七年级数学命题和定理课件
人教版七年级下册数学教学课件 第五章 相交线与平行线 命题、定理、证明
课程讲授
2 真命题与假命题
归纳: 1.要判断一个命题为真命题,可以用演绎推理加以
论证; 2.要判断一个命题为假命题,只要举出一个例子,
说明该命题不成立.
课程讲授
3 定理与证明
定义:数学中这些命题的正确性是人们在长期实践中
总结出来的,并把它们作为判断其他命题真假的原始 依据,即出发点.这样的真命题视为基本事实.我们也 称它为公理.
理才能作出判断,这个推理过程叫作证明.
证明几何命题的一般步骤:
1.明确命题中的_已__知___和__求__证__; 2.根据题意,_画__出__图__形__,并用数学符号表示已知和求证; 3.经过分析,找出由已知推出_要__证__的__结__论_的途径,写出证明过程.
课程讲授
3 定理与证明
例 已知直线b∥c, a⊥b .求证:
a⊥c.
b
c
证明:∵ a ⊥b(已知), ∴ ∠1=90°(垂直的定义).
1
2
a
∵ b ∥ c(已知),
∴∠1=∠2(两直线平行,同位角相等),
∴ ∠2=∠1=90°(等量代换), ∴ a ⊥ c(垂直的定义).
课程讲授
3 定理与证明
练一练:求证:内错角相等,两直线平行.
已知:如图,直线l3分别与l1,l2交于点A,点B,且∠1=∠2.
求证:l1∥l2. 证明:∵ ∠1=∠2 (已知),
∠3=∠2 (对顶角相等),
l3
1(
)3 B
l2
)2 A
l1
∴ ∠1=∠3 (等量代换).
∴ l1∥l2 (同位角相等,两直线平行).
随堂练习
1.下列句子中,哪些是命题?哪些不是命题? ⑴对顶角相等; 是 ⑵画一个角等于已知角; 不是 ⑶两直线平行,同位角相等; 是 ⑷a,b两条直线平行吗?不是 ⑸温柔的李明明; 不是 ⑹玫瑰花是动物; 是 ⑺若a2=4,求a的值; 不是 ⑻若a2= b2,则a=b. 是
人教版七年级数学下册课件: 命题、定理、证明
是假命题,是假命题的举反例加以说明.
(1)如果AB=BC,那么C是AB的中点;
(2)如果 = ,那么a=b.
思路点拨:(1)利用分类讨论思想可说明命题为假命
题;(2)分别取a,b的值说明这是假命题.
解:(1)这是假命题.
反例:当点C在AB的延长线上时,虽然AB=BC,但点
条件,另一个作为结论构成一个命题,根
据平行线的判定和性质及对顶角相等进行
证明.
图5-10-1
解:命题为“如果∠1=∠2,∠B=∠C,那么∠A=
∠D”.
证明:∵∠1=∠CGD,
∠1=∠2,
∴∠CGD=∠2.
∴EC∥BF.
∴∠AEC=∠B.
又∵∠B=∠C,∴∠AEC=∠C.
∴AB∥CD.
∴∠A=∠D.(答案不唯一)
(2)这是假命题.
反例:如答图5-10-1,∠1与∠2为
同位角,但∠1≠∠2.
答图5-10-1
典例精析
【例5】(创新题)如图5-10-1,有三个条件:①∠1
=∠2;②∠B=∠C;③∠A=∠D,请你从中任选两个
作为条件,另一个作为结论构成一个命题,并证明该命
题的正确性.
思路点拨:根据题意,从中任选两个作为
举一反三
10. (创新题)如图5-10-2,在四边形ABCD中,①
AB∥CD;②∠A=∠C;③AD∥BC.
(1)请你以其中两个为条件,第三个为结论,写出一
个命题;
(2)判断这个命题是否为真命题,
并说明理由.
图5-10-2
解:(1)命题为“如果AB∥CD,∠A=∠C,那么
AD∥BC”.
(2)这个命题是真命题. 理由如下:
人教版七年级下数学《命题、定理、证明》相交线与平行线PPT课件
作用
线段的基本事实:两点间线段最短.
平行线的判定-基本事实:同位角相等,两直线平行.
平行线的基本事实:经过直线外的一点有且仅有 一条直线与已知直线平行.
定理:有些真命题它们的正确性是经过推理证实的, 也可以作为继续推理的依据.
作用 学过的定理: (1)补角的性质:同角或等角的补角相等.
(2)余角的性质:同角或等角的余角相等.
3.下列说法正确的是__①__④__⑤___ ① -3是9的平方根; ②25的平方根是5; ③ -36的平方根是-6; ④平方根等于0的数是0; ⑤64的算术平方根是8.
4.下列说法不正确的是___B___ A.0的平方根是0 B. 22 的平方根是2 C.非负数的平方根互为相反数 D.一个正数的算术平方根一定大于这个数的相反数
第五章 相交线与平行线
命题、定理、证明
知识回顾
前面, 我们学过一些对某一件事情作出判断的语句, 例如:
(1)如果两条直线都与第三条直线平行, 那么这两条直线 也互相平行;
(2)两条平行线被第三条直线所截, 同旁内角互补;
(3)对顶角相等;
(4)等式两边加同一个数, 结果仍是等式.
你能说明其中的条件 和结论分别是什么吗?
情景导入
操场上,裁判员向老师汇报训练成绩.
小刚的百米成 绩有进步,已 达到9秒9.
好!继续努 力,争取跑
进9秒.
获取新知 知识点一:命题的概念、形式和分类
能对一件事情作出判断的语句, 叫做命题.
备注: 1.只要能作出判断,无论判断的结果是对还是错 如对顶角相等(对);互补的角是邻补角(错); 2.常见的不能作出判断的情况 表示动作,或疑问句,或类似感叹句,或表示选择
没有,因为一个数的平方不可能是负数.
第07讲 命题、定理、证明(2个知识点+4类热点题型讲练+习题巩固)(解析版)七年级数学下册
第07讲命题、定理、证明课程标准学习目标①命题②定理与证明 1.掌握命题的定理及其分类,能够熟练的判断命题,真命题,假命题。
2.能够对命题进行改写,准确的写出命题的题设与结论部分。
3.能够熟练掌握定理的定义,并对其证明。
知识点01命题1.命题的定义:判断一件事情的语句,叫做命题。
2.命题的组成:命题由题设与结论两部分组成。
题设是已知事项,结论是由已知事项推出的事项。
3.命题的改写:命题通常可以改写成如果......,那么......的形式。
如果后面跟题设部分,那么后面跟结论部分。
有些题设或结论不明显的命题在改写时,需要调整顺序或者增减词语。
4.命题的分类:根据命题判定的真假可以把明天分为真命题和假命题。
真命题:如果题设成立,那么结论一定成立的命题。
假命题:命题中题设成立时,结论不一定成立的命题。
【即学即练1】1.下列语言叙述是命题的是()A.画两条相等的线B.等于同一个角的两个角相等吗?C.延长线段AO到C,使OC=OAD.两直线平行,内错角相等【分析】根据命题的概念判断即可.【解答】解:A、画两条相等的线,没有做错判断,不是命题;B、等于同一个角的两个角相等吗?没有做错判断,不是命题;C、延长线段AO到C,使OC=OA,没有做错判断,不是命题;D、两直线平行,内错角相等,是命题;故选:D.【即学即练2】2.观察下列命题:(1)如果a<0,b>0,那么a+b<0;(2)直角都相等;(3)同角的补角相等;(4)如果两条直线被第三条直线所截,那么同位角相等.其中真命题的个数是()A.0B.1C.2D.3【分析】利用不等式的性质、直角的性质、补角的定义及平行线的性质分别判断后即可确定正确的选项.【解答】解:(1)如果a<0,b>0,那么a+b<0当a=﹣1,b=2时错误,为假命题;(2)直角都相等,正确,为真命题;(3)同角的补角相等,正确,为真命题;(4)如果两条平行直线被第三条直线所截,那么同位角相等,故错误,为假命题,故选:C.【即学即练3】3.下列命题中,是假命题的是()A.对顶角相等B.两点之间,线段最短C.全等三角形的对应角相等D.同位角相等【分析】利用对顶角的性质、线段的性质、全等三角形的性质及平行线的性质分别判断后即可确定正确的选项.【解答】解:A、对顶角相等,正确,是真命题,不符合题意;B、两点之间,线段最短,正确,是真命题,不符合题意;C、全等三角形的对应角相等,正确,是真命题,不符合题意;D、两直线平行,同位角相等,故原命题错误,是假命题,符合题意.故选:D.【即学即练4】4.将命题“两个锐角的和是钝角”改写成“如果……那么……”的形式是如果两个角是锐角,那么它们的和为钝角.【分析】首先确定两个锐角的和是钝角的题设是两个锐角,结论是和为钝角,然后在题设前加上如果,结论前加上那么即可.【解答】解:如果两个角是锐角,那么它们的和为钝角.故答案为:如果两个角是锐角,那么它们的和为钝角.知识点02定理与证明5.定理的定义:经过推理证实得到的真命题叫做定理。
人教版数学七年级下册5-3-2命理、定理、证明(第2课时) 课件
①BC平分∠ABE; ②∠BCE+∠D=90°; ③AC∥BE; ④∠DBF=2∠ABC. 其中正确的有( C ) A.1个 B.2个 C.3个 D.4个
12.若a=b,则a2=b2是____真_____命题(选填“真”或“假”), 其中“a=b”是_题__设_______,“a2=b2”是_结__论________.
7.如图,EF⊥AB于点F,CD⊥AB于点D,E是AC上一点,∠1 =∠2,则图中互相平行的直线是__E_F_∥__C_D__,__B_C_∥__D_E___________.
8.如图,给出下面的推理,其中正确的是____①__②__④________. ①因为∠B=∠BEF,所以AB∥EF; ②因为∠B=∠CDE,所以AB∥CD; ③因为∠B+∠BEC=180°,所以AB∥EF; ④因为AB∥CD,CD∥EF,所以AB∥EF.
9.如图,AC⊥BC,垂足为点C,∠BCD是∠B的余角.求证: ∠ACD=∠B.
证明:∵AC⊥BC(已知), ∴∠ACB=90°(______垂__直__的__定__义________), ∴∠BCD是∠ACD的余角. ∵∠BCD是∠B的余角(已知), ∴∠ACD=∠B(____同__角__的__余__角__相__等______).
c
2
a
证明的一般步骤: 1.分清命题的题设和结论,如果与图形有关,应先根 据题意,画出图形,并在图形上标出有关字母与符号; 2.根据题设、结论,结合图形,写出已知、求证; 3.经过分析,找出由已知推出结论的途径,有条理地 写出证明过程.
如何判定一个命题是假命题呢?
只要举出一个例子(反例),它符合命题 的题设,但不满足结论即可.
歌德的话蕴含了什么数学道理?
合作探究
5.3.2命题 定理 证明 课件(新人教版七年级数学下)
数学和活动二: 一. (一)下面语句哪些是命题,哪些不是命题: 1、对顶角相等. 2、等角的补角相等.3、过一点做一条直线。4、直线 AB与CD相交吗?. (二)分析并写出以上题目的题设和结论; 如果两条直线都与第三条直线平行,那么这条直线也互相平行; ②等式两边都加同一个数,结果仍是等式; ③对顶角相等; ④如果两条直线不平行,那么同位角不相等 (三)把②③小题改写成“如果……, 那么………”的形式. 二、区分下列命题的真假性 1.如果两个角相等,那么它们是对顶角. 2.如果a>b. b>c那么a=b 3.如果两个角互补,那么它们是邻补角 三.a⊥b,c⊥b,那么a与c的位置关系如何?为什么?
5.3.2命题 定理 证明
【学习目标】
了解命题的概念,并能区分命题的题设和结论; 判断命题真假.
【重点难点】
重点:命题的概念和区分命题的题设与结论.. 难点:区分命题的题设和结论.
.
创设情景
1.平行线的判定方法有哪些? 2.平行线的性质有哪些. 这些判定和性质都有一个共同的名字——命题,我们 阅读教材,完成下列内容的学习: 1.命题的定义: 像上面判断一件事情的语句叫做命题 2. 命题的组成 命题是由题设(或已知条件)、结论两部分组成的.题设是已知事 项;结论是由已知事项推出的事项. 3. 命题的格式: 如果……, 那么……… 4.命题的分类 真命题:如果题设成立,那么结论一定成立。这样的命题叫做真命题 假命题:如果命题中题设成立,不能保证结论一定成立,这种错误的 命题叫做假命题。 真命题可分为1.基本事实;2.定理(正确性需要推理来证明).
【学习体会】
1.本节课你有哪些收获?还有那些疑惑? 2.在课上你参与了多少问题的讨论,哪些问题得到了其他同学的认可?你 最赞同哪一位同学的发言.
2019春人教版数学七年级下册图片版习题课件:第五章 5.3 5.3.2 命题、定理、证明
;命题中题设成立时,不能保证结论一定成立,这 .
样的命题叫做 假命题
3. 命题的正确性是经过推理证实的,这样得到的真命题 叫做
定理
.
知识点
命题的定义
D
1. 下列语句中不是命题的是(
)
A.如果直线 a∥b,c∥b,那么 a∥c B.同角或者等角的余角相等
a=b,则 a=b C.若
③
.
17. 把下列命题改写成“如果……那么……”的形式, 并指 出命题的真假. (1)互补的两个角不可能都是锐角; (2)垂直于同一条直线的两条直线平行; (3)同旁内角互补,两直线平行. 解: (1)如果两个角互补, 那么这两个角不可能都是锐角;
(真命题) (2)如果两条直线垂直于同一条直线,那么这两条直线平 行;(真命题) (3)如果两条直线被第三条直线所截,同旁内角互补,那 么这两条直线平行.(真命题)
7. 下列命题:①若 a+b+c=0,abc<0,则 a,b,c 中 b 必两正一负;②关于 x 的方程 ax=b 的解为 x=a;③如果直 线 AB∥CD,EF⊥AB,那么 EF⊥CD;④若 x2=y2,则 x=y. 其中真命题是( A.①③ C.①②③
A
) B.②④ D.①②③④
8. 指出下列命题的题设和结论,并判断其真假性. (1)对顶角相等; (2)等角的补角相等; (3)如果|a|=|b|,那 a=b.
解:(1)题设:两个角是对顶角, 结论:这两个角相等.(真命题) (2)题设:两个角是相等的角的补角, 结论:这两个角相等.(真命题) (3)题设:|a|=|b|, 结论:a=b.(假命题)
知识点
定理与证明
9. 在下面的括号内,填上推理的根据:如图,已知 AB∥CD,BE 平分∠ABC,CF 平分∠BCD,求证:BE∥CF.
人教版七年级下册数学《命题、定理、证明》相交线与平行线PPT教学课件
练习
1. 在下面的括号内,填上推理的根据. 如图,∠A+∠B=180°,求证∠C +∠D =180°. 证明:∵ ∠A+∠B =180°, ∴ AD∥BC(__________________________). ∴ ∠C +∠D =180°(________________________).
复习巩固
3. 如图,平行线 AB,CD 被直线 AE 所截. (1)从 ∠1=110° 可以知道 ∠2 是多少度?为什么? (2)从 ∠1=110° 可以知道 ∠3 是多少度?为什么? (3)从 ∠1=110° 可以知道 ∠4 是多少度?为什么?
复习巩固
4. 如图,a∥b,c,d 是截线,∠1=80°,∠5=70°. ∠2,∠3, ∠4各是多少度?为什么?
综合运用
12. 判断下列命题是真命题还是假命题,如果是假命题,举出一 个反例. (1)两个锐角的和是锐角; (2)邻补角是互补的角; (3)同旁内角互补.
综合运用 13. 完成下面的证明. (1)如图(1),AB∥CD,CB∥DE . 求证∠B+∠D=180°. 证明:∵ AB∥CD . ∴ ∠B=_________(____________________). ∵CB∥DE, ∴∠C+∠D=180°(_____________________). ∴∠B+∠D=180°.
如果两条直线被第三条直线所截,那么同旁内角互补;
(2)等式两边都加同一个数,结果仍是等式;
如果等式两边都加同一个数,那么结果仍是等式;
(3)互为相反数的两个数相加得0;
如果两个数互为相反数,那么这两个数相加得0;
初中数学人教版七年级下册第五章命题、定理、证明课件
. 举一反三
∴∠BEF=∠CFE.
(2)由(1)的结论我们可以得到一个命题:
(2)由(1)的结论我们可以得到一个命题:
2. 把命题“在同一平面内,垂直于同一条直线的两条直线互相平 (1)图5-9-4①中,∠DEF=_________;
②.
∵CE∥AB,∴∠ACE=∠A,∠DCE=∠B.
∵CE平分∠ACD,∴∠ACE=∠DCE.
∴∠A=∠B.
②;
10. 如图5-9-4,∠ABC的两边分别平行于∠DEF的两条边,且∠ABC=45°.
(1)图5-9-4①中,∠DEF=____4_5_°___; 图5-9-4②中,∠DEF=___1_3_5_°___;
图5-9-1
证明:∵AB∥CD, ∴∠ABC=∠DCB. 又∵BE∥CF,∴∠EBC=∠FCB. ∴∠ABC-∠EBC=∠DCB-∠FCB, 即∠1=∠2. (答案不唯一)
思路点拨:题设即已知条件,结论即需要证明.
举一反三
4. 如图5-9-2,①AB∥CD,②BE平分 ∠ABD,③∠1+∠2=90°,④DE平分 ∠BDC. (1)请以其中三个为条件,第四个为 结论,写出一个命题; (2)判断这个命题是否为真命题,并 说明理由.
①CE∥AB;②∠A=∠B;③CE平分∠ACD中,选出两个作为已知条件,
另一个作为结论,得出一个真命题.
(1)由上述条件可得哪几个真命题?请按“
”的形式
一一书写出来;
(2)请根据(1)中的真命题,选择一个进行证明.
图5-9-3
(1)解:上述问题有三个真命题.
分别是:命题1
③;命题2
命题3
人教七年级数学下册-命题、定理、证明(附习题)
4. 如图,a∥b,c,d 是截线,∠1 = 80°, ∠5 = 70°.∠2,∠3,∠4 各是多少度?为什么?
解:∵a∥b, ∴∠2 =∠1 = 80°, ∠3 = 180°-∠5 = 180°70°=110°. 又∠4 与∠5 互为邻补角, ∴∠4 = 180°-∠5 = 180°- 70°= 110°.
课堂小结
定义 :判断一件事情的语句叫做命题
题设:已知事项 命题、定理、 结构 结论:由已知事项推出的事项
证明
形式 :如果……那么……
分类 真命题 证明 定理 假命题举反例
拓展延伸
如图,给出下列论断:(1)AB∥DC,(2) AD∥BC,(3)∠A+∠B = 180°,(4)∠B + ∠C = 180°,以其中一个作为题设,另一个作为 结论,写出一个真命题. 想一想,若连接 BD,你 能试着写出一个真命题并写出其推理过程吗?
5. 如图,一条公路的两侧铺设了两条平行管 道,如果公路一侧铺设的管道与纵向连通管道的 角度为 120°,那么,为了使管道对接,另一侧 应以什么角度铺设纵向连通管道?为什么?
120° ?
解:另一侧应以 60°的角度铺设. 因为 两直线平行,同旁内角互补.
6.在下面的括号内,填上推理的根据. 如图,AB 和 CD 相交于点 O, ∠A = ∠B,求证:∠C =∠D.
已知事项
许多数学命题常可以写成“如果……,那 么……”的形式.“如果”后面连接的部分是 题设,“那么”后面连接的部分是结论.
练习
下列语句是命题吗?如果是,请将它们改写 成“如果……,那么……”的形式.
(1)两条直线被第三条直线所截,同旁内角 互补;
如果两条直线被第三条直线所截,那么同旁 内角互补.
命题与证明
§24.3命题与证明(一)初三数学1.定义、命题与定理观察下面的图形,找出其中的平行四边形.要解决这个问题,首先要弄清楚怎样的图形才能称为平行四边形.你还记得以前学过的知识吗?“有两组对边分别平行的四边形叫做平行四边形”这句话说明了平行四边形的含义以及区别于其他图形的特征.一般地,能明确指出概念含义或特征的句子,称为定义.还可以举出如下的一些定义:(1)有一个角是直角的三角形,叫做直角三角形.(2)两个角的和等于90°,就说这两个角互为余角.(3)在同一平面内,两条不相交的直线叫做平行线.(4) 平分一个角的射线叫这个角的平分线.定义必须是严密的.一般避免使用含糊不清的术语,比如“一些”、“大概”、“差不多”等不能在定义中出现.正确的定义能把被定义的事物或名词与其他的事物或名词区别开来.思考1试判断下列句子是否正确.如果两个角是对顶角,那么这两个角相等;三角形的内角和是180°;同位角相等;平行四边形的对角线相等;菱形的对角线相互垂直;垂直于同一直线的两直线平行.根据已有的知识可以判断出句子(1)、(2)、(5)是正确的,句子(3)、(4)、(6)是错误的.(其中(6)若有在同一平面内,则正确)上述6个句子都叫做命题. 我们把判断一件事情的句子叫命题.正确的命题称为真命题,错误的命题称为假命题.故句子(1)、(2)、(5)真命题,句子(3)、(4)、(6)是假命题思考2试判断下列语句是否是命题.如果BC AC =,那么点C 是AB 的中点; 连接A 、B 两点;若︒=∠+∠90B A ,则 ︒=∠50A ,︒=∠40B ; 三点确定一个圆; 点P 在直线AB 上. 解:如果BC AC =,那么点C 是AB 的中点; 是命题 连接A 、B 两点; 不是命题 若︒=∠+∠90B A ,则 ︒=∠50A ,︒=∠40B ; 是命题 三点确定一个圆; 是命题 点P 在直线AB 上. 是命题数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.例如,我们通过探索,已经知道下列命题是正确的: ⑴ 一条直线截两条平行直线所得的同位角相等;⑵ 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行; ⑶ 如果两个三角形的两边及其夹角分别对应相等,那么这两个三角形全等; ⑷ 如果两个三角形的两角及其夹边分别对应相等,那么这两个三角形全等; ⑸ 如果两个三角形的三边分别对应相等,那么这两个三角形全等; ⑹全等三角形的对应边、对应角分别相等.我们把这些作为不需要证明的基本事实,即作为公理.(请同学们记住这6条公理)有些命题可以从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理.例如,运用公理“两角及其夹边分别对应相等的两个三角形全等”,可以得到定理:“两角及其一角的对边分别对应相等的两个三角形全等.”定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的根据. 在数学中,许多命题是由题设(或条件)和结论两部分组成的.题设是已知事项,结论是由已知事项推出的事项.这种命题常可写成“如果……那么……”的形式.其中,用“如果”开始的部分是题设,用“那么”开始的部分是结论.例1 把下列命题改写成“如果……那么……”的形式,并分别指出命题的题设与结论. ⑴ 在一个三角形中,等角对等边; ⑵ 三角形的内角和等于180度; ⑶ 直角三角形的两锐角互余;⑷ 垂直于同一直线的两直线平行; ⑸ 邻补角的平分线互相垂直; ⑹ 对顶角的平分线在一条直线上;⑺ 角平分线上的点到这个角的两边距离相等; ⑻ 同角的余角相等; ⑼ 等角的补角相等;⑽ 同弧所对的圆周角相等.解:⑴ 在一个三角形中,等角对等边; 这个命题可以写成:“如果在一个三角形中有两个角相等,那么这两个角所对的边也相等.” 这里的题设是“在一个三角形中有两个角相等”,结论是“这两个角所对的边也相等”.⑵三角形的内角和等于180度;这个命题可以写成:“如果有三个角是同一个三角形的三个内角,那么这三个角的和等于180度.”这里的题设是“有三个角是同一个三角形的三个内角”,结论是“这三个角的和等于180度”.⑶直角三角形的两锐角互余;这个命题可以写成:“如果两个角是同一个直角三角形的两个锐角,那么这两个角的和等于90度.”这里的题设是“有两个角是同一个直角三角形的两个锐角”,结论是“这两个角的和等于90度”.⑷垂直于同一直线的两直线平行;这个命题可以写成:“如果两条直线都垂直于第三条直线,那么这两条直线互相平行.”这里的题设是“两条直线都垂直于第三条直线”,结论是“这两条直线互相平行”.⑸邻补角的平分线互相垂直;这个命题可以写成:“如果两条射线分别是两个邻补角的角平分线,那么这两条射线互相垂直.”这里的题设是“两条射线分别是两个邻补角的角平分线”,结论是“这两条射线互相垂直” .⑹对顶角的平分线在一条直线上;这个命题可以写成:“如果两条射线分别是一组对顶角的角平分线,那么这两条射线在同一条直线上.”这里的题设是“两条射线分别是一组对顶角的角平分线”,结论是“这两条射线在同一条直线上”.⑺角平分线上的点到这个角的两边的距离相等;这个命题可以写成:“如果一个点在一个角的平分线上,那么这个点到这个角的两边的距离相等.”这里的题设是“有一个点在一个角的平分线上”,结论是“这个点到这个角的两边的距离相等.”.⑻同角的余角相等;这个命题可以写成:“如果有两个角是同一个角的余角,那么这两个角相等.”这里的题设是“有两个角是同一个角的余角”,结论是“这两个角相等” .⑼等角的补角相等;这个命题可以写成:“如果有两个角分别是两个相等角的补角,那么这两个角相等.”这里的题设是“有两个角分别是两个相等角的补角”,结论是“这两个角相等”.⑽同弧所对的圆周角相等. 这个命题可以写成:“如果有两个角是同一个圆中同一条弧所对的圆周角,那么这两个角相等.”这里的题设是“有两个角是同一个圆中同一条弧所对的圆周角”,结论是“这两个角相等”.如果要判断一个命题是假命题,那么我们只要举出一个符合命题题设而不符合结论的例子就可以了,这种方法称为“举反例”.用“举反例”的方法判断下列命题是假命题.一个锐角与一个钝角的和等于一个平角解:锐角等于30°,钝角等于120°,但它们的和就不等于180°,从而说明这个命题是假命题.(2)有两条边和一个角分别对应相等的两个三角形全等.解:如图 ABC ∆和ABD ∆中,B B AB AB AD AC ∠=∠== , ,,满足有两条边和一个角分别对应相等,但ABC ∆和ABD ∆不全等. 由此说明这个命题是假命题.再来看下面三个问题:① 一位同学在钻研数学题时发现: 2+1=3, 2×3+1=7, 2×3×5+1=31, 2×3×5×7+1=211.于是,他根据上面的结果并利用素数表得出结论:从素数2开始,排在前面的任意多个素数的乘积加1一定也是素数.他的结论正确吗? (素数也称质数是大于1的整数,除了它本身和1以外不能被其他正整数所整除)*当我们找到 5095930031113117532⨯==+⨯⨯⨯⨯⨯.显然30031不是素数. 所以他的结论不正确.② 一个同学在画图时发现:如下图所示,三角形三条边的垂直平分线的交点都在三角形的内部.于是他得出结论: 任何一个三角形三条边的垂直平分线的交点都在三角形的内部.他的结论正确吗?*在第23章圆我们已知道三角形三条边的垂直平分线的交点是三角形的外心,锐角三角形的外心在三角形内,直角三角形的外心在三角形的边上,钝角三角形的外心在三角形外. 显然他的结论也不正确.③我们曾经通过计算四边形、五边形、六边形、七边形、八边形等的内角和,得到一个结论: n 边形的内角和等于)2(-n ×180°.这个结果可靠吗?是否有一个多边形的内角和不满足这一规律?* 由以前学过的知识,我们知道这个结果是正确的.上面的几个例子说明: 通过特殊的事例得到的结论可能正确,也可能不正确.因此,通过这种方式得到的结论,还需进一步加以证实.要否定一个结论,只需举出一个反例即可,而要肯定一个结论,则要经过推理论证.下节课我们将开始系统学习几何证明.本节小结:一.搞清4个概念① 能明确指出概念含义或特征的句子,称为定义. ② 判断一件事情的句子叫命题.③人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理. ④ 用逻辑推理的方法判断为正确的命题叫做定理.二.习题要求①会判断一句话是否是命题.②能将一个命题改写成“如果……那么……”的形式.③会用“举反例”说明一个命题是假命题.④能正确区分真命题和假命题.课堂练习选择题:1.下列语句中,不是命题的是()两点之间线段最短. (B) 直线AB//CD.钝角和锐角之差等于直角. (D) 三点确定一个圆.2.下列命题中,⑴两个角对应相等的两个三角形相似.⑵两条平行线被第三条直线所截,同旁内角互补.⑶如果两条直线都和第三条直线平行,那么这两条直线平行.⑷两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 被作为公理的有( )(A) 4个 (B) 3个 (C) 2个 (D) 1个3.下列命题中,有()假命题⑴经过两点有且只有一条直线. ⑵三角形任一外角等于两个内角的和.⑶面积相等的两个三角形全等. ⑷有两条边分别相等的两个等腰三角形全等.⑸等角的补角相等. ⑹三边对应平行的两个三角形全等.(A) 5个 (B) 4个 (C) 3个 (D) 2个4.下列命题中,有()真命题⑴互为补角的两个角的平分线互相垂直.⑵三角形的三个内角与三个外角的和为540度.⑶有一边相等其余两边对应平行的两个三角形全等.⑷有一腰和顶角对应相等的两个等腰三角形全等.(A) 4个 (B) 3个 (C) 2个 (D) 1个5.根据下列命题,画出图形并写出“已知”、“求证”(不必证明);两条边及其中一边上的中线分别对应相等的两个三角形全等;在一个三角形中,如果一边上的中线等于这边的一半,那么这个三角形是直角三角形.AB CDA'B'C'D'已知:如图∆ABC和∆A/B/C/中,AB=A/B/,BC=B/C/,AD、A/D/分别是BC、B/C/边上的中线且AD=A/D/. 求证: ∆ABC≌∆A/B/C/(2)已知:如图ABC ∆中,CD 是AB 边中线且AB CD 21=,求证:︒=∠90ACB ABCD§24.3命题与证明(二)初三数学复习上节课有关知识: (1)几个概念① 能明确指出概念含义或特征的句子,称为定义. ②判断一件事情的句子叫命题. ③人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理. ④ 用逻辑推理的方法判断为正确的命题叫做定理.(2) 已学过的公理有:① 一条直线截两条平行直线所得的同位角相等;② 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行; ③ 如果两个三角形的两边及其夹角分别对应相等,那么这两个三角形全等; ④ 如果两个三角形的两角及其夹边分别对应相等,那么这两个三角形全等; ⑤ 如果两个三角形的三边分别对应相等,那么这两个三角形全等; ⑥ 全等三角形的对应边、对应角分别相等. 2.证明根据题设、定义以及公理、定理、等式的性质等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫做证明.(1)在证明中经常用到的定义有:①角平分线定义:平分一个角的射线叫这个角的平分线. 用法:如图(1) ∵OC 平分AOB ∠(已知)∴21∠=∠(角平分线定义)(2)∵21∠=∠(已知)∴OC 平分AOB ∠(角平分线定义)②邻补角定义:如果两个角有公共顶点和一条公共边,且这两个角的另一边互为反向延长线,那么这两个角叫做互为邻补角。
最新人教版七年级下册数学第五章相交线与平行线第3节第2课时命题、定理、证明
5.3.2命题、定理、证明1.命题(1)定义:__判断__一件事情的语句.(2)构成:命题由__题设__和__结论__两部分组成.__题设__是已知事项,__结论__是由已知事项推出的事项.(3)形式:命题常写成“如果……那么……”的形式,“如果”后接的部分是__题设__,“那么”后接的部分是__结论__.(4)类型:①真命题:题设成立,结论__一定成立__的命题;②假命题:题设成立时,不能保证__结论一定成立__的命题.2.定理、证明(1)定理的定义:命题的正确性是通过推理证实的,这样得到的__真命题__叫做定理.定理可以作为继续推理的依据.(2)证明的定义:在很多情况下,一个命题的正确性需要经过__推理__,才能作出判断,这个推理过程叫做证明.1.掌握命题的概念要注意两点:(1)命题不一定是正确的;(2)疑问句、祈使句都不是命题.2.假命题也是命题.3.改写命题时,切忌改变命题的本意.1.(新疆伊犁模拟)下列句子中,属于命题的是(C)A.直线AB和CD垂直吗B.作线段AB的垂直平分线C.同位角相等,两直线平行 D.画∠AOB=45°2.(甘肃武威月考)下列说法正确的有(C)(1)命题不一定是定理,定理一定是命题;(2)定理不可能是假命题;(3)两点确定一条直线;(4)同一平面内,两条直线的位置关系只有相交和平行两种;(5)相等的角是对顶角;(6)垂线段最短.A.3个B.4个C.5个D.6个3.对于命题“若a>b,则a2>b2”,能说明它是假命题的反例为(A)A.a=0,b=-1 B.a=2,b=-1 C.a=2,b=1 D.a=1,b=2 4.(青海玉树模拟)判断命题“如果n<1,那么n2-1<0”是假命题,只需举出一个反例.反例中的n可以为(A)A.-2B.-12C.0 D.125.“如果∠α和∠β的两边分别平行,那么∠α和∠β相等”是(B)A.真命题B.假命题C.定理D.以上说法都不正确6.(甘肃天水月考)下列命题:①两条直线相交,一角的两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③内错角相等,则它们的角平分线互相垂直;④同旁内角互补,则它们的角平分线互相垂直,其中真命题的个数为(C)A.4 B.3 C.2 D.17.(新疆和田模拟)命题“在同一平面内垂直于同一条直线的两条直线平行”的题设是__在同一平面内,两条直线垂直于同一条直线__,结论是__这两条直线互相平行__.8.(甘肃定西月考)对于同一平面内的三条直线a,b,c,给出下列五个论断:①a∥b;②b∥c;③a⊥b;④a∥c;⑤a⊥c.以其中两个论断为条件,一个论断为结论,组成一个真命题:如果__①②__,那么__④(答案不唯一)__(答案不唯一). 9.(内蒙古乌海模拟)下列各语句中,哪些是命题?是命题的,请你先将它改写为:“如果……那么……”的形式,再找出命题的题设和结论.(1)画一个角等于已知角;(2)互为相反数的两个数的和为0;(3)当a=b时,有a2=b2;(4)当a2=b2时,有a=b.【解析】(1)画一个角等于已知角,不是命题;(2)互为相反数的两个数的和为0,是命题,改写为:如果两个数互为相反数,那么这两个数的和为0,命题的题设是两个数互为相反数,结论是这两个数的和为0;(3)当a=b时,有a2=b2,是命题,改写为:如果a=b,那么a2=b2,命题的题设是a=b,结论是a2=b2;(4)当a2=b2时,有a=b,是命题,改写为:如果a2=b2,那么a=b,命题的题设是a2=b2,结论是a=b.10.(新疆克拉玛依模拟)(1)如图,请在直线AB∥CD,∠A=30°,∠CDA=30°三项中选择两个作为题设,一个作为结论,写一个真命题:如果__________且____________,那么__________;(2)请说明你写的命题是真命题的理由.【解析】(答案不唯一)(1)如果AB∥CD且∠A=30°,那么∠CDA=30°.答案:AB∥CD∠A=30°∠CDA=30°(2)∵AB∥CD,∴∠CDA=∠A=30°(两直线平行,内错角相等).1.阅读材料:“同位角相等,两直线平行”和“两直线平行,同位角相等”这两个命题的题设和结论在命题中的位置恰好对调,我们把其中一个命题叫做另一个命题的逆命题,则命题“角平分线上的点到角两边的距离相等”的逆命题是__在角的内部到角两边距离相等的点在这个角的平分线上__,该命题的题设是__在角的内部到角两边距离相等的点__,结论是__在这个角的平分线上__.2.(兰州模拟)请指出下列命题的题设和结论,并判断它们的真假,若是假命题,请举出一个反例.(1)等角的补角相等;(2)绝对值相等的两个数相等.【解析】(1)题设:有两个角相等;结论:这两个角的补角相等;是真命题;(2)题设:有两个数的绝对值相等;结论:这两个数相等;是假命题;反例:|2|=|-2|,2≠-2.3.(内蒙古乌兰察布模拟)探究问题:已知∠ABC,画一个角∠DEF,使DE∥AB,EF∥BC,且DE交BC于点P.∠ABC与∠DEF有怎样的数量关系?(1)我们发现∠ABC与∠DEF有两种位置关系:如图1与图2所示.①图1中∠ABC与∠DEF数量关系为________;图2中∠ABC与∠DEF数量关系为________;请选择其中一种情况说明理由.②由①得出一个真命题(用文字叙述):________.(2)应用②中的真命题,解决以下问题:若两个角的两边分别平行,且一个角比另一个角的2倍少30°,请直接写出这两个角的度数.【解析】(1)①如题图1中,∠ABC+∠DEF=180°.如题图2中,∠ABC=∠DEF.理由:如题图1中,∵BC∥EF,∴∠DPB=∠DEF,∵AB∥DE,∴∠ABC+∠DPB=180°,∴∠ABC+∠DEF=180°.如题图2中,∵BC∥EF,∴∠DPC=∠DEF,∵AB∥DE,∴∠ABC=∠DPC,∴∠ABC=∠DEF.答案:∠ABC+∠DEF=180°∠ABC=∠DEF②如果两个角的两边分别平行,那么这两个角相等或互补.(2)设两个角度数分别为x和2x-30°,由题意x=2x-30°或x+2x-30°=180°,解得x=30°或x=70°,∴这两个角的度数为30°和30°或70°和110°.。
人教版数学七年级下册5.3.2《命题、定理、证明》 课件(共23张PPT)
归纳总结
判断某一种事情的句子叫做命题,理清命题的 定义必须搞清楚两点: (1)命题必须是一个“完整的句子”; (2)命题必须作出判断,如“两条直线相交交 点唯一吗?”没有对事情作出判断,故不是命题。 定理和公理都是真命题,都可以作为证明其他 命题的依据,不同的是:公理是人们从长期实践 中总结出来的真命题,不用证明也不能证明;定 理是用推理证实为正确的命题。
命题1 在同一平面内,如果一条直线垂直 于两条平行线中的一条,那么它也垂直于 另一条. 已知:如图,b∥c,a⊥b . 求证:a⊥c. 证明:∵ a⊥b(已知) ∴∠1=90º (垂直的定义) 又∵ b∥c(已知) ∴∠1=∠2(两直线平行,同位角相等) ∴∠2=∠1=90º(等量代换) ∴ a⊥c(垂直的定义)
题设是: a=b,b=c
结论是: a=c
③ 同位角相等.
如果两个角是同位角,那么这两个角相等.
条件是:两个角是同位角
结论是:这两个角相等 ④ 同角的补角相等. 如果两个角是同一个角的补角,那么这两个角相 等. 条件是:两个角是同一个角的补角 结论是:这两个角相等
讨论与归纳 思考:请问如何判断①是假命题?如何判断②是
真命题?
① 如果两个角相等,那么它们是对顶角. ② 如果两条平行线被第三条直线所截,那么同旁 内角互补. 注意:要判断一个命题是真命题要经过严格
的推理;是假命题只要举一个反例。
1.下列句子哪些是命题?是命题的,指出是真 命题还是假命题? 是 真命题 (1)兔子有四条腿; 是 假命题 (2)内错角相等; 否 (3)画一条直线; 是 假命题 (4)四边形是正方形; 否 (5)你的作业做完了吗? 是 真命题 (6)同位角相等,两直线平行; 是 真命题 (7)对顶角相等; 是 假命题 (8)垂直于同一直线的两直线平行; 否 (9)过点P画线段MN的垂线;
冀教版七年级下册数学第七章第1节《命题》参考课件
• 请同学们看课本30页中的6个判断, 也是6个命题,小组合作试着将它们 说成“如果……,那么……”的情势,
二、命题的构成和情势 (1)如果两个角是直角,那么这两个角相等. (2)如果两个角是锐角,那么它们的和是钝角. (3)如果两个角是同一个角的余角,那么这两个角相等. (4)如果两个数是负数,那么绝对值大的反而小. (5)如果两个数是负数,那么它们的差仍是负数. (6)如果一个数是负数,那么它的奇次幂是负数.
7.1
命题
下面的句子中哪些是判断某一件事情的句子,请 你挑出来 (1) (4) (5) (6)
(1)我是中国人. (2)请你按时完成作业! (3)你吃饭了吗? (4)等腰三角形是轴对称图形. (5)正整数、0和负整数统称为整数. (6)两个正数的差不是正数
能够进行肯定或者否定判断的语句,叫做命题.
一、认识命题 下面的句子是命题吗?
由视察、实验、归纳和类比等方法得出的命题, 可能是真命题,也可能是假命题。判断命题的真假 需要说明理由,这个过程就是说理。
有些命题经过实践检验被公认为真命题,我们把 这样的命题叫做基本事实。
如“过平面上两点,有且只有一条直线”“两点 之间的连线中,线段最短”等都是基本事实。等式 的基本性质也可以看做基本事实。
命题是由条件和结论两部分组成的,如果引出的部分是 条件,那么引出的部分是结论,对于条件和结论不明显的命 题,先写成“如果……,那么……”的情势,再去找条件和结
论.对于条件和结论明显的命题,有时以,为界.
我会做
先独立完成课本31页的做一做,31-32 页的练习第1题,然后小组合作交流。
三、命题的分类 命题分为真命题和假命题
大家谈谈
整数中,能够被2整除的数,叫做偶数。
人教版七年级数学下册 《命题、定理、证明》相交线与平行线PPT课件
②平行于同一直线的两条直线平行;
√
如果两条直线平行于同一直线,那么这两条直线也平行
③相等的角是对顶角.
×
如果两个角相等,那么这两个角是对顶角。
注意:添加“如果”、“那么”后,命题的意义不能改变,改写的句子要完整,语句要通顺, 使命题的题设和结论更明朗.
第八页,共十四页。
任务三:下列哪些命题是真命题,哪些命题是假命题?
1.对顶角相等;
2.如果a≠b,b≠c,那么a≠c; 3.如果a²=b²,那么a=b; 4.互补的两个角是邻补角;
真命题 假命题 假命题 假命题
第九页,共十四页。
体验收获
通过本节课的学习,你有什么收获呢? 你还有什么困惑吗?
第十页,共十四页。
当堂检测
1.下列语句中不是命题的是( )
A.内错角相等
___________________________________ (2)若∣a∣=∣b∣,则a=b;
___________________________________
(3)内错角相等; ___________________________________
4.把下列命题改写成“如果…,那么…”的形式: (1)垂直于同一直线的两条直线平行;
B.如果 a+b=0,那么 a、b 互为相反数
C.已知a²=4,求a的值
D.玫瑰花是红色的
2.下列命题中是真命题的是( )
A.相等的角是直角
B. 同位角相等
C. 若∣y∣=2,则y=±2
D. 若ab=0,则a=0
第十一页,共十四页。
当堂检测
3.举反例说明下列命题是假命题: (1)互补的两个角一个是钝角,一个是锐角;
5.3.3 命题、定理与证明(课件)七年级数学下册(人教版)
(4)同角的补角相等;
这两个角互余.
(5)两个锐角互余.
题设:两个角是锐角;结论:这两个角互余.
迁移应用
1.下列语句中,不是命题的是( C )
A.两点之间,线段最短
B.内错角都相等
C.连接A,B两点
D.平行于同一直线的两直线平行
2.下列语句中,是命题的有( B )
①两直线平行,同旁内角相等;②π不是有理数;③若a≠b,则 ≠ ;
④明天会下雨吗?⑤在直线AB上取一点P.
A.2个
B.3个
C.4个
D.5个
迁移应用
3.把“在同一平面内,垂直于同一条直线的两条直线互相平行”改写成
在同一平面内,如果两条直线都垂直
“如果·····那么·····”的形式是_________________________________
于同一条直线,那么这两条直线平行
一般地,命题由题设和结论两部分组成.
题设:是已知事项;
结论:是由已知事项推出的事项.
数学中的命题常可以写成“如果……,那么……”的形式,这时“如果”
题设
后接的部分是_____,“那么”后接的部分是_____.
结论
题设
例如,命题(1)中,“两条直线都与第三条直线平行”是_____,“这两条直
线也互相平行”是_____.
迁移应用
1.完成下面的证明:如图,AB⊥BC,BC⊥CD,且∠1= ∠2.求证:BE//CF
证明:∵AB⊥BC,BC⊥CD,
垂直的定义
∴________=________=
∠ABC
∠DCB 90°(___________)
∵∠1=∠2,
∠FCB
∴∠ABC-∠1=∠DCB-∠2,即________=_________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指出下列各命题的题设和结论,并改写 成“如果……那么……”的形式。
1、对顶角相等; 2、内错角相等; 3、两平线被第三直线所截,同位角相等; 4 、3 <2 ; 5、同平行于一直线的两直线平行; 6、直角三角形的两个锐角互余;
7、等角的补角相等;
8、正数与负数的和为0。
有些命题如果题设成立,那么结论一定成立; 而有些命题题设成立时,结论不一定成立。
判断一件事情的语句叫做命题。 注意: 1、只要对一件事情作出了判断,不管正确与否, 都是命题。 如:相等的角是对顶角。
2、如果一个句子没有对某一件事情作出任何判 断,那么它就不是命题。 如:画线段AB=CD。
命题是由题设(或条件)和结论两部分组成。题设 是已知事项,结论是由已知事项推出的事项。 两直线平行, 同位角相等。
如命题:“如果一个数能被4整除,那么它也能 被2整除”就是一个正确的命题。
如命题:“如果两个角互补,那么它们是邻补 角”就是一个错误的命题。 正确的命题叫真命题,错误的命题叫假命题。 确定一个命题真假的方法: 利用已有的知识,通过观察、验证、推理、举 反例等方法。
下列句子哪些是命题?是命题的,指出 是真命题还是假命题? 是 真命题 1、猪有四只脚; 是 假命题 2、内错角相等; 否 3、画一条直线; 是 假命题 4、四边形是正方形; 否 5、你的作业做完了吗? 是 真命题 6、同位角相等,两直线平行; 7、对顶角相等; 是 真命题 8、同垂直于一直线的两直线平行;是 假命题 9、过点P画线段MN的垂线; 否 否 10、x>2
1、数学中有些命题的正确性是人们在长期实践 中总结出来的,并把它们作为判断其他命题真 假的原始依据,这样的真命题叫做公理。
2、有些命题可以从公理或其他真命题出发,用 逻辑推理的方法判断它们是正确的,并且可以 进一步作为判断其他命题真假的依据,这样的 真命题叫做定理。
公理和定理都可作为判断其他命题真假的依据。
公理举例: 1、直线公理:经过两点有且只有一条直线。 2、线段公理:两点的所有连线中,线段最短。 3、平行公理:经过直线外一点,有且只有一条 直线与已知直线平行。
4、平行线判定公理: 同位角相等,两直线平行。
5、平行线性质公理: 两直线平行,同位角相等。
定理举例: 1、补角的性质:
同角或等角的补角相等。
题设(条件)
结论
命题一般都写成“如果…,那么…”的形式。 “如果”后接的部分是题设,“那么”后接的 部分是结论。 如命题:熊猫没有翅膀。改写为: 如果这个动物是熊猫,那么它就没有翅膀。 注意:添加“如果”、“那么”后,命题的意 义不能改变,改写的句子要完整,语句要通顺, 使命题的题设和结论更明朗,易于分辨,改写 过程中,要适当增加词语,切不可生搬硬套。
7、平行线的性质定理:
两直线平行,内错角相等。 两直线平行,同旁内角互补。
课堂小结
1、命题:判断一件事情的语句叫命题。 (1)正确的命题称为真命题,错误的命题称为假命题。 (2)命题的结构:命题由题设和结论两部分构成,常可写成 “如果…,那么…”的形式。 2、公理:人们长期以来在实践中总结出来的,并作为判断其他 命题真假的根据的命题,叫做公理。 3、定理:经过推理论证为正确的命题叫定理。也可作为继续推 理的依据。 4、判断一个命题是真命题,可以从公理或定理出发,用逻辑推 理的方法证明(公理和定理都是真命题); 判断一个命题是假命题,只要举出一个例子,说明该命题不 成立就可以了,这种方法称为举反例。
对事情作了判断的语句是否正确? 下列语句在表述形式上,哪些是对事情作了判 断?哪些没有对事情作出判断? 1、对顶角相等; 是 √ 2、画一个角等于已知角; 否 是 √ 3、两直线平行,同位角相等; 否 4、a、b两条直线平行吗? 否 5、温柔的李明明; 是 6、玫瑰花是动物; × 否 7、若a2=4,求a的值; 是 8、若a2=b2,则a=b。 ×
Hale Waihona Puke 2、余角的性质:同角或等角的余角相等。
3、对顶角的性质: 对顶角相等。
4、垂线的性质:
①过一点有且只有一条直线 与已知直线垂直; ②垂线段最短。
5、平行公理的推论: 如果两条直线都和第三条 直线平行,那么这两条直 线也互相平行。
定理举例:
6、平行线的判定定理:
内错角相等,两直线平行。 同旁内角互补,两直线平行。
; /shijinglv/ 市净率;
玩罢了,他确实是没当真.所谓是壹个男人,应该都想到这种地方来潇洒壹回,但是得有这个本事,根汉也是男人,看到这些女人の姿色和名望之后,自然也不能免俗."你要咱替你做什么事情?"陈皇后问道.根汉看着她说:"其实也不是什么大事,只是咱这人不喜欢戴绿色の帽子...""奴家明白 了..."陈皇后突然捂嘴笑了,她看着根汉说,"想不到你堂堂の叶圣人,竟然还会怕这个...""是个男人应该都怕吧..."根汉说.(正文贰0肆玖陈皇后)贰050情域秘密根汉不想管这些娘娘公主之前有过什么,但是之后の事情,他想管壹管,起码除了自己之外,不能再有任何の男人了,不然の话 他不介意抹杀这些人.因为绿帽子,应该算是每壹个男人最耻辱の事情吧."可是你却给帝国皇帝戴了绿帽子..."陈皇后看着根汉说.根汉笑道:"咱这是帮他,怎么能是给他戴绿帽子呢...""说得不错,你确实是帮他..."陈皇后自言自语の说."你能做到吗?"根汉问道.陈皇后保证道:"你放心, 就算是咱死之前,也会自爆肉身,不会让任何除你之外の男人触咱壹根手指头,咱陈九娘の壹切都是你の.""而她们,都是咱陈九娘の,自然也就是你根汉の."陈皇后道.这倒是令根汉感觉到有壹些意外,他笑道:"想不到壹根炮能有这么大の威力...""谁叫你の炮厉害..."陈皇后也笑了笑.看 着这位皇后如此の风姿,根汉甚至都想拉她再去温存壹番了,不过陈皇后却说道:"不过有件事情你也得答应奴家...""什么事情?"根汉问.陈皇后看着他道:"帝<壹-本>读>.国皇帝,是不是被你杀了已经?""呃..."根汉楞了楞,随即问道:"你想咱回答什么呢?""你这么问咱,应该就 是被你所杀了..."陈皇后叹了口气,随即叹道,"杀了倒也好,除了这个祸害,情域百姓也能安生壹些了.""哦?你恨他?"根汉有些不解.陈皇后叹道:"咱与他虽然是夫妻,他是皇帝,咱是皇后,但其实咱俩没有什么交集.和他在壹起近千年了,咱俩也壹直是形如陌路,除了替他生了两个女尔,根本 上就没怎么有交流了.所以说,还是便宜了你小子,起码奴家,这些年壹直是清白之身...""呵呵,这倒也是..."根汉笑了笑.陈皇后又说:"尤其是这些年,皇帝阳寿将近,壹直在想着邪法提升寿命,背地里做了不少伤天害理之事了,他死了倒也是壹件幸事.""只是奴家希望,这个消息,你不要传 出去,起码现在皇室还是比较安稳の."陈皇后说."这是自然..."陈皇后若是不问,根汉永远也不会说皇帝已被自己诛杀之事,没有必要.这样子正好,想来の时候,想要の时候就能来和她们爱壹爱,不用负责任这没什么不好の."还有壹件事,奴家希望你答应..."陈皇后大眼睛看着根汉,深情款 款の说,"奴家希望你至少百年能来这里住上壹个月,如何?""百年住上壹个月?"根汉皱了皱眉.陈皇后以为他不答应,便说道:"奴家知道你の志向自然不在这小小の情域,你是情圣の弟子,你壹定是想要破解开情域の秘密,终有壹天你会走上更高の高度.但是也请你体谅壹下奴家等人,百年至 少得见上你壹两面,不然真の很难熬.""呃..."根汉没想到,陈皇后会提出这样の壹个要求,他微笑着答应下来:"放心吧,你们离不开本少,本少其实有时候也离不开你们..."虽说只和她们有三回欢幸,但是根汉确实也很贪恋这种生活,只不过他知道,他の志向不应该沉在女人堆中.偶尔の放 纵几回还是可以,但若是长期在这里呆着,对他来说可不是壹件什么好事.百年来这里住上壹两个月,那还是可以の,毕竟时间也不长,偶尔自己也需要这样の生活,来调济壹下无聊の修行岁月."恩,奴家谢谢你."陈皇后走了过来,脑袋倚在了根汉の肩膀上,两人壹齐向着远处の金色阳线.陈皇 后喃喃自语道:"有时候奴家真是想,若是奴家不是这皇后就好了..."根汉微微壹楞,陈皇后又说:"可是转念壹想,奴家若不是皇后,你也不会对奴家等人下手,奴家也不会有今日の美好,所以还是感谢皇室吧...""呵呵..."若是外人看到,陈皇后这副花痴样,壹定会大跌眼镜.壹向高贵端庄严 肃の陈皇后,竟然会对壹个百岁初头の小子,说出这样の话,实在是令人不可思议.可是现实就是如此,有些事情,难以言语说得清楚."你也知道情域の秘密所在?"根汉有些意外の问陈皇后.陈皇后道:"情域の大部分势力の顶尖人物,应该都清楚吧,这个秘密,由来已久,只是无人能解罢了,当 然也有可能从来就不存在...""呵呵,那能否告诉咱?"根汉问道.陈皇后微微侧眼看了他壹眼,不知道根汉是什么意思,难道他这个当事人还不清楚吗?不过陈皇后还是说:"其实就是情圣当年问鼎至尊の秘密...""哦?那是什么秘密?"根汉也很好奇.所谓情域の秘密,这个事情,当年老疯子在无 心峰の时候,也偶提过几句,但是具体の根汉也不是很清楚."其实也不是什么大秘密了,就是情圣为何问鼎至尊の秘密,当年情圣の出现实在是有些横空出世,壹开始他の实力好像并不是特别强.他成圣也比当时大陆上の许多圣人要晚得多,情圣也算是壹个大器晚成之人,步入绝强者之列之后, 好像当时光是绝强者,每壹域都有数十人之多.""可是好像情圣用了不到壹百年,便从绝强