锅炉过热器汽温模拟监测系统设计
模拟量控制系统(MCS)蒸汽温度控制
主蒸汽流量 MSTMFLOW
总空气流量 TOTAIRFL
L:662
BIAS I A
主蒸汽流量 MSTMFLOW
AE 99
A侧再热器出口汽温1/2/3 HAJCT311 HAJCT312 HAJCT313
TE TE TE
B侧再热器出口汽温1/2/3 HAJCT321 HAJCT322 HAJCT323
2
T2
K2
1
0
T K 导前区的参数 、 、 及控制 T K 通道的参数 、 、 。一般 T =30~60s,=40~100s。
2 2 2
1 1
1
1
1
2
WB
T1
导前区: W1 s
K1
W s
2 s
1 T2 s n
K1
K2
2
0
1
减温水流量扰动下导前汽温和主汽温的响应特性
B侧再热器减温水调节阀调节指令
图12-14 再热事故喷水
再热器喷水减温控制系统
• 再热器喷水减温器分左右两侧布置,故再热器喷水减温控制系统有两套, 分别控制左右两侧的减温水流量。再热器喷水减温控制系统可以是导前 汽温微分的双回路控制系统,也可以是串级控制系统。本例为串级控制 系统。
• 再热汽温设定值由运行人员手动设定,锅炉负荷在45%~100%BMCR 时,一般设定在538℃。左、右侧再热汽温测量值是前述左、右两侧末 级再热器出口汽温分别经过三选中得到的。再热汽温与设定值的偏差经 PID控制器运算,得到再热喷水主控制器控制指令。为了防止过量喷水 而使汽中带水,主控制器的控制指令与汽轮机调节级压力的函数进行大 选处理,二者中的大值作为副控制器的设定值(导前汽温设定值)。此 汽轮机调节级压力的函数实际是根据调节级压力换算的饱和蒸汽温度值, 再加一定的安全裕度得到的减温喷水温度限值。 • 再热器的导前汽温(即左侧再热器喷水减温器出口温度)有两个测点,经 两选一处理后得到导前汽温的实测值。副控制器对导前温度的设定值与 实测值进行PID运算,得到再热器减温水调节阀的开度指令。
蒸汽锅炉PID温度控制系统设计
目旳:
对锅炉过热蒸汽温度控制系统进行分析和设计,而对 锅炉过热蒸汽旳良好控制是确保系统输出蒸汽温度稳 定旳前提。所以本设计采用串级控制系统,这么能够 极大地消除控制系统工作中旳多种干扰原因,使系统 能在一种较为良好旳状态下工作,同步锅炉过热器出 口蒸汽温度在允许旳范围内变化,并保护过热器管壁 温度不超出允许旳工作温度。
调整器接受过热器出口蒸汽温度t变化后,调整器才开始动作, 去控制减温水流量W ,W旳变化又要经过一段时间才干影响到 蒸汽温度t,这么既不能及早发觉扰动,又不能及时反应控制旳 效果,将使蒸汽温度t发生很大旳动态偏差,影响锅炉生产旳安 全和经济运营。
燃烧工况
温度设定值
控制信号
喷水流量
控制器
执行器
过热器
温度变送器
在本设计用到串级控制系统中,主对象为送入负荷设 备旳出口温度,副对象为减温器和过热器之间旳蒸汽 温度,经过控制减温水旳流量来实现控制过热蒸汽温 度旳目旳。
蒸汽锅炉工艺流程及控制要求
蒸汽锅炉工艺流程及控制要求
锅炉是一种具有多输入、多输出且变量之间相互关联 旳被控对象。 过热蒸汽温度控制系统:主要使过热器出口温度保持 在允许范围内,并确保管壁温度不超出工艺允许范围;
被控对象建模
根据在减温水量扰动时,过热蒸汽温度有较大旳容积迟延, 而减温器出口蒸汽温度却有明显旳导前作用,完全能够构成 以减温器出口蒸汽温度为副参数,过热蒸汽温度为主参数旳 串级控制系统
温度设定值
温度主调节器
副调节器
减温水流量
蒸汽流量或者烟
扰动
气热量扰动
阀 门
减温器 2
过热蒸汽温度
过热器 1
温度变送器 温度变送器
利用DCS的过热汽温系统控制系统设计
利用DCS的过热汽温系统控制系统设计一、集散控制系统分析集散控制系统是以微处理器为基础的集中分散控制系统。
自70年代中期第一套集散控制系统问世以来,集散控制系统己经在工业控制领域得到广泛的应用,越来越多的仪表和控制工程师已经认识到集散控制系统必将成为过程工业自动控制的主流。
集散控制系统的主要特性是它的集中管理和分散控制,而且,随着计算机技术的发展,网络技术己经使集散控制系统不仅主要用于分散控制,而且向着集成管理的方向发展。
系统的开放不仅使不同制造厂商的集散控制系统产品可以互相连接,而且使得它们可以方便地进行数据交换。
DCS集散式温度控制系统图二、DCS系统主要技术指标调研(1)操作员站及工程师站:CPU PⅢ850以上内存128M以上硬盘40G以上软驱 1.44M以太网卡INTEL 100M×2块加密锁组态王加密锁鼠标轨迹球键盘工业薄膜键盘显示器21寸显示器分辨率1280×1024过程控制站:CPU PⅢ850以上内存128M以上硬盘40G以上电子盘8M以上软驱 1.44M以太网卡INTEL 100M×1块串行通讯卡485卡×1块(可选)(2)I/O站技术指标1)EF4000网络EF-4000网络是多主站、双冗余高速网络,通信波特率为312.5K和1.25M可编程;EF4000网络配合EF4000系列测控站(前端),可以完成工业现场各类信号的采集、处理和各类现场对象的控制任务。
EF4000网络的主要技术指标如下:挂网主站数≤31挂网模块数≤100(不带网络中继器),最多240通讯速率 1.25MBPS和312.5KBPS可编程基本传输距离 1.2MBPS时≥500m,312.5KBPS时≥1600m允许中继级数≤4级双网冗余具备两个通信口互为冗余的功能网络通讯方式半双工同步传输介质聚乙稀双绞线网络隔离度≥500Vrms通信物理层全隔离、全浮空、平衡差动传输方式有效传输字节不小于34K字节/S(1.25MBPS通讯速率)2)通讯网卡主要技术参数型号EF-4000网络─ EF4001安装方式计算机PC总线扩展插槽插卡安装尺寸160×75mm宿主计算机具有AT插槽的IBM-PC及其兼容机I/O地址硬件任选100、120、140、160、180、1A0、1C0七种中断向量软件任意设定IRQ3、5、7、10、11、12、15或不使用耗电不大于1W工作方式连续可靠性指标MTBF80000Hr运行环境温度0~60C°,相对湿度≤80%3)模拟量输入前端模块型号EF4101输入通道数16路通道隔离电压400V(峰—峰值)网络隔离度≥500Vrms通道采样时间80mSA/D分辨率17位测量精度〈0.2%被测信号类型T/C、RTD、mV、mA4)模拟量输出前端模块型号EF4601输出通道数6路(全隔离)通道隔离电压500V网络隔离度≥500Vrms电压输出范围-10V ~ +10V电流输出范围0 ~ 20 mA控制精度0.2级5)数字量输入前端模块型号EF4201输入通道数28路通道隔离电压350V网络隔离度≥500Vrms计数速率≤500次/秒(低频通道)计数速率≤8000次/秒(高频通道)事件分辨率1mS(低频通道)计数长度24位(三字节)测频范围0 Hz ~ 8000 Hz(高频通道)6)数字量输出前端模块型号EF4203输出通道数16路(EF4203)通道隔离电压350V网络隔离度≥500Vrms结点开关电流≤100 mA结点开关电压≤350 V结点隔离电压≤350 V结点闭合时间≤0.6 mS结点断开时间≤0.15 ms7)执行器脉冲控制单元输出结点电压≤380 V输出结点电流≤5A系统网络采用国际上通用的Ethernet 网,通信速率为100Mbps,遵循IEEE 802.3协议。
锅炉过热蒸汽温度控制系统的设计与仿真
低(5~IO) ̄C,效率就降低约 1%,因此严格 控制过热汽温在给定值 间 r约为 20s,具有较 良好的动态特性。但实际运行 中,蒸汽负荷
附近是大型火电机组运行 的重要任务之一[1J。
是变化的,因此不宜用来控制过热汽温 。
过热蒸汽温度控制 中,被控对象具 有非 线性 、时变性 、滞后 2-2 烟气传 热量扰 动的动态 特性
monitored control system is developed by Kingview.Th e results show that t he FUZZY-PID con troller not only improves the
system of nonlinear,time variability and ce , 桫 processing capacity,but also has better se L adaptive ca pa city a nd
第 4期 2016年 4月
机 械 设 计 与 制 造
Machinery Design & Manufacture
265
锅 炉过 热 蒸 汽 温度控 制 系统 的设 计 与仿 真
刘丽桑 ,张锦 枫
(福建工程学院 福建省数字化装备重点实验室 ,福建 福州 350118)
摘 要 :过热蒸汽温度 的高低直接影响着火电机组的安全性和经济性 。由于过 热蒸汽温度对象具有非线性 、时变等复杂 特 性 ,设 计了一种采用模糊 PID控制策略 的串级控制方案 ,分析 了锅炉过热蒸汽温度在 不同扰动作 用下的动 态特 性 ,设 计 了 FUZZY—PID控制 器,对 PID控制器参数进行 了整定,并对 FUZZY-PID控制器和常规控制器的控制效果进行 了仿真 比较 ,最后利用组态王 Kingview开发 了相应的过热蒸汽温度监控 系统。结果表明 ,FUZZY—PID自适应能力强 ,提高 了系 统对非线性、时变性和不确定性等的处理能力,改善 了控 制效果 ,具有更好的动态特性。 关键词 :过热蒸汽 ;温度控制;FUZZY-PID;串级控制 ;Kingview 中图分类号 :TH16;TP368.1;TK3 文献标识码 :A 文章编 号:1001—3997(2016)04—0265—03
基于机理模型的锅炉过热器的动态特性仿真及研究
收稿日期:作者简介:常敬涛(-),男,华北电力大学控制科学与工程学院硕士研究生基于机理模型的锅炉过热器的动态特性仿真及研究常敬涛,马平(华北电力大学控制科学与工程学院,河北保定071003)摘要:以带有喷水减温器的高温过热器为研究对象,在机理分析的基础上进行合理的简化得到传递函数,对过热器的动态特性进行了分析。
关键词:过热器;喷水减温;机理分析;集中参数;动态特性中图分类号:TP15;TK223.32文献标识码:A0引言电站锅炉主蒸汽温度的控制品质直接影响发电机组的运行。
主蒸汽温度过高会造成过热器蒸汽管道、汽轮机损坏;主蒸汽温度过低,会降低汽轮机的效率。
因此,主汽温必须严格地控制在给定值附近。
然而,电厂运行过程中,过热气温对象的动态特性在不断变化,尤其是对于大容量机组,其动态特性变化更大。
正因如此,对电站锅炉过热器动态特性的深入研究有着重要的实际意义。
本文采用机理分析的方法[1],根据锅炉过热器系统组成部分的特点,作出合理的简化,依据基本定律,建立机理模型。
根据其设计运行数据,确定模型参数,最终形成具有解析形式的模型表达式,同时对模型中主要参数的变化规律和变化趋势进行分析。
1对象描述本文以某电厂300MW 机组的高温过热器段作为研究对象(如图1所示)。
考虑到电厂对于过热蒸汽温度的控制一般采用喷水减温的方式,因而建立带有喷水减温器的高温过热器模型[2]。
2对象建模2.1模型简化在较长的介质输送管道及管式换热器中,设备本身及介质的热工状态参数既是时间的函数,也是空间的函数,这类环节的状态方程可由偏微分方程组来描述,但其求解过程极其繁琐和复杂。
为了简化问题,在建立模型之前应当进行适当的简化[3]。
然而,对于集总参数方法,在所有假设条件中不一定存在最好的条件,完全需要根据解决的实际问题的具体情况决定,在这里假设条件的合理性本文不作证明。
2.2高温过热器动态模型的建立2.2.1喷水减温器数学模型的建立[4]喷水减温器是电厂蒸汽控制系统中的重要设备,其基本工作原理是将经过雾化后的减温水直接喷入过热的蒸汽流,减温水滴从过热蒸汽流中吸收热量,使减温水升温、蒸发和过热,从而使主蒸汽的温度降低达到调节过热气温的目的,如图2所示。
锅炉温度控制系统设计
XXXXXXXX大学本科生过程控制课程设计说明书题目:热电厂锅炉炉膛温度控制系统的设计学生姓名:学号:专业:班级:指导教师:摘要锅炉是热电厂重要且基本的设备 ,其最主要的输出变量之一就是主蒸汽温度。
主汽温度自动调节的任务是维持过热器出口汽温在允许范围内 ,以确保机组运行的安全性和经济性。
如果该温度过高 ,会使锅炉受热面及蒸汽管道金属材料的蠕变速度加快 ,降低使用寿命。
若长期超温 ,则会导致过热器爆管 ,在汽机侧还会导致汽轮机的汽缸、汽阀、前几级喷嘴和叶片、高压缸前轴承等部件的寿命缩短 ,甚至损坏;假如该汽温过低 ,会降低机组的循环热效率 ,一般汽温每降低5 ℃~10 ℃,效率约降低1 % ,同时会使通过汽轮机最后几级的蒸汽湿度增加 ,引起叶片磨损;当汽温变化过大时 ,将导致锅炉和汽轮机金属管材及部件的疲劳 ,还将引起汽轮机汽缸和转子的胀差变化 ,甚至产生剧烈振动 ,危及机组的安全 ,所以有效精准的控制策略是十分必要的锅炉炉膛温度的控制效果直接影响着产品的质量,温度低于或者高于要求时都不能达到生产质量指标,有时甚至会发生生产事故,此设计控制以锅炉炉膛温度为主控参数、燃料和空气并列为副被控变量设计热电厂锅炉温度控制系统,以达到精度在正负5 ℃范围内。
关键词:热电厂;锅炉;炉膛温度;串级控制目录引言 (4)第一章热电厂的工艺流程及要求 (5)第二章锅炉的工艺流程及控制要求 (7)2.1锅炉的工艺流程 (7)2.2锅炉的控制要求 (8)第三章锅炉炉膛温度的分析 (8)第四章锅炉炉膛温度控制系统的设计 (12)4.1炉膛温度控制的理论数学模型 (12)4.2炉膛温度控制方法的选择 (12)4.3 系统单元元件的选择 (12)4.3.1温度检测变送器的选择 (12)4.3.2流量检测变送器的选择 (14)4.3.3主、副调节器正反作用的选择 (15)4.3.4主、副回路调节器调节规律的选择 (16)4.3.5控制器仪表的选择 (16)4.3.6控制阀的选择 (18)第五章锅炉炉膛温度控制系统的工作原理 (19)第六章总结 (20)参考文献 (21)引言随着现代工业生产的迅速发展,对工艺操作条件的要求更加严格,对安全运行及对控制质量的要求也更高。
(完整版)我的工业燃煤锅炉DCS控制系统设计毕业论文设计
工业燃煤锅炉DCS控制系统设计(子课题:控制方案的组态及监控画面的制作)摘要:本文叙述了工业燃煤锅炉的工作原理,具体阐述了锅炉控制中对汽水控制系统方案和自动检测的设计,利用了Control Builder 软件、UMC800控制器和FIX软件进行35吨工业燃煤锅炉汽水系统的自动检测与控制回路的组态,并设计了友好的监控画面。
关键词:锅炉FIX UMC800 控制系统汽水系统蒸汽压力Abstract: the paper introduce the principle of the boiler which is used in burning coal industrial,it describes the scheme of the steam controlsystem in boiler control and the design of auto-detection. it use the Control Buildersoftware,UMC800 controller and FIX softwareto auto-detect 35t steam system in burningcoal industrial and configuration the controlloop, and designed the friendly supervisionappearance.Keyword: boiler, FIX, UMC800, control system, steam system, steam pressure引言锅炉微机控制,是近年来开发的一项新技术,它是微型计算机软件、硬件、自动控制、锅炉节能等几项技术紧密结合的产物,我国现有中、小型锅炉30多万台,每年耗煤量占我国原煤产量的13,目前大多数工业锅炉仍处于能耗高、浪费大、环境污染严重的生产状态。
提高热效率,降低耗煤量,降低耗电量,用微机进行控制是一件具有深远意义的工作。
锅炉蒸汽温度自动控制系统——模糊控制
锅炉蒸汽温度自动控制系统摘要:电厂实现热力过程自动化,能使机组安全、可靠、经济地运行。
锅炉是火力发电厂最重要的生产设备,过热蒸汽温度是锅炉运行质量的重要指标之一,过热蒸汽温度控制是锅炉控制系统中的重要环节。
在实现过程控制中,由于电站锅炉系统的被控对象具有大延迟,大滞后、非线性、时变、多变量耦合的复杂特性,无法建立准确的数学模型,对这类系统采用常规PID控制难以获得令人满意的控制效果。
在这种情况下,先进的现代控制理论和控制方法已经越来越多地应用在锅炉汽温控制系统。
本文以电厂锅炉汽温系统为研究对象,对其进行了计算机控制系统的改造。
考虑到锅炉汽温系统的被控对象特点,本文分别采用了常规PID控制器和模糊-PID控制器,对两种控制系统对比研究,同时进一步分析了一般模糊-PID控制器的控制特点,在此基础之上给出了一种改进算法,通过在线调整参数,实现模糊-自调整比例常数PID控制。
在此算法中,比例常数随着偏差大小而变化,有效地解决了在小偏差范围内,一般的模糊-PID控制器无法实现的静态无偏差的问题,提高了蒸汽温度控制系统的控制精度。
关键词:锅炉蒸汽温度模糊控制随着我国经济的高速发展,对重要能源“电”的要求快速增长,大容量发电机组的投入运行以及超高压远距离和赢流输电的混和电网的建设,以三峡电网为中心的全国性电力系统的形成,电力系统的不断扩大,对其自动控制技术水平的要求也越来越高。
同时,地方性的自备热电厂亦有长足发展,随着新建及改造工程的进行,其生产过程自动控制与时俱进,小容量机组“麻雀虽小,五脏俱全”,自备热电厂其自身特点:自供电、与主电网的关系疏及相互影响小,供热及采暖季节性等,可以提供更多的应用、尝试新技术、新产品的机会和可能性。
这样做的重要目标是提高和保证电力,热力及牛产过程的安全可靠、经济高效。
为了适应发展并实现上述目标,必须采取最新的技术和控制手段对电力系统的各种运铲状态和设备进行有效的自动控制。
火力发电厂在我国电力工业中占有主要地位,是我国重点能源工业之一。
锅炉蒸汽温度控制系统
3)主参数要求高,副参数亦有一定要求,这时 主副调节器均采用比例积分控制。
从上图可以看到,过热汽温串级控制系统中,有主、 副两个调节器。当主汽温度升高时,主汽温度设定值 与主汽温度测量值的偏差,送到主调节器,其输出信 号作为副调节器的给定值,同时副调节器接受导前汽 温信号,取两个偏差送到副调,副调节器输出去控制 执行器开度,改变喷水量,进而改变了主汽温度。当 主汽温升高时,主调节器(反作用方式)输出减小, 副调节器(正作用方式)输出增大,减温水量增加, 从而使主汽温度下降。
炉膛水冷壁结渣,水冷壁吸热量减少,导致炉膛 出口烟温上升,再热器吸热增加,再热汽温提高。
(5) 过热蒸汽温度和压力
过热蒸汽温度变化会引起高压缸排汽变化。过热汽 温降低,高压缸排汽温度降低;在再热器吸热量不变的 条件下,因再热器进口温度降低,导致再热器出口温度 降低。
过热蒸汽压力的变化也会引起再热汽温的变化。过 热蒸汽压力降低,在过热汽温不变的情况下,过热蒸汽 的焓增大,高压缸排汽温度上升;在再热器吸热量不变 的条件下,因再热器进口温度升高,使再热器出口温度 提高;反之,过热蒸汽压力升高,再热汽温降低。这与 变压运行时,可保持较高再热汽温的原理相同。
3)串级控制系统具有一定的自适应能力
3. 串级控制系统主副回路和主副调节器选择
(1) 主副回路的选择原则
1) 副回路应该把生产过程的主要干扰包括在内,力 求把变化幅度最大、最剧烈和最频繁的干扰包括在副回 路内,充分发挥副回路改善系统动态特性的作用,保证 主参数的稳定;
2) 选择副回路时,应力求把尽量多的干扰包括进去, 以尽量减少它们对主参数的影响,提高系统抗干扰能力;
过程控制工程课程设计-锅炉过热蒸汽温度控制系统-要求保证过热蒸汽温度稳定
注:目录没弄……;附图我另传,要的进我文库下摘要过热蒸汽温度的扰动来源很多,蒸汽流量、燃烧工况、进入过热器蒸汽的热焙、流经过热器的烟气温度和流速等的变化都会使过热蒸汽温度发生变化。
而有些扰动间又相互影响,使对象动态过程变得复杂。
但归纳起来,主要有三种扰动:蒸汽量、烟气量和减温水量。
本文是针对锅炉过热蒸汽温度控制系统进行的分析和设计。
控制系统采用串级控制来控制减温器喷水量以提高系统的控制性能。
喷水减温作为调节汽温的手段,根据汽温偏差来改变喷水量。
通过使用该系统,可以使得锅炉过热器出口蒸汽温度在允许的范围内变化,并保护过热器营壁温度不超过允许的工作温度。
关键字:扰动来源过热蒸汽控制串级控制系统调节手段1、生产工艺介绍1.1 锅炉设备介绍锅炉是工业过程必不可少的重要动力设备,它所产生的高压蒸汽既可作为驱动透平的动力源,又可作为精馏、干燥、反应、加热等过程的热源。
随着工业生产规模的不断扩大,作为动力和热源的过滤,也向着大容量、高参数、高效率的方向发展。
锅炉设备根据用途、燃料性质、压力高低等有多种类型和称呼,工艺流程多种多样,常用的锅炉设备的蒸汽发生系统是由给水泵、给水控制阀、省煤器、汽包及循环管等组成。
燃料与空气按照一定比例送入锅炉燃烧室燃烧,生成的热量传递给蒸汽发生系统,产生饱和蒸汽,经过过热器形成过热蒸汽,在汇集到蒸汽母管。
过热蒸汽经负荷设备控制,供给负荷设备用,于此同时,燃烧过程中产生的烟气,除将饱和蒸汽变成过热蒸汽外,还经省煤器预热锅炉给水和空气预热器预热空气,最后经引风送往烟囱排空。
锅炉设备主要工艺流程图锅炉设备的控制任务是根据生产负荷的需要,供应一定压力或温度的蒸汽,同时要使锅炉在安全、经济的条件下运行。
按照这些控制要求,锅炉设备将有如下主要的控制系统:①供给蒸汽量适应负荷变化需要或保持给定负荷。
②锅炉供给用汽设备的蒸汽压力保持在一定范围内。
③过热蒸汽温度保持在一定范围。
④汽包水位保持在一定范围内。
火力发电厂高温锅炉监控解决方案
火力发电厂高温锅炉监控解决方案高温锅炉是火力发电厂的核心设备之一,它起着将燃料燃烧产生的能量转化为蒸汽的重要作用,从而驱动汽轮机发电。
监控高温锅炉的运行状态和性能参数对于确保发电厂的安全稳定运行至关重要。
本文将介绍一种高温锅炉监控解决方案,包括监测和控制传感器、数据采集与处理、远程监控和维护等方面。
一、监测和控制传感器高温锅炉的监控系统需要配备多种传感器,用于监测和测量锅炉内部的各项参数。
这些传感器包括但不限于以下几种:1. 燃烧参数传感器:用于监测燃料供给、燃烧状况和燃烧效率等参数。
2. 烟气参数传感器:用于监测烟气温度、烟气流量、烟气成分和烟气压力等参数。
3. 水参数传感器:用于监测锅炉内水位、水温、水压和水质等参数。
4. 温度传感器:用于监测各个关键部位的温度,如燃烧室、水冷壁、过热器和再热器等。
5. 压力传感器:用于监测锅炉内部的各个压力,如炉膛压力、过热器压力和再热器压力等。
这些传感器需要具备高精度、抗腐蚀和高温等特点,以保证监测数据的准确性和可靠性。
二、数据采集与处理将各个传感器采集到的数据进行采集、处理和存储是高温锅炉监控系统的核心。
传统的做法是使用PLC(可编程逻辑控制器)在现场进行数据采集和处理,然后将数据通过电缆传输到监控室。
但这种方式存在很多局限性,如数据传输距离有限、容易受到干扰和故障等。
现代的解决方案是采用工业物联网(IIoT)技术,利用无线传感器网络和云计算平台进行数据采集和处理。
无线传感器网络可以将传感器采集到的数据通过无线网络传输到云平台,无需布设大量电缆,方便灵活。
云平台可以对数据进行实时监控和分析处理,提供各种报表和图表,方便运维人员进行数据分析和故障诊断。
三、远程监控和维护高温锅炉监控系统还需要支持远程监控和维护功能。
远程监控可以让运维人员在任何地点通过互联网对锅炉的运行状态进行实时监控和远程操作。
运维人员可以通过手机、平板电脑或电脑等终端设备随时随地查看锅炉的关键参数、趋势图和历史数据,及时发现异常情况并采取相应措施。
锅炉过热蒸汽温度控制系统课程设计
锅炉过热蒸汽温度控制系统课程设计过程控制课程设计说明书——锅炉过热蒸汽温度控制系统院系:化工学院化工机械系班级:10自动化(1)姓名:李正智学号:1 0 2 0 3 0 1 0 1 6日期:2013/12/2-2013/12/15指导老师:王淑钦老师引言蒸汽温度是锅炉安全、高效、经济运行的主要参数,因此对蒸汽温度控制要求严格。
过高的蒸汽温度会造成过热器、蒸汽管道及汽轮机因过大的热应力变形而毁坏;蒸汽温度过低,又会引起热效率降低,影响经济运行。
锅炉控制现场环境恶劣,采用传统的基于模拟技术的控制器、仪器仪表或单片机,不仅结构比较复杂,效率比较低,并且可靠性也不高。
本次课程设计的主要目的是锅炉蒸汽温度控制系统的设计。
蒸汽过热系统包括一级过热器、减温器、二级过热器。
锅炉汽温控制系统主要包括过热蒸汽和再热蒸汽温度的调节。
主蒸汽温度与再热蒸汽温度的稳定对机组的安全经济运行是非常重要的。
过热蒸汽温度控制的任务是维持过热器出口蒸汽温度在允许的范围之内,并保护过热器,使其管壁温度不超过允许的工作温度。
过热蒸汽温度是锅炉汽水系统中的温度最高点,过热蒸汽温度过高或过低,对锅炉运行及蒸汽设备是不利的。
蒸汽温度过高会使过热器管壁金属强度下降,以至烧坏过热器的高温段,严重影响安全。
一般规定过热器的温度与规定值的暂时偏差不超过±10℃,长期偏差不超过±5℃【1】。
如果过热蒸汽温度偏低,则会降低电厂的工作效率,同时使汽轮机后几级的蒸汽湿度增加,引起叶片磨损。
据估计,温度每降低5℃,热经济性将下降约1%;且汽温偏低会使汽轮机尾部蒸汽温度升高,甚至使之带水,严重影响汽轮机的安全运行。
一般规定过热汽温下限不低于其额定值10℃。
通常,高参数电厂都要求保持过热汽温在540℃的范围内。
由于汽温对象的复杂性,给汽温控制带来许多的困难,其主要难点表现在以下三个方面:(1)影响汽温变化的因素很多,例如,蒸汽负荷、减温水量、烟气侧的过剩空气系数和火焰中心位置、燃料成分等都可能引起汽温变化。
过热器温仿真
1 引言电力行业是国民经济发展的重要支柱,是人类社会生产和生活必不可少的重要产业。
在我国各大电力系统中,主力机组的单机容量已有300MW过渡到600MW,并继续到1000MW迈进。
随着单机容量的增大,初蒸汽参数也向高压、超高压、亚临界、超临界、超超临界压力逐步过渡。
超临界机组是我国近期发展起来的大容量机组,并逐渐将成为国家电力行业的主力机组。
就目前看来,我国发电还是主要以火力发电为主,锅炉主汽温控制过热汽温控制对于机组的安全经济的运行有着非常重要的意义,但同时也是最难控制的的系统之一,其控制难点主要体现在一下几个方面:1)过热汽温的干扰因素很多,例如负荷,减温水量等。
2)在各种扰动量的干扰下汽温对象具有非线性、时变等特性,使控制难度加大。
3)汽温对象具有大迟延、大惯性的特点,尤其是随着机组容量和参数的提高,蒸汽过热受热面的比例加大,使其迟延和惯性进一步加大,增大了控制难度。
但同时过热汽温控制对于机组安全经济的运行有着相当重要的作用,主要有以下几个方面:1)过热汽温过高会使蒸汽管道金属和锅炉受热面的蠕变加快,影响使用寿命。
当超温严重的时候,将会使材料强度急剧下降从而导致管道破裂。
过热汽温过高还会导致汽轮机的汽缸、汽门、前几级喷嘴和叶片的机械强度下降,导致使用寿命降低和设备损坏。
2)汽温过低,将会影响机组的经济性。
当汽温低的时候机组热效率降低,煤耗增大。
另外,汽温降低会使汽轮机尾部的蒸汽湿度增大,影响汽轮机内部的热效率,使汽轮机末几级叶片的侵蚀加剧。
此外,汽温降低会使汽轮机所受的轴向推力增大,对汽轮机的安全运行很不利。
3)主汽温变化过大,除使管材及有关部件产生疲劳外,还将引起汽轮机汽缸的转子与汽缸的胀差变化,甚至产生剧烈振动,危及机组安全运行。
总之,过热汽温是火电机组的主要参数。
由于过热器是在高温、高压环境下工作,过热器出口汽温是全厂工质温度的最高点,也是金属壁温的最高处,工艺上允许的汽温变化又很小,汽温对象特性呈非线性,影响汽温变化的干扰因素多等,这些都使得汽温控制系统复杂化,因此正确选择控制汽温的手段及控制策略是非常重要的。
关于锅炉过热蒸汽温度控制系统研究
关键 词 : 过滤器 ; 温度控制 系统 ; 特性
燃料增加 , 但是 , 炉膛 中的最高的温度没有多大的变化 , 炉膛辐射放 在工业工业过程中锅炉作为关键动力设备 , 根据用途 、 燃料性 热量相对变化不大, 因此炉膛温度增高不大 。这就是说负荷增 加时 质、 压力 高低等有多种类型和称呼, 造成哦你故意流程多元化形态。 每千克燃料 的辐射放热百分率减少 ,而在炉膛后的对 流热 区中, 由 目前 常用的锅炉设备主要是由给水泵、 给水控制阀 、 省煤器 、 汽包及 于烟温和烟速的提高, 每千克燃料 的对流放热百分率将增大。如果 循环管等组成 。由于锅炉 自身的特点 , 在使用 中产生高压蒸汽能够 两种过热器串联 配合 , 可 以取得较平坦 的汽温特性 , 但 一般在采用 为驱动透平提供强大动力源 , 同时还可以为精馏 、 干燥、 反应 、 加热 这两种过热器 串联的锅炉中 , 过热器 出口蒸汽温度在某个负荷范围 等过程提供热源 。当前技术不断提升将锅炉设备技术向着大容量 、 内, 仍 随锅炉负荷的增加有所升高。 高参数、 高效率的方 向发展 。燃料与空气按照一定比例送入锅炉燃 2 ) 过剩空气系数与过热汽温 的静态关系。过剩空气量 改变时 , 烧室燃烧 , 生成的热量传递给蒸汽发生系统 , 产生饱和蒸汽 , 经过过 燃烧生成的烟气量改变 , 因而所有对流受热 面吸热随之改变 , 而且 热器形成过热蒸汽 , 在汇集到蒸汽母管 。 对离炉膛出 口较远的受热面影响显著。因此 , 当增大过剩空气量时
要部分。 过热蒸汽温度的控制任务是维持过热器出口汽温在允许范 就减少 了。也可 以认为 : 提高给水温度后 , 在相同燃料下 , 锅炉的蒸 围内, 并且保护过热器使管壁温度不超过允许 的工作温度. 过热蒸 发量增加了 , 因此过热汽温将下降。 汽温度是锅炉给水通道中温度最高 的地方 , 过热器正常运行时的温 4 . 2 动态特陛 度一般接近于材料所允许 的最高温度。 1 ) 蒸汽流量扰动下的蒸汽温度对象的动态特牲。 大型锅炉都采 过热蒸汽温度控制的主要任务就是 : 用复合式过热器 , 当锅炉负荷增加时, 锅炉燃烧率增加 , 通过对流式 1 ) 克服各种干扰 因素 , 将过热器出口蒸汽温度维持在规定允许 过热器 的烟气量增加 , 而且烟气温度也随负荷 的增大而升高 。这两 的范 围内 , 从而保持蒸气品质合格。 2 ) 保护过热器管壁温度不超过允许的工作温度 。 2 . 2 控制原理简介 1 ) 单回路控制方案。 在运行过程 中。 改变减温水流量 , 实际上是 改变过热器 出口蒸汽的热焙 , 亦改变进 口蒸汽温度。从动态特性上 看, 这种调节方法是最不理想 的, 但由于设备简单 , 因此 , 应用得最
汽温控制系统
1 蒸汽温度控制系统设计1.1 控制系统任务保证机组的安全经济运行,要求主蒸汽温度为设定值。
过热汽温调节的任务是维持过热器出口蒸汽温度再允许范围内,并且保护过热器,使管壁温度不超过允许的工作温度。
过热温度过高,可能造成过热器、蒸汽管道和汽轮机的高压部分金属损坏,因而过热温度的上限不应超过额定值5C 。
过热蒸汽温度过低,又会降低全厂的热效率并影响汽轮机的安全经济运行,因而过热汽温的下限一般不低于额定值10C 。
过热汽温的额定值通常在500C 以上。
1.2 控制系统构成控制系统的构成,主要由被控对象——过热器管道,执行机构——执行器(电动喷水阀门),检测变送组件——热电偶或温度变送器,控制系统核心部件——调节器(电动控制器)组成。
其中,被调量(测量值)——主汽温度,调节量(控制信号)——喷水流量,干扰信号——炉膛燃烧情况。
1.3 控制系统结构框图图1-1汽温控制系统结构框图1.4 控制过程简要分析当主汽温度的测量值等于设定值时,喷水阀门不动,系统处在动态平衡状态。
此时,若炉膛燃烧情况发生变化,使汽温上升,造成给定值和测量值产生偏差,则偏差信号经过控制器的方向性判断及数学运算后,产生控制信号使喷水阀门以适当形式打开,喷水量增加。
测量值最终回到设定值,系统重新回到平衡状态。
2 控制系统工作原理系统中有两个调节器,构成两个闭环回路。
内回路祸福回路,包括控制对象、副参数变送器、副调节器、执行器和喷水阀,它的任务是尽快消除减水温度的干扰,在调节过程中起初调作用;外回路或主回路,包括主对象、主参数变送器、主调节器、副回路,其作用是保持过热器出口汽温等于给定值。
主调节器接受被控量出口汽温以及给定值信号,主调的输出给定汽温与喷水减温器出口汽温共同作为副调节器输入,副调节器输出汽温信号控制执行机构位移,从而控制减温水调节阀门的张开闭合程度。
当炉膛燃烧剧烈,过热器管道过热,有喷水量的自发性增加造成干扰,如果不及时加以调节,出口温度将会降低,但因为喷水干扰引起的汽温降低快于出口汽温的降低,温度测量变送器输出的汽温信号会降低,副调节器输出也降低,通过执行器使喷水阀门开度减少,则喷水量降低,使扰动引起的汽温变化波动很快消除,从而使主汽温基本上不受影响。
基于XDC800的350MW锅炉主汽温控制系统设计
基于XDC800的350MW锅炉主汽温控制系统设计党宏社;牟杰【摘要】主汽温是影响发电机组安全和经济运行的重要参数之一,要维持其在设定值允许的范围内,控制系统和控制方式的选择至关重要.本文以某电厂350MW锅炉主汽温为研究对象,分析了控制系统的控制要求及工艺流程,从硬件和软件两方面设计了350MW锅炉的主汽温控制系统.以新华XDC800为平台,实现了锅炉主汽温控制系统硬件的搭建.采用XGB组态软件设计了实时监控画面.其控制算法采用串级PID算法并通过XCUFG软件实现.经在电厂运行验证,该控制系统具有良好的稳定性及可靠性.【期刊名称】《黑龙江科技信息》【年(卷),期】2017(000)028【总页数】2页(P67-68)【关键词】锅炉;主汽温;新华XDC800【作者】党宏社;牟杰【作者单位】陕西科技大学电气与信息工程学院,陕西西安 710021;陕西科技大学电气与信息工程学院,陕西西安 710021【正文语种】中文随着自动化控制技术的飞速发展和广泛应用,锅炉的控制系统和控制方式都得到了工业界和学术界的关注。
其中DCS系统可靠性高、功能强大、实用性高,在锅炉控制中得到了广泛的应用[1]。
上海新华XDC800系统以新华控制器XCU为核心,配置标准的以太网和现场总线,构成环型网络或者星型网络结构的通讯网络,具有系统功耗低,组态算法功能块丰富且可实现在线修改,易维护,成本低,安全稳定性高等优点。
文献 [2]利用XDC800实现小型工业锅炉湿法脱硫系统的设计,降低了设计成本,提高了系统的稳定性。
文献[3]利用XDC800为平台设计了一套煤矿工业锅炉的专用DCS监控系统,并和PLC搭建的系统进行了性价比的分析,结果表明这是一种性价比较高的方案。
本设计选择新华XDC800为平台,进行主汽温控制系统硬件的搭建。
用新华XGB软件设计控制系统的监控界面,实现对控制系统的实时监控。
并用XCUFG软件实现组态算法设计,取得良好的控制效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锅炉过热器汽温模拟监测系统设计
一、设计背景概述
(1)、过热器的作用:
过热器是把饱和蒸汽加热成具有一定温度的过热蒸汽的设备。
饱和蒸汽加热成过热蒸汽后,提高了蒸汽在汽轮机中的做功能力,即蒸汽在汽轮机中的有用焓降增加,从而提高了热机的循环效率。
此外,采用过热蒸汽还可降低汽轮机排汽湿度,避免汽轮机叶片被侵蚀,为汽轮机进一步降低排汽压力及安全运行创造了有利条件。
蒸汽温度的提高,受到钢材的高温特性及造价的限制。
当前,大多数电站锅炉的过热蒸汽温度在540¬—550℃之间。
(2)、对过热器监控的意义:
当过热器温度偏差太大时,很容易发生爆管。
而一旦发生爆管,已有一大片区域的管子受到长期超温的损伤,留下继续爆管的隐患。
对电厂安全经济运行来说,应该做到“状态检修”和“寿命监测”高科技管理。
就是说在管子还没有发生爆管以前就能够监测到超温的状态而进行检修消除隐患(状态检修)。
并能实时监测管子的温度。
本次课程设计,结合工程实际背景,设计300MW或者600MW机组的过热器汽温监测系统。
二、硬件系统设计
1.原理图
图1:原理图
2、组网图
服务器
客户端
图2:组网图
3.硬件选型
表1:硬件选型表
实物图
,
三、软件系统设计(现场控制)
1、实验要求
设计实现过热器汽温的实时检测、汽温变化实时显示、越线报警、数据(汽温、报警)记录/保存、历史数据显示等功能。
2、软件流程图
图3:程序流程图
3、程序演示(图)
图4:服务器
图5客户端
(对比客户端与服务器,界面大体相同,只是在部分按钮以及机组信息上有区别。
现场检测数据来源是具体的硬件部分[在编程过程中用随机生成数据代替],需要实时采集;客户端的数据来源于服务端,是在服务端发送数据之后进行处理。
)
图6:历史数据保存
(保存时,将温度值,采样时间(如果是报警数据还有报警原因)一起保存在记事本上)4、部分程序
(1)、数据采集
List1.AddItem Int(500 + Rnd * (100))
a(30) = V al(List1.List(List1.ListCount - 1))
newdata = a(30)
(采集到的数据赋给newdata等变量。
在连接硬件后可以直接赋值到newdata等变量)(2)、查阅历史数据
Private Sub Cmdopen_Click()
Dim add As String
CommonDialog1.ShowOpen
add = CommonDialog1.FileName
Shell ("NOTEPAD.exe " & add), vbNormalFocus
End Sub
(点击Cmdopen按钮,打开当前路径上的文件夹,可找到保存历史数据的文件)
四、总结
1、收获
对于温度监控系统以及相关的监控系统设计,包括其中的软硬件组成,传感器、变送器、数据采集模块、数据通信模块和网络配件有了一定的了解。
知道了在信号传输过程中如何变化以及采集。
并能使用Visio工具完成简单的绘图。
能够使用VB编写简单的动态图像显示程序。
以及实现保存数据、历史数据
查询等功能!还学会了使用winsock控件实现多台计算机的数据传输功能。
2、心得
这次课程设计,是继空调控制之后第一次独立完成某一设计。
在这次设计过程中学会了如何实现软硬件的连接。
在实际过程中选择什么样的原件,才能使设计性能最优以及价格最低。
这也是我们在实际工作中必有考虑的问题。
在这次课程设计中,第一次使用Visio。
这些都是在实际程序、系统设计中使用最频繁的绘图工具。
虽然没有能全面的学会使用,但也意识到该绘图工具的方便之处。
完全学会对以后的学习工作非常有用。
在程序设计工程中,也遇到了诸多的问题,比如,在没有为了能是程序适用于不同的数据采集,就要求数据采集用某一特定变量表示。
在采集不同数据时,只需要修改变量值就能适用不同的数据;还有使用winsock控件时,遇到了连接一次后断开再连接就不能成功的问题,在上网查阅资料、进行多次修改后才发现,是断开之后,虽然服务器处在监听状态,当客户端的端口却没有释放。
在下次连接时就需要重新设定客户端端口号。
才能进行下次的连接已经之后的数据传输。