3空间几何体.版块3.空间几何体的表面积和体积

合集下载

空间几何体的表面积和体积

空间几何体的表面积和体积

空间几何体的表面积和体积在数学中,空间几何体的表面积和体积是重要的概念,它们用于描述和计算各种三维物体的特性。

本文将深入探讨空间几何体的表面积和体积,并介绍如何计算它们,以及它们在实际生活中的应用。

一、立方体的表面积和体积首先,让我们从最简单的三维几何体开始:立方体。

立方体是一个拥有六个相等的正方形面的空间几何体。

要计算立方体的表面积,我们可以使用以下公式:**表面积 = 6 * 边长^2**其中,边长代表正方形的一边的长度。

而立方体的体积计算则非常简单:**体积 = 边长^3**这两个公式可以帮助我们计算立方体的表面积和体积。

例如,如果一个立方体的边长是3单位,那么它的表面积为6 * 3^2 = 54平方单位,而体积为3^3 = 27立方单位。

二、球体的表面积和体积接下来,我们来考虑球体,球体是一个没有棱角的三维几何体。

要计算球体的表面积和体积,我们使用以下公式:**表面积= 4πr^2****体积= (4/3)πr^3**这里,r代表球体的半径,而π(圆周率)的值约为3.14159。

这两个公式可以用来计算球体的表面积和体积。

举例来说,如果一个球体的半径是2单位,那么它的表面积为4π(2^2) ≈ 50.27平方单位,而体积为(4/3)π(2^3) ≈ 33.51立方单位。

三、长方体的表面积和体积长方体是另一个常见的三维几何体,它拥有6个矩形面。

要计算长方体的表面积和体积,我们可以使用以下公式:**表面积 = 2lw + 2lh + 2wh****体积 = lwh**其中,l代表长方体的长度,w代表宽度,h代表高度。

这些公式允许我们计算长方体的表面积和体积。

举例来说,如果一个长方体的长度是4单位,宽度是3单位,高度是2单位,那么它的表面积为2(4*3) + 2(4*2) + 2(3*2) = 52平方单位,而体积为4*3*2 = 24立方单位。

四、圆柱体的表面积和体积圆柱体是一个具有两个平行圆形底面的三维几何体。

空间几何体的表面积与体积

空间几何体的表面积与体积

空间几何体的表面积与体积在几何学中,空间几何体是指由点、线、面在三维空间中组成的立体物体。

每个空间几何体都有其独特的特征,其中包括表面积和体积。

表面积是指几何体外部覆盖的总面积,而体积则是指几何体所包含的最大空间。

不同类型的空间几何体有不同的表面积和体积计算公式。

下面我们将介绍几种常见的空间几何体,以及它们的表面积和体积计算方法。

一、球体球体是由一条半径相等的曲线绕着它的直径旋转一周所形成的几何体。

球体的表面积和体积计算公式如下:球体的表面积= 4πr²球体的体积= (4/3)πr³其中,r表示球的半径,π是一个常数,约等于3.14。

二、长方体长方体是由六个矩形面围成的空间几何体,它的所有侧面都是矩形。

长方体的表面积和体积计算公式如下:长方体的表面积 = 2lw + 2lh + 2wh长方体的体积 = lwh其中,l、w、h分别表示长方体的长、宽和高。

三、圆柱体圆柱体是由一个圆形的底面和与底面平行的一个曲面所组成的几何体。

圆柱体的表面积和体积计算公式如下:圆柱体的表面积= 2πr² + 2πrh圆柱体的体积= πr²h其中,r表示圆柱体的底面半径,h表示圆柱体的高。

四、圆锥体圆锥体是由一个圆锥面和一个圆形底面所组成的几何体。

圆锥体的表面积和体积计算公式如下:圆锥体的表面积= πr² + πrl圆锥体的体积= (1/3)πr²h其中,r表示圆锥体的底面半径,l表示圆锥体的斜高,h表示圆锥体的高。

五、正方体正方体又称为立方体,是由六个相等的正方形面围成的空间几何体。

正方体的表面积和体积计算公式如下:正方体的表面积 = 6a²正方体的体积 = a³其中,a表示正方体的边长。

除了上述所介绍的常见几何体之外,还有一些其他几何体,如圆环、圆球截面、棱锥等,它们的表面积和体积计算方法也略有不同。

总结起来,空间几何体的表面积和体积可以通过特定的公式进行计算。

空间几何体表面积和体积公式

空间几何体表面积和体积公式

空间几何体表面积和体积公式
空间几何体表面积和体积公式如下:
表面积公式:
S = 2 × (a + b + c)
其中,a、b、c分别表示几何体的长、宽、高。

体积公式:
V = a × b × c
其中,a、b、c分别表示几何体的长、宽、高。

还有一些常用的表面积和体积公式:
1. 如果一个几何体只有一个面是正方形或正多边形,那么它的
表面积和体积都可以用一个简单的公式计算:S = 4a,V = a × b。

2. 如果一个几何体的边长为c,那么它的表面积可以表示为:S = 2 × (c + d),其中d表示几何体的长宽比。

体积可以表示为:V = c ×d。

3. 如果一个几何体是正多边形,且每个内角都相等,那么它的表
面积和体积都可以用一个复杂的公式计算:S = (n-2) × 4a,V = (n-2) × a × b。

其中n表示正多边形的边数。

4. 如果一个几何体只有一个面是矩形或圆形,那么它的表面积
和体积都可以用一个简单的公式计算:S = a + b + c,V = π× r ×(a + b + c)。

其中π是圆周率,r表示几何体的半径。

这些公式只是一些基本的几何公式,实际上还有很多更复杂的公
式可以用于计算几何体的性质。

了解这些基本的公式有助于我们更方
便地计算几何体的面积和体积。

空间几何体的表面积及体积计算公式

空间几何体的表面积及体积计算公式

空间几何体的表面积及体积计算公式空间几何体是指在三维坐标系中存在的几何图形,包括立方体、圆锥体、圆柱体、球体等等。

对于这些几何体来说,求其表面积和体积是我们在学习空间几何时需要掌握的核心内容。

下面我们将详细介绍各种空间几何体的表面积及体积的计算公式。

一、立方体立方体是一种六个面都是正方形的几何体,其表面积和体积计算公式如下:表面积 = 6 × a²体积 = a³其中,a为立方体的边长。

二、正方体正方体是一种所有面都是正方形的几何体,其表面积和体积计算公式如下:表面积 = 6 × a²体积 = a³其中,a为正方体的边长。

三、圆锥体圆锥体是一种由一个圆锥顶点和一个底面为圆形的仿射锥面构成的几何体,其表面积和体积计算公式如下:表面积= πr²+πrl体积= 1/3πr²h其中,r为底面圆半径,l为母线长度,h为圆锥体的高。

四、圆柱体圆柱体是一种由平行于固定轴的两个相等且共面的圆面和它们之间的圆柱面所围成的几何体,其表面积和体积计算公式如下:表面积= 2πrh+2πr²体积= πr²h其中,r为底面圆半径,h为圆柱体的高。

五、球体球体是一种由所有到球心的距离等于固定半径的点所组成的几何体,其表面积和体积计算公式如下:表面积= 4πr²体积= 4/3πr³其中,r为球体的半径。

以上就是五种常见空间几何体的表面积及体积计算公式,希望能够对大家在学习空间几何时有所帮助。

同时,我们也需要关注其实际应用,在工程建设和生活中经常会涉及到这些几何体的计算,因此深化这些知识点的学习,将对我们未来的发展产生积极的影响。

空间几何体的表面积与体积公式大全,DOC

空间几何体的表面积与体积公式大全,DOC

空间几何体的表面积与体积公式大全一、全(表)面积(含侧面积)1、①棱柱②圆柱2、①②3、①②4、①球:②③二、1、①棱柱②圆柱2、①棱锥②圆锥3、①棱台②圆台4、①球:②③三、1、2、则+=即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式公式:)(31S SS S h V 下下上上台++=证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。

延长两侧棱相交于一点P 。

则∴V 即:)(33)(31S SS S h h S S S hS V 下下上上下上下上台++=++=∴)(31S S S S h V 下下上上台++=4、球体体积公式推导分析:将半球平行分成相同高度的若干层(层n ),n 越大,每一层越近似于圆柱,+∞→n 时,每一层都可以看作是一个圆柱。

这些圆柱的高为nr,则:每个圆柱的体积h S V i i ==nrr i 2π……=2r nr ⨯π=[3r n n π=[3r n n π当→n ∴V 半球5、 ∴S =球6、(1则其体积为:a V 3=正方体四个角上切下的每一个三棱锥体积为:中间剩下的正四面体的体积为:a a a a hSV 322231]60sin 21[3131)32232()2()2(=-⨯︒⨯⨯⨯==⨯⨯正三棱锥这样一个即:61(2 (a)(b)(c)(d)(e)(3(a ) 正方体内切球直径=正方体棱长(b ) 正方体内切球与正四面体的四条棱相切。

(c ) 与正四面体四条棱相切的球半径=正方体棱长的一半 (d ) 设正四面体棱长为a ,则与其棱都相切的球半径为r 1有:aar 422211=⨯= 7、利用祖暅原理推导球体体积。

构造一个几何体,使其截面与半球截面处处相等,根据祖暅原理可得两物体体积相等。

证明:作如下构造:在底面半径和高都是r 的圆柱内挖去一个与圆柱等底等高的圆锥。

如图:R ,∴S 1π=即:S 1 8、 正方体与球(1) 正方体的内切球正方体的棱长=a 球体的直径d (2) 正方体的外接球正方体的体对角线=a 3球体的直径d(3) 规律:①正方体的内切球与外接球的球心为同一点; ②正方体的内切球与外接球的球心在体对角线上; ③正四面体的内切球与外接球的的半径之比为:3:1 ④正四面体内切球与外接球体积之比为:1:339(∴a h r 12641==即:a a r V 33321663434)126(πππ===球∴π3:18=V V 球正四机体: (2)正四面体的外接球 外接球的半径=)2332(224343a a⨯-⨯=⨯高=a 46 ∴2:33122:86:33ππ==aaV V 正四面体球 (310、 (1 球体直径、圆柱的高、圆柱底面直径构成直角三角形。

空间几何体的表面积与体积

空间几何体的表面积与体积

空间几何体的表面积与体积在我们的日常生活中,从简单的水杯、盒子,到宏伟的建筑、雕塑,空间几何体无处不在。

而了解空间几何体的表面积与体积,不仅在数学学习中至关重要,对于实际生活中的设计、制造和计算成本等方面也具有重要意义。

首先,让我们来谈谈空间几何体的表面积。

表面积是指几何体表面的总面积。

对于常见的几何体,如棱柱、棱锥、圆柱、圆锥和球,它们的表面积计算方法各有不同。

棱柱是由两个平行且全等的多边形底面和若干个矩形侧面组成的。

计算棱柱的表面积,就是要把两个底面的面积和侧面的面积相加。

假设棱柱的底面是一个边长为 a 的正 n 边形,高为 h,侧棱长为 l,那么底面的面积就是 n 乘以(1/2)乘以 a 乘以 l(其中 l 是从多边形中心到边的距离),侧面的面积就是 n 乘以 a 乘以 h 。

棱锥则有一个多边形底面和若干个三角形侧面。

以正棱锥为例,如果底面是一个边长为 a 的正 n 边形,棱锥的高为 h,斜高为 h' ,那么底面面积的计算方法和正棱柱底面相同,侧面三角形的面积就是(1/2)乘以 a 乘以 h' 。

圆柱是由两个平行且相等的圆底面和一个侧面组成。

底面圆的面积大家都很熟悉,就是πr² (r 是底面圆的半径),侧面展开是一个矩形,其面积是2πr 乘以 h (h 是圆柱的高),所以圆柱的表面积就是2πr² +2πrh 。

圆锥的表面积包括底面圆的面积πr² 和侧面扇形的面积。

侧面扇形的面积计算相对复杂一些,需要用到圆锥的母线长 l ,其公式是πrl 。

再来看看球,球的表面积公式是4πr² ,其中 r 是球的半径。

了解了空间几何体的表面积,接下来谈谈体积。

体积是指几何体所占空间的大小。

棱柱的体积等于底面积乘以高。

如果底面面积是 S ,高是 h ,那么体积就是 V = Sh 。

棱锥的体积是棱柱体积的三分之一,即 V =(1/3)Sh 。

圆柱的体积公式是V =πr²h ,这与棱柱体积的计算思路是一致的。

空间几何体的表面积和体积公式大全

空间几何体的表面积和体积公式大全

空间几何体的表面积与体积公式大全一、全(表)面积(含侧面积)①棱柱、②圆柱.2・锥体①棱锥:S^ = ^h [②圆锥:= /3、台体①棱台• S梭台侧=空(6?上底+c下底)方'» S全= s±+s『s下②圆台:S杭台側=*(6底+cQZ -4、球体①球:S球=勿/②球冠:略③球缺:略二、体积1、柱体①棱柱} V,=S h②圆柱S S 2、锥体①棱锥} v.=\sh②圆锥S S3、 台体V 台肓//(S 匕+ JS 上S F + S 下)台=齐方(厂上+Jr 上厂下+厂下) 4、 球体①球:V 球② 球冠:略VyT/③ 球缺:略说明:棱锥、棱台计算侧面积时使用侧面的斜高力计算;而圆锥、圆台的 侧面积计算时使用母线/计算。

三、拓展提高1、 祖眶原理:(祖璀:祖冲之的儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。

最早推导出球体体积的祖冲之父子便是运用这个原理实现的。

2、 阿基米德原理:(圆柱容球)圆柱容球原理:在一个高和底面直径都是2厂的圆柱形容器内装一个最大 的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的?。

①棱台 ②圆台丿分析:圆柱体积:V H1 = s h =(^r)x2r = 2^/圆柱侧面积:S叭削= c/z = (2岔)X2广=4兀/2 彳4 彳因lit :球体体积:|/厅=—x2/r^ =_龙厂球体表面积:S球=4兀厂通过上述分析,我们可以得到一个很重要的关系(如图)即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和3、台体体积公式公式:几冷〃(S上+、恳瓦+ S』证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD。

延长两侧棱相交于一点P 0设台体上底面积为Si,下底面积为S下高为// °易知:\PDCs 型AB,设卩£ =人,则Pf+h由相似三角形的性质得:孚=袋AB PF即:(相似比等于面积比的算术平方根)、用hi整理得:人=尺刃又因为台体的体积二大锥体体积一小锥体体积u台=§s下(九+力r s上人人(S下-S上)+§s下方即:(、瓦+丫瓦)+扣下力=|/z $ + 应7+S卜)4、球体体积公式推导分析:将半球平行分成相同高度的若干层(兀层),〃越大,每一层越近似于圆柱'"T -HZ)时»每一层都可以看作是一个圆柱。

空间几何体的表面积和体积公式大全

空间几何体的表面积和体积公式大全

空间几何体的表面积与体积公式大全全(表)面积(含侧面积)1、柱体①棱柱]----------------A S侧=Ch ■ S全=2S底* S侧②圆柱J _______ ___2、锥体①棱锥:S棱锥侧=^2c底h②圆锥:S圆锥侧=托底l3、台体①棱台:②圆台:S棱台侧S棱台侧_ 1二2(C上底C下底)h_ 1=2 (C上底.C下底)1* S全=S上+ S侧+ S下4、球体①球:S球=4r2②球冠:略③球缺:略S下S下体积1、柱体①棱柱]--------------卜V柱=Sh②圆柱J2、锥体①棱锥r②圆锥」1V柱=3S h3、台体1①棱台]V台=gh (S上NS上S^ +S下)②圆台J V圆台=3兀h (r上+Q r上r下+ r下)4、球体①球:V球=4二r'②球冠:略③球缺:略说明:棱锥、棱台计算侧面积时使用侧面的斜高h计算;而圆锥、圆台的侧面积计算时使用母线I计算。

三、拓展提高1、祖暅原理:(祖暅:祖冲之的儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。

最早推导出球体体积的祖冲之父子便是运用这个原理实现的2、阿基米德原理:(圆柱容球)圆柱容球原理:在一个高和底面直径都是2r的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的-。

3分析:圆柱体积:V圆柱=Sh =(二「2)2r=2^r'圆柱侧面积:S圆柱侧=C h =(2 r) 2r = 4二「因此:球体体积:V球=2 2二J=4二r33 3球体表面积:S球=4 r2即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和3、台体体积公式公式:V台=1h (S上+ S下)证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 延长两侧棱相交于一点P设台体上底面积为S上,下底面积为S下P 高为h。

易知:PDC s .>PAB ,设PE = h i,则PF =h i h由相似三角形的性质得:CD PEAB PFA整理得:h 1 : =S上hPS 下-VS上又因为台体的体积=大锥体体积一小锥体体积1 11 1 二V台=3S 下(h 1h K3S 上h^3h 1(S下一S上) 下h代入:h= i S 上芬得: V台=3胪L(S下—S"3S 下hJS下3*SrS31 ___ I ------ ------ 1即: V 台=3 S上h (S下S上)3S下人二 V 台=3h (S 上S 上S 下S下)球体体积公式推导即:ShiS 下-h lh (相似比等于面积比的算术平方根)1 ______________=3h (S上S 上S 下S下)4、分析:将半球平行分成相同高度的若干层( n 层),n 越大,每一层越近似于圆柱,n “ •「时,每一层都可以看作是个圆柱。

空间几何体的表面积与体积

空间几何体的表面积与体积

空间几何体的表面积与体积空间几何体是空间中由表面和内部点组成的几何图形。

它们的表面积和体积是几何学中比较基础的概念,对于初学者来说,理解它们的求解方法和应用场景至关重要。

一、表面积表面积是一个空间几何体表面积所覆盖的平面面积的总和。

不同形状的几何体,表面积的求解方法也不同。

1. 球的表面积球是空间中最简单的几何体之一,表面积的求解方法为:$$S=4\pi r^2$$其中,$S$表示球的表面积,$r$表示球的半径,$\pi $为圆周率,约等于3.14。

2. 圆柱体的表面积圆柱体的表面积包括底面积和侧面积,其求解方法为:$$S=2\pi rh+2\pi r^2$$其中,$S$表示圆柱体的表面积,$r$表示圆柱的半径,$h$表示圆柱的高。

3. 圆锥体的表面积圆锥体的表面积包括底面积和侧面积,其求解方法为:$$S=\pi r\sqrt{r^2+h^2}+\pi r^2$$其中,$S$表示圆锥体的表面积,$r$表示圆锥的半径,$h$表示圆锥的高。

4. 立方体的表面积立方体的表面积为六个正方形的面积之和,其求解方法为:$$S=6a^2$$其中,$S$表示立方体的表面积,$a$表示立方体的边长。

二、体积体积是一个空间几何体内部所包含的三维空间的大小。

同样,不同形状的空间几何体,体积的求解方法也不同。

1. 球的体积球的体积的求解方法为:$$V=\frac{4}{3}\pi r^3$$其中,$V$表示球的体积,$r$表示球的半径,$\pi$为圆周率,约等于3.14。

2. 圆柱体的体积圆柱体的体积为底面积乘以高,其求解方法为:$$V=\pi r^2h$$其中,$V$表示圆柱体的体积,$r$表示圆柱的半径,$h$表示圆柱的高。

3. 圆锥体的体积圆锥体的体积为底面积乘以高除以3,其求解方法为:$$V=\frac{1}{3}\pi r^2h$$其中,$V$表示圆锥体的体积,$r$表示圆锥的半径,$h$表示圆锥的高。

4. 立方体的体积立方体的体积为边长的立方,其求解方法为:$$V=a^3$$其中,$V$表示立方体的体积,$a$表示立方体的边长。

高考数学立体几何专题1空间立体几何的三视图、表面积和体积

高考数学立体几何专题1空间立体几何的三视图、表面积和体积

专题1空间立体几何的三视图、表面积和体积【考点点击】1.以选择、填空题形式考查空间位置关系的判断,及文字语言、图形语言、符号语言的转换,难度适中;2.以熟悉的几何体为背景,考查多面体或旋转体的侧面积、表面积和体积计算,间接考查空间位置关系的判断及转化思想等,常以三视图形式给出几何体,辅以考查识图、用图能力及空间想象能力,难度中等.3.几何体的三视图与表(侧)面积、体积计算结合;【重点知识】一、空间几何体1.柱体、锥体、台体、球的结构特征名称几何特征棱柱①有两个面互相平行(底面可以是任意多边形);②其余各面都是平行四边形,并且每相邻两个四边形的公共边互相平行棱锥①有一个面是多边形(底面);②其余各面是有公共顶点的三角形.棱台①底面互相平行;②所有侧棱延长后交于一点(即原棱锥的顶点)圆柱①有两个互相平行的圆面(底面);②有一个侧面是曲面(母线绕轴旋转一周形成的),且母线与底面垂直圆台①底面互相平行;②有一个侧面是曲面,可以看成母线绕轴旋转一周形成的球①有一个曲面是球面;②有一个球心和一条半径长R,球是一个几何体(包括内部),可以看成半圆以它的直径所在直线为旋转轴旋转一周形成的2.柱体、锥体、台体、球的表面积与体积名称体积表面积棱柱V棱柱=Sh(S为底面积,h为高)S棱柱=2S底面+S侧面棱锥V棱锥=13Sh(S为底面积,h为高)S棱锥=S底面+S侧面棱台V棱台=13h(S+SS′+S′)S棱台=S上底+S下底+S侧面圆柱V圆柱=πr2h(r为底面半径,h为高)S圆柱=2πrl+2πr2(r为底面半径,l为母线长)圆锥V圆锥=13πr2h(r为底面半径,h为高)S圆锥=πrl+πr2(r为底面半径,l为母线长)圆台V圆台=13πh(r2+rr′+r′2)S圆台=π(r+r′)l+πr2+πr′2球V球=43πR3(R为球的半径)S球=4πR2(R为球的半径)3.空间几何体的三视图和直观图(1)空间几何体的三视图三视图的正视图、侧视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,三视图的画法规则为“长对正、高平齐、宽相等”.(2)空间几何体的直观图空间几何体直观图的画法常采用斜二测画法.用斜二测画法画平面图形的直观图规则为“轴夹角45°(或135°),平行长不变,垂直长减半”.4.几何体沿表面某两点的最短距离问题一般用展开图解决;不规则几何体求体积一般用割补法和等积法求解;三视图问题要特别留意各种视图与观察者的相对位置关系.【考点分析】考点一空间几何体的结构【例1】已知正三棱锥P­ABC ,点P ,A ,B ,C 都在半径为3的球面上,若PA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为________.【答案】33【解析】正三棱锥P­ABC 可看作由正方体PADC­BEFG 截得,如图所示,PF 为三棱锥P­ABC 的外接球的直径,且PF ⊥平面ABC.设正方体棱长为a ,则22,2,1232=====BC AC AB a a ,3223222221=⨯⨯⨯=∆ABC S ,由,PAC B ABC P V V --=得222213131⨯⨯⨯⨯=⋅∆ABC S h ,所以332=h 因此球心到平面ABC 得距离为33考点二三视图、直观图【例2】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()(A )20π(B )24π(C )28π(D )32π【答案】C【解析】由题意可知,圆柱的侧面积为12π2416πS =⋅⋅=,圆锥的侧面积为2π248πS =⋅⋅=,圆柱的底面面积为23π24πS =⋅=,故该几何体的表面积为12328πS S S S =++=,故选C.【例3】某三棱锥的三视图如图所示,则该三棱锥的表面积是()A .2+5B .4+5C .2+25D .5【答案】C【解析】该三棱锥的直观图如图所示:过D 作DE ⊥BC ,交BC 于E ,连接AE ,则BC =2,EC =1,AD =1,ED =2,ABCABD ACD BCD S S S S S ∆∆∆∆+++=表5225221152115212221+=⨯⨯+⨯⨯+⨯⨯+⨯⨯=考点三几何体的表面积【例4】长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为【答案】14π.【解析】球的直径是长方体的体对角线,所以222232114,4π14π.R S R =++===【例5】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是()(A )17π(B )18π(C )20π(D )28π【答案】A【解析】该几何体直观图如图所示:是一个球被切掉左上角的81,设球的半径为R ,则32834873ππ=⨯=R V ,解得R 2=,所以它的表面积是87的球面面积和三个扇形面积之和πππ172413248722=⨯⨯+⨯⨯=S 故选A .考点四几何体的体积【例6.】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A .πB .3π4C .π2D .π4【答案】B【解析】绘制圆柱的轴截面如图所示,由题意可得:11,2AC AB ==,结合勾股定理,底面半径2213122r ⎛⎫=-= ⎪⎝⎭,由圆柱的体积公式,可得圆柱的体积是2233ππ1π24V r h ⎛==⨯⨯= ⎝⎭,故选B.考点五与球的组合体问题纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段出现这类问题加以类型的总结和方法的探讨.【例7】棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为()A .22B .1C .212+D .2解:由题意可知,球为正方体的外接球.平面11AA DD 截面所得圆面的半径12,22AD R ==11EF AA DD ⊂ 面,∴直线EF 被球O 截得的线段为球的截面圆的直径22R =.【例8】正四棱柱1111ABCD A B C D -的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最值,为.【例9】在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且AM MN ⊥,若侧棱23SA =,则正三棱锥S ABC -外接球的表面积是.解:如图,正三棱锥对棱相互垂直,即,AC SB ⊥又,,,.SB MN MN AC MN AM MN SAC ∴⊥⊥∴⊥∥又平面于是,,,SB SAC SB SA SB SC ⊥∴⊥⊥平面从而.SA SC ⊥此时正三棱锥S ABC -的三条侧棱互相垂直并且相等,故将正三棱锥补形为正方体.球的半径23,3,436.2R SA R S R ππ=∴=∴==【例10】一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为()A .12πB .C .3πD .【答案】C【解析】把原来的几何体补成以DA DC DP 、、为长、宽、高的长方体,原几何体四棱锥与长方体是同一个外接球,2=R l ,=2R ,234434S R πππ==⨯=球.【例11】在三棱锥P -ABC 中,PA =,侧棱PA 与底面ABC 所成的角为60°,则该三棱锥外接球的体积为()A .πB.3π C.4πD.43π解:如图所示,过P 点作底面ABC 的垂线,垂足为O ,设H 为外接球的球心,连接,,AH AO 因60,PAO PA ∠== 故2AO =,32PO =又△AHO 为直角三角形,222,,AH PH r AH AO OH ==∴=+22233344(),1,1.2233r r r V ππ∴=+-∴=∴=⨯=【例12】矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积是()A.π12125 B.π9125C.π6125D.π3125解:由题意分析可知,四面体ABCD 的外接球的球心落在AC 的中点,此时满足,OA OD OB OC ===522AC R ∴==,343V R π=1256π=.【总结归纳】1个特征——三视图的长度特征“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽。

高考数学总复习考点知识专题讲解37---空间几何体的表面积和体积

高考数学总复习考点知识专题讲解37---空间几何体的表面积和体积
高考数学总复习考点知识专题讲解 空间几何体的表面积和体积
最新考纲:1.了解球、柱体、锥体、台体的表面积计算 公式;2.了解球、柱体、锥体、台体的体积计算公式.
基础
知识回顾
1.多面体的表(侧)面积 多面体的各个面都是平面,则多面体的侧面积就是所 有侧面的面积之和,表面积是侧面积与底面面积之和.
2.圆柱、圆锥、圆台的侧面展开图及侧面积公式
角度2:几何体的内切球
【例3-2】 (1)(2019·重庆七校联考)已知正三棱锥的
高为6,内切球(与四个面都相切)的表面积为16π,则其底面
边长为( B )
A.18
B.12
C.6 3
D.4 3
ห้องสมุดไป่ตู้
(2)(2019·广东七校第二次联考)在四棱锥P-ABCD中, 四边形ABCD是边长为2a的正方形,PD⊥底面ABCD,且PD =2a,若在这个四棱锥内放一个球,则该球半径的最大值 为_(_2_-___2_)_a.
1 2
×3×4×5-
1 3
×
1 2
×3×4×(5-2)=
24,故选C.
2.(2019·福建泉州期中)已知一几何体的三视图如图所 示,俯视图是一个等腰直角三角形和半圆,则该几何体的 体积为( B )
A.16+8π B.136+8π C.16+16π D.136+16π
[解析] 由三视图可知,该几何体是一个三棱锥与半圆
[拓展探究] (1)本例(1)改为“侧棱和底面边长都是3 2
的正四棱锥”,则其外接球的半径是___3_____. (2)本例(2)改为:底面为正三角形的直棱柱ABC-
A′B′C′的6个顶点都在球面上,且AB=6,AA′=12, 则球O的半径是__4__3____.

【高考数学】第三部分_重点板块_专题三立体几何:第1讲空间几何体的三视图、表面积及体积

【高考数学】第三部分_重点板块_专题三立体几何:第1讲空间几何体的三视图、表面积及体积

专题三立体几何第1讲空间几何体的三视图、表面积及体积[全国卷3年考情分析]年份全国卷Ⅰ全国卷Ⅱ全国卷Ⅲ2019三棱锥的外接球、球的体积·T12空间几何体的结构特征、直观图、几何运算、数学文化·T16空间两直线的位置关系的判定·T8简单几何体的组合体、长方体和棱锥的体积·T16 2018空间几何体的三视图、直观图及最短路径问题·T7圆锥的性质及侧面积的计算·T16三视图与数学文化·T3与外接球有关的空间几何体体积的最值问题·T10 2017空间几何体的三视图与直观图、面积的计算·T7空间几何体的三视图及组合体体积的计算·T4球的内接圆柱、圆柱的体积的计算·T8“两小”或“一小”主要考查三视图,几何体的表面积与体积,空间点、线、面位置关系(特别是平行与垂直).(2)考查一个小题时,本小题一般会出现在第4~8题的位置上,难度一般;考查两个小题时,其中一个小题难度一般,另一小题难度稍高,一般会出现在第12或16题的位置上,本小题虽然难度稍高,主要体现在计算量上,但仍是对基础知识、基本公式的考查.考点一空间几何体的三视图、直观图与截面图[例1](1)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()(2)(2019·江西八所重点中学联考)某四面体的三视图如图所示,则该四面体最长的棱长与最短的棱长的比值是()A .52B .2C .355D .32(3)(2018·全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A .334B .233C .324D .321.(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .25C .3D .22.已知球O 是正三棱锥A ­BCD 的外接球,BC =3,AB =23,点E 在线段BD 上,且BD =3BE ,过点E 作球O 的截面,则所得截面中面积最小的截面圆的面积是________.考点二 几何体的表面积与体积 题型一 求空间几何体的表面积[例2] (1)《九章算术》是我国古代内容极为丰富的数学名著,书中提到了一种名为“刍甍”的五面体,如图所示,四边形ABCD 为矩形,棱EF ∥AB .若此几何体中,AB =4,EF =2,△ADE 和△BCF 都是边长为2的等边三角形,则该几何体的表面积为( )A .83B .8+83C .62+23D .8+62+23(2)我国古代数学名著《算法统宗》中有如下问题:“今有倚壁外角堆米,下周九十尺,高十二尺.”其意思为:在屋外墙角处堆放米(其三视图如图所示),米堆底部的弧长为90尺,米堆的高为12尺.圆周率约为3.若将此堆米用草席盖上,则此草席的面积至少约为(计算结果保留整数,如544≈23,550≈23)( )A .250平方尺B .990平方尺C .1 035平方尺D .518平方尺题型二 求空间几何体的体积[例3] (1)(2019·天津高考)已知四棱锥的底面是边长为2的正方形,侧棱长均为 5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为________.(2)(2019·江西省五校协作体试题)某几何体的三视图如图所示,正视图是一个上底为2,下底为4的直角梯形,俯视图是一个边长为4的等边三角形,则该几何体的体积为______.1.(2019·重庆市学业质量调研)已知某几何体的三视图如图所示,则该几何体的体积为( )A.323 B .643C.1283 D .16032.已知一个底面是菱形、侧面是矩形的四棱柱,侧棱长为5,菱形的对角线的长分别是9和15,则这个棱柱的侧面积是( )A .3034B .6034C .3034+135D .1353.已知直四棱柱ABCD ­A 1B 1C 1D 1的所有棱长都是1,∠ABC =60°,AC ∩BD =O ,A 1C 1∩B 1D 1=O 1,点H 在线段OB 1上,OH =3HB 1,点M 是线段BD 上的动点,则三棱锥M ­C 1O 1H 的体积的最小值为________.考点三 与球有关的切、接问题 题型一 外接球[例4] (2019·全国卷Ⅰ)已知三棱锥P ­ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .86πB .46πC .26πD .6π题型二 内切球[例5] 已知一个平放的各棱长为4的三棱锥内有一个小球O (重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,当注入的水的体积是该三棱锥体积的78时,小球与该三棱锥各侧面均相切(与水面也相切),则小球的表面积等于( )A.7π6 B .4π3C.2π3 D .π2题型三 与球有关的最值问题[例6] (2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D ­ABC 体积的最大值为( )A .123B .183C .243D .5431.已知圆锥的高为3,底面半径为3,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于( )A .83πB .323πC .16πD .32π2.(2019·福建五校第二次联考)已知直三棱柱ABC ­A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的直径为______.3.已知四棱锥S ­ABCD 的所有顶点在同一球面上,底面ABCD 是正方形且球心O 在此平面内,当四棱锥的体积取得最大值时,其表面积等于16+163,则球O 的体积为______.4.已知某几何体的三视图如图所示,则该几何体的体积等于( )A .2π+4B .4π+2 C.2π3+4 D .4π3+8【课后专项练习】A 组一、选择题1.如图是一个空间几何体的正视图和俯视图,则它的侧视图为( )2.(2019·福州市质量检测)棱长为1的正方体ABCD ­A 1B 1C 1D 1木块的直观图如图所示,平面α过点D 且平行于平面ACD 1,则该木块在平面α内的正投影面积是( )A.3 B .323C.2D .13.已知矩形ABCD ,AB =2BC ,把这个矩形分别以AB ,BC 所在直线为轴旋转一周,所成几何体的侧面积分别记为S 1,S 2,则S 1与S 2的比值等于( )A.12 B .1 C .2D .44.设球O 是正方体ABCD ­A 1B 1C 1D 1的内切球,若平面ACD 1截球O 所得的截面面积为6π,则球O 的半径为( )A.32 B .3 C.32D .35.(2019·武汉市调研测试)如图,在棱长为1的正方体ABCD ­A 1B 1C 1D 1中,M 为CD 的中点,则三棱锥A ­BC 1M 的体积VA ­BC 1M =( )A.12 B .14C.16 D .1126.(2019·武汉市调研测试)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A.23π B .43πC .2πD .25π7.在三棱锥A ­BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ADB 的面积分别为22,32,62,则该三棱锥的体积为( ) A. 6 B .66 C .6 D .268.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4C.π2 D .π49.若一个球与四面体的六条棱都相切,则称此球为四面体的棱切球.已知正四面体的棱长为2,则它的棱切球的体积为( )A .3π54B .π6C .π3D .3π210.已知点A ,B ,C ,D 均在球O 上,AB =BC =3,AC =3.若三棱锥D ­ABC 体积的最大值为334,则球O 的表面积为( )A .36πB .16πC .12πD .163π11.已知一个半径为7的球中有一个各条棱长都相等的内接正三棱柱,则正三棱柱的体积是( )A .18B .16C .12D .812.(2019·福州市质量检测)如图,以棱长为1的正方体的顶点A 为球心,以2为半径作一个球面,则该正方体的表面被球面所截得的所有弧长之和为( )A.3π4 B .2π C.3π2 D .9π4二、填空题13.(2019·长春市质量监测(一))已知一所有棱长都是2的三棱锥,则该三棱锥的体积为______.14.已知正方体ABCD ­A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M ­EFGH 的体积为______.15.古人采取“用臼舂米”的方法脱去稻谷的外壳,获得可供食用的大米,用于舂米的“臼”多用石头或木头制成.一个“臼”的三视图如图所示,则凿去部分(看成一个简单的组合体)的体积为______.16.已知三棱锥P ­ABC 的四个顶点都在球O 的表面上,P A ⊥平面ABC ,AB ⊥BC ,且P A =8.若平面ABC 截球O 所得截面的面积为9π,则球O 的表面积为______.B 组1.(2019·合肥市第二次质量检测)如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有( )A .2对B .3对C .4对D .5对2.在棱长为3的正方体ABCD ­A 1B 1C 1D 1中,P 在线段BD 1上,且BP PD 1=12,M 为线段B 1C 1上的动点,则三棱锥M ­PBC 的体积为( )A .1B .32C.92 D .与M 点的位置有关3.已知正方体ABCD ­A 1B 1C 1D 1的体积为1,点M 在线段BC 上(点M 异于B ,C 两点),点N 为线段CC 1的中点,若平面AMN 截正方体ABCD ­A 1B 1C 1D 1所得的截面为四边形,则线段BM 的取值范围为( )A.⎝⎛⎦⎤0,13 B .⎝⎛⎦⎤0,12 C.⎣⎡⎭⎫12,1 D .⎣⎡⎦⎤12,234.已知直三棱柱ABC ­A 1B 1C 1的侧棱长为6,且底面是边长为2的正三角形,用一平面截此棱柱,与侧棱AA 1,BB 1,CC 1分别交于三点M ,N ,Q ,若△MNQ 为直角三角形,则该直角三角形斜边长的最小值为( )A .22B .3C.23D.45.(2019·郑州市第二次质量预测)在△ABC中,已知AB=23,BC=26,∠ABC=45°,D是边AC上的一点,将△ABD沿BD折叠,得到三棱锥A­BCD,若该三棱锥的顶点A在底面BCD上的射影M在线段BC上,设BM=x,则x的取值范围是() A.(0,23)B.(3,6)C.(6,23)D.(23,26)6.如图,在正三棱柱ABC­A1B1C1中,D为棱AA1的中点.若AA1=4,AB=2,则四棱锥B­ACC1D的体积为________.7.已知在正四棱锥S­ABCD中,SA=63,那么当该棱锥的体积最大时,它的高为________.8.(2019·河南八市重点高中联盟测评改编)已知一个高为1的三棱锥,各侧棱长都相等,底面是边长为2的等边三角形,则三棱锥的表面积为________,若三棱锥内有一个体积为V 的球,则V的最大值为________.。

2022复习立体几何----空间几何体及其表面积与体积(学

2022复习立体几何----空间几何体及其表面积与体积(学

空间几何体的表面积和体积知识梳理1.多面体的表(侧)面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式3.1.正方体与球的切、接常用结论正方体的棱长为a,球的半径为R(1)若球为正方体的外接球,则2R=3a;(2)若球为正方体的内切球,则2R=a;(3)若球与正方体的各棱相切,则2R=2a.2.长方体的共顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2.3.正四面体的外接球的半径R=64a,内切球的半径r=612a,其半径R∶r=3∶1(a为该正四面体的棱长).诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)锥体的体积等于底面面积与高之积.()(2)两个球的体积之比等于它们的半径比的平方.()(3)台体的体积可转化为两个锥体的体积之差.()(4)已知球O的半径为R,其内接正方体的边长为a,则R=32a.()2.已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为()A.1 cmB.2 cmC.3 cmD.32cm3.如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.4.(2020·天津卷)若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为()A.12πB.24πC.36πD.144π5.(2020·全国Ⅲ卷)如图为某几何体的三视图,则该几何体的表面积是()A.6+42B.4+42C.6+23D.4+236.(2020·浙江卷)已知圆锥的侧面积(单位:cm2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是__________.考点一空间几何体的表面积与侧面积1.已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.122πB.12πC.82πD.10π2.(2020·北京卷)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为()A.6+ 3B.6+23C.12+ 3D.12+233.(2021·成都诊断)如图,四面体各个面都是边长为1的正三角形,其三个顶点在一个圆柱的下底面圆周上,另一个顶点是上底面圆心,圆柱的侧面积是()A.23π B.324πC.223π D.22π考点二空间几何体的体积角度1简单几何体的体积【例1】(1)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A.158B.162C.182D.324(2)(2019·天津卷)已知四棱锥的底面是边长为2的正方形,侧棱长均为 5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为________.【训练1】(1)(2019·江苏卷)如图,长方体ABCD-A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E-BCD的体积是________.(2)已知某几何体的三视图如图所示,则该几何体的体积为________.角度2不规则几何体的体积【例2】如图,在多面体ABCDEF中,已知四边形ABCD是边长为1的正方形,且△ADE,△BCF 均为正三角形,EF∥AB,EF=2,则该多面体的体积为________.【训练2】(2020·浙江卷)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是()A.73 B.143C.3D.6考点三多面体与球的切、接问题【例3】(经典母题)(2021·长沙检测)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是________.【迁移】本例中若将“直三棱柱”改为“棱长为4的正方体”,则此正方体外接球和内切球的体积各是多少?【训练3】(1)(2020·全国Ⅲ卷)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.(2)(2021·济南质检)已知球O是三棱锥P-ABC的外接球,P A=AB=PB=AC=2,CP=22,点D是PB的中点,且CD=7,则球O的表面积为()A.28π3 B.14π3C.2821π27 D.16π3空间几何体的实际应用“强调应用”也是高考卷命题的指导思想,体现了新课标的“在玩中学,在学中思,在思中得”的崭新理念,既有利于培养考生的探究意识和创新精神,又能够很好地提升考生的数学综合素养,因而成为高考试卷中的一道亮丽的风景线.如全国Ⅲ卷第16题是以学生到工厂劳动实践,利用3D打印技术制作模型为背景创设的与空间几何体的体积有关的问题.考查运用空间几何求解实际问题的能力.【典例】(2019·全国Ⅲ卷)学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD-A1B1C1D1挖去四棱锥O-EFGH后所得的几何体.其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6 cm,AA1=4 cm.3D打印所用原料密度为0.9 g/cm3,不考虑打印损耗,制作该模型所需原料的质量为______g.【训练】(2021·潍坊联考)如图所示,直三棱柱ABC-A1B1C1是一块石材,测量得∠ABC=90°,AB=6,BC=8,AA1=13.若将该石材切削、打磨,加工成几个大小相同的健身手球,则一个加工所得的健身手球的最大体积及此时加工成的健身手球的个数分别为()A.32π3,4 B.9π2,3C.6π,4D.32π3,3A级基础巩固一、选择题1.体积为8的正方体的顶点都在同一球面上,则该球的表面积为()A.12πB.32 3πC.8πD.4π2.(2021·郑州调研)现有同底等高的圆锥和圆柱,已知圆柱的轴截面是边长为2的正方形,则圆锥的侧面积为()A.3πB.3π2C.5π2 D.5π3.如图所示,正三棱柱ABC-A1B1C1的底面边长为2,侧棱长为3,D为BC中点,则三棱锥A-B1DC1的体积为()A.3B.3 2C.1D.3 24.已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.3172B.210C.132D.3105.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A.πB.3π4 C.π2 D.π46.(2020·全国Ⅱ卷)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A. 3 B.32 C.1 D.327.一个几何体的三视图如图所示,其中俯视图是半径为r 的圆,若该几何体的体积为98π,则它的表面积是( )A.92πB.9πC.454πD.544π8.(2021·安庆调研)已知在四面体P ABC 中,P A =4,BC =26,PB =PC =23,P A ⊥平面PBC ,则四面体P ABC 的外接球的表面积是( ) A.160π B.128π C.40π D.32π二、填空题9.如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.10.已知正方体ABCD-A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M-EFGH的体积为________.11.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)为________.12.(2021·太原质检)已知圆锥的顶点为S,底面圆周上的两点A、B满足△SAB为等边三角形,且面积为43,又知圆锥轴截面的面积为8,则圆锥的侧面积为________.B级能力提升13.(2020·全国Ⅰ卷)已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π14.已知四面体ABCD中,AB=AD=BC=DC=BD=5,AC=8,则四面体ABCD的体积为________.15.(2021·贵阳调研)如图,三棱锥的所有顶点都在一个球面上,在△ABC中,AB=3,∠ACB=60°,∠BCD=90°,AB⊥CD,CD=22,则该球的体积为________.16.(2019·北京卷)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为______.。

空间几何体及其表面积与体积

空间几何体及其表面积与体积
(1)利用特征三角形求出斜高即可;(2)抓住球心到正三棱锥 四个面的距离相等求出球的半径即可. 解 (1)底面正三角形中心到一边的距离为 13× 23×2 6= 2,
要点梳理
忆一忆知识要点
3.柱、锥、台和球的侧面积和体积
面积
圆柱
S 侧= 2πrh
圆锥
S 侧= πrl
体积
V=Sh =πr2h
1 V= 3Sh
= 13πr2h
=13πr2 l2-r2
圆台 直棱柱
S 侧=π(r1+r2)l S 侧= Ch
V=13(S 上+S 下+
S上S下)h =13π(r12+r22+r1r2)h
答案 ②④
图(1) 图(2)
第12页/共60页
几何体的表面积
例 2 如图,斜三棱柱 ABC—A′B′C′中,底面 是边长为 a 的正三角形,侧棱长为 b,侧棱 AA′与底面相邻两边 AB 与 AC 都成 45°角, 求此斜三棱柱的表面积.
由题意,可知 A′在平面 ABC 内的射影 D 在∠BAC 的角平分线 上,从而可证得四边形 BCC′B′是矩形. 解 如图,过 A′作 A′D⊥平面 ABC 于 D, 过 D 作 DE⊥AB 于 E,DF⊥AC 于 F,连结 A′E,A′F,AD.
对于①,平行六面体的两个相对侧面也可能与底面垂直 且互相平行,故①假;
第11页/共60页
对于②,两截面的交线平行于侧棱,且垂直 于底面,故②真; 对于③,作正四棱柱的两个平行菱形截面, 可得满足条件的斜四棱柱(如图(1)),故③假;
对于④,四棱柱一个对角面的两条对角线, 恰为四棱柱的对角线,故对角面为矩形,于 是侧棱垂直于底面的一对角线,同样侧棱也 垂直于底面的另一对角线,故侧棱垂直于底 面,故④真(如图(2)).

空间几何体的表面积和体积

空间几何体的表面积和体积

V
V大
V小
1 3
S(h
x)
1 3
S'x
A
B
h
D
S
1 [Sh (S S' )x]
3
S'
x2
S (h x)2
S' x x
S h x
B S'h
S S'
V1h[Sh(SS') 3
S' ]
S S'
1 [S
3
SS ' S ' ]h
C C
整理课件
23
思考6:在台体的体积公式中,若S′=S, S′=0,则公式分别变形为什么?
圆台
底面是圆形
侧面展开图是 一个扇状环形
S上底 r2 S下底 r 2
S侧 (r r)l
S 表 (r2 r 2 rl rl )
整理课件
16
圆柱、圆锥、圆台三者的表面积公式之间有什么关系?
S r 2 rl r(r l)
S (r'2 r 2 r'l rl )
r O
棱锥的表面积=底面积+侧面积
棱台的表面积=上底面积+下底面积+侧面积
整理课件
10
例1.已知棱长为a,各面均为等边三角形的四面体 S-ABC,求它的表面积 .
分析:四面体的展开图是由四个全等的正三角形组成.
解:过点S作 S,D BC 交BC于点D.
∵ BC a, SD SB2 BD2 a2 ( a )2 3 a
V球
4
3
R3
S球面 4 R2
整理课件
30
球的体积和表面积
例1 如图,圆柱的底面直径与高都等于球的直 径,求证:(1)球的体积等于圆柱体积的 2 ;

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和体积公式汇总表1.多面体的面积和体积公式2.旋转体的面积和体积公式3.(1)圆柱的侧面展开图是一个 ,设底面半径为r ,母线长为l ,那么圆柱的底面积 =底S ,侧面积=侧S ,表面积S = 。

(3)圆锥的侧面展开图是一个 ,设圆锥的底面半径为r ,母线长为l ,那么它的底面积=底S ,侧面积=侧S ,表面积S = 。

(4)圆台的侧面展开图是一个 ,设上、下底面圆半径分别为r '、r ,母线长为l ,那么上底面面积=上底S ,下底面面积=下底S 那么表面=S 。

4、正四面体的结论:设正四面体的棱长为a ,则这个正四面体的(1)全面积?:S 全2a ; (2)体积?:V=312a ; (3)对棱中点连线段的长?:d= 2a ;(4)对棱互相垂直。

(5)外接球半径?:R= a ; (6)内切球半径;??? r= a5、正方体与球的特殊位置结论;空间几何体练习题1.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则1V :2V 是( )A. 1:3B. 1:1C. 2:1D. 3:12.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( )A. ππ221+B. ππ421+C. ππ21+D. ππ241+ 3.一个圆锥的展开图如图所示,其中扇形的圆心角为0120,已知底面圆的半径为1,求该圆锥的体积。

4. 已知棱长为a ,各面均为等边三角形的四面体ABC S -,求它的表面积。

5.圆柱的侧面展开图是长、宽分别为6π和π4的矩形,求圆柱的体积。

6.若圆台的上下底面半径分别为1和3,它的侧面积是两底面面积和的2倍,则圆台的母线长是( ) A. 2 B. 2.5 C. 5 D. 107.圆柱的侧面展开图是长为12cm ,宽8cm 的矩形,则这个圆柱的体积为( )A. π2883cm B. π1923cm C. π2883cm 或 π1923cm D. π1923cm8.一个圆柱的底面面积是S ,侧面展开图是正方形,那么该圆柱的侧面积为( )32A. 4sπB. Sπ2C. SπD. Sπ3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

板块三:空间几何体的表面积和体积空间几何体的表面积和体积计算棱柱【例1】 将一个边长为a 的正方体,切成27个全等的小正方体,则表面积增加了 ( )A .26aB .212aC .218aD .224a【例2】 长方体的全面积为11,12条棱长度之和为24,则长方体的一条对角线长为( )A .BC .5D .6【例3】 _____. 【例4】 正三棱柱侧面的一条对角线长为2,且与底边的夹角为45︒角,则此三棱柱的体积为( )A .B .CD .【例5】 (2008四川),则该正四棱柱的体积等于 .【例6】 长方体中共点的三条棱长分别为a ,b ,c ()a b c <<,分别过这三条棱中的一条及其对棱的对角面的面积分别记为a S ,b S ,c S ,则( )A .a b c S S S >>B .a c b S S S >>C .b c a S S S >>D .c b a S S S >>【例7】 (2009陕西10)则以该正方体各个面的中心为顶点的凸多面体的体积为( )A B C D .23【例8】 底面是菱形的直棱柱,它的对角线的长分别是9和15,高是5,求这个棱柱的侧面积.【例9】 (2008四川文12)若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60︒的菱形,则该棱柱的体积等于( )A B . C . D .【例10】 在体积为15的斜三棱柱111ABC A B C -中,S 是1C C 上的一点,S ABC -的体积为3,则三棱锥111S A B C -的体积为( ) A .1 B .32C .2D .3 【例11】 直三棱柱111ABC A B C -各侧棱和底面边长均为a ,点D 是1CC 上任意一点,连结1A B ,BD ,1A D ,AD ,则三棱锥1A A BD -的体积( )A .316aB 3C 3D .3112aDC 1B 1A 1CBA【例12】 如图,在三棱柱111ABC A B C -中,若E ,F 分别为AB ,AC 的中点,平面11EB C F 将三棱柱分成体积为1V ,2V 的两部分,那么12:V V = .V 2V 1A 1B 1C 1F EC BA【例13】 (2005上海春季)有两个相同的直三棱柱,高为2a,底面三角形的三边长分别为3a 、4a 、5a ()0a >. 用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,全面积最小的是一个四棱柱,则a 的取值范围是 .【例14】 平行六面体1111ABCD A B C D -中,在从B 点出发的三条棱上分别取其中点,,E F G ,则棱锥B EFG -的体积与平行六面体体积的比值为________.【例15】 如图,在长方体1111ABCD A B C D -中,6AB =,4AD =,13AA =,分别过BC ,11A D 的两个平行截面将长方体分成三部分,其体积分别记为111AEA DFD V V -=,11112EBE A FCF D V V -=,11113B E B C F C V V -=,若123::V V V 1:4:1=,则截面11A EFD 的面积为 . E 1F 1FEDC AA 1D 1B 1C 1棱锥【例16】 侧面都是直角三角形的正三棱锥,若底面边长为2,则三棱锥的全面积是多少?【例17】 侧棱长与底面边长相等的正三棱锥称为正四面体,则棱长为1的正四面体的体积是________; 【例18】 已知正三棱锥的侧面积为cm 2,高为3cm . 求它的体积.【例19】 已知正四棱锥底面正方形的边长为4,高与斜高的夹角为30︒,求正四棱锥的全面积与体积. 【例20】 正棱锥的高增为原来的n 倍,底面边长缩为原来的1n,那么体积( ) A .缩为原来的1nB .增为原来的n 倍C .没有变化D .以上结论都不对【例21】 (2009辽宁11)正六棱锥-P ABCDEF 中,G 为PB 的中点,则三棱锥-D GAC 与三棱锥-P GAC 体积之比为( )A .11∶B .12∶C .21∶D .32∶棱台【例22】 正三棱台111ABC A B C -中,已知10AB =,棱台的侧面积为,1O O ,分别为上、下底面正三角形的中心,1D D 为棱台的斜高,160D DA ∠=︒,求上底面的边长.【例23】 已知三棱台111ABC A B C -中25ABC S ∆=,111A B C S ∆9=,高6h =.⑴求三棱锥1A ABC -的体积1A ABC V - ⑵求三棱锥111B A B C -的体积111B A B C V - ⑶求三棱锥11A BCC -的体积11A BCC V -【例24】 正四棱台的斜高为4,侧棱长为5,侧面积为64,求棱台上、下底的边长.【例25】 已知正六棱台的上,下底面边长分别为2和4,高为2,则其体积为_______. 圆柱【例26】 轴截面是正方形的圆柱叫等边圆柱.已知:等边圆柱的底面半径为r ,求全面积. 圆锥 【例27】 轴截面是正三角形的圆锥叫等边圆锥.已知:等边圆锥底面半径为r ,求全面积. 【例28】 已.求圆锥的表面积. 【例29】 将圆心角为120︒,面积为3π的扇形,作为圆锥的侧面,求圆锥的表面积和体积.【例30】 如图,圆锥形封闭容器,高为h ,圆锥内水面高为11,3hh h =,若将圆锥倒置后,圆锥内水面高为22.h h ,求C圆台【例31】 已知圆台的上下底面半径分别是2、5,且侧面面积等于两底面面积之和,求该圆台的母线长.C AA 1B 1C 1【例32】 图中所示的圆及其外切正方形绕图中由虚线表示的对称轴旋转一周生成的几何体称为圆柱容球,求证:在圆柱容球中,球的体积是圆柱体积的23,球的表面积也是圆柱全面积的23.旋转体 【例33】 如图所示,半径为R 的半圆内的阴影部分以直径AB 所在直线为轴,旋转一周得到一几何体,求该几何体的表面积(其中30BAC ∠=︒).【例34】 如图,在四边形ABCD 中,90DAB ∠=︒,135ADC ∠=︒,5AB=,CD =,2AD =,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.ABCD 【例35】 如图所示,已知等腰梯形ABCD 的上底2cm AD =,下底10cm BC =,底角60ABC ∠=︒,现绕腰AB 旋转一周,求所得的旋转体的体积.l A BCDEF60︒【例36】 在ABC ∆中,2AB =,32BC =,120ABC ∠=︒(如图所示),若将ABC∆DCBA绕直线BC旋转一周,则所形成的旋转体的体积是()A.9π2B.7π2C.5π2D.3π2球体【例37】球的体积与其表面积的数值相等,则球的半径等于()A.12B.1 C.2 D.3【例38】一平面截一球得到直径是6的圆面,球心到这个平面的距离4,求该球的表面积与体积.【例39】直径为10cm的一个大金属球,熔化后铸成若干个直径为2cm的小球,如果不计损耗,可铸成这样的小球的个数为()A.5 B.15 C.25 D.125【例40】(09年西城区期末考试12)若A,B两点在半径为2的球面上,且以线段AB为直径的小圆周长为2π,则此球的表面积为___________,A,B两点间的球面距离为__________.【例41】已知一个球的直径为d,一个正方体的棱长为a,如果它们的表面积相等,则()A.d a>且V>球V正方体B.d a>且V<球V正方体C.d a<且V>球V正方体D.d a<且V<球V正方体【例42】已知球的表面积为20π,球面上有A、B、C三点.如果2AB AC==,BC=,则球心到平面ABC的距离为()A.1B C D.2【例43】平面截球得到半径是3的圆面,球心到这个平面的距离是4,则该球的表面积是()A.20πB C.100πD.500π3【例44】(2006全国II)过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为()A.316B.916C.38D.932【例45】设A、B、C、D是球面上的四个点,且在同一平面内,3AB BC CD DA====,球心到该平面的距离是球半径的一半,则球的体积是()A.B.C.D.【例46】把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离.【例47】球面上有三点A,B,C组成这个球的一个截面的内接三角形三个顶点,已知球的半径为R,且A,C两点的球面距离为π2R,A,B两点及B,C两点的球面距离均为π3R,球心到这个截面的距离为6,求球的表面积.。

相关文档
最新文档