2018届高三数学每天一练半小时:第15练 函数中的易错题含答案

合集下载

函数练习题及答案

函数练习题及答案

函数练习题及答案函数练习题及答案函数作为数学中的重要概念,被广泛应用于各个领域。

在数学学习过程中,通过练习题的形式巩固和提高对函数的理解和运用能力是非常有效的方法。

本文将介绍一些常见的函数练习题及其答案,希望能对读者的数学学习有所帮助。

一、函数定义与性质题1. 已知函数f(x) = 2x + 3,求f(4)的值。

解答:将x = 4代入函数表达式中,得到f(4) = 2(4) + 3 = 11。

2. 函数f(x) = x^2 + 2x - 1的定义域是什么?解答:由于函数中存在x的平方项,所以定义域应满足x^2存在的条件,即实数集R。

3. 函数f(x) = 3x^2 - 4x + 1的图像是否对称于y轴?解答:对称于y轴的函数满足f(x) = f(-x)。

将函数中的x替换为-x,得到f(-x) = 3(-x)^2 - 4(-x) + 1 = 3x^2 + 4x + 1。

由于f(x) ≠ f(-x),所以函数的图像不对称于y轴。

二、函数图像与方程题1. 函数f(x) = x^3的图像在坐标系中的形状是什么?解答:函数f(x) = x^3是一个奇函数,其图像关于原点对称。

当x > 0时,f(x) > 0;当x < 0时,f(x) < 0。

因此,函数图像在坐标系中呈现出一种类似"S"形的形状。

2. 已知函数f(x) = x^2 - 4x + 3,求解方程f(x) = 0。

解答:将f(x)置为0,得到x^2 - 4x + 3 = 0。

通过因式分解或者求根公式,可以得到(x - 1)(x - 3) = 0,解得x = 1或x = 3。

三、函数与导数题1. 已知函数f(x) = x^3 - 2x^2 + x,求f'(x)。

解答:对函数f(x)进行求导,得到f'(x) = 3x^2 - 4x + 1。

2. 已知函数f(x) = e^x,求f''(x)。

2018届高三数学每天一练半小时:阶段滚动检测试卷(一)有答案

2018届高三数学每天一练半小时:阶段滚动检测试卷(一)有答案

一、选择题1.如图所示的Venn 图中,阴影部分对应的集合是( )A .A ∩B B .∁U (A ∩B )C .A ∩(∁U B )D .(∁U A )∩B2.命题“若a 2+b 2=0,则a =0且b =0”的逆否命题是( )A .“若a ≠0或b ≠0,则a 2+b 2≠0”B .“若a 2+b 2≠0,则a ≠0或b ≠0”C .“若a =0且b =0,则a 2+b 2≠0”D .“若a 2+b 2≠0,则a ≠0且b ≠0”3.已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知函数f (x )=11-x 2的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∪(∁R N )等于() A .{x |x <1} B .{x |x ≥-1}C .{x |-1<x ≤1}D .{x |-1≤x <1}5.下列各组函数中是同一个函数的是( )①f (x )=-2x 3与g (x )=x -2x ;②f (x )=x 与g (x )=x 2;③f (x )=x 2与g (x )=x 4;④f (x )=x 2-2x -1与g (t )=t 2-2t -1.A .①②B .①③C .③④D .①④6.若a =2-3.1,b =0.53,c =log 3.14,则a ,b ,c 的大小关系是( )A .c <b <aB .b <c <aC .a <c <bD .a <b <c7.设函数f (x )=⎩⎪⎨⎪⎧ 2t x,x <2,log t (x 2-1),x ≥2,且f (2)=1,则f (1)等于( )A .8B .6C .4D .28.给出下列四个函数:①y =x ·sin x ;②y =x ·cos x ;③y =x ·|cos x |;④y =x ·2x.这四个函数的部分图象如下,但顺序被打乱,则按照从左到右的顺序将图象对应的函数序号安排正确的一组是( )A .①④②③B .①④③②C .④①②③D .③④②①9.已知函数f (x )是偶函数且满足f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在[-1,3]上的解集为( )A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-2,-1)∪(0,1) 10.已知命题p :若函数f (x )=x 2+|x -a |是偶函数,则a =0.命题q :∀m ∈(0,+∞),关于x 的方程mx2-2x +1=0有解.在①p ∨q ;②p ∧q ;③(綈p )∧q ;④(綈p )∨(綈q )中为真命题的是( )A .②③B .②④C .③④D .①④ 11.已知函数f (x )满足f (x )+1=1f (x +1),当x ∈[0,1]时,f (x )=x .若函数g (x )=f (x )-mx -m 在(-1,1]内有2个零点,则实数m 的取值范围是( )A.⎝ ⎛⎦⎥⎤0,12 B.⎝ ⎛⎦⎥⎤-1,12 C.⎣⎢⎡⎭⎪⎫12,+∞ D.⎝⎛⎦⎥⎤-∞,12 12.已知定义域为A 的函数f (x ),若对任意的x 1,x 2∈A ,都有f (x 1+x 2)-f (x 1)≤f (x 2),则称函数f (x )为“定义域上的M 函数”,给出以下五个函数:①f (x )=2x +3,x ∈R ;②f (x )=x 2,x ∈⎣⎢⎡⎦⎥⎤-12,12;③f (x )=x 2+1,x ∈⎣⎢⎡⎦⎥⎤-12,12;④f (x )=sin x ,x ∈⎣⎢⎡⎦⎥⎤0,π2;⑤f (x )=log 2x ,x ∈[2,+∞).其中是“定义域上的M 函数”的有( )A .2个B .3个C .4个D .5个二、填空题13.已知集合A ={(x ,y )|y =x 2,x ∈R },B ={(x ,y )|y =|x |,x ∈R },则A ∩B 中元素的个数为________.14.已知p :∃x ∈R ,x 2+2x +a ≤0,若p 是错误的,则实数a 的取值范围是__________.(用区间表示)15.已知函数f (x )=12(31)4,0,(log ),0,a x a x f x x -+<⎧⎪⎨≥⎪⎩若f (4)>1,则实数a 的取值范围是____________.16.若直角坐标平面内不同两点P ,Q 满足条件:①P ,Q 都在函数y =f (x )的图象上;②P ,Q 关于原点对称,则称(P ,Q )是函数y =f (x )的一个“伙伴点组”(点组(P ,Q )与(Q ,P )可看成同一个“伙伴点组”).已知函数f (x )=⎩⎪⎨⎪⎧ k (x +1),x <0,x 2+1,x ≥0,有两个“伙伴点组”,则实数k 的取值范围是______________.三、解答题17.设p :f (x )=2x -m 在区间(1,+∞)上是减函数;q :若x 1,x 2是方程x 2-ax -2=0的两个实根,则不等式m 2+5m -3≥|x 1-x 2|对任意实数a ∈[-1,1]恒成立.若p 不正确,q 正确,求实数m 的取值范围.18.已知全集U =R ,集合A ={x |a -1<x <2a +1},B ={x |0<x <1}.(1)若a =12,求A ∩B ; (2)若A ∩B =∅,求实数a 的取值范围.19.已知函数f (x )=log 3(9x )·log 3(3x ),x ∈[19,9]. (1)若t =log 3x ,求t 的取值范围;(2)求f (x )的最值及取得最值时对应的x 的值.20.已知p :“∃x 0∈(-1,1),x 20-x 0-m =0(m ∈R )”是正确的,设实数m 的取值集合为M .(1)求集合M;(2)设关于x的不等式(x-a)(x+a-2)<0(a∈R)的解集为N,若“x∈M”是“x∈N”的充分条件,求实数a 的取值范围.21.据某气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示.过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即时间t(h)内沙尘暴所经过的路程s(km).(1)当t=4时,求s的值;(2)将s随t变化的规律用数学关系式表示出来;(3)若N城位于M地正南方向,且距M地650 km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.22.已知函数f(x)=x2+(x-1)|x-a|.(1)若a=-1,解方程f(x)=1;(2)若函数f(x)在R上单调递增,求实数a的取值范围;(3)是否存在实数a,使不等式f(x)≥2x-3对任意x∈R恒成立?若存在,求出a的取值范围;若不存在,请说明理由.答案精析1.C [根据题图可知,阴影部分是由属于A 且不属于B (属于∁U B )的元素组成的集合,观察各选项易得结果.]2.A [逆否命题是将原命题的条件与结论先调换位置,再将新条件与新结论同时否定,故选A.]3.A [A ={1,a },B ={1,2,3},若a =3,则A ={1,3},所以A ⊆B ;若A ⊆B ,则a =2或a =3,所以“a =3”是“A ⊆B ”的充分不必要条件.]4.A [M ={x |1-x 2>0}={x |-1<x <1},N ={x |1+x >0}={x |x >-1},所以M ∪(∁R N )={x |-1<x <1}∪{x |x ≤-1}={x |x <1}.]5.C [①中,f (x )=-2x 3=-x -2x ,故f (x ),g (x )不是同一个函数;②中,g (x )=x 2=|x |,故f (x ),g (x )不是同一个函数;易知③④中两函数表示同一个函数.]6.D [因为a =2-3.1,b =0.53=2-3,函数y =2x 在R 上单调递增,所以2-3.1<2-3<20=1,又函数y =log 3.1x 在(0,+∞)上单调递增,所以c =log 3.14>log 3.13.1=1,所以a <b <c .]7.B [因为f (2)=1,所以log t (22-1)=log t 3=1,解得t =3,所以f (1)=2×31=6.]8.A [本题是选择题,可利用排除法.对于①,令y =f (x ),∵f (x )的定义域关于原点对称,f (-x )=(-x )·sin(-x )=x ·sin x =f (x ),∴函数y =f (x )为偶函数,故①中的函数对应第1个图象,排除C 和D ;对于③,当x >0时,y ≥0,故③中的函数对应第4个图象,排除B.]9.C [若x ∈[-2,0],则-x ∈[0,2],此时f (-x )=-x -1.∵f (x )是偶函数,∴f (-x )=-x -1=f (x ),即f (x )=-x -1,x ∈[-2,0].∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ),∴函数f (x )是周期为4的函数.若x ∈[2,4],则x -4∈[-2,0],∴f (x )=f (x -4)=-(x -4)-1=3-x ,∴f (x )=⎩⎪⎨⎪⎧ -x -1,-2≤x <0,x -1,0≤x <2,3-x ,2≤x ≤4,作出函数f (x )在[-2,4]上的图象,如图所示,若0<x ≤3,则不等式xf (x )>0等价于f (x )>0,此时1<x <3;若-1≤x <0,则不等式xf (x )>0等价于f (x )<0,此时-1<x <0;若x =0,显然不等式xf (x )>0的解集为∅.综上,不等式xf (x )>0在[-1,3]上的解集为(-1,0)∪(1,3).]10.D [函数f (x )=x 2+|x -a |是偶函数⇒f (-x )=f (x )⇒a =0⇒p 为真命题;关于x 的方程mx 2-2x +1=0有解⇒Δ=4-4m ≥0⇒m ≤1⇒q 为假命题.故①④为真,故选D.]11.A [根据题意知,当x ∈(-1,0]时,x +1∈(0,1],则f (x )=1f (x +1)-1=1x +1-1,故函数f (x )在(-1,0]上是减函数,在[0,1]上是增函数.函数g (x )=f (x )-mx -m 在(-1,1]内有2个零点,相当于函数f (x )的图象与直线y =m (x +1)有2个交点,若其中1个交点为(1,1),则m =12,结合函数的图象(图略),可知m 的取值范围是(0,12],故选A.] 12.C [对于①,∀x 1,x 2∈R ,f (x 1+x 2)=2(x 1+x 2)+3<2(x 1+x 2)+6=f (x 1)+f (x 2),故①满足条件;对于②,∀x 1,x 2∈⎣⎢⎡⎦⎥⎤-12,12,f (x 1+x 2)=x 21+x 22+2x 1x 2,f (x 1)+f (x 2)=x 21+x 22, 当x 1x 2>0时,不满足f (x 1+x 2)≤f (x 1)+f (x 2),故②不是“定义域上的M 函数”;对于③,∀x 1,x 2∈⎣⎢⎡⎦⎥⎤-12,12,f (x 1+x 2)=x 21+x 22+2x 1x 2+1,f (x 1)+f (x 2)=x 21+x 22+2, 因为x 1,x 2∈⎣⎢⎡⎦⎥⎤-12,12,所以2x 1x 2≤12<1, 故f (x 1+x 2)<f (x 1)+f (x 2),故③满足条件;对于④,∀x 1,x 2∈[0,π2],f (x 1+x 2)=sin x 1cos x 2+sin x 2cos x 1≤sin x 1+sin x 2=f (x 1)+f (x 2),故④满足条件;对于⑤,∀x 1,x 2∈[2,+∞),f (x 1+x 2)=log 2(x 1+x 2),f (x 1)+f (x 2)=log 2(x 1x 2),因为x 1,x 2∈[2,+∞),所以1x 1+1x 2≤1,可得x 1+x 2≤x 1x 2,即f (x 1+x 2)≤f (x 1)+f (x 2),故⑤满足条件.所以是“定义域上的M 函数”的有①③④⑤,共4个.]13.3解析 由题意联立方程得⎩⎪⎨⎪⎧ y =x 2,y =|x |,消去y 得x 2=|x |,两边平方,解得x =0或x =-1或x =1,相应的y 值分别为0,1,1,故A ∩B 中元素的个数为3.14.(1,+∞)解析 由题意知∀x ∈R ,x 2+2x +a >0恒成立,∴关于x 的方程x 2+2x +a =0的根的判别式Δ=4-4a <0,∴a >1.∴实数a 的取值范围是(1,+∞).15.⎝⎛⎭⎪⎫-∞,12 解析 由题意知f (4)=f (log 124)=f (-2)=(3a -1)×(-2)+4a >1,解得a <12.故实数a 的取值范围是(-∞,12). 16.(2+22,+∞)解析 设点(m ,n )(m >0)是函数y =f (x )的一个“伙伴点组”中的一个点,则其关于原点的对称点(-m ,-n )必在该函数图象上,故⎩⎪⎨⎪⎧ n =m 2+1,-n =k (-m +1),消去n ,整理得m 2-km +k +1=0.若函数f (x )有两个“伙伴点组”,则该方程有两个不等的正实数根,得⎩⎪⎨⎪⎧Δ=k 2-4(k +1)>0,k >0,k +1>0, 解得k >2+2 2.故实数k 的取值范围是(2+22,+∞). 17.解 若p 正确,即f (x )=2x -m 在区间(1,+∞)上是减函数,则m ≤1. 若q 正确,∵x 1,x 2是方程x 2-ax -2=0的两个实根,a ∈[-1,1],∴|x 1-x 2|=(x 1+x 2)2-4x 1x 2=a 2+8≤3.∵不等式m 2+5m -3≥|x 1-x 2|对任意实数a ∈[-1,1]恒成立,∴m 2+5m -3≥3,∴m 2+5m -6≥0,解得m ≥1或m ≤-6.又p 不正确,q 正确,∴⎩⎪⎨⎪⎧ m >1,m ≥1或m ≤-6,∴m >1.故实数m 的取值范围是{m |m >1}.18.解 (1)若a =12,则A ={x |-12<x <2},又B ={x |0<x <1}, ∴A ∩B ={x |0<x <1}.(2)当A =∅时,a -1≥2a +1,∴a ≤-2,此时满足A ∩B =∅;当A ≠∅时,则由A ∩B =∅,B ={x |0<x <1},易得⎩⎪⎨⎪⎧ 2a +1>a -1,a -1≥1或⎩⎪⎨⎪⎧ 2a +1>a -1,2a +1≤0,∴a ≥2或-2<a ≤-12. 综上可知,实数a 的取值范围为⎩⎨⎧⎭⎬⎫a |a ≤-12或a ≥2. 19.解 (1)由t =log 3x ,x ∈[19,9],解得-2≤t ≤2. (2)f (x )=(log 3x )2+3log 3x +2,令t =log 3x ,则y =t 2+3t +2=(t +32)2-14,t ∈[-2,2]. 当t =-32,即log 3x =-32, 即x =39时,f (x )min =-14; 当t =2,即log 3x =2,即x =9时,f (x )max =12.20.解 (1)由题意知,方程x 2-x -m =0在x ∈(-1,1)上有解,故m 的取值集合就是函数y =x 2-x 在(-1,1)上的值域,易得M ={m |-14≤m <2}. (2)因为“x ∈M ”是“x ∈N ”的充分条件,所以M ⊆N .当a =1时,集合N 为空集,不满足题意;当a >1时,a >2-a ,此时集合N ={x |2-a <x <a },则⎩⎪⎨⎪⎧ 2-a <-14,a ≥2,解得a >94; 当a <1时,a <2-a ,此时集合N ={x |a <x <2-a },则⎩⎪⎨⎪⎧ a <-14,2-a ≥2,解得a <-14. 综上可知,实数a 的取值范围为{a |a >94或a <-14}. 21.解 (1)由题中所给出的函数图象可知,当t =4时,v =3×4=12(km/h),∴s =12×4×12=24(km). (2)当0≤t ≤10时,s =12·t ·3t =32t 2; 当10<t ≤20时,s =12×10×30+30(t -10)=30t -150; 当20<t ≤35时,s =12×10×30+10×30+(t -20)×30-12×(t -20)×2(t -20)=-t 2+70t -550. 综上可知,s =223,[0,10],230150,(10,20],70550,(20,35].t t t t t t t ⎧∈⎪⎪-∈⎨⎪-+-∈⎪⎩(3)∵当t ∈[0,10]时,s max =32×102=150<650, 当t ∈(10,20]时,s max =30×20-150=450<650,∴当t ∈(20,35]时,令-t 2+70t -550=650,解得t 1=30,t 2=40.∵20<t ≤35,∴t =30.∴沙尘暴发生30 h 后将侵袭到N 城.22.解 (1)当a =-1时,f (x )=x 2+(x -1)·|x +1|,则f (x )=⎩⎪⎨⎪⎧ 2x 2-1,x ≥-1,1,x <-1.当x ≥-1时,由f (x )=1,得2x 2-1=1,解得x =1或x =-1;当x <-1时,f (x )=1恒成立.∴方程的解集为{x |x ≤-1或x =1}.(2)由题意知f (x )=⎩⎪⎨⎪⎧ 2x 2-(a +1)x +a ,x ≥a ,(a +1)x -a ,x <a .若f (x )在R 上单调递增,则⎩⎪⎨⎪⎧ a +14≤a ,a +1>0,解得a ≥13. ∴实数a 的取值范围为{a |a ≥13}. (3)设g (x )=f (x )-(2x -3),则g (x )=⎩⎪⎨⎪⎧ 2x 2-(a +3)x +a +3,x ≥a ,(a -1)x -a +3,x <a ,不等式f (x )≥2x -3对任意x ∈R 恒成立,等价于不等式g (x )≥0对任意x ∈R 恒成立. ①若a >1,则1-a <0,即21-a <0, 取x 0=21-a,此时x 0<a , ∴g (x 0)=g ⎝ ⎛⎭⎪⎫21-a =(a -1)·21-a -a +3=1-a <0, 即对任意的a >1,总能找到x 0=21-a,使得g (x 0)<0, ∴不存在a >1,使得g (x )≥0恒成立.②若a =1,则g (x )=⎩⎪⎨⎪⎧ 2x 2-4x +4,x ≥1,2,x <1,∴g (x )的值域为[2,+∞),∴g (x )≥0恒成立.③若a <1,当x ∈(-∞,a )时,g (x )单调递减,其值域为(a 2-2a +3,+∞). 由于a 2-2a +3=(a -1)2+2≥2,所以g (x )≥0恒成立.当x ∈[a ,+∞)时,由a <1,知a <a +34,g (x )在x =a +34处取得最小值. 令g ⎝ ⎛⎭⎪⎫a +34=a +3-(a +3)28≥0,得-3≤a ≤5,又a <1,∴-3≤a <1. 综上,a ∈[-3,1].。

2018届高三数学每天一练半小时(40)数列中的易错题(有答案)AKKqPw

2018届高三数学每天一练半小时(40)数列中的易错题(有答案)AKKqPw

训练目标 (1)数列知识的深化应用;(2)易错题目矫正练.训练题型 数列中的易错题.解题策略 (1)通过S n 求a n ,要对n =1时单独考虑;(2)等比数列求和公式应用时要对q=1,q ≠1讨论;(3)使用累加、累乘法及相消求和时,要正确辨别剩余项,以免出错.1.等差数列{a n }的公差为d ,前n 项和为S n ,当首项a 1和d 变化时,a 2+a 8+a 11是一个定值,则下列各数也为定值的是( )A .S 7B .S 8C .S 13D .S 152.已知等差数列:1,a 1,a 2,9;等比数列:-9,b 1,b 2,b 3,-1.则b 2(a 2-a 1)的值为( )A .8B .-8C .±8 D.893.已知函数y =f (x ),x ∈R ,数列{a n }的通项公式是a n =f (n ),n ∈N *,那么“函数y =f (x )在[1,+∞)上递增”是“数列{a n }是递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.(2017·抚州月考)设S n 为等差数列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则( )A .S n 的最大值是S 8B .S n 的最小值是S 8C .S n 的最大值是S 7D .S n 的最小值是S 7 5.(2016·湖北黄冈中学等八校联考)已知实数等比数列{a n }的前n 项和为S n ,则下列结论一定成立的是( )A .若a 3>0,则a 2 013<0B .若a 4>0,则a 2 014<0C .若a 3>0,则S 2 013>0D .若a 4>0,则S 2 014>06.已知数列{a n }满足:a n =⎩⎪⎨⎪⎧ (3-a )n -3,n ≤7,a n -6,n >7(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( ) A .(94,3)B .[94,3)C .(1,3)D .(2,3)7.(2016·江南十校联考)已知数列{a n }的通项公式为a n =log 3n n +1(n ∈N *),则使S n <-4成立的最小自然数n 为( )A .83B .82C .81D .808.数列{a n }满足a 1=1,a n +1=r ·a n +r (n ∈N *,r ∈R 且r ≠0),则“r =1”是“数列{a n }为等差数列”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 二、填空题9.若数列{a n }的前n 项和S n =n 2-2n -1,则数列{a n }的通项公式为________________.10.(2016·辽宁五校联考)已知数列{a n }满足a n =1+2+3+…+n n ,则数列{1a n a n +1}的前n 项和为________. 11.已知数列{a n }是递增数列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实数λ的取值范围是________.12.在数列{a n }中,a 1=1,a 2=2,数列{a n a n +1}是公比为q (q >0)的等比数列,则数列{a n }的前2n 项和S 2n =____________.答案精析1. C [∵a 2+a 8+a 11=(a 1+d )+(a 1+7d )+(a 1+10d )=3a 1+18d =3(a 1+6d )为常数.∴a 1+6d 为常数.∴S 13=13a 1+13×122d =13(a 1+6d )也为常数.] 2.B [a 2-a 1=d =9-13=83, 又b 22=b 1b 3=(-9)×(-1)=9,因为b 2与-9,-1同号,所以b 2=-3.所以b 2(a 2-a 1)=-8.]3.A [由题意,函数y =f (x ),x ∈R ,数列{a n }的通项公式是a n =f (n ),n ∈N *.若“函数y =f (x )在[1,+∞)上递增”,则“数列{a n }是递增数列”一定成立;若“数列{a n }是递增数列”,则“函数y =f (x )在[1,+∞)上递增”不一定成立,现举例说明,如函数在[1,2]上先减后增,且在1处的函数值小.综上,“函数y =f (x )在[1,+∞)上递增”是“数列{a n }是递增数列”的充分不必要条件,故选A.]4.D [由(n +1)S n <nS n +1,得(n +1)·n (a 1+a n )2<n ·(n +1)(a 1+a n +1)2, 整理得a n <a n +1,所以等差数列{a n }是递增数列,又a 8a 7<-1,所以a 8>0,a 7<0,所以数列{a n }的前7项为负值,即S n 的最小值是S 7.]5.C [设a n =a 1qn -1, 因为q 2 010>0,所以A ,B 不成立.对于C ,当a 3>0时,a 1>0,因为1-q 与1-q 2 013同号,所以S 2 013>0,选项C 正确,对于D ,取数列:-1,1,-1,1,…,不满足结论,D 不成立,故选C.]6.D [根据题意,a n =f (n )=⎩⎪⎨⎪⎧ (3-a )n -3,n ≤7,a n -6,n >7,n ∈N *,要使{a n }是递增数列,必有⎩⎪⎨⎪⎧ 3-a >0,a >1,(3-a )×7-3<a 8-6,解得2<a <3.] 7.C [∵a n =log 3n n +1=log 3n -log 3(n +1),∴S n =log 31-log 32+log 32-log 33+…+log 3n -log 3(n +1)=-log 3(n +1)<-4, 解得n >34-1=80.故最小自然数n 的值为81.]8.A [当r =1时,易知数列{a n }为等差数列;由题意易知a 2=2r ,a 3=2r 2+r ,当数列{a n }是等差数列时,a 2-a 1=a 3-a 2,即2r -1=2r 2-r .解得r =12或r =1, 故“r =1”是“数列{a n }为等差数列”的充分不必要条件.]9.a n =⎩⎪⎨⎪⎧ -2,n =1,2n -3,n ≥2解析 当n =1时,a 1=S 1=-2;当n ≥2时,a n =S n -S n -1=2n -3,所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧ -2,n =1,2n -3,n ≥2.10.2n n +2解析 a n =1+2+3+…+n n =n +12, 则1a n a n +1=4(n +1)(n +2)=4(1n +1-1n +2), 所以所求的前n 项和为4[(12-13)+(13-14)+…+(1n +1-1n +2)]=4(12-1n +2)=2n n +2. 11.(-3,+∞)解析 因为数列{a n }是单调递增数列,所以a n +1-a n >0 (n ∈N *)恒成立.又a n =n 2+λn (n ∈N *),所以(n +1)2+λ(n +1)-(n 2+λn )>0恒成立,即2n +1+λ>0. 所以λ>-(2n +1) (n ∈N *)恒成立.而n ∈N *时,-(2n +1)的最大值为-3(n =1时),所以λ的取值范围为(-3,+∞).12.⎩⎪⎨⎪⎧ 3(1-q n )1-q,q >0且q ≠1,3n ,q =1解析 ∵数列{a n a n +1}是公比为q (q >0)的等比数列, ∴a n +1a n +2a n a n +1=q ,即a n +2a n=q , 这表明数列{a n }的所有奇数项成等比数列, 所有偶数项成等比数列,且公比都是q , 又a 1=1,a 2=2,∴当q ≠1时,S 2n =a 1+a 2+a 3+a 4+…+a 2n -1+a 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+a 6+…+a 2n ) =a 1(1-q n )1-q +a 2(1-q n )1-q =3(1)1n q q--; 当q =1时,S 2n =a 1+a 2+a 3+a 4+…+a 2n -1+a 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+a 6+…+a 2n ) (1111)(2222)3n n n =+++++++++=K K 1442443144424443个个 综上所述:S 2n =⎩⎪⎨⎪⎧ 3(1-q n )1-q,q >0且q ≠1,3n ,q =1.。

2018届高考数学一轮复习错题笔记三三角函数

2018届高考数学一轮复习错题笔记三三角函数

笔记三三角函数易错点15忽视“隐含条件”典例15设0<α<π,sin α+cos α=12,求cos2α-sin2α的值.【错因分析】本题产生错误的原因是易忽视题干中的隐含条件“sinα,cosα”异号,而根据(cosα-sinα)2=1-2sinαcosα得到cosα-sinα可取两个值的错误结论.【正确解答】因为sin α+cos α=12,所以(sin α+cos α)2=14,2sin α cos α=-34.又因为0<α<π,所以sin α>0,cos α<0,所以cos α-sin α<0.因为(cos α-sin α)2=1-2sin α cos α=1+34=74,所以cos α-sin α=-72.故cos2α-sin2α=(cos α+sin α)(cos α-sin α)=-74.易错点16忽视对字母的分类讨论典例16设函数f(x)=a sin2x+π3+b(x∈R)的最大值为5,最小值为-1,求实数a,b的值.【错因分析】这里误认为a sin2x+π3的最大值是a,最小值是-a,忽视了对字母a取值的分类讨论,从而得出错误的结果:a=3,b=2.【正确解答】由题意可知a≠0.当a>0时,由题意,得a+b=5且-a+b=-1,解得a=3,b=2;当a<0时,应有-a+b=5且a+b=-1,解得a=-3,b=2.综上,a=3,b=2或a=-3,b=2.易错点17忽视函数定义域的限制典例17函数y=tan x1-tan2x的最小正周期为.【错因分析】化简三角函数式之前,忽略了函数的定义域,直接根据化简结果y=12tan2x得出函数y=tan x1-tan2x的最小正周期为π2的错误结果.【正确解答】要使函数有意义,需满足x≠kπ±π4(k∈Z),x≠kπ+π2(k∈Z).化简函数得y=tan x1-tan x =12tan 2x,画出y=tan 2x,x≠kπ±π4且x≠kπ+π2,k∈Z的图象.根据图象可得y=tan x1-tan2x的最小正周期为π.故填π.易错点18忽视正、余弦函数的有界性典例18求函数y=(sin x-2)(cos x-2)的最大值和最小值.【错因分析】许多三角函数问题可以通过换元的方法转化为代数问题解决,在换元时易忽略正、余弦函数的有界性,该题容易出现的问题是令sin x+cos x=t时,忽略了|t|≤2.【正确解答】原函数可化为y=sin x cos x-2(sin x+cos x)+4.令sin x+cos x=t(|t|≤则sin x cos x=t 2-1 2 ,∴y=t2-12-2t+4=12(t-2)2+32.∵t∈[-2,2],且函数在[-2,2]上为减函数,∴当t=2,即x=2kπ+π4(k∈Z)时,y min=92-22;当t=-2,即x=2kπ-3π4(k∈Z)时,y max=92+22.易错点19忽视复合函数的单调性典例19求函数y=cosπ6-x 的单调递增区间.【错因分析】令z=π6-x,则y=cos z.由于z=π6-x是减函数,所以y=cos z的单调递增区间是复合函数y=cosπ6-x 的单调递减区间.该题容易出现的问题是由y=cos x的单调递增区间为[2kπ-π,2kπ],k∈Z,得出y=cosπ6-x 的单调递增区间为2kπ-π≤π6-x≤2kπ,从而得出-2kπ+π6≤x≤-2kπ+7π6,k∈Z的错误结果.这里因忽视复合函数的单调性致错,这种错误常常出现,要引起注意.【正确解答】因为y=cosπ6-x =cos x-π6,所以y=cos x-π6的单调递增区间即为y=cosπ6-x 的单调递增区间,即2kπ-π≤x-π6≤2kπ,解得2kπ-5π6≤x≤2kπ+π6.因此函数y=cosπ6-x 的单调递增区间是2kπ-5π6,2kπ+π6,k∈Z.易错点20图象平移变换的方向与距离把握不准典例20若将函数y=tan ωx+π4(ω>0)的图象向右平移π6个单位长度后,与函数y=tan ωx+π6(ω>0)的图象重合,则ω的最小值为.【错因分析】在对图象进行平移或伸缩时,都是只针对x本身而言的,平移只是在x本身加上(或减去)某个值,伸缩只是给x本身乘以某个值,与其他量无关.本题我们容易在ωx上减去π6,而正确的方法是在x上减去π6.【正确解答】y=tan ωx+π4y=tan ω x-π6+π4=tan ωx+π6,因此π4−π6ω=π6+kπ(k∈Z),解得ω=12-6k(k∈Z),又∵ω>0,∴ωmin=12.易错点21三角恒等变换忽视角的范围典例21在△ABC中,如果4sin A+2cos B=1,2sin B+4cos A=33,则∠C的大小是()A.30°B.150°C.30°或150°D.60°或120°【错因分析】造成错解的原因是对于三角形这个条件的忽视,此题若没有“在△ABC中”这个条件,则选项C是正确的,但多了这个条件就有了限制,如从第一个等式4sin A+2cos B=1中可得,cos B<12,那么∠B>60°,这样∠C不可能超过120°,因此150°要舍去.【正确解答】对上面两式进行平方相加可得16+4+16 sin(A+B)=28,所以sin(A+B)=12,所以A+B=30°或150°,所以∠C的大小是30°或150°,但从第一个等式4 sin A+2 cos B=1中可得cos B<12,那么B>60°,这样∠C不可能超过120°,因此150°要舍去.因此∠C的大小是30°.故选A.易错点22解三角形时忽视对解的讨论典例22在△ABC中,角A,B,C所对的边分别为a,b,c,且a=1,c=3.(1)若∠C=π3,求∠A;(2)若∠A=π6,求b的值.【错因分析】第(1)问易出现多解的错误,由已知条件求得sin A=a sin Cc =12,即可得出∠A=π6或∠A=5π6,没有考虑c>a;第(2)问易出现漏解的错误,由sin C=c sin Aa=32,只得出∠C=π3,漏了∠C=2π3.【正确解答】(1)由正弦定理得asin A =csin C,所以sin A=a sin Cc =12,即∠A=π6或∠A=5π6.又c>a,所以∠A<∠C,故∠A=π6.(2)由正弦定理得asin A =csin C,所以sin C=c sin Aa =32,所以∠C=π3或∠C=2π3.当∠C=π3时,∠B=π2,可得b=2;当∠C=2π3时,∠B=π6,可得b=1.。

2018年高考数学(理)备考黄金易错点(word版含答案)

2018年高考数学(理)备考黄金易错点(word版含答案)

1.(2016·全国卷乙)已知函数f (x )=|x +1|-|2x -3|.(1)画出y =f (x )的图象;(2)求不等式|f (x )|>1的解集.解析:(1)由题意得f (x )=⎩⎪⎨⎪⎧ x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32,故y =f (x )的图象如图所示.2.(2017·江苏卷)已知a ,b ,c ,d 为实数,且a 2+b 2=4,c 2+d 2=16,证明:ac +bd ≤8.证明:由柯西不等式,得(ac +bd )2≤(a 2+b 2)(c 2+d 2).因为a 2+b 2=4,c 2+d 2=16,所以(ac +bd )2≤64,因此ac +bd ≤8.3.(2017·全国卷Ⅲ)已知函数f (x )=|x +1|-|x -2|.(1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围.解析:(1)f (x )=⎩⎪⎨⎪⎧ -3, x <-1,2x -1, -1≤x ≤2,3, x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1,解得1≤x ≤2;当x >2时,由f (x )≥1,解得x >2.所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得 m ≤|x +1|-|x -2|-x 2+x .而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝⎛⎭⎪⎫|x |-322+54≤54, 且当x =32时,|x +1|-|x -2|-x 2+x =54, 故m 的取值范围为⎝⎛⎦⎥⎤-∞,54. 4.(2016·全国卷甲)已知函数f (x )=x -12+x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |. 解析:(1)f (x )=⎩⎪⎨⎪⎧ -2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.2当-12<x <12时,f (x )<2; 当x ≥12时,由f (x )<2得2x <2,解得x <1. 所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0.因此|a +b |<|1+ab |. 5.已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.(2)证明 由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0,即(a +b )2<(1+ab )2,因此|a +b |<|1+ab |.6.已知函数f (x )=|x +1|-2|x -a |,a >0.(1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围.解 (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解;3当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 23<x <2. (2)由题设可得,f (x )=⎩⎪⎨⎪⎧ x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a +1), △ABC 的面积为23(a +1)2. 由题设得23(a +1)2>6,故a >2. 所以a 的取值范围为(2,+∞).7.解不等式|x +3|-|2x -1|<x 2+1.8.设a ,b ,c 均为正实数,试证明不等式12a +12b +12c ≥1b +c +1c +a +1a +b,并说明等号成立的条件. 解 因为a ,b ,c 均为正实数,所以12⎝ ⎛⎭⎪⎫12a +12b ≥12ab ≥1a +b, 当且仅当a =b 时等号成立;12⎝ ⎛⎭⎪⎫12b +12c ≥12bc ≥1b +c,当且仅当b =c 时等号成立; 12⎝ ⎛⎭⎪⎫12c +12a ≥12ca ≥1c +a,当且仅当a =c 时等号成立. 三个不等式相加,得12a +12b +12c ≥1b +c +1c +a +1a +b, 当且仅当a =b =c 时等号成立.9.若a 、b 、c 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6.求证:a 、b 、c 中至少有一个大于0.证明 假设a 、b 、c 都不大于0,即a ≤0,b ≤0,c ≤0,所以a +b +c ≤0.而a +b +c =(x 2-2y +π2)+(y 2-2z +π3)+(z 2-2x +π6) =(x 2-2x )+(y 2-2y )+(z 2-2z )+π=(x -1)2+(y -1)2+(z -1)2+π-3.所以a +b +c >0,这与a +b +c ≤0矛盾,故a 、b 、c 中至少有一个大于0.易错起源1、含绝对值不等式的解法例1、已知函数f (x )=|x -a |,其中a >1.(1)当a =2时,求不等式f (x )≥4-|x -4|的解集;(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值.(2)记h (x )=f (2x +a )-2f (x ),则h (x )=⎩⎪⎨⎪⎧ -2a ,x ≤0,4x -2a ,0<x <a ,2a ,x ≥a .由|h (x )|≤2,解得a -12≤x ≤a +12.又已知|h (x )|≤2的解集为{x |1≤x ≤2},所以⎩⎪⎨⎪⎧a -12=1,a +12=2,于是a =3 【变式探究】已知函数f (x )=|x -2|-|x -5|. (1)证明:-3≤f (x )≤3; (2)求不等式f (x )≥x 2-8x +15的解集.(1)证明 f (x )=|x -2|-|x -5|=⎩⎪⎨⎪⎧ -3,x ≤2,2x -7,2<x <5,3,x ≥5.当2<x <5时,-3<2x -7<3.所以-3≤f (x )≤3.(2)由(1)可知,当x ≤2时,f (x )≥x 2-8x +15的解集为空集;当2<x <5时,f (x )≥x 2-8x +15的解集为{x |5-3≤x <5};当x ≥5时,f (x )≥x 2-8x +15的解集为{x |5≤x ≤6}.综上,不等式f (x )≥x 2-8x +15的解集为{x |5-3≤x ≤6}.【名师点睛】(1)用零点分段法解绝对值不等式的步骤:①求零点;②划区间、去绝对值号;③分别解去掉绝对值的不等式;④取每个结果的并集,注意在分段时不要遗漏区间的端点值.(2)用图象法、数形结合可以求解含有绝对值的不等式,使得代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法.【锦囊妙计,战胜自我】含有绝对值的不等式的解法(1)|f (x )|>a (a >0)⇔f (x )>a 或f (x )<-a ;(2)|f (x )|<a (a >0)⇔-a <f (x )<a ;(3)对形如|x -a |+|x -b |≤c ,|x -a |+|x -b |≥c 的不等式,可利用绝对值不等式的几何意义求解. 易错起源2、不等式的证明例2 (1)已知x ,y 均为正数,且x >y .求证:2x +1x 2-2xy +y 2≥2y +3. (2)已知实数x ,y 满足:|x +y |<13,|2x -y |<16, 求证:|y |<518. 证明 (1)因为x >0,y >0,x -y >0,2x +1x 2-2xy +y 2-2y =2(x -y )+1 x -y 2 =(x -y )+(x -y )+1 x -y 2 ≥33x -y 21x -y2=3, 所以2x +1x 2-2xy +y 2≥2y +3, (2)因为3|y |=|3y |=|2(x +y )-(2x -y )|≤2|x +y |+|2x -y |,由题设知|x +y |<13,|2x -y |<16, 从而3|y |<23+16=56,所以|y |<518. 【变式探究】(1)若a ,b ∈R,求证:|a +b |1+|a +b |≤|a |1+|a |+|b |1+|b |. (2)已知a ,b ,c 均为正数,a +b =1,求证:a 2b +b 2c +c 2a≥1. 证明 (1)当|a +b |=0时,不等式显然成立.当|a +b |≠0时,由0<|a +b |≤|a |+|b |⇒1|a +b |≥1|a |+|b |,所以|a +b |1+|a +b |=11|a +b |+1≤11+1|a |+|b |=|a |+|b |1+|a |+|b |≤|a |1+|a |+|b |1+|b |. (2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a+a ≥2c ,故a 2b +b 2c +c 2a+(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a≥a +b +c , 所以a 2b +b 2c +c 2a≥1. 【名师点睛】(1)作差法应该是证明不等式的常用方法.作差法证明不等式的一般步骤:①作差;②分解因式;③与0比较;④结论.关键是代数式的变形能力.(2)在不等式的证明中,适当“放”“缩”是常用的推证技巧.【锦囊妙计,战胜自我】1.含有绝对值的不等式的性质|a |-|b |≤|a ±b |≤|a |+|b |.2.算术—几何平均不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab .当且仅当a =b 时,等号成立.定理2:如果a 、b 为正数,则a +b 2≥ab ,当且仅当a =b 时,等号成立.定理3:如果a 、b 、c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立. 定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n ≥n a 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.易错起源3、柯西不等式的应用 例3 (2015·福建)已知a >0,b >0,c >0,函数f (x )=|x +a |+|x -b |+c 的最小值为4.(1)求a +b +c 的值;(2)求14a 2+19b 2+c 2的最小值. 解 (1)因为f (x )=|x +a |+|x -b |+c ≥|(x +a )-(x -b )|+c =|a +b |+c ,当且仅当-a ≤x ≤b 时,等号成立.又a >0,b >0,所以|a +b |=a +b .所以f (x )的最小值为a +b +c .又已知f (x )的最小值为4,所以a +b +c =4.(2)由(1)知a +b +c =4,由柯西不等式得⎝ ⎛⎭⎪⎫14a 2+19b 2+c 2(4+9+1)≥⎝ ⎛⎭⎪⎫a 2×2+b 3×3+c ×12=(a +b +c )2=16, 即14a 2+19b 2+c 2≥87.当且仅当12a 2=13b 3=c 1, 即a =87,b =187,c =27时等号成立. 故14a 2+19b 2+c 2的最小值为87. 【变式探究】已知定义在R 上的函数f (x )=|x +1|+|x -2|的最小值为a .(1)求a 的值;(2)若p ,q ,r 是正实数,且满足p +q +r =a ,求证:p 2+q 2+r 2≥3.【名师点睛】(1)使用柯西不等式证明的关键是恰当变形,化为符合它的结构形式,当一个式子与柯西不等式的左边或右边具有一致形式时,就可使用柯西不等式进行证明.(2)利用柯西不等式求最值的一般结构为(a 21+a 22+…+a 2n )(1a 21+1a 22+…+1a 2n)≥(1+1+…+1)2=n 2.在使用柯西不等式时,要注意右边为常数且应注意等号成立的条件.【锦囊妙计,战胜自我】柯西不等式 (1)设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.(2)设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.。

高三函数练习题及答案

高三函数练习题及答案

高三函数练习题及答案一、选择题1. 已知函数y=f(x)的图像为一条抛物线,以下哪个函数的图像也是一条抛物线?A. y=f(x)+aB. y=f(kx)C. y=f(x)+bD. y=f(ax)2. 若函数y=f(x)的动点M(x,f(x))的轨迹是抛物线,且f(-1)=4,f(1)=-2,那么该抛物线的顶点坐标是?A. (-1, 3)B. (1, 1)C. (-1, 4)D. (1, -2)3. 当x∈[a,b]内时,函数y=f(x) 的最大值为 M,最小值为 m,若c∈(a,b),则以下哪个不等式一定成立?A. f(c) ≤ MB. f(c) ≤ mC. m ≤ f(c) ≤ MD. f(c) ≥ M4. 已知函数y=f(x) 的图像关于原点对称,且对于任意的x∈R,f(x)>0,那么以下哪个图像是y=f(x) 的图像?A. 抛物线B. 三角函数曲线C. 指数函数曲线D. 反比例函数曲线二、计算题1. 已知函数y=f(x) 的图像是一条抛物线,顶点坐标为(-2, 5),过点(1, 1),那么该抛物线的方程是?解:因为抛物线的顶点坐标为(-2, 5),所以抛物线的对称轴方程为x=-2。

又因为过点(1, 1),所以抛物线的另一点的坐标为(4, 1)。

由对称性可知,抛物线的另外一个点坐标也为(x, 1),则x=-6,那么该抛物线的方程为:y=a(x+2)^2+5,代入(1, 1)求得a=1/9。

所以,该抛物线的方程为y=(x+2)^2/9+5。

2. 已知函数y=f(x) 的图像是一条指数增长的曲线,且过点(0, 2),那么该函数的解析式是?解:根据指数函数的特点,设函数的解析式为y=a^x,其中a>0且a≠1。

过点(0, 2),则2=a^0=1,所以a=2。

所以,该函数的解析式为y=2^x。

3. 已知函数f(x)满足f(0)=1,对于任意的x∈R,f(x)>0,而且f'''(x)=x^2+1,求f(x)的解析式。

2018届高三数学每天一练半小时:阶段滚动检测二 含答案 精品

2018届高三数学每天一练半小时:阶段滚动检测二 含答案 精品

一、选择题1.函数f (x )=ln(x 2-x )的定义域为( ) A .(0,1)B .[0,1]C .(-∞,0)∪(1,+∞)D .(-∞,0]∪[1,+∞)2.下列命题正确的是( ) A .∃x 0∈R ,x 20+2x 0+3=0 B .∀x ∈N ,x 3>x 2C .x >1是x 2>1的充分不必要条件 D .若a >b ,则a 2>b 23.定义在R 上的偶函数f (x ),当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( ) A .f (π)>f (-3)>f (-2) B .f (π)>f (-2)>f (-3) C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)4.已知函数f (x )=12log ,1,24,1,xx x x >⎧⎪⎨⎪+≤⎩则f (f (12))等于( )A .4B .-2C .2D .15.函数f (x )=2|x |-x 2的图象为()6.已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴相切于原点,且x 轴与函数图象所围成区域(图中阴影部分)的面积为112,则a 的值为( )A .-1B .0C .1D .-27.函数f (x )=x 3+3x 2+3x -a 的极值点的个数是( ) A .2 B .1 C .0D .0或18.若函数f (x )=1+2x +12x +1+tan x 在区间[-1,1]上的值域为[m ,n ],则m +n 等于( )A .2B .3C .4D .59.设函数f (x )=e x+2x -4,g (x )=ln x +2x 2-5,若实数a ,b 分别是f (x ),g (x )的零点,则( ) A .g (a )<0<f (b ) B .f (b )<0<g (a ) C .0<g (a )<f (b )D .f (b )<g (a )<010.已知定义在R 上的偶函数f (x )满足f (x -4)=f (x ),且在区间[0,2]上,f (x )=x ,若关于x 的方程f (x )=log a x 有三个不同的根,则a 的取值范围为( ) A .(2,4) B .(2,22) C .(6,22)D .(6,10)11.若曲线C 1:y =ax 2(x >0)与曲线C 2:y =e x存在公共点,则实数a 的取值范围为( )A.⎣⎢⎡⎭⎪⎫e 28,+∞ B.⎝ ⎛⎦⎥⎤0,e 28C.⎣⎢⎡⎭⎪⎫e 24,+∞ D.⎝ ⎛⎦⎥⎤0,e 24 12.定义全集U 的子集P 的特征函数f P (x )=⎩⎪⎨⎪⎧1,x ∈P ,0,x ∈∁U P .已知P ⊆U ,Q ⊆U ,给出下列命题:①若P ⊆Q ,则对于任意x ∈U ,都有f P (x )≤f Q (x ); ②对于任意x ∈U ,都有f ∁U P (x )=1-f P (x ); ③对于任意x ∈U ,都有f P ∩Q (x )=f P (x )·f Q (x ); ④对于任意x ∈U ,都有f P ∪Q (x )=f P (x )+f Q (x ). 其中正确的命题是( ) A .①②③ B .①②④ C .①③④ D .②③④二、填空题13.设全集为R ,集合M ={x |x 2≤4},N ={x |log 2x ≥1},则(∁R M )∩N =________.14.已知函数f (x )=e x,g (x )=ln x 2+12的图象分别与直线y =m 交于A ,B 两点,则|AB |的最小值为________.15.设a ,b ∈Z ,已知函数f (x )=log 2(4-|x |)的定义域为[a ,b ],其值域为[0,2],若方程⎝ ⎛⎭⎪⎫12|x |+a +1=0恰有一个解,则b -a =________. 16.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=e -x(x -1).给出以下命题: ①当x <0时,f (x )=e x(x +1); ②函数f (x )有五个零点;③若关于x 的方程f (x )=m 有解,则实数m 的取值范围是f (-2)≤m ≤f (2); ④对∀x 1,x 2∈R ,|f (x 2)-f (x 1)|<2恒成立. 其中,正确命题的序号是________. 三、解答题17.已知集合A 是函数y =lg(20+8x -x 2)的定义域,集合B 是不等式x 2-2x +1-a 2≥0(a >0)的解集,p :x ∈A ,q :x ∈B . (1)若A ∩B =∅,求a 的取值范围;(2)若綈p 是q 的充分不必要条件,求a 的取值范围.18.设命题p :关于x 的二次方程x 2+(a +1)x +a -2=0的一个根大于零,另一根小于零;命题q :不等式2x 2+x >2+ax 对∀x ∈(-∞,-1)恒成立.如果命题“p ∨q ”为真命题, 命题“p ∧q ”为假命题,求实数a 的取值范围.19.已知函数f (x )=a ln x (a >0),求证f (x )≥a (1-1x).20.定义在R 上的单调函数f (x )满足f (2)=32,且对任意x ,y ∈R ,都有f (x +y )=f (x )+f (y ).(1)求证:f (x )为奇函数;(2)若f (k ·3x)+f (3x-9x-2)<0对任意x ∈R 恒成立,求实数k 的取值范围.21.为了缓解城市交通压力,某市市政府在市区一主要交通干道修建高架桥,两端的桥墩现已建好,已知这两桥墩相距m米,“余下的工程”只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为(2+x)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素.记“余下工程”的费用为y万元.(1)试写出工程费用y关于x的函数关系式;(2)当m=640米时,需新建多少个桥墩才能使工程费用y最小?并求出其最小值.22.已知函数f(x)=e x-ax2(x∈R),e=2.718 28…为自然对数的底数.(1)求函数f(x)在点P(0,1)处的切线方程;(2)若函数f(x)为R上的单调递增函数,试求实数a的取值范围.答案精析1.C [由题意知x 2-x >0,解得x >1或x <0,所以函数f (x )=ln(x 2-x )的定义域为(-∞,0)∪(1,+∞).]2.C [对于A ,因为Δ=22-12<0,所以不存在x 0∈R ,使x 20+2x 0+3=0,所以选项A 错误;对于B ,当x =1时,13=12,所以选项B 错误;对于C ,x >1可推出x 2>1,x 2>1可推出x >1或x <-1,所以x >1是x 2>1的充分不必要条件,所以选项C 正确;对于D ,当a =0,b =-1时,a 2<b 2,所以选项D 错误.]3.A [因为函数是偶函数,所以f (-2)=f (2),f (-3)=f (3),又函数在[0,+∞)上是增函数,所以f (2)<f (3)<f (π),即f (-2)<f (-3)<f (π),选A.] 4.B [f (12)=2+124=2+2=4,则f (f (12))=f (4)=12log 4=12log (12)-2=-2.]5.D [由f (-x )=f (x )知函数f (x )是偶函数,其图象关于y 轴对称,排除选项A 、C ;当x =0时,f (x )=1,排除选项B.]6.A [因为f ′(x )=-3x 2+2ax +b ,函数f (x )的图象与x 轴相切于原点,所以f ′(0)=0,即b =0,所以f (x )=-x 3+ax 2,令f (x )=0,得x =0或x =a (a <0),因为函数f (x )的图象与x 轴所围成区域的面积为112,所以⎠⎛a(-x 3+ax 2)d x =-112,所以⎝ ⎛⎭⎪⎫-14x 4+13ax 3⎪⎪⎪a =-112,所以a =-1或a =1(舍去).]7.C [因为f ′(x )=3x 2+6x +3=3(x +1)2≥0,则f (x )在R 上是增函数,所以不存在极值点.]8.C [因为f (x )=1+2x +12x +1+tan x ,所以f (-x )=1+2·2-x2-x +1+tan(-x )=1+21+2x -tan x ,则f (x )+f (-x )=2+2·2x2x +1+21+2x =4.又f (x )=1+2·2x2x +1+tan x 在区间[-1,1]上是一个增函数,其值域为[m ,n ],所以m +n =f (-1)+f (1)=4.故选C.]9.A [依题意,f (0)=-3<0,f (1)=e -2>0,且函数f (x )是增函数,因此函数f (x )的零点在区间(0,1)内,即0<a <1.g (1)=-3<0,g (2)=ln 2+3>0,且函数g (x )在(0,+∞)内单调递增,所以函数g (x )的零点在区间(1,2)内,即1<b <2.于是有f (b )>f (1)>0,g (a )<g (1)<0,所以g (a )<0<f (b ).故选A.]10.D [由f (x -4)=f (x ),知f (x )的周期为4,又f (x )为偶函数,所以f (x -4)=f (x )=f (4-x ),所以函数f (x )的图象关于直线x =2对称,作出函数y =f (x )与y =log a x 的图象如图所示,要使方程f (x )=log a x 有三个不同的根,则⎩⎪⎨⎪⎧a >1,log a 6<2,log a 10>2,解得6<a <10,选D.]11.C [根据题意,函数y =ax 2与y =e x的图象在(0,+∞)上有公共点, 令ax 2=e x,得a =exx2(x >0).设f (x )=exx2(x >0),则f ′(x )=x 2e x -2x e xx 4,由f ′(x )=0,得x =2.当0<x <2时,f ′(x )<0,函数f (x )=exx2在区间(0,2)上是减函数;当x >2时,f ′(x )>0,函数f (x )=exx2在区间(2,+∞)上是增函数.所以当x =2时,函数f (x )=e x x 2在(0,+∞)上有最小值f (2)=e 24,所以a ≥e24.故选C.]12.A [令U ={1,2,3},P ={1},Q ={1,2}. 对于①,f P (1)=1=f Q (1),f P (2)=0<f Q (2)=1,f P (3)=f Q (3)=0,可知①正确;对于②,有f P (1)=1,f P (2)=0,f P (3)=0,f ∁U P (1)=0,f ∁U P (2)=1,f ∁U P (3)=1,可知②正确;对于③,有f P (1)=1,f P (2)=0,f P (3)=0,f Q (1)=1,f Q (2)=1,f Q (3)=0,f P ∩Q (1)=1,f P ∩Q (2)=0,f P ∩Q (3)=0,可知③正确;对于④,有f P (1)=1,f P (2)=0,f P (3)=0,f Q (1)=1,f Q (2)=1,f Q (3)=0,f P ∪Q (1)=1,f P ∪Q (2)=1,f P ∪Q (3)=0,可知④不正确.]13.(2,+∞)解析 由M ={x |x 2≤4}={x |-2≤x ≤2}=[-2,2],可得∁R M =(-∞,-2)∪(2,+∞),又N ={x |log 2x ≥1}={x |x ≥2}=[2,+∞),则(∁R M )∩N =(2,+∞). 14.2+ln 2解析 显然m >0,由e x =m ,得x =ln m , 由ln x 2+12=m ,得x =212em -,则|AB |=212em --ln m . 令h (m )=212em --ln m ,由h ′(m )=212em --1m =0,求得m =12. 当0<m <12时,h ′(m )<0,函数h (m )在⎝ ⎛⎭⎪⎫0,12上单调递减; 当m >12时,h ′(m )>0,函数h (m )在⎝ ⎛⎭⎪⎫12,+∞上单调递增. 所以h (m )min =h ⎝ ⎛⎭⎪⎫12=2+ln 2,因此|AB |的最小值为2+ln 2. 15.5解析 由方程⎝ ⎛⎭⎪⎫12|x |+a +1=0恰有一个解,得a =-2.又⎩⎪⎨⎪⎧4-|x |>0,1≤4-|x |≤4,解得-3≤x ≤3,所以b =3.所以b -a =3-(-2)=5. 16.①④解析 当x <0时,-x >0,所以f (-x )=e x(-x -1)=-f (x ),所以f (x )=e x(x +1),故①正确;当x <0时,f ′(x )=e x(x +1)+e x,令f ′(x )=0,所以x =-2,所以f (x )在(-∞,-2)上单调递减,在(-2,0)上单调递增,而在(-∞,-1)上,f (x )<0,在(-1,0)上,f (x )>0,所以f (x )在(-∞,0)上仅有一个零点,由对称性可知,f (x )在(0,+∞)上也有一个零点,又f (0)=0,故该函数有三个零点,故②错误;因为当x <0时,f (x )在(-∞,-2)上单调递减,在(-2,0)上单调递增,且当x <-1时,f (x )<0,当-1<x <0时,f (x )>0,所以当x <0时,f (-2)≤f (x )<1,即-1e 2≤f (x )<1,由对称性可知,当x >0时,-1<f (x )≤1e 2,又f (0)=0,故当x ∈(-∞,+∞)时,f (x )∈(-1,1),若关于x 的方程f (x )=m 有解,则-1<m <1,且对∀x 1,x 2∈R ,|f (x 2)-f (x 1)|<2恒成立,故③错误,④正确. 17.解 (1)由题意得A ={x |-2<x <10},B ={x |x ≥1+a 或x ≤1-a }. 若A ∩B =∅,则必须满足⎩⎪⎨⎪⎧1+a ≥10,1-a ≤-2,解得a ≥9,a >0,∴a 的取值范围为a ≥9.(2)易得綈p :x ≥10或x ≤-2.∵綈p 是q 的充分不必要条件,∴{x |x ≥10或x ≤-2}是{x |x ≥1+a 或x ≤1-a }的真子集,则⎩⎪⎨⎪⎧10≥1+a ,-2≤1-a ,a >0,其中两个等号不能同时成立,解得0<a ≤3, ∴a 的取值范围为0<a ≤3.18.解 令f (x )=x 2+(a +1)x +a -2.∵二次方程x 2+(a +1)x +a -2=0的一个根大于零,另一根小于零, ∴f (0)<0,即a -2<0,∴a <2. ∴命题p 为真时,有a <2. ∵x ∈(-∞,-1),∴由不等式2x 2+x >2+ax ,可得a >2x -2x+1.令g (x )=2x -2x+1,∴g ′(x )=2+2x2>0,∴g (x )在x ∈(-∞,-1)单调递增,且g (-1)=1, ∴g (x )∈(-∞,1).又不等式2x 2+x >2+ax 对∀x ∈(-∞,-1)恒成立, ∴命题q 为真时,有a ≥1.依题意,命题“p ∨q ”为真命题,命题“p ∧q ”为假命题,则有 ①若p 真q 假,得a <1; ②若p 假q 真,得a ≥2.综上可得,所求实数a 的取值范围为(-∞,1)∪[2,+∞).19.证明 要证f (x )≥a ⎝⎛⎭⎪⎫1-1x (x >0),只需证f (x )-a ⎝⎛⎭⎪⎫1-1x ≥0(x >0),即证a ⎝⎛⎭⎪⎫ln x +1x-1≥0(x >0).∵a >0,∴只需证ln x +1x -1≥0(x >0).令g (x )=ln x +1x-1(x >0), 即证g (x )min ≥0(x >0). ∴g ′(x )=1x -1x 2=x -1x2(x >0).令g ′(x )=0,得x =1.∴当0<x <1时,g ′(x )<0,此时g (x )在(0,1)上单调递减; 当x >1时,g ′(x )>0,此时g (x )在(1,+∞)上单调递增. ∴[g (x )]min =g (1)=0≥0,即ln x +1x-1≥0成立,故有f (x )≥a ⎝⎛⎭⎪⎫1-1x 成立.20.(1)证明 f (x +y )=f (x )+f (y )(x ,y ∈R ),①令x =y =0,代入①式,得f (0+0)=f (0)+f (0),即f (0)=0. 令y =-x ,代入①式,得f (x -x )=f (x )+f (-x ),又f (0)=0, 则有0=f (x )+f (-x ).即f (-x )=-f (x )对任意x ∈R 恒成立, 所以f (x )是奇函数.(2)解 f (2)=32>0,即f (2)>f (0),又f (x )在R 上是单调函数, 所以f (x )在R 上是增函数. 又由(1)知f (x )是奇函数,f (k ·3x )<-f (3x -9x -2)=f (-3x +9x +2),所以k ·3x <-3x +9x +2,32x -(1+k )·3x+2>0对任意x ∈R 恒成立. 令t =3x>0,问题等价于t 2-(1+k )t +2>0对任意t >0恒成立. 令g (t )=t 2-(1+k )t +2,其对称轴t =1+k 2.当1+k 2<0,即k <-1时,g (0)=2>0,符合题意; 当1+k 2≥0时,对任意t >0,g (t )>0恒成立⇔⎩⎪⎨⎪⎧ 1+k 2≥0,Δ=(1+k )2-4×2<0,解得-1≤k <-1+2 2.综上所述,当k <-1+22时,f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立.21.解 (1)设需要新建n (n ∈N *)个桥墩,则(n +1)x =m ,∴n =m x -1(n ∈N *). ∴y =f (x )=256n +(n +1)(2+x )x =256⎝⎛⎭⎪⎫m x -1+m x (2+x )x =256m x+m x +2m -256(0<x ≤m ). (2)由(1)得,f ′(x )=-256m x 2+12m 12x -=m 2x 2(32x -512). 令f ′(x )=0,得x 32=512,∴x =64. 当0<x <64时,f ′(x )<0,此时,f (x )在区间(0,64)内为减函数;当64≤x <640时,f ′(x )>0,此时, f (x )在区间[64,640)内为增函数.∴函数f (x )在x =64处取得极小值,也是其最小值.∵m =640,∴n =m x -1=64064-1=9. 此时,y min =8 704(万元).故需新建9个桥墩才能使工程费用y 取得最小值,且最少费用为8 704万元.22.解 (1)由题设,得f ′(x )=e x-2ax ,∴f ′(0)=1,∴f (x )在点P (0,1)处的切线方程为 y -f (0)=f ′(0)x ,即y =x +1.(2)依题意,知f ′(x )=e x -2ax ≥0(x ∈R )恒成立,①当x =0时,有f ′(x )≥0恒成立,此时a ∈R .②当x >0时,有2a ≤e x x ,令g (x )=e x x ,则g ′(x )=e x (x -1)x 2, 由g ′(x )=0,得x =1且当x >1时,g ′(x )>0;当0<x <1时,g ′(x )<0.∴g (x )min =g (1)=e ,则有2a ≤g (x )min =e ,∴a ≤e 2. ③当x <0时,有2a ≥e x x, ∵e x x<0,则有2a ≥0,∴a ≥0. 又a =0时,f ′(x )=e x≥0恒成立. 综上,若函数f (x )为R 上的单调递增函数,所求a ∈⎣⎢⎡⎦⎥⎤0,e 2.。

2018届高三数学每天一练半小时:第15练 函数中的易错题含答案

2018届高三数学每天一练半小时:第15练 函数中的易错题含答案

训练目标(1)函数概念、性质、图象知识的巩固深化;(2)解题过程的严谨性、规范化训练.训练题型 函数中的易错题.解题策略(1)讨论函数性质要注意定义域;(2)函数性质和图象相结合;(3)条件转化要等价.一、选择题 1.若f (x )=12log (21)x +,则f (x )的定义域为( )A.⎝ ⎛⎭⎪⎫-12,0B.⎝ ⎛⎦⎥⎤-12,0C.⎝ ⎛⎭⎪⎫-12,+∞ D .(0,+∞)2.函数y =e|ln x |-|x -1|的图象大致是( )3.(2016·湖北浠水实验高中期中)设f (x )=1-(x -a )(x -b )(a <b ),m ,n 为y =f (x )的两个零点,且m <n ,则a ,b ,m ,n 的大小关系是( ) A .a <m <n <b B .m <a <b <n C .a <b <m <nD .m <n <a <b4.定义在R 上的函数f (x )既是奇函数,又是周期函数,T 是它的一个正周期,若将该函数在区间[-T ,T ]上的零点个数记为n ,则n 可能为( )A .0B .1C .3D .55.(2016·广东汕头澄海凤翔中学段考)已知函数f (x )=⎩⎪⎨⎪⎧ax 2+1,x ≥0,(a -2)e x,x <0是R 上的单调函数,则实数a 的取值范围是( ) A .(2,+∞) B .(2,3] C .(-∞,3]D .(2,3)6.(2016·湖南娄底高中名校联考)对于函数f (x ),使f (x )≤n 成立的所有常数n 中,我们把n 的最小值G 叫做函数f (x )的上确界.则函数f (x )=122,0,1log (),02x x x x -⎧≥⎪⎨-<⎪⎩的上确界是( ) A .0 B.12 C .1D .27.(2016·青海西宁第四高级中学月考)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 0.5x ,x >1.若对于任意x∈R ,不等式f (x )≤t 24-t +1恒成立,则实数t 的取值范围是( )A .(-∞,1]∪[2,+∞)B .(-∞,1]∪[3,+∞)C .[1,3]D .(-∞,2]∪[3,+∞)8.(2016·湖北重点中学月考)设方程2x+x +2=0和方程log 2x +x +2=0的根分别为p 和q ,函数f (x )=(x +p )·(x +q )+2,则( )A .f (2)=f (0)<f (3)B .f (0)<f (2)<f (3)C .f (3)<f (0)=f (2)D .f (0)<f (3)<f (2)二、填空题9.已知y =f (x )在(0,2)上是增函数,y =f (x +2)是偶函数,则f (1),f (52),f (72)的大小关系是____________.(用“<”连接)10.若关于x 的不等式ax 2+x -2a <0的解集中仅有4个整数解,则实数a 的取值范围为________.11.(2016·四川成都新都一中月考)已知函数f (x )=⎩⎪⎨⎪⎧x -2,x >0,-x 2+bx +c ,x ≤0满足f (0)=1,且有f (0)+2f (-1)=0,那么函数g (x )=f (x )+x 的零点有________个.12.已知f (x )=|log a |x -1||(a >0,a ≠1),若x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则1x 1+1x 2+1x 3+1x 4=________.答案精析1.A [由题意,可知12log (2x +1)>0,又因为2x +1>0,所以可得0<2x +1<1,解得-12<x <0.]2.D [原式=⎩⎪⎨⎪⎧x +1x-1,0<x <1,1,x ≥1.对照图象知选D.]3.B [因为函数f (x )=1-(x -a )(x -b )的图象开口向下,且f (a )=f (b )=1>0,所以在区间[a ,b ]上,f (x )>0恒成立,所以函数f (x )=1-(x -a )(x -b )的两个零点在区间[a ,b ]的两侧,即m <a <b <n .故选B.]4.D [因为奇函数f (x )在x =0处有意义,所以f (0)=0,即x =0为函数f (x )的一个零点;再由周期函数的定义,可知f (T )=f (-T )=f (0+T )=f (0-T )=f (0)=0,所以x =T ,x =-T 也是函数f (x )的零点;又f (-T 2)=f (-T 2+T )=f (T 2),而由奇函数的定义,知f (-T2)=-f (T 2),所以f (T 2)=-f (T 2),即f (T 2)=0.所以f (-T2)=0.所以x =T 2,x =-T2也是函数f (x )的零点.故选D.]5.B [若f (x )在R 上单调递增,则有⎩⎪⎨⎪⎧a >0,a -2>0,a -2≤1,解得2<a ≤3;若f (x )在R 上单调递减,则有⎩⎪⎨⎪⎧a <0,a -2<0,a -2≥1,a 无解.综上,实数a 的取值范围是(2,3].故选B.]6.C [f (x )在(-∞,0)上是单调递增的,f (x )在[0,+∞)上是单调递减的, ∴f (x )在R 上的最大值是f (0)=1, ∴n ≥1,∴G =1,故选C.]7.B [由题意可知f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 0.5x ,x >1的最大值为14,若对于任意x ∈R ,不等式f (x )≤t 24-t +1恒成立,则14≤t24-t +1,解得t ∈(-∞,1]∪[3,+∞).故选B.]8.A [方程2x +x +2=0和方程log 2x +x +2=0可以看作方程2x=-x -2和方程log 2x = -x -2.因为方程2x+x +2=0和方程log 2x +x +2的根分别为p 和q ,即函数y =2x与函数y =-x -2的交点B 的横坐标为p ;函数y =log 2x 与函数y =-x -2的交点C 的横坐标为q .因为y =2x与y =log 2x 互为反函数且关于y =x 对称,所以BC 的中点A 一定在直线y =x 上,联立方程得⎩⎪⎨⎪⎧y =x ,y =-x -2,解得A 点坐标为(-1,-1).根据中点坐标公式得到p +q2=-1即p +q =-2,则函数f (x )=(x +p )(x +q )+2为开口向上的抛物线,且对称轴为x =-p +q2=1,得到f (0)=f (2),且当x >1时,函数为增函数,所以f (3)>f (2).综上所述,f (3)>f (2)=f (0).故选A.]9.f (72)<f (1)<f (52)解析 因为y =f (x +2)是偶函数,f (x +2)的图象向右平移2个单位即得f (x )的图象.所以函数y =f (x )的图象关于直线x =2对称,又因为f (x )在(0,2)上是增函数,所以f (x )在(2,4)上是减函数,且f (1)=f (3),由于72>3>52,所以f (72)<f (3)<f (52),即f (72)<f (1)<f (52).10.[27,37)解析 设f (x )=ax 2+x -2a ,由题中不等式ax 2+x -2a <0的解集中仅有4个整数解,易知抛物线的开口向上,即a >0.又f (0)=-2a <0,知解集中有0;f (-1)=-1-a <0,知解集中有-1;而f (1)=1-a 与f (-2)=2a -2=2(a -1)异号,又f (2)=2>0,则可推出解集中四个整数为:-3,-2,-1,0,故有⎩⎪⎨⎪⎧f (-3)<0,f (-4)≥0,即⎩⎪⎨⎪⎧7a -3<0,14a -4≥0,解得a ∈[27,37).11.2解析 由f (0)=1,且有f (0)+2f (-1)=0,得c =1,b =12,g (x )=f (x )+x =⎩⎪⎨⎪⎧2x -2,x >0,-x 2+32x +1,x ≤0.当x >0时,函数g (x )有一个零点x =1;当x ≤0时,函数g (x )是开口向下的抛物线,且与y 轴交于点(0,1),故在x 轴的负半轴有且只有一个零点.故函数g (x )有2个零点.12.2解析 如图所示,f (x 1)=f (x 2)=f (x 3)=f (x 4),即|log a |x 1-1||=|log a |x 2-1||=|log a |x 3-1||=|log a |x 4-1||,因为x 1<0,0<x 2<1,所以1-x 1>1,0<1-x 2<1,所以log a |x 1-1|+log a |x 2-1|=0,即log a (1-x 1)+log a (1-x 2)=0,即(1-x 1)(1-x 2)=1,x 1x 2-(x 1+x 2)=0,所以1x 1+1x 2=1.同理可得1x 3+1x 4=1,所以1x 1+1x 2+1x 3+1x 4=2.。

最新-2018年高考数学冲刺易错题经典30题精品

最新-2018年高考数学冲刺易错题经典30题精品
2018 年高考数学冲刺
一、选择题
易错题经典 30 题
姓名
1.直线 x 1与直线 x 3y 0 的夹角为(


2
5
A.
B.
C.
D.
6
3
3
6
2.设集合 P m 1 m 0 , Q m R mx2 4mx 4 0, 对任意实数 x恒成立 ,则下列
关系成立的是(

A. P Q B. Q P C. P Q
D. P Q
3 3.已知命题 p :
1, q :| x | a ,若 p 是 q 的必要不充分条件,则实数
x1
A. a 1
B. a 1
C. a 2
D. a 2
4.如图是函数 f(x) = x3+ bx2+ cx+d 的大致图象,则
2
2
x1+ x2等于 (
)
a 的取值范围是
y
8 A .9
10 B. 9
16 C. 9
l 、 m 是两条异
面直线,则过空间任意一点必有一个平面与
l 、 m 都平行。
其中正确命题的个数是(

A.1 B.2
C.3
D.4
12.已知函数 f (x) A sin( x )( A 0, 0) 的部分
y
n
图象如图所示 ,记 f (k) f (1) f ( 2)
k1
11
则 f (n) 的值为 (
)
n1
___
(注:填上你认为是正确的一种答案即可)
精品推荐 强力推荐 值得拥有
职工的某种情况,决定采取分层抽样的方法。抽取一个容量为
10 的样本,每个管理人员
被抽到的概率为

2018年高考数学-函数含答案

2018年高考数学-函数含答案

2018年高考复习专题-函数一.函数1、函数的概念:(1)定义:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作:y =)(x f ,x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{)(x f | x ∈A }叫做函数的值域. (2)函数的三要素:定义域、值域、对应法则(3)相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)2、定义域:(1)定义域定义:函数)(x f 的自变量x 的取值范围。

(2)确定函数定义域的原则:使这个函数有意义的实数的全体构成的集合。

(3)确定函数定义域的常见方法:①若)(x f 是整式,则定义域为全体实数②若)(x f 是分式,则定义域为使分母不为零的全体实数 例:求函数xy 111+=的定义域。

③若)(x f 是偶次根式,则定义域为使被开方数不小于零的全体实数例1. 求函数 ()2143432-+--=x x xy 的定义域。

例2. 求函数()02112++-=x x y 的定义域。

④对数函数的真数必须大于零⑤指数、对数式的底必须大于零且不等于1⑥若)(x f 为复合函数,则定义域由其中各基本函数的定义域组成的不等式组来确定⑦指数为零底不可以等于零,如)0(10≠=x x⑧实际问题中的函数的定义域还要保证实际问题有意义. (4)求抽象函数(复合函数)的定义域已知函数)(x f 的定义域为[0,1]求)(2x f 的定义域已知函数)12(-x f 的定义域为[0,1)求)31(x f -的定义域3、值域 :(1)值域的定义:与x 相对应的y 值叫做函数值,函数值的集合叫做函数的值域。

(2)确定值域的原则:先求定义域 (3)常见基本初等函数值域:一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数(正余弦、正切)(4)确定函数值域的常见方法:①直接法:从自变量x 的范围出发,推出()y f x =的取值范围。

函数的运算专项练习(含答案)

函数的运算专项练习(含答案)

函数的运算专项练习(含答案)1. 请计算以下函数表达式的值:- $f(x) = 3x^2 - 2x + 5$,当 $x=-2$ 时的值。

解答:将 $x=-2$ 代入函数表达式计算,得到 $f(-2) = 3(-2)^2 - 2(-2) + 5 = 26$。

- $g(x) = \frac{1}{2x^2 + 3x - 1}$,当 $x=1$ 时的值。

解答:将 $x=1$ 代入函数表达式计算,得到 $g(1) =\frac{1}{2(1)^2 + 3(1) - 1} = \frac{1}{4}$。

2. 求以下函数的定义域:- $h(x) = \sqrt{7 - x}$.解答:函数 $h(x)$ 的定义域为使得 $7 - x \geq 0$ 成立的实数集合,即 $x \leq 7$。

- $k(x) = \frac{1}{x^2 - 9}$.解答:函数 $k(x)$ 的定义域为使得 $x^2 - 9 \neq 0$ 成立的实数集合,即 $x \neq -3$ 和 $x \neq 3$。

3. 计算以下函数的极限:- $\lim_{x \to 2} (x^2 - 4)$.解答:当 $x$ 趋近于 2 时,函数 $(x^2 - 4)$ 的极限为 $(2^2 - 4) = 0$。

- $\lim_{x \to \infty} \left(\frac{2x^2 + 6x}{4x^2 - 3x}\right)$.解答:当 $x$ 趋近于无穷大时,函数 $\left(\frac{2x^2 +6x}{4x^2 - 3x}\right)$ 的极限为 $\frac{1}{2}$。

4. 求以下函数的导数:- $f(x) = 3x^2 - 4x + 7$.解答:函数 $f(x)$ 的导数为 $f'(x) = \frac{d}{dx}(3x^2) -\frac{d}{dx}(4x) + \frac{d}{dx}(7) = 6x - 4$。

2018年高考数学—函数(解答+答案)

2018年高考数学—函数(解答+答案)

3
8.(18 北京文(19)(本小题 13 分))
设函数 f (x) [ax2 (3a 1)x 3a 2]ex . (Ⅰ)若曲线 y f (x) 在点 (2, f (2)) 处的切线斜率为 0,求 a; (Ⅱ)若 f (x) 在 x 1处取得极小值,求 a 的取值范围.
9.(18 全国二文 21.(12 分))
当 1 x 0 时,g(x) 0 ;当 x 0 时,g(x) 0 .故当 x 1 时,g(x) g(0) 0 ,
且仅当 x 0 时, g(x) 0 ,从而 f (x) 0 ,且仅当 x 0 时, f (x) 0 .
所以 f (x) 在 (1, ) 单调递增.学#科网
又 f (0) 0 ,故当 1 x 0 时, f (x) 0;当 x 0 时, f (x) 0 .
f (x) 在 (0, ) 只有一个零点当且仅当 h(x) 在 (0, ) 只有一个零点.
(i)当 a 0 时, h(x) 0 , h(x) 没有零点; (ii)当 a 0 时, h'(x) ax(x 2)ex .
当 x (0, 2) 时, h'(x) 0 ;当 x (2, ) 时, h'(x) 0 .
7
综上, f (x) 在 (0, ) 只有一个零点时, a e2 . 4
4.解:(1)当 a 0 时, f (x) (2 x) ln(1 x) 2x , f (x) ln(1 x) x . 1 x
设函数 g(x)
f
(x)
ln(1 x) x 1 x
,则 g(x)
x (1 x)2
.
(1)若 a 0 ,证明:当 1 x 0时, f x 0 ;当 x 0 时, f x 0 ; (2)若 x 0 是 f x 的极大值点,求 a .

【大师特稿】2018届高三数学每天一练半小时(91套 含答案532页)

【大师特稿】2018届高三数学每天一练半小时(91套 含答案532页)

一、选择题1.(2016·山东乳山一中月考)设U ={1,2,3,4,5},A ={1,2,3},B ={2,3,4},则下列结论中正确的是( ) A .A ⊆BB .A ∩B ={2}C .A ∪B ={1,2,3,4,5}D .A ∩(∁U B )={1}2.已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x <y ,x +y ∈A },则集合B 的子集个数是( ) A .4 B .15 C .8D .163.设函数f (x )=lg(1-x 2),集合A ={x |y =f (x )},B ={y |y =f (x )},则图中阴影部分表示的集合为( )A .[-1,0]B .(-1,0)C .(-∞,-1)∪[0,1)D .(-∞,-1]∪(0,1)4.(2016·厦门模拟)设集合A ={(x ,y )|x 24+y 216=1},B ={(x ,y )|y =3x},则A ∩B 的子集的个数是( ) A .1 B .2 C .3D .45.已知集合A ={x |y =ln(1-2x )},B ={x |x 2≤x },则∁(A ∪B )(A ∩B )等于( ) A .(-∞,0)B.⎝ ⎛⎦⎥⎤-12,1 C .(-∞,0)∪⎣⎢⎡⎦⎥⎤12,1 D.⎝ ⎛⎦⎥⎤-12,0 6.设集合P ={m |-1<m ≤0},Q ={m ∈R |mx 2+4mx -4<0对任意实数x 恒成立},则下列关系中成立的是( ) A .PQ B .P QC .P =QD .P ∩Q =∅7.设集合A ={x |x 2+2x -3>0},B ={x |x 2-2ax -1≤0,a >0}.若A ∩B 中恰含有一个整数,则实数a 的取值范围是( ) A .(0,34)B .[34,43)C .[34,+∞)D .(1,+∞)8.用C (A )表示非空集合A中的元素个数,定义A *B =⎩⎪⎨⎪⎧C (A )-C (B ),C (A )≥C (B ),C (B )-C (A ),C (A )<C (B ).若A={1,2},B ={x |(x 2+ax )·(x 2+ax +2)=0},且A *B =1,设实数a 的所有可能取值组成的集合是S ,则C (S )等于( ) A .1 B .3 C .5 D .7二、填空题9.(2017·成都月考)已知集合M ={x |x >x 2},N ={y |y =4x2,x ∈M },则M ∩N =__________________.10.若集合A ={x |-1<x ≤2},B ={x |(x -a )(x -a +1)≥0},且A ∩B =A ,则实数a 的取值范围是______________________.11.已知集合A ={x |x 2-2x -3>0},B ={x |x 2+ax +b ≤0},若A ∪B =R ,A ∩B ={x |3<x ≤4},则a +b 的值为________.12.设S 是实数集R 的非空子集,若对任意x ,y ∈S ,都有x +y ,x -y ,xy ∈S ,则称S 为封闭集.下列命题:①集合S ={a +b 3|a ,b 为整数}为封闭集;②若S 为封闭集,则一定有0∈S ;③封闭集一定是无限集;④若S 为封闭集,则满足S ⊆T ⊆R 的任意集合T 也是封闭集.其中真命题是________.(写出所有真命题的序号)答案精析1.D [因为1∈A 但1∉B ,所以A 不对;因为A ∩B ={2,3},所以B 不对;因为A ∪B ={1,2,3,4},所以C 不对;经检验,D 是正确的,故选D.]2.D [当x =1时,y =2或3或4,当x =2时,y =3.故集合B ={(1,2),(1,3),(1,4),(2,3)},因此集合B 中有4个元素,其子集个数为16.故选D.]3.D [因为A ={x |y =f (x )}={x |1-x 2>0}={x |-1<x <1},则u =1-x 2∈(0,1], 所以B ={y |y =f (x )}={y |y ≤0},A ∪B =(-∞,1),A ∩B =(-1,0],故图中阴影部分表示的集合为(-∞,-1]∪(0,1),选D.]4.D [由于函数y =3x的图象经过点(0,1),且(0,1)在椭圆x 24+y 216=1内,所以函数y =3x的图象与椭圆x 24+y 216=1有两个交点,从而A ∩B 中有2个元素,故A ∩B 的子集的个数是4,故选D.]5.C [∵集合A ={x |y =ln(1-2x )}={x |1-2x >0}={x |x <12},B ={x |x 2≤x }={x |0≤x ≤1},∴A ∪B ={x |x ≤1},A ∩B ={x |0≤x <12},∴∁(A ∪B )(A ∩B )=(-∞,0)∪⎣⎢⎡⎦⎥⎤12,1,故选C.] 6.C [Q ={m ∈R |mx 2+4mx -4<0对任意实数x 恒成立},对m 分类: ①为m =0时,-4<0恒成立;②当m <0时,需Δ=(4m )2-4×m ×(-4)<0,解得-1<m <0. 综合①②知-1<m ≤0.故选C.]7.B [A ={x |x 2+2x -3>0}={x |x >1或x <-3},因为函数y =f (x )=x 2-2ax -1图象的对称轴为直线x =a >0,f (-3)=6a +8>0,根据对称性可知,要使A ∩B 中恰含有一个整数,则这个整数为2,所以有f (2)≤0且f (3)>0,即⎩⎪⎨⎪⎧4-4a -1≤0,9-6a -1>0,所以⎩⎪⎨⎪⎧a ≥34,a <43,即34≤a <43.]8.B [因为C (A )=2,A *B =1,所以C (B )=1或C (B )=3.由x 2+ax =0,得x 1=0,x 2=-a .关于x 的方程x 2+ax +2=0,当Δ=0,即a =±22时,易知C (B )=3,符合题意;当Δ>0,即a <-22或a >22时,易知0,-a 均不是方程x 2+ax +2=0的根,故C (B )=4,不符合题意;当Δ<0,即-22<a <22时,方程x 2+ax +2=0无实数解,当a =0时,B ={0},C (B )=1,符合题意,当-22<a <0或0<a <22时,C (B )=2,不符合题意.所以S ={0,-22,22}.故C (S )=3.] 9.{x |12<x <1}解析 对于集合M ,由x >x 2, 解得0<x <1,∴M ={x |0<x <1}, ∵0<x <1,∴1<4x<4,∴12<4x 2<2,∴N ={y |12<y <2},∴M ∩N ={x |12<x <1}.10.(-∞,-1]∪[3,+∞) 解析 化简B ={x |x ≥a 或x ≤a -1}, 又A ∩B =A ,所以A ⊆B . 由数轴知a ≤-1或a -1≥2, 即a ≤-1或a ≥3.所以a 的取值范围是(-∞,-1]∪[3,+∞). 11.-7解析 由已知得A ={x |x <-1或x >3},∵A ∪B =R ,A ∩B ={x |3<x ≤4},∴B ={x |-1≤x ≤4}, 即方程x 2+ax +b =0的两根为x 1=-1,x 2=4. ∴a =-3,b =-4,∴a +b =-7. 12.①②解析 ①正确,任取x ,y ∈S ,设x =a 1+b 13,y =a 2+b 23(a 1,b 1,a 2,b 2∈Z ),则x +y =(a 1+a 2)+(b 1+b 2)3,其中a 1+a 2∈Z ,b 1+b 2∈Z .即x +y ∈S .同理x -y ∈S ,xy ∈S .②正确,当x =y 时,0∈S .③错误,当S ={0}时,是封闭集,但不是无限集.④错误,设S ={0}⊆T ={0,1},显然T 不是封闭集.因此正确命题为①②.一、选择题1.(2016·衡阳五校联考)命题“若x ≥a 2+b 2,则x ≥2ab ”的逆命题是( ) A .若x <a 2+b 2,则x <2ab B .若x ≥a 2+b 2,则x <2ab C .若x <2ab ,则x <a 2+b2D .若x ≥2ab ,则x ≥a 2+b 22.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题是“若x ≠4,则x 2-3x -4≠0” B .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题 C .“x =4”是“x 2-3x -4=0”的充分条件D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0” 3.(2016·淄博期中)“x (x -5)<0成立”是“|x -1|<4成立”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件4.直线x -y +m =0与圆x 2+y 2-2x -1=0相交的一个充分不必要条件是( ) A .-3<m <1 B .-4<m <2 C .0<m <1D .m <15.(2016·广东阳东广雅中学期中)设p :f (x )=x 3-2x 2+mx +1在(-∞,+∞)上单调递增;q :m >43,则p 是q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .以上都不对6.甲:x ≠2或y ≠3;乙:x +y ≠5,则( ) A .甲是乙的充分不必要条件 B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件7.设命题p :2x -1≤1,命题q :(x -a )[x -(a +1)]≤0,若q 是p 的必要不充分条件,则实数a 的取值范围是( ) A .(0,2) B .[0,12]C .[-2,0]D .(-2,0)8.(2016·大庆期中)给出下列命题:①若等比数列{a n }的公比为q ,则“q >1”是“a n +1>a n (n ∈N *)”的既不充分也不必要条件; ②“x ≠1”是“x 2≠1”的必要不充分条件;③若函数y =lg(x 2+ax +1)的值域为R ,则实数a 的取值范围是-2<a <2; ④“a =1”是“函数y =cos 2ax -sin 2ax 的最小正周期为π”的充要条件. 其中真命题的个数是( ) A .1 B .2 C .3 D .4二、填空题9.给出以下四个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若q ≤-1,则x 2+x +q =0有实根”的逆否命题; ④若ab 是正整数,则a ,b 都是正整数. 其中真命题是________.(写出所有真命题的序号)10.(2017·益阳联考)命题p :“若a ≥b ,则a +b >2 015且a >-b ”的逆否命题是 ________________________________________________________________________. 11.若方程x 2-mx +2m =0有两根,其中一根大于3一根小于3的充要条件是________. 12.已知“命题p :(x -m )2>3(x -m )”是“命题q :x 2+3x -4<0成立”的必要不充分条件,则实数m 的取值范围为________________.答案精析 1.D2.B [逆否命题,条件、结论均否定,并交换,所以命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”,故A 正确;命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为“若方程x 2+x -m =0有实根,则m >0”,由Δ=1+4m ≥0,解得m ≥-14,是假命题,故B 错误;x =4时,x 2-3x -4=0,是充分条件,故C 正确;命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”,故D 正确.故选B.]3.A [∵x (x -5)<0⇒0<x <5,|x -1|<4⇒-3<x <5,∴“x (x -5)<0成立”⇒“|x -1|<4成立”,反之,则不一定成立, ∴“x (x -5)<0成立”是“|x -1|<4成立”的充分而不必要条件.故选A.] 4.C [圆方程化为(x -1)2+y 2=2,圆心(1,0)到直线x -y +m =0的距离d =|1+m |2,当直线与圆相交时,|1+m |2<2,即-3<m <1,因为{m |0<m <1}{m |-3<m <1},所以0<m <1是直线与圆相交的一个充分不必要条件.故选C.]5.C [∵f (x )=x 3-2x 2+mx +1在(-∞,+∞)上单调递增,∴f ′(x )=3x 2-4x +m , 即3x 2-4x +m ≥0在R 上恒成立,∴Δ=16-12m ≤0,即m ≥43.∵p :f (x )=x 3-2x 2+mx +1在(-∞,+∞)上单调递增,q :m >43,∴根据充分必要条件的定义可判断:p 是q 的必要不充分条件,故选C.]6.B [“甲⇒乙”的逆否命题为“若x +y =5,则x =2且y =3”显然不正确,而“乙⇒甲”的逆否命题为“若x =2且y =3,则x +y =5”是真命题,因此甲是乙的必要不充分条件.] 7.B [解不等式2x -1≤1,得12≤x ≤1,故满足命题p 的集合P =[12,1].解不等式(x -a )[x -(a +1)]≤0,得a ≤x ≤a +1,故满足命题q 的集合Q =[a ,a +1].又q 是p 的必要不充分条件,则P 是Q 的真子集,即a ≤12且a +1≥1,解得0≤a ≤12,故实数a 的取值范围是[0,12].]8.B [若首项为负,则公比q >1时,数列为递减数列,a n +1<a n (n ∈N *),当a n +1>a n (n ∈N *)时,包含首项为正,公比q >1和首项为负,公比0<q <1两种情况,故①正确;“x ≠1”时,“x 2≠1”在x =-1时不成立,“x 2≠1”时,“x ≠1”一定成立,故②正确;函数y =lg(x2+ax +1)的值域为R ,则x 2+ax +1=0的Δ=a 2-4≥0,解得a ≥2或a ≤-2,故③错误;“a =1”时,“函数y =cos 2x -sin 2x =cos 2x 的最小正周期为π”,但“函数y =cos 2ax -sin 2ax 的最小正周期为π”时,“a =±1”,故“a =1”是“函数y =cos 2ax -sin 2ax 的最小正周期为π”的充分不必要条件,故④错误.故选B.] 9.①③解析 ①命题“若x +y =0,则x ,y 互为相反数”的逆命题为“若x ,y 互为相反数,则x +y =0”,显然①为真命题;②不全等的三角形的面积也可能相等,故②为假命题;③原命题正确,所以它的逆否命题也正确,故③为真命题;④若ab 是正整数,则a ,b 不一定都是正整数,例如a =-1,b =-3,故④为假命题. 10.若a +b ≤2 015或a ≤-b ,则a <b 11.m >9解析 方程x 2-mx +2m =0对应二次函数f (x )=x 2-mx +2m ,若方程x 2-mx +2m =0有两根,其中一根大于3一根小于3,则f (3)<0,解得m >9,即方程x 2-mx +2m =0有两根,其中一根大于3一根小于3的充要条件是m >9. 12.{m |m ≥1或m ≤-7}解析 由命题p 中的不等式(x -m )2>3(x -m )变形,得(x -m )(x -m -3)>0,解得x >m +3或x <m ;由命题q 中的不等式x 2+3x -4<0变形,得(x -1)·(x +4)<0,解得-4<x <1,因为命题p 是命题q 的必要不充分条件,所以m +3≤-4或m ≥1,解得m ≤-7或m ≥1.所以m 的取值范围为{m |m ≥1或m ≤-7}.一、选择题1.(2015·浙江)命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( ) A .∀n ∈N *,f (n )∉N *且f (n )>n B .∀n ∈N *,f (n )∉N *或f (n )>n C .∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0 D .∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 02.(2016·肇庆统测)设a ,b ,c 是非零向量,已知命题p :若a·b =0,则a ⊥b ;命题q : 若a ∥b ,b ∥c ,则a ∥c .则下列命题中假命题是( ) A .p ∧q B .p ∨qC .(綈p )∨qD .(綈p )∨(綈q )3.若“∃x ∈[12,2],使得2x 2-λx +1<0成立”是假命题,则实数λ的取值范围为( )A .(-∞,22]B .[22,3]C .[-22,3]D .λ=34.已知命题p :∀x ∈[1,2],x 2-a ≥0,命题q :∃x ∈R ,x 2+2ax +2-a =0,若“p 且q ”为真命题,则( ) A .a =1或a ≤-2 B .a ≤-2或1≤a ≤2 C .a ≥1D .-2≤a ≤15.已知命题p :∃x 0∈R ,使sin x 0=52;命题q :∀x ∈R ,都有x 2+x +1>0.给出下列结论:①命题“p ∧q ”是真命题;②命题“p ∧(綈q )”是假命题;③命题“(綈p )∨q ”是真命题;④命题“(綈p )∨(綈q )”是假命题.其中正确的命题是( ) A .②③ B .②④ C .③④D .①②③6.(2016·临夏期中)下列结论错误的是( )A .命题“若p ,则q ”与命题“若綈q ,则綈p ”互为逆否命题B .命题p :∀x ∈[0,1],e x ≥1,命题q :∃x ∈R ,x 2+x +1<0,则p ∨q 为真 C .若p ∨q 为假命题,则p ,q 均为假命题 D .“若am 2<bm 2,则a <b ”的逆命题为真命题7.(2016·葫芦岛期中)已知命题P :不等式lg[x (1-x )+1]>0的解集为{x |0<x <1};命题Q :在△ABC 中,“A >B ”是“cos 2⎝ ⎛⎭⎪⎫A 2+π4<cos 2⎝ ⎛⎭⎪⎫B 2+π4”成立的必要不充分条件,则( )A .P 真Q 假B .P ∧Q 为真C .P ∨Q 为假D .P 假Q 真8.(2016·怀仁期中)已知命题p :∀x ∈[-1,2],函数f (x )=x 2-x 的值大于0.若p ∨q 是真命题,则命题q 可以是( ) A .∃x ∈(-1,1),使得cos x <12B .“-3<m <0”是“函数f (x )=x +log 2x +m 在区间⎝ ⎛⎭⎪⎫12,2上有零点”的必要不充分条件 C .直线x =π6是曲线f (x )=3sin 2x +cos 2x 的一条对称轴D .若x ∈(0,2),则在曲线f (x )=e x(x -2)上任意一点处的切线的斜率不小于-1 二、填空题9.命题p 的否定是“对所有正数x ,x >x +1”,则命题p 可写为________________________. 10.给出以下命题:①∀x ∈R ,|x |>x ;②∃α∈R ,sin 3α=3sin α;③∀x ∈R ,x >sin x ; ④∃x ∈(0,+∞),(12)x <(13)x,其中正确命题的序号有________.11.(2017·石家庄质检)已知命题p :x 2-3x -4≤0,命题q :x 2-6x +9-m 2≤0,若綈q是綈p的充分不必要条件,则实数m的取值范围是________________.12.设命题p:函数f(x)=lg(ax2-4x+a)的定义域为R;命题q:不等式2x2+x>2+ax在x∈(-∞,-1)上恒成立,如果命题“p∨q”为真命题,命题“p∧q”为假命题,则实数a 的取值范围为__________.答案精析1.D [由全称命题与特称命题之间的互化关系知选D.]2.D [对于命题p ,由平面向量数量积a·b =0易得a ⊥b ,则命题p 为真命题;对于命题q ,∵a ,b ,c 为非零向量,则q 为真命题,故(綈p )∨(綈q )为假命题,故选D.]3.A [设命题p :∃x ∈[12,2],使得2x 2-λx +1<0,由于命题p 为假命题,所以綈p 为真命题,即∀x ∈[12,2],2x 2-λx +1≥0为真命题,即λ≤2x 2+1x =2x +1x 在区间[12,2]上恒成立,所以只需满足λ≤(2x +1x )min (x ∈[12,2])即可,2x +1x ≥22x ·1x=22,当且仅当2x =1x ,即x =22∈[12,2]时等号成立,所以λ≤22,故选A.]4.A [命题p :∀x ∈[1,2],x 2-a ≥0真,则a ≤1. 命题q :∃x ∈R ,x 2+2ax +2-a =0真, 则Δ=4a 2-4(2-a )≥0,a ≥1或a ≤-2, 又p 且q 为真命题, 所以a =1或a ≤-2.故选A.] 5.A [∵52>1,∴命题p 是假命题,又∵x 2+x +1=(x +12)2+34≥34>0,∴命题q 是真命题,由命题真假的真值表可以判断②③正确.]6.D [命题“若p ,则q ”的逆否命题是“若綈q ,则綈p ”,所以命题“若p ,则q ”与命题“若綈q ,则綈p ”互为逆否命题,故A 正确;命题p :∀x ∈[0,1],e x≥1,为真命题,命题q :∃x ∈R ,x 2+x +1<0,为假命题,则p ∨q 为真,故B 正确;若p ∨q 为假命题,则p ,q 均为假命题,故C 正确;“若am 2<bm 2,则a <b ”的逆命题为“若a <b ,则am 2<bm 2”,而当m 2=0时,由a <b ,得am 2=bm 2,所以“若am 2<bm 2,则a <b ”的逆命题为假命题,故D 不正确.]7.A [由命题P :不等式lg[x (1-x )+1]>0,可知x (1-x )+1>1, ∴0<x <1,即不等式的解集为{x |0<x <1},∴命题P 为真命题. 由命题Q 知,若cos 2⎝ ⎛⎭⎪⎫A 2+π4<cos 2⎝ ⎛⎭⎪⎫B 2+π4, 即sin A >sin B ,∴A >B ; 反之,在三角形中,若A >B ,则必有sin A >sin B ,即cos 2⎝ ⎛⎭⎪⎫A 2+π4<cos 2⎝ ⎛⎭⎪⎫B 2+π4成立,∴命题Q 为假命题.故选A.] 8.C [对于命题p :函数f (x )=x 2-x =⎝ ⎛⎭⎪⎫x -122-14,则函数f (x )在⎣⎢⎡⎭⎪⎫-1,12上单调递减,在⎝ ⎛⎦⎥⎤12,2上单调递增,∴当x =12时,取得最小值,f ⎝ ⎛⎭⎪⎫12=-14<0,因此命题p 是假命题.若p ∨q 是真命题,则命题q 必须是真命题.∀x ∈(-1,1),cos x ∈(cos 1,1],而cos 1>cos π3=12,因此A 是假命题;函数f (x )=x +log 2x +m 在区间⎝ ⎛⎭⎪⎫12,2上单调递增,若函数f (x )在此区间上有零点,则f ⎝ ⎛⎭⎪⎫12·f (2)=⎝ ⎛⎭⎪⎫12-1+m (2+1+m )<0,解得-3<m <12,因此“-3<m <0”是“函数f (x )=x +log 2x +m 在区间⎝ ⎛⎭⎪⎫12,2上有零点”的充分不必要条件,因此B 是假命题;f (x )=3sin 2x +cos 2x =2sin ⎝⎛⎭⎪⎫2x +π6,当x =π6时,sin ⎝ ⎛⎭⎪⎫2×π6+π6=sin π2=1,因此直线x =π6是曲线f (x )的一条对称轴,是真命题;曲线f (x )=e x(x -2),f ′(x )=e x+e x(x -2)=e x(x -1),当x ∈(0,2)时,f ′(x )>f ′(0)=-1,因此D 是假命题.]9.∃x 0∈(0,+∞),x 0≤x 0+1解析 因为p 是綈p 的否定,所以只需将全称命题变为特称命题,再对结论否定即可. 10.②解析 当x ≥0时,|x |=x ,①错;当α=0时,sin 3α=3sin α,②正确;当x =-π2时,x <sin x ,③错;根据指数函数的图象可以判断,当x ∈(0,+∞)时,(12)x >(13)x ,④错.故正确命题的序号只有②. 11.{m |m ≤-4或m ≥4}解析 ∵綈q 是綈p 的充分不必要条件, ∴p 是q 的充分不必要条件, ∴{x |x 2-3x -x |x 2-6x +9-m 2≤0}, ∴{x |-1≤xx |(x +m -3)(x -m -3)≤0}.当-m +3=m +3,即m =0时,不合题意. 当-m +3>m +3,即m <0时,有 {x |-1≤xx |m +3≤x ≤-m +3},此时⎩⎪⎨⎪⎧m +3≤-1,-m +3≥4,(两等号不能同时取得)解得m ≤-4.当-m +3<m +3,即m >0时,有 {x |-1≤xx |-m +3≤x ≤m +3},此时⎩⎪⎨⎪⎧-m +3≤-1,m +3≥4,(两等号不能同时取得)解得m ≥4.综上,实数m 的取值范围是{m |m ≤-4或m ≥4}. 12.[1,2]解析 对于命题p :Δ<0且a >0,故a >2;对于命题q :a >2x -2x+1在x ∈(-∞,-1)上恒成立,又函数y =2x -2x +1为增函数,所以2x -2x+1<1,故a ≥1,命题“p ∨q ”为真命题,命题“p ∧q ”为假命题,等价于p ,q 一真一假.故1≤a ≤2.一、选择题1.若集合A ={x ∈R |ax 2+ax +1=0}中只有一个元素,则a 等于( ) A .4 B .2 C .0D .0或42.已知集合A ={-1,12},B ={x |mx -1=0},若A ∩B =B ,则所有实数m 组成的集合是( )A .{-1,0,2}B .{-12,0,1}C .{-1,2}D .{-1,0,12}3.已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是( ) A .(-∞,-1] B .[1,+∞)C .[-1,1]D .(-∞,-1]∪[1,+∞)4.(2017·烟台质检)已知命题p :∃x ∈R ,mx 2+2≤0;q :∀x ∈R ,x 2-2mx +1>0.若p ∨q 为假命题,则实数m 的取值范围是( ) A .[1,+∞) B .(-∞,-1] C .(-∞,-2]D .[-1,1]5.下列说法不正确的是( )A .命题“∃x 0∈R ,x 20-x 0-1<0”的否定是“∀x ∈R ,x 2-x -1≥0” B .命题“若x >0且y >0,则x +y >0”的否命题是假命题C .命题“∃a ∈R ,使方程2x 2+x +a =0的两根x 1,x 2满足x 1<1<x 2”和命题“函数f (x )= log 2(ax -1)在[1,2]上单调递增”都为真D .△ABC 中,A 是最大角,则sin 2B +sin 2C <sin 2A 是△ABC 为钝角三角形的充要条件 6.满足条件{1,2}M ⊆{1,2,3,4,5}的集合M 的个数是( )A .3B .6C .7D .87.下列有关命题的说法中错误的是( ) A .若“p 或q ”为假命题,则p ,q 均为假命题 B .“x =1”是“x ≥1”的充分不必要条件 C .“cos x =12”的必要不充分条件是“x =π3”D .若命题p :“∃x 0∈R ,x 20≥0”,则命题綈p 为“∀x ∈R ,x 2<0”8.已知命题p :函数f (x )=2ax 2-x -1(a ≠0)在(0,1)内恰有一个零点;命题q :函数y =x 2-a 在(0,+∞)上是减函数.若p 且綈q 为真命题,则实数a 的取值范围是( )A .(1,+∞)B .(-∞,2]C .(1,2]D .(-∞,1]∪(2,+∞)二、填空题9.(2016·江西赣州十二县(市)期中联考)设集合M ={-1,0,1},N ={a ,a 2},若M ∩N =N ,则a 的值是________.10.已知命题p :关于x 的方程x 2-mx -2=0在x ∈[0,1]上有解;命题q :f (x )=log 2(x2-2mx +12)在x ∈[1,+∞)上单调递增.若“綈p ”为真命题,“p ∨q ”为真命题,则实数m 的取值范围为____________.11.已知全集为U =R ,集合M ={x |x +a ≥0},N ={x |log 2(x -1)<1},若M ∩(∁U N )={x |x =1或x ≥3},则a 的取值范围是________.12.(2016·安阳月考)已知两个命题r (x ):sin x +cos x >m ,s (x ):x 2+mx +1>0.如果对∀x ∈R ,r (x )∧s (x )为假,r (x )∨s (x )为真,那么实数m 的取值范围为________________.答案精析1.A [①当a =0时,1=0显然不成立;②当a ≠0时,由Δ=a 2-4a =0,得a =4或a =0(舍).综上可知a =4.选A.]2.A [由A ∩B =B ,得B ⊆A .若B =∅,则m =0.若B ={-1},得-m -1=0, 解得m =-1.若B ={12},则12m -1=0,解得m =2.综上,m 的取值集合是{-1,0,2}.]3.C [由P ∪M =P ,得M ⊆P .又∵P ={x |x 2≤1}={x |-1≤x ≤1},∴-1≤a ≤1.故选C.] 4.A [∵p ∨q 为假,∴p ,q 都是假命题.由p :∃x ∈R ,mx 2+2≤0为假命题, 得∀x ∈R ,mx 2+2>0,∴m ≥0. 由q :∀x ∈R ,x 2-2mx +1>0为假, 得∃x ∈R ,x 2-2mx +1≤0. ∴Δ=(-2m )2-4≥0,得m 2≥1, ∴m ≤-1或m ≥1.∴m ≥1.]5.C [因为2x 2+x +a =0的两根x 1,x 2满足x 1<1<x 2的充要条件是2+1+a <0,所以a <-3,当a <-3时,函数f (x )=log 2(ax -1)在[1,2]上无意义.故选C.]6.C [M 中含三个元素的个数为3,M 中含四个元素的个数也是3,M 中含5个元素的个数只有1个,因此符合题意的共7个.]7.C [对于A ,根据真值表知正确;对于B ,由于x =1可以推出x ≥1,但x ≥1不一定能推出x =1,故正确;对于D ,由特称命题的否定形式知正确;对于C ,“x =π3”应为“cos x=12”的充分不必要条件.] 8.C [若命题p 为真,则⎩⎪⎨⎪⎧1+8a ≥0,f ?0?·f ?1?=-1·?2a -2?<0,得a >1.若命题q 为真,则2-a <0,得a >2, 故由p 且綈q 为真命题,得1<a ≤2.] 9.-1解析 因为集合M ={-1,0,1},N ={a ,a 2},M ∩N =N ,又a 2≥0,所以当a 2=0时,a =0,此时N ={0,0},不符合集合元素的互异性,故a ≠0;当a 2=1时,a =±1,a =1时,N ={1,1},不符合集合元素的互异性,故a ≠1,a =-1时,此时N ={-1,1},符合题意.故a =-1. 10.(-1,34)解析 根据题意,关于x 的方程x 2-mx -2=0在x ∈[0,1]上有解,可得1-m -2≥0,从而求得m ≤-1;f (x )=log 2(x 2-2mx +12)在x ∈[1,+∞)上单调递增,可得⎩⎪⎨⎪⎧m ≤1,1-2m +12>0,解得m <34.根据“綈p ”为真命题,“p ∨q ”为真命题,可知p 假q 真,所以实数m 的取值范围为(-1,34).11.{-1}解析 因为x +a ≥0, 所以M ={x |x ≥-a }.又log 2(x -1)<1,所以0<x -1<2, 所以1<x <3, 所以N ={x |1<x <3}. 所以∁U N ={x |x ≤1或x ≥3}.又因为M ∩(∁U N )={x |x =1或x ≥3},所以a =-1. 12.(-∞,-2]∪[-2,2)解析 ∵sin x +cos x =2sin(x +π4)≥-2,∴当r (x )是真命题时,m <- 2.当s (x )为真命题时,x 2+mx +1>0恒成立,有Δ=m 2-4<0,∴-2<m <2. ∵r (x )∧s (x )为假,r (x )∨s (x )为真, ∴r (x )与s (x )一真一假,∴当r (x )为真,s (x )为假时,m <-2,同时m ≤-2或m ≥2,即m ≤-2; 当r (x )为假,s (x )为真时,m ≥-2,且-2<m <2,即-2≤m <2. 综上,实数m 的取值范围是m ≤-2或-2≤m <2.一、选择题1.全集U =R ,A ={x |x 2-2x ≤0},B ={y |y =cos x ,x ∈R },则图中阴影部分表示的集合为( )A .{x |x <-1或x >2}B .{x |-1≤x ≤2}C .{x |x ≤1}D .{x |0≤x ≤1}2.(2016·石家庄模拟)定义A ×B ={z |z =xy ,x ∈A 且y ∈B },若A ={x |-1<x <2},B ={-1,2},则A ×B 等于( ) A .{x |-1<x <2} B .{-1,2} C .{x |-2<x <2}D .{x |-2<x <4}3.“sin α=12”是“α=30°”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.(2016·郑州模拟)已知命题p :∀x ∈R,2x <3x ;命题q :∃x 0∈R ,x 30=1-x 20,则下列命题中为真命题的是( ) A .p ∧q B .(綈p )∧q C .p ∧(綈q )D .(綈p )∧(綈q )5.(2017·广东七校联考)下列有关命题的说法正确的是( ) A .命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1” B .“x =-1”是“x 2-5x -6=0”的必要不充分条件 C .命题“若x =y ,则sin x =sin y ”的逆否命题为真命题D .命题“∃x 0∈R 使得x 20+x 0+1<0”的否定是“∀x ∈R ,均有x 2+x +1<0”6.一元二次方程ax 2+2x +1=0(a ≠0)有一个正根和一个负根的必要不充分条件是( ) A .a <0 B .a >0 C .a <-1D .a <27.设集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -1x +1<0,B ={x ||x -1|<a },则“a =1”是“A ∩B ≠∅”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.已知命题p :∃x 0∈R ,mx 20+1≤0,命题q :∀x ∈R ,x 2+mx +1>0.若p ∨q 为假命题,则实数m 的取值范围为( ) A .[-2,2] B .(-∞,-2],[2,+∞) C .(-∞,-2] D .[2,+∞)二、填空题9.设集合A ={x ||x -a |<1,x ∈R },B ={x |1<x <5,x ∈R },若A ∩B =∅,则实数a 的取值范围是____________.10.设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0,若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是____________. 11.已知下列命题:①命题“∃x 0∈R ,x 20+1>3x 0”的否定是“∀x ∈R ,x 2+1<3x ”;②已知p ,q 为两个命题,若“p ∨q ”为假命题,则“(綈p )∧(綈q )”为真命题; ③“a >2”是“a >5”的充分不必要条件;④“若xy =0,则x =0且y =0”的逆否命题为真命题. 其中所有真命题的序号是________.12.已知f (x )=m (x -2m )(x +m +3),g (x )=2x -2,若满足∀x ∈R ,f (x )<0或g (x )<0,则m 的取值范围是________________.答案精析1.D [阴影部分表示的集合是A ∩B .依题意知,A ={x |0≤x ≤2},B ={y |-1≤y ≤1}, ∴A ∩B ={x |0≤x ≤1},故选D.]2.D [∵A ={x |-1<x <2},B ={-1,2},z =xy ,x ∈A 且y ∈B ,∴-2<z <4, ∴A ×B ={x |-2<x <4}.故选D.]3.B [若α=30°,可得sin α=12;若sin α=12,可以举特殊例子,α=150°时,sin 150°=12,∴“sin α=12”是“α=30°”的必要不充分条件,故选B.]4.B [因为当x =-1时,2-1>3-1,所以命题p :∀x ∈R,2x <3x 为假命题,则綈p 为真命题.令f (x )=x 3+x 2-1,因为f (0)=-1<0,f (1)=1>0.所以函数f (x )=x 3+x 2-1在(0,1)上存在零点,即命题q :∃x 0∈R ,x 30=1-x 20为真命题,则(綈p )∧q 为真命题,故选B.]5.C [命题“若x 2=1,则x =1”的否命题为“若x 2≠1,则x ≠1”,A 不正确;由x 2-5x -6=0,解得x =-1或6,因此“x =-1”是“x 2-5x -6=0”的充分不必要条件,B 不正确;命题“若x =y ,则sin x =sin y ”为真命题,其逆否命题为真命题,C 正确;命题“∃x 0∈R 使得x 20+x 0+1<0”的否定是“∀x ∈R ,均有x 2+x +1≥0”,D 不正确.综上可得只有C 正确.]6.D [“一元二次方程ax 2+2x +1=0(a ≠0)有一个正根和一个负根”的等价条件是⎩⎪⎨⎪⎧22-4a >0,1a<0,所以a <0. 当a <0时,必有a <2,故选D.]7.A [由题意得A ={x |-1<x <1},B ={x |1-a <x <a +1}. ①当a =1时,B ={x |0<x <2},则A ∩B ={x |0<x <1}≠∅成立,即充分性成立.②若a =12,则A ∩B ={x |-1<x <1}∩⎩⎨⎧⎭⎬⎫x ⎪⎪ 12<x <32=⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <1≠∅,故必要性不成立. 综合得“a =1”是“A ∩B ≠∅”的充分不必要条件,故选A.]8.D [由p :∃x 0∈R ,mx 20+1≤0,可得m <0,由q :∀x ∈R ,x 2+mx +1>0,可得Δ=m 2-4<0,解得-2<m <2,因为p ∨q 为假命题,所以p 与q 都是假命题,若p 是假命题,则有m ≥0;若q 是假命题,则有m ≤-2或m ≥2,故符合条件的实数m 的取值范围为m ≥2.故选D.] 9.{a |a ≤0或a ≥6}解析 |x -a |<1⇔-1<x -a <1⇔a -1<x <a +1,又B ={x |1<x <5},A ∩B =∅, 故a +1≤1或a -1≥5,即a ≤0或a ≥6. 10.[0,12]解析 由p :|4x -3|≤1,得12≤x ≤1,由q :x 2-(2a +1)x +a (a +1)≤0, 得a ≤x ≤a +1.∵綈p 是綈q 的必要不充分条件, ∴q 是p 的必要不充分条件, 即由命题p 成立能推出命题q 成立, 但由命题q 成立不能推出命题p 成立. ∴[12,1]⊆[a ,a +1]且[12,1]≠[a ,a +1]. ∴a ≤12且a +1≥1,两个等号不能同时成立,解得0≤a ≤12.∴实数a 的取值范围是[0,12].11.②解析 命题“∃x 0∈R ,x 20+1>3x 0”的否定是“∀x ∈R ,x 2+1≤3x ”,故①错;“p ∨q ”为假命题说明p 假q 假,则(綈p )∧(綈q )为真命题,故②正确;a >5⇒a >2,但a >2⇒/ a >5,故“a >2”是“a >5”的必要不充分条件,故③错;因为“若xy =0,则x =0或y =0”,所以原命题为假命题,故其逆否命题也为假命题,故④错. 12.(-4,0)解析 f (x )=m (x -2m )(x +m +3)为二次函数.若∀x ∈R ,f (x )<0或g (x )<0,则必须有抛物线开口向下,即m <0. 又∵当x ≥1时,g (x )≥0; 当x <1时,g (x )<0. ∴当x ≥1时,f (x )<0.f (x )=0有两根x 1=2m ,x 2=-m -3. 当x 1>x 2,即m >-1时,则x 1<1, 即m <12,∴-1<m <0;当x 1<x 2,即m <-1时,则x 2<1,即m >-4,∴-4<m <-1;当x 1=x 2,即m =-1时,x 1=x 2=-2<1. 综上可知,m 的取值范围为-4<m <0.一、选择题1.(2016·四川成都七中期末)下列对应f :A →B 是从集合A 到集合B 的函数的是( ) A .A ={x |x >0},B ={y |y ≥0},f :y =1xB .A ={x |x ≥0},B ={y |y >0},f :y =x 2C .A ={x |x 是三角形},B ={y |y 是圆},f :每一个三角形对应它的外切圆D .A ={x |x 是圆},B ={y |y 是三角形},f :每一个圆对应它的外切三角形 2.函数f (x )=4-xx -1+log 4(x +1)的定义域是( ) A .(0,1)∪(1,4] B .[-1,1)∪(1,4] C .(-1,4)D .(-1,1)∪(1,4]3.若函数y =f (x )的定义域是[-2,4],则函数g (x )=f (x +1)+f (-x )的定义域是( ) A .[-2,4] B .[-3,2) C .[-3,2]D .[-4,3]4.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A .-74B.74C.43 D .-435.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥2,f (x +2),x <2,则f ⎝⎛⎭⎫log 218等于( ) A .3 B .8 C .9D .126.若函数f (x )满足关系式f (x )+2f ⎝⎛⎭⎫1x =3x ,则f (2)的值为( ) A .1 B .-1 C .-32D.327.(2016·福建泉州南安三中期中)已知函数f (x )=⎩⎪⎨⎪⎧log 2(1-x )+1,-1≤x <0,x 3-3x +2,0≤x ≤a 的值域是[0,2],则实数a 的取值范围是( ) A .(0,1] B .[1,3] C .[1,2]D .[3,2]8.设函数y =f (x )在R 上有定义,对于任一给定的正数p ,定义函数f p (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤p ,p ,f (x )>p ,则称函数f p (x )为f (x )的“p 界函数”,若给定函数f (x )=x 2-2x -1,p =2,则下列结论不成立的是( )A .f p [f (0)]=f [f p (0)]B .f p [f (1)]=f [f p (1)]C .f p [f p (2)]=f [f (2)]D .f p [f p (3)]=f [f (3)]二、填空题9.定义在R 上的函数f (x )满足f (x -1)=2f (x ),若当0≤x ≤1时,f (x )=x (1-x ),则当1≤x ≤2时,f (x )=________________.10.如图,用长为1的铁丝弯成下部为矩形,上部为半圆形的框架,若半圆的半径为x ,则此框架围成的面积y 与x 的关系式的定义域是____________.11.已知函数f (x )=⎩⎪⎨⎪⎧-log 2x ?(x >0),1-x 2?(x ≤0),则不等式f (x )>0的解集为________.12.已知函数f(x)=1-x2,函数g(x)=2a cos π3x-3a+2(a>0),若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是________.答案精析1.A [选项A 中对于集合A 中的任意一个大于零的数,取倒数之后在集合B 中都有唯一的元素与之相对应,故A 正确;选项B 中,集合A 的元素0在集合B 中没有对应元素;选项C 中两个集合不是数集,不能构成函数,只能构成从集合A 到集合B 的映射,故C 错误;选项D 中的集合也不是数集,故不能构成从集合A 到集合B 的函数.] 2.D [要使函数有意义须满足⎩⎪⎨⎪⎧4-x ≥0,x -1≠0,x +1>0,解得x ∈(-1,1)∪(1,4],故选D.]3.C [由已知可得⎩⎪⎨⎪⎧-2≤x +1≤4,-2≤-x ≤4,解得⎩⎪⎨⎪⎧-3≤x ≤3,-4≤x ≤2,即-3≤x ≤2,故选C.]4.B [令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.]5.B [f ⎝⎛⎭⎫log 218=f (-3)=f (-3+2)=f (-1)=f (-1+2)=f (1)=f (1+2)=f (3)=23=8.故选B.] 6.B [令x =2,得f (2)+2f ⎝⎛⎭⎫12=6,① 令x =12,得f ⎝⎛⎭⎫12+2f (2)=32,② 由①②得f (2)=-1.]7.B [∵函数f (x )=⎩⎪⎨⎪⎧log 2(1-x )+1, -1≤x <0,x 3-3x +2,0≤x ≤a的图象如图所示.∵函数f (x )的值域是[0,2],∴1∈[0,a ],即a ≥1.又由当y =2时,x 3-3x =0,x =3(0,-3舍去),∴a ≤3,∴a 的取值范围是[1,3]. 故选B.]8.B [给定函数f (x )=x 2-2x -1,p =2, 则f (1)=-2,f p (1)=-2,所以f [f p (1)]=f (-2)=7,f p [f (1)]=f p (-2)=2, 所以f p [f (1)]≠f [f p (1)],故选B.] 9.12(x -1)(2-x ) 解析 ∵f (x -1)=2f (x ),∴f (x )=12f (x -1).∵1≤x ≤2,∴0≤x -1≤1. 又当0≤x ≤1时,f (x )=x (1-x ),∴f (x -1)=(x -1)[1-(x -1)]=(x -1)(2-x ), ∴f (x )=12f (x -1)=12(x -1)(2-x ).10.⎝⎛⎭⎫0,1π+2解析 由题意知AB =2x ,CD =πx , 因此AD =1-2x -πx2.框架面积y =2x ×1-2x -πx 2+πx 22=-π+42x 2+x .因为⎩⎪⎨⎪⎧2x >0,1-2x -πx 2>0,所以0<x <1π+2.11.(-1,1)解析 当x >0时,-log 2x >0=log 21,解得0<x <1; 当x ≤0时,1-x 2>0,解得-1<x ≤0, 所以不等式f (x )>0的解集为(-1,1). 12.[12,2]解析 当x ∈[0,1]时,f (x )=1-x 2的值域是[0,1],g (x )=2a cos π3x -3a +2(a >0)的值域是[2-2a,2-a ],为使存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立,需[0,1]∩[2-2a,2-a ]≠∅.由[0,1]∩[2-2a,2-a ]=∅,得1<-2a +2或2-a <0,解得a <12或a >2.所以,若存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立,则实数a 的取值范围是12≤a ≤2.一、选择题1.下列函数中,在区间(0,1]上是增函数且最大值为-1的为( ) A .y =-x 2 B .y =⎝⎛⎭⎫12xC .y =-1xD .y =2x2.(2016·黑龙江牡丹江一中期中)函数y =3x 2-3x +2,x ∈[-1,2]的值域是( ) A .R B.⎣⎢⎡⎦⎥⎤143,729 C .[9,243]D .[3,+∞)3.(2016·铁岭月考)设函数f (x )定义在实数集上,它的图象关于直线x =1对称,且当x ≥1时,f (x )=3x -1,则( ) A .f ⎝⎛⎭⎫13<f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫23 B .f ⎝⎛⎭⎫23<f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫13 C .f ⎝⎛⎭⎫23<f ⎝⎛⎭⎫13<f ⎝⎛⎭⎫32D .f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫23<f ⎝⎛⎭⎫134.(2016·广东佛山顺德一中等六校联考)函数y =x 2-x +2在[a ,+∞)上单调递增是函数y =a x 为单调递增函数的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.(2016·陕西西藏民族学院附中期末)若函数f (x )=⎩⎪⎨⎪⎧x 2+12ax -2,x ≤1,a x -a ,x >1在(0,+∞)上是增函数,则a 的取值范围是( ) A .(1,2]B .[1,2)C .[1,2]D .(1,+∞)6.(2016·天津河西区一模)函数f (x )=ln(x 2-2x -3)的单调递减区间为( ) A .(-∞,1) B .(1,+∞) C .(-∞,-1)D .(3,+∞)7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0.若f (2-a 2)>f (a ),则实数a 的取值范围是( ) A .(-∞,-1)∪(2,+∞) B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)8.(2015·湖北)已知符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0.f (x )是R 上的增函数,g (x )=f (x )-f (ax )(a >1),则( ) A .sgn[g (x )]=sgn x B .sgn[g (x )]=-sgn x C .sgn[g (x )]=sgn[f (x )] D .sgn[g (x )]=-sgn[f (x )]二、填空题9.y =-x 2+2|x |+3的单调增区间为________________.10.(2017·日照调研)函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.11.已知f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0.当x ∈[-2,2]时不等式f (x +a )≥f (2a -x )恒成立,则实数a 的最小值是________.12.对于函数f (x ),若存在区间A =[m ,n ],使得{y |y =f (x ),x ∈A }=A ,则称函数f (x )为“同域函数”,区间A 为函数f (x )的一个“同域区间”.给出下列四个函数: ①f (x )=cos π2x ;②f (x )=x 2-1;③f (x )=|2x -1|;④f (x )=log 2(x -1).存在“同域区间”的“同域函数”的序号是__________.(请写出所有正确结论的序号)答案精析1.C [y =-x 2在区间(0,1]上是减函数,不满足条件;y =⎝⎛⎭⎫12x在区间(0,1]上是减函数,不满足条件;y =-1x 在区间(0,1]上是增函数,最大值为y =-1,满足条件;y =2x 在区间(0,1]上是增函数,最大值为y =2,不满足条件,故选C.] 2.B [令t =x 2-3x +2,∵x ∈[-1,2], ∴t =x 2-3x +2=⎝⎛⎭⎫x -322-14∈⎣⎡⎦⎤-14,6. 又y =3t 在⎣⎡⎦⎤-14,6上单调递增, 则y =3t⎝⎛⎭⎫-14≤t ≤6∈⎣⎢⎡⎦⎥⎤143,729.∴函数y =3x 2-3x +2,x ∈[-1,2]的值域是⎣⎢⎡⎦⎥⎤143,729.]3.B [由题设知,当x <1时,f (x )单调递减,当x ≥1时,f (x )单调递增,而x =1为对称轴,∴f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫1+12=f ⎝⎛⎭⎫1-12=f ⎝⎛⎭⎫12, 又13<12<23<1, ∴f ⎝⎛⎭⎫13>f ⎝⎛⎭⎫12>f ⎝⎛⎭⎫23, 即f ⎝⎛⎭⎫13>f ⎝⎛⎭⎫32>f ⎝⎛⎭⎫23.]4.B [函数y =x 2-x +2图象的对称轴为直线x =12,且开口向上,在⎣⎡⎭⎫12,+∞上单调递增,由已知y =x 2-x +2在[a ,+∞)上单调递增,则a ≥12,推不出y =a x 是递增函数.反之,y =a x 单调递增,则a >1,显然y =x 2-x +2在[a ,+∞)上单调递增,故选B.]5.A [由f (x )=x 2+12ax -2在(0,1]上递增,则有-a4≤0,即a ≥0,再由f (x )=a x -a 在(1,+∞)上递增,则a >1,再由增函数的定义,得1+12a -2≤a 1-a ,解得a ≤2,则有1<a ≤2.故选A.]6.C [要使函数有意义,则x 2-2x -3>0,即x >3或x <-1.设t =x 2-2x -3,则当x >3时,函数t =x 2-2x -3单调递增;当x <-1时,函数t =x 2-2x -3单调递减.∵函数y =ln t 在定义域上为单调递增函数,∴根据复合函数的单调性之间的关系可知: 当x >3时,函数f (x )单调递增,即函数f (x )的递增区间为(3,+∞);当x <-1时,函数f (x )单调递减,即函数f (x )的递减区间为(-∞,-1).故选C.]7.C [f (x )=⎩⎪⎨⎪⎧x 2+4x =(x +2)2-4,x ≥0,4x -x 2=-(x -2)2+4,x <0, 由f (x )的图象可知f (x )在(-∞,+∞)上是增函数,由f (2-a 2)>f (a ),得2-a 2>a , 即a 2+a -2<0,解得-2<a <1.]8.B [因为a >1,所以当x >0时,x <ax ,因为f (x )是R 上的增函数,所以f (x )<f (ax ),所以g (x )=f (x )-f (ax )<0,sgn[g (x )]=-1=-sgn x ;同理可得当x <0时,g (x )=f (x )-f (ax )>0,sgn[g (x )]=1=-sgn x ;当x =0时,g (x )=0,sgn[g (x )]=0=-sgn x 也成立.故B 正确.] 9.(-∞,-1],[0,1] 解析 由题意知,当x ≥0时,y =-x 2+2x +3=-(x -1)2+4; 当x <0时,y =-x 2-2x +3=-(x +1)2+4, 二次函数的图象如图.由图象可知,函数y =-x 2+2|x |+3在(-∞,-1],[0,1]上是增函数. 10.2解析 当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值f (0)=2.故函数f (x )的最大值为2. 11.4解析 当x ≤0时,f (x )=x 2-4x +3,对称轴为直线x =2,故在区间内递减,f (x )≥f (0)=3; 当x >0时,f (x )=-x 2-2x +3,对称轴为直线x =-1,故在区间内递减,f (x )<f (0)=3. 可知函数f (x )在整个区间内递减.∴当x ∈[-2,2]时不等式f (x +a )≥f (2a -x )恒成立, ∴x +a ≤2a -x ,∴2x ≤a ,∴a ≥4. 12.①②③。

函数的应用(易错练兵)-2018年高考数学(理)备考易错点+含解析

函数的应用(易错练兵)-2018年高考数学(理)备考易错点+含解析

1.函数f (x )=|x -2|-ln x 在定义域内的零点可能落在的区间为( ) A .(0,1) B .(2,3) C .(3,4) D .(4,5)2.设f (x )=3x +3x -8,用二分法求方程3x+3x -8=0在x ∈(1,2)内近似解的过程中得f (1)<0,f (1.5)>0,f (1.25)<0,则方程的根所在区间为 ( )A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定解析:∵函数f (1.5)·f (1.25)<0,由零点存在定理,方程的根落在区间(1.25,1.5).故选B. 答案:B3.(2016·黑龙江哈师大附中期中)关于x 的方程⎝ ⎛⎭⎪⎫13|x |-a -1=0有解,则a 的取值范围是( )A .(0,1]B .(-1,0]C .[1,+∞) D.(0,+∞)解析:∵关于x 的方程⎝ ⎛⎭⎪⎫13|x |-a -1=0有解,∴函数y =⎝ ⎛⎭⎪⎫13|x |的图象与直线y =a +1有交点,根据指数函数的单调性可知:0<⎝ ⎛⎭⎪⎫13|x |≤1,∴方程有解只需0<a +1≤0,即-1<a ≤0,故选B.答案:B4.已知函数y =f (x )(x ∈R )满足f (x +2)=f (x ),且x ∈(-1,1]时,f (x )=|x |,则y =f (x )与y =log 7x 的交点的个数为( ) A .4 B .5 C .6 D .7解析:已知函数f (x )是周期为2的周期函数,在同一个坐标系中,画出函数y =f (x )和y =log 7x 的图象,可以得出两个图象的交点的个数是6,故选C.答案:C5.a =⎠⎛123x 2d x ,函数f(x)=2e x+3x -a 的零点所在的区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)解析:∵a =⎠⎛123x 2d x =x 3|21=7,∴f(x)=2e x +3x -7.∵f(0)=2e 0+3×0-7=-5,f(1)=2e +3-7=2(e -2)>0.∴f(0)f(1)<0, ∴函数f(x)=2e x+3x -a 的零点所在的区间是(0,1).故选C . 答案:C6.设函数f(x)=e x+x -2的零点为x 1,函数g(x)=ln x +x 2-3的零点为x 2,则( )A .g(x 1)<0,f(x 2)>0B .g(x 1)>0,f(x 2)<0C .g(x 1)>0,f(x 2)>0D .g(x 1)<0,f(x 2)<07.已知函数f (x )=ln x x 2-x -kx+2e 有且只有一个零点,则k 的值为( )A .e +1e 2B .e 2+1eC .1D .e解析:函数的定义域为(0,+∞),令ln x x 2-x -k x +2e =0,即方程ln x x -x 2+2e x =k 只有一个解,设g (x )=ln x x-x 2+2e x ,则g ′(x )=1-ln x x2+2(e -x ),当x >e 时,g ′(x )<0;当0<x <e 时,g ′(x )>0,故当x =e 时,g (x )取得最大值g (e)=1e +e 2,又ln x x -x 2+2e x =k 只有一个解,故k =1e+e 2,故选B. 答案:B8.已知函数f (x )=⎩⎪⎨⎪⎧|lg|x ||,x ≠0,0,x =0,关于x 的方程f 2(x )+bf (x )+c =0有7个不同的解,则b ,c 满足的条件是( )A .b <0,c <0B .b <0,c =0C .b >0,c =0D .b >0,c <0答案:B9.设函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)解析:法一:当a <0时,不等式f (a )<1为⎝ ⎛⎭⎪⎫12a -7<1,即⎝ ⎛⎭⎪⎫12a <8,即⎝ ⎛⎭⎪⎫12a <⎝ ⎛⎭⎪⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1为a <1,所以0≤a <1.故a 的取值范围是(-3,1),故选C. 法二:取a =0,f (0)=0<1,符合题意,排除A ,B ,D. 答案:C10.已知函数f (x )=6x-log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)解析:因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4). 答案:C11.已知a =213-,b =(2log 23)12-,c =14⎠⎛0πsin x d x ,则实数a ,b ,c 的大小关系是( )A.a>c>b B.b>a>c C.a>b>c D.c>b>a解析:依题意得,a=213-,b=312-,c=-14cos x⎪⎪⎪π=12,所以a6=2-2=14,b6=3-3=127,c6=⎝⎛⎭⎪⎫126=164,则a>b>c,选C.答案:C12.已知a,b,c,d都是常数,a>b,c>d.若f(x)=2 017-(x-a)(x-b)的零点为c,d,则下列不等式正确的是( )A.a>c>b>d B.a>b>c>dC.c>d>a>b D.c>a>b>d解析:f(x)=2 017-(x-a)(x-b)=-x2+(a+b)x-ab+2 017,又f(a)=f(b)=2 017,c,d为函数f(x)的零点,且a>b,c>d,所以可在平面直角坐标系中作出函数f(x)的大致图象,如图所示,由图可知c>a>b>d,故选D.答案:D13.某地一年的气温Q(t)(单位:℃)与时间t(月份)之间的关系如图所示,已知该年的平均气温为10 ℃,令C(t)表示时间段[0,t]的平均气温,下列四个函数图象中,最能表示C(t)与t之间的函数关系的是( )解析:若增加的数大于当前的平均数,则平均数增大;若增加的数小于当前的平均数,则平均数减小.因为12个月的平均气温为10 ℃,所以当t =12时,平均气温应该为10 ℃,故排除B ;因为在靠近12月份时其温度小于10 ℃,因此12月份前的一小段时间内的平均气温应该大于10 ℃,排除C ;6月份以后增加的温度先大于平均值后小于平均值,故平均气温不可能出现先减小后增加的情况,故排除D ,故选A . 答案:A14.已知f(x)是偶函数,当x>0时,f(x)单调递减,设a =-21.2,b =⎝ ⎛⎭⎪⎫12-0.8,c =2log 52,则f(a),f(b),f(c)的大小关系为( )A .f(c)<f(b)<f(a)B .f(c)<f(a)<f(b)C .f(c)>f(b)>f(a)D .f(c)>f(a)>f(b)解析:依题意,注意到21.2>20.8=⎝ ⎛⎭⎪⎫12-0.8>20=1=log 55>log 54=2log 52>0,又函数f(x)在区间(0,+∞)上是减函数,于是有f(21.2)<f(20.8)<f(2log 52),由函数f(x)是偶函数得f(a)=f(21.2),因此f(a)<f(b)<f(c),选C . 答案:C15.已知奇函数f(x)是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( ) A.14 B.18 C .-78 D .-3816.若函数y =f (x )的图象上存在不同的两点M 、N 关于原点对称,则称点对(M ,N )是函数y =f (x )的一对“和谐点对”(点对(M ,N )与(N ,M )看作同一对“和谐点对”).已知函数f (x )=⎩⎪⎨⎪⎧e x,x <0,x 2-4x ,x >0,则此函数的“和谐点对”有( ) A .1对 B .2对 C .3对 D .4对解析:作出f (x )=⎩⎪⎨⎪⎧e x,x <0,x 2-4x ,x >0的图象如图所示,f (x )的“和谐点对”数可转化为y =e x(x <0)和y =-x 2-4x (x <0)的图象的交点个数.由图象知,函数f (x )有2对“和谐点对”. 答案:B17.已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm=________.解析:∵f (x )=|log 3x |,正实数m ,n 满足m <n ,且f (m )=f (n ),∴-log 3m =log 3n ,∴mn =1.∵f (x )在区间[m 2,n ]上的最大值为2,函数f (x )在[m 2,1)上是减函数,在(1,n ]上是增函数,∴-log 3m 2=2或log 3n =2.若-log 3m 2=2,得m =13,则n =3,此时log 3n =1,满足题意.那么n m =3÷13=9.同理:若log 3n =2,得n=9,则m =19,此时-log 3m 2=4,不满足题意.综上,可得n m =9.答案:918.某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量P (毫克/升)与时间t (小时)的关系为P =P 0e-kt.如果在前5小时消除了10%的污染物,那么污染物减少19%需要花费的时间为________小时.解析:前5小时污染物消除了10%,此时污染物剩下90%,即t =5时,P =0.9P 0,代入,得(e -k )5=0.9,∴e -k =50.9=0.915,∴P =P 0e -kt =P 0150.9⎛⎫ ⎪⎝⎭t .当污染物减少19%时,污染物剩下81%,此时P =0.81P 0,代入得0.81=150.9⎛⎫ ⎪⎝⎭t ,解得t =10,即需要花费10小时. 答案:1019.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x,x ≤0,且关于x 的方程f (x )+x -a =0有且只有一个实数根,则实数a的取值范围是________.解析:依题意,由f (x )+x -a =0有且只有一个实数根得,函数y =f (x )的图象与直线y =-x +a 有唯一公共点.在同一平面直角坐标系中画出直线y =-x 与函数y =f (x )的大致图象(图略),平移直线y =-x ,当平移到该直线在y 轴上的截距大于1时,相应直线与函数y =f (x )的图象有唯一公共点,即此时关于x 的方程有且只有一个实数根,因此a >1,即实数a 的取值范围是(1,+∞). 答案:(1,+∞)20.已知f (x )=kx -|x -1|有两个不同的零点,则实数k 的取值范围是__________.解析:令f (x )=0,得kx =|x -1|,设y 1=kx ,y 2=|x -1|,画出这两个函数的图象,如图,折线为y 2的图象,直线(实线)为y 1的图象,且y 1的图象恒过原点,要使f (x )有两个零点,则y 1和y 2的图象有两个交点,当k =1时,y 1=x (虚线)与y 2图象的右侧(x >1)平行,此时,两图象只有一个交点,因此,要使y 1和y 2的图象有两个交点,则0<k <1,故答案为(0,1).答案:(0,1)21.函数f (x )=2sin x sin ⎝ ⎛⎭⎪⎫x +π2-x 2的零点个数为__________.解析:函数f (x )=2sin x sin ⎝⎛⎭⎪⎫x +π2-x 2的零点个数等价于方程2sin x sin ⎝ ⎛⎭⎪⎫x +π2-x 2=0的根的个数,即函数g (x )=2sin x sin ⎝⎛⎭⎪⎫x +π2=2sin x cos x=sin2x 与h (x )=x 2的图象交点个数.于是,分别画出其函数图象如下图所示,由图可知,函数g (x )与h (x )的图象有2个交点.答案:222.已知函数f (x )=e x-ax ,a ∈R .(1)若函数f (x )在x =0处的切线过点(1,0),求a 的值; (2)若函数f (x )在(-1,+∞)上不存在零点,求a 的取值范围; (3)若a =1,设函数g (x )=1fx +ax +4x e x -f x +4,求证:当x ≥0时,g (x )≥1.(3)a =1时,函数g (x )=1fx +ax +4xe x-f x +4=1e x +4x x +4,当x ≥0时,g (x )≥1等价为e x (3x -4)+x +4≥0,令F (x )=e x(3x -4)+x +4,F (0)=0,F ′(x )=e x(3x -1)+1,F ′(0)=0,再令G (x )=e x(3x -1)+1,G ′(x )=e x(3x +2)>0,则G (x )在[0,+∞)上单调递增,即G (x )≥G (0)=0,即F ′(x )≥0,即F (x )在[0,+∞)上单调递增,则F (x )≥F (0)=0,即e x (3x -4)+x +4≥0,故当x ≥0时,g (x )≥1.23.已知函数f (x )=e x-1-ax ,a ∈R . (1)求函数y =f (x )的单调区间;(2)试探究函数F (x )=f (x )-x ln x 在定义域内是否存在零点?若存在,请指出有几个零点;若不存在,请说明理由.(3)若g (x )=ln(e x-1)-ln x ,且f (g (x ))<f (x )在x ∈(0,+∞)上恒成立,求实数a 的取值范围. 解:(1)∵f (x )=e x-1-ax (x ∈R ,a ∈R ),∴f ′(x )=e x-a ,①当a ≤0时,则∀x ∈R 有f ′(x )>0,∴函数f (x )在区间(-∞,+∞)上单调递增;②当a >0时,f ′(x )>0⇒x >ln a ,f ′(x )<0⇒x <ln a ,∴函数f (x )的单调递增区间为(ln a ,+∞),单调递减区间为(-∞,ln a ).综上,当a ≤0时,函数f (x )的单调递增区间为(-∞,+∞);当a >0时,函数f (x )的单调递增区间为(ln a ,+∞),单调递减区间为(-∞,ln a ).(2)函数F (x )=f (x )-x ln x 的定义域为(0,+∞),由F (x )=0,得a =e x-1x -ln x ,x >0.令h (x )=e x-1x-ln x ,x >0,则h ′(x )=x-x -x 2,x >0,∴h ′(x )>0⇒x >1,h ′(x )<0⇒0<x <1,∴函数h (x )在(0,1)上单调递减,在(1,+∞)上单调递增.∴h (x )≥h (1)=e -1.由(1)知当a =1时,对∀x >0,有f (x )>f (ln a )=0,即e x-1>x ⇔e x-1x>1.∴当x >0且x 趋向0时,h (x )趋向+∞.随着x >0的增长,y =e x -1的增长速度越来越快,会超过并远远大于y =x 2的增长速度,而y =ln x 的增长速度则会越来越慢.故当x >0且x 趋向+∞时,h (x )趋向+∞.得到函数h (x )的草图如图所示.故①当a >e -1时,函数F (x )有两个不同的零点;②当a =e -1时,函数F (x )有且仅有一个零点;③当a <e -1时,函数F (x )无零点.(3)由(2)知当x >0时,e x-1>x ,故对∀x >0,g (x )>0,用分析法证明∀x >0,g (x )<x .要证∀x >0,g (x )<x ,只需证∀x >0,e x-1x<e x ,即证∀x >0,x e x -e x +1>0.构造函数H (x )=x e x -e x +1(x >0),∴H ′(x )=x e x>0,故函数H (x )=x e x -e x+1在(0,+∞)上单调递增,∴H (x )>H (0)=0,则∀x >0,x e x-e x+1>0成立.①当a ≤1时,由(1)知,函数f (x )在(0,+∞)上单调递增,则f (g (x ))<f (x )在x ∈(0,+∞)上恒成立.②当a >1时,由(1)知,函数f (x )在(ln a ,+∞)上单调递增,在(0,ln a )上单调递减,故当0<x <ln a 时,0<g (x )<x <ln a ,∴f (g (x ))>f (x ),则不满足题意.综合①②得,满足题意的实数a 的取值范围是(-∞,1].。

2018届高三数学每天一练半小时阶段滚动检测(一) Word版含答案

2018届高三数学每天一练半小时阶段滚动检测(一) Word版含答案

一、选择题.如图所示的图中,阴影部分对应的集合是().∩.∁(∩).∩(∁) .(∁)∩.命题“若+=,则=且=”的逆否命题是().“若≠或≠,则+≠”.“若+≠,则≠或≠”.“若=且=,则+≠”.“若+≠,则≠且≠”.已知集合={,},={},则“=”是“⊆”的().充分不必要条件.必要不充分条件.充要条件.既不充分也不必要条件.已知函数()=的定义域为,()=(+)的定义域为,则∪(∁)等于() .{<} .{≥-}.{-<≤} .{-≤<}.下列各组函数中是同一个函数的是()①()=与()=;②()=与()=;③()=与()=;④()=--与()=--..①②.①③.③④.①④.若=-,=,=,则,,的大小关系是().<< .<<.<< .<<.设函数()=(\\(,<,(-),≥,))且()=,则()等于().....给出下列四个函数:①=· ;②=· ;③=· ;④=·.这四个函数的部分图象如下,但顺序被打乱,则按照从左到右的顺序将图象对应的函数序号安排正确的一组是().①④②③.①④③②.④①②③.③④②①.已知函数()是偶函数且满足(+)=-(),当∈[]时,()=-,则不等式()>在[-]上的解集为().() .(-).(-)∪() .(-,-)∪().已知命题:若函数()=+-是偶函数,则=.命题:∀∈(,+∞),关于的方程-+=有解.在①∨;②∧;③(綈)∧;④(綈)∨(綈)中为真命题的是().②③.②④.③④.①④.已知函数()满足()+=,当∈[]时,()=.若函数()=()--在(-]内有个零点,则实数的取值范围是().已知定义域为的函数(),若对任意的,∈,都有(+)-()≤(),则称函数()为“定义域上的函数”,给出以下五个函数:①()=+,∈;②()=,∈;③()=+,∈;④()=,∈;⑤()=,∈[,+∞).其中是“定义域上的函数”的有().个.个。

2018届高三数学每天一练半小时第16练 函数综合练 Word版含答案

2018届高三数学每天一练半小时第16练 函数综合练 Word版含答案

一、选择题.下列函数中,与函数=-的奇偶性相同,且在(-∞,)上单调性也相同的是().=-.=.=-.=-.设函数()=(\\(-,<,(+(,>,))则(())等于().....(·福建四地六校联考)若()对于任意实数恒有()-(-)=+,则()等于()....-.(·湖北襄阳枣阳二中期中)已知函数()=(-)(-)(其中>),若()的图象如图所示,则函数()=+的图象大致为().已知函数()=+满足条件((+))=,其中>,则((-))等于().....已知()=(\\((-(+,<,,≥))是(-∞,+∞)上的减函数,那么的取值范围是() .().已知()是定义在(-∞,+∞)上的偶函数,且在区间(-∞,]上是增函数,设=(),=(),=(-),则,,的大小关系是().<< .<<.<< .<<.(·南昌质检)对于定义域为的函数(),若()在(-∞,)和(,+∞)上均有零点,则称函数()为“含界点函数”,则下列四个函数中,不是“含界点函数”的是().()=+-(∈) .()=--.()=-.()=-二、填空题.(·北京东城区二模)已知是有序数对集合={(,)∈*,∈*}上的一个映射,正整数数对(,)在映射下的像为实数,记作(,)=.对于任意的正整数,(>),映射由下表给出:则()=,使不等式(,)≤成立的的集合是..某商品在最近天内的单价()与时间的函数关系是()=(\\(()+,≤<,∈*,,-()+,≤≤,∈*,))日销售量()与时间的函数关系是()=-+(≤≤,∈),则这种商品的日销售额的最大值为..定义在上的偶函数()满足(+)=-()且()在[-]上是增函数,给出下列四个命题:①()是周期函数;②()的图象关于=对称;③()在[]上是减函数;④()=().其中正确命题的序号是.(请把正确命题的序号全部写出来).(·山东聊城一中期中)设定义域为[]的函数()同时满足以下三个条件时称()为“友谊函数”:()对任意的∈[],总有()≥;。

2018届高三数学每天一练半小时(47)不等式中的易错题(有答案)AKKqAP

2018届高三数学每天一练半小时(47)不等式中的易错题(有答案)AKKqAP

训练目标 对不等式部分的易错题型强化训练,降低出错率.训练题型 不等式中的易错题.解题策略规范运算过程及解题步骤,养成思维缜密的良好习惯,总结出易错类型及易错点. 1.已知函数f (x )=⎩⎪⎨⎪⎧ -x +1,x <0,x -1,x ≥0,则不等式x +(x +1)·f (x +1)≤1的解集是( )A .{x |-1≤x ≤2-1}B .{x |x ≤1}C .{x |x ≤2-1}D .{x |-2-1≤x ≤2-1} 2.若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值为( ) A .0B .-2C .-52D .-33.已知a ,b 都是正实数,且满足log 4(2a +b )=log 2ab ,则2a +b 的最小值为( )A .12B .10C .8D .6 4.若a ,b 是常数,a >0,b >0,a ≠b ,x ,y ∈(0,+∞),则a 2x +b 2y ≥?a +b ?2x +y ,当且仅当a x =b y时取等号.利用以上结论,可以得到函数f (x )=3x +41-3x (0<x <13)的最小值为( ) A .5B .15C .25D .25.某公司招收男职员x 名,女职员y 名,x 和y 需满足约束条件⎩⎪⎨⎪⎧ 5x -11y ≥-22,2x +3y ≥9,2x ≤11.则z =10x +10y 的最大值是( )A .80B .85C .90D .100 6.已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( ) A .2B .4C .6D .87.函数y =x 2+7x +10x +1(x >-1)的最小值为( ) A .2B .7C .9D .108.若a 、b 、c >0且a (a +b +c )+bc =4-23,则2a +b +c 的最小值为( ) A.3-1 B.3+1 C .23+2D .23-2二、填空题9.已知x >0,y >0,lg 2x +lg 8y =lg 2,则1x +13y的最小值是________. 10.对于0≤m ≤4的任意m ,不等式x 2+mx >4x +m -3恒成立,则x 的取值范围是________________. 11.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y -2z的最大值为________. 12.某运输公司接受了向一地区每天至少运送180 t 物资的任务,该公司有8辆载重为6 t 的A 型卡车和4辆载重为10 t 的B 型卡车,有10名驾驶员,每辆卡车每天往返的次数为A 型卡车4次,B 型卡车3次,每辆卡车每天往返的费用为A 型卡车320元,B 型卡车504元,则公司如何调配车辆,才能使公司所花的费用最低,最低费用为________元.答案精析1.C [由题意得不等式x +(x +1)f (x +1)≤1等价于⎩⎪⎨⎪⎧ x +1<0,x +(x +1)[-(x +1)+1]≤1,① 或⎩⎪⎨⎪⎧ x +1≥0,x +(x +1)[(x +1)-1]≤1,②解不等式组①得x <-1;解不等式组②得-1≤x ≤2-1. 故原不等式的解集是{x |x ≤2-1},故选C.] 2.C [因为x∈⎝ ⎛⎦⎥⎤0,12,且x 2+ax +1≥0,所以a ≥-⎝ ⎛⎭⎪⎫x +1x , 所以a ≥-⎝ ⎛⎭⎪⎫x +1x max . 又y =x +1x 在⎝ ⎛⎦⎥⎤0,12内是单调递减的, 所以a ≥-⎝ ⎛⎭⎪⎫x +1x max =-(12+112)=-52.] 3.C [由题意log 4(2a +b )=log 4ab ,可得2a +b =ab ,a >0,b >0,所以2a +b =12·2a ·b ≤12·(2a +b )24, 所以2a +b ≥8,当且仅当2a =b 时取等号,所以2a +b 的最小值为8,故选C.]4.C [由题意可得f (x )=3x +41-3x =323x +221-3x ≥?3+2?23x +?1-3x ?=25,当且仅当33x =21-3x ,即x =15时取等号,故最小值为25.]5.C [如图,作出可行域,由z =10x +10y ⇒y =-x +z 10,它表示斜率为-1,纵截距为z10的平行直线系, 要使z =10x +10y 取得最大值,当直线z =10x +10y 通过A (112,92)时z 取得最大值. 因为x ,y ∈N *,故A 点不是最优整数解.于是考虑可行域内A 点附近的整点(5,4),(4,4),经检验直线经过点(5,4)时,z max =90.]6.B [不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则1+a +y x +ax y≥a +2a +1≥9,所以a ≥2或a ≤-4(舍去).所以正实数a 的最小值为4.]7.C [y =x 2+7x +10x +1=(x +1)2+5(x +1)+4x +1=(x +1)+4x +1+5, 当x >-1,即x +1>0时,y ≥2(x +1)×4x +1+5=9(当且仅当x =1时取“=”).故选C.] 8.D [由a (a +b +c )+bc =4-23,得(a +c )·(a +b )=4-2 3.∵a 、b 、c >0.∴(a +c )·(a +b )≤⎝ ⎛⎭⎪⎫2a +b +c 22(当且仅当a +c =b +a ,即b =c 时取“=”), ∴2a +b +c ≥24-23=2(3-1)=23-2.]9.4解析 由x >0,y >0,lg 2x +lg 8y =lg 2,得lg 2x 8y =lg 2,即2x +3y =2,所以x +3y =1,故1x +13y =(1x +13y)(x +3y ) =2+3y x +x 3y ≥2+2 3y x ·x 3y =4, 当且仅当3y x =x 3y ,即x =12,y =16时取等号, 所以1x +13y的最小值为4. 10.(-∞,-1)∪(3,+∞)解析 不等式可化为m (x -1)+x 2-4x +3>0在0≤m ≤4时恒成立.令f (m )=m (x -1)+x 2-4x +3.则⎩⎪⎨⎪⎧ f ?0?>0,f ?4?>0,⇒⎩⎪⎨⎪⎧ x 2-4x +3>0,x 2-1>0,⇒⎩⎪⎨⎪⎧x <1或x >3,x <-1或x >1, 即x <-1或x >3. 11.1 解析 由x 2-3xy +4y 2-z =0, 得z =x 2-3xy +4y 2, ∴xy z =xy x 2-3xy +4y2=1x y +4y x-3 ≤124-3=1, 当且仅当x =2y 时取等号.此时z =2y 2,∴2x +1y -2z =22y +1y -22y2 =-(1y )2+2y =-(1y-1)2+1≤1. 12.2 560解析 设每天调出A 型卡车x 辆,B 型卡车y 辆,公司所花的费用为z 元,则目标函数z =320x +504y (x ,y ∈N ).由题意可得,⎩⎪⎨⎪⎧ 0≤x ≤8,x ∈N ,0≤y ≤4,x ∈N ,x +y ≤10,4x ×6+3y ×10≥180.作出上述不等式组所确定的平面区域即可行域,如图中阴影部分所示.结合图形可知,z =320x +504y 在可行域内经过的整数点中,点(8,0)使z =320x +504y 取得最小值,z min =320×8+504×0=2 560.故每天调出A 型卡车8辆,公司所花费用最低为2 560元.。

2018届高三数学每天一练半小时:第6练 函数的概念及表示

2018届高三数学每天一练半小时:第6练 函数的概念及表示

一、选择题1.(2016·四川成都七中期末)下列对应f :A →B 是从集合A 到集合B 的函数的是( ) A .A ={x |x >0},B ={y |y ≥0},f :y =1xB .A ={x |x ≥0},B ={y |y >0},f :y =x 2C .A ={x |x 是三角形},B ={y |y 是圆},f :每一个三角形对应它的外切圆D .A ={x |x 是圆},B ={y |y 是三角形},f :每一个圆对应它的外切三角形 2.函数f (x )=4-xx -1+log 4(x +1)的定义域是( ) A .(0,1)∪(1,4] B .[-1,1)∪(1,4] C .(-1,4)D .(-1,1)∪(1,4]3.若函数y =f (x )的定义域是[-2,4],则函数g (x )=f (x +1)+f (-x )的定义域是( ) A .[-2,4] B .[-3,2) C .[-3,2]D .[-4,3]4.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A .-74B.74C.43D .-435.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥2,f (x +2),x <2,则f ⎝⎛⎭⎫log 218等于( )A .3B .8C .9D .126.若函数f (x )满足关系式f (x )+2f ⎝⎛⎭⎫1x =3x ,则f (2)的值为( ) A .1 B .-1 C .-32D.327.(2016·福建泉州南安三中期中)已知函数f (x )=⎩⎪⎨⎪⎧log 2(1-x )+1,-1≤x <0,x 3-3x +2,0≤x ≤a 的值域是[0,2],则实数a 的取值范围是( ) A .(0,1] B .[1,3] C .[1,2]D .[3,2]8.设函数y =f (x )在R 上有定义,对于任一给定的正数p ,定义函数f p (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤p ,p ,f (x )>p ,则称函数f p (x )为f (x )的“p 界函数”,若给定函数f (x )=x 2-2x -1,p =2,则下列结论不成立的是( )A .f p [f (0)]=f [f p (0)]B .f p [f (1)]=f [f p (1)]C .f p [f p (2)]=f [f (2)]D .f p [f p (3)]=f [f (3)]二、填空题9.定义在R 上的函数f (x )满足f (x -1)=2f (x ),若当0≤x ≤1时,f (x )=x (1-x ),则当1≤x ≤2时,f (x )=________________.10.如图,用长为1的铁丝弯成下部为矩形,上部为半圆形的框架,若半圆的半径为x ,则此框架围成的面积y 与x 的关系式的定义域是____________.11.已知函数f (x )=⎩⎪⎨⎪⎧-log 2x ?(x >0),1-x 2?(x ≤0),则不等式f (x )>0的解集为________. 12.已知函数f (x )=1-x 2,函数g (x )=2a cos π3x -3a +2(a >0),若存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立,则实数a 的取值范围是________.答案精析1.A [选项A 中对于集合A 中的任意一个大于零的数,取倒数之后在集合B 中都有唯一的元素与之相对应,故A 正确;选项B 中,集合A 的元素0在集合B 中没有对应元素;选项C 中两个集合不是数集,不能构成函数,只能构成从集合A 到集合B 的映射,故C 错误;选项D 中的集合也不是数集,故不能构成从集合A 到集合B 的函数.] 2.D [要使函数有意义须满足⎩⎪⎨⎪⎧4-x ≥0,x -1≠0,x +1>0,解得x ∈(-1,1)∪(1,4],故选D.]3.C [由已知可得⎩⎪⎨⎪⎧-2≤x +1≤4,-2≤-x ≤4,解得⎩⎪⎨⎪⎧-3≤x ≤3,-4≤x ≤2,即-3≤x ≤2,故选C.]4.B [令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.]5.B [f ⎝⎛⎭⎫log 218=f (-3)=f (-3+2)=f (-1)=f (-1+2)=f (1)=f (1+2)=f (3)=23=8.故选B.] 6.B [令x =2,得f (2)+2f ⎝⎛⎭⎫12=6,① 令x =12,得f ⎝⎛⎭⎫12+2f (2)=32,② 由①②得f (2)=-1.]7.B [∵函数f (x )=⎩⎪⎨⎪⎧log 2(1-x )+1, -1≤x <0,x 3-3x +2,0≤x ≤a的图象如图所示.∵函数f (x )的值域是[0,2],∴1∈[0,a ],即a ≥1.又由当y =2时,x 3-3x =0,x =3(0,-3舍去),∴a ≤3,∴a 的取值范围是[1,3].故选B.]8.B [给定函数f (x )=x 2-2x -1,p =2, 则f (1)=-2,f p (1)=-2,所以f [f p (1)]=f (-2)=7,f p [f (1)]=f p (-2)=2, 所以f p [f (1)]≠f [f p (1)],故选B.] 9.12(x -1)(2-x ) 解析 ∵f (x -1)=2f (x ),∴f (x )=12f (x -1).∵1≤x ≤2,∴0≤x -1≤1. 又当0≤x ≤1时,f (x )=x (1-x ),∴f (x -1)=(x -1)[1-(x -1)]=(x -1)(2-x ), ∴f (x )=12f (x -1)=12(x -1)(2-x ).10.⎝⎛⎭⎫0,1π+2解析 由题意知AB =2x ,CD =πx , 因此AD =1-2x -πx2.框架面积y =2x ×1-2x -πx 2+πx 22=-π+42x 2+x .因为⎩⎪⎨⎪⎧2x >0,1-2x -πx 2>0,所以0<x <1π+2.11.(-1,1)解析 当x >0时,-log 2x >0=log 21,解得0<x <1; 当x ≤0时,1-x 2>0,解得-1<x ≤0, 所以不等式f (x )>0的解集为(-1,1). 12.[12,2]解析 当x ∈[0,1]时,f (x )=1-x 2的值域是[0,1],g (x )=2a cos π3x -3a +2(a >0)的值域是[2-2a,2-a ],为使存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立,需[0,1]∩[2-2a,2-a ]≠∅.由[0,1]∩[2-2a,2-a ]=∅,得1<-2a +2或2-a <0,解得a <121或a>2.所以,若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是2≤a≤2.。

函数的应用有解析2018年高考理科数学易错点

函数的应用有解析2018年高考理科数学易错点

函数的应用(有解析2018年高考理科数学易错点)1.【2017北京,理14】三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点Ai的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点Bi的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.①记Q1为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是_________.②记pi为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是_________.【答案】;2.【2017课标3,理15】设函数则满足的x的取值范围是_________.【答案】写成分段函数的形式:,函数在区间三段区间内均单调递增,且:,据此x的取值范围是:.3.【2017课标1,理21】已知函数.(1)讨论的单调性;(2)若有两个零点,求a的取值范围.【答案】(1)见解析;(2).【解析】(1)的定义域为,,(ⅰ)若,则,所以在单调递减.(ⅱ)若,则由得.当时,;当时,,所以在单调递减,在单调递增. (2)(ⅰ)若,由(1)知,至多有一个零点.(ⅱ)若,由(1)知,当时,取得最小值,最小值为.①当时,由于,故只有一个零点;②当时,由于,即,故没有零点;③当时,,即.又,故在有一个零点.设正整数满足,则.由于,因此在有一个零点.综上,的取值范围为.4.(2016天津)已知函数f(x)=sin2ωx2+12sinωx-12(ω0,x∈R).若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.0,18B.0,14∪58,1C.0,58D.0,18∪14,58答案D解析f(x)=1-cosωx2+12sinωx-12=12(sinωx-cosωx)=22sinωx-π4.因为函数f(x)在区间(π,2π)内没有零点,所以T22π-π,所以πωπ,所以0ω1.当x∈(π,2π)时,ωx-π4∈ωπ-π4,2ωπ-π4,若函数f(x)在区间(π,2π)内有零点,则ωπ-π4kπ2ωπ-π4(k∈Z),即k2+18ωk+14(k∈Z).当k=0时,18ω14;当k=1时,58ω54.所以函数f(x)在区间(π,2π)内没有零点时,0ω≤18或14≤ω≤58.5.(2016天津)已知函数f(x)=x2+&#61480;4a-3&#61481;x+3a,x0,loga&#61480;x+1&#61481;+1,x≥0(a0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2-x恰有两个不相等的实数解,则a的取值范围是()A.0,23B.23,34C.13,23∪34D.13,23∪34答案C解析由y=loga(x+1)+1在[0,+∞)上递减,得0a1. 又由f(x)在R上单调递减,则02+&#61480;4a-3&#61481;0+3a≥f&#61480;0&#61481;=1,3-4a2≥0,&#8658;13≤a≤34.如图所示,在同一坐标系中作出函数y=|f(x)|和y=2-x的图象.由图象可知,在[0,+∞)上,|f(x)|=2-x有且仅有一个解.故在(-∞,0)上,|f(x)|=2-x同样有且仅有一个解.当3a2,即a23时,由x2+(4a-3)x+3a=2-x(其中x0),得x2+(4a-2)x+3a-2=0(其中x0),则Δ=(4a-2)2-4(3a-2)=0,解得a=34或a=1(舍去);当1≤3a≤2,即13≤a≤23时,由图象可知,符合条件.综上所述,a∈13,23∪34.故选C.6.(2016山东)已知函数f(x)=|x|,x≤m,x2-2mx+4m,xm,其中m0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是________.答案(3,+∞)7.(2016四川)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是________.答案33解析由题可知,因为三棱锥每个面都是腰为2的等腰三角形,由正视图可得俯视图(如图),且三棱锥高为h=1,则体积V=13Sh=13×12×23×1×1=33.8.【2016高考上海理数】已知,函数.(1)当时,解不等式;(2)若关于的方程的解集中恰好有一个元素,求的取值范围;(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.【答案】(1).(2).(3).【解析】(1)由,得,解得.(2),,当时,,经检验,满足题意.当时,,经检验,满足题意.当且时,,,.是原方程的解当且仅当,即;是原方程的解当且仅当,即.于是满足题意的.综上,的取值范围为.(3)当时,,,所以在上单调递减.函数在区间上的最大值与最小值分别为,.即,对任意成立.因为,所以函数在区间上单调递增,时,有最小值,由,得.故的取值范围为.9.【2016高考上海理数】设、、是定义域为的三个函数,对于命题:①若、、均为增函数,则、、中至少有一个增函数;②若、、均是以为周期的函数,则、、均是以为周期的函数,下列判断正确的是()、①和②均为真命题、①和②均为假命题、①为真命题,②为假命题、①为假命题,②为真命题【答案】D【解析】①不成立,可举反例,,②前两式作差,可得结合第三式,可得,也有∴②正确故选D.易错起源1、函数的零点例1(1)已知实数a1,0b1,则函数f(x)=ax+x-b的零点所在的区间是()A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)(2)已知函数f(x)=2-|x|,x≤2,&#61480;x-2&#61481;2,x>2,函数g(x)=3-f(2-x),则函数y=f(x)-g(x)的零点个数为()A.2B.3C.4D.5答案(1)B(2)A解析(1)因为a1,0b1,f(x)=ax+x-b,所以f(-1)=1a-1-b0,f(0)=1-b0,由零点存在性定理可知f(x)在区间(-1,0)上存在零点.当x0时,方程f(x)-g(x)=0可化为x2+x-1=0,其根为x=-1-52或x=-1+52(舍去).所以函数y=f(x)-g(x)的零点个数为2.【变式探究】(1)函数f(x)=lgx-1x的零点所在的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,10)(2)函数f(x)=2x|log0.5x|-1的零点个数为()A.1B.2C.3D.4答案(1)C(2)B解析(1)∵f(2)=lg2-120,f(3)=lg3-130,∴f(2)f(3)0,故f(x)的零点在区间(2,3)内.(2)函数f(x)=2x|log0.5x|-1的零点即2x|log0.5x|-1=0的解,即|log0.5x|=12x的解,作出函数g(x)=|log0.5x|和函数h(x)=12x的图象.由图象可知,两函数图象共有两个交点,故函数f(x)=2x|log0.5x|-1有2个零点.【名师点睛】函数零点(即方程的根)的确定问题,常见的有:(1)函数零点值大致存在区间的确定;(2)零点个数的确定;(3)两函数图象交点的横坐标或有几个交点的确定.解决这类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是方程两端对应的函数类型不同的方程多以数形结合法求解.【锦囊妙计,战胜自我】1.零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,这个c也就是方程f(x)=0的根.2.函数的零点与方程根的关系函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.易错起源2、函数的零点与参数的范围例2、(1)对任意实数a,b定义运算“&#8855;”:a&#8855;b=b,a-b≥1,a,a-b1.设f(x)=(x2-1)&#8855;(4+x),若函数y=f(x)+k的图象与x轴恰有三个不同的交点,则k的取值范围是()A.(-2,1)B.[0,1]C.[-2,0)D.[-2,1)答案D解析解不等式x2-1-(4+x)≥1,得x≤-2或x≥3,所以f(x)=x+4,x∈&#61480;-∞,-2]∪[3,+∞&#61481;,x2-1,x∈&#61480;-2,3&#61481;.函数y=f(x)+k的图象与x轴恰有三个不同的交点转化为函数y=f(x)的图象和直线y=-k恰有三个不同的交点.如图,所以-1-k≤2,故-2≤k1.(2)已知函数f(x)=-x2+2ex+m-1,g(x)=x+e2x(x0).①若g(x)=m有零点,求m的取值范围;②确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.解①∵g(x)=x+e2x≥2e2=2e(x0),当且仅当x=e2x时取等号,∴当x=e时,g(x)有最小值2e.∴g(x)=m有零点,只需m≥2e.∴当m∈[2e,+∞)时,g(x)=m有零点.②若g(x)-f(x)=0有两个相异实根,则函数g(x)与f(x)的图象有两个不同的交点.如图,作出函数g(x)=x+e2x(x0)的大致图象.∵f(x)=-x2+2ex+m-1=-(x-e)2+m-1+e2,∴其对称轴为x=e,f(x)max=m-1+e2.若函数f(x)与g(x)的图象有两个交点,则m-1+e22e,即当m-e2+2e+1时,g(x)-f(x)=0有两个相异实根.∴m的取值范围是(-e2+2e+1,+∞).【变式探究】(1)已知函数f(x)=ex-2x+a有零点,则a的取值范围是_________________.(2)若函数f(x)=|2x-2|-b有两个零点,则实数b的取值范围是________.答案(1)(-∞,2ln2-2](2)(0,2)解析(1)f′(x)=ex-2,当x∈(-∞,ln2)时,f′(x)0;当x∈(ln2,+∞)时,f′(x)0,所以f(x)min=f(ln2)=2-2ln2+a.由于所以f(x)有零点当且仅当2-2ln2+a≤0,所以a≤2ln2-2.(2)将函数f(x)=|2x-2|-b的零点个数问题转化为函数y=|2x-2|的图象与直线y=b的交点个数问题,数形结合求解.由f(x)=|2x-2|-b=0,得|2x-2|=b.在同一平面直角坐标系中画出y=|2x-2|与y=b的图象,如图所示.则当0b2时,两函数图象有两个交点,从而函数f(x)=|2x-2|-b有两个零点.【名师点睛】(1)方程f(x)=g(x)根的个数即为函数y=f(x)和y=g(x)图象交点的个数;(2)关于x的方程f(x)-m=0有解,m的范围就是函数y =f(x)的值域.【锦囊妙计,战胜自我】解决由函数零点的存在情况求参数的值或取值范围问题,关键是利用函数方程思想或数形结合思想,构建关于参数的方程或不等式求解.易错起源3、函数的实际应用问题例3、某经销商计划销售一款新型的空气净化器,经市场调研发现以下规律:当每台净化器的利润为x(单位:元,x0)时,销售量q(x)(单位:百台)与x的关系满足:若x不超过20,则q(x)=1260x+1;若x大于或等于180,则销售量为零;当20x180时,q(x)=a-bx(a,b为实常数).(1)求函数q(x)的表达式;(2)当x为多少时,总利润(单位:元)取得最大值,并求出该最大值.解(1)当20x180时,由a-b20=60,a-b180=0,得a=90,b=35.故q(x)=1260x+1,0x≤20,90-35x,20x180,0,x≥180.(2)设总利润f(x)=xq(x),由(1)得,f(x)=126000xx+1,0x≤20,9000x-3005xx,20x180,0,x≥180.当0x≤20时,f(x)=126000xx+1=126000-126000x+1,f(x)在(0,20]上单调递增,所以当x=20时,f(x)有最大值120000.当20x180时,f(x)=9000x-3005xx,f′(x)=9000-4505x,令f′(x)=0,得x=80.当20x80时,f′(x)0,f(x)单调递增,当80x180时,f′(x)0,f(x)单调递减,所以当x=80时,f(x)有最大值240000.当x180时,f(x)=0.答当x等于80元时,总利润取得最大值240000元.【变式探究】(1)国家规定个人稿费纳税办法为:不超过800元的不纳税;超过800元而不超过4000元的按超过部分的14%纳税;超过4000元的按全稿酬的11%纳税.某人出版了一本书共纳税420元,则他的稿费为() A.3000元B.3800元C.3818元D.5600元(2)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未出租的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元,要使租赁公司的月收益最大,则每辆车的月租金应定为________元.答案(1)B(2)4050解析(1)假设个人稿费为x元,所缴纳税费为y元,由已知条件可知y为x的函数,且满足y=0,x≤800,y=0,0.14&#61480;x-800&#61481;,800x≤4000,y∈&#61480;0,448],0.11x,x4000,y∈&#61480;440,+∞&#61481;,共纳税420元,所以有0.14(x-800)=420&#8658;x=3800,故选B.【名师点睛】(1)关于解决函数的实际应用问题,首先要耐心、细心地审清题意,弄清各量之间的关系,再建立函数关系式,然后借助函数的知识求解,解答后再回到实际问题中去.(2)对函数模型求最值的常用方法:单调性法、基本不等式法及导数法.【锦囊妙计,战胜自我】解决函数模型的实际应用问题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是:(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转化成实际问题作出解答.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题 1.若f (x ),则f (x )的定义域为( )
A.⎝ ⎛⎭⎪⎫-
1
2,0 B.⎝ ⎛⎦
⎥⎤-12,0
C.⎝ ⎛⎭
⎪⎫-12,+∞ D .(0,+∞)
2.函数y =e
|ln x |
-|x -1|的图象大致是( )
3.(2016·湖北浠水实验高中期中)设f (x )=1-(x -a )(x -b )(a <b ),m ,n 为y =f (x )的两个零点,且m <n ,则a ,b ,m ,n 的大小关系是( ) A .a <m <n <b B .m <a <b <n C .a <b <m <n
D .m <n <a <b
4.定义在R 上的函数f (x )既是奇函数,又是周期函数,T 是它的一个正周期,若将该函数在区间[-T ,
T ]上的零点个数记为n ,则n 可能为( )
A .0
B .1
C .3
D .5
5.(2016·广东汕头澄海凤翔中学段考)已知函数f (x )=⎩
⎪⎨⎪⎧
ax 2
+1,x ≥0,
(a -2)e x
,x <0是R 上的单调函数,则实数a
的取值范围是( ) A .(2,+∞) B .(2,3] C .(-∞,3]
D .(2,3)
6.(2016·湖南娄底高中名校联考)对于函数f (x ),使f (x )≤n 成立的所有常数n 中,我们把n 的最小值G
叫做函数f (x )的上确界.则函数f (x )=12
2,0,
1
log (),02x x x x -⎧≥⎪
⎨-<⎪⎩的上确界是( ) A .0 B.12 C .1
D .2
7.(2016·青海西宁第四高级中学月考)已知函数f (x )=⎩
⎪⎨
⎪⎧
-x 2
+x ,x ≤1,
log 0.5x ,x >1.若对于任意x ∈R ,不等式
f (x )≤t 2
4
-t +1恒成立,则实数t 的取值范围是( )
A .(-∞,1]∪[2,+∞)
B .(-∞,1]∪[3,+∞)
C .[1,3]
D .(-∞,2]∪[3,+∞)
8.(2016·湖北重点中学月考)设方程2x
+x +2=0和方程log 2x +x +2=0的根分别为p 和q ,函数f (x )=(x +p )·(x +q )+2,则( ) A .f (2)=f (0)<f (3) B .f (0)<f (2)<f (3) C .f (3)<f (0)=f (2) D .f (0)<f (3)<f (2)
二、填空题
9.已知y =f (x )在(0,2)上是增函数,y =f (x +2)是偶函数,则f (1),f (52),f (7
2)的大小关系是
____________.(用“<”连接)
10.若关于x 的不等式ax 2
+x -2a <0的解集中仅有4个整数解,则实数a 的取值范围为________.
11.(2016·四川成都新都一中月考)已知函数f (x )=⎩⎪⎨⎪⎧
x -2,x >0,
-x 2
+bx +c ,x ≤0
满足f (0)=1,且有f (0)+
2f (-1)=0,那么函数g (x )=f (x )+x 的零点有________个.
12.已知f (x )=|log a |x -1||(a >0,a ≠1),若x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则1x 1+1x 2+1
x 3

1
x 4
=________.。

相关文档
最新文档