正余弦定理应用举例
正弦和余弦定理应用举例

N间的距离的步骤.
[解] 方案一:①需要测量的数据有:A点到M、N点的俯 角α1、β1;B点到M、N的俯角α2、β2;A、B间的距离d(如 图所示). ②第一步:计算AM.由正弦定理得
AM=
第二步:计算AN.由正弦定理得 AN= 第三步:计算MN.由余弦定理得
MN=
方案二:①需要测量的数据有: A点到M、N点的俯角α1、β1;B点到M、N点的俯角α2、β2;
解:在△BCD中,
∠CBD=π-α-β.
由正弦定理得
所以BC 在Rt △ABC中,AB=BCtan
测量角度问题也就是通过解三角形求角问题,求角 问题可以转化为求该角的函数值.如果是用余弦定理求 得该角的余弦,该角容易确定,如果用正弦定理求得该 角的正弦,就需要讨论解的情况了.
在海岸A处,发现北偏东45°方向,距A处(
时间相等,若在D处相
遇,则可先在△ABC中求出BC,再在△BCD 中求∠BCD.
【解】
设缉私船用t h在D处追上走私船, ,BD=10t,
则有CD=10
在△ABC中,∵AB=
∴由余弦定理,得
-1,AC=2,∠BAC=120°,
BC2=AB2+AC2-2AB· ACcos∠BAC =( -1)2+22-2· ( -1)· 2· cos 120°=6,
答案
5.如图,为了测量河的宽度,在一岸边选定两点A,B望对
岸的标记物C,测得∠CAB=30°,∠CBA=75°,AB= 120m,则这条河的宽度为 m.
解析:如图,在△ABC中,过C作CD⊥AB于D点,则CD为
所求宽度,在△ABC中, ∵∠CAB=30°,∠CBA=75°, ∴∠ACB=75°, ∴AC=AB=120 m.
正余弦定理的应用

利用正余弦定理,可以求出三角形的 角度,特别是当已知两边及其夹角时。
在三角形边长问题中的应用
计算边长
已知三角形的两边及夹角,正余弦定理可以用来计算第三边的长度。
验证边长条件
在解决三角形问题时,可以使用正余弦定理验证给定的边长是否满足三角形的性质。
在三角函数问题中的应用
计算三角函数值
利用正余弦定理,可以求出三角函数值 ,例如sin、cos或tan。
VS
验证三角函数关系
在解决三角函数问题时,可以使用正余弦 定理验证给定的三角函数关系是否成立。
04
CHAPTER
实际应用举例
பைடு நூலகம்
测量问题中的应用
确定不可达物体的高度
通过测量物体在太阳下形成的阴影长度,结 合正弦定理,可以计算出物体的高度。
正余弦定理的应用
目录
CONTENTS
• 正弦定理的应用 • 余弦定理的应用 • 正余弦定理的综合应用 • 实际应用举例
01
CHAPTER
正弦定理的应用
在三角形边长问题中的应用
确定已知两边及一边对角时,利用正弦定理求第 三边。
已知三角形的两边及其中一边的对角,可以使用 正弦定理求出第三边。
在三角形中已知两边及夹角,可以使用正弦定理 求出第三边。
解决三角函数方程
通过余弦定理,我们可以解决一些三角函数方程,例如求解sin(x) = 1/2在[0,2π]内的 解。
03
CHAPTER
正余弦定理的综合应用
在解三角形问题中的应用
确定三角形形状
通过正余弦定理,可以判断三角形的 形状,例如是否为直角三角形、等腰 三角形或等边三角形。
正弦定理余弦定理应用举例

正弦定理、余弦定理应用举例一、距离问题1.xkm 后,他向右转150,然后朝新方向走3km ,结果他离出发点某人向正东方向走恰好3km ,那么x 的值为【】A.3B.23C.23或3D.32.如图,为了测量某障碍物两侧A、 B 间的距离,给定下列四组数据,测量时应当用数据【】A., a, bB.,, aC.a,b,D.,, b两座灯塔A 与B与海洋观察站C的距离都等于 a km ,灯塔A在观察站C的北偏东3.20 ,灯塔B在观察站C的南偏东 40,则灯塔 A 与灯塔 B 的距离为【】A. a kmB.3a kmC. 2a kmD. 2a km4.海上有 A、B 两个小岛相距10海里,从A 岛望 C岛和 B岛成60的视角,从B岛望 C 岛和 A岛成75的视角,则B、 C 的距离是 __________________5.一船向正北航行,看见正西方向有相距10 海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西 60的方向上,另一灯塔在船的南偏西75 方向上,则这艘船的速度是每小时___________________6.如右图所示,设 A 、B 两点在河的两岸,一测量者在 A 所在的河岸边选定一点 C ,测出 AC 的距离为 50m ,ACB45 , CAB105后,就可以计算 A 、 B 两点间的距离为 ___________7.一船以 24 km / h的速度向正北方向航行,在点 A 处望见灯塔 S 在船的北偏东30 方向上,15min后到点B处望见灯塔在船的北偏东65 方向上,则船在点B时与灯塔S的距离是__________km.(精确到 0.1km )18.如图,我炮兵阵地位于地面 A 处,两观察所分别位于地面点 C 和 D 处,已知 CD=6000m.ACD 45,ADC75,B 处时测得BCD 30 , BDC 15目标出现于地面求炮兵阵地到目标的距离。
(结果保留根号)A45600075C D3015B2二、高度问题1.在一幢 20m 高的楼顶测得对面一塔吊的仰角为60 ,塔基的俯角为45 ,那么这座塔吊的高是【】3 )m B. 20(13) m C.10( 6 2 )m D. 20(6 2 )mA.20(132.在地面上点 D 处,测量某建筑物的高度,测得此建筑物顶端 A 与底部 B 的仰角分别为60 和 30 ,已知建筑物底部高出地面 D 点 20m,则建筑物高度为【】A.20mB.30mC. 40mD.60m3.如图所示,在山根 A 处测得山顶 B 的仰角CAB 45 ,沿倾斜角为 30 的山坡向山顶走1000 米到达 S 点又测得山顶仰角DSB 75 ,则山高BC为【】A.500 2mB. 200mC.1000 2mD. 1000m4.从某电视塔的正东方向的 A 处,测得塔顶仰角为60 ;从电视塔的西偏南30 的B处,测得塔顶仰角为45 ,A、B两点间的距离是35m,则此电视塔的高度是【】4900 m D.35mA. 5 21mB.10mC.135.j 江岸边有一炮台高30m,江中有两条船,由炮台顶部测得俯角分别为45 , 30 ,而且两条船与炮台底部连线成30 角,则两船相距【】A.10 3mB.100 3mC. 203mD.30m6.一船以每小时15km 的速度向东航行,船在 A 处看到一个灯塔M 在北偏东60方向,行驶4h 后,船到达 B 处,看到这个灯塔在北偏东15 方向,这时船与灯塔的距离为_____km37.甲、乙两楼相距20 米,从乙楼底望甲楼顶的仰角为60 ,从甲楼顶望乙楼顶的俯角为30 ,则甲、乙两楼的高分别是______________8.地平面上一旗杆设定为OP,为测得它的高度h,在地平线上取一基线AB, AB=200m ,在 A 处测得 P 点的仰角为OAP 30 ,在B处测得P点的仰角OBP 45 ,又测得AOB 60 ,求旗杆的高度h4。
余弦定理和正弦定理的应用

余弦定理和正弦定理的应用余弦定理和正弦定理是解决三角形问题中常用的数学定理。
它们可以帮助我们求解三角形的边长、角度和面积等。
本文将分别介绍余弦定理和正弦定理的应用,并通过实例来说明它们的具体使用方法。
一、余弦定理的应用余弦定理是一个用来描述三角形边长和夹角之间关系的定理。
在任意三角形ABC中,假设边长分别为a、b、c,而对应的夹角为A、B、C,则余弦定理可以表示为:c² = a² + b² - 2ab·cosC1. 求解三角形边长假设我们已知一个三角形的两个边长a和b,以及它们夹角C的大小。
我们可以通过余弦定理来求解第三个边长c。
例如,已知三角形ABC中,边AB的长度为5,边AC的长度为8,而夹角B的大小为60度。
按照余弦定理,我们可以用下式来计算边BC的长度:BC² = AB² + AC² - 2·AB·AC·cosB代入具体数值,即可求得:BC² = 5² + 8² - 2·5·8·cos60°BC² = 25 + 64 - 80·0.5BC² = 89 - 40BC² = 49BC = √49 = 7因此,边BC的长度为7。
2. 求解三角形夹角在某些情况下,我们已知三角形的三个边长,但需要求解其中一个夹角的大小。
余弦定理同样可以解决这个问题。
例如,已知三角形ABC的边长分别为a=4、b=7、c=9。
我们想要求解夹角C的大小。
根据余弦定理,我们可以得到:c² = a² + b² - 2ab·cosC代入具体数值,我们可以得到:9² = 4² + 7² - 2·4·7·cosC81 = 16 + 49 - 56·cosC16 + 49 - 81 = 56·cosC-16 = 56·cosCcosC = -16 / 56 = -0.2857由于余弦函数的定义域为[-1, 1],该结果无解,即无法构成三角形。
正、余弦定理的应用举例

wxckt@ /wxc/
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
新知讲解
三、实际应用问题中的基本概念和术语
• 仰角和俯角是与目标视线在同一铅垂平面内 的水平视线和目标视线的夹角,其中目标视 线在水平线上方时叫仰角;目标视线在水平 线下方时叫俯角。 • 方位角:一般指北方向线顺时针转到目标方 向线的水平角。
新疆 源头学子小屋 特级教师 王新敞
wxckt@ /wxc/
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
二、余弦定理及其变形:
a 2 b 2 c 2 2bc cos A
创设情境
解决实际测量问题的过程一般要充 分认真理解题意,正确做出图形,把实 际问题里的条件和所求转换成三角形中 的已知和未知的边、角,通过建立数学 模型来求解。
问题探究
在点A所在河岸边选定一点C, 1.如图,设A、B两点在河的两岸,测 若测出A、C的距离是55m, 量者在点A的同侧,如何求出A、B两点 ∠BAC=51°,∠ACB=75°, 的距离? 求AB的长.
正余弦定理
的应用
知识回顾
一、正弦定理及其变形:
A
b c a C
a b c 2R sin A sin B sin C
a b c sin A ,sin B ,sin C 2R 2R 2R
B
a 2R sin A, b 2R sin B, c 2R sin C
( 其中 R是 ABC 外接圆的半径)
D
A
问题探究: 5、 我舰在敌岛A南偏西 50 相距12 海里的B处,发现敌舰正由
岛北偏西 10 的方向以10海里的速度航行。问我舰需以多
正弦定理余弦定理应用举例

。 三角形的面积公式
1 1 SABC 1 absinC bcsin A 2 2 2 acsin B
正弦定理和余弦定理在实际测量中有许 多应用 :
(1)测量距离. (2)测量高度. (3)测量角度.
实际应用问题中有关的名称、术语 1.仰角、俯角、视角。
(1)当视线在水平线上方时,视线与水平线所成角叫 仰角。 (2)当视线在水平线下方时,视线与水平线所成角叫 俯角。 (3)由一点出发的两条视线所夹的角叫视角。(一般 这两条视线过被观察物的两端点) 视线 仰角 俯角 视线 水平线
【变式练习3】 如图,甲船以每小时30 2海里的速度向正北方 向航行,乙船按固定方向匀速直线航行.当甲 船位于A1处时,乙船位于甲船的北偏西105方向 的B1处,此时两船相距20海里.当 甲船航行20分钟到达A2处时,乙船 航行到甲船的北偏西120方向的B2 处,此时两船相距10 2海里.问乙 船每小时航行多少海里?
答:A,B两点间的距离为 20 6米.
练习2.一货轮在海上由西向东航行,在A处望见灯塔C在货轮的东北 方向,半小时后在B处望见灯塔C在货轮的北偏东30°方向.若货 轮的速度为30 n mile/h,当货轮航行到D处望见灯塔C在货轮的 西北方向时,求A,D两处的距离.
[解] 如图8所示,在△ABC中,∠A=45° ,∠ABC= 90° +30° =120° ,∴∠ACB=180° -45° -120° =15° ,AB= 30×0.5=15(n AB , sin∠ACB AB· sin∠ABC 15×sin120° 3 2+ 6 ∴AC= = ×15(n sin15° = 2 sin∠ACB mile). 在△ACD中,∵∠A=∠D=45° , ∴△ACD是等腰直角三角形, ∴AD= 2AC=15(3+ 3)(n mile). ∴A,D两处的距离是15(3+ 3) n mile. mile).由正弦定理,得 AC sin∠ABC =
6.4.3余弦定理、正弦定理应用举例

B C
计算出AC和BC后,再在 ABC中,应用余弦定理计算出AB两点间的距离
AB AC2 BC2 2AC BC cos
a2 sin2 ( sin2(
) )
sin
a2 sin2 2(
)
2a2 sin(
sin(
)sin cos )sin(
)
思考:
在上述测量方案下,还有其他计算A,B距离的方 法吗?
测得CD=a,并且在C、D两点分别测得
∠BCA=α, ∠ACD=β, ∠CDB=γ, ∠BDA=δ.
在 ∆ADC和∆ BDC中,应用正弦定理得
AC
a sin( )
a sin( )
sin 180 ( )n D
sin 180 ( ) sin( )
遥不可及的月亮离我们地球究竟有多远呢?
题型一 测量距离问题
例9、如图,A、B两点都在河的对岸(不可到达),设 计一种测量两点间的距离的方法,并求出AB间的距离。
B A
例9、如图,A、B两点都在河的对岸(不可到达),设 计一种测量两点间的距离的方法,并求出AB间的距离。
B A
C
解:测量者可以在A、B对岸选定两点C、D, A
测角仪器的高是h. A
D
C
E
G
H
B
在 ACD 中,根据正弦定理可得
AC asin sin( )
AB AE h
ACsin h asin sin h
sin( )
在实际操作时,使H、G、B 三点共线不是一件容易的事, 你有什么替代方案吗?
题型三 测量角度问题
例14、位于某海域A处的甲船获悉,在其正东方向相距 20 n mile的B处有一艘渔船遇险后抛锚等待营救.甲船 立即前往救援,同时把消息告知位于甲船南偏3西00 ,且 与甲船相距7 n mile的C处的乙船.那么乙船前往营救 遇险渔船时目标方向线(由观测点看目标的视线)的方
(完整版)正弦定理、余弦定理综合应用典型例题

正弦定理、余弦定理综合应用例1.设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =++3A π⎛⎫=+ ⎪⎝⎭. 由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 23A π⎛⎫+< ⎪⎝⎭. 3A π⎛⎫<+< ⎪⎝⎭所以,cos sin A C +的取值范围为322⎛⎫⎪ ⎪⎝⎭,.例2.已知ABC △1,且sin sin A B C +=.(I )求边AB 的长; (II )若ABC △的面积为1sin 6C ,求角C 的度数.解:(I )由题意及正弦定理,得1AB BC AC ++=, BC AC +=,两式相减,得1AB =.(II )由ABC △的面积11sin sin 26BC AC C C =,得13BC AC =,由余弦定理,得222cos 2AC BC AB C AC BC +-= 22()2122AC BC AC BC AB AC BC +--==, 所以60C =.例3.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角B = 6π.例4.设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60,c =3b.求ac的值;解:由余弦定理得2222cos a b c b A =+-=2221117()2,3329c c c c c +-= 故3a c =例5.在△ABC 中,三个角,,A B C 的对边边长分别为3,4,6a b c ===,则cos cos cos bc A ca B ab C ++的值为 . 612例6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若()C a A c b cos cos 3=-,则=A cos _________________.3例7.(2009年广东卷文)已知ABC ∆中,C B A ∠∠∠,,的对边分别为,,a b c 若a c ==75A ∠=,则b =【解析】0000000sin sin 75sin(3045)sin 30cos 45sin 45cos30A ==+=+=由62a c ==+可知,075C ∠=,所以030B ∠=,1sin 2B =由正弦定理得sin 2sin a b B A =⋅=, 例8.(2009湖南卷文)在锐角ABC ∆中,1,2,BC B A ==则cos ACA的值等于 2 ,AC 的取值范围为 (2,3) .解: 设,2.A B θθ∠=⇒=由正弦定理得,1 2.sin 2sin 2cos cos AC BC AC ACθθθθ=∴=⇒=由锐角ABC ∆得0290045θθ<<⇒<<,又01803903060θθ<-<⇒<<,故233045cos 22θθ<<⇒<<, 2cos (2,3).AC θ∴=∈例9.(2009全国卷Ⅰ理)在ABC ∆中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知222a c b -=,且sin cos 3cos sin ,A C A C = 求b解法一:在ABC ∆中sin cos 3cos sin ,A C A C =则由正弦定理及余弦定理有:2222223,22a b c b c a a c ab bc+-+-=化简并整理得:2222()a c b -=.又由已知222a c b -=24b b ∴=.解得40(b b ==或舍).解法二:由余弦定理得: 2222cos a c b bc A -=-.又222a c b -=,0b ≠。
正余弦定理和应用举例

第六节 正余弦定理和应用举例1、正弦定理:R Cc B A 2sin sin sin ===.(其中R 为ABC ∆外接圆的半径) 2sin ,2sin ,2sin ;a R A b R B c R C ⇔===sin ,sin ,sin ;222a b c A B C R R R⇔=== ::sin :sin :sin .a b c A B C ⇔=用途:⑴已知三角形两角和任一边,求其它元素;⑵已知三角形两边和其中一边的对角,求其它元素。
2、余弦定理: 2222222222cos ,2cos ,2cos .a b c bc A b a c ac B c a b ab C ⎧=+-⎪=+-⎨⎪=+-⎩222222222cos ,2cos ,2cos .2b c a A bc a c b B ac a b c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩ 用途:⑴已知三角形两边及其夹角,求其它元素;⑵已知三角形三边,求其它元素。
做题中两个定理经常结合使用.3、三角形面积公式:B ac A bcC ab S ABC sin 21sin 2sin 2===∆ 4、三角形内角和定理:()C C A B ππ+=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 5、一个常用结论:sin sin ;b A B A B ⇔>⇔>若sin 2sin 2,.2A B A B A B π==+=则或特别注意,在三角函数中,sin sin A B A B >⇔>不成立。
1、已知锐角ABC ∆的面积为,3,4,33==CA BC 则.______=∠C2、已知ABC ∆,内角A,B,C 的对边分别是a,b,c, ,60,3,20===B b a则.__________=∠A3、已知ABC ∆,内角A,B,C 的对边分别是a,b,c, ,1,3,3===∠b a A π则.______=c 4、在锐角ABC ∆中,角A,B,C 的对边分别是a,b,c, ,sin 4A b a =则.______cos =B5、已知ABC ∆的三个内角A 、B 、C 成等差数列,且AB=1,BC=4,则边BC 上的中线AD 的长为_________.1、如图,在ABC ∆中,已知,45o =∠B D 是BC 边上的一点,AD=10,AC=14,DC=6,求AB 的长.2、在ABC ∆中,内角A,B,C 的对边分别是a,b,c.若,sin 32sin ,322B C bc b a ==-则A=_________.3、在ABC ∆中,c b a ,,分别为内角A,B,C 的对边,且).sin 2(sin )2(sin 2c b c B c b A a +++= (1)求A 的大小;(2)若,1sin sin =+C B 试判断ABC ∆的形状.1、设ABC ∆的内角A,B,C 的对边分别是a,b,c,且.24333222bc a c b =-+(1)求A sin 的值;(2)求A C B A 2cos 1)4sin()4sin(2-+++ππ的值.2、在ABC ∆中,.sin sin sin sin 2)sin(sin sin B A C A B A B A +-=+- B(1)求角B ;(2)若,53sin =A 求C cos 的值.3、在ABC ∆中,,tan tan 22A b B a =则角A 与角B 的关系是( )B A A =. 90.=+B A B B AC =.或 90=+B A B AD =.且 90=+B A 4、在ABC ∆中,c b a ,,分别为内角A,B,C 的对边,若bc a c b 3222=-+且,3a b =则ABC ∆不可能是( )A.等腰三角形B.钝角三角形C.直角三角形D.锐角三角形5、在ABC ∆中,c b a ,,分别为内角A,B,C 的对边,且,22cos 2cc b A +=则ABC ∆一定是( )A.等边三角形B.直角三角形C.等腰直角三角形D.无法确定6、在ABC ∆中,c b a ,,分别为内角A,B,C 的对边,如果c b a ,,成等差数列,,30 =∠B ABC ∆的面积为,23则b=_________. 7、在ABC ∆中,c b a ,,分别为内角A,B,C 的对边,且满足:.cos cos cos 2C b B c B a +=(1)求角B;(2)若,32,5==∆ABC S b 求c a +的值.8、在ABC ∆中,c b a ,,分别为内角A,B,C 的对边,.3,54cos ,3===b A B π (1)求C sin 的值;(2)求ABC ∆的面积.9、已知锐角ABC ∆的三个内角分别为A ,B ,C ,向量),sin 22,sin (cos A A A p -+=向量),sin 1,sin (cos A A A q +-=且.q p ⊥(1)求角A ;(2)设,sin sin sin ,3222C B A AC =+=求ABC ∆的面积.10、在ABC ∆中,c b a ,,分别为内角A,B,C 的对边,设S 为ABC ∆的面积,满足).(43222c b a S -+=(1)求角C 的大小;(2)求B A sin sin +的最大值.11、在平面直角坐标系xoy 中,点)cos ,21(2θP 在角α的终边上,点)1,(si 2-θn Q 在角β的终边上,且.21-=⋅OQ OP(1)求θ2cos 的值;(2)求)sin(βα+的值.。
正弦定理与余弦定理的应用

正弦定理和余弦定理在三角学及相关领域中具有广泛的应用,通过这两个定理,我们可以解决许多与三角形相关的问题。
以下是关于正弦定理和余弦定理的应用的详细探讨。
一、正弦定理的应用正弦定理是三角学中的一个基本定理,它表达了三角形中任意一边与其对应的角的正弦值之间的关系。
正弦定理在实际应用中具有广泛的用途,以下是几个具体的应用示例:1. 航海与测量:在航海和大地测量中,正弦定理被用来计算地球上两点之间的距离。
由于地球表面可以近似为一个球体,因此可以通过测量两点的纬度和经度,利用正弦定理计算出两点之间的实际距离。
2. 电气工程:在电气工程中,正弦定理被用来分析交流电路中的电压、电流和电阻之间的关系。
通过正弦定理,我们可以推导出各种电气元件(如电阻、电容和电感)的等效电路模型,从而简化电路分析。
3. 通信与信号处理:在通信和信号处理领域,正弦定理被用来分析信号的频谱特性和传输特性。
通过正弦定理,我们可以将复杂的信号分解为一系列正弦波的组合,从而更容易地理解和处理信号。
二、余弦定理的应用余弦定理是另一个重要的三角定理,它表达了三角形中任意一边的平方等于其他两边平方之和减去这两边夹角的余弦值乘以这两边乘积的2倍。
余弦定理同样具有广泛的应用,以下是几个具体的应用示例:1. 几何学:在几何学中,余弦定理被用来解决与三角形边长和角度相关的问题。
例如,在已知三角形的两边及其夹角时,我们可以利用余弦定理求出第三边的长度。
此外,余弦定理还可以用于判断三角形的形状(如锐角三角形、直角三角形或钝角三角形)以及求解三角形的内角。
2. 物理学:在力学中,余弦定理被用来求解连接杆件的长度和角度问题。
例如,在机器人学和机械设计中,我们需要确定各个杆件之间的相对位置和角度,以便实现预期的运动轨迹。
余弦定理可以帮助我们解决这个问题。
此外,余弦定理还在许多其他领域中得到应用,如航空航天、土木工程、计算机图形学等。
在这些领域中,余弦定理通常被用来求解与空间几何和三维变换相关的问题。
正、余弦定理应用举例

正、余弦定理应用举例正弦定理、余弦定理沟通了三角形中边与角的关系,用这两个定理可以实现边与角的互化,从而简化过程,指明解题方向.下面举例说明正、余弦定理在解题中的具体应用.(以下例题中角A B C ,,所对应的边分别为a b c ,,)1.判断三角形的形状对于同时含有边角关系的条件式,可用余弦定理化角为边,通过熟知的代数式变形来求解;也可用正弦定理化边为角,再用相应的三角公式求解.例1 在ABC △中,已知22(cos cos )()cos a b B c C b c A -=- ,试判断ABC △的形状. 解:根据余弦定理,得22222222222()222a c b a b c b c a a b c b c ac ab bc ⎛⎫+-+-+--=- ⎪⎝⎭, 整理得22222()()0b c b c a -+-=,因此b c =或222b c a +=,所以三角形为等腰三角形或直角三角形.例2 在ABC △中,如果cos cos a B a C b c +=+,试判断ABC △的形状. 解:根据正弦定理,得sin (cos cos )sin sin A B C B C +=+, 即2sincos 2cos cos 2sin cos 222222A ABC B C B C B C +-+-= , 在ABC △中,∵cos sin 22A B C +=,sin cos 22A B C +=, 上式可化简为22sin 12A =,∴2cos 12sin 1102A A =-=-=. 又0πA <<,∴π2A =. 故ABC △为直角三角形. 2.求三角函数的值对于三角形中的求值问题,通常将各三角函数式化为正弦、余弦的形式,为运用正弦定理和余弦定理创造条件.例3 在ABC △中,如果222225a b c +=,求cot cot cot C A B+的值. 解:cos cot sin cos cos cot cot sin sin CC C A B A B A B=++ 2sin sin cos sin sin cos sin cos cos sin sin sin A B C A B C B A B A C C==+ , 由正弦定理和余弦定理可知22222222cot cot cot 22C ab a b c a b c A B c ab c +-+-==+ ,将已知条件222225a b c +=代入上式得2225cot 32cot cot 24c c C A B c -==+. 3.证明三角恒等式对于三角形中边角关系的证明问题,可以用正弦定理、余弦定理,实现边的关系与角的关系的相互转化,从而达到证明的目的.例4 在ABC △中,若2()a b b c =+,求证:2A B =. 证明:∵2222cos 2222a c b bc c b c a B ac ac a b+-++====, ∴22222222222cos 22cos 1214222a a b b bc b c b B B b b b b -+--=-=⨯-===. 又222222()cos 222b c a b c bc b c b A bc bc b+-+-+-===, ∴cos cos 2A B =,而A B ,是三角形的内角,∴2A B =.4.在解析几何中的应用例5 已知点P 到两定点(10)M -,、(10)N ,点N 到直线PM 的距离为1,求直线PN 的方程.分析:如右图,求出直线PN 的斜率即可,问题转化为在PMN △中求PNM ∠,由正弦定理易求得sin PNM ∠. 解:因为2MN =,点N 到直线PM 的距离为1,∴30PMN ∠=. 由正弦定理,得sin sin PM PN PNM PMN =∠∠,又PMPN =sin PNM ∠=, ∴45PNM ∠= 或135 ,∴直线PN 的倾斜角为45 或135 ,∴1PN k =±,∴直线PN 的方程为1y x =-或1y x =-+.。
正、余弦定理应用举例

在塔底C处测得A处的俯角 50 1 .
已知铁塔BC部分的高为27.3m, 求出山高CD(精确到 1m).
例5.如图,一辆汽车在一条水平的公路上向正西行驶, 到A处时测得公路北侧远处一山顶D在西偏北 15 的方 向上,行驶5km后到达B处,测得此山顶在西偏北 25 的 方向上,仰角为 8 ,求此山的高度CD.(精确到1m)
S ABC
1 1 6 2 2 sin 45 3 1 ac sin B 2 2
巩固训练
1.ABC中,a 4,b 2 5,c 2 3,则S ABC
2.ABC中,c 3,a b 9,C 45,则S ABC
3.ABC的三内角A、B、C所对边的长分别为a、b、c,
有关三角形的计算问题 1 1 1 S ab sin C ac sin B bc sin C 2 2 2
例7. ABC中,c 2,A 30 ,B 45,求ABC的面积. 解析:
a c sin A sin C
2
A
6 2
B
C
c sin A 2 sin 30 a sin C sin 105
2. 我舰在敌岛 A 南偏西 50°相距 12 海里的 B 处,发现敌 舰正由岛沿北偏西10°的方向以10海里/小时的速度航 行.问我舰需以多大速度、沿什么方向航行才能用2小 C 时追上敌舰?
解:如图,在△ABC中由余弦定理得:
10
BC 2 AC 2 AB 2 2 AB AC cos BAC 1 20 12 2 12 20 ( ) 2 784
应用三、测量角度
例6.如图, 一艘海轮从A出发, 沿北偏东750的方向 航行67.5nmile后到达海岛B, 然后从B出发, 沿北偏 东320的方向航行54.0nmile后到达海岛C.如果下次 航行直接从A出发到达C , 此船应该沿怎样的方向 航行, 需要航行多少距离(角度精确到0.10 , 距离精 确到0.01nmile ).
正弦定理和余弦定理的应用举例

正弦定理和余弦定理的应用举例1.实际测量中的常见问题判断正误(正确的打“√”,错误的打“×”) (1)东北方向就是北偏东45°的方向.()(2)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.( ) (3)俯角是铅垂线与视线所成的角,其范围为⎣⎡⎦⎤0,π2.( )(4)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( ) (5)方位角大小的范围是[0,2π),方向角大小的范围一般是[0,π2).( )答案:(1)√ (2)× (3)× (4)√ (5)√若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B的( )A .北偏东15°B .北偏西15°C .北偏东10°D .北偏西10°解析:选B.如图所示,∠ACB =90°,又AC =BC ,所以∠CBA =45°,而β=30°,所以α=90°-45°-30°=15°. 所以点A 在点B 的北偏西15°.(教材习题改编)如图,一艘船上午9:30在A 处测得灯塔S 在它的北偏东30°的方向,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东75°的方向,且与它相距8 2 n mile.此船的航速是________n mile/h. 解析:设航速为v n mile/h ,在△ABS 中AB =12v ,BS =82,∠BSA =45°,由正弦定理得82sin 30°=12v sin 45°,则v =32.答案:32如图,设A ,B 两点在河的两岸,一测量者在A 的同侧,选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°,则A ,B 两点间的距离为________.解析:由正弦定理得 AB =AC ·sin ∠ACB sin B =50×2212=502(m).答案:50 2 m如图所示,D ,C ,B 三点在地面的同一直线上,DC =a ,从C ,D 两点测得A 点的仰角分别为60°,30°,则A 点离地面的高度AB =________.解析:因为∠D =30°,∠ACB =60°, 则∠CAD =30°,所以CA =CD =a , 所以AB =a sin 60°=32a . 答案:32a测量距离[典例引领]如图所示,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC 和一条索道AC ,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登,已知∠ABC =120°,∠ADC =150°,BD =1 km ,AC =3 km.假设小王和小李徒步攀登的速度为每小时1 250米,请问:两位登山爱好者能否在2个小时内徒步登上山峰?(即从B 点出发到达C 点)【解】 在△ABD 中,由题意知,∠ADB =∠BAD =30°,所以AB =BD =1,因为∠ABD =120°,由正弦定理得AB sin ∠ADB =AD sin ∠ABD ,解得AD =3,在△ACD 中,由AC 2=AD 2+CD 2-2AD ·CD ·cos 150°, 得9=3+CD 2+23×32CD , 即CD 2+3CD -6=0,解得CD =33-32, BC =BD +CD =33-12, 2个小时小王和小李可徒步攀登1 250×2=2 500米,即2.5千米,而33-12<36-12=52=2.5,所以两位登山爱好者可以在2个小时内徒步登上山峰.若本例条件“BD =1 km ,AC =3 km ”变为“BD =200 m ,CD =300 m ”,其他条件不变,则这条索道AC 长为________.解析:在△ABD 中,BD =200,∠ABD =120°. 因为∠ADB =30°,所以∠DAB =30°. 由正弦定理,得BD sin ∠DAB =ADsin ∠ABD,所以200sin 30°=AD sin 120°.所以AD =200×sin 120°sin 30°=200 3(m).在△ADC 中,DC =300 m ,∠ADC =150°, 所以AC 2=AD 2+DC 2-2AD ×DC ×cos ∠ADC =(200 3)2+3002-2×2003×300×cos 150° =390 000,所以AC =10039. 故这条索道AC 长为10039 m. 答案:10039 m距离问题的类型及解法(1)测量距离问题分为三种类型:两点间不可达又不可视、两点间可视但不可达、两点都不可达.(2)解法:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.如图,隔河看两目标A 与B ,但不能到达,在岸边先选取相距 3 km 的C ,D 两点,同时,测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),求两目标A ,B 之间的距离.解:在△ACD 中,∠ACD =120°,∠CAD =∠ADC =30°, 所以AC =CD = 3 km.在△BCD 中,∠BCD =45°,∠BDC =75°,∠CBD =60°. 所以BC =3sin 75°sin 60°=6+22.在△ABC 中,由余弦定理,得AB 2=(3)2+⎝ ⎛⎭⎪⎫6+222-2×3×6+22×cos 75° =3+2+3-3=5,所以AB = 5 km ,测量高度[典例引领]如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m.【解析】 由题意,在△ABC 中,∠BAC =30°,∠ABC =180°-75°=105°,故∠ACB =45°.又AB =600 m ,故由正弦定理得600sin 45°=BC sin 30°,解得BC =300 2 m.在Rt △BCD 中,CD =BC ·tan 30°=3002×33=1006(m). 【答案】 1006求解高度问题的注意事项(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角;(2)准确理解题意,分清已知条件与所求,画出示意图;(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.(2018·湖北省七市(州)协作体联考)如图,为了估测某塔的高度,在同一水平面的A ,B 两点处进行测量,在点A 处测得塔顶C 在西偏北20°的方向上,仰角为60°;在点B 处测得塔顶C 在东偏北40°的方向上,仰角为30°.若A ,B 两点相距130 m ,则塔的高度CD =________m.解析:由题意可知,设CD =h ,则AD =h3,BD =3h ,在△ADB 中,∠ADB =180°-20°-40°=120°,所以由余弦定理AB 2=BD 2+AD 2-2BD ·AD ·cos 120°,可得1302=3h 2+h 23-2·3h ·h 3·⎝⎛⎭⎫-12,解得h =1039,故塔的高度为1039 m. 答案:1039测量角度[典例引领]一艘海轮从A 出发,沿北偏东75°的方向航行(23-2)n mile 到达海岛B ,然后从B 出发,沿北偏东15°的方向航行4 n mile 到达海岛C .(1)求AC 的长;(2)如果下次航行直接从A 出发到达C ,求∠CAB 的大小. 【解】 (1)由题意,在△ABC 中,∠ABC =180°-75°+15°=120°,AB =23-2,BC =4, 根据余弦定理得AC 2=AB 2+BC 2-2AB ×BC ×cos ∠ABC =(23-2)2+42+(23-2)×4=24, 所以AC =2 6.(2)根据正弦定理得,sin ∠BAC =4×3226=22,所以∠CAB =45°.解决测量角度问题的注意事项(1)首先应明确方位角或方向角的含义.(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步.(3)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的“联袂”使用.[通关练习]1.甲船在A 处观察乙船,乙船在它的北偏东60°的方向,相距a 海里的B 处,乙船正向北的方向前进.解析:设两船在C 处相遇,则由题意∠ABC =180°-60°=120°,且ACBC =3,由正弦定理得AC BC =sin 120°sin ∠BAC =3,所以sin ∠BAC =12.又因为0°<∠BAC <60°,所以∠BAC =30°. 所以甲船应沿北偏东30°方向前进. 答案:30°2.在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12 n mile 的水面上,有蓝方一艘小艇正以每小时10 n mile 的速度沿南偏东75°方向前进,若红方侦察艇以每小时14 n mile 的速度,沿北偏东45°+α方向拦截蓝方的小艇,若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.解:如图,设红方侦察艇经过x 小时后在C 处追上蓝方的小艇,则AC =14x ,BC =10x ,∠ABC =120°.根据余弦定理得(14x )2=122+(10x )2-240x cos 120°, 解得x =2.故AC =28,BC =20. 根据正弦定理得BC sin α=AC sin 120°,解得sin α=20sin 120°28=5314.利用解三角形解决实际问题时:(1)要理解题意,整合题目条件,画出示意图,建立一个三角形模型; (2)要理解仰角、俯角、方位角、方向角等概念;(3)三角函数模型中,要确定相应参数和自变量范围,最后还要检验问题的实际意义.易错防范(1)易混淆方位角与方向角概念:方位角是指正北方向与目标方向线(按顺时针)之间的夹角,而方向角是正北或正南方向线与目标方向线所成的锐角.(2)解三角形时,为避免误差的积累,应尽可能用已知的数据(原始数据),少用间接求出的量.1.两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东80°D .南偏西80°解析:选D.由条件及题图可知,∠A =∠B =40°,又∠BCD =60°,所以∠CBD =30°,所以∠DBA =10°,因此灯塔A 在灯塔B 南偏西80°.2.一艘船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔M 在北偏东60°方向,行驶4 h 后,船到达B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为( ) A .15 2 km B .30 2 km C .45 2 km D .60 2 km解析:选B.如图所示,依题意有AB =15×4=60,∠DAC =60°,∠CBM =15°, 所以∠MAB =30°,∠AMB =45°.在△AMB 中,由正弦定理,得60sin 45°=BM sin 30°,解得BM =302,故选B.3.如图,一条河的两岸平行,河的宽度d =0.6 km ,一艘客船从码头A 出发匀速驶往河对岸的码头B .已知AB =1 km ,水的流速为2 km/h ,若客船从码头A 驶到码头B 所用的最短时间为6 min ,则客船在静水中的速度为( )A .8 km/hB .6 2 km/hC .234 km/hD .10 km/h解析:选B.设AB 与河岸线所成的角为θ,客船在静水中的速度为v km/h ,由题意知,sin θ=0.61=35,从而cos θ=45,所以由余弦定理得⎝⎛⎭⎫110v 2=⎝⎛⎭⎫110×22+12-2×110×2×1×45,解得v =6 2.4.如图,两座相距60 m 的建筑物AB ,CD 的高度分别为20 m 、50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角为( )A .30°B .45°C .60°D .75°解析:选B.依题意可得AD =2010(m),AC =305(m),又CD =50(m), 所以在△ACD 中,由余弦定理得 cos ∠CAD =AC 2+AD 2-CD 22AC ·AD=(305)2+(2010)2-5022×305×2010=6 0006 0002=22,又0°<∠CAD <180°,所以∠CAD =45°,所以从顶端A 看建筑物CD 的张角为45°. 5.某船开始看见灯塔在南偏东30°方向,后来船沿南偏东60°的方向航行15 km 后,看见灯塔在正西方向,则这时船与灯塔的距离是( ) A .5 km B .10 km C .5 3 kmD .5 2 km解析:选C.作出示意图(如图),全国名校高考数学复习优质学案汇编(理科,附详解)点A 为该船开始的位置,点B 为灯塔的位置,点C 为该船后来的位置,所以在△ABC 中,有∠BAC =60°-30°=30°,B =120°,AC =15,由正弦定理,得15sin 120°=BC sin 30°, 即BC =15×1232=53,即这时船与灯塔的距离是5 3 km. 6.海上有A ,B 两个小岛相距10 n mile ,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,那么B 岛和C 岛间的距离是________ n mile.解析:如图,在△ABC 中,AB =10,A =60°,B =75°,C =45°,由正弦定理,得AB sin C =BC sin A , 所以BC =AB ·sin A sin C =10×sin 60°sin 45°=56(n mile).答案:5 67.如图,为了测量河的宽度,在一岸边选定两点A 、B 望对岸的标记物C ,测得∠CAB =30°,∠CBA =75°,AB =120 m ,则这条河的宽度为________.解析:如图,在△ABC 中,过C 作CD ⊥AB 于D 点,则CD 为所求河的宽度.在△ABC 中,因为∠CAB =30°,∠CBA =75°,所以∠ACB =75°,所以AC =AB =120 m.在Rt △ACD 中,CD =AC sin ∠CAD。
正弦定理余弦定理应用举例

sin A B cos C , cos A B sin C
2
2
2
2
(4)在ABC中,A B a b sin A sin B
(即大边对大角,大角对大边)
(5)正弦定理和余弦定理
二. 判断三角形形状
(1)a cos A b cos B; 等腰三角形或直角三角形
∠ACD=120°,∠CAD=∠ADC=30°,
∴AC=CD= 3km.
在△BCD中,∠BCD=45°,
∠BDC=75°,∠CBD=60°.
BC
3 sin 75 sin 60
6 2
2.
在△ABC中,由余弦定理,得
AB2 ( 3)2 ( 6 2 )2 2 3 6 2 cos 75
题型分类 深度剖析
题型一 与距离有关的问题 【例1】要测量对岸A、B两点之间的距离,选取
相距 3 km的C、D两点,并测得∠ACB=75°,
∠BCD=45°,∠ADC=30°,∠ADB=45°,求 A、B之间的距离.
思维启迪 分析题意,作出草图,综合运用正、
余弦定理求解.
解 如图所示在△ACD中,
cos A b2 c2 a2 2bc
cos B c2 a2 b2
2ca
角化边公式
cosC a2 b2 c2
2ab
斜三角形的解法
已知条件 定理选用
一般解法
一边和两角 (ASA或AAS)
正弦定理
由A+B+C=180˚,求出另一角,再 用正弦定理求出两边。
两边和夹角 (SAS)
400 3
.
变式2 如图所示,测量河对岸的
正余弦定理应用举例

利用余弦定理可解决一下两类解三角形问题 (1)已知三边,求三角; (2)已知两边和它们的夹角,求其他元素.
C
b
a
A
cB
解斜三角形的问题,通常都要根据题意,从实际问题中抽象 出一个或几个三角形,然后通过解这些三角形,得出所要求的量, 从而得到实际问题的解.
在这个过程中,贯穿了数学建模的思想. 这种思想即是从实际 问题出发,经过抽象概括,把它转化为具体问题中的数学模型, 然后通过推理演算,得出数学模型的解,再还原成实际 问题的解.
距离:例1:设A、B两点在河的两岸,要测量两点之间的距离.
测量者在A的同测,在所在的河岸边选定一点C,测出 AC的距离是40m,∠BAC=45o, ∠ACB=75o,求A、 B两点间的距离.
分析:已知两角一边,可以用正弦定理解三角形
AB = AC sin C sin B
解:根据正弦定理,得
AB AC sin ACB sin ABC
AB AC sin ACB
40 sin 75
sin ABC
sin (180 - 45 - 75)
40
2 4
6 20 6 20 2
3
3
2
答:A,B两点间的距离为
米。 20 6 20 2 3
求距离:
两点不可视或不可达
两点可视不可达
两点都不可达
高度:例题2:在山顶铁塔上B处测得地面上一点A的俯角为α,在
4、坡角:坡面与水平面的夹角. 坡比:坡面的铅直高度与水平宽度之比, 即
i h tan
l
5、基线:在测量上,根据测量需要适当确定的线段叫 做基线.
注:2)1测)基量线一一越定般长要,选测取量基的线精,确因度为越无高论;是应用正弦定 理还是余弦定理解三角形时,至少应已知一边的长度.
解三角形在现实生活中的应用——正,余弦定理

解三角形正,余弦定理在现实生活中的应用解三角形的正弦定理和余弦定理在现实生活中有广泛的应用。
例如,测量距离、测量高度、航海模型、物理问题等都与这些定理有关。
以下是一些例子:
1. 测量距离
利用正弦定理和余弦定理可以测量出无法直接测量的距离。
假设你想知道两个建筑物之间的距离,但你不能直接测量它们之间的直线距离。
你可以站在其中一个建筑物旁边,用一个工具测量你与另一个建筑物之间的角度和高度差,然后使用正弦定理或余弦定理计算出两个建筑物之间的直线距离。
2. 测量高度
同样可以利用正弦定理和余弦定理测量出无法直接测量的高度。
假设你想知道一个树的高度,但你只能在地面附近测量树的影子长度。
你可以使用正弦定理或余弦定理计算出树的高度。
3. 航海模型
在航海中,可以利用正弦定理和余弦定理计算船只的位置。
假设你知道船只在某个时间点的位置和朝向,以及它的速度和方向,你可以使用正弦定理和余弦定理计算出船只在任何其他时间点的位置和朝向。
这对于导航非常重要。
4. 物理问题
在物理学中,正弦定理和余弦定理也有很多应用,例如在振
动、波动等问题中。
例如,当一个弹簧上放置一个小球时,小球会以一定的频率来回摆动。
通过测量小球的振幅、周期等参数,可以使用正弦定理和余弦定理计算出小球的运动轨迹和速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习、Байду номын сангаас回答下列问题:
(1)解斜三角形的主要理论依据 是什么? (2)关于解三角形,应该掌握了 哪几种类型?
复习. 下列解三角形问题, 分别属于那种类型?根据哪 个定理可以先求什么元素?
(1)a=2 3 ,b= 6 ,c=3 + 3 __;_余___弦___定__理___先___求__出___A__,_或__先___求___出B,C
略解:Rt △ACD中,AD=1/cos30o △BCD中,1/sin45=BD/sin60,可求BD。 由余弦定理在△ABD中可求AB。
B
A C
(AB 300.913) 6
D ∠ACD=90o,∠BCD=60o, ∠BDC=75o,∠ADC=30o,
练习:海中有岛A,已知A岛周围8海里内有暗礁,今有一货 轮由西向东航行,望见A岛在北偏东75°,航行20 2 海里后, 见此岛在北偏东30°,如货轮不改变航向继续前进,问有无 触礁危险。
第4小题A变更为A=150o呢?________无__解___________
正 弦 定 理 和 余 弦 定 理 在 实 际 测 量 中 有 许 多 应 用 :
(1)测量距离; (2)测量高度; (3)测量角度.
包含不可达到的点
.
要测量不可到达的两点间的距离,可用 哪些方法? 如图:设A、B两点在河的两岸,怎样测 量两点之间的距离?
B
A
C
.
练习1海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成
60°的视角,从B岛望C岛和A岛成75°的视角,那么B岛和C
岛间的距离是
。
解:应用正弦定理,C=45
C
BC/sin60 =10/sin45 BC=10sin60 /sin45
60° A
75°
答: 5 6 海里
B
例2、如图,A、B两点都在河的对岸(不
B1C 1.1 ssi2 1n i1 04 1 n63 032 03.3 4,0在 RtA1B1C 中 ,
A 1 B B1sC i3n 0 1 5 2 1.7 9 ,7 故烟囱 的高度2为 1.29m. .
练习4、如图,要测底部不能到达的烟囱的高AB,从与烟囱底 部在同一水平直线上的C、D两处,测得烟囱的仰角分别是
B
A
.
方案一:构造直角三角形
在河岸的一侧取一点C,使得AC⊥BC 若能测得AC的长及∠BAC,那么AB即可求出
B
A
C 此方案有缺限吗? .
例1、如图,设A、B两点在河的两岸,要测 量两点之间的距离,测量者在A的同侧,在所 在的河岸边选定一点C,测出AC的距离是 55m,∠BAC=510,∠ACB=750.求A、B两点 的距离(精确到0.1m)
C 1 D1 C 11.12mD
A1
A
1.52m
解 : 在 B 1 D 1 中 C ,已 B 1 D 知 1 C 3 0 1 2 5 ,
C 1 D 1 B 10 8 0 10 3 2 ,0 C 1 B1 D 10 1 4 6
根据正弦 C1D 定 1 理B 得 1C si nC1B1Dsi nC1D 1B
A
DC
B
.
例4.如图,要测底部不能到达的烟囱的高AB,从与烟 囱底部在同一水平直线上的C,D两处,测得烟囱的仰角 分别是α=35°12′和β=49°28′,CD间的距离是 11.12m.已知测角仪器高1.52m,求烟囱的高.
49028 35012
11.12m .
1.52m
35012
49028
B
求A1B
B2
B.
1
120o A 2
105o A 1
小结:求解三角形应用题的一般步骤:
1、分析题意,弄清已知和所求; 2、根据提意,画出示意图; 3、将实际问题转化为数学问题,写出 已知所求; 4、正确运用正、余弦定理。
.
实际问题
抽象概括 示意图
数学模型
理 推算 演
实际问题的解 还原说明 数学模型的解
.
几个概念:
(2)b=1,c= 2 ,A=105º;___余__弦___定___理__先___求___出__a____________
(3)A=45º,B =60º, a=10;__正__弦___定___理__先___求___出__b____________ (4)a=2 3 ,b=6,A=30º. ___正___弦___定__理___先___求__出___B__(_6_0_o_或___1_20o)
A
北
北
B
20 2 C M
解: 在△ABC中∠ACB=120°∠ABC=15°由正弦定理得:
AC BC sin15 sin 45 由BC=20 2 ,可求AC ∴ 得AM= 1525 6 ≈8.97>8
∴无触礁危险 北
75 B
20 2
A
北
30
CM
考思
背景 资料
如何测量地球与月亮之间 的距离?
早在1671年,两位法国天文学家为了测量地 球与月球之间的距离,利用几乎位于同一子 午线的柏林与好望角,测量计算出α,β的大小 和两地之间的距离,从而算出了地球与月球 之间的距离约为385400km.
• 仰角:目标视线在水平线上方的叫仰角;
• 俯角:目标视线在水平线下方的叫俯角;
• 方位角:北方向线顺时针方向到目标方向线 的夹角。
方向角是指从指定方向线到目标方向线的水平角,如北偏东30度,南偏西45度.
N 方位角 60度
目标方向线
.
视 线
仰角
俯角
视 线
水平线
问题.AB是底部B不可到达的一个建筑物, A为建筑物的最高点,设计一种测量建筑 物高度AB的方法。
可到达),设计一种测量A、B两点间距
离的方法。
.A
.B
D.
.C
基 线
.
练习2、 为了测定河对岸两点A、B间的距离,在岸边选定1 公里长的基线CD,并测得∠ACD=90o,∠BCD=60o, ∠BDC=75o,∠ADC=30o,求A、B两点的距离.
B D
A C
分析:在四边形ABCD中欲求AB长,只能去解三角形,与AB联系 的三角形有△ABC和△ABD,利用其一可求AB。
A
B
.
例3:如图:甲船以每小时3 0 2 海里的速度向正 北方向航行,乙船按固定方向匀速直线航行.
当甲船位于A 1处时,乙船位于甲船的北偏西
105°方向的B 1处,此时两船相距20海里.当
甲船航行20分钟到达 A 2 处时,乙船航行到甲 船的北偏西120°方向的 B 2 处,此时两船相 距 1 0 2 海里,问乙船每小时航行多少海里?