【推荐精选】2018届中考数学专项复习 简单随机事件的概率训练题
2018年华师版九年级数学 25.2随机事件及其概率习题
第一章 随机事件及其概率习题一 、填空题:1.设A ,B ,C 为三个事件,用A 、B 、C 的运算关系表示(1)A 和B 都发生,而C 不发生为 ,(2)A 、B 、C 至少有两个发生的事件为 。
2.设A ,B 为两个互不相容的事件,P(A)=0.2, P(B)=0.4, P(A+B)= 。
3.设A ,B ,C 为三个相互独立的事件,已知P(A)=a, P(B)=b, P(C)=c,则A ,B ,C 至少有一个发生的概率为 。
4.把一枚硬币抛四次,则无反面的概率为 ,有反面的概率为 。
5.电话号码由0,1,……9中的8数字排列而成,则电话号码后四位数字全都不相同的概率表示为 。
6.设公寓中的每一个房间都有4名学生,任意挑选一个房间,则这4人生日无重复的概率表示为 (一年以365天计算)。
7. 设A ,B 为两个事件,P(A)=0.4, ,P(B)=0.8,P(B A )=0.5,则P(B|A)= 。
8.设A ,B ,C 构成一个随机试验的样本空间的一个划分,且7.0)(,5.0)(==B P A P ,则P(C)= ,P(AB)= 。
9.设A ,B 为两个相互独立的事件,P(A)=0.4,P(A+B)=0.7,则P(B)= 。
10.3个人独立地猜一谜语,他们能够猜出的概率都是31,则此谜语被猜出的概率为 。
二 、选择题 :1. 设A 与B 是两随机事件,则AB 表示( )(A )A 与B 都不发生 (B )A 与B 同时发生(C )A 与B 中至少有一个发生 (D )A 与B 中至少有一个不发生 2.设A 与B 是两随机事件,则))((B A B A ++表示( ) (A )必然事件 (B )不可能事件(C )A 与B 恰好有一个发生 (D )A 与B 不同时发生3.设c B A P b B P a A P =+==)(,)(,)(,则)(B A P 为 (A )b a -(B )b c -(C ))1(b a -(D ))1(c a -4.若A ,B 是两个互不相容的事件,P (A )>0,P (B )>0,则一定有( ) (A )P (A )=1—P (B ) (B ) P (A|B )=0 (C ) P (A|B )=1 (D )P (A |B )=05. 每次试验失败的概率为p (0<p<1),则在3次重复试验中至少成功一次的概率为( )(A ))1(3p - (B)3)1(p -(C) 31p - (D)13C 3)1(p p -三、计算:1.掷两颗质地均匀的骰子,求出现的两个点数之和等于5的概率。
华师大版2018届数学中考专项训练(5)随机事件的概率含答案
华师大版2018届数学中考专项训练(5)随机事件的概率含答案一、选择题1.(绍兴中考)在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是( )A .13B .25C .12D .352.如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为直角三角形的概率是( )A .12B .25C .37D .473.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )A .16个B .15个C .13个D .12个4.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是( )A .23B .12C .13D .145.(临沂中考)一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机地搭配在一起,则其颜色搭配一致的概率是( )A .14B .12C .34D .1 6.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是( )A .38B .12C .58D .347.让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则两个数的和是2的倍数或是3的倍数的概率等于( )A .316B .38C .58D .13168.一个盒子里有完全相同的三个小球,球上分别标有数字-2,1,4.随机摸出一个小球(不放回),其数字为p ,再随机摸出另一个小球其数字记为q ,则满足关于x 的方程x 2+px +q =0有实数根的概率是( )A .14B .13C .12D .23 二、填空题9.一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小文在袋中放入10个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到白球的频率是27,则袋中红球约为____个.10.纸箱里有两双拖鞋,除颜色不同外,其他都相同,从中随机取一只(不放回),再取一只,则两次取出的鞋颜色恰好相同的概率为________.11.“服务社会,提升自我.”某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队.若从该小分队任选两名同学进行交通秩序维护,则恰是一男一女的概率是________.12.如图,电路图上有四个开关A 、B 、C 、D 和一个小灯泡,闭合开关D 或同时闭合开关A 、B 、C 都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是.13.(大连中考)一枚质地均匀的正方体骰子的六个面分别刻着1到6的点数.将这枚骰子掷两次,其点数之和是7的概率为________.14.★(成都中考)有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a ,则使关于x 的不等式组⎩⎪⎨⎪⎧4x ≥3(x +1),2x -x -12<a 有解的概率为________.三、解答题15.(聊城中考)在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两个人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的.请用画树状图的方法求小莹和小芳打第一场的概率.16.小明参加某网店的“翻牌抽奖”活动.如图,4张牌分别对应价值5,10,15,20(单位:元)的4件奖品.(1)如果随机翻1张牌,求抽中20元奖品的概率;(2)如果随机翻两张牌,且第一次翻过的牌不再参加下次翻牌,求所获奖品总值不低于30元的概率.17.(怀化中考)甲乙两人玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,洗匀后甲从中任意抽取一张,记下数字后放回;又将卡片洗匀,乙也从中任意抽取一张,计算甲乙两人抽得的两个数字之积,若积为奇数则甲胜,若积为偶数则乙胜.(1)用列表或画树状图等方法,列出甲乙两人抽得的数字之积所有可能出现的情况;(2)请判断该游戏对甲乙双方是否公平,并说明理由.18.★(安徽中考)A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的接球者将球随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.参考答案与解析1.B 2.D 3.D 4.C 5.B 6.C 7.C 8.D 9.25 10.13 11.35 12.12 13.1614.49解析:解不等式组⎩⎪⎨⎪⎧4x ≥3(x +1),2x -x -12<a ,得⎩⎪⎨⎪⎧x ≥3,x <2a -13.要使不等式组有解,那么必须满足条件2a -13>3⇒a >5,∴满足条件的a 的值为6,7,8,9,∴有解的概率为P =49.15.解:(1)从三个人中选一人打第一场,每个人被选中的可能性都是相同的,所以恰好选中大刚的概率是13;(2)画树状图如下:由树状图可知:两人伸手的情况有4种,每种情况出现的可能性都是相同的,其中两人伸手的手势相同的情况有2种,所以P (小莹和小芳打第一场)=24=12.所以,小莹和小芳打第一场的概率为12.16.解:(1)抽中20元奖品的概率为14;(2)设分别对应着5,10,15,20(单位:元)奖品的四张牌分别为A 、B 、C 、D .画树状图如下:由树状图知,共有12种可能的结果:AB 、AC 、AD 、BA 、BC 、BD 、CA 、CB 、CD 、DA 、DB 、DC .其中所获奖品总值不低于30元有4种:BD 、CD 、DB 、DC .所以,P (所获奖品总值不低于30元)=412=13.所以,所获奖品总值不低于30元的概率为13.17.解:(1)列表如下:(1,2) 所有等可能的情况有9种,分别为(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),则甲乙两人抽得的数字之积所有可能出现的情况有1,2,3,2,4,6,3,6,9,共9种;(2)该游戏对甲乙双方不公平.理由如下:其中积为奇数的情况有4种,偶数有5种,∴P (甲)<P (乙),则该游戏对甲乙双方不公平.18.解:(1)两次传球的所有结果有4种,分别是A →B →C ,A →B →A ,A →C →B ,A →C →A ,每种结果发生的可能性相等,球恰在B 手中的结果只有一种,所以两次传球后,球恰在B 手中的概率是14;(2)画树状图如下:由树状图可知,三次传球的所有结果有8种,每种发生的可能性都相等.其中,三次传球后,球恰在A 手中的结果有A →B →C →A ,A →C →B →A 这2种,所以三次传球后,球恰在A 手中的概率是28=14.。
2018届冀教版数学中考专项训练(八)随机事件的概率(含答案)
专项训练(八) 随机事件的概率一、选择题1.下列说法正确的是( ) A.某事件发生的概率为21,则在两次重复的试验中,必有一次发生 B.一个袋子里有100个球,任意摸出10个球都是黑球,说明袋子里面只有黑球 C.将两枚硬币同时抛出,落地后出现“一正一反”的概率是31 D.九年级有400名同学,其中一定有2人同一天过生日2.从1,2,3,4这四个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是( ) A .13B .14C .16D .1123.一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机搭配在一起,则其颜色搭配一致的概率是( ) A.41 B.21 C.43D.1 4.一个暗箱里放有a 个完全相同的白球,为了估计暗箱里的球的个数,放入3个红球,将球搅拌均匀后任意摸出一个球,记下颜色再放回暗箱,搅匀后重复摸球,通过大量重复摸球试验后发现,摸到红球的频率稳定在25%左右,那么a 的值大约是( ) A.12 B.10 C.4 D.3 5.已知从九(2)班学生中随机选取一名学生是女生的概率为53,则是( ) A .23 B .53 C .32 D .526.同时掷两个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则两个骰子向上的一面的点数和为8的概率为( ) A .91 B .365 C .61 D .367 7.小明在白纸上任意画了一个锐角,他画的角在45º到60º之间的概率是( ) A .61 B .31 C .21 D .328.两个同心圆中,大圆的半径是小圆的半径的2倍,把一粒大米抛到圆形区域中,则大米落在小圆内的概率为( ) A .21 B .13 C .14D .51二、填空题9.从一副去掉大王、小王的扑克牌中,随意抽出两张扑克,则两张扑克都是红桃的概率是 . 10.一个不透明的盒子中放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.盒中卡片已经搅匀.从中随机地抽出1张卡片,则“该卡片上的数字大于163”的概率是 . 11.研究发现,某种鸟卵孵化后,雏鸟为雌与为雄的概率相同.如果2枚这样的鸟卵全部成功孵化,则2只雏鸟都为雄鸟的概率为____________.12.甲、乙两人玩掷骰子的游戏,随意掷出两次,若两次点数之和为5,算甲胜,若两次点数之和为6,算乙胜,该规则对______(填“甲”或“乙”)有利.( )13.根据某次合唱比赛的活动细则,每个参赛的合唱团在比赛时须演唱4首歌曲。
中考试题18简单随机事件的概率
一、选择题(每小题6分,共30分)1. (2012·杭州)一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是( )A .摸到红球是必然事件B .摸到白球是不可能事件C .摸到红球与摸到白球的可能性相等;D .摸到红球比摸到白球的可能性大2. (2012·武汉)从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张.下列事件中,必然事件是( )A .标号小于6B .标号大于6C .标号是奇数D .标号是33. (2012·连云港)向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小三角形是等可能的,扔沙包1次击中阴影区域的概率等于( )A.16B.14C.38D.584.(2013·济宁)在x 2□2xy □y 2的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是( )A. 1B.34C.12D.145. (2012·金华)义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是( )A.35B.710C.310D.1625二、填空题(每小题6分,共30分)6. (2012·娄底)在-1,0,13,1,2,3中任取一个数,取到无理数的概率是________. 7. (2012·长沙)任意抛掷一枚硬币,则“正面朝上”是________事件.8. (2012·聊城)我市初中毕业男生体育测试项目有四项,其中“立定跳远”“1000米跑”“肺活量测试”为必测项目,另一项在“引体向上”或“推铅球”中选一项测试.小亮、小明和大刚从“引体向上”或“推铅球”中选择同一个测试项目的概率是________.三、解答题(每小题10分,共40分)11. (2012·无锡)在1,2,3,4,5这五个数中,先任意选出一个数a,然后在余下的数中任意取出一个数b,组成一个点(a,b),求组成的点(a,b)恰好横坐标为偶数且纵坐标为奇数的概率.(请用“画树状图”或“列表”等方法写出分析过程)12. (2012·南通)四张扑克牌的点数分别是2、3、4、8,将它们洗匀后背面朝上放在桌面上.(1)从中随机抽取一张牌,求这张牌的点数是偶数的概率;(2)从中先随机抽取一张牌,接着再抽取一张牌,求这两张牌的点数都是偶数的概率.13. (2012·陕西)小峰和小轩用两枚质地均匀的骰子做游戏,规则如下:每人随机掷两枚骰子一次(若掷出的两枚骰子摞在一起,则重掷),点数和大的获胜;点数和相同为平局.依据上述规则,解答下列问题:(1)随机掷两枚骰子一次,用列表法求点数和为2的概率;(2)小峰先随机掷两枚骰子一次,点数和是7,求小轩随机掷两枚骰子一次,胜小峰的概率.(骰子:六个面分别刻有1、2、3、4、5、6个小圆点的立方块;点数和:两枚骰子朝上的点数之和.)四、附加题(共20分)15. (2012·日照)周日里,我和爸爸、妈妈在家都想使用电脑上网,可是家里只有一台电脑啊,怎么办?为了公平起见我设计了下面的两种游戏规则,确定谁使用电脑上网.(1)任意投掷两枚质地均匀的硬币,若两枚正面都朝上,则爸爸使用电脑;若两枚反面都朝上,妈妈使用电脑;若一枚正面朝上一枚反面朝上,则我使用电脑.(2)任意投掷两枚骰子,若点数之和被3整除,则爸爸使用电脑;若点数之和被3除余数为1,则妈妈使用电脑;若点数之和被3除余数为2,则我使用电脑.请你来评判,这两种游戏规则哪种公平,并说明理由噢!初中数学试卷灿若寒星制作。
(完整版)2018全国中考数学统计概率题真题汇总,推荐文档
我们只教数学,不仅有高效学习方法,还有各种题型总结、套路、技巧,助你轻松备战中 考
南 宁 | 柳 州 400-070-20 05
【2018 兰州】学校开展“书香校园”的活动以来,受到同学们的广泛关注.学校为了解全校学生课外阅读的情况, 随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.
学生借阅图书的次数统计表
学生借阅图书的次数统计图
4上上上上
3上 26% 0上
2上
1上 26%
请你根据统计图表中的信息,解答下列问题:(1)a=,b=
(2)该调查统计数据的中位数是
,众数是
3 请计算扇形统计图中“3 次”所对应扇形的圆心角的度数 4 若该校共有 2 000 名学生,根据调查结量,估计该校学生在一周内借阅图书“4 次及以上”的人数.
课程
平均数
中位数
众数
海壁教育 - 1 - 只教数学
我们只教数学,不仅有高效学习方法,还有各种题型总结、套路、技巧,助你轻松备战中考 南 宁 | 柳 州 400-070-2005
A
75.8
m
84.5
B
72.2
70
83
根据以上信息,回答下列问题: 1 写出表中 m 的值 2 在此次测试中,某学生的 A 课程成绩为 76 分,B 课程成绩为 71 分,这名学生成绩排名更靠前的课程是 (填“A“或“B“),理由是
海壁教育 - 4 - 只教数学
我们只教数学,不仅有高效学习方法,还有各种题型总结、套路、技巧,助你轻松备战中考 南 宁 | 柳 州 400-070-2005
完整的统计图.
根据所给信息,解答以下问题
1 在扇形统计图中,C 对应的扇形的圆心角是
浙教版2018-2019学年度第一学期九年级数学《简单事件的概率》培优提高测试题
2018-2019学年度第一学期九年级数学《简单事件的概率》培优提高单元检测试题考试总分:120 分考试时间:120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共10 小题,每小题 3 分,共30 分)1.小明投掷一枚普通的骰子,前三次投出的朝上数字都是6,则第4次投出的朝上数字()A.按照小明的运气来看,一定还是6B.前三次已经是6了,这次一定不是6C.按照小明的运气来看,是6的可能性最大D.是6的可能性与是1∼5中任意一个数字的可能性相同2.下列说法中,正确的是()A.买一张电影票,座位号一定是奇数B.投掷一枚均匀的硬币,正面一定朝上C.从1、2、3、4、5这五个数字中任意取一个数,取得奇数的可能性大D.三条任意长的线段可以组成一个三角形3.随机掷一枚均匀的硬币20次,其中有8次出现正面,12次出现反面,则掷这枚均匀硬币出现正面的概率是()A.2 5B.12C.23D.354.下列说法正确的是()A.如果一件事不是必然发生的,那么它就不可能发生B.人有可能得病,也有可能不得病,因此得病与不得病的概率各占50%C.某抽奖箱中有100张抽奖券,中奖概率是25%,首先甲抽取一张没中,接下来乙抽剩下的奖券,中奖的概率大于25%D.某彩票的中奖机会是1%,买100张这种彩票一定是99张彩票不中奖,1张彩票中奖5.设袋中有10个球,其中4个红球,4个白球,2个黑球,每个球除了颜色外都相同,从中随意取出1球,设P1=P(不是红球),P2=P(不是白球),P3=P(不是黑球),则P1、P2、P3的大小关系为()A.P1<P2<P3B.P1>P2>P3C.P1=P2<P3D.P1=P2>P36.从1,2,3,4这四个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是()A.1 3B.14C.16D.1127.一个暗箱里装有10个黑球,8个红球,12个白球,每个球除颜色外都相同,从中任意摸出一球,不是白球的概率是()A.4 15B.13C.25D.358.同时抛掷两枚1元的硬币,菊花图案都朝上的概率是()A.1 2B.13C.14D.159.一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有4个,若每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱,通过大量重复摸球实验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a大约是()A.25B.20C.15D.1010.有一“抢30”游戏,规则是:甲先说“1”或“1、2”,当甲先说“1”时,乙接着说“2”或“2、3”;当甲先说“1、2”时,乙接着说“3”或“3、4”,然后甲再接着按次序往下说一个或二个数,这样两个人反复轮流,每次每人说一个或两个数都可以,但不可以连说三个数,谁先抢到30,谁就获胜.其结果是()A.后报数者可获胜B.先报数者可获胜C.两者都可能胜D.很难预料二、填空题(共10 小题,每小题 3 分,共30 分)11.在大量重复试验中,如果事件A发生的频率________会________在某个常数p附近,那么这个常数p就叫做事件A的概率,记作P(A)=p.12.有9张卡片,每张卡片上分别写有不同的从1到9的一个自然数,从中任意抽出一张卡片,则抽到的卡片上的数是3的倍数的概率是________.13.一布袋中有红球8个,白球12个和黄球5个,它们除了颜色外没有其它区别,闭上眼睛,随机从袋中取出1球不是黄球的概率为________.14.从某鱼塘捕鱼200条后做好标记放回,隔一段时间再捕30条鱼,发现其中带标记的有3条,那么鱼塘中约有________条鱼.15.一副扑克牌去掉大小王后,只剩下52张牌,从中任取一张,记下花色,随着试验次数的增加,出现黑桃花色的频率将稳定在________左右.16.小强和小颖利用如图所示的两个转盘做游戏,同时转动A,B两个转盘,转盘停止转动后,若指针所指的数字之和为奇数,小强获胜;若指针所指的数字之和为偶数,则小颖获胜;若指针指在分界线上,重新转动两个转盘,这个游戏对双方公平吗?答:________.17.经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转,如果这三种可能性大小相同,那么某辆汽车经过这个十字路口,恰好向左转的概率是________.18.小杨、小刚用摸球游戏决定谁去看电影,袋中有一个红球和一个白球(除颜色不同外都相同),这个游戏对双方是________(填“公平”或“不公平”)的.19.要在一只不透明的袋中放入若干个只有颜色不同的乒乓球,搅匀后,使得从袋中任意摸,可以怎样放球:________(只写一种).出一个乒乓球是黄色的概率是2520.在一个不透明的袋中装有除颜色外其余都相同的3个小球,其中一个红球、两个黄球.如果第一次先从袋中摸出一个球后不再放回,第二次再从袋中摸出一个,那么两次都摸到黄球的概率是________.三、解答题(共6 小题,每小题10 分,共60 分)21.一个不透明口袋中装有6个红球、9个黄球、3个绿球,这些球除颜色外没有任何区别.从中任意摸出一个球.(1)求摸到绿球的概率;(2)再向口袋中放入几个绿球,才能使摸到绿球的概率为1?422.袋中共有5个红球、5个黄球,这些球只有颜色上的不同,小王第一次摸到一个红球并放回袋中,那么他第二次从袋中摸到一个红球的概率是多少?他第十次摸出的是红球的概率又是多少?23.在学校举办的游艺活动中,数学俱乐部办了个掷骰子的游戏.玩这个游戏要买2元一张的票.一个游戏者掷一次骰子,如果掷到6,游戏者得到8元奖品.请分析俱乐部能从这种游戏中赢利吗?24.如图所示,两人准备了三张大小相同的纸片,其中两张纸片上各画一个半径相等的半圆,另一张纸片上画一个正方形.将这三张纸片放在一个盒子里摇匀,随机地抽取两张纸片,若可以拼成一个圆形(取出的两张纸片都画有半圆形)则甲方赢;若可以拼成一个蘑菇形(取出的一张纸片画有半圆、一张画有正方形)则乙方赢.你认为这个游戏对双方是公平的吗?若不是,有利于谁?25.你同意下面的说法吗?说明你的理由.(1)在掷骰子游戏中,掷得“6”的概率是1的意思是:每掷6次,一定会有1次出现“6”.6(2)九年级(3)班共有59名同学.其中男同学35名,女同学24名.数学老师任意点一名同学回答问题,点到的同学可能是男同学,也可能是女同学,所以点到男同学的概率是50%.(3)一种福利彩票中奖的概率是12,李大爷买回一张这种福利彩票,李大爷的孙子说:“您1000不可能中奖,因为中奖的概率太小了!”26.如图是某数学兴趣小组参加“奥数”后所得成绩绘制成的频数,频率分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题(成绩取整数,满分为100分)频率0.02a0.120.600.161(1)频数、频率分布表中a=________,b=________.(2)补全频数分布直方图.(3)若在80分以上的小组成员中选3人参加下一轮竞赛,小明本次竞赛的成绩为90分,他被选中的概率是多少?(4)从该图中你还能获得哪些数学信息?(填写一条即可)答案1.D2.C3.B4.C5.C6.A7.D8.C9.B10.A11.值稳定12.1313.4514.200015.1416.公平17.1318.公平19.如在袋中放入2个黄球,3个红球20.1321.解:(1)6+9+3=18(个),P(摸到绿球)=318=16.(2)设需要在这个口袋中再放入x个绿球,则3+x 18+x =14,解得:x=2.故需要在这个口袋中再放入2个绿球.22.他第二次从袋中摸到一个红球的概率是12,他第十次摸出的是红球的概率又是12.23.解:因为中奖的概率是16,即平均每6人玩有1人能中奖,而收入12元,送出8元,所以能赢利.24.解:不公平.画树状图得:∵共有6种等可能的结果,拼成一个圆形的有2种情况,拼成一个蘑菇形的有4种情况,∴P(甲方赢)=26=13,P(乙方赢)=46=23;∴P(甲方赢)<P(乙方赢),∴这个游戏对双方不公平,有利于乙方.25.解:(1)不同意.概率是16表示重复很多次,平均6次就有1次发生该事件.(2)不同意,因全班共59名同学,男同学35名,故点到男同学的概率是3559.(3)不同意,尽管概率很小,但仍有发生的可能,只是可能性较小.26.0.18。
中考数学复习 《简单随机事件的概率》练习题含答案
中考数学复习 简单随机事件的概率一、选择题1.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( A )A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球2.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是( D )A .甲组B .乙组C .丙组D .丁组【解析】根据模拟实验的定义可知,实验相对科学的是次数最多的丁组.故选D. 3.在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其它均相同,从中任意摸出一个球,则摸出黑球的概率是( B )A.17B.37C.47D.574.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为( C )A.15B.14C.13D.125.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为( D )A.12B.14C.18D.116【解析】根据题意列出表格,然后由表格即可求得所有等可能的结果与都指向2的情况数,共有16种等可能的结果,两个转盘的指针都指向2的只有1种结果,两个转盘的指针都指向2的概率为116.6.在一个木制的棱长为3的正方体的表面涂上颜色,将它的棱三等分,然后从等分点把正方体锯开,得到27个棱长为1的小正方体,将这些小正方体充分混合后,装入口袋,从这个口袋中任意取出一个小正方体,则这个小正方体的表面恰好涂有两面颜色的概率是( C )A.12B.13C.49D.59【解析】大正方体表面涂色后分割成27个小正方体,容易知道恰好有两面涂有颜色的正方体有12个,P =1227=49.二、填空题7.“明天的太阳从西方升起”这个事件属于__不可能__事件.(选填“必然”“不可能”或“不确定”)8.如图,在“3×3”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是 __13__.9.经过某十字路口的汽车,可直行,也可向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率__19__.10.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为__14__.【解析】大于6的为7,8两块扇区,而一共有8块扇区,P =28=14.11.在一个不透明的口袋中,装有若干个除颜色不同外,其余都相同的小球.如果口袋中装有3个红球且从中随机摸出一个球是红球的概率为15,那么口袋中小球共有__15__个.【解析】设小球共有x 个,则3x =15,解得x =15.12.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙获胜.这个游戏__不公平__.(填“公平”或“不公平”)【解析】奇偶情况数不对等,不公平.三、解答题13.一个口袋中放有290个涂有红、黑、白三种颜色的质地相同的小球.若红球个数是黑球个数的2倍多40个.从袋中任取一个球是白球的概率是129.(1)求袋中红球的个数;(2)求从袋中任取一个球是黑球的概率.解:(1)290×129=10(个),290-10=280(个),(280-40)÷(2+1)=80(个),280-80=200(个).故袋中红球的个数是200个(2)80÷290=829.答:从袋中任取一个球是黑球的概率是8 2914.某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是__不可能__事件;(可能,必然,不可能)(2)请用列表或画树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.解:(2)画树状图:即小张同学得到猪肉包和油饼的概率为212=1615.某厂为新型号电视机上市举办促销活动,顾客每买一台该型号电视机,可获得一次抽奖机会,该厂拟按10%设大奖,其余90%为小奖.厂家设计的抽奖方案是:在一个不透明的盒子中,放入10个黄球和90个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到黄球的顾客获得大奖,摸到白球的顾客获得小奖.(1)小明为厂家设计的抽奖方案是:在一个不透明的盒子中,放入2个黄球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出2个球,摸到的2个球都是黄球的顾客获得大奖,其余的顾客获得小奖.该抽奖方案符合厂家的设奖要求吗?请说明理由;(2)如图是一个可以自由转动的转盘,请你将转盘分为2个扇形区域,分别涂上黄、白两种颜色,并设计抽奖方案,使其符合厂家的设奖要求.(转盘上用文字注明,简述获奖方式)解:(1)该抽奖方案符合厂家的设奖要求:分别用黄1、黄2、白1、白2、白3表示这5个球,从中任意摸出2个球,可能出现的结果有:(黄1,黄2)、(黄1,白1)、(黄1,白2)、(黄1,白3)、(黄2,黄1)、(黄2,白1)、(黄2,白2)、(黄2,白3)、(白1,黄1)、(白1,黄2)、(白1,白2)、(白1,白3)、(白2,黄1)、(白2,黄2)、(白2,白1)、(白2,白3)、(白3,黄1)、(白3,黄2)、(白3,白1)、(白3,白2),共有20种,它们出现的可能性相同.所有的结果中,满足摸到的2个球都是黄球(记为事件A)的结果有2种,即(黄1,黄2)或(黄2,黄1),所以P(A)=220=110,即顾客获得大奖的概率为10%,获得小奖的概率为90%(2)本题答案不唯一,如图所示,将转盘中圆心角为36°的扇形区域涂上黄色,其余区域涂上白色,顾客每购买一台该型号电视机,可获得一次转动转盘的机会,任意转动这个转盘,当转盘停止时,指针指向黄色区域获得大奖,指向白色区域获得小奖。
2018 初三数学中考总复习 概率 专题复习练习 含答案
2018 初三数学中考总复习 概率 专题复习练习1. 一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是( C )A.12B.23C.25D.352. 一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( C )A.16B.13C.12D.233.下列事件中,是必然事件的是( B )A .两条线段可以组成一个三角形B .400人中有两个人的生日在同一天C .早上的太阳从西方升起D .打开电视机,它正在播放动画片4.李湘同学想给数学老师送张生日贺卡,但她只知道老师的生日在6月,那么她一次猜中老师生日的概率是( C )A.128B.129C.130D.1315.如图,将一个可以自由旋转的转盘等分成甲、乙、丙、丁四个扇形区域,若指针固定不变,转动这个转盘一次(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止),则指针指在丙区域内的概率是( D )A .1 B.12 C.13 D.146.一个盒子装有除颜色外其他均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为( C )A.25B.23C.35D.3107.从2,3,4,5中任意选两个数,记作a 和b ,那么点(a ,b)在函数y =12x图象上的概率是( D )A.12B.13C.14D.168.有5张看上去无差别的卡片,上面分别写着0,π,2,19,1.333.随机抽取1张,则取出的数是无理数的概率是__25__. 9.同时掷两枚均匀的硬币,则两枚都出现反面朝上的概率是__14__. 10.一个不透明的口袋里装有若干个除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球__20__个.11.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字之和可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.解:(1)略(2)∵共6种情况,两个数字之和能被3整除的情况数有2种,∴两个数字之和能被3整除的概率为26,即P(两个数字之和能被3整除)=1312.某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1,2,3,4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.解:(1)列表得:(2)由列表可知,所有可能出现的结果一共有16种,这些结果出现的可能性相同,其中两次所得数字之和为8,6,5的结果有8种,所以抽奖一次中奖的概率为:P =816=12.答:抽奖一次能中奖的概率为1213.某班毕业联欢会设计了即兴表演节目摸球游戏,游戏采用一个不透明的盒子,里面装有五个分别标有数字1,2,3,4,5的乒乓球,这些球除数字外,其他完全相同,游戏规则是参加联欢会的50名同学,每人将盒子乒乓球摇匀后闭上眼睛从中随机一次摸出两个球(每位同学必须且只能摸一次).若两球上的数字之和是偶数就给大家即兴表演一个节目;否则,下个同学接着做摸球游戏,依次进行.(1)用列表法或画树状图法求参加联欢会同学表演即兴节目的概率;(2)估计本次联欢会上有多少个同学表演即兴节目.解:(1)列表略,共有20种可能结果,其中两数和为偶数的共有8种,将参加联欢会的某位同学即兴表演节目记为事件A ,∴P(A)=P(两数和为偶数)=820=25(2)∵50×25=20(人),∴估计有20名同学即兴表演节目14.某化妆品专卖店,为了吸引顾客,在“母亲节”当天举办了甲、乙两种品牌化妆品有奖酬宾活动,凡购物满88元,均可得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其他都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色决定送礼金券的多少.(如表)(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率;(2)如果一个顾客当天在本店购物满88元,若只考虑获得最多的礼品券,请你帮助分析选择购买哪种品牌的化妆品?并说明理由.解:(1)共有6种情况,摇出一红一白的情况共有4种,摇出一红一白的概率=46=23 (2)∵两红的概率P =16,两白的概率P =16,一红一白的概率P =23,∴甲品牌化妆品获礼金券的平均收益是:16×6+23×12+16×6=10(元).乙品牌化妆品获礼金券的平均收益是:16×12+23×6+16×12=8(元), ∴选择甲品牌化妆品15. 某中学学生运动会刚刚闭幕.下面是未制作完的三个年级运动会志愿者的统计图.请你根据图中所给信息解答下列问题:(1)请你求出九年级有多少名运动会志愿者,并将两幅统计图补充完整;(2)要求从七年级、九年级志愿者中各推荐一名队长候选人,八年级志愿者中推荐两名队长候选人,四名候选人中选出两人任队长,用列表法或树形图,求出两名队长都是八年级志愿者的概率是多少?解:(1)设九年级有x 名志愿者,由题意得x =(18+30+x)×20%,解得x =12.九年级有12名志愿者,七年级占30%,图略 (2)共有12种等可能的结果,其中两人都是八年级志愿者的情况有两种,所以P(两名队长都是八年级志愿者)=212=1616. A ,B 两组卡片共5张,A 中三张分别写有数字2,4,6,B 中两张分别写有3,5,它们除数字外没有任何区别.(1)随机地从A 中抽取一张,求抽到数字为2的概率;(2)随机地分别从A 、B 中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果.现制定这样一个游戏规则:若所选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?解:(1)P =13(2)由题意画出树状图如下:一共有6种情况,甲获胜的情况有4种,P =46=23,乙获胜的情况有2种,P =26=13,所以,这样的游戏规则对甲乙双方不公平。
随机事件的概率初三练习题
随机事件的概率初三练习题在数学的学习中,随机事件的概率是一个重要且常见的概念。
理解和掌握概率的概念对于解决生活中的各种问题具有重要意义。
下面我们来讨论一些初三的随机事件概率练习题。
题目一:一个装有4个红球和6个蓝球的袋子中,随机取出两个球,求取出的两个球都是红球的概率。
解析:首先计算出总共的取球情况,即从10个球中取出两个球的组合数。
根据组合数的计算公式,我们可以得到结果:C(10,2) = 10! / (2! * (10-2)!) = 45接下来,计算取出两个红球的情况,即从4个红球中取出两个红球的组合数。
C(4,2) = 4! / (2! * (4-2)!) = 6因此,取出的两个球都是红球的概率为 6/45 = 2/15。
题目二:一枚硬币抛掷三次,求恰好有两次正面朝上的概率。
解析:使用二项分布的概率公式来计算。
硬币抛掷三次,每次出现正反面的概率均为1/2,那么恰好有两次正面朝上的概率为:P(X=2) = C(3,2) * (1/2)^2 * (1/2)^(3-2) = 3/8题目三:一副扑克牌中,红桃、黑桃、梅花、方块各有13张牌,从中随机抽取两张牌,求两张牌都是红桃的概率。
解析:首先计算出总共的取牌情况,即从52张牌中取出两张牌的组合数。
C(52,2) = 52! / (2! * (52-2)!) = 1326接着,计算取出两张红桃的情况,即从13张红桃中取出两张红桃的组合数。
C(13,2) = 13! / (2! * (13-2)!) = 78因此,取出的两张牌都是红桃的概率为 78/1326 = 1/17。
题目四:一袋中装有10颗糖果,其中有4颗巧克力糖,6颗水果糖。
从中连续取出三颗糖果,求取出的三颗糖果中恰好有两颗巧克力糖的概率。
解析:先计算出总共的取糖果情况,即从10颗糖果中取出三颗糖果的组合数。
C(10,3) = 10! / (3! * (10-3)!) = 120接着,计算取出的三颗糖果中恰好有两颗巧克力糖的情况,即从4颗巧克力糖中取出两颗巧克力糖的组合数,并从6颗水果糖中取出一颗水果糖的组合数,最后将两者相乘。
中考数学专项复习(9)(简单事件的概率)练习 试题
介父从州今凶分市天水学校简单事件的概率〔9〕一、选择题1.同时抛掷两枚质地均匀的硬币,那么以下事件发生的概率最大的是〔〕A.两正面都朝上B.两反面都朝上C.一个正面朝上,另一个反面朝上D.三种情况发生的概率一样大2.从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为〔〕A.B.C.D.3.组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是〔〕A.B.C.D.4.经过某十字路口的汽车,可能直行,也可能左转或者右转,如果这三种可能性大小相同,那么经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是〔〕A.B.C.D.二、填空题5.用2,3,4三个数字排成一个三位数,那么排出的数是偶数的概率为.6.从﹣1、、1这三个数中任取两个不同的数作为点A的坐标,那么点A在第二象限的概率是.7.把三张形状、大小相同但画面不同的风景图片,都按同样的方式剪成相同的两片,然后堆放到一起混合洗匀,从这堆图片中随机抽出两张,这两张图片恰好能组成一张原风景图片的概率是.三、解答题8.八年级〔1〕班学生在完成课题学习“体质健康测试中的数据分析〞后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试.现将工程选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图.请你根据上面提供的信息答复以下问题:〔1〕扇形图中跳绳局部的扇形圆心角为度,该班共有学生人,训练后篮球定时定点投篮平均每个人的进球数是.〔2〕老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率.9.小云玩抽卡片和旋转盘游戏,有两张正面分别标有数字1,2的不透明卡片,反面完全相同;转盘被平均分成3个相等的扇形,并分别标有数字﹣1,3,4〔如下列图〕,小云把卡片反面朝上洗匀后从中随机抽出一张,记下卡片上的数字;然后转动转盘,转盘停止后,记下指针所在区域的数字〔假设指针在分格线上,那么重转一次,直到指针指向某一区域为止〕.〔1〕请用列表或树状图的方法〔只选其中一种〕,表示出两次所得数字可能出现的所有结果;〔2〕求出两个数字之积为负数的概率.10.某校八年级〔1〕班语文杨老师为了了解学生汉字听写能力情况,对班上一个组学生的汉字听写成绩按A,B,C,D四个等级进行了统计,并绘制了如下两幅不完整的统计图:〔1〕求D等级所对扇形的圆心角,并将条形统计图补充完整;〔2〕该组到达A等级的同学中只有1位男同学,杨老师打算从该组到达A等级的同学中随机选出2位同学在全班介绍经验,请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.11.为鼓励大学生创业,政府制定了小型企业的优惠,许多小型企业应运而生.某统计了该2021年1﹣5月新注册小型企业的数量,并将结果绘制成如图两种不完整的统计图:〔1〕某2021年1﹣5月份新注册小型企业一共家,请将折线统计图补充完整.〔2〕该2021年3月新注册小型企业中,只有2家是养殖企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营情况.请以列表或画树状图的方法求出所抽取的2家企业恰好都是养殖企业的概率.12.为进一步加强和改进体育工作,切实提高学生体质健康水平,决定推进“一校一球队、一级一专项、一人一技能〞活动方案,某校决定对学生感兴趣的球类工程〔A:足球,B:篮球,C:排球,D:羽毛球,E:乒乓球〕进行问卷调查,学生可根据自己的喜好选修一门,李老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图〔如图〕〔1〕将统计图补充完整;〔2〕求出该班学生人数;〔3〕假设该校共用学生3500名,请估计有多少人选修足球?〔4〕该班班委5人中,1人选修篮球,3人选修足球,1人选修排球,李老师要从这5人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.13.一个不透明的口袋中有四个完全相同的小球,它们分别标号为1,2,3,4.〔1〕随机摸取一个小球,直接写出“摸出的小球标号是3”的概率;〔2〕随机摸取一个小球然后放回,再随机摸出一个小球,直接写出以下结果:①两次取出的小球一个标号是1,另一个标号是2的概率;②第一次取出标号是1的小球且第二次取出标号是2的小球的概率.14.有甲、乙两个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3cm、7cm、9cm;乙盒子中装有4张卡片,卡片上分别写着2cm、4cm、6cm、8cm;盒子外有一张写着5cm的卡片.所有卡片的形状、大小都完全相同.现随机从甲、乙两个盒子中各取出一张卡片,与盒子外的卡片放在一起,用卡片上标明的数量分别作为一条线段的长度.〔1〕请用树状图或列表的方法求这三条线段能组成三角形的概率;〔2〕求这三条线段能组成直角三角形的概率.~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如下列图的频数分布直方图〔每组含最小值不含最大值〕和扇形统计图,观察图形的信息,答复以下问题:〔1〕本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;~130分评为“C〞,130~145分评为“B〞,145~160分评为“A〞,那么该年级1500名考生中,考试成绩评为“B〞的学生大约有多少名?16.某校开展校园“美德少年〞评选活动,共有“助人为乐〞,“自强自立〞、“孝老爱亲〞,“老实守信〞四种类别,每位同学只能参评其中一类,评选后,把最终入选的20位校园“美德少年〞分类统计,制作了如下统计表,后来发现,统计表中前两行的数据都是正确的,后两行的数据中有一个是错误的.类别频数频率助人为乐美德少年 a 0.20自强自立美德少年 3 b孝老爱亲美德少年7 0.35老实守信美德少年 6 0.32根据以上信息,解答以下问题:〔1〕统计表中的a= ,b ;〔2〕统计表后两行错误的数据是,该数据的正确值是;〔3〕校园小记者决定从A,B,C三位“自强自立美德少年〞中随机采访两位,用画树状图或列表的方法,求A,B都被采访到的概率.17.某需在短跑、跳远、乒乓球、跳高四类体育工程中各选一名同学参加生运动会,根据平时成绩,把各工程进入复选的人员情况绘制成不完整的统计图、表如下:复选人员扇形统计图:复选人员统计表:工程/人数/性别男女短跑 1 2跳远 a 6乒乓球 2 1跳高 3 b〔1〕求a、b的值;〔2〕求扇形统计图中跳远工程对应圆心角的度数;〔3〕用列表法或画树状图的方法求在短跑和乒乓球工程中选出的两位同学都为男生的概率.18.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,他们的形状、大小、质地等完全相同.小兰先从盒子里随机取出一个小球,记下数字为x,放回盒子,摇匀后,再由小田随机取出一个小球,记下数字为y〔1〕用列表法或画树状图法表示出〔x,y〕的所有可能出现的结果;〔2〕求小兰、小田各取一次小球所确定的点〔x,y〕落在反比例函数y=的图象上的频率;〔3〕求小兰、小田各取一次小球所确定的数x,y满足y的概率.19.一个不透明的口袋中装有4个分别标有数字﹣1,﹣2,3,4的小球,它们的形状、大小完全相同.小红先从口袋中随机摸出一个小球记下数字为x;小颖在剩下的3个小球中随机摸出一个小球记下数字为y.〔1〕小红摸出标有数字3的小球的概率是;〔2〕请用列表法或画树状图的方法表示出由x,y确定的点P〔x,y〕所有可能的结果;〔3〕假设规定:点P〔x,y〕在第一象限或第三象限小红获胜;点P〔x,y〕在第二象限或第四象限那么小颖获胜.请分别求出两人获胜的概率.20.2021年中考招生发生较大改变,其中之一是:级示范性高中批次志愿中,每个考生可填报两所〔有先后顺序〕,我某区域的初三毕业生可填报的级示范性高中有A、B、C、D四所.〔1〕请列举出该区域学生填报级示范性高中批次志愿的所有可能结果;〔2〕求填报方案中含有A的概率.21.〔1〕甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.〔请用“画树状图〞或“列表〞等方式给出分析过程〕〔2〕如果甲跟另外n〔n≥2〕个人做〔1〕中同样的游戏,那么,第三次传球后球回到甲手里的概率是〔请直接写出结果〕.22.课前预习是学习的重要环节,为了了解所教班级学生完成课前预习的具体情况,某班主任对本班局部学生进行了为期半个月的跟踪调查,他将调查结果分为四类:A﹣优秀,B﹣良好,C﹣一般,D﹣较差,并将调查结果绘制成以下两幅不完整的统计图.请你根据统计图,解答以下问题:〔1〕本次一共调查了多少名学生?〔2〕C类女生有名,D类男生有名,并将条形统计图补充完整;〔3〕假设从被调查的A类和C类学生中各随机选取一位同学进行“一帮一〞互助学习,请用列表法或画树状图的方法求出所选同学中恰好是一位男同学和一位女同学的概率.23.育才方案召开“诚信在我心中〞主题教育活动,需要选拔活动主持人,经过全校学生投票推荐,有2名男生和1名女生被推荐为候选主持人.〔1〕小明认为,如果从3名候选主持人中随机选拔1名主持人,不是男生就是女生,因此选出的主持人是男生和女生的可能性相同,你同意他的说法吗?为什么?〔2〕如果从3名候选主持人中随机选拔2名主持人,请通过列表或树状图求选拔出的2名主持人恰好是1名男生和1名女生的概率.24.一个不透明的布袋里装有2个白球,1个黑球和假设干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.〔1〕布袋里红球有多少个?〔2〕先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.25.一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差异.〔1〕当n=1时,从袋中随机摸出1个球,摸到红球和摸到白球的可能性是否相同?〔在答题卡相应位置填“相同〞或“不相同〞〕;〔2〕从袋中随机摸出一个球,记录其颜色,然后放回,大量重复该实验,发现摸到绿球的频率稳定于0.25,那么n的值是;〔3〕在一个摸球游戏中,所有可能出现的结果如下:根据树状图呈现的结果,求两次摸出的球颜色不同的概率.26.为进一步增强学生体质,据悉,我从2021年起,中考体育测试将进行HY,实行必测工程和选测工程相结合的方式.必测工程有三项:立定跳远、坐位体前屈、跑步;选测工程:在篮球〔记为X1〕、排球〔记为X2〕、足球〔记为X3〕中任选一项.〔1〕每位考生将有种选择方案;〔2〕用画树状图或列表的方法求小颖和小华将选择同种方案的概率.27.活动1:在一只不透明的口袋中装有标号为1,2,3的3个小球,这些球除标号外都相同,充分搅匀,甲、乙、丙三位同学丙→甲→乙的顺序依次从袋中各摸出一个球〔不放回〕,摸到1号球胜出,计算甲胜出的概率.〔注:丙→甲→乙表示丙第一个摸球,甲第二个摸球,乙最后一个摸球〕活动2:在一只不透明的口袋中装有标号为1,2,3,4的4个小球,这些球除标号外都相同,充分搅匀,请你对甲、乙、丙三名同学规定一个摸球顺序:→→,他们按这个顺序从袋中各摸出一个球〔不放回〕,摸到1号球胜出,那么第一个摸球的同学胜出的概率等于,最后一个摸球的同学胜出的概率等于.猜想:在一只不透明的口袋中装有标号为1,2,3,…,n〔n为正整数〕的n个小球,这些球除标号外都相同,充分搅匀,甲、乙、丙三名同学从袋中各摸出一个球〔不放回〕,摸到1号球胜出,猜想:这三名同学每人胜出的概率之间的大小关系.你还能得到什么活动经验?〔写出一个即可〕28.为了培养学生的阅读习惯,某校开展了“读好书,助成长〞系列活动,并准备购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如下列图,根据统计图所提供的信息,答复以下问题:〔1〕本次调查共抽查了名学生,两幅统计图中的m= ,n= .〔2〕该校共有960名学生,请估计该校喜欢阅读“A〞类图书的学生约有多少人?〔3〕要举办读书知识竞赛,七年〔1〕班要在班级优胜者2男1女中随机选送2人参赛,求选送的两名参赛同学为1男1女的概率是多少?29.央视新闻报道从5月23日起,在<朝闻天下>、<新闻直播间>、<新闻联播>和<时空>等多个栏目播放<湟鱼洄游季探秘湖>新闻节目,广受全国观众关注,电视台到我某进行宣传调查活动,随机调查了局部学生对湟鱼洄游的了解程度,以下是根据调查结果做出的统计图的一局部:〔1〕根据图中信息,本次调查共随机抽查了名学生,其中“不了解〞在扇形统计图中对应的圆心角的度数是,并补全条形统计图;〔2〕该校共有3000名学生,试估计该校所有学生中“非常了解〞的有多少名?〔3〕电视台要从随机调查“非常了解〞的学生中,随机抽取两人做为“随行小记者〞参与“湟鱼洄游〞的宣传报道工作,请你用树状图或列表法求出同时选到一男一女的概率是多少?并列出所有等可能的结果.30.图1是某九年级一班全体学生对三种水果喜欢人数的频数分布统计图,根据图中信息答复以下问题:〔1〕九年级一班总人数是多少人?〔2〕喜欢哪种水果人数的频数最低?并求出该频率;〔3〕请根据频数分布统计图〔图1〕的数据,补全扇形统计图〔图2〕;〔4〕某水果摊位上正好只摆放有这三种水果出售,王阿姨去购置时,随机购置其中两种水果,恰好买到樱桃和枇杷的概率是多少?用树状图或列表说明.。
2018年中考数学专题复习卷概率(含解析)
概率一、选择题1. 下列事件中,必然事件是()A. 抛掷1个均匀的骰子,出现6点向上B. 两直线被第三条直线所截,同位角C. 366人中至少有2人的生日相同D. 实数的绝对值是非负数【答案】D【解析】:A. v抛掷1个均匀的骰子,出现6点向上是随机事件,故错误,A不符合题意;B.平行线被第三条直线所截,同位角才相等;故错误,B不符合题意;C. •••一年有365或者366人,.••如果一年正好是366天,则366人中每个人的生日可能都不相同,C不符合题意;D. •••一个数的绝对值不是正数就是0,故正确,D符合题意;故答案为:D.【分析】A.根据随机事件和必然事件的定义来判断对错;B. 根据平行线性质来判断对错;C. 根据必然事件或随机事件定义来判断对错;D. 根据绝对值性质来判断对错•2. 下列语句描述的事件中,是随机事件的为()A.水能载舟,亦能覆舟只手遮天,偷天换日C.瓜熟蒂落,水到渠成心想事成,万事如意【答案】D【解析】:A、水能载舟,亦能覆舟,是必然事件,故不符合题意;B只手遮天,偷天换日,是不可能事件,故不符合题意;C瓜熟蒂落,水到渠成,是必然事件,故不符合题意;D心想事成,万事如意,是随机事件,故符合题意. ••只有两条B.D.故答案为:D.【分析】所谓随机事件,就是可能发生,也可能不会发生的事件,根据概念即可一一判断。
3. 下列说法正确的是()A. 了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查 B.甲乙两人跳绳各10次,其成绩的平均数相等,衣" = 则甲的成绩比乙稳定C.三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是 D. “任意画一个三角形,其内角和是”这一事件是不可能事件【答案】D【解析】:A、了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是抽样调查,不符合题意;B甲乙两人跳绳各10次,其成绩的平均数相等,S甲2> S乙2,则乙的成绩比甲稳定,不符合题意;C三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是,不符合题意;D “任意画一个三角形,其内角和是360°”这一事件是不可能事件,符合题意.故答案为:D.【分析】根据全面调查及抽样调查适用的条件;根据方差越大数据的波动越大;根据中心对称图形,轴对称图形的概念,三角形的内角和;一一判断即可。
初三数学中考复习随机事件的概率专项综合练习题含答案
初三数学中考复习随机事件的概率专项综合练习题含答案1.从一副洗匀的普通扑克牌中随机抽取一张,那么抽出红桃的概率是( ) A.154 B .1354 C.113 D .142. 以下事情中,是肯定事情的是( )A .将油滴入水中,油会浮会水面上B .车辆随机到在一个路口,遇到红灯C .假设a 2+b 2,那么a =bD .掷一枚质地平均的硬币,一定正面向上3.以下事情中的不能够事情是( )A .通常加热到100℃时,水沸腾B .抛掷2枚正方体骰子,都是6点朝上C .经过有交能信号灯的路口,遇到红灯D .恣意画一个三角形,其内角和是360°4. 如图,共有12个大小相反的小正方形,其中阴影局部的5个小正方形是一个正方体的外表展开图的一局部,现从其他的小正方形中任取一个涂上阴影,能构成这个正方体的外表展开图的概率是( )A.47 B .37 C.27 D .175. 一个不透明的盒子里有n 个除颜色外其他完全相反的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,恣意摸出一个球记下颜色后再放回盒子,经过少量重复摸球实验后发现,摸到黄球的频率动摇在30%,那么估量盒子中小球的个数n 为( )A .20B .24 C.28 D .306. 在课外实际活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法预算正面朝上的概率,其实验次数区分为10次、50次、100次,200次,其中实验相对迷信的是( )A .甲组B .乙组C .丙组D .丁组7. 从2,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率为( )A.15 B .25 C.35 D .458.某品牌电插座抽样反省的合格率为99%,那么以下说法中正确的选项是( )A .购置20个该品牌的电插座,一定都合格B .购置1000个该品牌的电插座,一定有10个不合格C .即使购置一个该品牌的电插座,也能够不合格D .购置100个该品牌的电插座,一定有99个合格9.九一(1)班在参与学校4×100m 接力赛时,布置了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决议,那么甲跑第一棒的概率为( )A .1B .12 C.13 D .1410. 一个不透明的布袋里装有5个红球、2个白球、3个黄球,它们除颜色外其他都相反.从袋中恣意找出1个球,是黄球的概率为( )A.12 B .15 C.310 D .71011. 小明恣意掷一枚平均的硬币,前9次都是正面朝上,当他掷第10次时,你以为正面朝上的概率是_____.12. 在一个不透明的袋子中装有4个红球和2个白球,这些球除了颜色外无其他差异,从袋子中随机摸出一个球,那么摸出白球的概率是_____.13. 我国魏晋时期数学家刘徽首创〝割圆术〞计算圆周率.随着时代开展,如古人们依据频率估量概率这一原理,常用随机模拟的方法对圆周率π停止估量,用计算机随机发生m 个有序数对(x ,y)(x ,y 是实数,且0≤x≤1,0≤y≤1),它们对应的点在平面直角坐标系中全部在某一个正方形的边界及其外部.假设统计出这些点中到原点的距离小于或等于1的点有n 个,那么据此可估量π的值为_______.(用含m ,n 的式子表示)14. 在一个不透明的箱子里装有白色、蓝色、黄色的球共20个,除颜色外,外形、大小、质地等完全相反,小明经过屡次摸球实验后发现摸到白色、黄色球的频率区分动摇在10%和15%,那么箱子里蓝色球的个数很能够是______个.15. ⊙O 的两条直径AC 、BD 相互垂直,区分以AB 、BC 、CD 、DA 为直径向外作半圆失掉如下图的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P 1,针尖落在⊙O 内的概率为P 2,那么P 1P 2=______. 16. 不透明袋子中装有2个红球,1个白球和1个黑球,这些球除颜色外无其他差异,随机摸出1个球不放回,再随机摸出1个球,求两次均摸到红球的概率.17. 在3×3的方格纸中,点A 、B 、C 、D 、E 、F 区分位于如下图的小正方形的顶点上.(1)从A 、D 、E 、F 四个点中恣意取一点,以所取的这一点及点B 、C 为顶点画三角形,那么所画三角形是等腰三角形的概率是________;(2)从A 、D 、E 、F 四个点中先后恣意取两个不同的点,以所取的这两点及点B 、C 为顶点画四边形,求所画四边形是平行四边形的概率(用树状图或列表法求解).18. 为了调查甲、乙两种成熟期小麦的株高长势状况,现从中各随机抽取6株,并测得它们的株高(单位:cm)如下表所示:(1) 一?(2) 现将停止两种小麦优秀种类杂交实验,需从表内的甲、乙两种小麦中,各随机抽取一株停止配对,以预估全体配对状况.请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰恰都等于各自平均株高的概率. 参考答案:1---10 BDBBD DCADC11. 1212. 1313. 4n m14. 1515. 2π16. 解:如下图:一切的能够有12种,契合题意的有2种,故两次均摸到红球的概率为:212=16. 17. 解:(1)从A 、D 、E 、F 四个点中恣意取一点,以所取的这一点及点B 、C 为顶点画三角形,有△ABC ,△DBC ,△EBC ,△FBC ,但只要△DBC 是等腰三角形,所以P(所画三角形是等腰三角形)=14; (2)用〝树状图〞或应用表格列出一切能够的结果:∵以点A ∴P(所画的四边形是平行四边形)=412=13.18. 解:(1)∵x 甲=63+66+63+61+64+616=63, ∴s 2甲=16×[(63-63)2×2+(66-63)2+2×(61-63)2+(64-63)2]=3; ∵x 乙=63+65+60+63+64+636=63, ∴S 2乙=16×[(63-63)2×3+(65-63)2+(60-63)2+(64-63)2]=73; ∵s 2乙<s 2甲. ∴乙种小麦的株高长势比拟划一;(2)列表如下:的有6种, ∴所抽取的两株配对小麦株高恰恰都等于各自平均株高的的概率为636=16.。
初三数学中考复习随机事件的概率列举所有机会均等的结果专项练习题含答案
初三数学中考复习随机事件的概率列举所有机会均等的结果专项练习题含答案专项练习题1.甲、乙两袋,甲袋里有红、黄、白色球各一个,乙袋里有红、黄色球各一个,区分从这两袋中任取一球,那么所取的两球是同色球的概率是( ) A.16 B .13 C.12 D .232.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班停止一场篮球竞赛,那么恰恰抽到1班和2班的概率是( ) A.18 B .16 C.38 D .123. 小明和小华参与社会实际活动,随机选择〝清扫社区卫生〞和〝参与社会调查〞其中一项,那么两人同时选择〝参与社会调查〞的概率为( ) A.14 B .13 C.12 D .344.一个箱子中放有红、黄、黑三种小球,三团体先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是( ) A .公允的B .不公允的C .先摸者赢的能够性大D .后摸者赢的能够性大5.〝红灯停、绿灯行〞是我们在日常生活中必需遵守的交通规那么,这样才干保证交迟滞畅和行人平安,小刚每天从家骑自行车上学都经过三个路口,且每个路口装置了红灯和绿灯,假设每个路口红灯和绿灯亮的时间相反,那么小刚从家随时动身去学校,他遇到两次红灯的概率是( ) A.18 B .38 C.58 D .786. 从长为35710的四条线段中恣意选择三条作为边,能构成三角形的概率是( )A.14 B .12 C.34D .1 7. 甲、乙、丙三人站成一排拍照,那么甲站在中间的概率是( ) A.16 B .13 C.12 D .238. 把只要颜色不同的1个红球和2个白球装入一个不透明的口袋里搅匀,从中随机地一次摸了2个球,得1红球1白球的概率为 .9.从区分标有1、2、3、4的四张卡片中,一次同时抽2张,其中和为奇数的概率是 .10.〝石头、剪刀、布〞是官方广为传达的游戏,游戏时,双方每次恣意出〝石头〞〝剪刀〞〝布〞这三种手势中的一种,那么双方出现相反手势的概率是 .11. 某商场在〝五一〞时期推出购物摸奖活动,摸奖箱内有除颜色以外完全相反的白色、白色乒乓球各两个,顾客摸奖时,一次摸出两个球,假设两个球的颜色相反就得奖,颜色不同那么不得奖,那么顾客摸奖一次,得奖的概率是 . 12. 在学校组织的义务植树活动中,甲、乙两组各四名同窗的植树棵数如下,甲组:9、9、11、10;乙组:9、8、9、10;区分从甲、乙两组中随机选取一名同窗,那么这两名同窗的植树总棵数为19的概率是 .13. 甲、乙同窗各抛掷一枚质地平均的骰子,他们抛掷的点数区分记为a 、b ,那么a +b =9的概率为______.14. 如图是一个可以自在转动的转盘,转盘被分红6个相等的扇形,甲、乙两人应用这个转盘做以下游戏:①甲自在转动转盘,指针指向奇数,那么甲获胜,否那么乙获胜;②甲自在转动转盘,指针指向质数(即只能被自身和1整除的自然数),那么甲获胜,否那么乙获胜;③乙自在转动转盘,指针指向3的倍数,那么乙获胜,否那么甲获胜;④乙自在转动转盘,指针指向偶质数,那么甲获胜,否那么乙获胜.在以上四个游戏中,对甲、乙双方公允的游戏为 ;对甲、乙双方不公允的游戏为 ;其中对甲有利的游戏是 ,对乙有利的游戏是(填序号).15. 甲、乙两人都握有区分标志为A、B、C的三张牌,两人做游戏,游戏规那么是:假定两人出的牌不同,那么A胜B,B胜C,C胜A;假定两人出的牌相反,那么为平局.(1)用树状图或列表等方法,列出甲、乙两人一次游戏的一切能够的结果;(2)求出现平局的概率.16. 小刚和小明玩〝石头〞〝剪子〞〝布〞的游戏,游戏的规那么为:〝石头〞胜〝剪子〞,〝剪子〞胜〝布〞,〝布〞胜〝石头〞,假定两人所出手势相反,那么为平局.(1)玩一次小刚出〝石头〞的概率是多少?(2)玩一次小刚胜小明的概率是多少?用列表法或画树状图法加以说明.17. 三张卡片的正面区分写有数字2、5、5,卡片除数字外完全相反,将它们洗匀后,反面朝上放置在桌面上.(1)从中恣意抽取一张卡片,该卡片上数字是5的概率为;(2)学校将××局部先生参与夏令营活动,九年级(1)班只要一个名额,小刚和小芳都想去,于是应用上述三张卡片做游戏决议谁去,游戏规那么是:从中恣意抽取一张卡片,记下数字放回,洗匀后再恣意抽取一张,将抽取的两张卡片上的数字相加,假定和等于7,小刚去;假定和等于10,小芳去;和是其他数,游戏重新末尾,你以为游戏对双方公允吗?请用画树状图或列表的方法说明理由.18. 小明、小军两同窗做游戏,游戏规那么是:一个不透明的文具袋中,装有型号完全相反的3支红笔和2支黑笔,两人先后从袋中取出一支笔(不放回),假定两人所取笔的颜色相反,那么小明胜,否那么,小军胜.(1)请用树状图或列表法列出摸笔游戏一切能够的结果;(2)请计算小明获胜的概率,并指出本游戏规那么能否公允,假定不公允,你以为对谁有利?参考答案: 1---7 BBAAB DB 8. 239. 2310. 1311. 1312. 51613. 1914. ①② ③④ ③ ④ 15. 解:(1)画树状图得: 那么共有9种等能够的结果;(2)∵出现平局的有3种状况,∴出现平局的概率为:39=13.16. 解:(1)P(玩一次小刚出〝石头〞)=13(2)树状图如下:能够出现的结果有9种,而且每种结果出现的能够性相反,其中小刚胜小明的结果有3种,所以P(玩一次小刚胜小明)=1317. (1) 23解:(2)依据题意列表如下:∵共有910的共有4种,∴P(数字和为7)=49,P(数字和为10)=49,∴P(数字和为7)=P(数字和为10),∴游戏对双方公允. 18. 解:(1)列表如下:(2)20种,并且它们出现的能够性相等.其中两人所取笔的颜色相反的有8种,所以P(小明获胜)=820=25.∵P(小军获胜)=1-25=35,而25<35,∴游戏规那么不公允,对小军有利.。
最新-备战2018全国各省市中考数学真题分类汇编—事件与概率 精品
2018全国各省市中考数学真题分类汇编—事件与概率(附答案)一、选择题1.(2018哈尔滨市中考)7,小刚掷一枚质地匀的正方体体骰子,骰子的,六个面分别刻有l 刭6的点数,则这个骰子向上一面点数大于3的概率为( ). (A)21 (B) 31 (C) 32 (D) 412.(2018海南中考)8.把1枚质地均匀的昔通硬币重复掷两次,落地后两次都是正面朝上的概率是( ). A .1 B .12 C .13 D .143.(2018乌兰察布市中考)7 .从 l , 2 , 3 , 4 , 5 , 6 , 7 , 8 ,9 , 10 这十个数中随机取出一个数;取出的数是是3 的倍数的概率是( ).4.(2018广东中考)4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( ) A .51B .31 C .85 D .835.(2018安徽中考)5.从下五边形的五个顶点中,任取四个顶点连成四边形,对于事件M ,“这个四边形是等腰梯形”.下列推断正确的是……………………………【 】 A.事件M 是不可能事件 B. 事件M 是必然事件 C.事件M 发生的概率为15D. 事件M 发生的概率为256.(2018兰州市中考)7.一只盒子中有红球m 个,白球8个,黑球n 个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m 与n 的关系是( ). A. m=3,n=5 B. m=n=4 C. m+n=4 D. m+n=87.(2018毕节地区中考)6、为备战中考,同学们积极投入复习,李红书包里装有语文试卷3张、数学试卷2张、英语试卷1张、其它学科试卷3张,从中任意抽出一张试卷,恰好是数学试卷的概率是( ) A 、41 B 、21 C 、91 D 、928.(2018桂林市中考)9.下面调查中,适合采用全面调查的事件是( ).A .对全国中学生心理健康现状的调查.B .对我市食品合格情况的调查.C .对桂林电视台《桂林板路》收视率的调查.D .对你所在的班级同学的身高情况的调查.9.(2018东营市中考)9.某中学为迎接建党九十周年,举行了”童心向党,从我做起”为主题的演讲比赛.经预赛,七、八年纪各有一名同学进入决赛,九年级有两名同学进入决赛,那么九年级同学获得前两名的概率是( ) A .12 B .13C .14D .1610.(2018枣庄市中考)11.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是2 5 .如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是14 ,则原来盒中有白色棋子( )A .8颗B .6颗C .4颗D .2颗11.(2018济宁市中考)7.在x 2□2xy□y 2的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是( ).A .1B .34 C .12 D .1412.(2018聊城市中考)6.下列事件属于必然事件的是( )A .在1个标准大气压下,水加热到100℃沸腾;B .明天我市最高气温为56℃;C .中秋节晚上能看到月亮D .下雨后有彩虹13.(2018临沂市中考)10.如图,A 、B 是数轴上的亮点,在线段AB 上任取一点C ,则点C 到表示-1的点的距离不大于...2的概率是( )A .21 B .32 C .43 D .5414.(2018日照市中考)8.两个正四面体骰子的各面上分别标明数字1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为( ) (A )41 (B )163 (C )43 (D )8315.(2018滨州市中考)4.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为( ) A.14 B. 12 C. 34D. 116.(2018泰安市中考)16 .袋中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,两次所取球的编号相同的概率为( ).A.19B.16C.13D.1217.(2018茂名市中考)10.如图,正方形ABCD 内接于⊙O ,⊙O 的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 内的概率是( ).A .π2B .2π C .π21D .π218.(2018东莞市中考)4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A .15B .13C .58D .3819.(2018宿迁市中考)6.如图,将一个可以自由旋转的转盘等分成甲、乙、丙、丁四个扇形区域,若指针固定不变,转动这个转盘一次(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止),则指针指在甲区域内的概率是(▲) A .1 B .21 C .31 D .4120.(2018连云港市中考)6.已知抛一枚均匀硬币正面朝上的概率为12,下列说法正确的是( ) A .连续抛一枚均匀硬币2次必有1次正面朝上 B .连续抛一枚均匀硬币10次都可能正面朝上 C .大量反复抛一枚均匀硬币,平均每100次出现下面朝上50次D .通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的21.(2018台北市中考)3.表(一)表示某签筒中各种签的数量。
2018届中考数学专项复习 简单随机事件的概率训练题
简单随机事件的概率1.下列说法正确的是( D )A .袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球B .天气预报“明天降水概率10%”,是指明天有10%的时间会下雨C .某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖D .连续掷一枚均匀硬币,若5次都是正面朝上,则第6次仍然可能正面朝上 2.下列说法正确的是( D ) A .“任意画一个三角形,其内角和为360°”是随机事件B .已知某篮球运动员投篮投中的概率为0.6,则他投十次可投中6次C .抽样调查选取样本时,所选样本可按自己的喜好选取D .检测某城市的空气质量,采用抽样调查法3.下列事件:①在足球赛中,弱队战胜强队;②抛掷一枚硬币,落地后正面朝上;③任取两个正整数,其和大于1;④长分别为3,5,9厘米的三条线段能围成一个三角形.其中确定事件的个数是( B ) A .1 B .2 C .3 D .44.某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是( A ) A.110 B.19 C.13 D.125.某学校组织知识竞赛,共设有20道试题,其中有关中国优秀传统文化试题10道,实践应用试题6道,创新能力试题4道.小婕从中任选一道试题作答,她选中创新能力试题的概率是( A ) A.15 B.310 C.25 D.126.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其试验次数分别为10次、50次、100次、200次,其中试验相对科学的是( D ) A .甲组 B .乙组 C .丙组 D .丁组7. 已知小华在罚球线上投篮的命中率大约是62%,下列说法错误的是( A ) A .小华在罚球线上连续投篮5次,一定能投中3次 B .小华在罚球线上连续投篮5次,有投中3次的可能性 C .小华在罚球线上投篮1次,投中的可能性较大 D .小华在罚球线上投篮1次,投不中的可能性较小8. 如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( C )A.15B.25C.35D.459. 一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球__8__个.10.从1,2,3,…,99,100,这100个整数中,任取一个数,这个数大于60的概率是__0.4__.11.从“线段、等边三角形、圆、矩形、正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是__45__.12.任取不等式组⎩⎪⎨⎪⎧k -1≤1,2k +5>0,的一个整数解,则能使关于x 的方程:2x +k =-1的解为非负数的概率为__25__.213.如图,正方形的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为__13__.14.某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元. (1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.解:(1)P (得到优惠)=612=12 (2)转盘1能得到的优惠为112×(0.3×300+0.2×300×2+0.1×300×3)=25(元),转盘2能得到的优惠为40×24=20(元),∴选择转盘1更合算15. 研究问题: 一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.(1)盒中红球、黄球各占总球数的百分比分别是多少? (2)盒中有红球多少个?解:(1)红球占40%,黄球占60% (2)设总球数为x 个,由题意得8x =450,解得x =100,100×40%=40(个),即盒中红球有40个。
2018年中考数学专题复习练习卷事件的概率201812251120
事件的概率1.下列事件是随机事件的是A .购买一张福利彩票,中奖B .在一个标准大气压下,加热到100 °C 水沸腾C .有一名运动员奔跑的速度是30米/秒D .在一个仅装着白球和黑球的袋中摸球,摸出红球2.四张完全相同的卡片上分别画有平行四边形、菱形、等腰梯形、圆,现从中任意抽取一张,卡片上所画的图形恰好是中心对称图形的概率为A .43B .1C .21D .41 3.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是A .12B .712C .58 D .384.小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,点E 、F 分别是矩形ABCD 的两边AD 、BC 上的点,EF ∥AB ,点M 、N 是EF 上任意两点,则投掷一次,飞镖落在阴影部分的概率是A .13 B .23C .12D .34 5.在一个不透明的口袋中,装有12个黄球和若干个红球,这些球除颜色外没有其他区别.小李通过多次摸球试验后发现,从中随机摸出一个红球的频率稳定在25%,则该口袋中红球的个数可能是__________.6.不透明的布袋里有白球2个,红球10个,它们除了颜色不同其余均相同,为了使从布袋里随机摸一个球是白球的概率为13,若白球个数保持不变,则要从布袋里拿去__________个红球.7.如果m 是从0,1,2,3四个数中任取的一个数,n 是从0,1,2三个数中任取的一个数,那么关于x 的一元二次方程x2-2mx+n2=0有实数根的概率为__________.8.一个不透明的布袋中有4个红球、5个白球、11个黄球,它们除颜色外都相同.(1)求从袋中摸出一个球是红球的概率;(2)现从袋中取走若干个黄球,并放入相同数量的红球,搅拌均匀后,要使从袋中摸出一个球是红球的概率不小于13,问至少需取走多少个黄球?9.甲口袋中装有两个相同的小球,它们的标号分别为2和5,乙口袋中装有两个相同的小球,它们的标号分别为4和9,丙口袋中装有三个相同的小球,它们的标号分别为1,6,7.从这3个口袋中各随机取出一个小球.(1)用树形图表示所有可能出现的结果;(2)若用取出的三个小球的标号分别表示三条线段的长,求这些线段能构成三角形的概率.10.图1是一个可以自由转动的转盘,被分成了面积相等的三个扇形,分别标有数-1,-2,-3,甲转动一次转盘,转盘停止后指针指向的扇形内的数记为A(如果指针恰好指在分割线上,那么重转一次,直到指针指向某一扇形为止),图2是背面完全一样、牌面数字分别是2,3,4,5的四张扑克牌,把四张扑克牌背面朝上,洗匀后放在桌面上,乙随机抽出一张牌的牌面数字记为B.(1)用树状图或列表法求A+B=0的概率;(2)甲、乙两人玩游戏,规定:当A+B是正数时,甲胜;否则,乙胜.你认为这个游戏规则对甲、乙双方公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平.11.(2017•湘潭)从-2,1,3这三个数中任取两个不同的数,作为点的坐标.(1)写出该点所有可能的坐标;(2)求该点在第一象限的概率.12.(2017•连云港)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋、投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料、废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.13.(2017•怀化)“端午节”是我国流传了上千年的传统节日,全国各地举行了丰富多彩的纪念活动.为了继承传统,减缓学生考前的心理压力,某班学生组织了一次拔河比赛,裁判员让两队队长甲、乙用“石头、剪刀、布”的手势方式选择场地位置,规则是:石头胜剪刀,剪刀胜布,布胜石头,手势相同则再决胜负.(1)用列表或画树状图法,列出甲、乙两队手势可能出现的情况;(2)裁判员的这种做法对甲、乙双方公平吗?请说明理由.参考答案1.【答案】A 2.【答案】A 3.【答案】C 4.【答案】C 5.【答案】4 6.【答案】67.【答案】3 48.【解析】(1)∵袋中有4个红球、5个白球、11个黄球,∴摸出一个球是红球的概率=44511++=15.(2)设取走x个黄球,则放入x个红球,由题意得,44511x+++≥13,解得x≥83,∵x为整数,∴x的最小正整数值是3.答:至少取走3个黄球.9.【解析】(1)如图所示:所以共有12种可能出现的结果;(2,4,1),(2,4,6),(2,4,7),(2,9,1),(2,9,6),(2,9,7),(5,4,1),(5,4,6),(5,4,7),(5,9,1),(5,9,6),(5,9,7).(2)这些线段能够成三角形(记为事件A)的结果有4种:(5,4,6),(5,4,7),(5,9,6),(5,9,7),所以P=41 123=.10.【解析】(1)由题意可得,A+B的所有可能性是:-1+2=1,-1+3=2,-1+4=3,-1+5=4,-2+2=0,-2+3=1,-2+4=2,-2+5=3,-3+2=-1,-3+3=0,-3+4=1,-3+5=2,∴A+B=0的概率是:21126=,即A+B=0的概率是16.(2)对甲、乙不公平11.【解析】(1)画树状图得:∴所有可能的坐标为(1,3),(1,-2),(3,1),(3,-2),(-2,1),(-2,3).(2)∵共有6种等可能的结果,其中(1,3),(3,1)点落在第一象限,∴点刚好落在第一象限的概率=21 63 =.12【解析】(1)1/3(2)2/313.【解析】(1)用列表法得出所有可能的结果如下:用树状图得出所有可能的结果如下:(2)裁判员的这种作法对甲、乙双方是公平的.理由:根据表格得,P(甲获胜)=39,P(乙获胜)=39.∵P(甲获胜)=P(乙获胜),∴裁判员这种作法对甲、乙双方是公平的.。
中考数学简单随机事件的概率及应用专项复习检测
中考数学简单随机事件的概率及应用专项复习检测1. 任意掷一枚正方体骰子,下列情况出现的可能性比较大的是( )A .朝上的面的点数是6 B .朝上的面的点数是偶数C .朝上的面的点数小于2D .朝上的面的点数大于22. “A 市明天降水概率是30%”,对此消息下列说法中正确的是( )A .A 市明天降水的可能性较小 B .A 市明天肯定不降水C .A 市明天将有30%的地区降水D .A 市明天将有30%的时间降水3. 现将背面相同的4张扑克牌背面朝上,洗匀后,从中任意翻开一张是数字4的概率为()A .B .C .D .122513144.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为( )A . B . C .D .152535455.小亮、小莹和大刚三名同学随机地站成一排合影留念,小亮恰好站在中间的概率是( )A .B .C .D .121323166. 某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能的是( )A .袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B .掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C .先后两次掷一枚质地均匀的硬币,两次都出现反面D .先后两次掷一枚质地均匀的正方体骰子,两次向上的面的点数之和是7或超过97. 一个不透明的口袋里有4张形状完全相同的卡片,分别写有数1,2,3,4,口袋外有两张卡片,分别写有数2,3,现随机从口袋里取出一张卡片,这张卡片上的数与口袋外的两张卡片上的数作为三角形三边的长,能构成三角形的概率是( )A .B .C .D .11412348. 在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形和圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为( )A .B .C . D .341413129. 如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以A 1,A 2,B 1,B 2其中的任意两点与点O 为顶点作三角形,所作三角形是等腰三角形的概率是()A .B .C .D .3413231210. 在一个不透明的布袋中,红球、黑球和白球共有若干个,它们除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一个球,记下颜色后放回布袋中,摇匀后再随机摸出一个球,记下颜色……如此大量的摸球试验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%.对此试验,他总结出下列结论:①若进行大量的摸球试验,摸出白球的频率应稳定于30%;②若从布袋中随机摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( )A .①②③B .①②C .①③D .②③11. 如图,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘一次,当旋转停止时,指针指向阴影区域的概率是.12. 假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则三只雏鸟中有两只雌鸟的概率是.13. 襄阳市辖区内旅游景点较多.李老师和刚初中毕业的儿子准备到古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择古隆中景点为第一站的概率是.14. 一个不透明的口袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球个.15. 如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.16. 如图,已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则P1P2=.17. 甲、乙两人玩猜数字游戏,游戏规则如下:有四个数字0,1,2,3,先由甲心中任选一个数字,记为m,再由乙猜甲刚才所选的数字,记为n.若m,n 满足|m-n|≤1,则称甲、乙两人“心有灵犀”,则甲、乙两人“心有灵犀”的概率是.18. 甲、乙两人用手指玩游戏,规则如下:(a)每次游戏时,两人同时随机各伸出一根手指;(b)两人伸出的手指中,大拇指只胜食指,食指只胜中指,中指只胜无名指,无名指只胜小拇指,小拇指只胜大拇指,否则不分胜负,依据上述规则,当甲、乙两人同时随机地各伸出一根手指时.(1)求甲伸出小拇指取胜的概率;(2)求乙取胜的概率.19. “中国梦”关乎每个人的幸福生活.为进一步感知我们身边的幸福,某校开展了以“中国梦·我的梦”为主题的摄影大赛,要求参赛学生每人交一件作品.现将参赛的50件作品的成绩(单位:分)进行统计如下:等级成绩(用s表示)频数频率A90≤s≤100x0.08B80≤s<9035yC s<80110.22合计501请根据上表提供的信息,解答下列问题:(1)表中x的值为,y的值为;(2)将本次参赛作品获得A等级的学生依次用A1,A2,A3,…,表示,现该校决定从本次参赛作品获得A等级的学生中,随机抽取两名学生谈谈他们的参赛体会,请用画树状图法或列表法求恰好抽到A 1和A 2的概率.20. 一个不透明的口袋中装有20个只有颜色不同的球,其中5个黄球、8个黑球和7个红球.(1)求从口袋中摸出一个球是黄球的概率;(2)现从口袋中取出若干个黑球,搅匀后,使从口袋中摸出一个球是黑球的概率是.求从口袋中取出黑球的个数.1321. 为培养学生的数学学习兴趣,某校七年级准备开设“神奇魔方”“魅力数独”“数学故事”“趣题巧解”四门选修课(每名学生必须且只选其中一门).某校七年级部分学生选修课情况统计图(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图,根据该统计图,请估计该校七年级480名学生选“数学故事”的人数;(2)学校将选“数学故事”的学生分成人数相等的A ,B ,C 三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A 班,求他和小慧被分到同一个班的概率(要求列表或画树状图).答案与解析:1. D 2. A 3. A 4. C 5. B 6. D 7. C 8. D9. D 解析: 分别以A 1,A 2,B 1,B 2其中的任意两点与点O 为顶点作三角形的所有情况有△A 1OB 2,△A 1OB 1,△A 2OB 1,△A 2OB 2共4种情况,其中是等腰三角形的是△A 1OB 1和△A 2OB 2两种情况,∴P(所作三角形是等腰三角形)==24.故选D .1210. B 解析: 根据所有事件频率的和等于1,可知摸出白球的频率=1-20%-50%=30%,①正确;∵黑球出现的频率大,∴从布袋中随机摸出一个球,该球是黑球的概率最大,②正确;再摸球100次,不一定有20次摸出的是红球,③不正确.故选B .11.1312.3813.1914. 815. 解析: ∵随机地闭合开关S 1,S 2,S 3,S 4,S 5中的三个共有10种可15能,能够使灯泡L 1,L 2同时发光有2种可能(S 1,S 2,S 4或S 1,S 2,S 5),∴随机地闭合开关S 1,S 2,S 3,S 4,S 5中的三个,能够使灯泡L 1,L 2同时发光的概率是=.2101516.解析: 设⊙O 的半径为1,则AD =,故S ⊙O =π,阴影部分的面积为2π2π×2+×-π=2,则P 1=,P 2=,故=.(22)2222π+2ππ+2P 1P 22π17. 解析: 根据题意画树状图如下:58∵共有16种等可能的结果,m ,n 满足|m -n|≤1的有10种情况,∴甲、乙两人“心有灵犀”的概率是=.10165818. 解:设A ,B ,C ,D ,E 分别表示大拇指、食指、中指、无名指、小拇指,列表如下:甲乙A B C D E A (A ,A)(A ,B)(A ,C)(A ,D)(A ,E)B (B ,A)(B ,B)(B ,C)(B ,D)(B ,E)C (C ,A)(C ,B)(C ,C)(C ,D)(C ,E)D (D ,A)(D ,B)(D ,C)(D ,D)(D ,E)E(E ,A)(E ,B)(E ,C)(E ,D)(E ,E)由表格可知,共有25种等可能的结果.(1)由上表可知,甲伸出小拇指取胜有1种可能,∴P(甲伸出小拇指取胜)=.125(2)由上表可知,乙取胜有5种可能,∴P(乙取胜)==.5251519. (1) 40.7(2) 解:由(1)知获得A 等级的学生共有4人,则另外两名学生为A 3和A 4.根据题意列表如下:第二次第一次A 1A 2A 3A 4A 1(A 1,A 2)(A 1,A 3)(A 1,A 4)A 2(A 2,A 1)(A 2,A 3)(A 2,A 4)A 3(A 3,A 1)(A 3,A 2)(A 3,A 4)A 4(A 4,A 1)(A 4,A 2)(A 4,A 3)由此可见,共有12种可能出现的结果,且每种结果出现的可能性相同,其中恰好抽到A 1,A 2两名学生的结果有2种,∴P(恰好抽到A 1,A 2两名学生)==.2121620. 解:(1)摸出一个球是黄球的概率P ==.52014(2)设取出x 个黑球.由题意,得=,解得x =2.经检验x =2是方程的解8-x 20-x 13且符合题意.∴取出2个黑球.21. (1) 解:选“数学故事”的有480×=90(人).1815+27+18+36(2) 解:根据题意列表如下:由该表可知,小聪和小慧被分到同一个班的概率为=.2613。
2018年中考数学真题分类汇编(第三期)专题16概率试题(含解析)
概率一.选择题1. (2018·广西梧州·3分)小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个,这些球除颜色外无其他差别,从箱子中随机摸出1个球,然后放回箱子中轮到下一个人摸球,三人摸到球的颜色都不相同的概率是()A.B.C.D.【分析】画出树状图,利用概率公式计算即可.【解答】解:如图,一共有27种可能,三人摸到球的颜色都不相同有6种可能,∴P(三人摸到球的颜色都不相同)==.故选:D.【点评】本题考查列表法与树状图,解题的关键是学会利用树状图解决概率问题.2.(2018·四川省攀枝花·3分)布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是()A.B.C.D.解:画树状图得:则共有9种等可能的结果,两次都摸到白球的有4种情况,∴两次都摸到白球的概率为.故选A.3.(2018·辽宁省沈阳市)(2.00分)下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨【分析】必然事件就是一定发生的事件,依据定义即可判断.【解答】解:A.“任意买一张电影票,座位号是2的倍数”是随机事件,故此选项错误;B.“13个人中至少有两个人生肖相同”是必然事件,故此选项正确;C.“车辆随机到达一个路口,遇到红灯”是随机事件,故此选项错误;D.“明天一定会下雨”是随机事件,故此选项错误;故选:B.【点评】考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.(2018·辽宁省阜新市)如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是()A.B.C.D.【解答】解:设阴影部分的面积是x,则整个图形的面积是7x,则这个点取在阴影部分的概率是=.故选C.5. (2018•呼和浩特•3分)(3.00分)某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是()A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9解:A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为,不符合题意;B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为,不符合题意;C.先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为,不符合题意;D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为,符合题意;故选:D.6.(2018·辽宁大连·3分)一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是()A.B.C.D.解:列表得:123 123423453456所有等可能的情况数有9种,它们出现的可能性相同,其中两次摸出的小球标号的和是偶数的有5种结果,所以两次摸出的小球标号的和是偶数的概率为.故选D.7.(2018·江苏镇江·3分)小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连接偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是,则n的取值为()A.36 B.30 C.24 D.18【解答】解:∵“指针所落区域标注的数字大于8”的概率是,∴=,解得:n=24,故选:C.二.填空题1. (2018·广西贺州·3分)从﹣1.0、、π、5.1.7这6个数中随机抽取一个数,抽到无理数的概率是.【解答】解:∵在﹣1.0、、π、5.1.7这6个数中无理数有、π这2个,∴抽到无理数的概率是=,故答案为:.2. (2018·湖北江汉·3分)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.【分析】根据概率公式进行计算即可.【解答】解:任选一个字母,这个字母为“s”的概率为:=,故答案为:.3.(2018·浙江省台州·5分)一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号相同的情况,再利用概率公式即可求得答案.【解答】解:根据题意,画树状图如下:共有9种等可能结果,其中两次摸出的小球标号相同的有3种结果,所以两次摸出的小球标号相同的概率是=,故答案为:.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.4.(2018·辽宁省葫芦岛市) 有四张看上去无差别的卡片,正面分别写有“兴城首山”、“龙回头”、“觉华岛”、“葫芦山庄”四个景区的名称,将它们背面朝上,从中随机一张卡片正面写有“葫芦山庄”的概率是.【解答】解:∵在这4张无差别的卡片上,只有1张写有“葫芦山庄”,∴从中随机一张卡片正面写有“葫芦山庄”的概率是.故答案为:.5.(2018·辽宁省盘锦市)如图,正六边形内接于⊙O,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是.【解答】解:如图所示:连接OA.∵正六边形内接于⊙O,∴△OAB,△OBC都是等边三角形,∴∠AOB=∠OBC=60°,∴OC∥AB,∴S△ABC=S△OBC,∴S阴=S扇形OBC,则飞镖落在阴影部分的概率是;故答案为:.6.(2018·辽宁省抚顺市)(3.00分)一个不透明布袋里有3个红球,4个白球和m个黄球,这些球除颜色外其余都相同,若从中随机摸出1个球是红球的概率为,则m的值为 2 .【分析】根据题目中的数据可以计算出总的球的个数,从而可以求得m的值.【解答】解:由题意可得,m=3÷﹣3﹣4=9﹣3﹣4=2,故答案为:2.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的m的值.7. (2018•呼和浩特•3分)已知函数y=(2k﹣1)x+4(k为常数),若从﹣3≤k≤3中任取k值,则得到的函数是具有性质“y随x增加而增加”的一次函数的概率为.解:当2k﹣1>0时,解得:k>,则<k≤3时,y随x增加而增加,故﹣3≤k<时,y随x增加而减小,则得到的函数是具有性质“y随x增加而增加”的一次函数的概率为:=.故答案为:.8.(2018·江苏常州·2分)中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是.【分析】根据中心对称图形的性质得到圆中的黑色部分和白色部分面积相等,根据概率公式计算即可.【解答】解:∵圆中的黑色部分和白色部分关于圆心中心对称,∴圆中的黑色部分和白色部分面积相等,∴在圆内随机取一点,则此点取黑色部分的概率是,故答案为:.【点评】本题考查的是概率公式、中心对称图形,掌握概率公式是解题的关键.9.(2018·湖北咸宁·3分)一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单随机事件的概率
1.下列说法正确的是( D )
A .袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球
B .天气预报“明天降水概率10%”,是指明天有10%的时间会下雨
C .某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖
D .连续掷一枚均匀硬币,若5次都是正面朝上,则第6次仍然可能正面朝上 2.下列说法正确的是( D ) A .“任意画一个三角形,其内角和为360°”是随机事件
B .已知某篮球运动员投篮投中的概率为0.6,则他投十次可投中6次
C .抽样调查选取样本时,所选样本可按自己的喜好选取
D .检测某城市的空气质量,采用抽样调查法
3.下列事件:①在足球赛中,弱队战胜强队;②抛掷一枚硬币,落地后正面朝上;③任取两个正整数,其和大于1;④长分别为3,5,9厘米的三条线段能围成一个三角形.其中确定事件的个数是( B ) A .1 B .2 C .3 D .4
4.某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是( A ) A.110 B.19 C.13 D.12
5.某学校组织知识竞赛,共设有20道试题,其中有关中国优秀传统文化试题10道,实践应用试题6道,创新能力试题4道.小婕从中任选一道试题作答,她选中创新能力试题的概率是( A ) A.15 B.310 C.25 D.12
6.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其试验次数分别为10次、50次、100次、200次,其中试验相对科学的是( D ) A .甲组 B .乙组 C .丙组 D .丁组
7. 已知小华在罚球线上投篮的命中率大约是62%,下列说法错误的是( A ) A .小华在罚球线上连续投篮5次,一定能投中3次 B .小华在罚球线上连续投篮5次,有投中3次的可能性 C .小华在罚球线上投篮1次,投中的可能性较大 D .小华在罚球线上投篮1次,投不中的可能性较小
8. 如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( C )
A.15
B.25
C.35
D.45
9. 一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球__8__个.
10.从1,2,3,…,99,100,这100个整数中,任取一个数,这个数大于60的概率是__0.4__.
11.从“线段、等边三角形、圆、矩形、正六边形”这五个图形中任取一个,取到既是轴对称图形又是中
心对称图形的概率是__4
5__.
12.任取不等式组⎩
⎪⎨⎪⎧k -1≤1,2k +5>0,的一个整数解,则能使关于x 的方程:2x +k =-1的解为非负数的概率为__
2
5__.
13.如图,正方形的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部
随意取点,那么这个点取在阴影部分的概率为__1
3
__.
14.某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元. (1)若他选择转动转盘1,则他能得到优惠的概率为多少?
(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.
解:(1)P (得到优惠)=612=12 (2)转盘1能得到的优惠为1
12
×(0.3×300+0.2×300×2+0.1×300×3)=
25(元),转盘2能得到的优惠为40×2
4
=20(元),∴选择转盘1更合算
15. 研究问题: 一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?
操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.
(1)盒中红球、黄球各占总球数的百分比分别是多少? (2)盒中有红球多少个?
解:(1)红球占40%,黄球占60% (2)设总球数为x 个,由题意得8x =4
50
,解得x =100,100×40%=40(个),
即盒中红球有40个。