好农村劳动力转移就业工作,克服金融危机和严重干旱等自然灾害带来的不利影响,使全市农村经济保持了稳定发展的良好态势,农民现金收入持续增长,生活消费水平继续提高。

我国是一个农业大国,至今仍有9亿农村人口,占全国人口总数的70%,农民是我国最大的群体,农村消费能力的提升直接关系到国民经济的全局。

从农村市场看,中国有近六成人口生活在农村。

农村城镇化的进程对经济增长的带动作用是非常明显的,世界上还没有哪个国家有规模如此巨大的城镇化。

农村居民的收入虽然低于城市居民,但是基数巨大,且农村人口的收入也在稳定增长。

随着经济的发展,我国农民的收入水平和消费水平的结构也发生了很大变化,农民生活水平的提高和消费的增加对于实现国民经济又好又快发展、正确处理好内需和外需的关系至关重要。

但从总体来看,农民消费水平仍然较低,调查显示有的地区都不及城市居民人均消费支出的三分之一。

而且消费结构不合理,局限于食品类等生存基本需求品,消费在衣着装饰等方面的极少。

而影响农民消费水平的根本原因是农民的收入。

农民生活消费支出主要包括食品、衣着、医疗卫生、教育文化、家庭设备、交通等方面,本文只挑选了四种典型的消费支出作为代表来分析农村居民的消费结构。

二、对多元数据因子分析及及结果解释2、下表是要进行处理的31个省市的农村居民消费相关的原始数据三、家庭总收入分析1、农村家庭总收入单线图,农村家庭总收入逐年增加。

自-SPSS基于农村居民家庭人均生活消费支出分析

自-SPSS基于农村居民家庭人均生活消费支出分析

SPSS基于农村居民家庭人均生活消费支出分析[摘要]:随着社会经济的快速发展和新农村建设的不断推进,我国农村经济社会得到了又好又快的发展,农民生活水平也得到了很大的提高,但是,由于我国各省市的经济背景、社会背景和环境背景等都存在着这样或那样的差异,从而导致了生活消费水平也参差不齐。

为了客观的了解我国农村居民的总体消费水平和生活现状,本文运用spss软件中的各种分析方法对我国农村居民的人均消费情况进行科学的分析。

[关键字]:消费支出频数分析参数检验非参数检验聚类分析恩格尔系数[引言]:改革开放以来,中国经济的发展迅速,在社会主义市场经济的运作过程中,消费不仅可以满足人的多方面的欲求,而且,也会促进生产的发展,它所表现出的历史规定性,可以折射出不同社会阶段中消费关系的本质特征。

我国人口众多,而且一半以上的人口在农村,农村居民的消费水平逐渐成为了制约我国经济发展的重要影响因素,因此,加强对农村居民的消费水平和消费结构的研究,不仅有利于改善我国农村居民的消费现状,而且对拉动我国经济增长有重要意义。

2010年2季度农村居民家庭个人现金收入统计(分地区)一、数据的与处理在数据文件建立好后,通常还需要对待分析的数据进行必要的预加工处理,这是数据分析过程中不可缺少的一个关键环节。

首先,为了便于数据的浏览,快捷的找到数据的最大值和最小值,同时,快捷的发现数据的异常值,先将数据按照降序重新进行排列;其次,为了粗略的把握数据的分布,实现数据的离散化处理和对数据进行频数分析,和对数据进行频数分析,利用spss软件中的分组功能对数据进行简单的分组。

由于变量值较多,分组适应采用组据分组的方式,具体步骤如下:1、确定组数:k=1+ln(n)/ln2=1+ln31/ln2=62、确定组距:组距=(最大值-最小值)/组数=(8844.88-1913.71)/6=1155.20\二、基本统计分析—频数分析利用spss先前已经对数据做好的分组,通过频数分析,可以进一步了解分组后的消费支出合计取值的状况,进而准确的把握数据的分布特征。

SPSS因子分析法

SPSS因子分析法

因子分析因子分析一、基础理论知识1 概念因子分析(Factor analysis):就是用少数几个因子来描述许多指标或因素之间的联系,以较少几个因子来反映原资料的大部分信息的统计学分析方法。

从数学角度来看,主成分分析是一种化繁为简的降维处理技术。

主成分分析(Principal component analysis):是因子分析的一个特例,是使用最多的因子提取方法。

它通过坐标变换手段,将原有的多个相关变量,做线性变化,转换为另外一组不相关的变量。

选取前面几个方差最大的主成分,这样达到了因子分析较少变量个数的目的,同时又能与较少的变量反映原有变量的绝大部分的信息。

两者关系:主成分分析(PCA)和因子分析(FA)是两种把变量维数降低以便于描述、理解和分析的方法,而实际上主成分分析可以说是因子分析的一个特例。

2 特点(1)因子变量的数量远少于原有的指标变量的数量,因而对因子变量的分析能够减少分析中的工作量。

(2)因子变量不是对原始变量的取舍,而是根据原始变量的信息进行重新组构,它能够反映原有变量大部分的信息。

(3)因子变量之间不存在显著的线性相关关系,对变量的分析比较方便,但原始部分变量之间多存在较显著的相关关系。

(4)因子变量具有命名解释性,即该变量是对某些原始变量信息的综合和反映。

在保证数据信息丢失最少的原则下,对高维变量空间进行降维处理(即通过因子分析或主成分分析)。

显然,在一个低维空间解释系统要比在高维系统容易的多。

3 类型根据研究对象的不同,把因子分析分为R型和Q型两种。

当研究对象是变量时,属于R型因子分析;当研究对象是样品时,属于Q型因子分析。

但有的因子分析方法兼有R型和Q型因子分析的一些特点,如因子分析中的对应分析方法,有的学者称之为双重型因子分析,以示与其他两类的区别。

4分析原理假定:有n 个地理样本,每个样本共有p 个变量,构成一个n ×p 阶的地理数据矩阵 :当p 较大时,在p 维空间中考察问题比较麻烦。

SPSS对于居民收入水平的数据分析

SPSS对于居民收入水平的数据分析

SPSS对于居民收入水平的数据分析随着时代的发展,生产力水平的不断提高,我国居民的收入水平也在稳步提高,通过对30个省市自治区居民收入的各项指标进行因子分析,聚类分析等,得到各省之间的收入对比,以及找出哪些指标可以比较充分的说明它的整体情况。

我们共选择了12个指标:X1劳动者报酬、X2家庭营业收入、X3转移性收入、X4财产性收入、X5食品支出、X6衣着支出、X7居住支出、X8家庭设备及服务支出、X9医疗保健支出、X10交通和通讯支出、X11文教娱乐用品和服务支出、X12其他商品及服务支出。

一.因子分析:⑴.首先,我们需要检验一下数据是否适合做因子分析,即进行KMO检验:由上表可知,KMO值为0.771,大于0.6,所以数据适合做因子分析。

⑵.SPSS得出因子提取和因子旋转的结果:由上表可知,较大的三个因子变量的方差特征值为8.063,1.170,0.810。

它们的累计贡献率达到了83.689%。

⑶.将这三个特征值建立因子载荷阵,如左下图所示:将得到的因子载荷阵实行方差最大的正交旋转,得正交因子阵,如右上图所示。

由表知,第一个主因子可以比较充分的说明除了家庭营业收入和交通和通讯支出以外的的各项指标,而第二个主因子表达了家庭营业收入和医疗保健支出这两个指标,第三个主因子只体现了交通和通讯支出。

综上可得,这三个主因子涵盖了所有指标,所以SPSS成功的帮助我们将12个指标降围成这三个指标。

我们命名X1-X9为A因子,X10-X11为B因子,X12为C因子。

⑷.由下图可看出,右侧下方的指标非常密集,这个就是由第一个主因子表示的,右侧上方的两个指标由第二个主因子表达,而左侧的一个较孤立跟其他指标有很明显的距离的指标,则由第三个主因子表示。

载荷散点图很直观的向我们表达了这三个主因子的选取。

⑸.由下图,可得因子得分函数:Component Score Coefficient MatrixComponent1 2 3劳动者报酬.245 -.241 -.089 家庭营业收入-.300 .859 .007转移性收入.166 -.187 .187财产性收入.038 .050 .255食品支出.085 .063 .110衣着支出.135 .008 -.140 居住支出.157 -.047 -.095 家庭设备及服务支出.216 -.172 -.068 医疗保健支出-.055 .425 -.168 交通和通讯支出-.073 -.056 .815文教娱乐用品和服务支出.096 .047 .049其他商品及服务支出.128 .007 -.007⑹. 最后一部分,因子变量的协方差矩阵,由下表可知,各因子之间是不相关的,符合要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题目:农民人均生活收入及消费支出分析
Title: Rural per capita income and consumption expenditure analysis of life
论文摘要: spss在经济、管理、医学及心理学等方面的研究起着很重要的作用,在我国的国民经济问题中,增加农民收入是我国扩大内需的关键,通过运用SPSS分析方法对我国农民的收入及消费支出进行了各种分析, 以便能够更好地了解我国农村居民的收入结构和消费结构与消费行为等。

Abstract: spss in the economic, management, medicine and psychology research plays an important role in our national economy problems, increase the farmers income is the key to our efforts to expand domestic demand, through the use of SPSS analysis on China's farmers income and consumer spending for a variety of analysis in order to better understand the income of rural residents in the structure and consumption structure and consumption behavior.
关键词:农民生活收入消费支出线性回归分析
Key words: farmers, living income, consumption expenditure, linear regression analysis
正文:
一、农民人均生活收入及消费支出分析
今年以来,全国上下认真贯彻落实科学发展观,以农业增产、农民增收为目的,加大各项惠农政策措施落实力度,多措并举做好农村劳动力转移就业工作,克服金融危机和严重干旱等自然灾害带来的不利影响,使全市农村经济保持了稳定发展的良好态势,农民现金收入持续增长,生活消费水平继续提高。

我国是一个农业大国,至今仍有9亿农村人口,占全国人口总数的70%,农民是我国最大的群体,农村消费能力的提升直接关系到国民经济的全局。

从农村市场看,中国有近六成人口生活在农村。

农村城镇化的进程对经济增长的带动作用是非常明显的,世界上还没有哪个国家有规模如此巨大的城镇化。

农村居民的收入虽然低于城市居民,但是基数巨大,且农村人口的收入也在稳定增长。

随着经济的发展,我国农民的收入水平和消费水平的结构也发生了很大变化,农民生活水平的提高和消费的增加对于实现国民经济又好又快发展、正确处理好内需和外需的关系至关重要。

但从总体来看,农民消费水平仍然较低,调查显示有的地区都不及城市居民人均消费支出的三分之一。

而且消费结构不合理,局限于食品类等生存基本需求品,消费在衣着装饰等方面的极少。

而影响农民消费水平的根本原因是农民的收入。

农民生活消费支出主要包括食品、衣着、医疗卫生、教育文化、家庭设备、交通等方面,本文只挑选了四种典型的消费支出作为代表来分析农村居民的消费结构。

二、数据来源说明
家庭经营收入481.19 1116.73 1498.81 2609.41 2978.28
财产性收入59.05 38.19 38.89 83.80 100.95
转移性收入87.76 143.49 234.96 283.88
平均每人年支出(元)
总支出903.47 2138.33 2652.42 4485.44 5137.68
现金支出639.06 1545.81 2140.37 3931.76 4533.13
2、下表是要进行处理的31个省市的农村居民消费相关的原始数据,数据来源于《2008中国统计年鉴》。

三、家庭总收入分析
1、农村家庭总收入单线图,农村家庭总收入逐年增加。

3、家庭经营收入快速增长,是农民增收的最主要来源。

工资性收入持续平稳增长。

移性收入有所增长但增速明显减缓。

财产性收入中间期间还有所下降。

4
家庭情况总表。

其中,家庭总收入一般根据被调查者提供的数据所得。

家庭总收入与家庭总人口关系:总人口与家庭总收入的散点图,从中可以看出家庭总收入大致分布的位置(家庭总人口状况)。

四、农民总支出分析
1、如条形如所示分析,农民生活消费水平继续提高。

收入高的地区,普遍消费能力高;收入少的地区,普遍消费能力弱。

因此,要继续促进农民收入稳步增长。

地区
浙 江
新 疆
天 津
上 海
山 西
全 国
宁 夏
辽 宁
江 苏
湖 南
黑龙江
河 北
贵 州
广 东
福 建
安 徽
M e a n
10000
8000
6000
4000
2000
消费支出
人均收入
五、农民人均生活消费支出与农民人均收入状况分析 农民人均生活消费支出
与农民人均收入
的一元线性回归分析。

变量选择和说明:被解释变量即自变量:农民人均生活消费支出;解释变量即因变量:农民人均收入

农民人均食品消费支出,衣着消费支出
,农民人均家庭设备消费支出,农民人均
医疗保健消费支出。

并用下式表示函数关系:
Linear
Regression( 线性回归分析)结果如下:
1、相关分析表Model Summary 表中看到复相关系数为0.932,决定相关系数为0.930,说明方程的拟合度较好,表明回归方程显著性较高。

Variables Entered/Removed(b)
Model Variables
Entered
Variables Removed
Method
1
X(a)
.
Enter
a All requested variables entered.
b Dependent Variable: Y Model Summary
Model
R
R Square
Adjusted R
Square
Std. Error of the Estimate
1 .966(a) .93
2 .930 377.59076
a Predictors: (Constant), X
2、方差分析表,F=412.512,P 值=0.000<0.05,表明回归方程高度显著,即农民人均收入对消费有高度显著的线性影响。

3、回归系数的显著性检表,常数项的P=0.011<0.05,说明与0有显著性差异,故应该出现在回归方程中,可得回归方程为:=-440.131+0.966
在实际应用中,农民消费支出方面有很多,通过线性回归模型也可以较为准确的判断今后的农民消费情况。

在现实生活中,所得预测结果不可能与生活完全一致,但是对增进农民收入、改变农民消费结构有很大的意义。

可以看出,我国农民的费结构,基本上还是在食品、医疗等生活必需品上消费较多,而花在衣着装饰上的较少,但比起过去农民在家庭设备上的支出有了明显提高。

而制约农民消费的关键还是农民收入不足。

因此,国家应该调整相应的农业政策,切实增加农民收入,增强消费的经济基础,通过增加消费拉动经济增长,通过经济增长带动消费的增加。

此外还应培育农村居民正确的消费观念,要加快形成积极的消费观念,在生产发展的基础上努力提高生活质量,使生活更加富有意义;要克服“只知道买价格低、便宜的商品,养儿防身防老”等片面观念。

六、促进农民收入稳定增长的对策建议
采取积极措施促进农村劳动力就业。

一是要加大对农村教育的投入,整合各类培训资源,加大培训力度,提高培训的针对性和有效性。

二要继续加大劳务输出工作力度,做好与主要输入地区的劳务对接,加强就业信息收集和发布工作,引导农民有序外出。

三是大力扶持企业发展,引导支持企业多用农民工多吸纳农民工。

四是加大对农民自主创业的扶持力度,改
善农民工回乡创业环境,以创业带动就业。

五是积极推进城乡一体化进程,大力发展农村二、三产业,拓展农村非农就业空间,实现就近就地就业。

加大力度扶持农牧业生产,稳定主要农产品价格。

一要完善农业支持保护制度,大幅度增加对农业的投入,不断提高对农民的补贴水平,提高粮食等农产品收购价格,使政府的支持成为农民增收的一条重要渠道。

二要继续加强农业基础设施建设,在农田水利、道路、通讯和生态环境建设等方面进一步加大投入力度,切实改善农业生产条件,提高农业综合生产能力。

三要加强农产品市场信息体系建设,为农民搭起产供销平台,加速农产品的流通,减少因市场价格大幅波动对农民生产经营带来的冲击。

四要建立健全生猪产销信息网络和预警预报体系,合理引导农民养殖;积极推进畜牧业生产方式转变,提高标准化和规模化养殖水平;要认真落实生猪生产各项扶持政策,建立对生猪生产的保护机制,积极引导养殖户与龙头企业建立稳定的合同关系和利益联合机制,共同承担市场风险,从而保护养殖者利益,促进生猪生产健康发展和农民增收
参考文献:
1、Spss for windows 统计分析刘子君赵维波编著东北大学出版社2004年
2、2008年统计年鉴。

相关文档
最新文档