AP1515中文资料
精确电压基准MCP1525、MCP1541中文资料
2.5Vਜ਼4.096V࢟ኹᓰ—M C P1525/1541特性z精确电压基准z输出电压2.5V和4.096Vz初始精度:最大1%z温度漂移: 最大50ppm/z输出电流驱动: 2mAz最大操作电流:最大100A@25z TO-92,SOT23-3封装z工业级温度范围:-4085应用z电池供电系统z手持设备z仪器和过程控制z测试设备z数据采集系统z通讯设备z医疗设备z精密功率供给电源z8位,10位,12位A/D转换器z D/A转换器描述Microchip公司的MCP1525和MCP1541设备是2.5V和4.096V精确电压基准,它们采用了先进的CMOS电路和EPROM微调技术的组合所以该器件可以达到1%最大的初始精度和最大50ppm/¢的温漂同时在25时静态电流可以低至100A最大,这些设备在超过时间和温度时还提供一个优于传统齐纳技术的新特性.MCP1525的输出电压为2.5V,MCP1541为4.096V.这些器件采用TO-92和SOT23-3封装,工业级温度范围:-4085.器件选择表封装MCP1541温度漂移1.0 电特性1.1 最大范围V IN 7.0V输入电流(V IN) 20mA输出电流(V OUT) 20mA连续电压损耗(T A=15) 140mW所有输入和输出w.r.t -0.6V~(V IN+1.0V)存储温度 -65150输入电压时环境温度 -55125对所有引脚的ESD保护4kV电特性说明 1.输出电压滞后指25时测量的输出电压在温度从85变化到-40前后的电压变化.2.输出温度系数用一个”BOX”的方法来测量,其方法是在25时将输出电压尽量修整为典型值,然后85时输出电压再次被修整为零.2.0 典型性能曲线除非特别说明,V=5V,I OUT=0mA,C L=1F,T A=25图2-1 输出电压变化与温度对应关系图2-2 负载变化与温度关系图2-3 输入电流与温度关系图2-4 线性变化与温度关系图2-5 输出阻抗与频率关系图2-6 输出电压噪音与频率关系图2-7 输入电压抑制率与频率图2-8 输出电压与输入电压对应关系图2-9 三角输出电压变化与时间(DLT DATA)关系图2-10 MCP1541输出电压与输出电流关系图2-11 MCP1525输出电压与输出电流关系图2-12 最大负载电流与电源电压关系图2-13 输入电流与输入电压关系图2-14 MCP1541 0.1Hz~10Hz噪音图2-15 开启瞬时时间图2-16 MCP1525负载瞬时响应图2-17 MCP1525 线性瞬时响应图2-18 压差电压与输出电流关系3.0 引脚功能名字功能输出引脚(V)基准输出OUT输入引脚(V)正输入电压IN接地引脚(V)负电源或接地SS4.0 详细描述4.01 输出电压输出电压就是引脚(V OUT)上输出的基准电压.4.0.2 操作(输入)电压输入电压是一个电压范围,它可以加到VIN 脚,使器件在VOUT脚产生指定的输出电压.4.0.3 输出电压漂移(TCVOUT)输出温度系数或电压漂移是测量输出电压(TCVOUT)将会随着温度变化偏离初始值的程度.在电特性中的值可以由以下等式计算得出:其中:MCP1525 VNOM=2.5VMCP1541 V NOM=4.096V4.0.4 压差电压这些器件压差电压是通过将VIN电压减到输出降低1%的那一点在这种情况下压差电压应等于:压差丢失电压受温度和负载电流的影响.在图2-18中,显示了压差电压相对输出电流得正的和负的对应关系当电流在0毫安以上时,压差电压为正值.在这种情况下,电压基准主要被VIN驱动. 当电流在0毫安以下时,压差电压为负值当输出电压负值更大时,输入电流IIN减小.在这种情况下,输出电流开始为电压基准提供所需的电能.4.0.5 线性度是衡量输入电压V IN变换对应会改变输出电压V OUT变化多少的量被表示成V OUT/V IN,单位为V/V或ppm.例如,一个由VIN 脚500mA变化而引起的VOUT脚1V变化会得到VOUT/V IN等于2V/V或2ppm的结果.4.0.6 负载率VOUT/I OUT负载率是测量输出电压(VOUT)变化引起输出电流(I OUT)变化的量其单位为mV/mA.4.0.7 输入电流输入电流是从V IN到V SS的电流,不是输出引脚的负载电流.该电流受温度和输出电流的影响.4.0.8 输入电压抑制比输入电压抑制比是在输入电压超频的情况下输出电压与之对应的关系如图2-7所示,可以用下面的公式计算:4.0.9 长期输出稳定性长期输出稳定性是通过将设备暴露在125下,同时电路设计成图4-1形式,测量数据的稳定性在这个测试中,芯片的所有电特性都是25下周期测量的,如图2-9所示.4.0.10 输出电压滞后输出电压滞后是芯片在整个温度范围下工作时的输出电压的变化量滞后的数量可通过测量在温度从25到85再到25,或者从25到-40再到25变化量来确定.5.0 应用信息5.1 旁路电容MCP1525和MCP1541电压基准不需要在V IN和V SS间加输入电容,但是为了增加系统稳定性和减少输入电压瞬时噪音,还是推荐使用一个0.1F的陶瓷电容,如图5-1所示.这个电容必须尽量靠近器件(在1英尺距离内).5.2 负载电容从V OUT到V SS的输出电容作为对基准的频率补偿是不应该被省略的电容值因该在1.0F到10F 之间值稍大一点的输出电容器会略微改善基准输出的噪音,与此同时额外增加的负荷也会影响负载的快速响应5.3 印刷电路板布置考虑由于PC主板安装所带来的机械压力会使输出电压偏离其初始值SOT23-2封装的设备比TO-92封装的设备更容易受到压力的影响为减少和输出电压偏离有关的压力建议把基准安装的PC板的低压区例如板的边缘和拐角处6.0 典型应用电路6.1 基本电路配置MCP1525和MCP1541电压基准设备在所有应用中应如图5-1所示:如图5-1所示,输入电压通过一个0.1F的陶瓷电容连接在设备的V IN输入脚.如果输入电压有过多的噪音那么就需要这个电容. 0.1F的陶瓷电容会阻止近似1MHz到2MHz的噪音.低于这个频率的噪音会被电压基准阻止超过2MHz的噪音会超过电压基准的带宽因此不从输入通过设备传送给输出负载电容C L是用来稳定电压基准的.5.2 输出滤波如果电压基准的输出噪音对特定的应用来说很大,可以简单地通过一个外部的R/C网络和放大器来过滤.R/C网络是由一个需要的屏蔽频率来选择的,屏蔽频率等于:图5-2所显示的值(10到1F)的RC网络组成一个低通滤波器该滤波器的角频率为15.9Hz带有20dB/decade的衰减MCP606放大器应用电路的剩余部分隔离出这个低传送滤波器的负载这个放大器也提供额外的驱动能力并提供和电压基准相比更快的响应5.3 精度可调基准一个精度可调电压基准可按图5-3所示的电路设置:在这个电路中,MCP1541电压基准被用来驱动MCP41010数字电位器的电阻元件. MCP41010是256抽头10K可编程的电位器使用SPI TM接口这个可调基准的范围从接地到4.096V,每16mV为一增量5.4 负电压基准一个负精确电压基准通过使用MCP1525或MCP1541来产生如图5-4所示在这个电路中使用MCP606和两个等值的电阻实现电压隔离MCP1525电压基准的输出电压驱动R1,R1和MCP606放大器的反向输入连接.既然放大器的输入为0第二个10K电阻器被放置在放大器的反馈回路放大器的放大倍数为1因此输出电压就等于-2.5V.5.5 A/D转换器基准MCP1525和MCP1541为Microchip的10位,12位A/D系列转换器提供电压基准.图5-5显示MCP1541为MCP3201,一个12位的A/D转换器提供基准.使用Microchip的Filter Lab TM 软件来设计Sallen Key滤波器.要获得其他信息,请参阅AN699,”Anti-Aliasing,Analog Filters for Data Acquisition Systems”,DS00699封装信息封装标志信息。
dell 无线1515 wireless-n wlan 卡用户指南说明书
(SSID)框中,键入网络名称。
(SSID)框中,键入网络名称。
1111在无线网络选项卡上,单击确定。
创建临时网络111在控制面板中,打开网络连接。
111在网络连接窗口中,右键单击无线网络连接,然后单击属性。
111在无线网络选项卡上,检查是否选中了使用 Windows 配置我的无线网络设置复选框。
如果未选中该复选框,则单击以将其选中。
111单击添加。
111在网络名 (SSID)框中,键入网络名称。
111选中这是一个计算机到计算机 (临时) 网络;没有使用无线接入点复选框。
111在网络验证列表中,单击开放式。
111要创建没有安全设置的临时网络,请单击数据加密列表,在数据加密列表中单击禁用。
或者要创建具有 WEP 加密的临时网络,请清除自动为我提供此密钥复选框,然后在数据加密列表中单击WEP。
111在网络密钥框和确认网络密钥框中,键入网络密钥。
说明:网络密钥的长度必须为恰好 5 个或恰好 13 个字符,或者为恰好 10 个或恰好 26 个字符,网络密钥可使用数字 0-9 和字母 a-f(字母可以为大写或小写)。
1111单击确定。
1111在无线网络选项卡上,单击确定。
选择要访问的网络类型111在控制面板中,双击网络连接。
111在网络连接窗口中,右键单击无线网络连接,然后单击属性。
111在无线网络选项卡上,单击高级。
111在要访问的网络之下,单击所需的选项,然后单击关闭。
111在无线网络选项卡上,单击确定。
Warning: Explosive Device Proximity Caution: Use on AircraftThis equipment is marked with either the symbol or the symbol and can be used throughout the European Community. This mark indicates compliance with the R&TTE Directive 1999/5/EC and the relevant parts of theEN 301 489-17. Electromagnetic Compatibility and Radio Spectrum Matters (ERM). Electromagnetic Compatibility (EMC) Standard for Radio Equipment and Services, Part 17 Specific Conditions for Wideband Data and HIPERLANEquipmentEN 60950-1. Safety of Information Technology EquipmentEN 50385. Product standard to demonstrate the compliances of radio base stations and fixed terminal stations for wireless telecommunication systems with the basic restrictions or the reference levels related to human exposure to radio frequency electromagnetic fieldsMarking by the alert symbol indicates that usage restrictions apply.BulgariaCzech Dell Inc. tímto prohlašuje, €e tento Wireless Device je ve shod€ se základními po€adavky a dalšími príslušnými ustanoveními smernice 1999/5/ES.Danish UndertegnedeDell Inc. erklærer herved, at følgende udstyr Wireless Device overholder de væsentlige krav og øvrige relevante krav i direktiv 1999/5/EF.Dutch Hierbij verklaart Dell Inc. dat het toestel Wireless Device in overeenstemming is met de essentiële eisen en de andere relevante bepalingen van richtlijn 1999/5/EG.English Hereby,Dell Inc. declares that this Wireless Device is in compliance with the essential requirements and other relevant provisions of Directive 1999/5/EC.Estonian Käesolevaga kinnitab Dell Inc. seadme Wireless Device vastavust direktiivi 1999/5/EÜ põhinõuetele ja nimetatud direktiivist tulenevatele teistele asjakohastele sätetele.Finnish Dell Inc. vakuuttaa täten että Wireless Device tyyppinen laite on direktiivin 1999/5/EY oleellisten vaatimusten ja sitä koskevien direktiivin muiden ehtojen mukainen.French Par la présente Dell Inc. déclare que l'appareil Wireless Device est conforme aux exigences essentielles et aux autres dispositions pertinentes de la directive 1999/5/CE.German Hiermit erklärt Dell Inc., dass sich das Gerät Wireless Device in Übereinstimmung mit den grundlegenden Anforderungen und den übrigen einschlägigen Bestimmungen der Richtlinie 1999/5/EG befindet.GreekΜΕ ΤΗΝ ΠΑΡΟΥΣΑ Dell Inc. ΔΗΛΩΝΕΙ ΟΤΙ Wireless Device ΣΥΜΜΟΡΦΩΝΕΤΑΙ ΠΡΟΣ ΤΙΣ ΟΥΣΙΩΔΕΙΣ ΑΠΑΙΤΗΣΕΙΣΚΑΙ ΤΙΣ ΛΟΙΠΕΣ ΣΧΕΤΙΚΕΣ ΔΙΑΤΑΞΕΙΣ ΤΗΣ ΟΔΗΓΙΑΣ 1999/5/ΕΚ.Hungarian Alulírott, Dell Inc. nyilatkozom, hogy a Wireless Device megfelel a vonatkozó alapvetõ követelményeknek és az 1999/5/EC irányelv egyéb elõírásainak.Icelandic Hér með lýsir Dell Inc. yfir þvì að Wireless Device er ì samræmi við grunnkröfur og aðrar kröfur, sem gerðar eru ì tilskipun 1999/5/EC.Italian Con la presente Dell Inc. dichiara che questo Wireless Device è conforme ai requisiti essenziali ed alle altre disposizioni pertinenti stabilite dalla direttiva 1999/5/CE.Latvian Ar šo Dell Inc. deklarē, ka Wireless Device atbilst Direktīvas 1999/5/EK būtiskajām prasībām un citiem ar to saistītajiem noteikumiem.LithuanianŠiuo Dell Inc. deklaruoja, kad šis Wireless Device atitinka esminius reikalavimus ir kitas 1999/5/EB Direktyvos nuostatas.Maltese Hawnhekk, Dell Inc., jiddikjara li dan Wireless Device jikkonforma mal-ħtiġijiet essenzjali u ma provvedimenti oħrajn relevanti li hemm fid-Dirrettiva 1999/5/EC.Norwegian Dell Inc. erklærer herved at utstyret Wireless Device er i samsvar med de grunnleggende krav og øvrige relevante krav i direktiv 1999/5/EF.Polish Niniejszym Dell Inc. oświadcza, że Wireless Device jest zgodny z zasadniczymi wymogami oraz pozostałymi stosownymi postanowieniami Dyrektywy 1999/5/EC.Portuguese Dell Inc. declara que este Wireless Device está conforme com os requisitos essenciais e outras disposições da Directiva 1999/5/CE.RomaniaSlovak Dell Inc. týmto vyhlasuje, že Wireless Device spĺňa základné pošiadavky a všetky prĺslušné ustanovenia Smernice 1999/5/ES.Slovenian Dell Inc. izjavlja, da je ta Wireless Device v skladu z bistvenimi zahtevami in ostalimi relevantnimi določili direktive 1999/5/ES.Spanish Por medio de la presente Dell Inc. declara que el Wireless Device cumple con los requisitos esenciales y cualesquiera otras disposiciones aplicables o exigibles de la Directiva 1999/5/CE.Swedish Härmed intygar Dell Inc. att denna Wireless Device står I överensstämmelse med de väsentliga egenskapskrav och övriga relevanta bestämmelser som framgår av direktiv 1999/5/EG.TurkeyRadio NoticeThis radio equipment may cause interference during operation. Therefore, this radio equipment cannot be operated in an area that is providing services related to human safety.Taiwan DGTGeneral WLAN ProductsArticle 12Unless granted permission by Taiwan DGT, no company, firm, or user shall alter the frequency, increase the power, or change the characteristics and functions of the original design of an approved low-power radio frequency device.Article 14Low-power radio frequency devices shall not affect navigation safety nor interfere with legal communications. If an interference is found, the service will be suspended until improvement is made and the interference no longer exists.Legal communications refers to the wireless telecommunication operations that comply with telecommunications laws and regulations. Low-power radio frequency devices should be able to tolerate any interference from legal communications or industrial and scientific applications.5.25 to 5.35 GHz Band ProductsRadio devices using the 5.25 GHz to 5.35 GHz bands are restricted to indoor use only.(SSID)框中,键入网络名称。
代换管子
nAPM2300、Si2300、CEM2300、STS2300、AP2300、MT2300、MI2300、ST2300、SSS2300、GT2300、GE2300、GE2312、iTM2300、SM2300、TM2300、ME2314 等等
K3067=K2645=2n60B=6N60=P9N60C=7n60 stk0760 stk0765
可以相互替代的一些场管.
& \6 z n$ X/ j如无特别说明,同一条内的管子可以相互替换.* i2 V6 [# S0 _4 ]5 j
ห้องสมุดไป่ตู้
# e) F% m9 t: [' R1、SD9435 SOP-8 < 5.3A 30V 50 mΩ >,可替代市面上各类型9435 :" k' J4 X: ?; @7 E8 o* ? Q
3、SG9926 TSSOP-8 <6A 20V 28 mΩ>:暂无。
4、SD4953 SOP-8 <30V 5A 53mΩ>,可替代市面上各类型4953 :
c' x" E/ s" ~* CGE4953、 iTM4953、AF4953P、H4953、MT4953 、SSM4953、CEM4953、STS4953、 AP4953、 TM4953、STM4953、SDM4953、STP4953、AO4801、AO4801A、AO4803、AO4803A、AFT4953、SPP4953、STP4953A、SPP4953A、' r! ]. i+ y* y3 Q& g( {
IEEE1515Paper
APEC’01 PlenaryStandardizing Specification Language:IEEE Std 1515-2000F. Dong Tan ¦David CooperCarlos GonzalezDon StaffiereTRW, R9/2181Redondo Beach, CA Astec Advanced Power Systems, Ottawa Raytheon Systems El Sequndo, CA Staffiere Consulting ServicesAmherst, NH 310-814-5250613-763-2454310-334-8375603-672-7039dong.tan@cooperd@chgonzalez@donstaf@¦Corresponding authorAbstract A newly published standard, IEEE Std 1515-2000, is introduced. It intends to standardize on specification language. It does not intend to specify or to enforce “a standard specification.”Specific examples illustrate how it was written and how it is supposed to be used. It also shows the benefits that can be obtained from adopting the standard by the power electronics industry,including manufacturers, system developers, as well as academic institutions.1. IntroductionIn the past two decades, the power electronics industry has experienced tremendous growth. For instance,switched-mode power supplies now occupy 95% of the market (compared to only 12% in the 1970’s) and switched-mode motor devices are replacing traditional motor drives in virtually all applications. As with many maturing technologies, unprecedented growth creates a problem that hinders further growth. The problem is lack of a common specification language [1].Lack of a common specification language creates confusion among industry manufacturers and systems developers. Different manufacturers and subsystem developers use similar terms to indicate different performance. This confusion not only hinders effective communication and the interchangeability among products, but also increases the cost and time for both development and procurement. This is particularly true for high-end customer designs, such as those intended for military and aerospace applications.In 1998, the Power Sources Manufacturers Association (PSMA) issued a document [2] to enforce “disciplines”in units, symbols, and type setting in products specifications. However, definitions of common parameters and test methods, and test conditions werenot pursued. To address this issue, the Department of Defense (DoD) Joint Task Force on Open Systems (OS-JTF) and the Standards Committee of the IEEE Power Electronics Society (PELS) undertook a joint effort in 1997. A small funding is provided through OS-JTF to sustain a general, loose umbrella organization known as Electronic Power Specification Standardization (EPSS Working Group). The primary goal of the EPSS is to promote specification standardization for the electronic power industry. The general objective is to improve clarity and understanding of power equipment specifications [3-7].In the mean time, IEEE sponsored P1515 Working Groups was formed to draft specific standards. This paper is a progress report of the P1515 working group.The initial focus has been on standardizing electronic power system specification language. After three years of continuous work, the working group accomplished its mission in early 2000. The IEEE Standards Board subsequently published a standard, IEEE Std 1515-2000[8], in September of 2000.The purpose of IEEE Std1515-2000 is to standardize on specification language, not to specify, nor to enforce “a standard specification.” A specification written in compliance with this language will ensure easy and precise understanding between manufacturers and users,without in any way limiting a manufacturer’s ability to present features that are unique to their products.This paper is organized as follows. Section 2 presents the reasons why the IEEE 1515 is needed. Section 3 gives discussions on what the IEEE 1515 is and what it is not.Section 4 shows a few common parameters defined in IEEE 1515. Section 5 indicates potential benefits that one can gain from using IEEE 1515. And Section 6introduces a continuing effort by the EPSS Working Group and invites participation.2. The Need for a Standard Specification Language Before the initiation of this work, there has been only limited agreement across the power electronics industry in terms of product design, performance specifications, or even the definition of basic terms in widespread use, such as for example output peak-to-peak ripple. This has often led to confusion particularly among OEM users of power modules who often must carry out their own full program of characterization tests on potential suppliers’ products in order to have a set of comparable test results taken under comparable conditions and using comparable test methods. A more detailed discussion on the need can be found in [1].Some examples of the type of problems that may occur, due to the absence of standard test methods, when trying to compare specifications and data sheets from different vendors are given here.1.Different suppliers using different test methods tomeasure ripple voltage. Frequently, specifications with similar values can actually mean different performance. Test methods in use include:•Direct measurement of ripple voltage across the output pins of the UUT with anoscilloscope probe, using the shortest possibleconnections.•Measurement at the end of a 12 inch length of twisted pair wires with a 47uF capacitordirectly across the measurement point •Measure with a 0.1uF capacitor across the output pins of the UUT2.Input reflected ripple current may be specifiedwith or without large external capacitors, with different values being recommended by different suppliers.3.Datasheet parameters may be specified by onesupplier at nominal input voltage and 25 C ambient, but another supplier may specify parameters applying over the full range of input voltage and ambient temperature4.One supplier may define hold-up time fromnominal input voltage whereas another defines hold-up time from maximum input voltage.With any of these examples, it becomes difficult, if not impossible, to compare different datasheets directly. Furthermore, the product that appears to have the best performance may in fact not be the best or may even be the worst. Consequently, a lot of time and effort must be taken to gather test data using common test methods and test conditions. A widely accepted standard will avoid these types of difficulties.3. What is IEEE Std 1515-2000?The IEEE Std 1515 is a basically specification language, providing parameter definitions, test conditions, and test methods. It does not attempt to standardize the specification itself. It provides the basis that allows everyone to speak the same language on a level playing field.The ground rules adapted in writing the standard were: 1) It is intended for practical use; 2) It includes only the most commonly used parameters; 3) It follows prevalent industry practice; and 4) It tries to streamline the parameters when there are divergences in industry usage. The scope of the standard covers a broad range of DC-to-DC and AC-to-DC power systems up to 600Vdc and up to 20kW, intended for use with digital, analog and RF electronics.The test methods are not created new, but are compiled from existing, prevalent methods already in use – the key benefit is in the agreement to standardize on a single definition or test method. Since these test methods are already in general use, the adoption of the standard should not require any redesign of existing product. However, a manufacturer may wish to revise his datasheets where necessary to fully align with the standard and to re-exam their test methods. Consistency in data is important to end-users.In general, specific quantities were avoided whenever it is possible in the parameter definitions, the test conditions, and the test methods. This is needed to ensure generality and hence potentially wide application. Specific quantities were specified only when they are the essential part of the definition, test conditions or test methods.General discussions of EMC and EMI parameters were beyond the scope of a standard like this. Hence, detailed discursions were not pursued. Instead, basic parameters were defined or collected to guide engineers to perform a first-order check in their power labs before they send their units to EMC/EMI labs for formal EMC/EMI tests. Environmental parameters were collected in the standard for easy reference. They intend to highlight, to engineers, what are important in qualifying a product. Engineers who desire a more detailed discussion are refereed to prevalent industry and military standards.Mechanical parameters were limited to size, weight and form-and-fit functions. No parameters that were deemed “mechanical in nature” were included.Example 1: Output Voltage RippleOutput Volt a ge Ripple DefinitionThe maximum ac voltage present on a dc or low-frequency acvoltage stated in peak-to-peak voltage. The intent is to characterize the residual component associated with the switching action at the output switching frequency (or twice the output switching frequency)(see Figure 1).99s01137-4005-NTPk-PkFigure 1. Typical output voltage ripple and spikesTest MethodConnect the test setup shown in Figure 2. Use an oscilloscope with a differential input amplifier and measure differentially between the plus and minus output terminals of the UUT. Make sure the UUT is isolated from any other conducting surface.99s01137-4006-NTFigure 2. Output voltage ripple test setupOther methods specified in 4.5.3 can also be used (and should be specified in the evaluation).Test ConditionThe operating temperature should be from minimum to maximum;the input voltage should be V min , V nom , and V max ; the load should be resistive, and should be I min , I nom , and I max . The bandwidth of the scope should be at least 10 times the switching frequency.”Switching Spikes DefinitionSwitching spikes are generated by commutations of load currentamong switching devices. Their duration is typically less than 1/10 of switching period, and their amplitude is expressed as a maximum peak-to-peak value.Test MethodTest Method a) Refer to Figure . The ground lead of a voltage probe is removed to avoid getting any high-frequency pick-ups. Press the tip against “Out +” and the ground ring (band) against “Out -” of the UUT.Wrap the probe lead several times around a high µ core to minimizecommon-mode noise.Tipload99s01137-4007-NTFigure 3. Measuring output voltage spikes – Method a Test Method b) This method requires a simple set-up (a special probe).Refer to Figure . A coaxial cable is used to connect to a scope. A BNC “T” connector, terminated by a 50 Ω carbon resistor in series with a 0.68 µF ceramic capacitor, is used at one end connecting to a scope. At the other end, the BNC cable is split and connected to the output of the UUT.µfFigure 4. Measuring output voltage spikes – Method b Test Method c) This method requires a capacitor of up to 1µF in value added at the probe tip when measurements are made in an unshielded environment. The added capacitance is less than 0.1% of the system output capacitance. Refer to Figure .99s01137-4064-NTTiploadOutputFigure 5. Measuring output voltage spikes – Method cTest ConditionThe operating temperature should be from minimum to maximum; the input voltage to the UUT should be V nom , V nom , and V max ; the load is resistive, and should be I min , I nom , and I max . All measurements should be over a specified bandwidth that is at least 100 times the switching frequency.Example 2: Overvoltage ResponseOvervoltage ResponseDefinitionThe protective action taken by a power supply in response to an overvoltage condition on its output, induced either by an internal fault or by the external application of an overvoltage condition. Overvoltage protection circuits may result in a cyclicshutdown/restart or a latched off condition. Latch off circuitry is typically used if the circuit is intended to protect against internal unit failures.Overvoltage response is a condition in which the power supply output voltage, having reached an over voltage trip level, will be reduced to a quiescent safe voltage level. This voltage level may provide a false indication to the power supply output control circuitry, that the over voltage condition no longer exist, resulting in reinstatement of the prior overvoltage condition. Providing a latch to the power supply, after an overvoltage condition occurs, eliminates this from happening. A common practice to remove the latch, is to recycle input power. Non-latching overvoltage protection circuits should provide a fixed or minimum recycle time to prevent overstress due to rapid hysteretic cycling of the output and should control the reinstatement of the output voltage(s) to limit overshoot/undershoot. Test MethodThe measurement of overvoltage can have varying degrees of complexity dependent on the method of overvoltage implementation. It is generally not possible to test a unit’s overvoltage response to internal failure. Such test requires access to internal circuit nodes or the routing of such nodes to a test or output connector. In the absence of such test access, the overvoltage response test is limited to the unit’s response to an externally applied overvoltage fault. The following test methods are recommended:a)Test Method a): For units with no overvoltage built-in-test(BIT) and independent output shutdown (multiple outputunits).b)Test Method b): For units with overvoltage status BIT.c)Test Method c): For units (or specific unit outputs) thatresult in shut down of all outputs in response toovervoltage.Test Method a) For units with no overvoltage status BIT:The circuit shown in Figure 3 is one test setup approach. If there are multiple outputs, the output that provides closed loop regulation, when subjected to over voltage, may cause other outputs to go low. Low voltage may in turn over ride the overvoltage signal providing a false representation. It is therefore necessary that the inter-relationships between the various outputs be determined prior to performing over voltage testing. Additionally, overvoltage protection circuits may independently shut down individual outputs on a multiple output supply or they may shut down the entire unit. For situations and/or units that result in complete shutdown in response to over voltage, test method c) is a preferred alternative.99s01137-4050-NTFigure 3. Overvoltage response test setupFor the particular output to be tested, reduce the load to the minimum, compatible with maintaining power supply specified tolerances. Increase the voltage on the variable voltage source to the specified overvoltage protection limit. Remove the variable voltage source and verify that the applicable Unit output is reduced to a safe level (normally zero). Alternatively the external pull-up supply can be increased in fixed increments, removing before each adjustment, so that the trip point can more precisely be determined. For latching type protection circuits the output shall remain at the trip level until input power is removed and reapplied or until some other means of overvoltage protection reset is activated. For units with a non-latching response to the overvoltage, the unit shall remain at the trip level for a pre-determined length of time and then recover to normal operation. For non-latching circuits the recovery time and overshoot/undershoot should be verified. This method may not apply to overvoltage response of all power supplies.Test Method b) For units with overvoltage status BIT:Connect the test setup shown in Figure 3; however, with the availability of an over voltage BIT status signal it is recommended that the external supply be slowly increased until the required overvoltage transition state occurs. Check at the transition point that the voltage level is within prescribed limits. Return the variable voltage source to the nominal value. Repeat the process for all outputs. Do not exceed the specified overvoltage trip point.If the specified overvoltage trip limit is reached without status indication, remove the external supply and note whether a) the applicable output is within normal operating limits or b) the applicable output has been reduced to a safe level (normally zero). Condition a) indicates failure of the overvoltage protection circuit, condition b) indicates failure of the overvoltage BIT status circuit.Test Method c) For units (or specific unit outputs) that result in shutdown of all outputs in response to overvoltage:The test set-up of Figure 3 can again be used; however, with situations that result in complete unit shutdown it is recommended that the external supply be slowly increased until the required overvoltage transition occurs. The transition point can be determined by monitoring the current demand from the power source, or alternately with the use of a current probe on one of the input source leads. The input current demand should reduce to zero or a near zero quiescent level. Check at the transition point that the output voltage level on the output under test is within prescribed overvoltage limits. Return the variable voltage source to the nominal value and recycle the input power for latching type. Repeat the process for all outputs. Do not exceed the specified overvoltage trip point on any output.Test ConditionAdjust the input voltage and load current to nominal specified value and over the specified operating temperature.4. Two Examples from IEEE 1515Example1: The first example is the specific case of output ripple mentioned in Section 2 above. This is covered in Section 4.5 of the standard. The text concerning output ripple measurement reads as shown previously.There are two major components that contribute to the voltage ripple: switching ripple and commutation spikes. Switching ripple is due to the switching action of a UUT that happens at the switching frequency (or twice of it). Commutation spikes are due to commutations of currents from one device to another. It is related to the turn-on and turn-off speed of a device and hence they happen at a frequency that is typically 10 times of the switching frequency.There are three test methods discussed in the text. All three methods are used in industry currently. The only thing the working group added is the test conditions to ensure uniformity.Based on the discussion of the physics behind the ripple, it is apparent that measurement bandwidth needs to be specified together with amplitude of voltage ripple. It is hoped that when it comes to specifying ripple, one has to mention which method that is used and at what bandwidth the data is taken.In the text the term “Period and Random Deviation”(PARD) was used. It is defined as the peak to peak value of the total ripple, including both components. This term was borrowed form a PSMA publication on terminology [2,3]. The term is loosely used, since the voltage ripple is definitely deterministic.It is clear that if all the suppliers were using this test method, the confusion discussed in section 2 of this paper would have been avoided. In place of the multiplicity of test methods and conditions encountered in the example, a single test method would have resulted in directly comparable test results.Example 2: The second example is the over voltage response as discussed in Section 4.15.2 of the standard. In drafting this parameter, the working group experienced heated debate. The issue was whether to include those methods that use internal circuitry to induce an overvoltage condition. Since 1515 is intended for manufacturers of power equipment, the working group settled down to a discussion on external method in induce overvoltage.There are three test methods mentioned: units with no overvoltage status BIT, units with overvoltage BIT,and units (or specific unit outputs) that results in shut down of all outputs.This parameter illustrates that even a simple parameter can have some subtleties when it comes to uniform definition and understanding of a particular parameter. As previously mentioned, one of the key aspects of the new standard IEEE 1515 is that it defines language and test methods rather than attempting to standardize the performance of the parameters themselves. Consequently, there is no need for suppliers to redesign their equipment to meet the standard – rather, the standard can be immediately used to improve commonality and understanding in how the performance of the existing product is measured and specified.In general, the more demanding the application and the more completely the product needs to be specified for that application, the more significant are the benefits. For high reliability and high performance power systems, it is essential to fully understand the characteristics and limitations of each element in the system. This means they must be designed, specified and tested using agreed upon, well-understood terminology, and test methods.5. Benefits of Using IEEE 1515A well-specified and agreed upon set of parameter definitions, test methods, and test conditions is of benefit to the power industry as a whole, including manufacturers, integrators and users of power products. On the one hand, availability of accurate and well-understood specification information is critical to the user to allow a well-informed selection of the best product for the application. On the other hand, a product manufacturer needs accurate test results to enable the product to be fully characterized as part of his specification process.Some of the most significant benefits from using the 1515 standard are summarized below.Benefits for manufacturer:•Reduces the need to develop and maintain in-house documentation describing test methodsand conditions•Reduces the likelihood of disagreement between supplier and customer regarding productspecification or performance•Gives an opportunity to improve customer understanding of, and confidence in, data sheetspecifications•Reduces the likelihood of differences and disagreements between different engineers ordifferent departments who are carrying outtesting (e.g., between design andmanufacturing groups, or between powerdesigners and digital equipment designers)•Reduces costs and improve customer acceptance.Benefits for user and power system integrator:•Reduces or eliminates the need to carry out extensive qualification testing on all potentialsuppliers’ products•Reduces the need to develop and maintain in-house documentation describing qualificationtest methods and conditions•Reduces potential misunderstandings during specification and RFQ negotiation processwith suppliers.•May avoid the need for a costly and time-consuming redesign•Reduces the need for custom design of product to suit application, since confidence insuppliers’ existing standard product isincreased•Reduces costs and improve system availability. Again, the more completely theproduct must be specified, the moresignificant these benefits become.Benefits for entry and mid-level engineers:•Provides an in-depth discussion of many of the commonly used parameters•Collects in a single place many of the prevalent test methods in industry6. Continuing Effort of EPSSTable I presents key features for IEEE 1515 and Table II shows those for the P1573 being developed.While the IEEE 1515 focuses on parameters that are “internal” to a piece of power electronic equipment, a continuing effort by the EPSS will address corresponding issues at system level. This is a standardization of the parameters, interfaces and performance requirements for electronic power systems. It will be captured in a standard with the tentative designation: IEEE P1573 - “Recommended Practices for Electronics Power Subsystems: Parameters, Interfaces, Elements and Performance”(commonly referred to as P1573).P1573 is currently being developed by the EPSS Working Group and is expected to be ready for publication in 2002.The Working Group meets approximately four times a year, with the two most recent meetings being in October 2000 and concurrently with this APEC session. These meetings are open to all, and those who are interested are more than welcome to participate and to contribute. AcknowledgementThe authors wish to thank the DoD Open Systems Joint Task Force (OS-JTF) for funding and the Standards Committee of the IEEE Power Electronics Society (PELS) for sponsoring the project. We also wish to thank the Power Sources Manufacturers Association (PSMA) for their support during the balloting phase of the project. We are in debt to the members of the EPSS Working Group for their dedication and expertise. Without them, the IEEE 1515-2000 could not have been possible. Special thanks must go to the members of the balloting group. Their review has made this standard a better document.For a copy of the IEEE Std 1515-2000, log on to/catalog/olis.For a draft of P1573 (under development), log on to /groups/1515References[1] D. Cooper, “Standardization of Specifications forDistributed Power Modules,” APEC Proceedings, 1996.[2]Power Sources Manufacturers Association (PSMA),Units, Symbols, and Style Guide for Power Electronics Documents, 1998[3]Power Sources Manufacturers Association (PSMA),Handbook of Standardized Terminology for Power Sources Industry, 2nd edition, 1998[4]S. Navarro, M. Soraya, and E. Maybe, “BlendingMilitary Power Supplies with Commercial,” APEC Proceedings, 1998[5]Marvin Soraya,“Maximizing Successful Use ofCommercial Item Power Electronic,” PCIM 2000 [6]Ed Mabe, Marvin Soraya, and Carlos Gonzalez,“Application of Commercial Resources to Military Needs for Electronic Power Sub-systems,”DASC 99[7]Sergio Navarro, Carlos Gonzalez, Marvin Soraya,and Lt. Col. G. Logan, “Electronic Power Specification Standardization,” DASC 97[8]IEEE Std 1515-2000, Recommended Practice forElectronic Power Subsystems: Parameter Definitions, Test Conditions, and Test Methods, IEEE Standards Board, Sep., 2000APEC’01 Plenary T ABLE I S UMMARY OF IEEE S TD 1515-200 C ONTENTSUBJECT AREA1515 COVERAGEDefinitions of terms Approximately 50 parameters in widespread use in the power industry aredefined.Electrical performance parameters A definition of each parameter is given, together with a recommended test method and condition.Parameter groups include: DC voltage, AC voltage, Efficiency, Regulation, Ripple and spikes, Transients, Impedance, On/Off control, Isolation and grounding, Distortion, Conducted emissions, Susceptibility, Use of multiple power units in a system., Adjustments and control, and Fault protectionReliability, maintainability, environmental and mechanical parameters Parameters groups: Reliability, Maintainability, Environments, and MechanicalGeneral test practices and techniques Test practices are described with emphasis on the practical aspects of testing such as lead configuration, data recording, accuracy, temperature measuring techniques and safety.T ABLE II S UMMARY OF IEEE PAR P1573 C ONTENTSUBJECT AREA P1573 COVERAGEDefinitions of terms A number of parameters in widespread use in the power industry aredefinedPower system interfaces Introduces the concept of four interfaces between system elements:electrical, mechanical, environmental and “system effectiveness”Interface parameters A definition of key parameters is given, with recommended test methodswhere appropriate. (In some cases, by reference to 1515.)Subjects covered are addressed under the four interfaces mentionedabove.Performance comparison Commonly available performance is compared with the performancenecessary to address high reliability or high performance segments of thepower system market.Again, this is addressed under the four interfaces mentioned above. Application guidelines Information concerning power system design techniques, includingsystem architecture selection, economic issues and system interaction.Methods for “adaptation” as a means to extend the specification limits ofstandard products and to allow their use in more severe environments.。
PPA0155中文资料
532PDA Pigtailed Photodiode SpecificationsAbsolute Maximum RatingsAbsolute maximum limits mean that no catastrophic damage will occur if the product is subjected to these ratings for short periods, provided that each limiting parameter is in isolation and all other parameters have values within the performance specification. It should not be assumed that limiting values of more than one parameter can be applied to the product at the same time.Parameter Symbol Minimum Maximum Units Reverse Voltage Vr-20V Reverse Current Ir-1mA Forward Voltage Vf-1V Forward Current If-5mA Power Dissipation--50mW Operating Temperature Tc–40+85°C Storage Temperature Ts–40+85°C Soldering – 10 seconds--+260°C Fiber Pull--10NPerformance SpecificationsTest Conditions:Unless Otherwise Stated PDA2446 Parameter Symbol Vr = 5 V, Tc = +25°C Min.Max.Units Dark Current Id-1nATc= +85°C-50nA Reverse Breakdown Voltage Vbr Ir = 10 µA35-V Capacitance C 1 MHz- 1.7pF Responsivity Rλ = 1300 nm0.7-A/W Operating Wavelengthλ80% points12001650nM Small Signal Bandwidth Bw 1.5-GHz Linearity X1Second Order-Vr = 15 V-70dBcfl = 135 MHzf2 = 190 MHz70% Modulation0 dBm Optical PowerThird Order-As above-85dBcFiber Pigtail: Tight jacketed, self-mode stripping, singlemode fiberParameter Minimum Maximum Units Length 1.0-mCore Diameter810µmCladding Diameter122128µmConcentricity Error-8%Secondary Jacket Diameter0.8 1.0mm533PDA Mechanical Outline OptionsALL DIMENSIONS IN MILLIMETERSPDA2446-DALL DIMENSIONS IN MILLIMETERS PDA2446 Electrical Pin-OutsPIN 1: CATHODE +VEPIN 2: CASEPIN 3: ANODE –VE534Ordering InformationPDA2446-XI-XXConnector Type:AP = Angle Polished FC/PCAS = Angle Polished SC/PCUS = Ultra Polished SC/PCSF = Super Polished FC/PCFlange Type:B = BarrelD = 2 hole PCB mount, 12.7 mm between centersAdditional options are available to meet your specific needs. Please contact your local representative for details.535536537Performance Specifications Absolute Limiting RatingsAbsolute (limiting) ratings mean that no catastrophic damage will occur if the product is subjected to these ratings for short periods, provided that each limiting parameter is in isolation and all other parameters have values within the performance specification. It should not be assumed that limiting values of more than one parameter can be applied to the product at the same time.ParameterSymbol MinimumMaximumUnits Supply VoltageV DD - 5.5V Photodiode Voltage (Negative)V pin -–7V Power Dissipation--350mW Operating Temperature Tc –40+85°C Storage Temperature Ts –40+85°C Soldering – 10 seconds --+260°C Fiber Pull --10NPerformance Specifications [1]Parameter Minimum MaximumUnits Responsivity 0.75-A/W Sensitivity [2]52 Mb/s –39-dBm 155 Mb/s –36Overload [2,3]–7-dBm Bandwidth 52 Mb/s 35-MHz 155 Mb/s90Output Impedance 3060ohms V DD Supply Voltage 4.75 5.25V V DD Supply Current -50mAPhotodiode Supply–7–4.5VNotes:1. Measured over the operating temperature range and power supply tolerance.2. Measured at the data rate specified for 1 x 10-10 using an infinite extinction ratio laser source modulated with a 223-1PRBS pattern.3. Higher overload performance available. Contact your local Hewlett-Packard Components representative for details.Fiber Pigtail: Tight jacketed, self-mode stripping, multimodeParameter MinimumMaximumUnits Length0.4 1.2m Core Diameter 4753µm Cladding Diameter 122128µm Concentricity Error-8%Secondary Jacket Diameter0.81.0mmSchematic Diagram321. GND 2. V OUT 3. V pin 4. +V DD538Drawing DimensionsPPA0052-FC-A PPA0155-FC-AMIN.––––12.00.27M8 x 0.7513.35A B C ∅D E ∅F ∅G H DIM.MIN.2.08–––– 2.54 NOM.–∅J L M N P ∅Q ∅RDIM.ALL DIMENSIONS IN MILLIMETERSMAX.19.59.515.09.1–0.3313.55MAX.2.321.652.26.88.24.2PPA0052-SC-APPA0155-SC-AMIN.–––––12.0A B C D E FDIM.MIN.2.00.27–2.08 2.54 NOM.17.8G ∅H ∅J ∅K ∅L M DIM.ALL DIMENSIONS IN MILLIMETERSMAX.9.523.013.515.58.0–MAX.3.00.337.52.518.2PPA1052-APPA1155-AMIN.––12.0–0.27400A B C D ∅E FDIM.MIN. 2.54 NOM.––13.352.1–∅G H K L ∅M ∅NDIM.ALL DIMENSIONS IN MILLIMETERSMAX.25.019.5–9.50.331200MAX.9.52.013.552.46.25539Ordering InformationAllowable Part Numbers:PPA0052-XX -A PPA0052 - FC - A PPA0155-XX -APPA0052 - SC - A Receptacle Type:PPA1052 - A - FP FC = FC PPA1052 - A - ST SC = SCPPA1052 - A - DN PPA1052 - A - SC PPA1052-X -XX PPA1052 - D - FP PPA1155-X -XXPPA1052 - D - ST Connector Type:PPA1052 - D - DN FP = FC/PC PPA1052 - D - SC ST* = ST DN = DIN PPA0155 - FC - A SC = SCPPA0155 - SC - A PPA1155 - A - FP Flange Type:PPA1155 - A - ST A = 2 hole Panel mount, 13.4 mm between centers PPA1155 - A - DN D = 2 hole PCB mount, 12.7 mm between centersPPA1155 - A - SC PPA1155 - D - FP PPA1155 - D - ST PPA1155 - D - DN PPA1155 - D - SC*ST is a registered trademark of AT&T.PPA1052-D PPA1155-DMIN.––12.0–0.274002.54 NOM.A B C D ∅EF ∅GDIM.MIN.3.8–0.9 12.7 NOM.2.1––H J K L ∅M ∅N P DIM.ALL DIMENSIONS IN MILLIMETERSMAX.25.018.0–9.50.331200MAX.4.27.51.12.46.257.5。
场效应管的代替型号
液晶 8 脚贴片元器件参数大集合
4532 内含 P 沟道、N 沟道 MOS 管各一,高压板用(30V 4.7A;30V 4.5A)
4532M 内含 P 沟道、N 沟道 MOS 管各一,高压板用(30V 4.5A;30V 4.5A)
AO4409(30V15A-P) 30V 15A P 沟道场效应 8 脚贴片
AO4410 30V 18A 单 N 沟道 8 脚贴片
AO4411 30V 8A 3W P 沟道场效应,8 脚贴片
AO4413 30V 15A 3W 单 P 沟道,8 脚贴片
AO4413 30V 15A 3W 单 P 沟道,8 脚贴片
9916H 18V 35A 50W 小贴片 9960GM 8 脚贴片,高压板用。
AF4502CS 内含 P 沟道、N 沟道 MOS 管各一,高压板用(30V 8.4A;30V 6.8A)
AO4403 30V 6.1A 单 P 沟道 8 脚贴片 AO4404 30V 8.5A 单 N 沟道 8 脚贴片
TPC8401 内含 P 沟道、N 沟道 MOS 管各一,高压板用(30V 4.5A;30V 4.5A)
AP1501/AP1506 , 3A 降压 DC/DC ,直接替换 LM2576/LM2596 ,广泛应用于车载 DVD ,车载音响, LCD/LCM ; AP1507 , 3A 降压 DC/DC ,替换 SHARP PQ1CZ21 , PQICZ41 , PQ1CG21 。应用于车 载 DVD ,车载音响; AP1509 , 2A 降压 DC/DC 。替换 MP1410 ;应用于 DVD 译码版,网络产品; AP2001 , CCFL 驱动 IC ,
AP134-501中文资料
I GPRS Class 12 Capable
-501
TOP VIEW
BOTTOM VIEW
0.394 (10.0 mm) ± 0.004 (0.1 mm)
0.075 (1.91 mm) BSC
0.069 (1.75 mm) ± 0.002 (0.051 mm)
1
Specifications subject to change without notice. 8/01A
元器件交易网
Tri-Band HBT Power Amplifier Module
AP134-501
Electrical Specifications
GSM Mode
Unit MHz MHz dBm dBm dB dB/VAPC
% dBm
dBm dBm dBm dBm
dBm
2
Alpha Industries, Inc. [781] 935-5150 • Fax [617] 824-4579 • Email sales@ •
Specifications subject to change without notice. 8/01A
元器件交易网
Tri-Band HBT Power Amplifier Module
AP134-501
Power Added Efficiency (%)
Typical Performance Data
Parameter
Condition
Min.
Typ. Max.
Frequency
880
915
Output Power
AP1510中文资料
PWM Control 3A Step-Down ConverterFeatures- Input voltage: 3.6V to 23V. - Output voltage: 0.8V to V CC .- Duty ratio: 0% to 100% PWM control - Oscillation frequency: 300KHz typ.- Soft-start, Current limit, Enable function - Thermal Shutdown function- Built-in internal SW P-channel MOS - SOP-8L Pb-Free Package.Applications- PC Motherboard - LCD Monitor - Graphic Card- DVD-Video Player - Telecom Equipment - ADSL Modem- Printer and other Peripheral Equipment - Microprocessor core supply - Networking power supplyGeneral DescriptionAP1510 consists of step-down switching regulator with PWM control. These devices include a reference voltage source, oscillation circuit, error amplifier, internal PMOS and etc.AP1510 provides low-ripple power, high efficiency, and excellent transient characteristics. The PWM control circuit is able to very the duty ratio linearly from 0 up to 100%. This converter also contains an error amplifier circuit as well as a soft-start circuit that prevents overshoot at startup. An enable function, an over current protect function and a short circuit protect function are built inside, and when OCP or SCP happens, the operation frequency will be reduced from 300KHz to 30KHz. Also, an internal compensation block is built in to minimum external component count.With the addition of an internal P-channel Power MOS, a coil, capacitors, and a diode connected externally, these ICs can function as step-down switching regulators. They serve as ideal power supply units for portable devices when coupled with the SOP–8L mini-package, providing such outstanding features as low current consumption. Since this converter can accommodate an input voltage of up to 23V, it is also ideal when operating via an AC adapter.Pin AssignmentsOutput OCSET Output EN Vss VssV CCPin DescriptionsName Pin Description FB 1 Feedback pin.EN 2Power-off pinH: Normal operation (Step-down operation)L: Step-down operation stopped (All circuits deactivated)OCSET 3Add an external resistor to setmax output current.V CC 4 IC power supply pinOutput 5、6Switch Pin. Connect external inductor/diode here. Minimizetrace area at this pin to reduce EMI. V SS7、8GND PinPWM Control 3A Step-Down ConverterOrdering InformationAP1510X XPackage PackingS: SOP-8L Blank : TubeA : TapingBlock DiagramVccAbsolute Maximum Ratingsdamage. These values must therefore not be exceeded under any conditions.PWM Control 3A Step-Down ConverterElectrical Characteristics (V IN = 12V, T a =25°C , unless otherwise specified)Symbol Parameter Conditions Min.Typ. Max.Unit V FB Feedback Voltage I OUT =0.1A 0.7840.8 0.816V V IN Input Voltage -- 3.6 - 23 V ISW Switch Current -- 3.5 - - AI SSS Current ConsumptionDuring Power OffV ON/OFF =0V - 10 - µA∆V OUT/V OUT Line Regulation VIN = 5V~23V, I OUT =0.2A - 1 2 %∆V OUT/V OUTLoad Regulation I OUT = 0.1 to 3A - 0.2 0.5 %f OSC Oscillation Frequency Measure waveform at SW pin 240 300 360 KHz f OSC1 Frequency of Current Limitor Short Circuit ProtectMeasure waveform at SW pin 10 30 60 KHzV SH Evaluate oscillation at SW pin 2.0 - -V SL EN Pin Input Voltage Evaluate oscillation stop at SW pin - - 0.8 V I SH -- - 20 - µA I SL EN Pin Input Leakage Current -- - -10 - µA I OCSET OCSET Pin Bias Current -- 75 90 105 µA T SS Soft-Start Time -- 0.3 2 5 msV IN =5V, V FB =0V - 110 150 R DSON Internal MOSFET RdsonV IN =12V, V FB =0V -70 100 m ΩEFFI EfficiencyV IN = 12V, V OUT = 5VI OUT = 3A- 91 - %Typical Application CircuitVNote: V OUT = V FB x (1+R A /R B )R B =0.7K~5K ohmPWM Control 3A Step-Down Converter Typical Performance CharacteristicsPWM Control 3A Step-Down ConverterTypical Performance Characteristics (Continued)AP1510 Vout Ripple(Vin=12V; Vout=3.3V; Iout=0.1A) AP1510 Vout Ripple(Vin=12V; Vout=3.3V; Iout=3A)Test CircuitPWM Control 3A Step-Down ConverterFunction DescriptionPWM ControlThe AP1510 consists of DC/DC converters that employ a pulse-width modulation (PWM) system. In converters of the AP1510, the pulse width varies in a range from 0 to 100, according to the load current, and yet ripple voltage produced by the switching can easily be removed through a filter because the switching frequency remains constant. Therefore, these converters provide a low-ripple power over broad ranges of input voltage and load current.Under Voltage LockoutThe under voltage lockout circuit of the AP1510 assures that the high-side MOSFET driver outputs remain in the off state whenever the supply voltage drops below set parameters. Lockout occurs if V CC falls below 3.3V. Normal operation resumes once V CC rises above 3.5V. R DS(ON) Current LimitingThe current limit threshold is setting by connecting an external resistor from V CC supply to OCSET . The voltage drop across this resistor is due to the 100uA internal sink sets the voltage at the pin. When the PWM voltage is less than the voltage at OCSET, an over-current condition occurs.Marking Information( Top View )LogoPart no.ID code: internal Year: "01" =2001 "02" =2002Xth week: 01~52~AP1510YY WW XPWM Control 3A Step-Down ConverterPackage InformationPackage Type: SOP-8LDimensions In Millimeters Dimensions In InchesSymbolMin. Nom. Max. Min. Nom. Max.A 1.40 1.60 1.75 0.055 0.063 0.0690.040 - 0.100A1 0.10 - 0.25A2 1.30 1.45 1.50 0.051 0.057 0.059B 0.33 0.41 0.51 0.013 0.016 0.020C 0.19 0.20 0.25 0.0075 0.008 0.010D 4.80 5.05 5.30 0.189 0.199 0.209E 3.70 3.90 4.10 0.146 0.154 0.161e - 1.27 - - 0.050 -H 5.79 5.99 6.20 0.228 0.236 0.244L 0.38 0.71 1.27 0.015 0.028 0.050y - - 0.10 - - 0.004θ0O - 8O0O - 8O。
场效应管的代替型号
场效应管的代替型号/uploadfile/company/92786/20086121212079 0.pdf液晶 8 脚贴片元器件参数大集合4532 内含 P 沟道、N 沟道 MOS 管各一,高压板用(30V 4.7A;30V 4.5A)4532M 内含 P 沟道、N 沟道 MOS 管各一,高压板用(30V 4.5A;30V 4.5A)9916H 18V 35A 50W 小贴片 9960GM 8 脚贴片,高压板用。
AF4502CS 内含 P 沟道、N 沟道 MOS 管各一,高压板用(30V 8.4A;30V 6.8A)AO4403 30V 6.1A 单 P 沟道 8 脚贴片 AO4404 30V 8.5A 单 N 沟道8 脚贴片AO4405 30V 6A 3W 单 P 沟道 8 脚贴片AO4406 30V,11.5A,单 N 沟道,8 脚贴片AO4407 30V 12A 3W 单 P 沟道,8 脚贴片AO4407 30V 12A 3W 单 P 沟道,8 脚贴片AO4408 30V 12A 单 N 沟道 8 脚贴片AO4409(30V15A-P) 30V 15A P 沟道场效应 8 脚贴片AO4410 30V 18A 单 N 沟道 8 脚贴片AO4411 30V 8A 3W P 沟道场效应,8 脚贴片AO4413 30V 15A 3W 单 P 沟道,8 脚贴片AO4413 30V 15A 3W 单 P 沟道,8 脚贴片AO4414 30V,8.5A,3W 单 N 沟道,8 脚贴片AO4418 30V 11.5A N 沟道 8 脚贴片AO4422 30V 11A N 沟道 8 脚贴片AO4423 30V 15A 3.1W 单 P 沟道,8 脚贴片AO4425 38V 14A P 沟道 8 脚贴片AO4431 30V,8A P 沟道。
高压板用 MOS,贴片 8 脚AO4600 内含 P 沟道、N 沟道 MOS 管各一,高压板用(30V 6.9A;30V 5A)AO4606 内含 P 沟道、N 沟道 MOS 管各一,高压板用(30V 6.9A;30V 6A)AO4607 内含 P 沟道、N 沟道 MOS 管各一,高压板用AO4828 60V 4.5A 双 N 沟道 8 脚贴片AOD405 30V,18A,P 高压板 MOS 管贴片AOD408 30V,18A,N 高压板 MOS 管贴片AOD409 60V 26/18A P 高压板 MOS 管贴片AOD409 60V 26/18A P 高压板 MOS 管贴片AOD420 30V,10A,N 高压板 MOS 管贴片AOD442 60V,38/27A,N 高压板 MOS 管贴片AOD442 60V,38/27A,N 高压板 MOS 管贴片AOD444 60V,12A,N 高压板 MOS 管贴片AOP600 内含 P、N 沟道各 1,30V 7.5A、30V 4.5A。
A1015中文资料参数
-50
-
-
V
BVEBO
Emitter-Base Breakdown Voltage发射极-基极击穿电压
IE= -10μA, IC=0
-5
-
-
V
ICBO
Collector Cut-off Current集电极截止电流
VCB=60V, IE=0
-
-
-0.1
μA
IEBO
Emitter Cut-off Current射极
-
-0.1
-0.3
V
VBE (sat)
Base-Emitter Saturation Voltage基极-射极饱和电压
IC=100mA, IB=10mA
-
-
-1.1
V
fT
Current Gain Bandwidth Product电流增益带宽
VCE=10V, IC=1mA
80
-
-
MHz
Cob
Output Capacitance输出电容
Test Condition测试条件
Min最小
Typ平均
Max最大
Units单位
BVCBO
Collector-Base Breakdown Voltage集电极-基极击穿电压
IC= -100μA, IE=0
-50
-
-
V
BVCEO
Collector-Emitter Breakdown Voltage集电极-发射极击穿电压
VCB=10V, IE=0, f=1MHz
-
4.0
7.0
pF
NF
Noise Figure噪声系数
A1015中文资料参数
A1015中文资料参数A1015是一种基于RFID技术的中文资料参数,用于识别和追踪物品或产品。
它采用一种非接触的方式进行数据传输和读取,可以实现快速、准确和高效的信息管理。
本文将详细介绍A1015的技术特点、应用领域和优势,以及它在中文资料参数方面的具体应用。
技术特点:1.高频率:A1015采用13.56MHz的高频率进行数据传输,具有较高的数据传输速度和稳定性,适用于需要高速读取和识别的场合。
2.大容量存储:A1015具有较大的存储容量,可以存储大量的中文资料参数,包括文字、图片、音频等多种类型的数据信息。
3.高安全性:A1015支持多种安全认证和加密机制,可以有效防止数据泄露和非法访问,确保数据的安全性和完整性。
4.强抗干扰性:A1015在设计上考虑了各种环境因素对RFID信号的干扰,具有较强的抗干扰能力,可以在复杂的环境中稳定运行。
应用领域:1.图书馆管理:A1015可以被应用在图书馆管理系统中,用于快速、准确地读取书籍的信息,实现图书借还、目录浏览等功能。
2.物流管理:A1015可以被应用在物流管理系统中,用于追踪和识别货物的位置和状态,提高物流效率和准确性。
4.会议签到:A1015可以被应用在会议签到系统中,用于快速、便捷地记录参会人员的信息,提高会议管理效率。
优势:1.自动化:A1015可以实现自动化的数据采集和处理,减少人工干预,提高工作效率。
2.实时性:A1015可以实时读取和更新数据,保持信息的及时性和准确性。
3.多样性:A1015支持多种数据类型的存储和传输,可以满足不同应用场景的需求。
4.环保性:A1015采用无线传输技术,减少了纸张和其他资源的消耗,符合环保理念。
在中文资料参数方面的应用:1.中文图书馆管理:A1015可以被用于中文图书馆管理系统中,用于快速读取中文图书的信息,包括书名、作者、出版社等参数,方便读者借阅和查询。
3.中文会议签到系统:A1015可以被用于中文会议签到系统中,用于识别和记录参会人员的中文姓名、单位等信息,简化会议签到流程。
A1015中文资料参数
IC= -10mA, IB=0
-50
-
-
V
BVEBO
Emitter-Base Breakdown Voltage发射极-基极击穿电压
IE= -10μA, IC=0
-5
-
-
V
ICBO
Collector Cut-off Current集电极截止电流
电源IC代换
发一些电源IC的代换资料DAP8A\DAP7A\LD7575\203D6\203X6\200D6可以直接代换,203d6是16v工作电压,而7575是30v ,代用要改启动电阻,可以用1200AP40直接代用OB2268,OB2269,DAP02,SG6841,SG5841DAP02\SG5841\2G684 1可以直接代换1200AP40\1200AP60\1203P60\1203AP10可以直接代换DM0465\CM0565\DM0565代换{要改电路}T O P246Y\T O P247Y可以直接代换。
大家来整理一个液晶电源的电源管理芯片集吧格式如下好了液晶品牌与型号电源管理芯片型号与封装可代换型号BENQ 71G+ 1200AP40 直插 1200AP10 1200AP60AOC 712SI EA1532A贴片三星型号忘记 DM0565R优派型号忘记 TOP245YNLG型号忘记 FAN7601飞利浦170s6 dap02alsz 贴片LG型号忘记 FAN7601 可以用LAF0001代飞利浦170s6 dap02alsz=sg6841美格WB9D7575PS清华同方XP911WD7575PS联想LXM -WL19AH LXM-WL19BH D7575PS(早期有的用:NCP1203D6) 联想LXM-17CH:1203D6方正17寸:1203D6与LD7575PS方正19寸:LD7575PSBenQ: FP94VW FP73G FP71G+S FP71G+G FP71GX等都是用:1200AP40 LG 22(南京同创):LAF001与STR W6252 。
LG 19寸:LAF001联想L193(福建-捷联代工):NCP1203D6PHILIPS 170S5FAN7601)PHILIPS 15寸(老产品):(FAN7601)LG型号忘记 FAN7601 可以用LAF0001代其他我知道的常用型号有SG6841DZ 贴片很多机器上用到SG5841SZ 贴片用SG6841DZ可以代用,DAP8A与203D6可代用还有LD7575可用203D6代用,只是1脚的对地电阻不同,LD7575是100K,203D6是24.1K,LP7552可用SG6841代用203D6 NCP1203D60R2 NCP1203D60R2G和DAP8A直接代换DAP02ALSZ与SG6841S可以互换1200AP40和1200AP60直接代换5S0765和DP104、DP704直接代换DP804和DP904直接代换2S0680和2S0880直接代换TEA1507和TEA1533直接代换LD7535兼容SG6848 (6849) / SG5701 / SG5848 /LD7535 (7550) / OB2262 (2263) / OB2278 (2279)RS2051LD7575和NCP1203、NCP1200 OB2268 SG5841 LD7552 OB2269 OB2268 RS2042CR6860兼容ACT30,CR6853兼容OB2263,CR6201兼容THX201,TFC718;CR6202兼容THX202,TFC719;CR6203兼容THX203,TFC718S。
AP1513中文资料
PWM Control 2A Step-Down ConverterFeatures- Input voltage: 3.6V to 18V. - Output voltage: 0.8V to V CC .- Duty ratio: 0% to 100% PWM control - Oscillation frequency: 300KHz typ.- Soft-start, Current limit, Enable function - Thermal Shutdown function- Built-in internal SW P-channel MOS - SOP-8L Pb-Free Package.Applications- PC Motherboard - LCD Monitor - Graphic Card- DVD-Video Player - Telecom Equipment - ADSL Modem- Printer and other Peripheral Equipment - Microprocessor core supply - Networking power supplyGeneral DescriptionAP1513 consists of step-down switching regulator with PWM control. These devices include a reference voltage source, oscillation circuit, error amplifier, internal PMOS and etc.AP1513 provides low-ripple power, high efficiency, and excellent transient characteristics. The PWM control circuit is able to vary the duty ratio linearly from 0 up to 100%. This converter also contains an error amplifier circuit as well as a soft-start circuit that prevents overshoot at startup. An enable function, an over current protect function and a short circuit protect function are built inside, and when OCP or SCP happens, the operation frequency will be reduced from 300KHz to 30KHz. Also, an internal compensation block is built in to minimum external component count.With the addition of an internal P-channel Power MOS, a coil, capacitors, and a diode connected externally, these ICs can function as step-down switching regulators. They serve as ideal power supply units for portable devices when coupled with the SOP–8L mini-package, providing such outstanding features as low current consumption. Since this converter can accommodate an input voltage up to 18V, it is also suitable for the operation via an AC adapter.Pin AssignmentsOutput OCSET Output EN Vss VssV CCPin DescriptionsName Pin Description FB 1 Feedback pin.EN 2Power-off pinH: Normal operation (Step-down operation)L: Step-down operation stopped (All circuits deactivated)OCSET 3Add an external resistor to setmax output current.V CC 4 IC power supply pinOutput 5、6Switch Pin. Connect external inductor/diode here. Minimizetrace area at this pin to reduce EMI. V SS7、8GND PinPWM Control 2A Step-Down ConverterOrdering InformationS: SOP-8L Blank : TubeA : TapingBlock DiagramVccAbsolute Maximum RatingsSymbol Parameter Rating UnitV CC V CC Pin Voltage V SS - 0.3 to V SS + 20 VV FB Feedback Pin Voltage V SS - 0.3 to V CC V V EN EN Pin Voltage V SS - 0.3 to V IN + 0.3 VPinVoltage V SS - 0.3 to V IN + 0.3 V V OUTPUT SwitchP D Power Dissipation Internally limited mWT OPR Operating Temperature Range -20 to +125 o CT STG Storage Temperature Range -40 to +150 o CCaution: The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.PWM Control 2A Step-Down ConverterElectrical Characteristics (V IN = 12V, T a =25°C , unless otherwise specified)Symbol Parameter Conditions Min.Typ. Max.Unit V IN Input Voltage -- 3.6 - 18 V V FB Feedback Voltage I OUT =0.1A 0.7840.8 0.816V I FB Feedback Bias Current I OUT =0.1A - 0.1 0.5 µA I SW Switch Current -- 2.5 - - AI SSS Current ConsumptionDuring Power OffV EN =0V - 10 - µA∆V OUT/V OUT Line Regulation V IN =5V~18V -1 2 % ∆V OUT/V OUT Load Regulation I OUT =0.1 to 2A- 0.2 0.5 % f OSC Oscillation Frequency Measure waveform at SW pin 240 300 400 KHzf OSC1 Frequency of Current Limitor Short Circuit ProtectMeasure waveform at SW pin 10 - - KHzV SH Evaluate oscillation at SW pin 2.0 - -V SL EN Pin Input Voltage Evaluate oscillation stop at SW pin - - 0.8V I SH -- - 20 - µA I SL EN Pin Input Leakage Current -- - -10 - µA I OCSET OCSET Pin Bias Current -- 75 90 105 µA T SS Soft-Start Time -- 0.3 2 5 msV IN =5V, V FB =0V - 110 150R DSON Internal MOSFET Rdson V IN =12V, V FB =0V - 70 100 m ΩEFFI EfficiencyV IN =12V, V OUT = 5VI OUT =2A- 92 - % θJA Thermal Resistance Junction-to-Ambient- 65 - oC/WTypical Application CircuitV Note: V OUT = V FB x (1+R A /R B ) R B =0.7K~5K ohmV IN =12V, I MAX =2AV OUT 2.5V 3.3V 5V L1 Value22uH 27uH 33uHPWM Control 2A Step-Down Converter Typical Performance CharacteristicsPWM Control 2A Step-Down ConverterTypical Performance Characteristics (Continued)AP1513 Vout Ripple(Vin=12V; Vout=3.3V; Iout=0.1A) AP1513 Vout Ripple(Vin=12V; Vout=3.3V; Iout=2A)Test CircuitPWM Control 2A Step-Down ConverterFunction DescriptionPWM ControlThe AP1513 consists of DC/DC converters that employ a pulse-width modulation (PWM) system. In converters of the AP1513, the pulse width varies in a range from 0 to 100%, according to the load current. The ripple voltage produced by the switching can easily be removed through a filter because the switching frequency remains constant. Therefore, these converters provide a low-ripple power over broad ranges of input voltage and load current.Under Voltage LockoutThe under voltage lockout circuit of the AP1513 assures that the high-side MOSFET driver outputs remain in the off state whenever the supply voltage drops below 3.3V. Normal operation resumes once V CC rises above 3.5V.R DS(ON) Current LimitingThe current limit threshold is setting by the external resistor connecting from V CC supply to OCSET. The internal 100uA sink current crossing the resistor sets the voltage at the pin of OCSET. When the PWM voltage is less than the voltage at OCSET, an over-current condition is triggered.R I R I OCSET OCSET DS(ON)LOAD ×=×See above formula for setting the current limit value.Marking Information( Top View )LogoPart no.ID code: internal Year: "01" =2001 "02" =2002Xth week: 01~52~AP1513YY WW XPWM Control 2A Step-Down ConverterPackage InformationPackage Type: SOP-8LDimensions In Millimeters Dimensions In InchesSymbolMin. Nom. Max. Min. Nom. Max.A 1.40 1.60 1.75 0.055 0.063 0.0690.040 - 0.100A1 0.10 - 0.25A2 1.30 1.45 1.50 0.051 0.057 0.059B 0.33 0.41 0.51 0.013 0.016 0.020C 0.19 0.20 0.25 0.0075 0.008 0.010D 4.80 5.05 5.30 0.189 0.199 0.209E 3.70 3.90 4.10 0.146 0.154 0.161e - 1.27 - - 0.050 -H 5.79 5.99 6.20 0.228 0.236 0.244L 0.38 0.71 1.27 0.015 0.028 0.050y - - 0.10 - - 0.004θ0O - 8O0O - 8O。
联科通网络技术有限公司150M入墙式AP说明书
版权声明是深圳市联科通网络技术有限公司注册商标。
文中提及的其它商标或商品名称均是深圳市联科通网络技术有限公司的商标或注册商标。
本产品的所有组件,包括硬件和软件,其版权属深圳市联科通网络技术有限公司所有,在未经过深圳市联科通网络技术有限公司许可的情况下,不得任意拷贝、抄袭、仿制或翻译成其它语言。
本手册中的所有图片和产品参数仅供参考,随着软件或硬件的升级会略有差异,如有变更,恕不另行通知,如需了解更多产品信息,请登录我们公司网站:目录版权声明 (2)目录 (3)第I部分产品简介 (5)1包装清单 (5)2面板指示灯及接口说明 (5)3产品规格 (7)第II部分快速上网设置 (8)1物理连接 (8)2有线连接电脑配置 (8)2.1 Win 7系统电脑设置 (8)2.2 XP 系统电脑设置 (13)3无线连接电脑配置 (16)3.1 Win7 系统无线连接 (16)3.2 XP 系统无线连接 (19)第III部分高级设置 (23)1登录 (23)2系统状态 (24)2.1 系统状态 (24)2.2 无线状态 (25)2.3 AP报文统计 (26)2.4 无线客户端 (27)3LAN口设置 (28)4DHCP服务器 (28)4.1 DHCP服务器 (28)4.2 DHCP连接列表 (29)5无线设置 (30)5.1 基本设置 (30)5.2 射频设置 (33)5.3 高级设置 (35)5.4 访问控制 (36)6SNMP设置 (37)7系统工具 (38)7.1 设备维护 (38)7.2 时间管理 (39)7.3 日志查看 (40)7.4 配置管理 (42)7.5 用户名与密码 (43)7.6 诊断工具 (44)附录一 TCP/IP地址设置方法 (46)附录二有毒有害物质申明 (50)第I部分产品简介W15AP是IP-COM专为酒店设计的Wi-Fi接入点,为用户提供便捷的WLAN服务。
标准的86盒安装,借助现有的建筑架构,无需耗费较多时间及成本即可轻松完成无线网络组建。
powermanagementic
Power Management IC , PLD 、 VFD Driver IC 、 Diode IC推广应用范围如;Hall Sensor 、Power Management IC EEPROM 、 PLD 、 VFD Driver IC 、 Diode一、电源管理类1.PORTABLE DVD:AP2004S﹑AP2001S﹑AP1117E/33A/18A﹑AP1513﹑AP1522﹑AP1501-K5LA﹑AP1501-50K5(12v->5v/3A)﹑AP1521﹑AP1509-50SLA(12v->5v/2A)﹑AP1507-50D5﹑2.硬盘:AP1509-50S(12v->5v/1A)3. DVB(机顶盒):AP1506-50K5﹑AP1506-33K5﹑AP1510S ﹑AP1513S4. ADSL MODEM:AP1609S﹑ AP16055. CAR DVD/VCD:AP1513S﹑AP1186K5-25(8v->700MA)﹑AP1509-50S(12v->5v/2A)﹑AP1509SLA﹑AP1507-D5﹑AF1624+AF4410﹑>500MA)﹑AP1506-50K5(12v->5v/3A)﹑AP1501-50K5LA6. CAR TV/CAR DVB:AP1513S ﹑AP1522﹑AP1509-50S7.充电器:AP1624+AF9410(12v->24v/1A)﹑AP1624+AF4362/AP1513S(9-15V升16V / 再降8. PDA、GPS充电:AP1609S(5V->10V/300MA﹑5V->12V/200MA)9.LCD TV:AP1509-50/33S﹑AP1501A-50K5LA﹑AP1513SLA﹑AP1501-50K5﹑AP1501-33K5﹑AP1084K33﹑AP1084D18A﹑AP1084DA10.LCDM:AP1506-50K5LA(12v->5v/3A)﹐AP1506-33K5LA(15"17")﹑AP1507-D5(12V->5V/﹑AP2001S(VO1=12V V02=5V)﹑CP1117EA﹑AP2004S11.便携音响:AP160912. Audio:AP1501-50T5(12v->5v/3A)﹑AD6315﹑AP160213. MP3:AP1521(WLED)﹑AP1522(OLED)﹑AF2301﹑AF2302﹑AP1117Y33L14. LCD Drive board(15"17"):AP1513S(12v->5v/3A)﹑AP1506-50K5(LCDM驱动板) 15.网络产品(Modem/LAN/ADSL/WLAN AP):AF9435﹑AP1609 ﹑AP1604 ﹑AP138﹑AP1515﹑AP1117E33/18﹑AP34063SA﹑16.VOIP:AP1509-33S(12v->2A﹑12v->5v/1A)﹑AP1501-33T5﹑AP1513﹑AP1521﹑AP170117.数码相机:AP131-33WLA﹑AP131-25WLA﹑AF2301P﹑AF2302N﹑AP1603 ;AP180 18.CD-ROM:AP1115A-Y33LA﹑AP1117E25 ﹑AP1701BW ﹑AP1084K18A19.无线网卡:AP1506-50K5LA 20.网卡﹕CP1117E33A20.移动硬盘:AP1509-50SLA(12v->5v/2A)21.DVD:CP1117EA(5V->ADJ/1A)﹑CP1117E33A(5V->1A)22.读卡器:AP1117E33LA23.路由器:AP1509S ﹑AP1509-50S ﹑AP1509-30S24.计算机周边:CP1117E33A(5V->1A)25.显示器:AP1501-50K5(12v->5v/3A)26.电源产品:AF4825P﹑AP2001S﹑AP1509S27.锂电池:AP1624转5V/28.LCM:AP1521WLA(天马/信利)29.DataBank:AP1602AYLA﹑AF2301PLA﹑AP1521WLA﹑AP1601M8LA二、直流风扇类IC用于直流无刷风扇、电机IC有如下几种:ATS277:用于无刷直流马达和散热风扇.ES277: 互补输出带锁存霍尔电路,用于无刷直流马达和散热风扇.可兼容替代ATS277、ATS276.ES211: 互补输出带锁存霍尔电路(带FG输出),用于无刷直流马达和风扇、速度测量.可兼容替代FTC211.ES3503:线性霍尔电路,用于电动车调速转把,测速仪,位置传感,磁场测量等.可兼容替代UGN3503.ES1881:CMOS低功耗、带锁存霍尔电路,特别适合无刷电机的换向应用、Solid state switch、Speed sensing、Linear position sensing、Angular position sensing、Current sensing.可兼容替代US1881AH281、AH283、AH284:用于无刷直流马达和散热风扇.ATS177:用于无刷直流马达和散热风扇.US79、US76A:用于无刷直流马达和散热风扇.EST248:低功耗全极性霍尔电路,用于手机、小灵通、无绳电话、Notebook、PDA翻盖电路,智能水表、智能气表.可兼容替代MLX90248.三、接口电路ICES232:双信道RS232线性驱动/接收器,用于PC主板,电池供电系统,计算机外设,Modems.兼容MAX232CPE,SP232.四、霍尔开关A180:用于手机、数码相机等的传感开关上.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
short circuit protect
and VFB < 0.5V, Ta=25 oC
5
15
25
VSAT DC
Saturation voltage
Max. Duty Cycle (ON) Min. Duty Cycle (OFF)
IOUT=2A No outside circuit VFB=0V force driver on VFB=0V force driver on VFB=12V force driver off Peak current
1.4
-
1.25
1.5
-
100
-
-
0
-
ICL
IL IQ ISTBY
Current limit
Output = 0
Output leakage
Output = -1 current
Quiescent Current
Standby Quiescent
Current
No outside circuit VFB=0V force driver on No outside circuit VFB=12V force driver off VIN=22V VFB=12V force driver off ON/OFF pin=5V VIN=22V
Applications
- Simple High-efficiency step-down regulator - On-card switching regulators - Positive to negative converter
Pin Assignments
General Description
This datasheet contains new product information. Anachip Corp. reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sale of the product.
Package
P: SIP-4L (Bulk)
Block Diagram
AP1515
VIN
200mV
220mV
Current Source
bias
1.235V Reference
2.5V Regulator
Start up
+ Com_p
_ _
Comp +
+
Frequecy
Hale Waihona Puke FB_Ampcompensation
2
-
-
-
-
-200
-
-5
-
5
10
-
70
150 200
θJC Thermal Resistance
Junction to case
-
30
-
θJA Note 1
Junction to ambient
-
100
-
Part Number AP1515-ADJ
Symbol VFB η
Parameter
Output Feedback
Pin Descriptions
1515
(Front View) 1 : VIN 2 : Output
3 : FB
4 : GND 12 3 4
SIP-4L
Name VIN
Output FB GND
Description Operating voltage input Switching output Output voltage feedback control Ground
Unless otherwise specified, VIN= 12V for 3.3V, 5V, adjustable version and VIN=18V for the 12V version. ILOAD = 0.5A
Symbol
Parameter
Conditions
Min. Typ. Max.
Rev.1.0 Oct 29, 2004 1/6
元器件交易网
150KHz, 1.5A PWM Buck DC/DC Converter
Ordering Information
AP1515 XX X
Output version
Blank : Adjustable -33 : 3.3V
The AP1515 series are monolithic IC designed for a step-down DC/DC converter, and own the ability of driving a 1.5A load without additional transistor component. Due to reducing the number of external component, the board space can be saved easily. The external shutdown function can be controlled by logic level and then come into standby mode. The internal compensation makes feedback control have good line and load regulation without external design. Regarding protected function, thermal shutdown is to prevent over temperature operating from damage, and current limit is against over current operating of the output switch. If current limit function occurred and VFB is down to 0.5V below, the switching frequency will be reduced. The AP1515 series operates at a switching frequency of 150KHz thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. Other features include a guaranteed +4% tolerance on output voltage under specified input voltage and output load conditions, and +15% on the oscillator frequency. The output version included fixed 3.3V and an adjustable type. The packages are available in a standard 4-lead SIP-4L package.
元器件交易网
150KHz, 1.5A PWM Buck DC/DC Converter
AP1515
Features
- Output voltage: 3.3V and adjustable output version
- Adjustable version output voltage range, 1.23V to 18V+4%
1 Vin
FB
3
AP1515 -33
2
4 GND
Output
L1 56uH
Inductor
D1 Schottky
Diode
AP1515
3.3V/1.5A Output Load Co Capacitor
(2) Adjustable Type Circuit
Rating +24
-0.3 to +18 -0.3 to +18
-1 Internally limited
-65 to +150 -40 to +125 +4.5 to +22
Unit
V
V
V
V
W oC oC
V
Electrical Characteristics (All Output Voltage Versions)
Rev.1.0 Oct 29, 2004 3/6
元器件交易网
150KHz, 1.5A PWM Buck DC/DC Converter
Typical Application Circuit
(1) Fixed Type Circuit
12V DC Input
Cin Capacitor
IFB
Feedback bias current
VFB=1.3V (Adjustable version only)
-
-10
-50 -100
FOSC Oscillator frequency
127
150
173
110
-
173
FSCP
Oscillator frequency of When current limit occurred