1.1.2棱柱、棱锥、棱台的结构特征(1)多面体与棱柱
课件4:1.1.2 棱柱、棱锥和棱台的结构特征(第1课时)
A.只有两个面平行
B.所有的棱都相等
C.所有的面都是平行四边形 D.两底面平行,且各侧棱也平行
[解析] 长方体也是棱柱,以长方体为例,可知A、B不正确,
棱柱的两底面可以是三角形,五边形等,故C不正确,因此选D.
[答案] D
2.下列命题中正确的是( ) A.四棱柱是平行六面体 B.直平行六面体是长方体 C.底面是矩形的四棱柱是长方体 D.六个面都是矩形的六面体是长方体
l2=x2+y2+z2=12[(x2+y2)+(x2+z2)+(z2+y2)]
=12(a2+b2+c2),∴l=
a2+b2+c2 2.
跟踪练习 2 一个长方体共一顶点的三个面的面积分别是 2、
3、 6,这个长方体对角线的长是( )
A.2 3
B.3 2 C.6
D. 6
[解析] 设长方体的长、宽、高分别为 a、b、c,对角线长为 d.
长方体对角线问题
例2 经过长方体同一个顶点的三个面的对角线长分别是a、b、c,那
a2+b2+c2
么这个长方体的体对角线长是_______2_________.
[解析] 设经过长方体同一顶点的三条棱长分别为 x、y、z,
则有 x2+y2=a2,x2+z2=b2,z2+y2=c2.
设长方体的体对角线长为 l,则有
2.(1)棱柱是____有__两__个__面__互__相__平__行__,__其__余__各__面__都__是_____ ___四__边__形__,__且__每__相__邻__两__个__面__的__公__共__边__都__互__相__平__行____的面所围成的 几何体. 棱柱的两个互相平行的面叫做棱柱的___底__面___,其余各面叫做棱 柱的___侧__面___,两侧面的公共边叫做棱柱的__侧__棱____.两底面之 间的距离叫做棱柱的____高____. (2)棱柱按底面是三角形、四边形、五边形、……分别叫做 __三__棱__柱__、__四__棱__柱__、__五__棱__柱__、…….
学案1:1.1.2棱柱、棱锥和棱台的结构特征
1.1.2 棱柱、棱锥和棱台的结构特征学习目标1.认识棱柱、棱锥、棱台的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.理解棱柱、棱锥、棱台的定义及其形成过程,会画棱柱、棱锥、棱台的图形.3.掌握棱柱、棱锥、棱台平行于底面的截面性质,并会在棱柱、棱锥、棱台中进行简单运算.基础知识1.多面体与截面(1)多面体是由若干个平面多边形所围成的几何体.围成多面体的各个多边形叫做多面体的______;相邻两个面的公共边叫做多面体的______;棱和棱的公共点叫做多面体的______;连接不在同一个面上的两个顶点的线段叫做多面体的________.按围成多面体的面的个数分为:四面体、五面体、六面体……多面体至少有______个面.(2)把一个多面体的任意一个面延展为平面,如果其余的各面都在这个平面的同一侧,则这样的多面体就叫做________.(3)一个几何体和一个平面相交所得到的平面图形(包含它的内部),叫做这个几何体的______.做一做1 长方体有__________条对角线,一个多面体至少有__________个面.2.棱柱(1)棱柱的概念.有两个互相平行的面,其余各面都是________,并且每相邻两个四边形的公共边都互相________,这些面围成的几何体称为棱柱.棱柱中,两个互相平行的面称为棱柱的________;其余各面叫做棱柱的________;两侧面的公共边称为棱柱的________;底面多边形与侧面的公共顶点叫做棱柱的________.棱柱两底面之间的距离叫做棱柱的______.(2)棱柱的表示法.用表示两底面的对应顶点的字母或者用一条对角线端点的两个字母来表示.(3)棱柱的分类.按底面多边形的________分为:三棱柱、四棱柱、五棱柱……棱柱又分为斜棱柱和直棱柱.侧棱与底面不垂直的棱柱叫做________棱柱,侧棱与底面垂直的棱柱叫做______棱柱,底面是正多边形的直棱柱叫做__________.底面是平行四边形的棱柱叫做___________.侧棱与底面垂直的平行六面体叫做__________,底面是矩形的直平行六面体是________,棱长都相等的长方体是_______.归纳总结在四棱柱中,应掌握好以下关系:用图示表示如下:做一做2-1 四棱柱有()A.4条侧棱,4个顶点B.8条侧棱,4个顶点C.4条侧棱,8个顶点D.6条侧棱,8个顶点做一做2-2 下列三种说法中,正确的个数是()①侧棱垂直于底面的棱柱是直棱柱;②底面是正多边形的棱柱是正棱柱;③棱柱的侧面都是平行四边形.A.0 B.1 C.2 D.33.棱锥(1)棱锥的概念.有一面为________,其余各面是___________,这些面围成的几何体叫做棱锥.棱锥中有公共顶点的各三角形,叫做棱锥的________;各侧面的公共顶点叫做棱锥的________;相邻两侧面的公共边叫做棱锥的________;多边形叫做棱锥的________.顶点到底面的距离,叫做棱锥的______.(2)棱锥的表示法.用表示顶点和底面各顶点的字母或用表示顶点和底面的一条对角线端点的字母来表示.(3)棱锥的分类.按底面多边形的________分为:三棱锥、四棱锥、五棱锥……(4)正棱锥的概念.如果棱锥的底面是__________,且它的顶点在过底面中心且与底面________的直线上,则这个棱锥叫做正棱锥.正棱锥各侧面都是全等的__________,这些等腰三角形底边上的高都相等,叫做棱锥的________.知识拓展(1)只有正棱锥才有斜高,其他棱锥的顶点到各底边的垂线段不都等长.(2)正棱锥中有几个重要的特征直角三角形,利用它们可以把许多立体几何问题转化为平面几何问题解决.如图所示,正棱锥中,点O为底面中心,M是CD的中点,则△SOM,△SOC 均是直角三角形,常把一些量归结到这些直角三角形中去计算.很明显,△SMC,△OMC也是直角三角形.做一做3-1 在四棱锥的四个侧面中,直角三角形最多可有()A.1个B.2个C.3个D.4个做一做3-2 正四棱锥S-ABCD的所有棱长都等于a,过不相邻的两条侧棱作截面SAC,如图所示,则截面的面积为()A .32a 2 B .a 2C .12a 2D .13a 24.棱台 (1)棱台的概念.棱锥被________于底面的平面所截,________和______间的部分叫做棱台.原棱锥的底面和截面分别称为棱台的________和________;其他各面称为棱台的________;相邻两侧面的公共边称为棱台的________;底面多边形与侧面的公共顶点叫做棱台的________;两底面间的距离叫做棱台的______. (2)棱台的表示法.用表示上下底面各顶点的字母表示棱台. (3)棱台的分类.按底面多边形的________分为:三棱台、四棱台、五棱台…… (4)正棱台的概念.由________截得的棱台叫做正棱台.正棱台各侧面都是全等的________,这些等腰梯形的高叫做棱台的________. 知识拓展在正棱台中,有三个重要的直角梯形——两底面中心连线、相应的边心距和斜高组成一个直角梯形;两底面中心连线、侧棱和两底面对角线的一半组成一个直角梯形;斜高、侧棱和上下两底面边长的一半组成一个直角梯形.正棱台的计算问题,常转化为这几个直角梯形的计算问题.做一做4 棱台不具有的性质是( ) A .两底面相似 B .侧面都是梯形 C .侧棱都平行D .侧棱延长后都交于一点 重点难点1.棱柱、棱锥、棱台的定义和结构特征比较 剖析:名师点拨(1)有两个面互相平行,其余各面是平行四边形的几何体不一定是棱柱,反例如下图.(2)有一个面是多边形,其余各面都是三角形的几何体不一定是棱锥,反例如下图.2.教材中的“思考与讨论” 如何判断一个多面体是棱台?剖析:要判断一个多面体是不是棱台,首先看两个底面是否平行,其次把侧棱延长看是否相交于一点,这两条都满足的几何体才是棱台.典型例题题型一识别简单的空间几何体例1 下列几何体是棱柱的有()A.5个B.4个C.3个D.2个反思:本题容易错认为几何体②也是棱柱,其原因是忽视了棱柱必须有两个面平行这个结构特征,避免出现此类错误的方法是将教材中的各种几何体的结构特征放在一起对比,并且和图形对应起来记忆,要做到看到文字叙述就想到图形,看到图形就想到文字叙述.题型二概念的理解和应用例2 一个棱柱是正四棱柱的条件是()A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的两条棱互相垂直D.底面是正方形,每个侧面都是全等的矩形反思:在本题的解答过程中易出现选B的情况,导致此种错误的原因是两个侧面垂直于底面,并不能保证侧棱一定垂直于底面,只有是两个相邻的侧面才可以.题型三有关柱、锥、台的计算问题例3 正四棱台的上、下底面面积分别为4,16,一侧面面积为12,分别求该棱台的斜高、高、侧棱长.反思:本题由正四棱台的性质可知:上,下底面都是正方形,侧面是全等的等腰梯形,即可得出上、下底边及斜高的长;再由两个直角梯形便可计算出侧棱、斜高、高.故解题时应注意优先分析几何图形的关系,减少盲目性.例4 如图所示,直平行六面体AC1的侧棱长为100 cm,底面两邻边的长分别是23 cm和11 cm,底面的两条对角线的比为2∶3,求它的两个对角面的面积(过相对侧棱的截面叫对角面).题型四立体图形的展开与平面图形的折叠问题例5 如图,在正三棱柱ABC-A1B1C1中,AB=3,AA1=4.M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M的最短路线长为29,设这条最短路线与CC1的交点为N.求点P的位置.反思:解决空间几何体表面上两点间的最短线路问题,一般都是将空间几何体表面展开,转化为求平面内两点间的线段长,这体现了数学中的转化思想.题型五易错辨析例6 下列说法中正确的有()①有两个面互相平行,其余各面都是平行四边形的几何体一定是棱柱;②有一个面是多边形,其余各面都是三角形的几何体一定是棱锥;③有两个面互相平行,其余各面都是梯形的几何体一定是棱台.A.0个B.1个C.2个D.3个错解:B(或C或D)错因分析:没有正确地理解棱柱、棱锥、棱台的定义. 随堂练习1.下图所示的几何体是棱台的是( )2.下列命题中正确的是( )A .棱柱的面中,至少有两个面互相平行B .棱柱中两个互相平行的平面一定是棱柱的底面C .在平行六面体中,任意两个相对的面均互相平行,但平行六面体的任意两个相对的面不一定可当作它的底面D .棱柱的侧面是平行四边形,但它的底面一定不是平行四边形3.如图所示,正三棱柱ABC -A 1B 1C 1的各棱长都是2,E ,F 分别是AB ,A 1C 1的中点,则EF 的长是( )A .2B .3C . 5D .74.棱柱的侧面是________形,棱锥的侧面是________形,棱台的侧面是________形.5.正三棱锥底面面积为943,侧棱长为4,求此三棱锥的斜高和高.参考答案基础知识1.(1)面棱顶点对角线4(2)凸多面体(3)截面做一做1 442.(1)四边形平行底面侧面侧棱顶点高(3)边数斜直正棱柱平行六面体直平行六面体长方体正方体做一做2-1 C做一做2-2 C【解析】由直棱柱的定义,知①正确;由正棱柱的定义,知底面是正多边形的直棱柱是正棱柱,故②错误;由棱柱的定义知其侧面都是平行四边形,故③正确.3.(1)多边形有一个公共顶点的三角形侧面顶点侧棱底面高(3)边数(4)正多边形垂直等腰三角形斜高做一做3-1 D做一做3-2 C【解析】由正棱锥的性质,底面ABCD是正方形,∴AC=2a.在等腰△SAC中,SA=SC=a,AC=2a,∴∠ASC=90°,即S△SAC=1 2a2.∴选C.4.(1)平行截面底面下底面上底面侧面侧棱顶点高(3)边数(4)正棱锥等腰梯形斜高做一做4C典型例题例1 D【解析】棱柱的结构特征有三方面:有两个面互相平行;其余各面是平行四边形;这些平行四边形面中,每相邻两个面的公共边都互相平行.当一个几何体同时满足这三方面的结构特征时,这个几何体才是棱柱.很明显,几何体②④⑤⑥均不符合,仅有①③符合.例2 D【解析】对于选项A,满足了底面是正方形,但两个侧面是矩形并不能保证另两个侧面也是矩形.对于选项B,有两个侧面垂直于底面,不能保证侧棱垂直于底面.对于选项C,底面是菱形但不一定是正方形,同时侧棱也不一定和底面垂直.对于选项D,侧面全等且为矩形,保证了侧棱与底面垂直,底面是正方形,保证了底面是正多边形,因而符合正棱柱的定义和基本特征.例3 解:如图,设O′,O分别为上下底面的中心,即OO′为正四棱台的高,E,F分别为B′C′,BC的中点,∴EF⊥BC,EF为斜高.由上底面面积为4,上底面为正方形,可得B′C′=2;同理,BC=4.∵四边形BCC ′B ′的面积为12,∴12×(2+4)·EF =12, ∴EF =4.过B ′作B ′H ⊥BC 交BC 于H ,则BH =BF -B ′E =2-1=1,B ′H =EF =4.在Rt △B ′BH 中,BB ′=BH 2+B ′H 2=12+42=17.同理,在直角梯形O ′OFE 中,计算出O ′O =15.综上,该正四棱台的侧棱长为17,斜高为4,高为15.例4 解:∵棱柱AC 1是直平行六面体,∴两对角面都是矩形,其侧棱AA 1就是矩形的高. 由题意,得AB =23 cm ,AD =11 cm ,AA 1=100 cm ,BD ∶AC =2∶3,设BD =2x cm ,则AC =3x cm.在平行四边形ABCD 中,BD 2+AC 2=2(AB 2+AD 2),即(2x )2+(3x )2=2×(232+112),解得x =10.∴BD =20 cm ,AC =30 cm.∴两个对角面的面积分别为S 矩形BDD 1B 1=BD ·BB 1=2 000(cm 2),S 矩形ACC 1A 1=AC ·AA 1=3 000(cm 2).例5 解:把该三棱柱展开后如图所示.设CP =x ,则AP =3+x .根据已知可得方程22+(3+x )2=29.解得x =2.所以点P 的位置在距离点C 为2的地方.例6 A正解:对于说法①,棱柱的定义是这样的:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的几何体叫做棱柱.显然题中漏掉了“并且每相邻两个四边形的公共边都互相平行”这一条件,因此所围成的几何体不一定是棱柱,如图(1).对于说法②,有一个面是多边形,其余各面都是三角形的几何体不一定是棱锥,如图(2)所示.对于说法③,有两个面互相平行,其余各面都是梯形的几何体不一定是棱台,如图(3)所示.故说法①②③都是错误的,因此选A.随堂练习1.D【解析】选项A中的几何体四条侧棱延长后不相交于一点;选项B和选项C中的几何体的截面不平行于底面;只有选项D中的几何体符合棱台的定义与特征.2.A【解析】由棱柱的结构特征进行判断.3.C【解析】如图所示,取AC的中点G,连接EG,FG,则易得FG=2,EG=1,故EF= 5.4.平行四边 三角 梯5.解:如图,设正三棱锥为S -ABC ,O 为底面△ABC 的中心,D 为BC 边的中点,连接OC ,OD ,SO ,SD ,则斜高为SD ,高为SO ,正△ABC 的面积为943,所以BC =3,所以CD =32,OC =3,OD =32.在Rt △SOC 和Rt △SOD 中,得高SO =SC 2-OC 2=42-(3)2=13,斜高SD =SO 2+OD 2=13+34=552,即此正三棱锥的斜高为552,高为13.。
原创1:1.1.2 棱柱、棱锥和棱台的结构特征(讲授式)
课堂小结
棱柱、棱锥、棱台的结构特征
①它们在结构上的相同点是:它们都是由平面多边形围成的几何体,它 们都有底面且底面都是多边形; 不同点是:棱柱和棱台都有两个底面,而棱锥只有一个底面,棱柱的两 个底面是全等的,棱台的两个底面是相似的; ②它们三者能够相互转化,棱台是由棱锥截取得到的,棱台的上底面扩 大,使上下底面全等,就是棱柱,棱台的上底面缩为一个点就是棱锥.
解 此种说法不对 棱锥的定义中要点: ①有一个面为多边形; ②其余各面都是三角形并有公共顶点. 例如图中的多面体就不是棱锥,不符合上面的第二条. 点评 判断一个几何体是不是棱锥,应从定义去判定, 且注意两点:①有一个面是多边形; ②其余各面都是三角形且有公共顶点.
跟踪训练
棱柱、棱锥、棱台的结构特征的理解
第
一
章
空
间
几
何
体
2.下列说法中,正确的是
(A)
A.有一个面为多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成
的几何体是棱锥
B.用一个平面去截棱锥,棱锥底面与截面之间的部分是 棱台
C.棱柱的侧面都是平行四边形,而底面不是平行四边形
D.棱柱的侧棱都相等,侧面都是全等的平行四边形
解析 A是棱锥的定义,故A正确; B错,截面与底面平行时才能得棱台; C错,棱柱底面可能是平行四边形; D错,棱柱侧面的平行四边形不一定全等.
由三棱锥、四棱锥、……截得的棱台分别叫做三棱台、四棱台.......
典例精析
棱柱、棱锥、棱台的结构特征的理解
例1 有两个面互相平行,其余各面都是平行四边形的几何体是不是棱柱?
解 按题意画如图所示的几何体,叫菱形 12面体,每个面都是平行四边形,满足有 两个面互相平行,其余各面都是平行四边 形,但该几何体中相邻两个四边形的公共 边不满足棱柱定义中的互相平行的条件, 所以该几何体不是棱柱.
高中数学人教新课标B版必修2--《1.1.2 棱柱、棱锥和棱台的结构特征》 课件(共19张PPT)
上各点都沿着同一个方向移动相同的距离所形成的几何体。
D`
C`
A`
B`
侧 棱
D
A
底
C
高面
侧
B
面
棱柱的性质
• 自主探究1、棱柱上下两个底面关系如何,侧棱之间关系 如何?
• 性质1:棱柱上下两个底面互相平行,侧棱互相平行。 • 自主探究2、棱柱上、下两个底面的形状大小如何?各侧
面的形状如何? • 性质2、棱柱上下两个底面全等,各侧面都是平行四边形。
A.三棱柱
B.四棱柱
C.五棱柱
D.六棱柱
课堂小结
• 多面体的概念 • 棱柱的概念与分类
ห้องสมุดไป่ตู้考题
• 如图所示,在正三棱柱ABC- A1B1C中1 ,AB=3,
• AA1=4,M为AA1 的中点,P是BC上一点,且由点P沿 棱柱侧面经过棱CC1到点M最短路线长为 29 ,设这
条最短路线与CC1的交点为N。求:该三棱柱的侧面
棱柱、五棱柱...... • 按侧棱与底面关系分类: • 侧棱与底面垂直的棱柱叫做直棱柱。 • 侧棱与底面不垂直的棱柱叫做斜棱柱。
• 特殊棱柱 • 底面是正多边形的直棱柱叫做正棱柱。 • 底面是平行四边形的棱柱叫平行六面体。
练习
1、侧棱不垂直于底面且底面为三角形的棱 柱叫做__斜__三__棱__柱___;
2、侧棱垂直于底面且底面为四边形的棱柱 叫做____直__四__棱__柱__;
3、侧棱垂直于底面且底面为正五边形的棱 柱叫做___正__五__棱__柱___。
底面是 平行四边形
侧棱与底面 垂直
四棱柱
平行六面体
直平行六面体
底面是 矩形
长方体
1.1.2棱柱、棱锥和棱台的结构特征
一、多面体
观察几何体,这些几何体都是多面体。
1.多面体的概念
多面体:由若干个平面多边形围成的几何体。 ● 围成多面体的各个多边形叫多面体的面 多面体 ● 相邻两个面的公共边叫多面体的棱 至少 ● 棱与棱的公共点叫多面体的顶点 四个面 ●不在同一个面上的两个顶点的连线 叫多面体的对角线. D’ C’ ●一个几何体和一个平面相交 A’ B’ 所得到的平面图形(包括内部) E D 叫做这个几何体的截面。
B
E
D
C
5、如果棱锥底面为正多边形,且他的顶点在过 底面中心且与底面垂直的直线上,这个棱锥为 正棱锥 S 正棱锥特征性质:
(1)各侧面为全等的等腰三角形, 这些等腰三角形底边上的高叫斜高。
(2)正棱锥的高、斜高、斜高在 A 底面上的射影组成直角三角形。 B
F
O
E
D
C
G
(3)正棱锥的高、侧棱、侧棱在底面上的射影 组成直角三角形。
错 ③有一条侧棱垂直于底面的两条边的棱柱是直棱柱;
(2)一个棱柱是正四棱柱的条件是: ①底面是正方形,有两个侧面是矩形; 错 ②底面是正方形,有两个侧面垂直于底面;错 ③底面是菱形,且有一个顶点处的三条棱两两垂直;错
④每个侧面都是全等的矩形的四棱柱 对
小结
棱柱的定义
(1)有两个面是互相平行的多边形 (2)其余各面都是四边形,而且这两个 平面间每相邻两个平面的公共边都互相平 行
四棱柱 正方体 长方体 直平行六面体 平行六面体
直平行六面体
长方体
正方体
要注意“有两个面互相平行,其余各面都是 平行四边形的多面体”不一定是棱柱.
练习
(1)判断下列命题是否正确:
课件9:1.1.2 棱柱、棱锥和棱台的结构特征
题型二:简单几何体中的计算问题 [典例] 正三棱锥的底面边长为 3,侧棱长为 2 3,求正三棱锥的高.
[解] 作出正三棱锥如图,SO 为其高,连接 AO,作 OD⊥AB 于 点 D,则点 D 为 AB 的中点. 在 Rt△ADO 中,AD=32,∠OAD=30°,
3 故 AO=cos∠2OAD= 3. 在 Rt△SAO 中,SA=2 3,AO= 3, 故 SO= SA2-AO2=3,其高为 3.
延长线交于一点;④有两个面互相平行,其余各面都是梯形,则此几何体是棱台.
A.①
B.②
C.③
D.④
(2)下列命题:
①各侧面为矩形的棱柱是长方体;②直四棱柱是长方体;
③侧棱与底面垂直的棱柱是直棱柱;④各侧面是矩形的直四棱柱为正四棱
柱.其中正确的是________(填序号).
[解析] (1)棱锥的侧面是有公共顶点的三角形,但是各侧棱不一定相等,故 ①②不正确;棱台是由平行于棱锥底面的平面截棱锥底面得到的,故各个侧 棱的延长线一定交于一点,③正确;棱台的各条侧棱必须交于一点故④错误. (2)①中一定为直棱柱但不一定是长方体;②直四棱柱的底面可以是任意的四 边形不一定是矩形;③符合直棱柱的定义;④中的棱柱为一般直棱柱,它的 底面不一定为正方形. [答案] (1) C (2) ③
(3) 凸 多 面 体 : 把 一 个 多 面 体 的 任 意 一 个 面 延 展 为 平 面 , 如 果 其 余 的 各
面 都在这个平面的同一侧 ,则这样的多面体就叫做凸多面体.
2.棱柱、棱锥、棱台
名称
棱柱
棱锥
棱台
定义
条件:①有两个
互相平行 的面;
条件:①有一个 棱锥被 平行于
面是 多边形 ;
1.1.2 棱柱、棱锥和棱台的结构特征
SC= 2 3,则SO= SC2 OC2 12 9 15 30 .
2 22
故其高为 30 .
2
【方法技巧】 1.正棱锥中的直角三角形的应用 已知正棱锥如图(以正四棱锥为例),其高PO,底面为正 方形,作PE⊥CD于E,则PE为斜高.
(1)斜高、侧棱构成直角三角形,如图中Rt△PEC. (2)斜高、高构成直角三角形,如图中Rt△POE. (3)侧棱、高构成直角三角形,如图中Rt△POC.
类型一 棱柱、棱锥、棱台的有关概念 【典例】1.在正方体上任意选择4个顶点,它们可能是如 下各种几何形体的四个顶点,这些几何形体是________ (写出所有正确结论的序号).
①矩形;②不是矩形的平行四边形;③有三个面为等腰 直角三角形,另一面为等边三角形的四面体;④每个面 都是等边三角形的四面体;⑤每个面都是直角三角形的 四面体.
2.下列说法正确的序号是________. 世纪金榜导学号55664003
①棱锥的侧面不一定是三角形;②棱锥的各侧棱长一定 相等;③棱台的各侧棱的延长线交于一点.
【审题路线图】1.空间几何体的概念⇒结构特征. 2.棱锥、棱台的概念⇒结构特征
【解析】1.①正方体每个面上的四个顶点,对角面上的 四个顶点,连接都可得到矩形. ③如图1所示,在正方体ABCD-A1B1C1D1中,选 取点A,D,C,D1,连接得到四面体,其中三个 面:面ADC,面ADD1,面DCD1均为等腰直角三角形,面ACD1 为等边三角形.
PA PO
即 PO-OO=PO-4=2 .
PO
PO 3
所以PO=12cm,即原棱锥的高是12cm.
类型三 多面体的侧面展开图 【典例】(2017·泰安高一检测)如图所 示,在正三棱柱ABC-A1B1C1中,AB=2,AA1= 2,从顶点B沿棱柱侧面(经过棱AA1)到达 顶点C1,与AA1的交点记为M.求
课件11:1.1.2 棱柱、棱锥和棱台的结构特征
2.棱柱 (1)棱柱的主要特征: 棱柱有两个面 互相平行 ,而其余每相邻两个面的交线 都 互相平行 . (2)棱柱的相关概念: 棱柱的两个互相平行的面叫做棱柱的 底面 ;其余各面叫 做棱柱的 侧面 ;两侧面的公共边叫做棱柱的 侧棱;两个 底面所在平面间的距离叫做棱柱的 高 .
(3)棱柱的分类: ①按底面是三角形、四边形、五边形……分别叫做三棱柱、 四棱柱、五棱柱…… ②棱柱又分为斜棱柱和直棱柱: 侧棱与底面 垂直 的棱柱叫做斜棱柱;侧棱与底面不__垂__直_ 的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱 柱.
跟踪训练
2.下列四个命题中,真命题的个数是
()
①底面是矩形的平行六面体是长方体;②棱长相等的
直四棱柱是正方体;③有两条侧棱都垂直于底面一边
的平行六面体是直平行六面体;④对角线相等的平行
六面体是直平行六面体.
A.1个
B.2个
C.3个
D.4个
【解析】①不正确.除底面是矩形外还应满足侧棱与底 面垂直才是长方体. ②不正确.当底面是菱形时就不是正方体. ③不正 确.是两条侧棱垂直于底面一边而非垂直于底面,故不 一定是直平行六面体. ④正确.因为对角线相等的平行四边形是矩形,由此可 以推测此时的平行六面体是直平行六面体. 【答案】A
跟踪训练 3.正三棱台的上、下底面边长及高分别为1、2、2, 计算它的斜高.
解:设正三棱台ABC-A1B1C1上、 下底面中心分别为O1、O、BC、 B1C1的中点分别为D、D1, 则D1D为正三棱台的斜高. 因为正三棱台的上、下底面边长及高分别为1、2、2,
所以 O1D1= 63,OD= 33,O1O=2.
4.底面是正多边形的棱锥一定是正棱锥吗? 【答案】不一定.如果棱锥的底面是正多边形,且它 的顶点在过底面中心且与底面垂直的直线上,就是正 棱锥.
课件8:1.1.2 棱柱、棱锥和棱台的结构特征
图形及表示
定义:用一个平行于棱锥底面 的平面去截棱锥, 底面与截面之间的部分叫做棱台
相关概念:上底面:原棱锥的截面 下底面:原棱锥的底面 侧面:其余各面 公共边 侧棱:相邻侧面的 顶点: 侧面与上(下)底面 的公共顶点
分类:①依据:由几棱锥截得 ②举例: 三棱台 (由三棱锥截得)、 四棱台 (由四棱锥截得)……
如图棱台可记作: 棱台 ABCD-
A′B′C′D′
【互动探究】
类型1:棱柱、棱锥、棱台的概念
【例 1】下列说法正确的是( ) A.有两个面平行,其余各面都是梯形的几何体是棱台 B.多面体至少有三个面 C.各侧面都是正方形的四棱柱一定是正方体 D.九棱柱有 9 条侧棱,9 个侧面,侧面为平行四边形
【思路探究】 已知条件→联想空间图形→紧扣定义→得出结论
【自主解答】 选项 A 错,反例如图 a;选项 C 也错,反例如图 b,上、下 底面是全等的菱形,各侧面是全等的正方形,它不是正方体;一个多面体至 少有四个面,如三棱锥有四个面,不存在有三个面的多面体,所以选项 B 错; 根据棱柱的定义,知选项 D 正确.
【答案】 D
【规律方法】 判断一个几何体是何种几何体,一定要紧扣棱柱、棱锥、棱台 的结构特征,注意概念中的特殊字眼,切不可马虎大意,如棱 柱的概念中的“相邻”,棱锥的概念中的“公共顶点”,棱台的概念 中的“棱锥”等.
三棱柱
四棱柱
②举例:
(底面是三角形)、
(底面是四
边形)……
图形及表示
如图棱柱可记作: 棱柱 ABCDEF —A′B′C′D′E′F′
2.特殊的四棱柱
底面是 矩形
直平行六面体
棱长都 相等
知识3:棱锥的结构特征 【问题导思】 观察下列多面体,有什么共同特点?
学案5:1.1.2 棱柱、棱锥和棱台的结构特征
1.1.2棱柱、棱锥和棱台的结构特征学习目标1.了解和认识多面体、棱柱、棱锥、棱台的结构特征,加深对几种几何体的概念及性质的理解.2.了解凸多面体和平行六面体等的概念.3.掌握棱锥、棱台平行于底面的截面的性质.自学导引1.棱柱(1)棱柱的主要特征性质:①________________________;②其余每相邻两个面的交线都互相平行.(2)棱柱的______________叫做棱柱的底面,__________叫做棱柱的侧面,______________________叫做棱柱的侧棱,________________________叫做棱柱的高.(3)棱柱的分类:①棱柱按底面分是三角形、四边形、五边形…分别叫做三棱柱、四棱柱、五棱柱….②棱柱又分为斜棱柱和直棱柱:侧棱与底面__________的棱柱叫做斜棱柱,侧棱与底面________的棱柱叫做直棱柱,底面是______________的直棱柱叫做正棱柱.(4)特殊四棱柱:底面是______________的棱柱叫做平行六面体,__________________的平行六面体叫做直平行六面体,底面是______________的直平行六面体是长方体,________________的长方体是正方体.2.棱锥(1)棱锥的主要结构特征:①有一个面是______________;②其余各面都是__________________的三角形.(2)棱锥中________________________,叫做棱锥的侧面;______________________叫做棱锥的顶点;________________________叫做棱锥的侧棱;__________叫做棱锥的底面;______________________叫做棱锥的高.(3)如果棱锥的底面是__________,且它的顶点在过底面中心且与底面垂直的__________,则这个棱锥叫做正棱锥.正棱锥各侧面都是____________________,它们底边上的高叫做棱锥的斜高.3.棱台(1)棱锥被平行于底面的平面所截,截面和底面间的部分叫做棱台.________分别叫做棱台的上下底面;其他各面叫做棱台的________;________________________叫做棱台的侧棱;__________________叫做棱台的高.(2)由__________截得的棱台叫做正棱台.(3)正棱台各侧面都是__________________,这些等腰梯形的高叫做棱台的________.对点讲练知识点一理解棱柱、棱锥、棱台定义和性质例1下列概念判断不正确的有________.(填序号)①有两个面互相平行,其余各面都是平行四边形的多面体是棱柱.②四棱锥的四个侧面都可以是直角三角形.③有两个面互相平行,其余各面都是梯形的多面体是棱台.点评对几何体定义的理解要准确,另外,要想真正把握几何体的结构特征,必须多角度、全面地分析,多观察实物,提高空间想象能力.变式训练1下列命题正确的是()A.斜棱柱的侧棱有时垂直于底面B.正棱柱的高可以与侧棱不相等C.六个面都是矩形的六面体是长方体D.底面是正多边形的棱柱为正棱柱知识点二几何体的结构特征例2如图是三个几何体的表面展开图,请问各是什么几何体?点评解此类问题应结合常见的几何体的定义和结构特征,进行空间想象或亲自动手,制作表面展开图进行实践.变式训练2如图所示,小明设计了某个产品的包装盒,他少设计了其中的一部分,请你把它补上,使其成为两边均有盖的正方体盒子.你有几种弥补的办法?任意画出一种成功的设计图.知识点三多面体中有关元素的计算例3如图所示,正四棱台AC′的高为17 cm,两底面的边长分别为4 cm和16 cm,求这个棱台的侧棱和斜高.点评关于正棱台的计算问题.解决问题的关键是:(1)棱台的高.尽管棱台的高是上、下两底面之间的距离,但正棱台的上、下两底面中心的连线就是棱台的高;(2)正棱台的斜高就是侧面(等腰梯形)的高.要明白该梯形的上、下中点的连线就是斜高.(3)解题时要注意两个直角梯形,即:直角梯形OBB′O′和OEE′O′,计算问题都可以在这两个梯形中进行,我们以后要熟练掌握.变式训练3正四棱锥P—ABCD的底面边长为a,高PO为h,求它的侧棱P A的长和斜高PE.课堂小结一、知识结构梳理二、几种特殊四棱柱的特征和性质(见下表)1.长方体一条对角线的长的平方等于一个顶点上三条棱的长的平方和,即l2=a2+b2+c2.其中l是长方体的对角线长,a,b,c是长方体的三边长.2.对于正棱锥和正棱台,要注意准确理解概念,把握图形的特征,尤其是图中的一些重要的直角三角形和直角梯形.3.棱台是由棱锥截得的,在处理与棱台有关的问题时要注意联系棱锥的有关性质,“还台为锥”是常用的解题方法和策略.课时作业1.下列说法正确的是()A.棱柱的侧面都是矩形B.棱柱的侧棱不全相等C.棱柱是有两个面互相平行,其余各面都是四边形的几何体D.棱柱的几何体中至少有两个面平行2.如果一个棱锥的各个侧面都是等边三角形,那么这个棱锥不可能是() A.三棱锥B.四棱锥C.五棱锥D.六棱锥3.设有四个命题甲:有两个平面互相平行,其余各面都是四边形的多面体一定是棱柱;乙:有一个面是多边形,其余各面都是三角形的多面体一定是棱锥;丙:用一个面去截棱锥,底面与截面之间的部分叫棱台;丁:侧面都是长方形的棱柱叫长方体.其中,真命题的个数是()A.0 B.1 C.2 D.34.有一个正三棱锥和一个正四棱锥,它们所有的棱长都相等,把这个正三棱锥的一个侧面重合在正四棱锥的一个侧面上,则所得到的这个组合体是()A.底面为平行四边形的四棱柱B.五棱锥C.无平行平面的六面体D.斜三棱柱5.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm. 6.在下面4个平面图形中,哪几个是下面各侧棱都相等的四面体的展开图?其序号是________.(把你认为正确的序号都填上)7.如图,请设计辅助线,沿辅助线翻折,使正三角形折成(1)正四面体;(2)正三棱柱.8.如图所示,在正三棱柱ABC—A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M的最短路线长为29,设这条最短路线与CC1的交点为N,求:(1)设三棱柱的侧面展开图的对角线长;(2)PC与NC的长.参考答案自学导引1.(1)①有两个互相平行的面(2)互相平行的面其余各面两侧面的公共边两底面之间的距离(3)②不垂直垂直正多边形(4)平行四边形侧棱与底面垂直矩形棱长都相等2.(1)①多边形②有一个公共顶点(2)有公共顶点的各三角形各侧面的公共顶点相邻两侧面的公共边多边形顶点到底面的距离(3)正多边形直线上全等的等腰三角形3.(1)原棱锥的底面和截面侧面相邻两侧面的公共边两底面间的距离(2)正棱锥(3)全等的等腰梯形斜高对点讲练例1【答案】①③【解析】理由:(1)有两个面平行,其余各面是平行四边形,但不一定是棱柱,如图①. (2)在四棱锥P—ABCD中,若PD⊥平面ABCD,而四边形ABCD为矩形,则可证明其四边侧面都是直角三角形,如图②.(3)存在满足有两个面平行,其余各面是梯形,但不是棱台的图形,如图③.变式训练1【答案】C【解析】四个侧面都是矩形的棱柱是直平行六面体,两个底面是矩形的直平行六面体是长方体,故正确答案为C.例2解①五棱柱②五棱锥③三棱台如图所示.变式训练2解共有4种,设计如图(画出其中一种即可).例3解设棱台两底面的中心分别为O′和O,B′C′和BC 的中点分别为E ′和E .连接O ′O 、E ′E 、O ′B ′、OB 、O ′E ′、OE ,则OBB ′O ′和OEE ′O ′都是直角梯形.因为A ′B ′=4 cm ,AB =16 cm ,所以O ′E ′=2 cm ,OE =8 cm ,O ′B ′=2 2 cm ,OB =8 2 cm. 因此B ′B =OO ′2+(OB -O ′B ′)2=172+(82-22)2=19 cm , EE ′=OO ′2+(OE -O ′E ′)2=172+(8-2)2=513 cm. 即这个棱台的侧棱长为19 cm ,斜高为513 cm. 变式训练3 解 ∵正四棱锥的底面边长为a ,∴AO =22a ,∴在Rt △P AO 中, P A =PO 2+AO 2=h 2+⎝⎛⎭⎫22a 2=22a 2+2h 2. ∵OE =12a ,∴在Rt △POE 中,斜高PE =PO 2+OE 2=h 2+⎝⎛⎭⎫a 22=12a 2+4h 2. 即此正四棱锥的侧棱长为22a 2+2h 2, 斜高为12a 2+4h 2.课时作业 1.【答案】D 2.【答案】D如图所示,正六边形ABCDEF 中,OA =OB =…=AB ,那么正六棱锥S -ABCDEF 中,SA >OA =AB ,即侧棱长大于底面边长.3.【答案】A4.【答案】D5.【答案】126.【答案】①②7.解 (1)如图①,取各边中点可折成正四面体.(2)如图②,在正三角形三个角上剪出三个相同的四边形,其较长的一组邻边为三角形边长的14.有一组对角为直角,余下部分按虚线折起,可成为一个缺上底的正三棱柱,而剪出的三个相同的四边形,恰可拼成这个正三棱柱的上底.8.解 (1)正三棱柱ABC —A 1B 1C 1的侧面展开图是一个长为9,宽为4的矩形,其对角线长为92+42=97.(2)如图所示,将侧面BB 1C 1C 绕棱CC 1旋转120°使其与侧面AA 1C 1C 在同一平面上,点P 运动到点P 1的位置,连结MP 1,则MP 1就是由点P 沿棱柱侧面经过棱CC 1到点M 的最短路线.设PC =x ,则P 1C =x ,在Rt △MAP 1中,由勾股定理得(3+x )2+22=29,求得x =2. ∴PC =P 1C =2. ∵NC MA =P 1C P 1A =25,∴NC =45.。
棱锥和棱台的结构特征
两个本质的特征: ①有一个面是多边形; ②其余各面是有一个公共顶 点的三角形. 二者缺一不可。
2.棱锥的基本元素 类比棱柱,给棱锥各元素命名
顶点
A B
C
S
由棱柱的一个 底面收缩而成 底面
底面
A
C
B
A B
C
侧面
侧面
侧棱
相邻两侧面 的公共边
③将多余的线段擦去
数学运用
练一练:以三角形ABC为底面画一个三棱柱.
C
A B
C C
A B
C
A
A
B
B
回顾小结 (1)棱柱、棱锥、棱台的定义和性质
(2)运动变化、类比联想的观点
(3)将空间问题转化成平面问题的转
化思想
例1.有四个命题:① 各侧面是全等的等 腰三角形的四棱锥是正四棱锥;② 底面
是正多边形的棱锥是正棱锥;③ 棱锥的
所有侧面可能都是直角三角形;④ 四棱
锥的四个侧面中可能四个都是直角三角
形。其中正确的命题有 ③④ .
1.定义:棱锥被平行于底面的平面所截,截面 和底面间的部分叫做棱台.
学生活动
概念辨析:下图中的几何体是不是棱台?为什么?
有两个面互相平行, 其它各面均为梯形 的几何体一定是棱台吗?
棱台的两个重要特征:
(1)两底面互相平行 (2)各侧棱延长后相交于一点。
2.棱台的基本元素
上底面 底面 侧面 侧棱 下底面 底面
S
P
A A B C B C
D
4. 棱锥 (1)正棱锥:如果棱锥的底面是正多边形,
它的顶点在过底面中心且与底面垂直的直线上, 则这个棱锥叫做正棱锥 (2)正棱锥的性质: 正棱锥的各侧面都是全等的等腰三角形; S 等腰三角形底边上的高都相等, 叫做棱锥的斜高
人教B版高中数学必修二课件:1.1.2棱柱、棱锥和棱台的结构特征(1)
思考
棱柱的分类:棱柱的底面可以是三角形、四边 形、五边形、 …… 我们把这样的棱柱分别叫 做三棱柱、四棱柱、五棱柱、……
三棱柱
四棱柱
五棱柱
棱柱的分类:棱侧棱与底面的关系: 斜棱柱、直棱柱、正棱柱
特殊四棱柱:四棱柱—平行六面体—直平行 六面体—长方体—正四棱柱—正方体
观察下面的几何体,哪些是棱柱?
例3.下列关于棱柱的说法正确的个数是( A )
①四棱柱是平行六面体;
②有两个面平行,其余各面都是平行四边形的几何体是
棱柱;
③有两个面平行,其余各面都是四边形,并且每相邻两
个四边形的公共边都互相平行的几何体是棱柱;
④底面是正多边形的棱柱是正棱柱.
A.1
B.2
C.3
D.4
例4.一个棱柱至少有____5______个面;面数最少的棱柱有 _____6 ___个顶点,有____9____条棱.
例5.如图长方体ABCD-A1B1C1D1.
(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么
(2)用平面BCFE把这个长方体分成两部分后,各部分的 几何体还是棱柱吗?若是棱柱指出它们的底面与侧棱.
[解] (1)这个长方体是棱柱,是 四棱柱,因为它满足棱柱的定 义. (2)截面BCFE右侧部分是三棱柱, 它的底面是△BEB1与△CFC1, 侧棱是EF,B1C1,BC.截面左侧 部分是四棱柱,它的底面是四 边形ABEA1与四边形DCFD1,侧 棱是AD,BC,EF,A1D1.
(3)侧棱平行且相等.
A
(4)过不相邻的两条侧棱的截面
是平行四边形.
ED
C
B
顶点 底面
斜棱柱
E′
D′
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.1.2 棱柱、棱锥和棱台的结构特征(1)
【学习目标】
1.利用实物模型、多媒体展示大量空间图形,认识多面体;
2.掌握棱柱的定义,能区分概念相近的几何体的概念.
【新知探究】
(一)多面体
1.定义:由若干个所围成的几何体.
2.基本元素:顶点、棱、对角线、面.
说明:多面体的对角线是指体对角线,而非面对角线.
3.分类:⑴凹凸性:凸多面体与凹多面体;⑵按围成多面体的面数:分为四面体、五面体、…….
4.截面:一个几何体和一个平面相交所得的(含其内部),叫做这个几何体的截面. 例1.用一个平面去截一个正方体,所得截面的边数为 .
(二)棱柱
1.定义:有两个面平行,并且其余每相邻两个面的交线 .
思考1:有两个面平行,其余各面均为平行四边形的多面体一定是棱柱吗?
2.基本元素:顶点、侧棱、高线、底面、侧面.
3.表示:两底面的对应顶点的字母或同一对角线端点的两个字母来表示.
4.分类:
⑴按底面多边形的边数:三棱柱、四棱柱、五棱柱、……;
⑵按侧棱与底面的位置关系:和 .
5.正棱柱是的直棱柱.
研究对象底面侧棱侧面截面
棱柱底面是凸多边形;两
底面互相平行且全等
侧棱互相平
行且全等
侧面是平行
四边形
平行于底面的截面与底面是全等
的多边形;对角面是平行四边形
7.特殊的四棱柱(※)
⑴平行六面体:的棱柱叫做平行六面体;
⑵直平行六面体:的平行六面体叫做直平行六面体;
⑶长方体:的直平行六面体叫做长方体;
⑷正四棱柱:的长方体叫做正四棱柱;
⑸正方体:的正四棱柱叫做正方体.
思考2:先运用维恩图描述上述几何体所构成集合的间的包含关系,
之后再利用集合符号写出这一关系.
例2.验证以下关于平行六面体的结论:
⑴平行六面体的任何一组相对的面都可作为它的底面;
⑵平行六面体的对角线交于一点且被该点平分;
⑶当对角线长都相等时,平行六面体是长方体;
⑷平行六面体所有面都是平行四边形;A B
C
D
1
A
1
B1
C
1
D
a
b
c
⑸长方体的一条对角线长的平方等于长方体的长宽高的平方和,即2222
l a b c =++ 【自评自测】 1. (2020·福建福州三中期末考试)下列说法正确的是( )
A .棱柱的各条棱长都相等
B .棱柱的侧面可以是三角形
C .棱柱的所有侧棱与底面都垂直
D .正方体是四棱柱
2.关于平行六面体的说法,正确的是( )
A .正四棱柱是正方体
B .底面是矩形的平行六面体是长方体
C .直四棱柱是平行六面体
D .底面是平行四边形的棱柱是平行六面体
3.下列各棱柱中,没有对角线的是( )
A .三棱柱
B .四棱柱
C .五棱柱
D .不存在这样的棱柱
4.若长方体共顶点的三个面的面积分别为2,3,6,则其对角线长为( ) A .2 3 B .3 2 C . 3 D .6
【典例剖析】
题型1:棱柱的概念、性质
例1.关于棱柱,下列说法正确的是( )
A .棱柱的面中,至少有两个面互相平行
B .棱柱中两个互相平行的平面一定是棱柱的底面
C .棱柱的侧棱长叫做棱柱的高
D .棱柱的侧面是平行四边形,而底面一定不是平行四边形
变式训练1.关于棱柱的说法,下列正确的个数为( )
①一个棱柱至少有5个面、6个顶点、9条棱;②棱柱的侧面不可能是菱形;③直四棱柱的侧面是矩形;④正棱柱的对角线的长度都相等.
A .1
B .2
C .3
D .4
题型2:特殊四棱柱的关系
例2.关于平行六面体,说法正确的是( )
A .棱长都相等的直平行六面体是正方体
B .底面是正方形的平行六面体是正四棱柱
C.平行六面体的三组对面都互相平行D.侧棱垂直底面的平行六面体是长方体
变式训练2.已知集合I={四棱柱},M={平行六面体},N={直平行六面体},P={正四棱柱},Q={长方体},R={直四棱柱},S={正方体},则下列关系中不正确的是()
A.S⊂P⊂Q⊂R B.S⊂Q⊂N⊂M C.(M∩R)⊂Q D.(M∪R)⊂I
题型3:侧面展开问题
例3.如图,长方体ABCD—A1B1C1D1中,AB=3,BC=2,AA1=1,一只蚂蚁由A到C1在长方体表面上爬行的最短距离为多少?
变式训练3.如图,在正三棱柱ABC—A1B1C1中,AB=3,AA1=4,M为AA1中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M的最短距离为29,设这条最短路线与CC1交于N.
求:(1)该三棱柱的侧面展开图的对角线长; (2)PC与NC的长度.
题型4:柱体中的简单计算
例4.长方体的表面积为11,十二条棱长度之和为24,求长方体的一条对角线长.
变式训练4.一个正三棱柱的底面边长是4,高是6,过下底面的一条棱和该棱所对的上底面的顶点作截面,求这个截面的面积.。