概率论第四章例题
《概率论与数理统计》典型例题 第四章 大数定律与中心极限定理
= 0.15,
µn 为
5000
户中收视
该节目的户数,所以可应用棣莫弗-拉普拉斯中心极限定理,即二项分布以正态 分布为极限定理。
解 : 设 µn 为 5000 户 中 收 视 该 节 目 的 户 数 , 则 µn ~ B(n, p) , 其 中
n = 5000, p = 0.15 。 由棣莫弗-拉普拉斯中心极限定理, µn − np 近似服从 np(1− p)
显然需用到前一不等式,则只需算出 E(X + Y ) 与 D(X + Y ) 即可。
解:由于 E(X + Y ) = 0 ,
D( X + Y ) = DX + DY + 2Cov( X , Y ) = DX + DY + 2ρ XY DX DY = 1+ 4 + 2×1× 2× (−0.5) = 3 ,
( D )服从同一离散型分布。
分析:林德伯格-列维中心极限定理要求的条件是 X 1, X 2,", X n,"相互独
立、同分布、方差存在,这时,当 n 充分大时, Sn 才近似服从正态分布。 根据 条件分析选项即可。
解:显然选项 A 与 B 不能保证 X 1, X 2 , ", X n 同分布,可排除。 选项 C 给出了指数分布,此时独立同分布显然满足,而且由于是指数分布, 方差肯定存在,故满足定理条件。 选项 D 只给出其离散型的描述,此时独立同分布显然满足。 但却不能保证 方差一定存在,因此也应排除。 故选 C 。 注:本例重在考察中心极限定理的条件。
P{ X
− EX
≥ ε}≤
E[g( X − EX )] 。 g(ε )
分析:证明的结论形式与切比雪夫不等式非常相似,利用切比雪夫不等式的 证明思想试试看。
概率论与数理统计第四章习题及答案
概率论与数理统计习题 第四章 随机变量的数字特征习题4-1 某产品的次品率为,检验员每天检验4次,每次随机地取10件产品进行检验,如发现其中的次品数多于1个,就去调整设备,以X 表示一天中调整设备的次数,试求)(X E (设诸产品是否为次品是相互独立的).解:设表示一次抽检的10件产品的次品数为ξP =P (调整设备)=P (ξ>1)=1-P (ξ≤1)= 1-[P (ξ=0)+ P (ξ=1)]查二项分布表1-=.因此X 表示一天调整设备的次数时X ~B (4, . P (X =0)=⎪⎪⎭⎫ ⎝⎛04××=.P (X =1)=⎪⎪⎭⎫ ⎝⎛14××=, P (X =2)= ⎪⎪⎭⎫⎝⎛24××=.P (X =3)=⎪⎪⎭⎫ ⎝⎛34××=, P (X =4)= ⎪⎪⎭⎫ ⎝⎛44××=. 从而E (X )=np =4×=习题4-2 设随机变量X 的分布律为Λ,2,1,323)1(1==⎭⎬⎫⎩⎨⎧-=+j j X P jjj ,说明X的数学期望不存在.解: 由于1111133322(1)((1))3j j j j j j j j j P X j j j j ∞∞∞++===-=-==∑∑∑,而级数112j j ∞=∑发散,故级数11133(1)((1))j jj j j P X j j∞++=-=-∑不绝对收敛,由数学期望的定义知,X 的数学期望不存在. 习题X-2 0 2 k p求)53(),(),(22+X E X E X E .解 E (X )=(-2)+0+2=由关于随机变量函数的数学期望的定理,知E (X 2)=(-2)2+02+22=E (3X 2+5)=[3 (-2)2+5]+[3 02+5]+[322+5]=如利用数学期望的性质,则有E (3X 2+5)=3E (X 2)+5=3+5=4.135)(3)53(,8.23.04.0)(,2.03.023.004.02)(222222)2(=+=+=⨯+⨯=-=⨯+⨯+⨯-=-X E X E X E X E习题4-4 设随机变量X 的概率密度为⎩⎨⎧≤>=-0,0,0,)(x x e x f x 求XeY X Y 2)2(;2)1(-==的数学期望.解22)(2)0(2)(2)2()()(00=-=+-=+⋅===∞-∞+-∞-+∞-∞-+∞∞-⎰⎰⎰⎰xx xx e dx e xe dx xe dx x dx x xf X E Y E I3131)()()(0303022=-==⋅==∞-∞+-∞+---⎰⎰xx x x X edx e dx e e e E Y E II 习题4-5 设),(Y X 的概率密度为⎩⎨⎧≤≤≤=其它,0,10,12),(2x y y y x f求)(),(),(),(22Y X E XY E Y E X E +.解 各数学期望均可按照⎰⎰+∞∞-+∞∞-=dxdy y x f y x g Y X g E ),(),()],([计算。
概率论与数理统计第四章
E (b) b E (aX ) aE ( X )
2. E(X+Y) = E(X)+E(Y);
推广 : E [ X i ] E ( X i )
i 1 i 1 n n
E ( ai X i ) ai E ( X i )
i 1 i 1
n
n
3. 设X、Y独立,则 E(XY)=E(X)E(Y);
例2.(X,Y)服从二维正态分布,其概率密度为 1 f ( x, y ) 2 21 2 1
1 y 1 2 x 1 y 2 y 2 2 exp{ [( ) 2 ( )( )( ) ]} 2 1 1 2 2 (1 )
证明: XY
Cov(kX, kY)=k2Cov(X,Y)
■相关系数
定义 设D(X)>0, D(Y)>0, 称
XY
Cov( X , Y ) X EX Y EY E[ ] D( X ) D(Y ) DX DY
为随机变量X和Y的相关系数(标准协方差)
X Y E( X Y ) XY
练习
1.设离散型随机变量(X,Y)的分布列为 Y 0 1 2 X 则E(XY)=( ) 0 1/3 1/6 1/9 1 0 1/6 1/9 2 0 0 1/9
2.设随机变量X的概率密度为
e x f ( x) 0 x0 其它
Y=e-2X,则EY=( )
■数学期望的性质
1. 设a,b是常数,则E(aX+b)=aE(X)+b;
对正态分布而言,X、Y相互独立 与互不相关是等价的。
例4.设随机变量(X,Y)~N(1, 1, 9, 16, -0.5) 令
第四章 随机变量的数字特征
概率论第4章习题参考解答
概率论第4章习题参考解答 1. 若每次射击中靶的概率为0.7, 求射击10炮, 命中3炮的概率, 至少命中3炮的概率, 最可能命中几炮. 解: 设ξ为射击10炮命中的炮数, 则ξ~B (10,0.7), 命中3炮的概率为 =⨯⨯==733103.07.0}3{C P ξ0.0090至少命中3炮的概率, 为1减去命中不到3炮的概率, 为=⨯⨯-=<-=≥∑=-2010103.07.01}3{1}3{i i i i C P P ξξ0.9984因np +p =10×0.7+0.7=7.7不是整数, 因此最可能命中[7.7]=7炮. 2. 在一定条件下生产某种产品的废品率为0.01, 求生产10件产品中废品数不超过2个的概率. 解: 设ξ为10件产品中的废品数, 则ξ~B (10,0.01), 则废品数不超过2个的概率为=⨯⨯=≤∑=-20101099.001.0}2{i i i iC P ξ0.99993. 某车间有20部同型号机床, 每部机床开动的概率为0.8, 若假定各机床是否开动彼此独立, 每部机床开动时所消耗的电能为15个单位, 求这个车间消耗电能不少于270个单位的概率. 解: 设每时刻机床开动的数目为ξ, 则ξ~B (20,0.8), 假设这个车间消耗的电能为η个单位, 则η=15ξ, 因此2061.02.08.0}18{}15270{}27015{}270{20182020=⨯⨯==≥=≥=≥=≥∑=-i i i iC P P P P ξξξη4. 从一批废品率为0.1的产品中, 重复抽取20个进行检查, 求这20个产品中废品率不大于0.15的概率. 解: 设这20个产品中的废品数为ξ, 则ξ~B (20,0.1), 假设这20个产品中的废品率为η, 则η=ξ/20. 因此∑=-⨯⨯=≤=≤=≤320209.01.0}3{}15.020{}15.0{i i i iC P P P ξξη=0.8675. 生产某种产品的废品率为0.1, 抽取20件产品, 初步检查已发现有2件废品, 问这20件中, 废品不少于3件的概率. 解: 设ξ为这20件产品中的废品数, 则ξ~B (20,0.1), 又通过检查已经知道ξ定不少于2件的条件, 则要求的是条件概率}2{}23{}2|3{≥≥⋂≥=≥≥ξξξξξP P P因事件}3{}2{≥⊃≥ξξ, 因此2}23{≥=≥⋂≥ξξξ因此5312.06083.02852.019.01.0209.019.01.01}{1}2{1}{}2{1}{}2{}{}{}{}2{}3{}2|3{192018222010202202202202203=-=⨯⨯--⨯⨯-==-=-===-===-=====≥≥=≥≥∑∑∑∑∑∑======C i P P i P P i P P i P i P i P P P P i i i i i i ξξξξξξξξξξξξξ6. 抛掷4颗骰子, ξ为出现1点的骰子数目, 求ξ的概率分布, 分布函数, 以及出现1点的骰子数目的最可能值. 解: 因掷一次骰子出现一点的概率为1/6, 则ξ~B (4,1/6), 因此有⎪⎪⎩⎪⎪⎨⎧≥<≤⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛<==⎪⎭⎫ ⎝⎛⨯⨯==∑≤--4140656100)(),4,3,2,1,0(6561}{4444x x C x x F k C k P x k kk k kk kξ或者算出具体的值如下所示: ξ 0 1 2 3 4 P0.48230.38580.11570.01540.0008⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=41439992.0329838.0218681.0104823.000)(x x x x x x x F从分布表可以看出最可能值为0, 或者np +p =(4/6)+1/6=5/6小于1且不为整数, 因此最可能值为[5/6]=0. 7. 事件A 在每次试验中出现的概率为0.3, 进行19次独立试验, 求(1)出现次数的平均值和标准差; (2)最可能出现的次数. 解: 设19次试验中事件A 出现次数为ξ, 则ξ~B (19,0.3), 因此 (1)ξ的数学期望为E ξ=np =19×0.3=5.7 方差为Dξ=np (1-p )=19×0.3×0.7=3.99标准差为997.199.3===ξσξD(2)因np +p =5.7+0.3=6为整数, 因此最可能值为5和6. 8. 已知随机变量ξ服从二项分布, E ξ=12, D ξ=8, 求p 和n . 解: 由E ξ=np =12 (1) 和D ξ=np (1-p )=8 (2) 由(1)得n =12/p , 代入到(2)得 12(1-p )=8, 解出p =(12-8)/12=1/3=0.3333 代回到(1)式得n =12/p =12×3=36 9. 某柜台上有4个售货员, 并预备了两个台秤, 若每个售货员在一小时内平均有15分钟时间使用台秤, 求一天10小时内, 平均有多少时间台秤不够用. 解: 每个时刻构成一n =4的贝努里试验, 且p =15/60=0.25, 因此, 设ξ为每个时刻要用秤的售货员数, 则ξ~B (4, 0.25), 当ξ>2时, 台秤不够用. 因此每时刻台秤不够用的概率为=+⨯⨯=>433425.075.025.0)2(C P ξ0.0508因此10个小时内平均有0.0508×10=0.508个小时台秤不够用. 10. 已知试验的成功率为p , 进行4重贝努里试验, 计算在没有全部失败的情况下, 试验成功不止一次的概率. 解: 设ξ为4次试验中的成功数, 则ξ~B (4,p ), 事件"没有全部失败"即事件{ξ>0}, 而事件"试验成功不止一次"即事件{ξ>1}, 因此要求的是条件概率P {ξ>1|ξ>0}, 又因事件{ξ>1}被事件{ξ>0}包含, 因此这两个事件的交仍然是{ξ>1}, 因此434141}0{1}1{}0{1}0{}1{}0|1{q pq q P P P P P P ---===-=-=-=>>=>>ξξξξξξξ其中q =1-p 11. ξ服从参数为2,p 的二项分布, 已知P (ξ≥1)=5/9, 那么成功率为p 的4重贝努里试验中至少有一次成功的概率是多少?解: 因ξ~B (2,p ), 则必有9/5)1(1)0(1)1(2=--==-=≥p P P ξξ, 解得3/13/213/219/49/51)1(2=-==-=-=-p p p 则假设η为成功率为1/3的4重贝努里试验的成功次数, η~B (4,1/3), 则802.081161321)1(1)0(1)1(44=-=⎪⎭⎫⎝⎛-=--==-=≥p P P ηη12. 一批产品20个中有5个废品, 任意抽取4个, 求废品数不多于2个的概率解: 设ξ为抽取4个中的废品数, 则ξ服从超几何分布, 且有==≤∑=-204204155}2{i i i C C C P ξ0.968 13. 如果产品是大批的, 从中抽取的数目不大时, 则废品数的分布可以近似用二项分布公式计算. 试将下例用两个公式计算, 并比较其结果. 产品的废品率为0.1, 从1000个产品中任意抽取3个, 求废品数为1的概率. 解: 设任抽3个中的废品数为ξ, 则ξ服从超几何分布, 废品数为0.1×1000=100 ===3100029001100}1{C C C P ξ0.2435 而如果用二项分布近似计算, n =3, p =0.1, ξ~B (3,0.1)=⨯⨯≈=2139.01.0}1{C P ξ0.2430近似误差为0.0005, 是非常准确的.14. 从一副朴克牌(52张)中发出5张, 求其中黑桃张数的概率分布. 解: 设ξ为发出的5张中黑桃的张数, 则ξ服从超几何分布, 则)5,4,3,2,1,0(}{5525135213===--i C C C i P i i ξ则按上式计算出概率分布如下表所示: ξ 0 1 2 3 4 5 P0.22150.41140.27430.08150.01070.000515. 从大批发芽率为0.8的种子中, 任取10粒, 求发芽粒数不小于8粒的概率. 解: 设ξ为10粒种子中发芽的粒数, 则ξ服从超几何分布, 但可以用二项分布近似, 其中p =0.8, n =10, 则∑=-⨯⨯=≥10810102.08.0}8{i i i iC P ξ=0.677816. 一批产品的废品率为0.001, 用普哇松分布公式求800件产品中废品为2件的概率, 以及不超过2件的概率. 解: 设ξ为800件产品中的废品数, 则ξ服从超几何分布, 可以用二项分布近似, 则ξ~B (800, 0.001), 而因为试验次数很大废品率则很小, 可以用普阿松分布近似, 参数为 λ=np =800×0.001=0.89526.0!8.0}2{1438.028.0}2{28.08.02=≈≤=≈=∑=--i i e i P e P ξξ 17. 某种产品表面上的疵点数服从普哇松分布, 平均一件上有0.8个疵点, 若规定疵点数不超过1个为一等品, 价值10元, 疵点数大于1不多于4为二等品, 价值8元, 4个以上为废品, 求产品为废品的概率以及产品的平均价值. 解: 设ξ为产品表面上的疵点数, 则ξ服从普哇松分布, λ=0.8, 设η为产品的价值, 是ξ的函数. 则产品为废品的概率为0014.0!8.01}4{1}4{408.0=-=≤-=>∑=-i i e i P P ξξ==≤==∑=-18.0!8.0}1{}10{i i e i P P ξη0.8088==≤<==∑=-428.0!8.0}41{}8{i i e i P P ξη0.1898则产品的平均价值为 Eη = 10×P {η=10}+8×P {η=8}=10×0.8088+8×0.1898=9.6064(元) 18. 一个合订本共100页, 平均每页上有两个印刷错误, 假定每页上印刷错误的数目服从普哇松分布, 计算该合订本中各页的印刷错误都不超过4个的概率. 解: 设ξ为每页上的印刷错误数目, 则ξ服从普哇松分布, λ=2, 则1页印刷错误都不超过4个的概率为 ==≤∑=-402!2}4{i i e i P ξ0.9473而100页上的印刷错误都不超过4个的概率为[]=≤100}4{ξP 0.00445419. 某型号电子管的“寿命”ξ服从指数分布, 如果它的平均寿命E ξ=1000小时, 写出ξ的概率密度, 并计算P (1000<ξ≤1200). 解: 因Eξ=1000=1/λ, 其概率密度为⎪⎩⎪⎨⎧≤>=-0010001)(1000x x ex xϕ0667.0)12001000(2.111000120010001000=-=-=≤<----e e ee P ξ20. ξ~N (0,1), Φ0(x )是它的分布函数, φ0(x )是它的概率密度, Φ0(0), φ0(0), P (ξ=0)各是什么值? 解: 因有 20221)(x ex -=πϕ, ⎰∞--=Φxt dt ex 20221)(π, 因此φ0(x )为偶函数, 由对称性可知Φ0(0)=0.5, 并有πϕ21)0(0=,因ξ为连续型随机变量, 取任何值的概率都为0, 即P (ξ=0)=0.21. 求出19题中的电子管在使用500小时没坏的条件下, 还可以继续使用100小时而不坏的概率?解: 要求的概率为P (ξ>600|ξ>500), 因此905.0}500{}600{}500|600{1.010005001000600===>>=>>---e e eP P P ξξξξ22. 若ξ服从具有n 个自由度的χ2-分布, 证明ξ的概率密度为⎪⎪⎩⎪⎪⎨⎧<≥⎪⎭⎫ ⎝⎛Γ=---022)(21212x x e n x x x nn ϕ称此分为为具有n 个自由度的χ-分布 证: 设ξη=, 则因ξ的概率密度函数为⎪⎪⎩⎪⎪⎨⎧≤>⎪⎭⎫ ⎝⎛Γ=--0221)(2122x x e x n x xn nξϕη的分布函数为)0()()()()()(22>=≤=≤=≤=x x F x P x P x P x F ξηξξη对两边求导得)0(22222)(2)(2121222222>⎪⎭⎫ ⎝⎛Γ=⎪⎭⎫ ⎝⎛Γ==-----x en x en x xx x x x n n x n n ξηϕϕ23. ξ~N (0,1), 求P {ξ≥0}, P {|ξ|<3}, P {0<ξ≤5}, P {ξ>3}, P {-1<ξ<3} 解: 根据ξ的对称性质及查表得: P {ξ≥0}=1-Φ0(0)=0.5 P {|ξ|<3}=2Φ0(3)-1=2×0.99865-1=0.9973 P {0<ξ≤5}=Φ0(5)-0.5=0.5P {ξ>3}=1-Φ0(3)=1-0.99865=0.00135P {-1<ξ<3}=Φ0(3)-Φ0(-1)=Φ0(3)+Φ0(1)-1=0.99865+0.8413-1=0.83995 24. ξ~N (μ,σ2), 为什么说事件"|ξ-μ|<2σ"在一次试验中几乎必然出现?解: 因为)1,0(~N σμξ- 19545.0197725.021)2(2}2{}2|{|0≈=-⨯=-Φ=<-=<-σμξσμξP P因此在一次试验中几乎必然出现.25. ξ~N (10,22), 求P (10<ξ<13), P (ξ>13), P (|ξ-10|<2). 解: 因为)1,0(~210N -ξ6826.018413.021)1(2}1210{}2|10{|0.0668193319.01)5.1(1}5.1210{}13{43319.05.093319.0)0()5.1(}5.12100{}1310{0000=-⨯=-Φ=<-=<-=-=Φ-=>-=>=-=Φ-Φ=<-<=<<ξξξξξξP P P P P P26. 若上题中已知P {|ξ-10|<c }=0.95, P {ξ<d }=0.0668, 分别求c 和d .解: 因为)1,0(~210N -ξ, 则有95.01)2(2}2210{}|10{|0=-Φ=<-=<-cc P c P ξξ 解得975.0295.01)2(0=+=Φc, 查表得,96.12=c得c =3.92 再由5.00668.0)210(}210210{}{0<=-Φ=-<-=<d d P d P ξξ知,0210<-d 因此0668.0)210(1)210(00=-Φ-=-Φdd 即9332.00668.01)210(0=-=-Φd, 查表得5.1210=-d, 解得7310=-=d 27. 若ξ~N (μ,σ2), 对于P {μ-kσ<ξ<μ+kσ}=0.90, 或0.95, 或0.99, 分别查表找出相应的k值.解: 先求P {μ-kσ<ξ<μ+kσ}=0.90对应的k 值. 因)1,0(~N σμξ-, 因此 90.01)(2}{}{0=-Φ=<-=+<<-k k P k k P σμξσμξσμ 即95.0290.01)(0=+=Φk , 查表得k =1.64 同理, 由975.0295.01)(0=+=Φk , 查表得k =1.96 由995.0299.01)(0=+=Φk , 查表得k =2.57 28. 某批产品长度按N (50, 0.252)分布, 求产品长度在49.5cm 和50.5cm 之间的概率, 长度小于49.2cm 的概率.解: 设ξ为产品长度, 则ξ~N (50, 0.252), 且有)1,0(~25.050N -ξ, 则9545.0197725.021)2(2}225.050{}225.0502{}5.505.49{0=-⨯=-Φ=<-=<-<-=<<ξξξP P P0006871.09993129.01)2.3(1)2.3(}25.0502.4925.050{}2.49{00=-=Φ-=-Φ=-<-=<ξξP P29. ξi ~N (0,1)(i =1,2,3), 并且ξ1,ξ2,ξ3相互独立, ∑==3131i i ξξ,∑=-=312)(i i ξξη, 求),cov(,),,cov(1ηξηξξE解: 此题要用到, 两个独立的服从正态分布的随机变量相加后得到的随机变量仍然服从正态分布. 因此, 因为3131,031=⎪⎭⎫ ⎝⎛==∑=i i D D E ξξξ, 则)31,0(~N ξ313131)()cov(2131111==⎪⎭⎫ ⎝⎛==∑=ξξξξξξξE E E i i32313121)cov(2)2()(22222=+⨯-=+-=+-=-ξξξξξξξξξξE E E E i i i i i因此2323)()(312312=⨯=-=⎪⎭⎫ ⎝⎛-=∑∑==i i i i E E E ξξξξη ξξ-i 也服从正态分布, 且有03131)]([),cov(2=-=-=-=-ξξξξξξξξξE E E i i i即ξ与ξξ-i 不相关, 而因为它们服从正态分布, 因此也就是ξ与ξξ-i 相互独立,则ξ与2)(ξξ-i 也相互独立, 则ξ与η中的加和中的每一项相互独立, 当然也与η相互独立, 因此有0),cov(=ηξ, 因为相互独立的随机变量一定不相关.30. (ξ,η)有联合概率密度22)(21,2122ηξζπ+=+-y x e , 求ζ的概率密度.解: 由联合概率密度看出, ξ与η相互独立服从标准正态分布, 则有 ξ2与η2也相互独立且服从自由度为1的χ2-分布, 即ξ2~χ2(1), η2~χ2(1), 因此ζ=ξ2+η2~χ2(2), 即它的概率密度为⎪⎩⎪⎨⎧<>=-00212x x exζϕ即ζ服从λ=1/2的指数分布.。
概率论第4章习题参考解答
概率论第4章习题参考解答1. 若每次射击中靶的概率为, 求射击10炮, 命中3炮的概率, 至少命中3炮的概率, 最可能命中几炮.解: 设ξ为射击10炮命中的炮数, 则ξ~B (10,, 命中3炮的概率为 =⨯⨯==733103.07.0}3{C P ξ至少命中3炮的概率, 为1减去命中不到3炮的概率, 为=⨯⨯-=<-=≥∑=-2010103.07.01}3{1}3{i i i i C P P ξξ因np +p =10×+=不是整数, 因此最可能命中[]=7炮.2. 在一定条件下生产某种产品的废品率为, 求生产10件产品中废品数不超过2个的概率.解: 设ξ为10件产品中的废品数, 则ξ~B (10,, 则废品数不超过2个的概率为=⨯⨯=≤∑=-20101099.001.0}2{i i i iC P ξ3. 某车间有20部同型号机床, 每部机床开动的概率为, 若假定各机床是否开动彼此独立, 每部机床开动时所消耗的电能为15个单位, 求这个车间消耗电能不少于270个单位的概率.解: 设每时刻机床开动的数目为ξ, 则ξ~B (20,, 假设这个车间消耗的电能为η个单位, 则η=15ξ, 因此2061.02.08.0}18{}15270{}27015{}270{20182020=⨯⨯==≥=≥=≥=≥∑=-i i i iC P P P P ξξξη4. 从一批废品率为的产品中, 重复抽取20个进行检查, 求这20个产品中废品率不大于的概率.解: 设这20个产品中的废品数为ξ, 则ξ~B (20,, 假设这20个产品中的废品率为η, 则η=ξ/20. 因此∑=-⨯⨯=≤=≤=≤320209.01.0}3{}15.020{}15.0{i i i iC P P P ξξη=5. 生产某种产品的废品率为, 抽取20件产品, 初步检查已发现有2件废品, 问这20件中, 废品不少于3件的概率.解: 设ξ为这20件产品中的废品数, 则ξ~B (20,, 又通过检查已经知道ξ定不少于2件的条件, 则要求的是条件概率}2{}23{}2|3{≥≥⋂≥=≥≥ξξξξξP P P因事件}3{}2{≥⊃≥ξξ, 因此2}23{≥=≥⋂≥ξξξ因此5312.06083.02852.019.01.0209.019.01.01}{1}2{1}{}2{1}{}2{}{}{}{}2{}3{}2|3{192018222010202202202202203=-=⨯⨯--⨯⨯-==-=-===-===-=====≥≥=≥≥∑∑∑∑∑∑======C i P P i P P i P P i P i P i P P P P i i i i i i ξξξξξξξξξξξξξ6. 抛掷4颗骰子, ξ为出现1点的骰子数目, 求ξ的概率分布, 分布函数, 以及出现1点的骰子数目的最可能值.解: 因掷一次骰子出现一点的概率为1/6, 则ξ~B (4,1/6), 因此有⎪⎪⎩⎪⎪⎨⎧≥<≤⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛<==⎪⎭⎫ ⎝⎛⨯⨯==∑≤--4140656100)(),4,3,2,1,0(6561}{4444x x C x x F k C k P x k kk k kk kξ或者算出具体的值如下所示:ξ0 1 2 3 4 P⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=41439992.0329838.0218681.0104823.000)(x x x x x x x F从分布表可以看出最可能值为0, 或者np +p =(4/6)+1/6=5/6小于1且不为整数, 因此最可能值为[5/6]=0.7. 事件A 在每次试验中出现的概率为, 进行19次独立试验, 求(1)出现次数的平均值和标准差; (2)最可能出现的次数.解: 设19次试验中事件A 出现次数为ξ, 则ξ~B (19,, 因此 (1)ξ的数学期望为E ξ=np =19×= 方差为Dξ=np (1-p )=19××=标准差为997.199.3===ξσξD(2)因np +p =+=6为整数, 因此最可能值为5和6.8. 已知随机变量ξ服从二项分布, E ξ=12, D ξ=8, 求p 和n . 解: 由E ξ=np =12 (1) 和D ξ=np (1-p )=8 (2) 由(1)得n =12/p , 代入到(2)得12(1-p )=8, 解出p =(12-8)/12=1/3= 代回到(1)式得n =12/p =12×3=369. 某柜台上有4个售货员, 并预备了两个台秤, 若每个售货员在一小时内平均有15分钟时间使用台秤, 求一天10小时内, 平均有多少时间台秤不够用.解: 每个时刻构成一n =4的贝努里试验, 且p =15/60=, 因此, 设ξ为每个时刻要用秤的售货员数, 则ξ~B (4, , 当ξ>2时, 台秤不够用. 因此每时刻台秤不够用的概率为=+⨯⨯=>433425.075.025.0)2(C P ξ因此10个小时内平均有×10=个小时台秤不够用.10. 已知试验的成功率为p , 进行4重贝努里试验, 计算在没有全部失败的情况下, 试验成功不止一次的概率.解: 设ξ为4次试验中的成功数, 则ξ~B (4,p ), 事件"没有全部失败"即事件{ξ>0}, 而事件"试验成功不止一次"即事件{ξ>1}, 因此要求的是条件概率P {ξ>1|ξ>0}, 又因事件{ξ>1}被事件{ξ>0}包含, 因此这两个事件的交仍然是{ξ>1}, 因此434141}0{1}1{}0{1}0{}1{}0|1{q pq q P P P P P P ---===-=-=-=>>=>>ξξξξξξξ其中q =1-p11. ξ服从参数为2,p 的二项分布, 已知P (ξ≥1)=5/9, 那么成功率为p 的4重贝努里试验中至少有一次成功的概率是多少解: 因ξ~B (2,p ), 则必有9/5)1(1)0(1)1(2=--==-=≥p P P ξξ, 解得3/13/213/219/49/51)1(2=-==-=-=-p p p 则假设η为成功率为1/3的4重贝努里试验的成功次数, η~B (4,1/3), 则802.081161321)1(1)0(1)1(44=-=⎪⎭⎫⎝⎛-=--==-=≥p P P ηη12. 一批产品20个中有5个废品, 任意抽取4个, 求废品数不多于2个的概率解: 设ξ为抽取4个中的废品数, 则ξ服从超几何分布, 且有==≤∑=-204204155}2{i i i C C C P ξ 13. 如果产品是大批的, 从中抽取的数目不大时, 则废品数的分布可以近似用二项分布公式计算. 试将下例用两个公式计算, 并比较其结果. 产品的废品率为, 从1000个产品中任意抽取3个, 求废品数为1的概率.解: 设任抽3个中的废品数为ξ, 则ξ服从超几何分布, 废品数为×1000=100 ===3100029001100}1{C C C P ξ 而如果用二项分布近似计算, n =3, p =, ξ~B (3,=⨯⨯≈=2139.01.0}1{C P ξ近似误差为, 是非常准确的.14. 从一副朴克牌(52张)中发出5张, 求其中黑桃张数的概率分布. 解: 设ξ为发出的5张中黑桃的张数, 则ξ服从超几何分布, 则)5,4,3,2,1,0(}{5525135213===--i C C C i P i i ξ则按上式计算出概率分布如下表所示:ξ 0 1 2 3 4 5 P15. 从大批发芽率为的种子中, 任取10粒, 求发芽粒数不小于8粒的概率.解: 设ξ为10粒种子中发芽的粒数, 则ξ服从超几何分布, 但可以用二项分布近似, 其中p =, n =10, 则∑=-⨯⨯=≥10810102.08.0}8{i i i iC P ξ=16. 一批产品的废品率为, 用普哇松分布公式求800件产品中废品为2件的概率, 以及不超过2件的概率.解: 设ξ为800件产品中的废品数, 则ξ服从超几何分布, 可以用二项分布近似, 则ξ~B (800, , 而因为试验次数很大废品率则很小, 可以用普阿松分布近似, 参数为 λ=np =800×=9526.0!8.0}2{1438.028.0}2{28.08.02=≈≤=≈=∑=--i i e i P e P ξξ 17. 某种产品表面上的疵点数服从普哇松分布, 平均一件上有个疵点, 若规定疵点数不超过1个为一等品, 价值10元, 疵点数大于1不多于4为二等品, 价值8元, 4个以上为废品, 求产品为废品的概率以及产品的平均价值.解: 设ξ为产品表面上的疵点数, 则ξ服从普哇松分布, λ=, 设η为产品的价值, 是ξ的函数. 则产品为废品的概率为0014.0!8.01}4{1}4{48.0=-=≤-=>∑=-i i e i P P ξξ==≤==∑=-18.0!8.0}1{}10{i i e i P P ξη==≤<==∑=-428.0!8.0}41{}8{i i e i P P ξη则产品的平均价值为Eη = 10×P {η=10}+8×P {η=8}=10×+8×=(元)18. 一个合订本共100页, 平均每页上有两个印刷错误, 假定每页上印刷错误的数目服从普哇松分布, 计算该合订本中各页的印刷错误都不超过4个的概率. 解: 设ξ为每页上的印刷错误数目, 则ξ服从普哇松分布, λ=2, 则1页印刷错误都不超过4个的概率为 ==≤∑=-402!2}4{i i e i P ξ而100页上的印刷错误都不超过4个的概率为[]=≤100}4{ξP19. 某型号电子管的“寿命”ξ服从指数分布, 如果它的平均寿命E ξ=1000小时, 写出ξ的概率密度, 并计算P (1000<ξ≤1200). 解: 因Eξ=1000=1/λ, 其概率密度为⎪⎩⎪⎨⎧≤>=-0010001)(1000x x ex xϕ 0667.0)12001000(2.111000120010001000=-=-=≤<----e e ee P ξ20. ξ~N (0,1), Φ0(x )是它的分布函数, φ0(x )是它的概率密度, Φ0(0), φ0(0), P (ξ=0)各是什么值 解: 因有 20221)(x ex -=πϕ, ⎰∞--=Φxt dt ex 20221)(π, 因此φ0(x )为偶函数, 由对称性可知Φ0(0)=,并有πϕ21)0(0=,因ξ为连续型随机变量, 取任何值的概率都为0, 即P (ξ=0)=0.21. 求出19题中的电子管在使用500小时没坏的条件下, 还可以继续使用100小时而不坏的概率解: 要求的概率为P (ξ>600|ξ>500), 因此905.0}500{}600{}500|600{1.010005001000600===>>=>>---e e eP P P ξξξξ22. 若ξ服从具有n 个自由度的χ2-分布, 证明ξ的概率密度为⎪⎪⎩⎪⎪⎨⎧<≥⎪⎭⎫ ⎝⎛Γ=---022)(21212x x e n x x x nn ϕ称此分为为具有n 个自由度的χ-分布 证: 设ξη=, 则因ξ的概率密度函数为⎪⎪⎩⎪⎪⎨⎧≤>⎪⎭⎫ ⎝⎛Γ=--0221)(2122x x e x n x xn nξϕη的分布函数为)0()()()()()(22>=≤=≤=≤=x x F x P x P x P x F ξηξξη对两边求导得)0(22222)(2)(2121222222>⎪⎭⎫ ⎝⎛Γ=⎪⎭⎫ ⎝⎛Γ==-----x en x en x xx x x x n n x n n ξηϕϕ23. ξ~N (0,1), 求P {ξ≥0}, P {|ξ|<3}, P {0<ξ≤5}, P {ξ>3}, P {-1<ξ<3} 解: 根据ξ的对称性质及查表得: P {ξ≥0}=1-Φ0(0)=P {|ξ|<3}=2Φ0(3)-1=2×= P {0<ξ≤5}=Φ0(5)= P {ξ>3}=1-Φ0(3)==P {-1<ξ<3}=Φ0(3)-Φ0(-1)=Φ0(3)+Φ0(1)-1=+= 24. ξ~N (μ,σ2), 为什么说事件"|ξ-μ|<2σ"在一次试验中几乎必然出现解: 因为)1,0(~N σμξ- 19545.0197725.021)2(2}2{}2|{|0≈=-⨯=-Φ=<-=<-σμξσμξP P因此在一次试验中几乎必然出现.25. ξ~N (10,22), 求P (10<ξ<13), P (ξ>13), P (|ξ-10|<2). 解: 因为)1,0(~210N -ξ6826.018413.021)1(2}1210{}2|10{|0.0668193319.01)5.1(1}5.1210{}13{43319.05.093319.0)0()5.1(}5.12100{}1310{0000=-⨯=-Φ=<-=<-=-=Φ-=>-=>=-=Φ-Φ=<-<=<<ξξξξξξP P P P P P26. 若上题中已知P {|ξ-10|<c }=, P {ξ<d }=, 分别求c 和d .解: 因为)1,0(~210N -ξ, 则有95.01)2(2}2210{}|10{|0=-Φ=<-=<-cc P c P ξξ 解得975.0295.01)2(0=+=Φc, 查表得,96.12=c得c = 再由5.00668.0)210(}210210{}{0<=-Φ=-<-=<d d P d P ξξ知,0210<-d 因此0668.0)210(1)210(00=-Φ-=-Φd d即9332.00668.01)210(0=-=-Φd ,查表得5.1210=-d , 解得7310=-=d27. 若ξ~N (μ,σ2), 对于P {μ-kσ<ξ<μ+kσ}=, 或, 或, 分别查表找出相应的k值.解: 先求P {μ-kσ<ξ<μ+kσ}=对应的k 值. 因)1,0(~N σμξ-, 因此 90.01)(2}{}{0=-Φ=<-=+<<-k k P k k P σμξσμξσμ 即95.0290.01)(0=+=Φk , 查表得k = 同理, 由975.0295.01)(0=+=Φk , 查表得k = 由995.0299.01)(0=+=Φk , 查表得k = 28. 某批产品长度按N (50, 分布, 求产品长度在49.5cm 和50.5cm 之间的概率, 长度小于49.2cm 的概率.解: 设ξ为产品长度, 则ξ~N (50, , 且有)1,0(~25.050N -ξ, 则9545.0197725.021)2(2}225.050{}225.0502{}5.505.49{0=-⨯=-Φ=<-=<-<-=<<ξξξP P P0006871.09993129.01)2.3(1)2.3(}25.0502.4925.050{}2.49{00=-=Φ-=-Φ=-<-=<ξξP P29.ξi ~N (0,1)(i =1,2,3), 并且ξ1,ξ2,ξ3相互独立,∑==3131i i ξξ,∑=-=312)(i i ξξη, 求),cov(,),,cov(1ηξηξξE解: 此题要用到, 两个独立的服从正态分布的随机变量相加后得到的随机变量仍然服从正态分布. 因此, 因为3131,031=⎪⎭⎫ ⎝⎛==∑=i i D D E ξξξ, 则)31,0(~N ξ313131)()cov(2131111==⎪⎭⎫ ⎝⎛==∑=ξξξξξξξE E E i i32313121)cov(2)2()(22222=+⨯-=+-=+-=-ξξξξξξξξξξE E E E i i i i i因此2323)()(312312=⨯=-=⎪⎭⎫ ⎝⎛-=∑∑==i i i i E E E ξξξξη ξξ-i 也服从正态分布, 且有03131)]([),cov(2=-=-=-=-ξξξξξξξξξE E E i i i即ξ与ξξ-i 不相关, 而因为它们服从正态分布, 因此也就是ξ与ξξ-i 相互独立,则ξ与2)(ξξ-i 也相互独立, 则ξ与η中的加和中的每一项相互独立, 当然也与η相互独立, 因此有0),cov(=ηξ, 因为相互独立的随机变量一定不相关.30. (ξ,η)有联合概率密度22)(21,2122ηξζπ+=+-y x e , 求ζ的概率密度.解: 由联合概率密度看出, ξ与η相互独立服从标准正态分布, 则有 ξ2与η2也相互独立且服从自由度为1的χ2-分布, 即ξ2~χ2(1), η2~χ2(1), 因此ζ=ξ2+η2~χ2(2), 即它的概率密度为⎪⎩⎪⎨⎧<>=-00212x x exζϕ即ζ服从λ=1/2的指数分布.。
概率论及数理统计教程习题(第四章大数定律及中心极限定理)
习题10 (切比雪夫不等式)•填空题1.设随机变量X的数学期望E(X) ,方差D(X) 2,则由切比雪夫不等式,得P(X 3 )2.随机掷6枚骰子,用X表示6枚骰子点数之和,则由切比雪夫不等式,得P(15 X 27)3.若二维随机变量(X,Y)满足,E(X) 2,E(Y) 2,D(X) 1,D(Y) 4,R(X,Y) 0.5,则由切比雪夫不等式,得P(X 丫 6)4.设X1, X2, ,X n,是相互独立、同分布的随机变量序列,且E(X i) 0, D(X i) 一致有n界(i 1,2, ,n,),则lim P( X i n) .ni 1二•选择题1.若随机变量X的数学期望与方差都存在,对 a b,在以下概率中,( )可以由切比雪夫不等式进行取值大小的估计。
①P(a X b);②P(a X E(X)b);③P( a X a);④P(X E(X)b a).12.随机变量X服从指数分布e(),用切比雪夫不等式估计P(X | -) ( )①;②2③4;④-.)1.lim P(nX i 2三•解答题1.已知正常男性成年人的血液里,每毫升中白细胞含量X 是一个随机变量,若 E(X) 7300,D(X ) 7002,利用切比雪夫不等式估计每毫升血液中白细胞含量在5200至9400之间的概率。
2.如果X-X 2, ,X n 是相互独立、同分布的随机变量序列,E(X i )3.设X i ,X 2, ,X n ,是相互独立、同分布的随机变量序列,E(X i 4)存在,且一致有界(i 1,2, ,n,).对任意实数 0,证明D(X i )8 (i 1,2, ,n) •记 XX i , 由切比雪夫不等式估计概率p(X 4).E(X i ) 0,D(X i )•填空题1.若随机变量X 服从正态分布 N(2,4),则P(X 3)P(0 X 4) ________________ ,P(X 1)5.随机变量X 1,X 2相互独立,且都服从标准正态分布,记丫 2 3X 1 4X 2,则丫概率密度f Y (y)_________________ . ________________•选择题6.若随机变量 X 1,X 2 ,,X n 相互独立,且X i ~ N(,2) (i 1 n1,2, ,n),则 D(— X i )n i 1( )①2 ;②n2; ③2/n ;④2/n 2.7.若随机变量 X,Y 相互独立, 且都服从正态分布N(:,2).设X Y ,X Y ,则cov(,)( ).①2 2 ;②1 ;③ 1;④0.X Y8.若随机变量 X,Y 满足 X ~ N(1, 32) , Y ~ N(0, 42) , R(X,Y) 1/2,则 D( ) 3 2( ).④2.11 (特征函数)2.若随机变量X ~ N (2),且 P(X c) P(X c),则 c3.若随机变量X ~ N(2, 2),且P(2 X4) 0.3,则 P(X 0)4.若X 服从正态分布 N ( 2),记 P( k X当 0.9时,k,当 0.95 时,k•解答题1.某种电池的寿命X (单位:h )服从正态分布N(300, 352) . (1)求寿命大于250小时的概率,(2)求x,使寿命在300 x之间的概率不小于092.测量某一目标的距离时,随机误差X ~ N(0, 402)(单位:m)(1)求P(X 30),(2)若作三次独立测量,求至少有一次测量误差的绝对值不超过30米的概率。
《概率论与数理统计》第04章习题解答
第四章 正态分布1、解:(0,1)ZN(1){ 1.24}(1.24)0.8925P Z ∴≤=Φ={1.24 2.37}(2.37)(1.24)0.99110.89250.0986P Z <≤=Φ-Φ==-= {2.37 1.24}( 1.24)( 2.37)(1.24)(2.37)0.89250.99110.0986P Z -<≤-=Φ--Φ-=-Φ+Φ=-+=(2){}0.9147()0.9147 1.37{}0.05261()0.0526()0.9474 1.62P Z a a a P Z b b b b ≤=∴Φ==≥=-Φ=Φ==,,得,,,得2、解:(3,16)XN8343{48}()()(1.25)(0.25)0.89440.59870.295744P X --∴<≤=Φ-Φ=Φ-Φ=-= 5303{05}()()(0.5)(0.75)44(0.5)1(0.75)0.691510.77340.4649P X --<≤=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= 31(25,36){25}0.95442(3,4){}0.95X N C P X C X N C P X C -≤=>≥、()设,试确定,使;()设,试确定,使解:(1)(25,36){25}0.9544X N P X C -≤=,{2525}0.9544P C X C ∴-≤≤+=25252525()()0.954466()()2()10.9544666()0.9772,21266C C C C CC CC +---Φ-Φ=-Φ-Φ=Φ-=Φ=∴==即, (2)(3,4){}0.95XN P X C >≥,331()0.95()0.952231.6450.292C CCC ---Φ≥Φ≥-≥≤-即,,4、解:(1)2(3315,575)XN4390.2533152584.753315{2584.754390.25}()()575575(1.87)( 1.27)(1.87)1(1.27)0.969310.89800.8673P X --∴≤≤=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= (2)27193315{2719}()( 1.04)1(1.04)10.85080.1492575P X -≤=Φ=Φ-=-Φ=-=(25,0.1492)YB ∴4440{4}(0.1492)(10.1492)0.6664ii i i P Y C -=∴≤=-=∑5、解:(6.4,2.3)X N{}{}1()81(1.055)10.85540.14462.3(85}0.17615 6.451(0.923)(0.923)0.82121()2.3P X P X X P X -Φ>-Φ-∴>>======->-Φ-Φ-Φ6、解:(1)2(11.9,(0.2))XN12.311.911.711.9{11.712.3}()()(2)(1)(2)1(1)0.20.20.977210.84130.8185P X --∴<<=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= 设A ={两只电阻器的电阻值都在欧和欧之间} 则2()(0.8185)0.6699P A ==(2)设X , Y 分别是两只电阻器的电阻值,则22(11.9,(0.2))(11.9,(0.2))X N Y N ,,且X , Y 相互独立[]22212.411.9{(12.4)(12.4)}1{12.4}{12.4)}1()0.21(2.5)1(0.9938)0.0124P X Y P X P Y -⎡⎤∴>>=-≤⋅≤=-Φ⎢⎥⎣⎦=-Φ=-=7、一工厂生产的某种元件的寿命X (以小时计)服从均值160μ=,均方差为的正态分布,若要求{120200}0.80P X <<≥,允许最大为多少解:因为2(160,)XN σ由2001601201600.80{120200}()()P X σσ--≤<<=Φ-Φ从而 40402()10.80()0.9σσΦ-≥Φ≥,即,查表得401.282σ≥,故σ≤8、解:(1)2(90,(0.5))XN8990{89}()(2)1(2)10.97720.02280.5P X -∴<=Φ=Φ-=-Φ=-= (2)设2(,(0.5))X N d由808080{80}0.991()0.99()0.99 2.330.50.50.5d d d P X ---≥≥∴-Φ≥Φ≥≥,,,即 从而d ≥ 9、解:22~(150,3),~(100,4)X Y X N Y N 与相互独立,且则(1)2221~(150(100,3)4)(250,5)W X Y N N =+++=()222222~2150100,(2)314(200,52)W X Y N N =+-⨯+-⨯+⨯=-22325~(125,)(125,(2.5))22X Y W N N +== (2)242.6250{242.6}()( 1.48)1(1.48)10.93060.06945P X Y -+<=Φ=Φ-=-Φ=-= 12551255125522212551251255125()1()(2)1(2)2.5 2.522(2)220.97720.0456X Y X Y X Y P P P ⎧+⎫++⎧⎫⎧⎫->=<-+>+⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭--+-=Φ+-Φ=Φ-+-Φ=-Φ=-⨯=10、解:(1)22~(10,(0.2)),~(10.5,(0.2))X N Y N X Y ,且与相互独立22~(0.5,2(0.2))(0.5,(0.282))X Y N N ∴--⨯=-0(0.5){0}()(1.77)0.96160.282P X Y ---<=Φ=Φ=(2)22~(10,(0.2)),~(10.5,)X N Y N X Y σ设,且与相互独立222~(0.5,2(0.2))(0.5,(0.2))X Y N N σ∴--⨯=-+0.90{0}P X Y ≤-<=Φ=Φ由1.28≥,故σ≤11、设某地区女子的身高(以m 计)2(1.63,(0.025))WN ,男子身高(以m 计)2(1.73,(0.05))MN ,设各人身高相互独立。
概率论考题_第四章试题
第四章历年试题一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是( ) A.E (X )=0.5,D (X )=0.5 B.E (X )=0.5,D (X )=0.25 C.E (X )=2,D (X )=4D.E (X )=2,D (X )=22.设随机变量X 与Y 相互独立,且X ~N (1,4),Y ~N (0,1),令Z=X -Y ,则D (Z )=( )A.1B.3C.5D.63.已知D (X )=4,D (Y )=25,Cov (X ,Y )=4,则ρXY =()A.0.004B.0.04C.0.4D.44.设X ,Y 是任意随机变量,C 为常数,则下列各式中正确的是( ) A .D (X+Y )=D (X )+D (Y ) B .D (X+C )=D (X )+C C .D (X-Y )=D (X )-D (Y ) D .D (X-C )=D (X ) 5.设随机变量X 的分布函数为F(x)=⎪⎪⎩⎪⎪⎨⎧≥<≤-<;4,1;4212;2,0x x ,x x 则E (X )=( )A .31B .21 C .23 D .36.设随机变量X 与Y 相互独立,且X~B (36,61),Y~B (12,31),则D (X-Y+1)=( )A .34B .37 C .323 D .326 7.设随机变量X 服从参数为2的指数分布,则下列各项中正确的是( ) A .E (X )=0.5,D (X )=0.25 B .E (X )=2,D (X )=2 C .E (X )=0.5,D (X )=0.5 D .E (X )=2,D (X )=48.设随机变量X 服从参数为3的泊松分布,Y~B (8,31),且X ,Y 相互独立,则D (X-3Y-4)=( ) A .-13 B .15 C .19 D .239.已知D (X )=1,D (Y )=25,ρXY =0.4,则D (X-Y )=( )A .6B .22C .30D .4610.设X~B (10,31),则E (X )=( )A.31 B.1 C.310 D. 1011.设X~N (1,23),则下列选项中,不成立...的是( ) A.E (X )=1 B.D (X )=3 C.P (X=1)=0D.P (X<1)=0.512.设E (X ),E (Y ),D (X ),D (Y )及Cov(X,Y )均存在,则D (X-Y )=( ) A .D (X )+D (Y )B .D (X )-D (Y )C .D (X )+D (Y )-2Cov(X,Y )D .D (X )-D (Y )+2Cov(X,Y )13.设随机变量X ~B (10,21),Y ~N (2,10),又E (XY )=14,则X 与Y 的相关系数=XY ρ( )A .-0.8B .-0.16C .0.16D .0.814.已知随机变量X 的分布律为,且E (X )=1,则常数x =( ) A .2B .4C .6D .815.已知随机变量X 服从参数为2的指数分布,则随机变量X 的期望为( )A .-21 B .0 C .21 D .216.设随机变量X 和Y 相互独立,且)4,3(~N X ,)9,2(~N Y ,则~3Y X Z -=( ) A .)21,7(N B .)27,7(N C .)45,7(N D .)45,11(N17.设X~B(10,31), 则=)X (E )X (D ( )A.31B.32C.1D.31018.已知随机变量X 的分布函数为F(x)=⎩⎨⎧>--.0;0x e 1x 2其它则X 的均值和方差分别为( )A.E(X)=2, D(X)=4B.E(X)=4, D(x)=2C.E(X)=41,D(X)=21 D.E(X)=21, D(X)=4119.设二维随机变量(则E (XY )=( )20.已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为( ) A .-2 B .0 C .21D .221. 设随机变量X 与Y 相互独立,X 服从参数为2的指数分布,Y ~B (6,21),则E(X-Y)=( ) A .25- B .21 C .2D .5 22.设二维随机变量(X ,Y )的协方差Cov(X ,Y )=61,且D (X )=4,D (Y )=9,则X 与Y 的相关系数XY ρ为( ) A .2161 B .361 C .61 D .1二、填空题(本大题共15小题,每空2分,共30分) 请在每小题的空格中填上正确答案。
概率论与数理统计第4章例题
则=)(X E DA. 0.96B. 0.3C. 1.4D. 2.6 2.的概率密度为设随机变量X ⎩⎨⎧≤≤=其它102)(x xx f ,=)(X E 则 C2.A 1.B 32.C3.D3.设随机变量X ,其概率密度为 ()1101010x x f x xx +-≤≤⎧⎪=-<<⎨⎪⎩其它,求()E X . 解()()()()011011E Xx fx dx x x dx x x dx +∞-∞-==++-⎰⎰⎰=04. 设连续型随机变量X 的分布函数为30,0(),011,1x F x x x x <⎧⎪=≤≤⎨⎪>⎩求()E X解()23010x x f x ⎧≤≤=⎨⎩其它()13334E X x dx ==⎰5.设随机变量X 的分布列为(1) 试计算常数a ; (2)求随机变量()21-=X Y 的期望. 解、(1)由14126131=++++a a,得121=a(2)随机变量Y 的所有可能取值4,1,41,0,Y的分布律为所以()=Y E 2441方差部分1.方差的计算公式为C A.22)(EX EXDX -= B. 22)(EX EX DX -= C. 2)(EX EX DX -=D. EX EX DX -=22.某牌号手表日走时误差()()X E X ,D X ,求.解 010*******=⨯+⨯+⨯-=...)()(X E2010********222....)()(=⨯+⨯+⨯-=X E 20.)(=x D3. 设随机变量)(~x f X =⎩⎨⎧≤≤其它102x Ax ,求: )(),(X D X E . 解⎰==101,12A Axdx 32210=⋅=⎰xdx x EX2121022=⋅=⎰xdx x EX181)(22=-=EX EX DX4. 设随机变量)(~x f X =⎩⎨⎧≤≤其它20x kx ,求: )(),(X D X E .解2/1,12⎰==k kxdx342120=⋅=⎰xdx x EX2212022=⋅=⎰xdx x EX9/2)(22=-=EX EXDX5.设随机变量X f(x)x x ≤≤⎧=⎨⎩201的概率密度为0其它, 求E(X),D(X). 解()E X x dx =⎰1202= 32 ()E X x dx ==⎰123122, D (X )=1186.设随机变量X 的概率密度为,,020,121)(⎪⎩⎪⎨⎧≤≤+-=其它x x x f求),(X E 数学期望)(X D 方差. 解:,32)21()(22=+-=⎰dx x x X E ,32)21()(20332=+-=⎰dx x x X E 92)()()(22=-=X E X E X D7.设相互独立的随机变量X 和Y ,方差分别为4和2,则)(Y X D +=BA .2 B. 6 C. 1 D. 128.两个相互独立的随机变量X 和Y,D(X)=4,D(Y)=2,则D(3X+2Y)=DA .8 B. 16 C. 28 D. 449.=+==)2(,3)(,6)(,Y X D Y D X D Y X 则独立与设随机变量 C9.A 15.B 27.C 21.D10.设两个相互独立的随机变量X 和Y 的方差各为4和2,则3X-2Y 的方差为DA. 8B. 16C. 28D. 44 11.=+==)34(,100)5(,4)2(2X D X E X E 则已知____________. 256, 12.=+==)13(,8)4(,20)2(2X D X E X E 求设__________________54常见分布1.某电话交换台在时间[0,t]内接到的电话呼唤次数服从参数为5的泊松分布, 则在[0,t]内接到的平均呼唤次数为 A A. 5 B. 25 C. 0.2 D. 0.252.设随机变量X 服从泊松分布()P λ,则()D X =BA. 2λB.λC.12λD.1λ3.设随机变量X 服从泊松分布(3)P ,则()D X =BA. 6B. 3C. 1D. 134.设随机变量X 服从参数为λ 的泊松分布,则(12)D X +=B A .2λ B .4λ C .12λ+ D .14λ+5.设随机变量X ~(,)B n p ,且().,().,E X D X ==04032则,n p 的值为A A. n ,p .==202 B. n ,p .==401 C. n ,p .==40001 D. n ,p .==200026.设随机变量X ~(,)B n p ,且().,().,E X D X ==24144则,n p 的值为A A. n ,p .==604 B. n ,p .==406 C. n ,p .==803 D. n ,p .==4067.设一次试验成功的概率为p ,进行100次独立重复试验,试验成功的次数为X ,(1)求D(X). (2)p 为多大时,D(X)最大.解 (1)() D X 100p (1-p)X =服从二项分布,(2)()()()122211100120022p dD X d D Xp p p dpdp==-==<=时方差最大8.设X 是一个随机变量,其概率密度为()1,;0,.a x b f x b a⎧≤≤⎪=-⎨⎪ ⎩其他则()E X =2b a +9.=-)34(),9,3(~,]6,2[Y X E N Y X 则上的均匀分布服从区间设随机变量7,11.=+)32(,]2,0[Y X E Y X 则上的均匀分布均服从区间与设随机变量__512.设顾客在某银行的窗口等待服务的时间X (以分为单位)服从参数为1/5 指数分布,则顾客等待服务的平均时间 DA. 0.25B. 25C. 0.2 D . 513.设23),(~-=X Z e X λ,则=)(Z E 231--λ14.已知随机变量X 的数学期望为E(X),标准差为σ(X)>0,设随机变量()()X X E X X *σ-=,则E(*X )=__________ 015.设随机变量X ~N(-1,5),Y ~N(1,2),且X 与Y 相互独立,则D(X +Y)= D A. 2 B. 5 C. 3 D. 716.设X 服从正态分布,其密度函数为()()21x f x--=,则()D X =______1/217.设随机变量X ~()2,1σN ,若EX 2=1,则σ=CA. 1B. 2C. 0D. 318.设随机变量()~0,1X N ,则()2E X =___________ 1 19.已知连续随机变量X 的概率密度为()()2112x x ϕ--=,则D (X )为AA .1 B. 2 C. 0.5 D. 0.2520.设随机变量X ~N(-1,4),Y ~N(2,6),且X 与Y 相互独立,则D(X +Y)= A A.10 B. 4 C. 6 D. 021.设随机变量(1,2),(0,3)X N Y N ~~,,X Y 相互独立,则X Y + ~CA. (),N 111B. (),N 11C. (),N 15D. (),N 111 22.设随机变量X ~()2,1σN ,若()2X E =2,则σ=__________ 123. 设()22,2~N X ,12--=X Y ,则 Y 服从的分布为AA. )16,5(-NB. )15,5(-NC. )16,4(-ND. )15,4(-N24.设随机变量(0,2),(1,3)X N Y N ~~,,X Y 相互独立,则2X Y + ~CA. (),N 15B. (),N 11C. (),N 111D. (),N 111 25.=-)34(),9,3(~,]6,2[Y X E N Y X 则上的均匀分布服从区间设随机变量726.设~(5,9)X N , 则 =)(X D _______ 9 27.设()22,2~N X ,121-=X Y ,则 Y服从的分布为 CA. )2,1(NB. )4,2(NC. )1,0(ND. )2,0(N 28.=+)32(,]2,0[Y X E Y X 则上的均匀分布均服从区间与设随机变量_____.529.设随机变量Y X ,相互独立,)1,0(~),2,1(~N Y N X求随机变量Y X Z -=概率密度函数. 解、由题意, 服从正态分布Y X Z -=,3)()(;1)()(=-==-=Y X D Z D Y X E Z E 又6)1(261)(--=z ez f Z π的概率密度函数所以30.设随机变量Y X ,相互独立,)1,0(~),1,0(~N Y N X求随机变量Y X Z +=概率密度函数. 解: 由题意, 服从正态分布Y X Z +=2)()(,0)()(=+==+=Y X D Z D Y X E Z E 又4221)(zez f Z -=π的概率密度函数所以。
概率论与数理统计第四章大数定理与中心极限定理习题(含答案)
其中 为标准正态分布函数.
3.设 , ,其中 、 为常数,且 ,则 ( ).
; ;
;
4.设某地区成年男子的身高 ,现从该地区随机选出 名男子,则这 名男子身高平均值的方差为( ).
; ; ; .
二、填空题
1.已知离散型随机变量X服从参数为 的泊松分布,利用切比雪夫不等式估计概率
.
2.已知随机变量X存在数学期望 和方差 ,且数学期望 , ,利用切比雪夫不等式估计概率 .
; ; ; .
解:C
二、填空题
1.已知离散型随机变量X服从参数为 的泊松分布,利用切比雪夫不等式估计概率
.
解:由 知,
5.已知随机变量X存在数学期望 和方差 ,且数学期望 , ,利用切比雪夫不等式估计概率 .
解:
6.已知随机变量X的方差为4,则由切比雪夫不等式估计概率 .
解:
7.伯努利(Bernoulli)大数定理表明:当试验次数 很大时,随机事件 在这 次试验中发生的频率 与随机事件 的概率 有较大偏差的可能性很.
解:小。
三、计算题
1.投掷一枚均匀硬币1000次,试利用切比雪夫不等式估计出现正面次数在450次~550次之间的概率.
解:
2.已知连续型随机变量X服从区间 的均匀分布,试利用切比雪夫不等式估计事件 发生的概率.
解:
3.设随机变量 和 的数学期望分别是 和 ,方差分别是 和 ,而相关系数为 .
⑴ 求 及 ;
3.已知随机变量X的方差为4,则由切比雪夫不等式估计概率 .
4.伯努利(Bernoulli)大数定理表明:当试验次数 很大时,随机事件 在这 次试验中发生的频率 与随机事件 的概率 有较大偏差的可能性很.
《概率论与数理统计》习题及答案第四章
·34·《概率论与数理统计》习题及答案第四章1.一个袋子中装有四个球,它们上面分别标有数字1,2,2,3,今从袋中任取一球后不放回,再从袋中任取一球,以,X Y 分别表示第一次,第二次取出的球上的标号,求(,)X Y 的分布列.解(,)X Y的分布列为12311106121112666113126其中(1,1)(1)(1|1)P X Y P X P Y X (1,2)(1)(2|P XYP X P Y X 121436余者类推。
2.将一枚硬币连掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值,试写出(,)X Y 的分布列及边缘分布列。
解一枚硬币连掷三次相当于三重贝努里试验,故1~(3,).2X B 331()(),0,1,2,32kP Xk C k,于是(,)X Y 的分布列和边缘分布为XY·35·012333610088811230088813318888jip p 其中(0,1)(0)(1|0)P X Y P X P Y X ,13313(1,1)(1)(1|1)()128P XYP XP YXC ,余者类推。
3.设(,)X Y 的概率密度为1(6),02,24,(,)8,.x y x y f x y 其它又(1){(,)|1,3}D x y x y;(2){(,)|3}Dx y xy。
求{(,)}P X Y D 解(1)1321{(,)}(6)8P x y D xy d xd x y1194368228;(2)1321{(,)}(6)8xP X Y D x y d x d y112113(1)[(3)4]82x x d xx d x524.4.设(,)X Y 的概率密度为22222(),,(,),.C Rxy xyR f x y 其他求(1)系数C ;(2)(,)X Y 落在圆222()xyr rR 内的概率.解(1)22222232001()RxyRCRxy d xd y C R Cr d rdYX xx+y=3422y·36·333233R R C RC,33CR.(2)设222{(,)|}Dx y x yr ,所求概率为2222233{(,)}()xyrP X Y D R xy d x d yR322323232133r r r R rRRR.5.已知随机变量X 和Y 的联合概率密度为4,1,01(,)0,.x y xyf x y 其它求X 和Y 的联合分布函数.解1设(,)X Y 的分布函数为(,)F x y ,则(,)(,)xyF x y f u v d u d v01001000,00,4,1,01,4,01,1,4,1,01,1,1, 1.xyxyxy uv du d v xyu yd u d y x y xvd xd v x y xy 或22220,00,,01,01,,01,1,,1,01,1,1,1.x yx y x y x xy yx y xy或解2由联合密度可见,,X Y 独立,边缘密度分别为2,1,()0,;X x xf x 其他2,01,()0,.Y y yf y 其它边缘分布函数分别为(),()X Y F x F y ,则·37·20,0,()(),01,1, 1.xX X x F x f u d u x x x 20,0,()(),01,1,1.yY Xy F y fv d v y y y设(,)X Y 的分布函数为(,)F x y ,则22220,00,,01,01(,)()(),01,1,,1,01,1,1,1.X Y x y x y x y F x y F x F y x xy y x y x y或6.设二维随机变量(,)X Y 在区域:01D x,||y x 内服从均匀分布,求边缘概率密度。
《概率论与数理统计》第4章作业题
补充作业
设 X 的方差为2.5, 试估计 P{ | X- E(X) | 7.5 } 的值.
解
利用切比雪夫不等式
P{| X E( X ) | 7.5} 2 7.5 1 22.5 0.0444.
2.5
第四章
第四章
Z 2 ~ N (80, 1525) , Z1 ~ N (2080, 652) ,
P{X Y } 0.9793, X Y ~ N (1360, 1525) , P{X Y 1400} 1 P{X Y 1400}
1400 1360 1 Φ 1525
X~N(720,302),Y~N(640,252), 求Z1=2X+Y, Z2=X-Y
的分布,并求概率P{X>Y},P{X+Y>1400}.
第四章
由数学期望的性质知,
1 E(Y) E(2X1 - X 2 3X 3 - X 4 ) 2
1 2E(X1 ) - E(X) 2 3E(X 3 ) - E(X 4 ) 2 1 2 1 - 2 3 3 - 4 7 2 又因为 X1 , X 2 , X3 , X 4 , 相互独立,则由方差的性质知 1 D(Y) D(2X1 - X 2 3X 3 - X 4 ) 4D(X1 ) D(X2 ) 2 1 9D(X3 ) D(X4 ) 37.25 4
12(b a)
x
3
|
b a
12
(b 2 ab a 2 )
第四章
4-22 (1)设随机变量X1, X2, X3, X4 相互独立,
且有E(Xi)=i,D(Xi)=5-i,i=1,2,3,4. 设Y=
概率论与数理统计 第四章
【分析】
E(X )
=
1
,
D( X
)
=
1 2
,所以
1
=
1 2
,解得
=
4。
( ) ( ) 4、设离散型随机变量 X 的分布律为 P
X = 2k
=2 3k
,
k = 1, 2,
,则 E X
========。
( ) ( ) 【分析】 E
X
+
= xk p xk
k =1
=
+
2k
k =1
2 3k
=
2
+ k =1
2 3
k
= 2 2 3 = 4 1−2 3
5、设 X、Y 是两个相互独立且均服从正态分布 N (0, 1 ) 的随机变量,则随机变量 X − Y 2
的数学期望 E( X − Y ) = = = = = = = = = 。
【分析】因为 X、Y 是两个相互独立且均服从正态分布 N (0, 1 ) , 2
3、设随机变量 X
的概率密度为
(
x)
=
ax2
+
bx
+
c,
0,
0 x 1,已知 EX 其他
= 0.5,
DX = 0.15 ,则关于系数 a,b,c 的正确选项为(= A= = ) A、 a=12,b= −12,c=3 = = = = = = = = B、 a=12,b=12,c=3 = = = C、 a=-12,b=12,c=3= = = = = = = = = D、 a=-12,b= −12,c=3
k =0
k=0 k !
(完整版)概率论第四章答案
习题4-11. 设随机变量X求()E X ;E (2-3 X );2()E X ;2(35)E X +.解 由定义和数学期望的性质知2.03.023.004.0)2()(-=⨯+⨯+⨯-=X E ; (23)23()23(0.2) 2.6E X E X -=-=-⨯-=; 8.23.023.004.0)2()(2222=⨯+⨯+⨯-=X E ; 4.1358.235)(3)53(22=+⨯=+=+X E X E . 2. 设随机变量X 的概率密度为,0,()0,0.xe xf x x -⎧>⎪=⎨⎪⎩≤求Xe Z X Y 22-==和的数学期望.解()(2)2()22x E Y E X E X x x ∞-====⎰e d ,2201()()3Xx x E Z E ee e dx ∞---==⋅=⎰. 3. 游客乘电梯从底层到电视塔顶观光, 电梯于每个整点的第5分钟、第25分钟和第55分钟从底层起行. 假设一游客在早八点的第X 分钟到达底层侯梯处, 且X 在区间[0, 60]上服从均匀分布. 求该游客等候电梯时间的数学期望. 解已知X 在[0,60]上服从均匀分布, 其概率密度为1,060,()600,.x f x =⎧⎪⎨⎪⎩≤≤其它记Y 为游客等候电梯的时间,则5,05,25,525,()55,2555,65,5560.X X X X Y g X X X X X -<-<==-<-<⎧⎪⎪⎨⎪⎪⎩≤≤≤≤因此, 6001()[()]()()()60E Y E g X g x f x dx g x dx ∞-∞===⎰⎰()5255560525551(5)(25)(55)(65)60x dx x dx x dx x dx =-+-+-+-⎰⎰⎰⎰=11.67(分钟)..14. 某保险公司规定, 如果在一年内顾客的投保事件A 发生, 该公司就赔偿顾客a 元. 若一年内事件A 发生的概率为p , 为使该公司受益的期望值等于a 的10%, 该公司应该要求顾客交多少保险费?解 设保险公司要求顾客交保费c 元. 引入随机变量⎩⎨⎧=.A ,0,A 1不发生事件发生事件,X 则{1},{0}1P X p P X p ====-. 保险公司的受益值1,,0.c a X Y c X -=⎧=⎨=⎩, 于是 ()(){1}{0}E Y c a P X c P X ap c =-⨯=+⨯==-+. 据题意有10%ap c a -+=⨯, 因此应要求顾客角保费(0.1)c p a =+.习题4-21. 选择题(1) 已知(1,(3))E D X X =-= 则2[3(2)]()E X-=.(A) 9. (B) 6. (C) 30. (D) 36. 解22[3(2)]3(44)E X E X X -=-+23[()4()4]E X E X =-+23{()[()]4()4}D X E X E X =+-+ 3(3144)36=⨯+++=.可见,应选(D).(2) 设~(,),(6,( 3.6))B n p E D X X X ==, 则有( ).(A)10, 0.6n p ==. (B) 20, 0.3n p ==. (C) 15, 0.4n p ==. (D) 12, 0.5n p ==.解 因为~(,),B n p X 所以E (X )=n p,D (X )=np (1-p ), 得到np =6, np (1-p )=3.6 . 解之,n=15 , p =0.4 . 可见,应选(C).(3) 设X 与Y 相互独立,且都服从2(,)N μσ, 则有( ).(A) ()()()E X Y E X E Y -=+. (B) ()2E X Y μ-=.(C)()()()D X Y D X D Y -=-. (D) 2()2D X Y σ-=.解 注意到0)()()(=-=-Y E X E Y XE .由于X 与Y 相互独立,所以22)()()(σ=+=-Y D X D Y X D . 选(D).(4) 在下列结论中, 错误的是( ).(A) 若~(,),().X B n p E X np =则(B) 若()~1,1X U -,则()0D X =. (C) 若X 服从泊松分布, 则()()D X E X =.(D) 若2~(,),X N μσ 则~(0,1)X N μσ-.解)1,1(~-U X , 则3112212)()(22==-=a b X D . 选(B). 2. 已知X , Y 独立, E (X )= E (Y )=2, E (X 2)= E (Y 2)=5, 求E (3X -2Y ),D (3X -2Y ).解 由数学期望和方差的性质有E (3X -2Y )= 3E (X )-2 E (Y )=3×2-2×2=2,(32)9()4()D X Y D X D Y -=+})]([)({4})]([)({92222Y E Y E X E X E -⨯+-⨯=13)45(4)45(9=-⨯+-⨯=.3. 设随机变量X 1, X 2, X 3相互独立, 其中X 1服从区间[0, 6]上的均匀分布,22~0,2X N (), 3~3X P (), 记12323Y X X X =-+, 求E (Y )和D (Y ) .解 由题设知21122(60)()3,()3,()0,()4,12E X D X E X D X -=====3321111(),()39E X D X λλ====.由期望的性质可得123123()(23)()2()3()13203 4.3E Y E X X X E X E X E X =-+=-+=-⨯+⨯=又123,,X X X 相互独立, 所以123123()(23)()4()9()1344920.9D Y D X X X D X D X D X =-+=++=+⨯+⨯=4. 设两个随机变量X 和Y 相互独立, 且都服从均值为0, 方差为12的正态分布, 求||X Y -的的期望和方差.解 记UX Y =-. 由于11~(0,),~(0,)22X N Y N , 所以()()()0,E U E X E Y =-= ()()()1D U D X D Y =+=.由此~(0,1)U N . 进而2222220 (||)(||)||x x xE X Y E U x dx xe dx e+∞---+∞+∞-∞-====⎰2222(||)()()[()]101E U E U D U E U==+=+=.故而2222 (||)(||)(||)[(||)]11D X Y D UE U E Uπ-==-=-=-.5. 设随机变量]2,1[~-UX, 随机变量⎪⎩⎪⎨⎧<-=>=.0,1,0,0,0,1XXXY求期望()E Y和方差)(YD.解因为X的概率密度为1,12,()30,.Xxf x-=⎧⎪⎨⎪⎩≤≤其它于是Y的分布率为00--11{1}{0}31()d d3XP Y P X f x x x∞=-=<===⎰⎰,{0}{0}0P Y P X====,+2002{1}{0}31()d d3XP Y P X f x x x∞==>===⎰⎰.因此121()1001333E Y=-⨯+⨯+⨯=,222212()(1)001133E Y=-⨯+⨯+⨯=.故有2218()()[()]199D YE Y E Y=-=-=.6. 设随机变量U在区间[-2, 2]上服从均匀分布, 随机变量1,1,1, 1.UXU--=>-⎧⎨⎩若≤若1,1,1, 1.UYU-=>⎧⎨⎩若≤若求E(X+Y), D(X+Y).解(1) 随机变量(X, Y)的可能取值为(-1,-1),(-1,1),(1,-1),(1,1).{1,1}{P X Y P U =-=-=≤1,U -≤-1-211}{1}41d 4P U x =-==⋅⎰≤, {1,1}{P X Y P U =-==≤1,U -1}0>=, {1,1}{1P X Y P U ==-=>-,U ≤1111}21d 4x -==⋅⎰, 211{1,1}{1,1}41d 4P X Y P U U x ===>->==⋅⎰.于是得X 和Y 的联合密度分布为(2) Y X +和)(Y X +的概率分布分别为由此可见22()044E X Y +=-+=;2()[()]2D X Y E X Y +=+=.习题4-31. 选择题(1) 在下列结论中, ( )不是随机变量X 与Y 不相关的充分必要条件(A) E (XY )=E (X )E (Y ). (B) D (X +Y )=D (X )+D (Y ). (C) Cov(X ,Y )=0. (D) X 与 Y 相互独立.解 X 与 Y 相互独立是随机变量X 与Y 不相关的充分条件,而非必要条件. 选(D).(2) 设随机变量X 和Y 都服从正态分布, 且它们不相关, 则下列结论中不正确的是( ).(A) X 与Y 一定独立. (B) (X , Y )服从二维正态分布. (C) X 与Y 未必独立. (D) X +Y 服从一维正态分布.解 对于正态分布不相关和独立是等价的. 选(A).(3) 设(X , Y )服从二元正态分布, 则下列说法中错误的是( ).(A) (X , Y )的边缘分布仍然是正态分布.(B) X 与Y 相互独立等价于X 与Y 不相关. (C) (X , Y )是二维连续型随机变量.(D)由(X , Y )的边缘分布可完全确定(X , Y )的联合分布. 解 仅仅由(X , Y )的边缘分布不能完全确定(X , Y )的联合分布. 选(D)2 设D (X )=4, D (Y )=6, ρXY =0.6, 求D (3X -2Y ) .解(32)9()4()12Cov(,)D X Y D X D Y X Y -=+-)()(126449Y D X D XY ⨯⨯-⨯+⨯=ρ727.24626.0122436≈⨯⨯⨯-+=.3. 设随机变量X , Y 的相关系数为5.0, ,0)()(==Y E X E 22()()2E X E Y ==,求2[()]E XY +.解222[()]()2()()42[Cov(,)()()]E X Y E X E XY E Y X Y E X E Y +=++=++42420.526.ρ=+=+⨯⨯=4. 设随机变量(X , Y )若E (XY )=0.8, 求常数a ,b 解 首先由∑∑∞=∞==111i j ijp得4.0=+b a . 其次由0.8()100.420110.2210.22E XY a b b ==⨯⨯+⨯⨯+⨯⨯+⨯⨯=+ 得3.0=b . 进而1.0=a . 由此可得边缘分布律于是 , . 故 Cov(,)()()()0.8 1.40.50.1X Y E XY E X E Y =-=-⨯=.5. 已知随机变量(,)~(0.5,4;0.1,9;0)X Y N , Z =2X -Y , 试求方差D (Z ), 协方差Cov(,)X Z , 相关系数ρXZ .解 由于X ,Y 的相关系数为零, 所以X 和Y 相互独立(因X 和Y 服从正态分布). 因此25944)()(4)2()(=+⨯=+=-=Y D X D Y X D Z D ,Cov(,)Cov(,2)2Cov(,)Cov(,)2()08X Z X X Y X X X Y D X =-=-=-=.因此80.825XZ ρ===⨯. 6. 设随机变量(X , Y )服从二维正态分布: 2~(1,3)X N , 2~(0,4)Y N ; X 与Y 的相关系数1,232XYX YZ ρ=-=+. 求: (1) E (Z ), D (Z ); (2) X 与Z 的相关系数ρXZ ; (3)问X 与Z 是否相互独立?为什么?解 (1) 由于)3,1(~2N X , )4,0(~2N Y , 所以16)(,0)(,9)(,1)(====Y D Y E X D X E ,而1Cov(,)3462XY X Y ρ==-⨯⨯=-.因此 31021131)(21)(31)23()(=⨯+⨯=+=+=Y E X E Y X E Z E ,1111()()()()2Cov(,)329432X Y D Z D D X D Y X Y =+=++111916Cov(,)943X Y =⨯+⨯+3)6(3141=-⨯++=.(2) 由于1111Cov(,)Cov(,)()Cov(,)9(6)0,323232XY X Z X D X X Y =+=+=⨯+⨯-= 所以0XZ ρ==.(3) 由0=XZ ρ知X 与Z 不相关, 又X 与Z 均服从正态分布, 故知X 与Z 相互独立.7.证明: 对随机变量(X , Y ), E (XY )=E (X )E (Y )或者D (X ±Y )=D (X )+D (Y )的充要条件是X与Y 不相关.证 首先我们来证明)()()(Y E X E XY E =和()()()D X Y D X D Y ±=+是等价的.事实上, 注意到()()()2Cov(,)D X Y D X D Y X Y ±=+±.因此()()()D X Y D X D Y ±=+Cov(,)0()()()X Y E XY E X E Y ⇔=⇔=.其次证明必要性. 假设E (XY )=E (X )E (Y ), 则Cov(,)()()()0X Y E XY E X E Y =-=.进而0XYρ==, 即X 与Y 不相关.最后证明充分性. 假设X 与Y 不相关, 即0=XYρ, 则Cov(,)0X Y =. 由此知)()()(Y E X E XY E =.总习题四1. 设X 和Y 是相互独立且服从同一分布的两个随机变量, 已知X 的分布律为1{},1,2,33P X i i ===. 又设max{,},min{,}U X Y V X Y ==.(1) 写出二维随机变量(U , V )的分布律; (2) 求()E U .解 (1) 下面实际计算一下{1,3}P UV ==.注意到max{,},min{,}U X Y V X Y ==, 因此{1,3}{1,3}{3,1}P U V P X Y P X Y =====+=={1}{3}{3}{1}P X P Y P X P Y ===+==9231313131=⨯+⨯=.(2) 由(,)U V 的分布律可得关于U 的边缘分布律所以13522()1239999E U =⨯+⨯+⨯=. 2. 从学校乘汽车到火车站的途中有3个交通岗. 假设在各个交通岗遇到红灯的事件是相互独立的, 并且概率是25. 设X 为途中遇到红灯的次数, 求随机变量X 的分布律、分布函数和数学期望.解 令X 表示途中遇到红灯的次数, 由题设知2~(3,)XB . 即X 的分布律为从而3127543686(){}01231251251251255k E X kP X k ====⨯+⨯+⨯+⨯=∑. 3. 设随机变量),(Y X 的概率密度为212,01,(,)0,.y y x f x y ⎧⎪=⎨⎪⎩≤≤≤其它求22(),(),(),()E X E Y E XY E X Y +.解 112404()(,)1245xE X xf x y dxdy dx x y dy x dx ∞∞-∞-∞==⋅==⎰⎰⎰⎰⎰. 11240003()(,)1235xE X yf x y dxdy dx y y dy x dx ∞∞-∞-∞==⋅==⎰⎰⎰⎰⎰.112500031()(,)12362x E XY xyf x y dxdy dx xy y dy x dx ∞∞-∞-∞==⋅===⎰⎰⎰⎰⎰.122222220()()(,)()12xE X Y x y f x y dxdy dx x y y dy ∞∞-∞-∞+=+=+⋅⎰⎰⎰⎰155012423216(4)5653015x x dx =+=+==⎰. 4. 设随机变量(X ,Y )的概率密度为1sin(),0,0,222(,)0,.≤≤≤≤其它ππx y x y f x y ⎧+⎪=⎨⎪⎩求E (X ),D (X ),E (Y ),D (Y ),E (XY )和 Cov(X ,Y ).解22001()(,)sin()24E X xf x y dxdy x x y dxdy πππ+∞+∞-∞-∞==+=⎰⎰⎰⎰.22222200()(,)1sin() 2.282E X x f x y dxdyx x y dxdy ππππ+∞+∞-∞-∞==+=+-⎰⎰⎰⎰于是有2216)]([)()(222-+=-=ππX E X E X D . 利用对称性,有2216)(,4)(2-+==πππY D Y E .又()(,)E XY xyf x y dxdy +∞+∞-∞-∞=⎰⎰22001sin()2xy x y dxdy ππ=+⎰⎰220022001sin()21[sin cos cos sin ]2xdx y x y dyxdx y x y x y dyππππ=+=+⎰⎰⎰⎰12-=π.所以协方差2Cov(,)()()()1216X Y E XY E X E Y ππ=-=--.5. 设随机变量X 与Y 独立, 同服从正态分布1(0,)2N , 求(1)();()E X Y D X Y --;(2) (max{,});(min{,})E X Y E X Y .解 (1) 记Y X -=ξ.由于)21,0(~),21,0(~N Y N X ,所以,0)()()(=-=Y E X E E ξ 1)()()(=+=Y D X D D ξ.由此)1,0(~N ξ. 所以2222(||)(||)||x x E X Y E x dx xedx ξ+∞+∞---∞-==⎰22x e+∞-==101)]([)()()|(|2222=+=+==ξξξξE D E E .故而ππξξξ2121|)](|[)|(||)(||)(|222-=⎪⎪⎭⎫ ⎝⎛-=-==-E E D Y X D .(2) 注意到2||)(),max(Y X Y X Y X -++=, 2||),min(Y X Y X Y X --+=.所以ππ21221|]}[|)()({21)],[max(==-++=Y X E Y E X E Y X E ,ππ21221|]}[|)()({21)],[min(-=-=--+=Y X E Y E X E Y X E .6. 设随机变量),(Y X 的联合概率密度为,02,02,8(,)0,.x yx y f x y +⎧⎪=⎨⎪⎩≤≤≤≤其它求: E (X ), E (Y ), Cov(X ,Y ), ρXY , D (X+Y ).解 注意到),(y x f 只在区域2≤≤0,2≤≤0:y x G 上不为零, 所以()(,)8Gx yE X xf x y dxdy x x y ∞∞-∞-∞+==⎰⎰⎰⎰d d222000117()(1)846dx x x y dy x x dx =+=+=⎰⎰⎰,22()(,)E Xx f x y dxdy ∞∞-∞-∞=⎰⎰222232000115()()843dx x x y dy x x dx =+=+=⎰⎰⎰, 因而 36116735)]([)()(2222=-=-=X E X E X D .又()(,)E XY xyf x y dxdy ∞∞-∞-∞=⎰⎰22220001144()()8433dx xy x y dy x x dx =+=+=⎰⎰⎰. 由对称性知2275()(),()()63E Y E X E Y E X ====, 3611)()(==X D Y D . 这样,4491Cov(,)()()()33636X Y E XY E X E Y =-=-=-, 111XY ρ==-,5()()()2Cov(,)9D X Y D X D Y X Y +=++=.7. 设A , B 为随机事件, 且111(),(|),(|)432P A P B A P A B ===, 令 10A X A =⎧⎨⎩,发生,,不发生, 10B Y B =⎧⎨⎩,发生,,不发生.求: (1) 二维随机变量(X , Y )的概率分布; (2) X 与Y 的相关系数XY ρ.解 由1()(|)3()P AB P B A P A ==得1111()()33412P AB P A ==⨯=, 进而由1(|)2P A B = ()()P AB P B =得1()2()6P B P AB ==. 在此基础上可以求得(1)1{1,1}()12P X Y P AB ====,111{0,1}()()()61212P X Y P AB P B P AB ====-=-=,111{1,0}()()()4126P X Y P AB P A P AB ====-=-=,{0,0}()1()1[()()()]P X Y P AB P A B P A P B P AB ====-=-+-U 11121[]46123=-+-=.故(X , Y )的概率分布为(2) 由(1)因此211(),(),44E X E X ==22113()()[()]41616D XE X E X =-=-=, 22211115(),(),()()[()]6663636E Y E Y D Y E Y E Y ===-=-=. 又由(X , Y )的分布律可得21111()00011011312121212E XY =⨯⨯+⨯⨯+⨯⨯+⨯⨯=. 故11115XYρ-⨯===.。
概率论第四章
一、选择题1.设二维随机变量(X,Y)满足E(XY)=EXEY,则X与Y(A)相关(B)不相关(C)独立(D)不独立2. 将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于(A)-1 (B)0 (C)(D)13. 对于任意二维随机变量X和Y,与命题“X和Y不相关”不等价的是(A)EXY=EXEY (B)Cov(X,Y)=0(C)DXY=DXDY (D)D(X+Y)=DX+DY4. 假设随机变量X在区间【-1,1】上均匀分布,则U=arcsinX和V=arccosX的相关函数等于(A)-1 (B)0 (C)0.5 (D)15. 设随机变量X1,X2,…,Xn(n>1)独立同分布,且方差>0,记=,则~与的相关系数为(A)-1 (B)0 (C)(D)16. 设随机变量X的方差存在,并且满足不等式P||X-EX|3|,则一定有(A)DX=2 (B)P||X-EX|3|(C)DX2 (D)P||X-EX|3|7. 设随机变量,,…,相互独立同分布,其密度函数为偶函数,且D=1,…,n,则对任意,根据切比雪夫不等式直接可得(A)P{||<} (B)P{||<}(C)P{||<} (D)P{||<}二、填空题1. 两名射手个向自己的靶射击,直到有一次命中时该射手才(立即)停止射击,如果第i名射手每次命中概率为(0<,i=1,2),则两射手均停止射击时脱靶(未命中)总数的数学期望为。
2. 将长度为L德邦随机折成两段,则较短段的数学期望为。
3. 设随机变量X和Y的相关系数为0.9,若Z=2X-1,则Y与Z的相关系数为。
4. 设随机变量X与Y的相关系数为0.5,EX=EY=0,E=E=2,则E= 。
5. 设随机变量X与Y相互独立,且X~B(5,0.8),Y~N(1,1),则P{0<X+Y<10}三、计算题与应用题1. 设某网络服务器首次失效时间服从E(λ),先随机购得4台,求下列事件的概率:(I)事件A:至少有一台的寿命(首次失效时间)等于此类服务器的平均寿命;(II)事件B:有且仅有一台寿命小于此类服务器期望寿命。
概率论与数理统计第四章测试题
第4章随机变量得数字特征一、选择题1.设两个相互独立得随机变量X与Y得方差分别为4与2,则随机变量3X-2Y得方差就是(A) 8 (B) 16 (C) 28 (D) 442.若随机变量与得协方差,则以下结论正确得就是( )(A) 与相互独立(B) D(X+Y)=DX+DY(C) D(X-Y)=DX-DY (D) D(XY)=DXDY3.设随机变量与相互独立,且,则( )(A) (B)(C) (D)4.设二维随机变量(X,Y)服从二维正态分布,则随机变量ξ=X+Y与η=X-Y不相关得充要条件为(A) EX=EY (B) E(X2)- (EX)2= E(Y2)- (EY)2(C) E(X2)= E(Y2) (D) E(X2)+(EX)2= E(Y2)+ (EY)25.设、就是两个相互独立得随机变量且都服从于,则得数学期望( ) (A) (B) 0 (C) (D)6.设、就是相互独立且在上服从于均匀分布得随机变量,则( )(A) (B) (C) (D)7.设随机变量与得方差存在且不等于0,则D(X+Y)=DX+DY就是X与Y( )(A) 不相关得充分条件,但不就是必要条件(B) 独立得充分条件,但不就是必要条件(C) 不相关得充分必要条件(D) 独立得充分必要条件8.若离散型随机变量得分布列为,则( )(A) 2 (B) 0 (C) ln2 (D) 不存在9.将一枚硬币重复掷n次,以X与Y分别表示正面向上与反面向上得次数,则X与Y得相关系数等于(A)-1 (B)0 (C) (D)110.设随机变量X与Y独立同分布,具有方差>0,则随机变量U=X+Y与V=X-Y(A)独立(B) 不独立(C) 相关(D) 不相关11.随机变量X得方差存在,且E(X)=μ,则对于任意常数C,必有。
(A)E(X-C)2=E(X2)-C2(B)E(X-C)2=E(X-μ)2(C)E(X-C)2< E(X-μ)2(D)E(X-C)2≥ E(X-μ)212.设X~U(a,b), E(X)=3, D(X)=, 则P(1<X<3) =( )(A)0 (B) (C) (D)二、填空题1.设表示10次独立重复射击命中目标得次数,每次命中目标得概率为0、4,则2.设一次试验成功得概率为,进行了100次独立重复试验,当时,成功得次数得标准差得值最大,其最大值为3.设随机变量X在区间[-1,2]上服从均匀分布,随机变量,则得方差DY=4.,,,则,5.设随机变量服从于参数为得泊松分布,且已知,则6.设(X,Y)得概率分布为:则=。
概率论与数学统计第四章(中心极限定理)练习题
1、一仪器同时受到108个噪声信号X i ,设它们是相互独立的且都服从[0,4]上的均匀分布.求噪声信号总量1081i i X X ==>∑ 228的概率. 解:1081216i i EX EX===∑,1081144i i DX DX ===∑. 由中心极限定理 228216{228}11(1)0.1612P X -⎛⎫>≈-Φ=-Φ= ⎪⎝⎭. 2、已知红黄两种番茄杂交的第二代结红果的植株与结黄果的植株的比率为1:4.现种植杂交种10000株,试求结黄果植株介于1960到2040之间的概率.(用)(x Φ表示)解: 设结黄果植株为X ,1600545110000,20005110000=⨯⨯==⨯=DX EX 2040200019602000(19602040)2(1)14040P X --⎛⎫⎛⎫<<≈Φ-Φ=Φ- ⎪ ⎪⎝⎭⎝⎭3、 某镇年满18岁的居民中20%受过高等教育。
今从中有放回地抽取1600人的随机样本,求样本中受过高等教育的人在19%和21%之间的概率。
((1)0.8413Φ=)解: 设X 表示抽取的1600人中受过高等教育的人数,则~(1600,0.2)X B ,2320,DX=16EX = 则:{0.1916000.211600}P X ⨯≤≤⨯ 304320320336320{}161612X P ---=≤<320{11}(1)(1)16X P -=-≤<≈Φ-Φ-2(1)1=Φ- 20.841310.6826=⨯-=。
4、某商店负责供应某地区10000人所需商品,其中一商品在一段时间每人需要一件的概率为0.8,假定在这一段时间内各人购买与否彼此无关,问商店应预备多少件这种商品,才能以97.5%的概率保证不会脱销?((1.96)0.975Φ=.假定该商品在某一段时间内每人最多可以买一件)。
解: 设应预备n 件,并设X 表示某地区10000人需要件数,则X~B (10000,0.8),由中心极限定理得8000{}0.97540n P X n -⎛⎫≤≈Φ≥⎪⎝⎭ 由8000 1.96,8078.440n n -≥≥,即应预备8079件。
概率论与数理统计第四章习题及答案
概率论与数理统计习题 第四章 随机变量的数字特征习题4-1 某产品的次品率为,检验员每天检验 4次,每次随机地取 10件产品进行检验,如发现其中的次品数多于1个,就去调整设备,以 X 表示一天中调整设备的次数,试求E(X)(设诸产品是否为次品是相互独立的)解:设表示一次抽检的 10件产品的次品数为1 —=.从而E ( X )=np =4X =的数学期望不存在. 解:3j—)不绝对收敛,由数学期望的定义知, X 的数学期望不存在.J求 E(X), E(X 2), E(3X 25).解 E (X )=(-2) +0 +2习题4-3 设随机变量 X 的分布律为P =P (调整设备)=P ( E >1)=1 — P ( E W 1)= 1 -[P ( E =0)+ P ( E =1)]查二项分布表因此X 表示一天调整设备的次数时4P ( X =1)= XX =, P ( X =2)=1 4P ( X =3)= XX =, P ( X =4)=X 〜巳4,. 4XX =2 4XX =P ( X =0)=XX习题4-2 设随机变量 X 的分布律为P X23j ,1,2,,说明X由于.13j (1)j 勺一P(X j(1)j1-)-,而级数2 j 1 j• 1 3j- 1)j1- P(X ( 1)j由关于随机变量函数的数学期望的定理,知E(X2)=(-2) 2小2 小2+0 +2E(3X2+5)=[32 2 2(-2) +5] +[3 0 +5] +[3 2+5]如利用数学期望的性质, 则有E(3X2+5)=3E(X2)+5=3 +5=E(X)2 E(X ) E(3X22 0.4 020.3 0.30.2,习题求(1)Y22(2) 0.4 225) 3E(X ) 54-4 设随机变量2X; (2)Y e 2X0.3 2.8,13.4X的概率密度为f(X)的数学期望.(I)E( Y) E(2X) 2xf(x)dx2( 0dx2( xe 0 e x dx) 2e(II )E(Y) E(e 2X) 2x x .e e dx3x dx习题4-5 设(X,Y)的概率密度为f(x,y)求 E(X), E(Y), E(XY), E(X2 Y2).解各数学期望均可按照E[g(X, Y)]在有限区域G:{(x,y)|0E(X)E(Y) 0,xe3xx 0,x 0dx)12y2, 0,y x 1, 其它g(x, y) f (x, y)dxdy 计算。
概率论数理统计第四章同济
3.泊松分布 若随机变量 X 的概率函数为
P X k k e , k 0,1, 2, , ; 0 ,
k!
那么称 X 服从参数为 的泊松分布。
记作 X 。
(1)由无穷级数知识知 k e 1
k0 k ! (2)实例:放射性物质在某个时间段内放射
的粒子数服从泊松分布;公用电话亭在 某段时间内打电话的人数服从泊松分布。 (3)泊松分布的概率函数值可以查表得到, 见课本第 148 至 150 页。
PX
a
a
f
x dx
,
P
X
b
b
f
x dx
单击添加大标 题
例1.
证明:函数
x
x c
e
x2 2c
0
x0 x0
是一个概率密度函数( c 为大于零的常数)。
例2. 某城市每天的耗电率 X 服从下列密度
函数所定的分布:
f
x
12x 1
x2
0
0 x 1 其余
那么称 X 服从参数为 n 、 p 的二项分布。
记作 X Bn, p ,其中 0 p 1。
(1)在 n 次重复独立试验中,事件 A 发生的 次数就服从二项分布。
(2)利用二项展开定理不难验证:
n
Cnk pk 1 p nk 1。
k 0
(3)0-1 分布是二项分布在 n 取 1 时的特例。 (4)在某些教科书中,会列有二项分布的概
集合a1, a2, , an 上的(离散型)均匀分布:
X a1 a2
an
Pr 1 1
1
nn
n
古典概型即可用服从均匀分布的随机变量来描 述。
例 4.设 X ,Y 是随机变量,且 P X 0,Y 0 3 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设以 k 个人为一组时, 组内每人的血化验的次数为 X , 则 X 为一随机变量, 且其分布律为
X
1 k
k 1 k
k
pk
q
1 qk
1 k 1 k E ( X ) q (1 )(1 q ) k k 1 k 1 q . k
k
X
pk
1 k
k 1 k
k
q
1 qk
1 N 个人平均需化验的次数 N (1 q ). 为 k 1 k 因此, 只要选择 k 使 1 q < 1, 则 N 个人平均
2 2 1 2 1 0 0
0
1
二、重要概率分布的期望方差
1. 两点分布
已知随机变量 X 的分布律为 则有 E ( X ) 1 p 0 q p ,
X
1
0
p
p
1 p
2 2 2 D( X ) E ( X 2 ) [ E ( X )]2 1 p 0 (1 p) p pq.
例2 某人有10万元现金,想投资于某项目,预估成 功的机会为 30%,可得利润8万元 , 失败的机会为 70%,将损失 2 万元.若存入银行, 同期间的利率 为5% ,问是否作此项投资? 解 设 X 为投资利润,则
X p
8 0.3
2 0.7
E ( X ) 8 0.3 2 0.7 1(万元), 存入银行的利息: 10 5% 0.5(万元),
又
2 E (Q )
y
y
dy
dE (Q) n x 得 x θ ln( ). (m n)e n mn dx 2 d ( m n)
n 因此, 当 x θ ln( ) 时, E (Q ) 取得最大值. mn
dx θ e x θ < 0,
例1 设随机变量 X 具有概率密度
0 0.3
0.1 0.1 0.1 E (Y ), E (Y X ) , E[( X Y )2 ].
解 X 的分布律为 X 1 p 0.4
得
2
0.2
3
0.4
E ( X ) 1 0.4 2 0.2 3 0.4 2.
Y 的分布律为
0.3 0.4 0.3 得 E (Y ) 1 0.3 0 0.4 1 0.3 0. 由于
需化验的次数 < N .
k
1 当 p 固定时, 选取 k 使得 L 1 q k 小于1且取到最小值 ,
k
即得到最好的分组方法.
例5
按规定, 某车站每天 8 : 00 ~ 9 : 00, 9 : 00 ~
10 : 00 都恰有一辆客车到站, 但到站的时刻是随机 的 , 且两者到站的时间相互独立.其规律为
15 .
0.1 0.1 0.1 0.1 0.3 0.1 ( X ,Y ) (1,1) (1,0) (1,1) ( 2,1) ( 2,1) ( 3,0) ( 3,1) 4 1 1 4 0 9 9 ( X Y )2
得 E[( X Y )2 ] 4 0.3 1 0.2 0 0.1 9 0.4 5.
例1 甲、 乙两个射手, 他们射击的分布律分别为 甲射手 乙射手
击中环数 概率 8 9 10 击中环数 概率 8 9 10
0.3 0.1 0.6
0.2 0.5 0.3
试问哪个射手技术较好? 解 设甲、乙射手击中的环数分别为 X 1 , X 2 . E ( X 1 ) 8 0.3 9 0.1 10 0.6 9.3(环), E ( X 2 ) 8 0.2 9 0.5 10 0.3 9.1(环), 故甲射手的技术比较好.
试说明当 p较小时 , 选取 适当的 k , 按第二种方法 可以减少化验的次数.并说明 k 取什么值时最适宜 .
解 由于血液呈阳性反应的概率为 p,
所以血液呈阴性反应的概率为 q 1 p,
因而 k 个人的混合血呈阴性反应的概率为 q k , k 个人的混合血呈阳性反应的概率为 1 q k .
n
n
p)
nk
kn! p k (1 p)n k k 0 k !( n k )!
n
np( n 1)! p k 1 (1 p)( n1)( k 1) k 1 ( k 1)![( n 1) ( k 1)]!
(n 1)! k 1 ( n 1) ( k 1) np p (1 p) k 1 ( k 1(k 1)![(n 1)C nk 1 1)]!
的血混合在一起进行化验 , 如果这混合血液呈阴 性反应 , 就说明 k 个人的血都呈阴性反应, 这样, 这 k 个人的血就只需验一次. 若呈阳性, 则再对这 k 个人的血液分别进行化验 , 这样, k 个人的血共 最多需化验 k 1 次. 假设每个人化验呈 阳性的概率为 p , 且这些人的化验反应是相互独立的
1 x , 1 x < 0, f ( x ) 1 x , 0 x < 1, 0, 其他. 求 D( X ).
解 E ( X ) x (1 x ) d x x (1 x ) d x 0,
1 E ( X ) x (1 x ) d x x (1 x ) d x , 1 0 6 于是 D( X ) E ( X 2 ) [ E ( X )]2 1 02 1 . 6 6
pk 0.0952
0.0779 0.7408 得 E (Y ) 2732.15, 即平均一台家用电器收费 2732.15 元 .
0.0861
在一个人数很多的团体中普查某种疾病, 为 例4 此要抽验 N 个人的血, 可以用两种方法进行.
(i) 将每个人的血分别去化验 , 这就需化验 N 次. (ii) 按 k 个人一组进行分组, 把从 k 个人抽来
20
20
E ( X 1 ) E ( X 2 ) E ( X 10 )
9 20 10 1 8.784(次). 10
例8 设 ( X , Y ) 的分布律为 1 Y X
1
2
3
0 1 求 : E ( X ),
0.2 0.1
0.1 0
解 P{ X 1} 1 e x 10 d x 1 e0.1 0.0952,
1 0
10 2 1 P{1 < X 2} e x 10 d x e0.1 e0.2 0.0861, 1 10 31 P{2 < X 3} e x 10 d x e0.2 e0.3 0.0779, 2 10 1 P{ X 3} e x 10 d x e0.3 0.7408. 3 10 因而一台收费Y 的分布律为 Y 1500 2000 2500 3000
n
np[ p (1 p )]n1 np. np
E ( X 2 ) E[ X ( X 1) X ] E[ X ( X 1)] E ( X )
(n 2)! n(n 1) p pk 2 (1 p)( n2) (k 2) np k 2 (n k )!(k 2)! 2 n 2 ( n2 n) p 2 np. n( n 1) p [ p (1 p )] np
p
Y p
1
0
1
0.2
0.1
0.1
0.1
0.1 0.3
0.1
( X ,Y ) (1,1) (1,0) (1,1) ( 2,1) ( 2,1) ( 3,0) ( 3,1) Y X 1 1 1 2 1 2 0 1 3 0
Y 1 1 1 1 . 0.2 0 . 0.1 1 . 0.1 . 0.1 . 0.1 0 . 0.3 . 0.1 E X 2 2 3 1
X
pk
10 1 6
30 3 6
50 2 6
候车时间的数学期望为 1 3 2 E ( X ) 10 30 50 33.33(分). 6 6 6
(ii) X 的分布律为
X
pk
10 3 6
30 2 6
50 1 1 6 6
70 1 3 6 6
90 1 2 6 6
候车时间的数学期望为
解 设生产 x 件, 则获利 Q 是 x 的函数 : mY n( x Y ), 若 Y < x , Q Q( x ) 若 Y x. mx ,
E (Q ) QfY ( y ) d y
x
0
0 [my n( x y )]e dy x mxe x 1 1 (m n) (m n)e nx
试求顾客等待服务的平均时间?
解
E( X ) x f ( x)d x
0
1 x 5 x e可得到服务.
例7
一机场班车载有 20 位旅客自机场开出, 旅
客有 10 个车站可以下车. 如到达一个车站没有旅 客下车就不停车, 以 X 表示停车的次数, 求 E ( X ) ( 设每位旅客在各个车站下车是等可能的, 并设各 旅客是否下车相互独立) . 解 引入随机变量 X i , 0, 在第 i 站没有人下车, Xi i 1,2,,10. 1, 在第 i 站有人下车 , 则 X X 1 X 2 X 10 .
故应选择投资.
例3 某商店对某种家用电器的销售采用先使用后 付款的方式 , 记使用寿命为X (以年计), 规定 : X 1, 一台付款 1500 元; 1 < X 2, 一台付款 2000 元;
2 < X 3 , 一台付款 2500 元; X 3, 一台付款 3000 元 .