FLuent中的湍流模型的应用

合集下载

湍流模型及其在FLUENT软件中的应用

湍流模型及其在FLUENT软件中的应用

湍流模型及其在FLUENT软件中的应用一、本文概述湍流,作为流体动力学中的一个核心概念,广泛存在于自然界和工程实践中,如大气流动、水流、管道输送等。

由于其高度的复杂性和非线性特性,湍流一直是流体力学领域的研究重点和难点。

随着计算流体力学(CFD)技术的快速发展,数值模拟已成为研究湍流问题的重要手段。

其中,湍流模型的选择和应用对于CFD模拟结果的准确性和可靠性具有决定性的影响。

本文旨在深入探讨湍流模型的基本理论及其在FLUENT软件中的应用。

我们将简要回顾湍流的基本概念、特性和分类,为后续的模型介绍和应用奠定基础。

接着,我们将详细介绍几种常用的湍流模型,包括雷诺平均模型(RANS)、大涡模拟(LES)和直接数值模拟(DNS)等,并重点分析它们的适用范围和优缺点。

在此基础上,我们将重点关注FLUENT软件在湍流模拟方面的应用。

FLUENT作为一款功能强大的CFD软件,提供了丰富的湍流模型供用户选择。

我们将通过具体案例,展示如何在FLUENT中设置和应用不同的湍流模型,以及如何通过参数调整和结果分析来优化模拟效果。

我们还将探讨湍流模型选择的影响因素和最佳实践,以帮助读者更好地理解和应用湍流模型。

本文将对湍流模型在FLUENT软件中的应用进行总结和展望,分析当前存在的问题和挑战,并探讨未来的发展趋势和应用前景。

通过本文的阅读,读者可以全面了解湍流模型的基本理论及其在FLUENT 软件中的应用方法,为实际工程问题的解决提供有力的理论支持和技术指导。

二、湍流基本理论湍流,亦被称为乱流或紊流,是一种流体动力学现象,其特点是流体质点做极不规则而又连续的随机运动,同时伴随有能量的传递和耗散。

湍流与层流相对应,是自然界和工程实践中广泛存在的流动状态。

湍流流动的基本特征是流体微团运动的随机性和脉动性,即流体微团除有沿平均运动方向的运动外,还有垂直于平均运动方向的脉动运动。

这种脉动运动使得流体微团在运动中不断混合,流速、压力等物理量在空间和时间上均呈现随机性质的脉动和涨落。

fluent k-epsilon模型 公式

fluent k-epsilon模型 公式

fluent k-epsilon模型公式
k-epsilon模型是一种常用的湍流模型,用于描述流体中湍流运动的特性。

它基于湍流能量和湍流速度脉动的方程来描述湍流的发展和衰减。

k方程描述了湍流能量的传输与产生,而epsilon方程描述了湍流速度脉动的耗散。

k表示湍流能量,epsilon表示湍流速度脉动的耗散率。

k方程的一般形式为:
∂(ρk)/∂t + ∂(ρuk)/∂x + ∂(ρvk)/∂y + ∂(ρwk)/∂z = Pk - εk + ∂/∂x[(μ+μt)/σk ∂(ρk)/∂x] + ∂/∂y[(μ+μt)/σk ∂(ρk)/∂y] + ∂/∂z[(μ+μt)/σk ∂(ρk)/∂z]
epsilon方程的一般形式为:
∂(ρε)/∂t + ∂(ρuε)/∂x + ∂(ρvε)/∂y + ∂(ρwε)/∂z = C1ε(ε/k)Pk - C2ε(ε^2/k) + ∂/∂x[(μ+μt)/σε ∂(ρε)/∂x] + ∂/∂y[(μ+μt)/σε ∂(ρε)/∂y] + ∂/∂z[(μ+μt)/σε ∂(ρε)/∂z] + C3εG
其中,Pk表示湍流能量项的产生率,εk表示湍流能量项的耗散率,u、v、w分别表示流体速度的x、y、z分量,ρ表示流体密度,μ表示动力粘度,μt表示湍流粘度,σk、σε分别为湍流能量和湍流速度脉动耗散率的可靠性修正参数,C1、C2、C3为经验常数,G 为湍流剪切产生项。

需要注意的是,上述公式只是k-epsilon模型的一般形式,在实
际应用中可能会根据具体问题进行适当调整或改进。

常用湍流模型及其在FLUENT软件中的应用

常用湍流模型及其在FLUENT软件中的应用

常用湍流模型及其在FLUENT软件中的应用常用湍流模型及其在FLUENT软件中的应用湍流是流体运动中不可避免的现象,它具有无规则、随机和混沌等特点,对于流体力学研究和工程应用具有重要影响。

为了更好地模拟流体运动中的湍流现象,并进行相关的工程计算和优化设计,科学家们提出了许多湍流模型。

本文将介绍一些常用的湍流模型,并探讨它们在流体动力学软件FLUENT中的应用。

1. 动力学湍流模型(k-ε模型)动力学湍流模型是最为经典和常用的湍流模型之一,主要通过求解湍流动能k和湍流耗散率ε来模拟湍流运动。

这一模型主要适用于较为简单的湍流流动,如外部流场和平稳湍流流动。

在FLUENT软件中,用户可以选择不同的k-ε模型进行计算,并对模型参数进行调整,以获得更准确的湍流模拟结果。

2. Reynolds应力传输方程模型(RSM模型)RSM模型是基于雷诺应力传输方程的湍流模型,它通过求解雷诺应力分量来描述湍流的速度脉动特性。

相比于动力学湍流模型,RSM模型适用于复杂的湍流流动,如边界层分离流动和不可压缩流动。

在FLUENT软件中,用户可以选择RSM模型,并对模型参数进行优化,以实现对湍流流动的更精确模拟。

3. 混合湍流模型混合湍流模型是将多个湍流模型相结合,以更好地模拟不同湍流流动。

常见的混合湍流模型有k-ε和k-ω模型的组合(k-ε/k-ω模型)和k-ε模型和RSM模型的组合(k-ε/RSM模型)等。

在FLUENT软件中,用户可以选择不同的混合模型,并根据具体的流动特征进行模型参数调整,以实现更准确的湍流模拟。

除了上述介绍的常用湍流模型外,FLUENT软件还提供了其他的湍流模型选择,如近壁函数模型(近壁k-ω模型、近壁k-ε模型)、湍流耗散模型(SD模型)、多场湍流模型(尺度能量模型)等。

这些模型针对不同的湍流现象和流动特性,提供了更加丰富和精确的模拟方法。

在FLUENT软件中,用户可以根据具体的工程问题和流动特性选择合适的湍流模型,并进行相应的设置和参数调整。

fluent湍流模型对结果的影响

fluent湍流模型对结果的影响

一、概述湍流模型是流体力学中一个重要的研究对象,它描述了在流体运动中湍流对流动特性的影响。

湍流模型在工程领域的应用十分广泛,对于预测流动的结果具有重要意义。

本文将主要讨论湍流模型对流动结果的影响,以期为相关研究和工程实践提供一定的参考。

二、湍流模型的基本原理湍流是流体力学中一种复杂而难以预测的现象,它表现为流体在流动过程中产生的不规则变化和涡旋运动。

湍流模型的基本原理是通过对湍流运动进行建模和假设,从而简化流体运动的描述,使其能够被数学模型所描述和预测。

湍流模型一般包括雷诺平均湍流模型、拉格朗日湍流模型、欧拉湍流模型等不同类型。

三、湍流模型对结果的影响1. 增加模拟的准确性湍流模型的选择直接影响着流动结果的准确性。

合适的湍流模型可以更准确地描述流动的湍流特性,从而提高数值模拟的准确性。

相比较而言,湍流模型在描述层流流动时,模拟结果将受到更大的影响。

2. 提高计算的稳定性一些湍流模型在计算过程中具有更好的数值稳定性,能够保证数值模拟的收敛性和精确性。

通过合理选择湍流模型,可以有效提高计算的稳定性,减少计算中的数值振荡和发散现象,保证计算结果的可靠性。

3. 影响计算的耗时不同的湍流模型对计算的耗时也有不同的影响。

一些湍流模型对计算的精度和收敛性要求较高,因此需要更长的计算时间。

合理选择湍流模型能够在保证计算结果准确性的减少计算的耗时,提高计算效率。

4. 对后续分析的影响流动结果的准确性和可靠性,直接影响着后续的工程分析和设计。

合适的湍流模型能够提供更准确的流动结果,为后续的工程分析和设计提供可靠的基础。

而不合理的湍流模型选择可能会导致计算结果的不准确,从而影响后续分析的结果。

四、选择合适的湍流模型1. 考虑计算的要求在选择湍流模型时,需要充分考虑计算的要求,包括对计算结果准确性和稳定性的要求,以及对计算耗时的限制等因素。

根据具体的计算要求,选择合适的湍流模型,以满足工程实践的需要。

2. 结合实验数据验证在选择湍流模型时,需要结合实验数据对模型进行验证。

fluent中常见的湍流模型及各自应用场合

fluent中常见的湍流模型及各自应用场合

标题:深入探讨fluent中常见的湍流模型及各自应用场合在fluent中,湍流模型是模拟复杂湍流流动的重要工具,不同的湍流模型适用于不同的流动情况。

本文将深入探讨fluent中常见的湍流模型及它们各自的应用场合,以帮助读者更深入地理解这一主题。

1. 简介湍流模型是对湍流流动进行数值模拟的数学模型,通过对湍流运动的平均值和湍流运动的涡旋进行描述,以求解湍流运动的平均流场。

在fluent中,常见的湍流模型包括k-ε模型、k-ω模型、LES模型和DNS模型。

2. k-ε模型k-ε模型是最常用的湍流模型之一,在工程领域有着广泛的应用。

它通过求解两个方程来描述湍流场,即湍流能量方程和湍流耗散率方程。

k-ε模型适用于对流动场变化较为平缓的情况,如外流场和边界层内流动。

3. k-ω模型k-ω模型是另一种常见的湍流模型,在边界层内流动和逆压力梯度流动情况下有着良好的适用性。

与k-ε模型相比,k-ω模型对于边界层的模拟更加准确,能够更好地描述壁面效应和逆压力梯度情况下的流动。

4. LES模型LES(Large Ey Simulation)模型是一种计算密集型的湍流模拟方法,适用于对湍流细节结构和湍流的大尺度结构进行同时模拟的情况。

在fluent中,LES模型通常用于对湍流尾流、湍流燃烧和湍流涡流等复杂湍流流动进行模拟。

5. DNS模型DNS(Direct Numerical Simulation)模型是一种对湍流流动进行直接数值模拟的方法,适用于小尺度湍流结构的研究。

在fluent中,DNS模型常用于对湍流的微观结构和湍流的小尺度特征进行研究,如湍流能量谱和湍流的空间分布特性等。

总结与回顾通过本文的介绍,我们可以看到不同的湍流模型在fluent中各有其适用的场合。

从k-ε模型和k-ω模型适用于工程领域的实际流动情况,到LES模型和DNS模型适用于研究湍流细节结构和小尺度特征,每种湍流模型都有其独特的优势和局限性。

fluent零方程湍流模型

fluent零方程湍流模型

fluent零方程湍流模型标题:湍流的魅力:探索Fluent零方程湍流模型导语:湍流是自然界中普遍存在的现象,它的复杂性使得我们对其理解充满了好奇与挑战。

在工程领域中,湍流对流体流动的影响不可忽视。

而Fluent零方程湍流模型为我们提供了一种研究湍流现象的有效工具。

本文将以人类的视角,探索这一模型的魅力,展示湍流的奥秘。

第一部分:湍流的定义与特性湍流是一种随机、不规则的流动现象,它在自然界中广泛存在。

与层流相比,湍流的特点是流速和压力的空间和时间波动较大。

湍流的复杂性使得其研究变得困难,但也正是这种复杂性使湍流显示出了一些令人惊叹的特性,比如能量耗散和涡旋结构的形成。

第二部分:Fluent零方程湍流模型的原理与应用Fluent零方程湍流模型是一种简化的湍流模型,它基于湍流的能量耗散理论。

该模型通过假设湍流的能量耗散率与流体的速度梯度成正比,从而实现了对湍流的模拟。

这种模型在工程领域中得到广泛应用,可以帮助工程师预测湍流对流体流动的影响,从而优化设计和提高效率。

第三部分:探索湍流的奥秘湍流的复杂性使得我们对其理解充满了挑战,但也正是这种挑战使得湍流的研究变得更加有趣。

从大气中的湍流到海洋中的湍流,从飞机机翼上的湍流到燃烧过程中的湍流,湍流无处不在。

通过Fluent零方程湍流模型,我们可以更好地理解湍流的形成机制和特性,进而应用于实际工程中。

结语:湍流是自然界中一种复杂而神奇的现象,它的研究对我们理解流体动力学以及优化工程设计具有重要意义。

Fluent零方程湍流模型为我们提供了一种有效的工具,可以帮助我们模拟和预测湍流对流体流动的影响。

通过深入研究湍流的特性和应用,我们可以更好地掌握湍流的奥秘,为工程实践提供更优化的解决方案。

让我们一同探索湍流的魅力,感受科学与工程的交融之美。

各种湍流模型在FLUENT中的应用

各种湍流模型在FLUENT中的应用
些 工程 湍流 问题
湍 流 模 型 发 展 的 实 际 需 要 . 得 学 使 者 们 转 而 寻求 更普 遍 、 精 细 的方 法 来 更
确 定 长 度 比 尺 的分 布 . 多 学 者 应 用 不 许
湍 流 的雷 诺 应 力 准 确 的输 运 方 程 .9 1 15 年 Rt o a发 展 了周 培 源 先 生 的 工 作 . t 建
组 当 时 没 有 实 际 求 解 的 可能 . 来 . o 后 R. d 等 人 提 出了 代 数 应 力 模 型 . 雷 诺 应 i 将
力输运的微分方程简化为代数方程 . 再
者 提 出 的反 映湍 流 尺度 的参 数 . 过 微 通 湍 流 的 模 式 理 论 在 解 决 工 程 实 际 问题 中起 着 重 要 作 用 模 式 理 论把 流体
的结 果 。 14 9 5年 周 培 源 先 生 首 次 导 出一 般
和机 理 都 很 清 楚 . 由于 所 解 的 偏 微 分 但 方 程组 过 于 庞 大 、 杂 , 以 距 解 决 工 复 所 程 中实 际 问 题 还有 很 大差 距 工 程 上 最 常 用 的 还 是 采用 各种 湍 流 模 型 尤 其 是 近 代 . 着 计 算 机 技 术 和 流 体 力 学 的 发 随 展 .各 种 应 用 软 件 应 运 而 生 . L E T FU N 作 为 其 中 一 种 已 被 成 功 地 用 来 解 决 一
立 了 完 整 的雷 诺 应 力 模 式 ( S 。 限 R M) 受 于计算手段 . 他们 所 建 立 的 复杂 的方 程
同 的尺 度 结 合 来 发 展 双 方程 模 型 17 94
1湍 流 理 论模 式 的发 展 . 年 .p lig和 L n d r归 纳 了 不 同 学 Sa n d ane

fluent零方程湍流模型

fluent零方程湍流模型

Fluent是一款广泛应用于流体动力学仿真模拟的软件,它支持多种湍流模型,其中零方程湍流模型是一种常用的模型。

零方程湍流模型基于湍流脉动守恒定律,通过直接求解湍流脉动输运方程组,避免了传统湍流模型中的复杂湍流输运偏微分方程,从而简化了湍流模拟的计算复杂度。

零方程湍流模型的核心思想是通过对湍动能和耗散率的独立处理,采用简单而又符合物理规律的输运方程来描述湍流的脉动特性。

其中,湍动能通过输运方程进行求解,耗散率则通过一个简单的输运方程进行描述。

在零方程湍流模型中,湍流粘度被定义为湍动能和耗散率的函数,从而可以通过求解控制容积中的输运方程来计算湍流的脉动速度和压力。

与标准k-ε模型相比,零方程湍流模型具有更简单的数学表达式和更高的计算效率。

然而,由于它没有充分利用湍流的复杂特性,因此有时无法准确模拟某些复杂的流动现象。

此外,零方程湍流模型还存在一些不足之处,例如对于不同雷诺应力之间的关系需要进行特殊处理,并且在某些情况下可能会表现出对网格的依赖性。

在实际应用中,零方程湍流模型常用于简单流动的模拟和验证。

对于复杂的流动现象,仍然需要采用标准k-ε模型等其他湍流模型进行更精确的模拟。

在选择湍流模型时,需要根据具体的流动情况和计算要求进行权衡和选择,以确保模拟结果的准确性和可靠性。

总之,零方程湍流模型是一种简化的湍流模拟方法,它通过直接求解湍流脉动输运方程组来描述湍流的脉动特性。

虽然它存在一些不足之处,但对于简单流动的模拟和验证具有较高的实用价值。

在实际应用中,需要根据具体的流动情况和计算要求进行选择和调整,以确保模拟结果的准确性和可靠性。

fluent中常见的湍流模型及各自应用场合

fluent中常见的湍流模型及各自应用场合

fluent中常见的湍流模型及各自应用场合湍流是流体运动中的一种复杂现象,它在自然界和工程应用中都非常常见。

为了模拟和预测湍流的行为,数学家和工程师们开发了各种湍流模型。

在Fluent中,作为一种流体动力学软件,它提供了多种常见的湍流模型,每个模型都有其自己的适用场合。

1. k-ε 模型最常见的湍流模型之一是k-ε模型。

该模型基于雷诺平均的假设,将湍流分解为宏观平均流动和湍流脉动两个部分,通过计算能量和湍动量方程来模拟湍流行为。

k-ε模型适用于边界层内和自由表面流动等具有高湍流强度的情况。

它还适用于非压缩流体和对称或旋转流动。

2. k-ω SST 模型k-ω SST模型是基于k-ε模型的改进版本。

它结合了k-ω模型和k-ε模型的优点,既能够准确地模拟边界层流动,又能够提供准确的湍流边界条件。

SST代表了"Shear Stress Transport",意味着模型在对剪切流动的边界层进行处理时更为准确。

k-ω SST模型适用于各种湍流强度的流动,特别是在激烈湍流的边界层内。

3. Reynolds Stress 模型Reynolds Stress模型是一种基于雷诺应力张量模拟湍流的高级模型。

它考虑了流场中的各向异性和非线性效应,并通过解Reynolds应力方程来确定流场中的张应力。

由于对流场的湍流行为进行了更精确的建模,Reynolds Stress模型适用于湍流流动和涡旋流动等复杂的工程应用。

然而,由于模型的计算复杂度较高,使用该模型需要更多的计算资源。

4. Large Eddy Simulation (LES)Large Eddy Simulation是一种直接模拟湍流的方法,它通过将整个流场划分为大尺度和小尺度的涡旋来模拟湍流行为。

LES适用于高雷诺数的流动,其中小尺度涡旋的作用显著。

由于需要同时解决大尺度和小尺度涡旋的运动方程,LES计算的复杂度非常高,适用于需要高精度湍流求解的工程应用。

fluent的空气湍流模型

fluent的空气湍流模型

fluent的空气湍流模型(实用版)目录一、引言二、Fluent 中的湍流模型概述1.湍流模型的种类2.湍流模型的选择三、Fluent 中的空气湍流模型1.k-模型2.sa 模型3.LES 模型四、Fluent 中湍流模型的应用1.边界层流动2.噪声模拟五、结论正文一、引言在计算机流体动力学(CFD)领域,湍流是一种常见的流动现象。

由于其复杂性,工程师们通常需要使用湍流模型来模拟这种流动。

Fluent 是一款广泛应用于 CFD 领域的软件,它提供了多种湍流模型供用户选择。

本文将介绍 Fluent 中的空气湍流模型。

二、Fluent 中的湍流模型概述1.湍流模型的种类在 Fluent 中,湍流模型主要分为以下几类:k-模型、sa 模型、LES 模型、RSM 模型等。

这些模型分别适用于不同的流动情况,具有各自的优缺点。

2.湍流模型的选择选择合适的湍流模型是模拟流体流动的关键。

在实际应用中,需要根据流体的性质、流动区域、流动速度等因素来选择合适的湍流模型。

三、Fluent 中的空气湍流模型1.k-模型k-模型是一种基于涡旋随机化的湍流模型,适用于高速、非粘性流体流动。

在 Fluent 中,k-模型可以通过设置湍流粘性系数来调整模型的性能。

2.sa 模型sa 模型,即 Smagorinsky 模型,是一种基于涡旋随机化和湍流扩散的混合模型。

它在高速、非粘性流体流动方面具有较好的性能。

在 Fluent 中,sa 模型可以通过设置涡旋随机化参数和湍流扩散参数来调整模型的性能。

3.LES 模型LES 模型,即大涡模拟,是一种基于湍流涡旋结构的湍流模型。

它适用于高速、非粘性流体流动以及具有较强湍流特性的流动。

在 Fluent 中,LES 模型可以通过设置湍流涡旋参数来调整模型的性能。

四、Fluent 中湍流模型的应用1.边界层流动在边界层流动模拟中,湍流模型的选择尤为重要。

一般来说,对于有压力梯度的大范围边界层流动,可以选择 k-模型或 sa 模型;而对于强旋流和旋转流动,可以选择 LES 模型或 RSM 模型。

FLUENT简明中文教程--第三章,湍流模型-1

FLUENT简明中文教程--第三章,湍流模型-1

24第三章,湍流模型第一节, 前言湍流流动模型很多,但大致可以归纳为以下三类:第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。

即:2121x u u u t∂∂=′′−μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有:ij i jj i t j i k x u xu u u δρμρ32−⎟⎟⎠⎞⎜⎜⎝⎛∂∂+∂∂=′′− 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。

根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。

第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。

第三类是大涡模拟。

前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。

大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。

实际求解中,选用什么模型要根据具体问题的特点来决定。

选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。

FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。

湍流模型种类示意图包含更多 物理机理每次迭代 计算量增加提的模型选RANS-based models25第二节,平均量输运方程雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。

对于速度,有:i i i u u u ′+= 3-3其中,i u 和i u ′分别是平均速度和脉动速度(i=1,2,3)类似地,对于压力等其它标量,我们也有:φφφ′+= 3-4 其中,φ表示标量,如压力、能量、组分浓度等。

fluent的空气湍流模型

fluent的空气湍流模型

fluent的空气湍流模型摘要:1.Fluent 软件概述2.湍流模型的概述3.Fluent 中的湍流模型分类4.各类湍流模型的特点及适用范围5.如何选择合适的湍流模型6.结论正文:一、Fluent 软件概述Fluent 是一款由美国CFD 公司(Computational Fluid Dynamics)开发的计算流体动力学(CFD)软件,广泛应用于工程领域,如航空航天、能源、化工、环境等。

Fluent 可以模拟流体的层流和湍流状态,为研究流体流动提供了强大的工具。

二、湍流模型的概述湍流是指流体在高速流动时,由于粘性力的不稳定性,产生的无规则、高度混合的流动状态。

在实际工程中,大部分流体流动都处于湍流状态。

为了模拟这种复杂的流动现象,Fluent 提供了多种湍流模型供用户选择。

三、Fluent 中的湍流模型分类Fluent 中的湍流模型主要分为以下几类:1.k-ε模型:基于k-ε两方程模型,其中k 为湍流动能耗散率,ε为湍流能量耗散率。

2.k-ω模型:基于k-ω两方程模型,其中k 为湍流动能耗散率,ω为湍流旋涡耗散率。

3.SST 模型:基于Spalart-Allmaras 三维湍流模型,考虑了流场中的旋涡和湍流扩散。

4.RSM 模型:基于大涡模拟(LES)的湍流模型,考虑了湍流尺度的空间分布。

5.VOF 模型:基于体积分数(Volume of Fluid)的湍流模型,适用于两相流问题。

6.Mixture 模型:基于混合长度理论的湍流模型,适用于多相流问题。

四、各类湍流模型的特点及适用范围1.k-ε模型:计算精度较高,适用于大部分工程问题。

特别适用于湍流强度较低、流动平稳的问题。

2.k-ω模型:考虑了湍流旋涡的耗散,适用于湍流强度较高、流动剧烈的问题。

例如,涡轮机、喷气发动机等。

3.SST 模型:计算精度较高,适用于考虑湍流旋涡耗散的问题。

例如,飞机翼型、汽车尾翼等。

4.RSM 模型:适用于湍流强度较高、流动剧烈的问题,特别是具有强旋流和旋转的流体。

湍流模型选择

湍流模型选择

FLUENT中的湍流模型很多,有单方程模型,双方程模型,雷诺应力模型,转捩模型等等。

这里只针对最常用的模型。

1、湍流模型描述模型描述Spalart-Allmaras 单方程模型,直接解出修正过的湍流粘性,用于有界壁面流动的航空领域(需要较好的近壁面网格)尤其是绕流过程;该模型也可用于粗网格。

Standard k-e 双方程模型。

是默认的k-e模型,系数由经验公式给出。

只对高Re的湍流有效,包含粘性热、浮力、压缩性等选项RNG k-e 标准k-e模型的变形,方程和系数来自解析解。

在e方程中改善了模拟高应变流动的能力;用来预测中等强度的旋游和低雷诺数流动Realizable k-e标准k-e模型的变形。

用数学约束改善模型的性能。

能用于预测中等强度的旋流Standard k-w 两个输运方程求解k与w。

对于有界壁面和低雷诺数流动性能较好,尤其是绕流问题;包含转捩。

自由剪切和压缩性选项SST k-w标准k-w模型的变形。

使用混合函数将标准k-e模型与k-w模型结合起来,包含了转捩和剪切选项Reynolds Stress直接使用输运方程来解出雷诺应力,避免了其它模型的粘性假设,模拟强旋流相比其它模型有明显优势2、湍流模型的选择模型用法Spalart Allmaras 计算量小,对一定复杂的边界层问题有较好的效果计算结果没有被广泛的测试,缺少子模型典型的应用场合为航空领域的绕流模拟Standard k-e 应用多,计算量适中,有较多数据积累和比较高的精度对于曲率较大和压力梯度较强等复杂流动模拟效果欠佳一般工程计算都使用此模型,其收敛性和计算精度能满足一般的工程计算要求,但模拟旋流和绕流时有缺陷RNG k-e 能模拟射流撞击、分离流、二次流和旋流等中等复杂流动受到涡旋粘性同性假设限制除强旋流过程无法精确预测外,其它流动都可以使用此模型Realizable k-e 和RNG基本一致,还可以更好的模拟圆形射流受到涡旋粘性同性假设限制除强旋流过程无法精确预测外,其它流动都可以使用此模型Stand k-w对于壁面边界层,自由剪切流,低雷诺数流动性能较好。

FLUENT教程--10-18章

FLUENT教程--10-18章
需要注意的是 Spalart-Allmaras 模型是一种新出现的模型,现在不能断定它适用于所有 的复杂的工程流体。例如,不能依靠它去预测均匀衰退,各向同性湍流。还有要注意的是, 单方程的模型经常因为对长度的不敏感而受到批评,例如当流动墙壁束缚变为自由剪切流。 10.2.5 标准k-e模型
最简单的完整湍流模型是两个方程的模型,要解两个变量,速度和长度尺度。在FLUENT 中,标准k-e模型自从被Launder and Spalding提出之后,就变成工程流场计算中主要的工具了。 适用范围广、经济、合理的精度,这就是为什么它在工业流场和热交换模拟中有如此广泛的 应用了。它是个半经验的公式,是从实验现象中总结出来的。
ui = ui +ui' """(10.2−1)
这里
u
i

u
' i
时时均速度和波动分量。
相似的,像压力和其它的标量
φi =φi +φi' """(10.2−2)
这里φ 表示一个标量如压力,动能,或粒子浓度。
用这种形式的表达式把流动的变量放入连续性方程和动量方程并且取一段一段时间的 平均,这样可以写成一下的形式:
带旋流修正的 k-e 模型是近期才出现的,比起标准 k-e 模型来有两个主要的不同点。 ·带旋流修正的 k-e 模型为湍流粘性增加了一个公式。 ·为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程 术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。 带旋流修正的 k-e 模型直接的好处是对于平板和圆柱射流的发散比率的更精确的预测。 而且它对于旋转流动、强逆压梯度的边界层流动、流动分离和二次流有很好的表现。 带旋流修正的 k-e 模型和 RNG k-e 模型都显现出比标准 k-e 模型在强流线弯曲、漩涡和 旋转有更好的表现。由于带旋流修正的 k-e 模型是新出现的模型,所以现在还没有确凿的证 据表明它比 RNG k-e 模型有更好的表现。但是最初的研究表明带旋流修正的 k-e 模型在所有 k-e 模型中流动分离和复杂二次流有很好的作用。 带旋流修正的 k-e 模型的一个不足是在主要计算旋转和静态流动区域时不能提供自然 的湍流粘度。这是因为带旋流修正的 k-e 模型在定义湍流粘度时考虑了平均旋度的影响。这 种额外的旋转影响已经在单一旋转参考系中得到证实,而且表现要好于标准 k-e 模型。由于 这些修改,把它应用于多重参考系统中需要注意。 10.2.8 标准 k-ω模型 标准k-ω模型是基于Wilcox k-ω模型,它是为考虑低雷诺数、可压缩性和剪切流传播而 修改的。Wilcox k-ω模型预测了自由剪切流传播速率,像尾流、混合流动、平板绕流、圆柱 绕流和放射状喷射,因而可以应用于墙壁束缚流动和自由剪切流动。标准k-e模型的一个变 形是SST k-ω模型,它在FLUENT中也是可用的,将在10.2.9中介绍它。 10.2.9 剪切压力传输(SST) k-ω模型 SST k-ω模型由Menter发展,以便使得在广泛的领域中可以独立于k-e模型,使得在近壁 自由流中k-ω模型有广泛的应用范围和精度。为了达到此目的,k-e模型变成了k-ω公式。SST k-ω模型和标准k-ω模型相似,但有以下改进: ·SST k-ω模型和k-e模型的变形增长于混合功能和双模型加在一起。混合功能是为近壁 区域设计的,这个区域对标准k-ω模型有效,还有自由表面,这对k-e模型的变形有效。 ·SST k-ω模型合并了来源于ω方程中的交叉扩散。 ·湍流粘度考虑到了湍流剪应力的传波。 ·模型常量不同 这些改进使得SST k-ω模型比标准k-ω模型在在广泛的流动领域中有更高的精度和可信 度。 10.2.10 雷诺压力模型(RSM) 在FLUENT中RSM是最精细制作的模型。放弃等方性边界速度假设,RSM使得雷诺平均 N-S方程封闭,解决了关于方程中的雷诺压力,还有耗散速率。这意味这在二维流动中加入 了四个方程,而在三维流动中加入了七个方程。 由于RSM比单方程和双方程模型更加严格的考虑了流线型弯曲、漩涡、旋转和张力快速 变化,它对于复杂流动有更高的精度预测的潜力。但是这种预测仅仅限于与雷诺压力有关的 方程。压力张力和耗散速率被认为是使RSM模型预测精度降低的主要因素。 RSM模型并不总是因为比简单模型好而花费更多的计算机资源。但是要考虑雷诺压力的

几种湍流模型及其在FLUENT中的应用_任志安

几种湍流模型及其在FLUENT中的应用_任志安

几种湍流模型及其在F L U E N T中的应用任志安* 郝 点 谢红杰(中国石油大学(华东)机电工程学院) 摘 要 湍流是一种非常复杂的非稳态流动,目前尚未找到对各种流动情况都十分有效的模型。

重点阐述了几种常用的湍流模型,并分别选用这几种模型对二维离心式鼓风机的空气流动进行了数值模拟。

结果显示,标准κ-ε湍流模型收敛最快。

说明对于二维简单的充分发展的湍流运动,标准κ-ε湍流模型更适用。

关键词 湍流模型 F L U E N T 数值模拟0 引言湍流是一种非常复杂的非稳态三维流动,在湍流中流体的各种物理参数,如速度、压力、温度等都是随时间与空间而随机变化的,是个随机的非线性过程,因而到目前为止,尚无完善的理论。

从物理结构上说,可以把湍流看成由各种不同尺度的涡旋叠合而成,这些涡旋的大小与旋转轴的方向分布是随机的[1]。

目前工程上对湍流流动的数值计算方法主要有直接数值模拟、大涡模拟、雷诺时均方程法。

其中应用最多的雷诺时均方程法是对N-S 方程作时间平均,再通过时均后的控制方程对湍流进行计算。

为了使湍流的平均雷诺方程封闭,建立了不同的湍流模型。

本文将重点介绍其中的标准κ-ε湍流模型、R N Gκ-ε湍流模型、R e a l i z a b l e κ-ε湍流模型以及雷诺应力方程模型(R S M)。

1 湍流模型1.1 标准κ-ε湍流模型标准κ-ε湍流模型是由L a u n d e r和S p a l d i n g 于1972年提出的,是个半经验公式,主要是求解湍流动能κ方程和湍流耗散率ε输运方程,并建立起它们与湍流涡粘系数μt的关系。

κ方程是个精确方程,ε方程是个由经验公式导出的方程。

κ-ε模型假定流场是完全发展的湍流,流体分子之间的粘性可以被忽略,因而标准κ-ε模型只对完全湍流的流场有效。

*任志安,男,1984年生,硕士研究生。

东营市,257061。

标准κ-ε模型的方程如下:湍流动能方程(κ方程)(ρκ)t+(ρκu i)x i =x j(μ+μtσκ)κx j+Gκ+G b-ρε-Y M+Sκ(1)耗散方程(ε方程)(ρε)t+(ρεu i)x i =x j(μ+μtσε)εx j+C1εεκ(Gκ+C3εG b) -C2ερε2κ+Sε(2)式中 C1ε、C2ε和C3ε———经验常数,C1ε=1.44,C2ε=1.92,C3ε=0.09σκ、σε———湍动能κ和耗散率ε对应的P r a n d t l数,σκ=1.0,σε=1.3Sκ、Sε———用户定义源项,可根据不同情况定μt———湍流涡粘系数,μt=ρCμκ2/εG b———由于浮力而引起的湍动能κ的产生项Y M———可压湍流中脉动扩张项Gκ———由于速度梯度引起的应力源项,Gκ=-ρu′i u′j———(u j/ x i),经过模化后,得:Gκ=μt S2,其中,S≡2S i j S i j,S i j=12(u jx i+u ix j)38几种湍流模型及其在F L U E N T中的应用1.2 R N Gκ-ε湍流模型 R N Gκ-ε湍流模型是由Y a k h o t 和O r z a g 提出的。

fluent 湍流热导率

fluent 湍流热导率

fluent 湍流热导率(原创实用版)目录1.湍流热导率的概念2.Fluent 软件的介绍3.Fluent 中湍流热导率的计算方法4.Fluent 在湍流热导率计算中的应用实例5.总结正文一、湍流热导率的概念湍流热导率,又称为热传导率,是指在湍流状态下,流体中热量传递的速率。

它是流体热传导过程中的重要参数,直接影响到热传导效率和工程设备的安全性及经济性。

二、Fluent 软件的介绍Fluent 是一款由美国 CFD(计算流体动力学)公司开发的流体动力学仿真软件。

该软件广泛应用于化工、能源、航空航天等领域,为用户提供了一个强大的流体流动、传热和化学反应仿真平台。

三、Fluent 中湍流热导率的计算方法在 Fluent 中,湍流热导率的计算采用 k-ε模型。

该模型是一种基于涡旋随机运动的湍流模型,可以较为准确地模拟湍流热传导过程。

在 k-ε模型中,湍流热导率由以下几个参数决定:1.湍流运动的特性,如湍流涡旋的尺度和湍流能量的耗散等;2.流体的热物理性质,如比热容、密度等;3.流体的流动状态,如层流和湍流等。

四、Fluent 在湍流热导率计算中的应用实例假设一个长方体的容器内充满了水,容器底部加热,我们需要计算在不同温度和流速条件下,水的湍流热导率。

1.创建 Fluent 模型:首先,我们需要创建一个计算域,包括容器和其中的水流。

然后,设置流体的物性参数,如水的比热容、密度等。

2.设置边界条件:在容器底部设置温度边界条件,模拟加热过程;在容器壁面设置无滑动边界条件,以保证水流不与容器壁发生摩擦。

3.设置湍流模型:选择 k-ε模型作为湍流模型,并设置相关参数。

4.求解:运用 Fluent 软件求解得到流场和温度分布,从而计算出湍流热导率。

五、总结Fluent 软件在湍流热导率计算方面具有较强的功能和实用性。

FLUENT常用的湍流模型及壁面函数处理

FLUENT常用的湍流模型及壁面函数处理

FLUENT常用的湍流模型及壁面函数处理本文内容摘自《精通CFD工程仿真与案例实战》。

实际上也是帮助文档的翻译,英文好的可直接参阅帮助文档。

FLUENT中的湍流模型很多,有单方程模型,双方程模型,雷诺应力模型,转捩模型等等。

这里只针对最常用的模型。

1、湍流模型描述2、湍流模型的选择有两种方法处理近壁面区域。

一种方法,不求解粘性影响内部区域(粘性子层及过渡层),使用一种称之为“wall function”的半经验方法去计算壁面与充分发展湍流区域之间的粘性影响区域。

采用壁面函数法,省去了为壁面的存在而修改湍流模型。

另一种方法,修改湍流模型以使其能够求解近壁粘性影响区域,包括粘性子层。

此处使用的方法即近壁模型。

(近壁模型不需要使用壁面函数,如一些低雷诺数模型,K-W湍流模型是一种典型的近壁湍流模型)。

所有壁面函数(除scalable壁面函数外)的最主要缺点在于:沿壁面法向细化网格时,会导致使数值结果恶化。

当y+小于15时,将会在壁面剪切力及热传递方面逐渐导致产生无界错误。

然而这是若干年前的工业标准,如今ANSYS FLUENT采取了措施提供了更高级的壁面格式,以允许网格细化而不产生结果恶化。

这些y+无关的格式是默认的基于w方程的湍流模型。

对于基于epsilon方程的模型,增强壁面函数(EWT)提供了相同的功能。

这一选项同样是SA模型所默认的,该选项允许用户使其模型与近壁面y+求解无关。

(实际上是这样的:K-W方程是低雷诺数模型,采用网格求解的方式计算近壁面粘性区域,所以加密网格降低y+值不会导致结果恶化。

k-e方程是高雷诺数模型,其要求第一层网格位于湍流充分发展区域,而此时若加密网格导致第一层网格处于粘性子层内,则会造成计算结果恶化。

这时候可以使用增强壁面函数以避免这类问题。

SA模型默认使用增强壁面函数)。

只有当所有的边界层求解都达到要求了才可能获得高质量的壁面边界层数值计算结果。

这一要求比单纯的几个Y+值达到要求更重要。

FLUENT中常用的湍流模型

FLUENT中常用的湍流模型

The Spalart-Allmaras模型对于解决动力漩涡粘性,Spalart-Allmaras 模型是相对简单的方程。

它包含了一组新的方程,在这些方程里不必要去计算和剪应力层厚度相关的长度尺度。

Spalart-Allmaras 模型是设计用于航空领域的,主要是墙壁束缚流动,而且已经显示出很好的效果。

在透平机械中的应用也愈加广泛。

在原始形式中Spalart-Allmaras 模型对于低雷诺数模型是十分有效的,要求边界层中粘性影响的区域被适当的解决。

在FLUENT中,Spalart-Allmaras 模型用在网格划分的不是很好时。

这将是最好的选择,当精确的计算在湍流中并不是十分需要时。

再有,在模型中近壁的变量梯度比在k-e模型和k-ω模型中的要小的多。

这也许可以使模型对于数值的误差变得不敏感。

想知道数值误差的具体情况请看5.1.2。

需要注意的是Spalart-Allmaras 模型是一种新出现的模型,现在不能断定它适用于所有的复杂的工程流体。

例如,不能依靠它去预测均匀衰退,各向同性湍流。

还有要注意的是,单方程的模型经常因为对长度的不敏感而受到批评,例如当流动墙壁束缚变为自由剪切流。

标准k-e模型最简单的完整湍流模型是两个方程的模型,要解两个变量,速度和长度尺度。

在FLUENT中,标准k-e模型自从被Launder and Spalding提出之后,就变成工程流场计算中主要的工具了。

适用范围广、经济,有合理的精度,这就是为什么它在工业流场和热交换模拟中有如此广泛的应用了。

它是个半经验的公式,是从实验现象中总结出来的。

由于人们已经知道了k-e模型适用的范围,因此人们对它加以改造,出现了RNG k-e模型和带旋流修正k-e 模型。

k-ε模型中的K和ε物理意义:k是紊流脉动动能(J),ε是紊流脉动动能的耗散率(%);k越大表明湍流脉动长度和时间尺度越大,ε越大意味着湍流脉动长度和时间尺度越小,它们是两个量制约着湍流脉动。

fluent udf 湍流参数

fluent udf 湍流参数

fluent udf 湍流参数湍流参数是湍流模拟中的一个重要概念,它决定了模拟结果的准确性和可靠性。

在Fluent UDF中,我们可以通过定义和调整湍流参数来改善模拟结果,使其更符合实际情况。

本文将介绍几个常见的湍流参数,并探讨它们对模拟结果的影响。

一、湍流模型选择在Fluent UDF中,我们可以选择不同的湍流模型来描述流体中的湍流运动。

常见的湍流模型有k-ε模型、k-ω模型、SST模型等。

每种模型都有其适用的领域和局限性。

在选择湍流模型时,需要根据具体应用场景和模拟目标来进行选择。

二、湍流粘度湍流粘度是一个重要的湍流参数,它决定了流体中湍流运动的强度。

在Fluent UDF中,我们可以通过调整湍流粘度来改变湍流模拟的结果。

一般情况下,湍流粘度越大,湍流运动越强烈;湍流粘度越小,湍流运动越弱。

三、湍流能量和湍流耗散率湍流能量和湍流耗散率是描述湍流运动特征的两个重要参数。

在Fluent UDF中,我们可以通过调整湍流能量和湍流耗散率来改变湍流模拟的结果。

湍流能量越大,湍流运动越强烈;湍流耗散率越大,湍流运动越剧烈。

四、湍流涡粘度比湍流涡粘度比是湍流模拟中的一个重要参数,它描述了湍流涡的扩散和耗散特性。

在Fluent UDF中,我们可以通过调整湍流涡粘度比来改变湍流模拟的结果。

湍流涡粘度比越大,湍流涡的扩散和耗散越强;湍流涡粘度比越小,湍流涡的扩散和耗散越弱。

五、湍流时间尺度湍流时间尺度是描述湍流运动时间特征的一个重要参数。

在Fluent UDF中,我们可以通过调整湍流时间尺度来改变湍流模拟的结果。

湍流时间尺度越小,湍流运动的时间特征越短暂;湍流时间尺度越大,湍流运动的时间特征越持久。

六、湍流强度湍流强度是描述湍流运动强度的一个重要参数。

在Fluent UDF中,我们可以通过调整湍流强度来改变湍流模拟的结果。

湍流强度越大,湍流运动越强烈;湍流强度越小,湍流运动越弱。

七、湍流长度尺度湍流长度尺度是描述湍流涡的空间特征的一个重要参数。

fluent湍流常数

fluent湍流常数

fluent湍流常数湍流是一种在流体动力学中非常重要且复杂的现象。

它在多个领域中都有应用,例如天气预报、飞行器设计和水力学。

而湍流常数则是湍流的一个关键指标,用于描述湍流的特性和动力学行为。

在本文中,我们将介绍和探讨fluent湍流常数的相关概念和应用。

在CFD(Computational Fluid Dynamics,计算流体力学)模拟中,fluent湍流常数是一种用于描述湍流模型的参数。

它用于确定基于雷诺平均Navier-Stokes方程的湍流模拟中湍流的表现,并为模拟提供准确的结果。

fluent湍流常数的计算方法根据不同的湍流模型而有所不同。

常见的湍流模型包括k-ε模型、k-ω模型和Reynolds Stress Model(RSM,雷诺应力模型)。

这些模型都需要依赖特定的参数,其中之一就是湍流常数。

对于k-ε模型和k-ω模型,fluent湍流常数被定义为“可展缩湍流耗散率”,通常用Cμ表示。

这个参数用于描述湍动能量的转换率和湍流耗散。

它的数值通常根据实验数据或经验公式进行估计。

在fluent软件中,用户可以根据具体应用场景和流体介质选择不同的Cμ值。

对于Reynolds Stress Model(RSM),fluent湍流常数没有被直接定义。

而是通过求解雷诺应力方程来间接计算湍流模型中所需的参数。

RSM模型是一种较为复杂和精确的湍流模型,可以更准确地捕捉湍流的各种特性。

在使用RSM模型时,用户需要借助fluent软件中的湍流参数设置和求解选项来调整模型的精度和计算效率。

在实际工程应用中,选择合适的fluent湍流常数是非常重要的。

不同的Cμ值可能会对模拟结果产生明显的影响。

一方面,过小的Cμ值可能导致过度耗散湍流能量,使模拟结果偏向于平稳流动。

另一方面,过大的Cμ值则可能导致湍流能量积累过多,使模拟结果偏向于湍流流动。

因此,根据实际情况选择合适的Cμ值,对于模拟结果的准确性和可靠性至关重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FLUENT湍流模型(转)
The Spalart-Allmaras模型
对于解决动力漩涡粘性,Spalart-Allmaras 模型是相对简单的方程。

它包含了一组新的方程,在这些方程里不必要去计算和剪应力层厚度相关的长度尺度。

Spalart-Allmaras 模型是设计用于航空领域的,主要是墙壁束缚流动,而且已经显示出和好的效果。

在透平机械中的应用也愈加广泛。

在原始形式中Spalart-Allmaras 模型对于低雷诺数模型是十分有效的,要求边界层中粘性影响的区域被适当的解决。

在FLUENT中,Spalart-Allmaras 模型用在网格划分的不是很好时。

这将是最好的选择,当精确的计算在湍流中并不是十分需要时。

再有,在模型中近壁的变量梯度比在k-e模型和k-ω模型中的要小的多。

这也许可以使模型对于数值的误差变得不敏感。

想知道数值误差的具体情况请看5.1.2。

需要注意的是Spalart-Allmaras 模型是一种新出现的模型,现在不能断定它适用于所有的复杂的工程流体。

例如,不能依靠它去预测均匀衰退,各向同性湍流。

还有要注意的是,单方程的模型经常因为对长度的不敏感而受到批评,例如当流动墙壁束缚变为自由剪切流。

标准k-e模型
最简单的完整湍流模型是两个方程的模型,要解两个变量,速度和长度尺度。

在FLUENT中,标准k-e模型自从被Launder and Spalding提出之后,就变成工程流场计算中主要的工具了。

适用范围广、经济,有合理的精度,这就是为什么它在工业流场和热交换模拟中有如此广泛的应用了。

它是个半经验的公式,是从实验现象中总结出来的。

由于人们已经知道了k-e模型适用的范围,因此人们对它加以改造,出现了RNG k-e模型和带旋流修正k-e模型。

k-ε模型中的K和ε物理意义:k是紊流脉动动能(J),ε是紊流脉动动能的耗散率(%);k越大表明湍流脉动长度和时间尺度越大,ε越大意味着湍流脉动长度和时间尺度越小,它们是两个量制约着湍流脉动。

RNG k-e模型
RNG k-e模型来源于严格的统计技术。

它和标准k-e模型很相似,但是有以下改进:
?RNG模型在e方程中加了一个条件,有效的改善了精度。

?考虑到了湍流漩涡,提高了在这方面的精度。

?RNG理论为湍流Prandtl数提供了一个解析公式,然而标准k-e模型使用的是用户提供的常数。

?然而标准k-e模型是一种高雷诺数的模型,RNG理论提供了一个考虑低雷诺数流动粘性的解析公式。

这些公式的效用依靠正确的对待近壁区域
这些特点使得RNG k-e模型比标准k-e模型在更广泛的流动中有更高的可信度和精度。

带旋流修正的k-e模型
带旋流修正的k-e模型是近期才出现的,比起标准k-e模型来有两个主要的不同点。

?带旋流修正的k-e模型为湍流粘性增加了一个公式。

?为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程。

术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。

带旋流修正的k-e模型直接的好处是对于平板和圆柱射流的发散比率的更精确的预测。

而且它对于旋转流动、强逆压梯度的边界层流动、流动分离和二次流有很好的表现。

带旋流修正的k-e模型和RNG k-e模型都显现出比标准k-e模型在强流线弯曲、漩涡和旋转有更好的表现。

由于带旋流修正的k-e模型是新出现的模型,所以现在还没有确凿的证据表明它比RNG k-e模型有更好的表现。

但是最初的研究表明带旋流修正的k-e模型在所有k-e模型中流动分离和复杂二次流有很好的作用。

带旋流修正的k-e模型的一个不足是在主要计算旋转和静态流动区域时不能提供自然的湍流粘度。

这是因为带旋流修正的k-e模型在定义湍流粘度时考虑了平均旋度的影响。

这种额外的旋转影响已经在单一旋转参
考系中得到证实,而且表现要好于标准k-e模型。

由于这些修改,把它应用于多重参考系统中需要注意。

标准k-ω模型
标准k-ω模型是基于Wilcox k-ω模型,它是为考虑低雷诺数、可压缩性和剪切流传播而修改的。

Wilcox k-ω模型预测了自由剪切流传播速率,像尾流、混合流动、平板绕流、圆柱绕流和放射状喷射,因而可以应用于墙壁束缚流动和自由剪切流动。

标准k-e模型的一个变形是SST k-ω模型,它在FLUENT中也是可用的,将在10.2.9中介绍它。

剪切压力传输(SST)k-ω模型
SST k-ω模型由Menter发展,以便使得在广泛的领域中可以独立于k-e模型,使得在近壁自由流中k-ω模型有广泛的应用范围和精度。

为了达到此目的,k-e 模型变成了k-ω公式。

SST k-ω模型和标准k-ω模型相似,但有以下改进:
?SST k-ω模型和k-e模型的变形增长于混合功能和双模型加在一起。

混合功能是为近壁区域设计的,这个区域对标准k-ω模型有效,还有自由表面,这对k-e 模型的变形有效。

?SST k-ω模型合并了来源于ω方程中的交叉扩散。

?湍流粘度考虑到了湍流剪应力的传波。

?模型常量不同。

这些改进使得SST k-ω模型比标准k-ω模型在在广泛的流动领域中有更高的精度和可信度。

雷诺压力模型(RSM)
在FLUENT中RSM是最精细制作的模型。

放弃等方性边界速度假设,RSM使得雷诺平均N-S方程封闭,解决了关于方程中的雷诺压力,还有耗散速率。

这意味这在二维流动中加入了四个方程,而在三维流动中加入了七个方程。

由于RSM比单方程和双方程模型更加严格的考虑了流线型弯曲、漩涡、旋转和张力快速变化,它对于复杂流动有更高的精度预测的潜力。

但是这种预测仅仅限于与
雷诺压力有关的方程。

压力张力和耗散速率被认为是使RSM模型预测精度降低的主要因素。

RSM模型并不总是因为比简单模型好而花费更多的计算机资源。

但是要考虑雷诺压力的各向异性时,必须用RSM模型。

例如飓风流动、燃烧室高速旋转流、管道中二次流。

计算成效:cpu时间和解决方案
从计算的角度看Spalart-Allmaras模型在FLUENT中是最经济的湍流模型,虽然只有一种方程可以解。

由于要解额外的方程,标准k-e模型比Spalart-Allmaras 模型耗费更多的计算机资源。

带旋流修正的k-e模型比标准k-e模型稍微多一点。

由于控制方程中额外的功能和非线性,RNGk-e模型比标准k-e模型多消耗10~15%的CPU时间。

就像k-e模型,k-ω模型也是两个方程的模型,所以计算时间相同。

比较一下k-e模型和k-ω模型,RSM模型因为考虑了雷诺压力而需要更多的CPU 时间。

然而高效的程序大大的节约了CPU时间。

RSM模型比k-e模型和k-ω模型要多耗费50~60%的CPU时间,还有15~20%的内存。

除了时间,湍流模型的选择也影响FLUENT的计算。

比如标准k-e模型是专为轻微的扩散设计的,然而RNG k-e模型是为高张力引起的湍流粘度降低而设计的。

这就是RNG模型的缺点。

同样的,RSM模型需要比k-e模型和k-ω模型更多的时间因为它要联合雷诺压力和层流。

相关文档
最新文档