第10章时间序列分析
统计学时间序列分析
统计学时间序列分析时间序列是经济学、金融学和其他社会科学领域中的一个重要分析对象。
通过对时间序列数据的分析,我们可以揭示数据之间的关系、趋势和周期性,从而为决策提供有力的支持和预测。
统计学时间序列分析是一种应用数学方法的工具,用于对时间序列数据进行建模和预测。
一、时间序列的基本概念时间序列是按时间顺序排列的一系列观测值的集合。
在时间序列分析中,我们关注数据之间的内在关系,而忽略其他因素的影响。
时间序列数据通常具有以下特征:1. 趋势性:时间序列数据的长期变化趋势。
2. 季节性:时间序列数据在一年内固定时间段内的重复模式。
3. 循环性:时间序列数据中存在的多重周期性波动。
4. 随机性:时间序列数据中的不规则、无法预测的波动。
二、时间序列分析的方法在进行时间序列分析时,我们可以采用以下方法来揭示数据的内在规律:1. 描述性统计分析:通过计算数据的均值、方差、相关系数等指标,对数据的整体特征进行描述。
2. 图表分析:通过绘制折线图、柱状图等图表,展示时间序列数据的变化趋势和周期性。
3. 分解模型:将时间序列数据分解为趋势项、季节性项和残差项,以揭示数据的内在结构。
4. 平滑法:通过移动平均法、指数平滑法等方法,消除时间序列数据的随机波动,从而揭示趋势和季节性成分。
5. 自回归移动平均模型(ARIMA):ARIMA模型是一种常用的时间序列分析方法,可以对数据进行预测和建模。
它综合考虑了自回归、移动平均和差分的影响因素。
三、时间序列分析的应用领域时间序列分析广泛应用于经济学、金融学、市场调研等领域,具体应用包括:1. 经济预测:通过对经济数据进行时间序列分析,可以预测未来的经济发展趋势,为政府决策提供参考。
2. 股票市场分析:时间序列分析可以帮助分析师预测股票市场的走势,制定投资策略。
3. 需求预测:通过对销售数据进行时间序列分析,可以预测产品的需求量,为企业的生产和供应链管理提供指导。
4. 天气预测:通过对气象数据进行时间序列分析,可以预测未来的天气状况,为农业、旅游等行业提供参考。
统计学-第十章 时间序列分析
1
38(a1)
2
42(a2)
3
39(a3)
4
37(a4)
5
41(a5)
解: a 38 42 39 37 41 39.(4 台/天) 11111
三、平均发展水平
3.由绝对数时间序列计算的序时平均数
(2)由时点序列计算序时平均数
②间隔不相等的连续的时点数列
a af
季度在某地区销售量的走势 250 200
图。
150
100
那么,如何预测该品牌 50
空调2018年各个季度在该地 0
区的销售量呢?
单位:销售量(百台)
3
第一节 时间序列概述
一、时间序列概述
1.定义:将表明社会经济现象在不同时间发展 变化的某同一指标数值,按时间先后顺序排列所形 成的序列。(规模和水平)
③序列中每个指标的数值,通 常通过连续不断的登记取得。
由反映某种现象在一定 时点(瞬间)上发展状况的总量 指标所构成的绝对数动态序列所 处的数量水平。其中时点序列无 时点长度;两个相邻时点间的时 间距离称为时点间隔。也可为 日、周、旬、季、年等。
①序列中各个指标的 数值不可以直接相加;
②序列中指标数值的大小与其 时间间隔长短没有直接联系;
表9.3 我国普通高校毕业生数(时期序列)
年份 1912-1948 1978 1995 2000 2004 2014 2016
毕业生数(万人) 21.08 16.5 80.5 95 239.1 669.4 756
10
第二节 时间序列分析的基本原 理 一、时间序列分析的意义
:以时间序列为依据,对影响动态序列变 动过程的主要因素及其相互关系进行分解与综合, 以认识社会经济现象发展变量的规律性,借以鉴别 过去、预测未来的分析研究工作。
第章时间序列预测习题答案
第10章时间序列预测从时间序列图可以看出,国家财政用于农业的支出额大体上呈指数上升趋势。
(2)年平均增长率为:。
(3)。
10.2 下表是1981年—2000年我国油彩油菜籽单位面积产量数据(单位:kg / hm2)年份单位面积产量年份单位面积产量1981 1451 1991 12151982 1372 1992 12811983 1168 1993 13091984 1232 1994 12961985 1245 1995 14161986 1200 1996 13671987 1260 1997 14791988 1020 1998 12721989 1095 1999 14691990 1260 2000 1519(1)绘制时间序列图描述其形态。
(2)用5期移动平均法预测2001年的单位面积产量。
(3)采用指数平滑法,分别用平滑系数a=0.3和a=0.5预测2001年的单位面积产量,分析预测误差,说明用哪一个平滑系数预测更合适?详细答案:(1)时间序列图如下:(2)2001年的预测值为:|(3)由Excel输出的指数平滑预测值如下表:2001年a=0.3时的预测值为:a=0.5时的预测值为:比较误差平方可知,a=0.5更合适。
10.3 下面是一家旅馆过去18个月的营业额数据月份营业额(万元)月份营业额(万元)1 295 10 4732 283 11 4703 322 12 4814 355 13 4495 286 14 5446 379 15 6017 381 16 5878 431 17 6449 424 18 660(1)用3期移动平均法预测第19个月的营业额。
(2)采用指数平滑法,分别用平滑系数a=0.3、a=0.4和a=0.5预测各月的营业额,分析预测误差,说明用哪一个平滑系数预测更合适?(3)建立一个趋势方程预测各月的营业额,计算出估计标准误差。
详细答案:(1)第19个月的3期移动平均预测值为:(2)月份营业额预测a=0.3误差平方预测a=0.4误差平方预测a=0.5误差平方1 2952 283 295.0 144.0 295.0 144.0 295.0 144.03 322 291.4 936.4 290.2 1011.2 289.0 1089.04 355 300.6 2961.5 302.9 2712.3 305.5 2450.35 286 316.9 955.2 323.8 1425.2 330.3 1958.16 379 307.6 5093.1 308.7 4949.0 308.1 5023.37 381 329.0 2699.4 336.8 1954.5 343.6 1401.68 431 344.6 7459.6 354.5 5856.2 362.3 4722.39 424 370.5 2857.8 385.1 1514.4 396.6 748.510 473 386.6 7468.6 400.7 5234.4 410.3 3928.711 470 412.5 3305.6 429.6 1632.9 441.7 803.112 481 429.8 2626.2 445.8 1242.3 455.8 633.513 449 445.1 15.0 459.9 117.8 468.4 376.914 544 446.3 9547.4 455.5 7830.2 458.7 7274.815 601 475.6 15724.5 490.9 12120.5 501.4 9929.416 587 513.2 5443.2 534.9 2709.8 551.2 1283.317 644 535.4 11803.7 555.8 7785.2 569.1 5611.718 660 567.9 8473.4 591.1 4752.7 606.5 2857.5合计——87514.7—62992.5—50236由Excel输出的指数平滑预测值如下表:a=0.3时的预测值:,误差均方=87514.7。
应用统计硕士(MAS)考试过关必做习题集(含名校考研真题详解)统计学(第10章 时间序列分析和预测)
第10章 时间序列分析和预测一、单项选择题 1.已知某公司近5年经营收入的增长速度分别为6%,8.2%,9.3%,8%和10.5%,则该公司近5年的年平均增长速度为( )。
[浙江工商大学2017研]A .(6%×8.2%×9.3%×8%×10.5%)/5B .(106%×108.2%×109.3%×108%×110.5%)/5-1C .(6%×8.2%×9.3%×8%×10.5%)1/5D .(106%×108.2%×109.3%×108%×110.5%)1/5-1【答案】D【解析】平均增长速度也称平均增长率,它是时间序列中逐期环比值(也称环比发展速度)的几何平均数减1后的结果,其计算公式为:111n n YG Y -=⨯⨯-=-所以该商品价格的年平均增长率为:1v =-2.如果时间数列逐期增长量大体相等,则宜拟合( )。
[浙江工商大学2017研]A .直线模型B.抛物线模型C.曲线模型D.众数指数曲线模型【答案】A【解析】A项,逐期增长量大体相等,说明关于时间t的曲线的斜率大体相等,应拟合直线模型;B项,抛物线模型适合于变化率逐渐减小再逐渐增大的时间序列;C项,指数曲线模型适合于呈指数增长的时间序列;D项,除直线模型意外的其他模型都属于曲线模型,包括抛物线模型和指数曲线模型。
3.定基发展速度和环比发展速度的关系是()。
[浙江工商大学2017研]A.相邻两个定基发展速度之商=其相应的环比发展速度B.相邻两个定基发展速度之积=其相应的环比发展速度C.相邻两个定基发展速度之差=其相应的环比发展速度D.相邻两个定基发展速度之和=其相应的环比发展速度【答案】A【解析】定基发展速度是以固定一个时期为基点计算发展速度,环比增长速度是以上一个时期为基点计算发展速度,因此A项正确。
第10章-时间序列分析
67885
•1991~1996年平均国内生产总值:
•时期数列
•2023/5/3
•【例】
年份
•19941998年中 国能源生产 总量
1994 1995 1996 1997 1998
能源生产总量(万吨标 准煤) 118729 129034 132616 132410 124000
•2023/5/3
❖2.绝对指标时点数列的序时平均数
如:1991—1996年间,我国逐年的GDP,构
成一个时间序列。
记:a1 , a2 , … , an ( n项 ) 或:a0 , a1 , a2 , … , an ( n+1项 )
•2023/5/3
•
时间数列的构成要素:
1. 现象所属的时间;
2. 不同时间的具体指标数值。
•2023/5/3
例如
年底人数
(万 人)
8350 9949 11828 14071 16851 18375
间隔年数 3 2 3 2 2
•间断时点数列(间隔不等)
•2023/5/3
•我国第三产业平均从业人数:
•2023/5/3
•【例】 •某地区1999年社会劳动者人数资料如下
:
•单位:万人
时间 1月1日 5月31日 8月31日 12月31日
•2023/5/3
•定基和环比发展速度相互关系
•2023/5/3
【例】
❖ 某产品外贸进出口量各年环比发展速度资料如下: ❖ 1996年为103.9%,1997年为100.9%, ❖ 1998年为95.5%,1999年为101.6%,2000年为
108%,试计算2000年以1995年为基期的定基发 展速度。 ❖ (109.57%)
第10章时间序列3季节指数法
5
第二节 季节指数预测法
测定季节变动的方法很多,从是否考虑长 期趋势的影响看可分为两种:
一是不考虑长期趋势的影响,根据原始时间序 列直接去测定季节变动;
二是根据剔除长期趋势后的数据测定季节变动。
6
第二节 季节指数预测法
一、季节指数的测算方法
1、按季平均法
某季度季节指数%
定义 历年同季季度平均值 整个时期季度平均值 100%
第一季度季节变差 2189.2 1747.9 441.3 第二季度季节变差 1495.0 1747.9 252.9 第三季度季节变差 1518.8 1747.9 229.1 第四季度季节变差 1786.81747.9 38.9
1504
2230
1530
1525
2285
1510
1579
第四季度 1768 1795 1765 1810 1796
8
第二节 季节指数预测法
表8—2 按季平均法计算表
年份
第一季度
2001
2150
2002
2192
2003
2089
2004
2230
2005 合计 同季平均值 季节指数
2285 10946 2189.2 125.2%
各年同季的季节比率之和
②某季度季节指数
年份数
11
第二节 季节指数预测法
统计学课后答案(第3版)第10章时间序列分析习题答案
第十章 时间序列分析习题答案一、单选1.B ;2.D ;3.B ;4.A ;5.C ;6.D ;7.B ;8.B ;9.C ;10.A 二、多选1.ABCE ;2.ABC ;3.AC ;4.ABE ;5.BD ;6.BD ;7.CDE ;8.BCD ;9.ABD ;10.ABCD 三、计算分析题1、甲分公司平均发展速度=186200=104% 乙分公司平均发展速度=186240=114% 2、7、8、9月平均职工人数分别为:1942196192;1962192200;1902200180=+=+=+ 第三季度月平均职工人数==+++321961922002180193.3≈194(人) 3、=++⨯+⨯+⨯8000600040001.1800005.1600004.14000107%4、第一季度月平均工业总产值==++3630520540563.3(万元)第一季度月职工人数==+++325265125102490510(人) 则:第一季度月平均劳动生产率=105.15103.563=5、解:(1)(2)年序t 平均工资指数(环比)5期移动平均趋势1 112.70% —2 112.60% —3 118.50% 120.80%4 124.80% 122.60%5 135.40% 122.50%6 121.70% 119.52%7 112.10% 114.60%8 103.60% 108.76%9 100.20% 106.00%10 106.20% 105.78%11 107.90% —12 111.00% —各年份移动平均趋势值和原序列如下:移动平均可以消除原序列中的一些随机扰动和短期波动,期数越长,平滑作用越强;移动平均的作用就是消除序列随机和短期影响,从而能够发现序列的趋势。
(3)年份平均工资指数(环比)指数平滑值α=0.3误差平方指数平滑值α=0.5误差平方1 112.70% ————2 112.60% 112.70% 1E-06 112.70% 1E-063 118.50% 112.67% 0.003399 112.65% 0.0034224 124.80% 114.42% 0.010777 115.58% 0.008515 135.40% 117.53% 0.031922 120.19% 0.0231426 121.70% 122.89% 0.000142 127.79% 0.0037137 112.10% 122.54% 0.01089 124.75% 0.0159948 103.60% 119.40% 0.024979 118.42% 0.0219739 100.20% 114.66% 0.020919 111.01% 0.01168910 106.20% 110.32% 0.001701 105.61% 3.53E-0511 107.90% 109.09% 0.000141 105.90% 0.00039912 111.00% 108.73% 0.000515 106.90% 0.00168—109.41% —108.95% —合计 — — 0.105385 — 0.09056从上表数据看,采用平滑系数α=0.5拟合效果好。
第10章时间序列分析指标
第10章时间序列分析指标时间序列分析指标是一种对时间序列数据进行分析和预测的方法。
它可以揭示出时间序列数据中的规律和趋势,并用以预测未来的变化。
时间序列是按时间顺序排列的一系列数据点。
时间序列分析指标可以帮助我们了解时间序列数据的特征和规律。
在金融领域,时间序列分析指标可以应用于股市分析、经济预测等多个方面。
常用的时间序列分析指标包括趋势指标、周期指标、季节性指标和波动指标。
趋势指标是用来分析时间序列数据中的长期趋势的指标。
常见的趋势指标包括移动平均线和线性趋势线。
移动平均线是用来平滑时间序列数据的一种方法,它可以过滤掉噪音和周期性波动,反映出数据的长期趋势。
线性趋势线则是用来表示时间序列数据中的线性关系,可以帮助我们判断数据的上涨或下跌趋势。
周期指标是用来分析时间序列数据中的周期性变化的指标。
周期指标可以帮助我们预测未来的周期性变化。
常见的周期指标包括季节性调整指标和周期性调整指标。
季节性调整指标可以消除时间序列数据中的季节性影响,展示出数据的长期趋势。
周期性调整指标则可以帮助我们找到时间序列数据中的周期性变化,以便更好地进行预测。
季节性指标是用来分析时间序列数据中的季节性变化的指标。
季节性指标可以帮助我们了解时间序列数据中的季节性规律,并进行相应的调整和预测。
常见的季节性指标包括季节性分解法和指数平滑法。
季节性分解法可以将时间序列数据拆分成长期趋势、季节性趋势和误差项三个部分,以便更好地进行分析和预测。
指数平滑法则是用来对时间序列数据进行平滑处理和季节性调整的方法。
波动指标是用来分析时间序列数据中的波动性变化的指标。
波动指标可以帮助我们了解时间序列数据的波动情况,以便更好地进行风险控制和预测。
常见的波动指标包括波动率和变异系数。
波动率是用来衡量时间序列数据的波动性的指标,可以帮助我们了解数据的风险程度。
变异系数则是用来衡量时间序列数据的波动性相对于平均水平的变化程度,可以帮助我们比较不同时间序列数据的波动性。
伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第10章 时间序列数据的基本回归分析【圣才出
第10章时间序列数据的基本回归分析10.1复习笔记一、时间序列数据的性质时间序列数据与横截面数据的区别:(1)时间序列数据集是按照时间顺序排列。
(2)时间序列数据与横截面数据被视为随机结果的原因不同。
①横截面数据应该被视为随机结果,因为从总体中抽取不同的样本,通常会得到自变量和因变量的不同取值。
因此,通过不同的随机样本计算出来的OLS估计值通常也有所不同,这就是OLS统计量是随机变量的原因。
②经济时间序列满足作为随机变量是因为其结果无法事先预知,因此可以被视为随机变量。
一个标有时间脚标的随机变量序列被称为一个随机过程或时间序列过程。
搜集到一个时间序列数据集时,便得到该随机过程的一个可能结果或实现。
因为不能让时间倒转重新开始这个过程,所以只能看到一个实现。
如果特定历史条件有所不同,通常会得到这个随机过程的另一种不同的实现,这正是时间序列数据被看成随机变量之结果的原因。
(3)一个时间序列过程的所有可能的实现集,便相当于横截面分析中的总体。
时间序列数据集的样本容量就是所观察变量的时期数。
二、时间序列回归模型的例子1.静态模型假使有两个变量的时间序列数据,并对y t和z t标注相同的时期。
把y和z联系起来的一个静态模型(staticmodel)为:10 1 2 t t t y z u t nββ=++=⋯,,,,“静态模型”的名称来源于正在模型化y 和z 同期关系的事实。
若认为z 在时间t 的一个变化对y 有影响,即1t t y z β∆=∆,那么可以将y 和z 设定为一个静态模型。
一个静态模型的例子是静态菲利普斯曲线。
在一个静态回归模型中也可以有几个解释变量。
2.有限分布滞后模型(1)有限分布滞后模型有限分布滞后模型(finitedistributedlagmodel,FDL)是指一个或多个变量对y 的影响有一定时滞的模型。
考察如下模型:001122t t t t ty z z z u αδδδ--=++++它是一个二阶FDL。
时间序列分析基于r第2版
时间序列分析基于r第2版《时间序列分析基于R第2版》(Time Series Analysis and Its Applications: With R Examples, 2nd Edition)是由Shumway和Stoffer合著的一本经典时间序列分析教材。
该书详细介绍了时间序列分析的理论和实践应用,并使用R语言进行实例演示和编程实现。
以下是《时间序列分析基于R第2版》的主要内容概述:第1章:时间序列分析简介介绍时间序列分析的基本概念和应用领域,并概述本书的内容和使用R语言进行时间序列分析的优势。
第2章:时间序列的基本特性介绍时间序列的基本特性,包括平稳性、自相关性和白噪声等概念,并通过实例演示如何使用R进行时间序列数据的可视化和描述性统计分析。
第3章:时间序列的线性模型介绍时间序列的线性模型,包括自回归模型(AR)、滑动平均模型(MA)和自回归滑动平均模型(ARMA)等,并通过R语言实现模型的参数估计和预测。
第4章:时间序列的谱分析介绍时间序列的谱分析方法,包括周期图和功率谱密度估计等,并通过R语言实现谱分析方法的应用和结果可视化。
第5章:时间序列的非线性模型介绍时间序列的非线性模型,包括ARCH、GARCH和非线性AR模型等,并通过R语言实现模型的参数估计和预测。
第6章:时间序列的状态空间模型介绍时间序列的状态空间模型,包括线性状态空间模型和非线性状态空间模型,并通过R语言实现模型的参数估计和预测。
第7章:多变量时间序列分析介绍多变量时间序列分析的方法,包括向量自回归模型(VAR)、向量误差修正模型(VEC)和协整模型等,并通过R语言实现模型的参数估计和预测。
第8章:季节性和周期性时间序列介绍季节性和周期性时间序列的分析方法,包括季节性自回归移动平均模型(SARMA)和周期性自回归移动平均模型(PARMA)等,并通过R语言实现模型的参数估计和预测。
第9章:时间序列的预测介绍时间序列的预测方法,包括简单指数平滑、Holt线性趋势模型和ARIMA模型等,并通过R语言实现模型的参数估计和预测。
第10节多元时间序列
就可以表示为
Xt
X%t
Xt 1 M
Xt p1
ν Φ1 Φ2 L
0
Ik
0L
M M M O
0
0
0L
Φ p1 0 M Ik
Φp
0
M
Xt 1 Xt 2
M
Zt
0
M
0
Xt
p
0
我们称 VAR(1)过程是稳定的。注意这个条件等价于说 Φ1 的特征值的模小于 1,因
为 Φ1 的特征值是被定义为满足方程 det(Φ1 Ik ) 0 的 的值。对于一般的 VAR( p)
过程,我们可以将它改写成 VAR(1)的形式而利用前面的讨论。确切地,令
X%t
Xt Xt 1
M
,
ν
ν%
MA(1)方程对应着无数个具有
Φ
0 0
0
m
而
Θ
0 0
m
0
的
VARMA(1,1)模型。更
进一步,这些 VARMA(1,1)模型中的每一个总是因果而且可逆的。因此,从一个给定的
MA() 表示来唯一确定 VARMA 模型是不可能总做得到的。
必须提出进一步的限制条件,然而,有关这些问题的详情已经超出了本章的范围。
i0
继续这个过程直到遥远的过去,如果 Φ1 的所有特征值的绝对值都小于 1,我们
可以将此 VAR(1)过程写为
Xt μ Φ1iZti i0
其中 Xt 的均值向量
E(Xt ) μ ν Φ1ν Φ12ν L
由于矩阵 Φ1 的特征值的条件极为重要,如果对任意| z | 1 ,有 det(Ik zΦ1) 0 ,则
元素绝对可加的矩阵{Π j} 使得对于所有的 t ,
第10章时间序列数据的基本回归分析
第10章时间序列数据的基本回归分析时间序列数据是指按时间顺序排列的一系列观测值,具有时间依赖性的特点。
在时间序列数据中,我们通常会面临许多问题,如预测未来的走势、分析变量间的关系等。
回归分析是一种用来建立变量间关系的统计方法,因此在时间序列数据中,同样可以使用回归分析方法来建立变量间的关系模型。
在进行时间序列数据的基本回归分析时,我们首先需要确定一个主要的解释变量(自变量)和一个被解释变量(因变量)。
主要的解释变量用来解释被解释变量的变化,从而确定它们之间的关系。
然后,我们需要对数据进行可视化和统计分析,以了解数据的特征和趋势。
首先,我们可以使用时间序列图来可视化数据的变化趋势。
时间序列图是一种按照时间顺序展示数据的图表,通过观察时间序列图,我们可以判断数据是否存在趋势、季节性或周期性等特征。
如果数据存在明显的趋势,我们可以使用线性回归模型来建立变量间的关系。
如果数据存在明显的季节性或周期性,我们可以使用季节性模型或周期模型来建立变量间的关系。
此外,我们还可以通过自相关函数(ACF)和偏自相关函数(PACF)来判断数据是否存在自相关性。
然后,我们可以使用普通最小二乘法(OLS)来估计回归模型的参数。
OLS是一种通过最小化观测值与模型估计值之间的差异来估计参数的方法。
对于时间序列数据,我们需要进行数据的平稳化处理,以确保模型的有效性。
常见的平稳化方法包括差分法和对数变换法。
通过平稳化处理后,我们可以得到平稳时间序列数据,然后应用OLS方法来估计模型的参数。
最后,我们可以使用统计检验来评估回归模型的拟合程度和显著性。
常见的统计检验包括F检验和t检验。
F检验用来评估模型的整体显著性,而t检验用来评估模型的各个参数的显著性。
如果模型的F检验和t检验显著,则说明回归模型能够很好地解释因变量的变化,并且模型参数是统计显著的。
总结起来,时间序列数据的基本回归分析包括确定主要的解释变量和被解释变量、可视化和统计分析数据、估计回归模型的参数、以及评估模型的拟合程度和显著性。
2015年《统计学》第十章 时间序列分析习题及满分答案
2015年《统计学》第十章时间序列分析习题及满分答案一、单项选择:1.时间数列中,每项指标数值可以相加的是(B )A.绝对数时间数列 B. 时期数列C. 时点数列D.相对数或平均数时间数列2. 下列属于时点数列的是(D)A. 某厂各年工业产值B.某厂各年劳动生产率C.某厂各年生产工人占全部职工的比重D.某厂各年年初职工人数3.发展速度与增长速度的关系是( B )A. 环比增长速度等于定基发展速度-1B. 环比增长速度等于环比发展速度-1C. 定基增长速度的连乘积等于定基发展速度D. 环比增长速度的连乘积等于环比发展速度4.年距增长速度是(C) A. 报告期水平/基期水平 B. (报告期水平—基期水平)/基期水平 C. 年距增长量/去年同期发展水平 D. 环比增长量/前一时期水平5.几何平均法平均发展速度数值的大小(C)A. 不受最初水平和最末水平的影响B. 只受中间各期发展水平的影响C. 只受最初水平和最末水平的影响,不受中间各期发展水平的影响D. 既受最初水平和最末水平的影响,也受中间各期发展水平的影响6.某厂第一季度三个月某种产品的实际产量分别为500件、612件、832件、分别超计划0%、2%和4%,则该厂第一季度平均超额完成计划的百分数为( C ) A. 102% B. 2% C. 2.3% D. 102.3%7.时期数列中的每个指标数值是(B)。
A、每隔一定时间统计一次 B、连续不断统计而取得C、间隔一月统计一次D、定期统计一次8.一般平均数与序时平均数的共同之处是(A)。
A、两者都是反映现象的一般水平 B、都是反映同一总体的一般水平C、共同反映同质总体在不同时间上的一般水平D、都可以消除现象波动的影响9.某企业1997年产值比1990年增长了1倍,比1995年增长了0.5倍,则1995年比1990年增长了( A )。
A、0.33 B、0.5 C、0.75 D、110.假设有如下资料:则该企业一季度平均完成计划为(B)。
时间序列分析课后习题答案
第9章 时间序列分析课后习题答案第10章(1)30× 31.06×21.05= 30×1.3131 = 39.393(万辆)(2117.11%== (3)设按7.4%的增长速度n 年可翻一番 则有 1.07460/302n==所以 n = log2 / log1.074 = 9.71(年)故能提前0.29年达到翻一番的预定目标。
第11章(1)以1987年为基期,2003年与1987年相比该地区社会商品零售额共增长:%86.2313186.213186.31%)8.61(%)2.81(%)101(555==-=-+⨯+⨯+ (2)年平均增长速度为1%)8.61(%)2.81(%)101(15555-+⨯+⨯+=0.0833=8.33%(3) 2004年的社会商品零售额应为509.52)0833.01(307=+⨯(亿元)第12章 (1)发展总速度%12.259%)81(%)101(%)121(343=+⨯+⨯+平均增长速度=%9892.91%12.25910=-(2)8.561%)61(5002=+⨯(亿元)(3)平均数∑====415.142457041j j y y (亿元),2002年一季度的计划任务:625.1495.142%105=⨯(亿元)。
第13章(1)用每股收益与年份序号回归得^0.3650.193t Y t =+。
预测下一年(第11年)的每股收益为488.211193.0365.0ˆ11=⨯+=Y 元(2)时间数列数据表明该公司股票收益逐年增加,趋势方程也表明平均每年增长0.193元。
是一个较为适合的投资方向。
第14章 (1)移动平均法消除季节变动计算表(2)t T t ⨯+=63995.09625.8上表中,其趋势拟合为直线方程t T t ⨯+=63995.09625.8。
根据上表计算的季节比率,按照公式KL t t t S T Y -⋅=计算可得: 2004年第一季度预测值:7723.21097301.1)1763995.09625.8(ˆˆˆ11717=⨯⨯+=⋅=S T Y2004年第二季度预测值: 49725.23147237.1)1863995.09625.8(ˆˆˆ21818=⨯⨯+=⋅=S T Y2004年第三季度预测值: 009.18852641.0)1963995.09625.8(ˆˆˆ31919=⨯⨯+=⋅=S T Y2004年第四季度预测值:6468.19902822.0)2063995.09625.8(ˆˆˆ42020=⨯⨯+=⋅=S T Y平均法计算季节比率表:季节比率的图形如下:(2)用移动平均法分析其长期趋势原时间序列与移动平均的趋势如下图所示:9.2(1)采用线性趋势方程法:tTi0065.70607.460ˆ+=剔除其长期趋势。
关于时间序列分析
关于时间序列分析时间序列分析是一种用于分析时间序列数据的统计方法。
时间序列数据是按照时间顺序排列的观测结果,可以是连续的或离散的。
时间序列分析是一种重要的技术,可以用于很多领域,例如经济学、金融学、气象学等。
它可以揭示时间序列数据的变化规律、趋势和季节性,为预测未来发展趋势提供依据。
时间序列分析的目标是研究时间序列数据的内在结构,以便进行预测和解释。
其核心是确定数据中的趋势、周期和随机成分。
趋势表示时间序列的长期变化趋势,周期表示时间序列的短期变化趋势,随机成分表示时间序列的无规律波动。
时间序列分析包括多种方法和技术,其中最常用的有平滑法和回归分析。
平滑法通过移动平均、指数平滑等方法消除数据中的波动,以便更好地观察趋势。
回归分析则通过建立数学模型,以自变量对因变量的影响程度来解释时间序列数据。
平滑法在时间序列分析中有多种实现方式。
移动平均是一种常见的平滑方法,它通过计算一定时间窗口内的平均值来平滑时间序列数据。
指数平滑是另一种常见的平滑方法,它给予近期数据更大的权重,以反映出时间序列的变化趋势。
回归分析是一种常用的时间序列分析方法。
它通过建立数学模型来描述自变量与因变量之间的关系,并用于预测未来值。
回归分析可以分为线性回归和非线性回归两种。
线性回归假设自变量和因变量之间存在线性关系,而非线性回归则放宽了这一假设。
时间序列分析还包括一些其他技术,例如自相关分析和谱分析。
自相关分析用于分析时间序列数据中的自相关性,即随着时间的推移,观测值之间的关联程度。
谱分析则用于分析时间序列数据中的周期性和频率特征。
时间序列分析在实际应用中具有广泛的价值。
在经济学领域,它可以用于预测股票价格、通货膨胀率等变量的未来走势。
在气象学领域,它可以用于预测气温、降雨量等变量的未来变化。
在金融学领域,它可以用于分析股票价格、汇率等金融指标的波动规律。
总之,时间序列分析是一种重要的统计方法,可以用于分析时间序列数据的变化规律和趋势。
时间序列分析范文
时间序列分析范文
时间序列分析是利用统计学和计算机技术来研究和预测未来时期观测
到的系列观测值的趋势,它是一种重要的风险管理工具,主要用于金融信
息的预测、量化投资、金融市场的异动检测以及过去的趋势推测和预测。
时间序列分析可以帮助企业和个人快速、准确地了解过去的行业动态,预
测未来的发展趋势。
时间序列分析的基本概念可以分为三个层次,宏观部分,定义有关系
统的趋势和变化的综述;微观部分,关注各种因素与变量之间的关系;趋
势部分,注重系统的演化过程,考虑未来变化的方向,可以通过回归模型
等方法来进行实证研究。
ARIMA模型是建立在自回归模型和移动平均模型之上的,自回归模型
可以用来描述和预测时间序列中残差序列的趋势,移动平均模型可以用来
描述和预测时间序列中的反复性,ARIMA模型集合了以上两种模型的优点,使其成为预测时间序列最常用的模型。
ARIMA模型可以在任何时期预测,如短期预测,如一个月内预测,中
期预测,如一年内预测,长期预测。
时间序列分析
时间序列分析时间序列分析是一种统计学方法,用于分析时间序列数据的模式、趋势和周期性。
它可以帮助我们了解随着时间推移,数据如何变化,并预测未来的发展趋势。
本文将介绍时间序列分析的基本概念、常用方法和实际应用。
一、时间序列分析的基本概念时间序列是按照时间顺序排列的一系列数据点。
它可以是连续的,例如每天的股票价格,也可以是离散的,例如每个月的销售量。
时间序列分析旨在通过观察数据中的模式和趋势,揭示数据背后的规律和关系。
二、时间序列分析的常用方法1. 描述统计法描述统计法用于计算数据的统计指标,如平均值、标准差和相关系数。
这些指标可以帮助我们了解数据的分布情况和相关性。
2. 组件分析法组件分析法将时间序列分解为趋势、季节和随机成分。
趋势表示长期的变化趋势,季节表示重复出现的周期性变化,随机成分表示无法通过趋势和季节解释的随机波动。
通过对组成部分的分析,可以更好地理解时间序列的内在规律。
3. 平稳性检验法平稳性是时间序列分析的基本假设之一。
平稳时间序列的统计特性不随时间变化而改变。
平稳性检验可以通过观察时间序列的趋势、自相关图和单位根检验等方法进行。
4. 预测方法时间序列分析的一个重要应用是预测未来的数值。
常用的预测方法包括移动平均法、指数平滑法和ARIMA模型等。
这些方法基于过去的数据,通过建立模型来预测未来的趋势和周期性。
三、时间序列分析的实际应用时间序列分析在各个领域都有广泛的应用。
在金融领域,它可以用于股票价格的预测和风险管理;在经济学领域,它可以用于 GDP 的预测和经济政策制定;在气象学领域,它可以用于天气预报和气候变化研究。
除了上述领域外,时间序列分析还用于交通流量预测、销售预测、生态学研究等。
通过对历史数据的分析,我们可以更好地理解和预测未来的发展趋势,为决策提供依据。
结论时间序列分析是一种强大的工具,可以帮助我们理解时间序列数据中的模式和趋势。
通过对数据的描述统计、组件分析和预测,我们可以揭示数据背后的规律,并用于实际问题的解决。
第十章_时间序列分析法(二)
50=a+6b
解方程得:a =28,b=3.667
= 则直线趋势预测模型为:ŶA 28+3.667 t
根据此方程预测后两年的社会商品零售额为:
= Ŷ12 28+3.667 ×12=72.004(亿元)
= Ŷ13 28+3.667 ×13=75.671(亿元)
市场调查与预测
= Ŷ14 28+3.667 ×14=79.338(亿元)
……
= = Ŷ11 341.99+31.9 ×5 +0.66 ×5 2 518.04 (万台 )
……
对预测模型测算预测误差:
∑ |Yt- Ŷt|
MAE=
n
=22.59/11=2.054 (万台 )
误差很小,模型可用
市场调查与预测
87-27
§11.2 非线性趋势市场预测法
1. 二次曲线趋势市场预测模型
87-8
§11.1 直线趋势市场预测法
应用示例
2. 建立直线趋势预测模型——求出直线方程式中的a、b值
直观法比较简单,也比较节省。但穿过实际观察值点或不穿过散点, 都可以划出很多条直线,以哪条直线作为预测模型,是由预测者的 主管判断而定
若另一位预测者选定(4,43)和(7,53)两点,连成一条直线, 则得到另一个不同的预测模型:
市场调查与预测
87-19
§11.2 非线性趋势市场预测法
观察时间序列变动规律的方法有两种:
图形观察法
计算阶差判断法——通过计算市场现象时间序列实际观察值的 环比增减量(也称阶差),来判断现象变动的规律
一次差接近一个常数
直线趋势模型
二次差接近一个常数
二次曲线模型
三次差接近一个常数
三次曲线模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模型; ➢ 若平稳序列的偏相关系数与自相关系数都是拖尾的,则序列适合ARMA模型;
ARIMA模型
acf(difsales,lag.max=30)
Series difsales
pacf(difsales,lag.max=30)
还可以通过函数as.ts()可以将对象转换成时间序列;通过函数is.ts()可以判断对 象是否为时间序列对象。
ARIMA模型
绘制时间序列图 R软件中,可以使用plot.ts()函数来画出时间序列的时序图。plot.ts()用法同
plot。 根据平稳时间序列的均值和方差都为常数的性质,平稳序列的时序图显示
unitrootTest(x, lags = 1, type = c("nc", "c", "ct"), title = NULL, description = NULL) 其中,输入参数x为观测值序列,lags为用于校正误差项的最大滞后项,
type为单位根的回归类型,返回的参数p值,p值小于0.05表示满足单位根检验。
acf(x, lag.max = NULL,type = c(correlation, covariance, partial), plot = TRUE, na.action = na.fail, demean = TRUE, …) pacf(x, lag.max, plot, na.action, …) acf()函数中,参数x为观测值序列,acf()为观测值序列自相关函数,lag.max为与acf对应 的最大延迟,type为计算acf的形式,默认为correlation。当没有输出,即为acf(Series)时,画 观测值序列的自相关系数图。 pacf()函数中的输入参数与输出参数的含义同acf()函数的类似。在acf()和pacf()中设定 plot=FALSE可以得到自相关和偏自相关的真实值。
Series difsales
ACF -0.2 0.0 0.2 0.4
Partial ACF -0.2 0.0 0.2 0.4
0
5
10
15
20
25
30
Lag
一阶差分之后序列的自相关图
0
5
10
15
20
25Leabharlann 30Lag一阶差分后序列的偏自相关图
一阶差分后自相关图中,ACF值在一阶后迅速跌入置信区间,并且数值徘徊在置信区间 ,没有收敛趋势,显示出拖尾性。偏自相关图 中,PACF值在一阶后迅速跌入置信区间, 并且有向零收敛的趋势,显示出截尾性,所以可以考虑用AR模型拟合1阶差分后的序列, 即对原始序列建立ARIMA(1,1,0)模型。
0
5
10
15
20
25
30
Lag
一阶差分之后序列的自相关图
ARIMA模型
(2)时间序列模型识别定阶 使用 R软件中的acf()和pacf()函数来分别给出时间序列的自相关图和偏自相关图。
可根据自相关图和偏自相关图对时间序列模型进行定阶。
根据自相关图和偏自相关图对时间序列模型进行定阶: ➢ 若平稳序列的偏相关系数是截尾的,而自相关系数是拖尾的,则序列适合AR模
第10章 时间序列分析
2020/4/10
常用时间序列模型
ARIMA模型
时间序列对象 在R软件中,使用时间序列建模前需要先将数据存储到一个时间序列对象中。
我们可以使用函数ts()将数值类型的观测对象存储为时间序列对象。 使用格式:
ts(data = NA, start = 1, end = numeric(), frequency = 1,… ) 其中,data是时间序列观测值对象,必须为数值类型的向量、矩阵或数据框; start是用来指定时间序列观测值对象的第一个时间点,比如2000年1月,则设置 start=c(2000,1);end用来指定时间序列的终止时间点;frequency用来指定数据在 一年中的频数。
该序列值始终在一个常数附近随机波动,而且波动的范围有界;如果有明显的 趋势性或者周期性那它通常不是平稳序列。
销量 / 元 3000 4000
0
5
10 15 20 25 30 35
时间
ARIMA模型
时间序列检验分析 (1)自相关性检验
自相关图中的两条虚线标示置信界限是自相关系数的上下界。如果自相关系迅速衰减落 入置信区间内,就可能是白噪声;如果自相关系数超出置信区间,那么表示存在相关关系, 而且从哪一阶落在置信区间内,就表示自相关的阶数是几阶。 使用格式:
ARIMA模型
原始序列时序图
原始序列的自相关图
时序图显示该序列具有明显的单调递增趋势,可以判断为是非平稳序列;自相关图显示自相 关系数长期大于零,说明序列间具有很强的长期相关性,可以判断为非平稳序列;
ARIMA模型
时间序列检验分析 (2)单位根检验
对时间序列的平稳性检验通常使用单位根检验的方法。在R软件中,单位 根检验使用fUnitRoots包中的unitrootTest()函数可以实现 使用格式:
单位根检验统计量对应的p值显著大于0.05,判断该序 列为非平稳序列(非平稳序列一定不是白噪声序列)。
ARIMA模型
ARIMA建模分析 (1)非平稳时间序列差分
对于非平稳时间序列,首先需要对其进行差分直到得到一个平稳时间 序列。在R软件中,可以使用diff()函数对时间序列进行差分运算。
diff()函数的使用格式:diff(x, lag = 1, differences = 1, ...) 其中,输入参数"x"代表观测值序列;"lag"代表差分运算的步数,缺省值代表一 步差分;" differences"代表差分运算的阶数,缺省值代表一阶差分。 对一阶差分后的序列再次做平稳性判断过程同上。
ARIMA模型
销量残差 / 元 -200 -100 0 100 200 300
ACF -0.2 0.0 0.2 0.4
5
10
15
20
25
30
35
时间
一阶差分之后序列的时序图
Series difsales
结果显示,一阶差分之后的序列的时序
图在均值附近比较平稳的波动、自相关 图有很强的短期相关性、单位根检验p 值小于0.05,所以一阶差分之后的序列 是平稳序列。
BIC (Intercept) test-lag1 test-lag2 test-lag3 test-lag4 test-lag5 error-lag1 error-lag2 error-lag3 error-lag4 error-lag5