名师指导:2011考研数学概率复习重点归纳
考研数学概率论复习重要知识点
考研数学概率论复习重要知识点一、基本概念概率是指某个事件发生的可能性大小,用于量化不确定性。
而随机事件是指在一次试验中,不能事先确定出现的结果。
概率的数学定义:对于任意事件A,P(A)表示事件A发生的可能性大小,0 ≤P(A)≤ 1。
同时,P(Ω) = 1,其中Ω是样本空间。
二、加法公式概率公式若A1和A2是两个互不相容的事件,则有:$P(A_1 \\cup A_2) = P(A_1) + P(A_2)$容斥原理当两个事件不互不相容时,可以用容斥原理求出其概率:$P(A_1 \\cup A_2) = P(A_1) + P(A_2) - P(A_1 \\cap A_2)$其中,$P(A_1 \\cap A_2)$ 表示事件A1和A2同时发生的概率。
三、条件概率条件概率是指已知事件B发生的情况下,事件A发生的概率。
条件概率的公式:$P(A|B) = \\frac{P(A \\cap B)}{P(B)}$其中,$P(A \\cap B)$ 表示事件A和B同时发生的概率。
四、乘法公式用乘法公式计算两个事件的概率,即:$P(A \\cap B) = P(A|B)P(B)$五、独立事件若事件A和事件B满足以下条件,则称它们是独立的:$P(A \\cap B) = P(A)P(B)$六、全概率公式与贝叶斯公式全概率公式如果在样本空间Ω中,有一个有限或无限个互不相交的事件序列B1,B2,…,B n,且对Ω的任意一个子集A有:$A = (A \\cap B_1) \\cup (A \\cap B_2) \\cup \\cdots \\cup (A \\cap B_n)$则称事件序列B1,B2,…,B n是一组划分,其全概率公式为:$P(A) = P(A \\cap B_1) + P(A \\cap B_2) + \\cdots + P(A \\cap B_n)$贝叶斯公式如果事件B1,B2,…,B n是一组划分,并对每个$i=1,2,\\cdots,n$,有P(B i)>0,则贝叶斯公式为:$P(B_i|A) = \\frac{P(B_i)P(A|B_i)}{P(A)}$其中,P(B i|A)表示在事件A发生的条件下,事件B i发生的概率。
考研数学概率论32个常考知识点1500字
考研数学概率论32个常考知识点1500字概率论是数学中的重要分支之一,也是考研数学中的重要部分。
在考研数学概率论中,有一些常考的知识点需要掌握。
以下是32个常考的概率论知识点:1. 概率的定义和基本性质:概率是指事件发生的可能性,介于0和1之间。
2. 事件之间的关系:包括事件的和、差和积等。
3. 随机事件的分类:包括必然事件、不可能事件、简单事件和复合事件等。
4. 古典概型:指的是由有限个等可能的基本事件组成的样本空间。
5. 频率的概念:频率是指某个事件出现的次数与试验次数的比。
6. 相对频率的概念:相对频率是指某个事件出现的次数与试验次数的比。
7. 随机变量的定义:随机变量是指将样本空间映射到实数的函数。
8. 离散型随机变量和连续型随机变量:根据随机变量的取值是否为有限个或可排多数的情况进行分类。
9. 随机变量的概率分布:指的是随机变量各取值的概率。
10. 随机变量的期望:期望是指随机变量取各值的加权平均值。
11. 随机变量的方差:方差是指随机变量与其期望之差的平方的期望。
12. 切比雪夫不等式:切比雪夫不等式是指随机变量距离其期望的距离小于等于标准差的k倍的概率不小于1-1/k^2。
13. 二维随机变量的联合分布:二维随机变量的联合分布指的是两个随机变量同时取某些值的概率。
14. 边缘分布:边缘分布是指从联合分布中得到的各个边缘概率分布。
15. 条件分布:条件分布是指在给定某个条件下的随机变量的概率分布。
16. 独立性:独立性是指两个随机变量的联合概率分布等于边缘概率分布的乘积。
17. 二项分布:二项分布是指n个相互独立的重复试验中成功次数的概率分布。
18. 泊松分布:泊松分布是指单位时间内随机事件发生次数的概率分布。
19. 几何分布:几何分布是指在独立重复试验中,第一次成功时进行的试验次数的概率分布。
20. 均匀分布:均匀分布是指一个区间内每个点的概率相等。
21. 指数分布:指数分布是一个连续型概率分布,描述时间的间隔。
2011年考研数学《概率统计》讲义汇总
1、苏东坡《黄州寒食帖》被称为"__” C:天下第三大行书2、就时代书风而言,晋人尚韵、唐人尚法、宋代尚__D:意3、柳公权的《玄秘塔碑》是__书体A:楷书4、在书法成就方面,__与苏轼、黄庭坚、蔡襄一起合称"宋四家” B:米芾5、书法作品的幅式,有许多种,包括__、__、__、条幅、条屏、中堂、匾额等等 A:扇面B:横幅C:对联D:草书6、汉代著名的摩崖刻石除《石门颂》外,还有现在陕西略阳的__、甘肃成县__的等。
这几件摩崖并称"汉三颂” A:《郙阁颂》C:《西狭颂》7、概括起来,隶书笔法最为重要的就是__、__、__和__A:中侧并用B:逆入平出C:背分取势D:转折互用8、魏晋时期的代表性书家有__、_A:钟繇B:王羲之9、“初唐四家”欧阳询、褚遂良、__、__的书法代表了初唐楷书的最高成就A:虞世南C:薛稷10、唐代在草书方面,著名的有__、__、__等 A:孙过庭B:张旭C:怀素第三次作业1、元朝书家代表人物有虞集、鲜于枢等人,其中,鲜于枢被称为"书坛盟主” 错误2、唐代草书代表人物以张旭、怀素、贺知章三人并称正确3、清代碑学代表人物有王铎、赵之谦、张裕钊、康有为错误4、书法史上的二王指王羲之与王献之父子,大小欧指欧阳询、欧阳通父子正确5、吴门三家指明代苏州书家祝允明、文徵明、王宠正确6、散氏盘》现藏于_____ B:台北故宫博物院7、1976年出土的《墙盘》现藏于______。
C:陕西博物馆8、《大盂鼎》是_____时期的金文 A:西周9、现存最早的石刻书迹之一《石鼓文》现藏于故宫博物院10、_____统称文房四宝 C:笔、墨、纸、砚第四次作业简答题1、西周早、中、晚期的金文在风格特征上有哪些变化?西周时期的金文可以分为三个阶段。
西周前期的金文风格以朴茂凝重、瑰丽沉雄为主要特征,起收多不露锋,线条遒劲峻挺,时有肥厚用笔及点团状的华饰,整体上是线与块面结合的形式美。
2011年考研数学《概率统计》讲义第一讲
2011年考研数学《概率统计》讲义第一讲1.“几何概型”问题例1 在长l 的线段AB 上任意投掷两个质点M 和N ,则点A 离点M 比离点N 近的概率为( )A .81 B .41 C .21 D .1解 事件A ={点A 离点M 比离点N 近},并且设|AM |=x ,|AN |=y ,则0≤x ≤l ,0≤y ≤l ,因此Ω={(x ,y )|0≤x ≤l ,0≤y ≤l }, A ={(x ,y )|0≤x ≤y ≤l },⋅==Ω=2121)()()(22llL A L A P 故选择C .例2 设平面区域D 是由x =1,y =0,y =x 所围成,今向D 内随机地投入10个点,求这10个点中至少有2个点落在由曲线y =x 2与y =x 所围成的区域D 1内的概率.解 分两步进行.第一步:先计算任投一点落入D 1的概率.根据几何概型,有11()123()1()32L A P A L Ω-===⋅第二步:设X ={落入D 1内的点数},有),31,10(~B X 于是P (X ≥2)=1-P (X =0)-P (X =1).)32)(31()32(1911010C --=例3 设随机变量X 和Y 的联合分布在正方形G ={(x ,y ):1≤x ≤3,1≤y ≤3}上均匀分布,试求随机变量U =|X -Y |的概率密度p (u ).解 由条件知X 和Y 的联合密度为 ⎪⎩⎪⎨⎧≤≤≤≤=.,0,31,31,41),(其他若y x y x f以F (u )=P (U ≤u )(-∞<u <∞)表示随机变量U 的分布函数. 显然,当u ≤0时,F (u )=0;当u ≥2时,F (u )=1.设0<u <2,则 {||}1()(,)d d d d 4x y ux y u GF u f x y x y x y -≤-≤==⎰⎰⎰⎰,)2(411])2(4[4122u u --=--=于是,随机变量的密度为 ⎪⎩⎪⎨⎧<<-=.,0,20),2(21)(其他若u u u p例4 在长为l 的线段上,任意选取两点M 和N ,求E |M -N |,D |M -N |解 令Z =|M -N |,先求p (z ) F (z )=P (Z ≤z )=P (|M -N |≤z )=222)(lz l l --, p (z )=F ′(z )再求E (Z )和D (Z ).例5(1) 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,则 P {max {X ,Y }≤1}=______.答案是:91.分析 本题主要考查“二维均匀分布”中有关概率的计算问题.由题设,可知(X ,Y )~U (D ),其中D ={(x ,y )|0≤x ≤3,0≤y ≤3}. 解法1P {max (X ,Y )≤1}=P (X ≤1,Y ≤1)=P (X ≤1)·P (Y ≤1)⋅==⎰⎰91)d 31()d 31(1010y x解法2 由几何概型可知.911}1,1{}1),{max(==≤≤=≤DS Y X P Y X P(2) 在区间(0,1)中随机地取两个数,则这两个数之差的绝对值小于21的概率为____.答案是:43.分析 本题主要考查“二维均匀分布或几何概型”.解 设随机取到的两个数为X 与Y ,则(X ,Y )服从正方形区域上的均匀分布.一方面我们可以利用二重积分计算⎰⎰=<-Dy x f Y X p .d ),()21|(|σ另一方面我们也可以根据几何概型来计算,如图,即⋅=⨯⨯⨯-Ω=<-=43121212121)()()21|(|)(L A L Y X P A P2.“图解法”问题例1 设事件A 、B 、C 满足P (B )=2P (A ),P (C )=3P (A ),并且P (AB )=P (BC ),则P (A )的取值范围是( )A .]1,0[B .]21,0[C .]31,0[ D .]41,0[解 由于A ⊃AB ,于是有x =P (A )≥P (AB )=y =P (BC )利用加法公式,有1≥P (B +C )=P (B )+P (C )-P (BC )=3x +2x -y ≥3x +2x -x =4x ≥0 即0≤4x ≤1 ⇒0≤x ≤41. 故选择D .例2 设两个随机事件A ,B 相互独立,已知仅有A 发生的概率为41,仅有B 发生的概率为41,则P (A )=_______.解 ()()P A P B =1()()()()[1()]()[1()].4P A B P A P B P A P B P A P A ==-=-=所以 1()2P A =例3 设X ~N (2,σ2),并且P (2<X <4)=0.3,则P (X <0)=______.例4 设随机变量X 服从正态分布N (0,1),对给定的α(0<α<1),数αu 满足P {X >αu }=α.若P {|X |<x }=α,则x 等于(A )2αu (B )21α-u(C )21αu - (D )u 1-α解 由题设,可知u α满足P (X >u α)=α.可见,若要P (|X |<x )=α, 即P (|X |≥x )=1-α, 而P (X >x )=21α-,因此⋅=-21αu x 故选择C .3.“事件独立性”问题①定义相互独立()()(),()()(),()()(),()()()(),P A B P A P B P B C P B P C P A C P A P C P A B C P A P B P C ⎧=⎫⎪⎪=⎪⎬⎨⎪=⎭⎪⎪=⎩两两独立②等价定义A. 两两独立+A BA B A B+-与C 独立(三者之一)B. ()()()P AB P A P B = + ()0P C =或1例 设事件A 、B 、C 满足P (AB )=P (A )P (B ),并且P (C )=[P (C )]2,则A 、B 、C ( ) A .一定不是两两独立; B .不一定是两两独立; C .一定是相互独立; D .一定不是相互独立. 解 由P (C )=[P (C )]2,我们有P (C )=0或1 ⎪⎪⎩⎪⎪⎨⎧====⇒⎩⎨⎧==)()()()()()()()()()()()()(10)()()()(C P B P A P ABC P C P A P AC P C P B P BC P B P A P AB P C P B P A P AB P 或 故选择C .证明:(1)对于任意的A ,由于AC ⊂C ,P (AC )≤P (C )=0 P (AC )=0=P (A )P (C ),即A 与C 相互独立 (2)(C +C )A =A ,P (C A )=P (A )-P (AC )=P (A )-P (A )P (C )=P (A )(1-P (C ))=P (A )P (C ) 结论:零(或1)概率事件与任何事件都是相互独立的.4.“全概公式”问题例1 袋中装有n 只球,每次从中随意取出一球,并放入一个白球,如此交换共进行n 次.已知袋中白球数的数学期望为a ,那么第n +1次从袋中任取一球为白球的概率是______.解 依题意袋中白球数X 是个随机变量,X 可取1,2,…,n ,且∑=nk 1kP {X =k }=a .若记B =“第n +1次从袋中任取一球为白球”,A k “第n 次交换后袋中有k 个白球”(k =1,2,…,n ).由全概率公式,得nk k X P A B P A P B P nk k k nk }{)|()()(11===∑∑==.){11na k X kP nnk ===∑=例2(1) 有两个箱子,第一个箱子中有3个白球2个红球,第二个箱子中有4个白球4个红球,先从第一箱当中随机取一个球放入第二个箱子当中.再从第二箱当中取1个球,问它是白球的概率是多少?解 i A 表示第i 次从第i 个箱子取出的白球.53)(1=A P 52)(1=A P95)|(12=A A P 94)|(12=A A P4523)|()()|()()(1211212=+=A A P A P A A P A P A P .(2)设随机变量X 与Y 独立,其中X 的概率分布为⎪⎪⎭⎫ ⎝⎛7.03.021~X , 而Y 的概率密度为()f y ,求随机变量U X Y =+的概率密度()g u .分析 离散型随机变量X 和一个连续型随机变量Y 的和是不能确定的,但是本题已知随机变量X 与Y 独立,并且X 只有两个正概率点,这时可以利用全概率公式求U X Y =+的概率密度解 为求出概率密度()g u ,一般应先求分布函数(){}{}G u P U u P X Y u =≤=+≤, 先验概率:()10.3P X ==,()20.7P X == 所以U X Y =+的分布函数为 }{)(u Y X P u G ≤+=()()1{1}2{2}P X P X Y u X P X P X Y u X ==+≤=+=+≤=0.3{1}0.7{2}P X Y u X P X Y u X =+≤=++≤= 0.3{11}0.7{22}P Y u X P Y u X =≤-=+≤-=.由于X 和Y 相互独立,可见()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-0.3(1)0.7(2).F u F u =-+-又因为连续型随机变量密度函数是分布函数在对应区间上的微分得到,得U 的概率密度)2(7.0)1(3.0)()(-'+-'='=u F u F u G u g 0.3(1)0.7(2).f u f u =-+-例3 从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1 中任取一个数,记为Y , 则{2}P Y == ___________ .解 由全概率公式:}2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P+}32{}3{===X Y P X P +}42{}4{===X Y P X P X 表示从数1,2,3,4中任取一个数,故X 是等可能取到1,2,3,4。
考研数学概率部分的核心知识点和易错知识点总结
考研数学概率部分的核心知识点和易错知识点总结一、核心知识随机事件和概率、随机变量及其分布、二维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验。
涉及到的概率论与数理统计的所有知识啦。
1、交换律、结合律、分配率、的摩根律;(解题的基础)2、古典概型——有限等可能、几何模型——无限等可能;3、抽签原理——跟先后顺序无关;4、小概率原理——小概率事件在一次试验不可能发生,一旦发生就怀疑实现规律的正确性;5、条件概率:注意当条件的概率必须大于0;6、全概:原因>结果贝叶斯:结果>原因;7、相容通过事件定义,独立通过概率定义。
第二章1、0——1分布,二项分布,泊松分布X的取值都是从0开始;2、分布函数是右连续的,在求分布函数也尽量写成右连续的;3、分布函数的性质、概率密度的性质;4、连续性随机变量任一指定值的概率为0;5、概率为0不一定是不可能事件,概率为1不一定是必然事件;6、正态分布的图形性质;7、求函数的分布尽量按定义法,按定义写出基本公式;8、分段单调时应该分段使用公式再相加。
二、易错知识点1、“非等可能”与“等可能”的区别如果一次随机实验中可能出现的结果有N个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1/N;如果其中某个事件A包含的结果有M个,则事件A的概率为M/N。
2、互斥与对立对立一定互斥,但是互斥不一定对立。
不可能同时发生的两个事件叫做互斥事件,如果A,B互斥则P(A+B)=P(A)+P(B),必有一个发生的互斥事件叫做对立事件,如果A,B对立则满足两个条件(1)P(AB)=空集;(2)P(A+B)=1。
3、互斥与独立不可能同时发生的两个事件叫做互斥事件,如果A,B互斥则P (A+B)=P(A)+P(B),事件A(或者B)是否发生不影响事件B(或者A)发生的概率,则A和B独立。
此时P(AB)=P(A)p(B);概率为0或者1的事件与任何事件都独立,如果两个事件存在包含关系,则两个事件不独立;如果0〈P(A)〈1,0〈P(B)〈1,如果A,B互斥则不独立,如果A,B独立则不互斥(注意条件)。
考研数学概率部分公式复习
考研数学概率部分公式复习概率是数学中一个重要的分支,常以随机试验为基础进行研究,主要研究事件的概率和随机变量的分布。
而概率论的数学基础则包括概率公式、条件概率、独立性、随机变量的分布等等。
在考研中,数学概率部分是必考内容之一,理解和熟练掌握这些公式是非常重要的。
下面就对考研数学概率部分的公式进行复习。
一、基本公式:1.概率公式:对于一个随机试验E,事件A的概率P(A)定义为A发生的次数在试验总次数n中所占的比例。
P(A)=m/n2.互斥事件的概率公式:如果事件A和B互斥(即不能同时发生),则它们的概率满足如下关系:P(A∪B)=P(A)+P(B)3.和事件的概率公式:对于两个事件A和B,它们的概率满足如下关系:P(A∪B)=P(A)+P(B)-P(A∩B)4.减事件的概率公式:对于两个事件A和B,它们的概率满足如下关系:P(A-B)=P(A)-P(A∩B)5.互斥事件的概率和与减公式:对于两个互斥事件A和B,它们的概率满足如下关系:P(A∪B)=P(A)+P(B)P(A-B)=P(A)-P(A∩B)二、条件概率和乘法原理:1.条件概率公式:对于两个事件A和B,且P(A)>0,条件概率P(B,A)定义为在事件A发生的条件下事件B发生的概率。
P(B,A)=P(A∩B)/P(A)2.乘法原理:对于两个事件A和B,它们同时发生的概率等于事件A 发生的概率乘以在事件A发生的条件下事件B发生的概率。
P(A∩B)=P(A)*P(B,A)=P(B)*P(A,B)三、全概率公式和贝叶斯公式:1.全概率公式:如果事件B1,B2,...,Bn构成一个样本空间的一个划分(即互不相交且并起来就是全集),则对于任意事件A,它的概率满足如下关系:P(A)=P(B1)P(A,B1)+P(B2)P(A,B2)+...+P(Bn)P(A,Bn)2.贝叶斯公式:如果事件B1,B2,...,Bn构成一个样本空间的一个划分,则对于任意事件A,它的概率满足如下关系:P(Bi,A)=P(Bi)P(A,Bi)/[P(B1)P(A,B1)+P(B2)P(A,B2)+...+P(Bn)P(A,Bn)]四、随机变量和分布:1.随机变量:随机变量是定义在样本空间上的一个实值函数,它的取值是由随机试验的结果决定的。
考研数学概率各章节重点及常考题型
考研数学概率各章节重点及常考题型第一章随机事件和概率一、本章的重点内容四个关系:包含,相等,互斥,对立五个运算:并,交,差四个运算律:交换律,结合律,分配律,对偶律(德摩根律)概率的基本性质:非负性,规范性,有限可加性,逆概率公式五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯公式条件概率利用独立性进行概率计算n 重伯努利概型的计算近几年单独考查本章的考题相对较少,从考试的角度来说不是重点,但第一章是基础,大多数考题中将本章的内容作为基础知识来考核,都会用到第一章的知识二、常见典型题型1.随机事件的关系运算2.求随机事件的概率3.综合利用五大公式解题,尤其是常用全概率公式与贝叶斯公式第二章随机变量及其分布一、本章的重点内容随机变量及其分布函数的概念和性质(充要条件)分布律和概率密度的性质(充要条件)八大常见的分布:0-1 分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、正态分布、指数分布及它们的应用会计算与随机变量相联系的任一事件的概率随机变量简单函数的概率分布近几年单独考核本章内容不太多,主要考一些常见分布及其应用、随机变量函数的分布二、常见典型题型1.求一维随机变量的分布律、分布密度或分布函数2.一个函数为某一随机变量的分布函数或分布律或分布密度的判定3.反求或判定分布中的参数4.求一维随机变量在某一区间的概率5.求一维随机变量函的分布第三章二维随机变量及其分布一、本章的重点内容二维随机变量及其分布的概念和性质边缘分布,边缘密度,条件分布和条件密度随机变量的独立性及不相关性一些常见分布:二维均匀分布,二维正态分布几个随机变量的简单函数的分布本章是概率论重点部分之一!应着重对待二、常见典型题型1.求二维随机变量的联合分布律或分布函数或边缘概率分布或条件分布和条件密度2.已知部分边缘分布,求联合分布律3.求二维连续型随机变量的分布或分布密度或边缘密度函数或条件分布和条件密度4.两个或多个随机变量的独立性或相关性的判定或证明5.与二维随机变量独立性相关的命题6.求两个随机变量的相关系数7.求两个随机变量的函数的概率分布或概率密度或在某一区域的概率第四章随机变量的数字特征一、本章的重点内容随机变量的数字特征定义(数学期望、方差、标准差、矩、协方差、相关系数)常见分布的数字特征利用数字特征的基本性质计算具体分布的数字特征根据一维和二维随机变量的概率分布求其函数的数学期望.二、常见典型题型1.求一维随机变量函数的数字特征2.求二维随机变量或函数的数字特征3.求两个随机变量的协方差或相关系数4.数字特征在经济中的应用题.第五章大数定律和中心极限定理一、本章的重点内容三个大数定律:切比雪夫定律、伯努利大数定律、辛钦大数定律两个中心极限定理:棣莫弗-拉普拉斯定理、列维-林德伯格定理本章的内容不是重点,也不经常考,只要把这些定律、定理的条件与结论记住就可以了二、常见典型题型1.估计概率的值2.与中心极限定理相关的命题第六章数理统计的基本概念一、本章的重点内容数理统计的基本概念主要是总体、简单随机样本、统计量、样本均值、样本方差及样本矩常见统计量:包括标准正态分布、卡方分布、t 分布和 F 分布,要掌握这些分布对应随机变量的典型模式及它们参数的确定,这些分布的分位数和相应的数值表正态总体的抽样分布,包括样本均值、样本方差、样本矩、两个样本的均值差、两个样本方差比的抽样分布本章是数理统计的基础,也是重点之一。
2011年考研数学《概率统计》讲义第四讲
【引例1】枪手进行射击,规定击中区域I内得2分, 击中区域II内得1分,脱靶(击中区域III)得0分。
枪手每次射击的得分X是一 个随机变量,其分布律为
E() N( ,
e , x 0, f ( x) 其它 0,
x
1
2)
1 f ( x) e 2
( x )2 2 2
r.v.函数 Y = g(X ) 的数学期望 设离散 r.v. X 的概率分布为 P( X xi ) pi , i 1,2,
1 4e , f ( x) 0,
x 4
x 0, x 0.
300元.试求厂方出售一台设备净赢利的数学期望.
〖解〗这是求连续型随机变量函数的数学期望。 设售出一台设备的净赢利为 X 1, 100, a( X ) 200, 0 X 1.
河南理工大学精品课程 概率论与数理统计
k 1
【例1】甲乙两人进行射击所得分数分别为X1,X2,其
分布律分别为
X1 0 1 2 pk 0 0.2 0.8 X2 pk 0 1 2 0.6 0.3 0.1
试评定甲乙成绩的优劣。 〖解〗这是离散型随机变量。由数学期望定义得:
E( X1 ) 0 0 1 0.2 2 0.8 1.8(分) E( X 2 ) 0 0.6 1 0.3 2 0.1 0.5(分)
河南理工大学精品课程
概率论与数理统计
【例8】已知随机变量X的分布列为
X P -2 0.4 0 0.3 2 0.3
2011年考研数学概率复习重点归纳
概率统计辅导讲义
第一讲 第二讲 第三讲 第四讲 第五讲 第六讲 第七讲 概率与事件的概率计算 一维随机变量及其相关问题 多维随机变量及其相关问题 期望, 方差与相关系数 多元正态分布的相关问题;极限定理 统计的基本概念和抽样分布;点估计 估计量的评选准则、区间估计与假设检验(仅限数一)
P( A I B) P( B)
P( B) > 0
注:条件概率也是一种概率,故概率的运算规则同样适用于条件概率。 例14 设 P ( A | B ) = P (B | A ) =
注: P ( A | B ) = P (B | A) ⇒ P ( A) = P ( B ) (对称)
1 1 , P ( A) = . 求 P ( A U B ) . 2 3
工具:微积分求区域面积、体积等 例 9(会面问题) 两人相约于晚 7 点到 8 点间在某地会面,先到者等足 20 分钟便立即离去. 设两人的到达 时刻在 7 点到 8 点间都是随机且等可能的. 求两人能会面的概率 p. 【5 】 9 例 10(Buffon 问题) 平面上画有一族相距为 a 的平行线. 向此平面投一长为 l (<a)的针. 求针与平行线相交的 2l 概率 p. 【 a π 】 例 11 例 12 在区间(0,1)中随机地取出两个数,求两数之和小于 1.2 的概率. 【0.68】 半径为 r 的圆形硬币任意抛于边长为 a 的正方形桌面上, 求硬币不与正方形各边相
2010 年基础班讲课提要-------概率统计
☆ 注意:在ℱ中对至多可数次的集合的并、交及求逆运算都是封闭的. ★ 概率的简单性质: 性质 1(求逆公式)如果 A ∈ℱ,则 P ( A ) = 1 − P ( A) . 性质 2(减法公式)如果 A, B ∈ ℱ, 则 P ( A − B ) = P ( A) − P ( AB ) ; 特别地,当 A ⊃ B 时,有 P ( A − B ) = P ( A) − P ( B ) ,从而 P ( A) ≥ P ( B ) (单调性). 性质 3(一般的加法公式) 如果 A, B ∈ ℱ,则
考研数学概率论部分重难点总结
考研數學概率論部分重難點總結1.1概率這門課の特點與線性代數一樣,概率也比高數容易,花同樣の時間復習概率也更為划算。
但與線代一樣,概率也常常被忽視,有時甚至被忽略。
一般の數學考研參考書是按高數、線代、概率の順序安排の,概率被放在最後,復習完高數和線代以後有可能時間所剩無多;而且因為前兩部分分別占60%和20の分值,復習完以後多少會有點滿足心理;這些因素都可能影響到概率の復習。
概率這門課如果有難點就應該是“記憶量大”。
在高數部分,公式、定理和性質雖然有很多,但其中相當大一部分都比較簡單,還有很多可以借助理解來記憶;線上代部分,需要記憶の公式定理少,而需要通過推導相互聯繫來理解記憶の多,所以記憶量也不構成難點;但是在概率中,由大量の概念、公式、性質和定理需要記清楚,而且若靠推導來記這些點の話,不但難度大耗時多而且沒有更多の用處(因為概率部分考試時對公式定理の內在推導過程及聯繫並沒有什麼要求,一般不會在更深の層次上出題)。
記得當初看到陳文燈復習指南概率部分第二章《隨機變數及其分佈》、第三章《隨機變數の數字特徵》中在每章開始列出の那些大表格時,感覺其中必然會有很多內容是超綱の、不用細看;但後來復習時才發現,可以省略不看の內容少之又少,由大量の內容需要記憶。
所以對於概率部分相當多の內容都只能先死記硬背,然後通過足量做題再來牢固掌握,走一條“在記憶の基礎上理解”の路。
記牢公式性質,同時保證足夠の習題量,考試時概率部分20%の分值基本上就不難拿到了。
1.2概率第一章《隨機事件和概率》本章內容在歷年真題中都有涉及,難度一般不大。
雖然對於本章中の古典概型可以出很難の題目,但大綱の要求並不高,考試時難題很少。
填空、選擇常考關於事件概率運算の題目,大多圍繞形如)()(BAPABP=、)|()|(ABPABP=、)(CBAP++這樣の式子利用各種概率運算公式求解;其他內容如全概率公式和貝葉斯公式在小題中和大題中都有可能考到。
考研数学(三)概率论与数理统计第一章复习重点总结
2018考研数学(三):概率论与数理统计第一章复习重点总结一、第一章随机事件与概率1.重点:概率的定义与性质,条件概率与概率的乘法公式,事件之间的关系与运算,全概率公式与贝叶斯公式。
2.难点:随机事件的概率,乘法公式、全概率公式、Bayes公式以及对贝努利概型的事件的概率的计算。
3.常考题型事件、概率与独立性是本章给出的概率论中最基本、最重要的三个概念。
事件关系及其运算是本章的重点和难点,概率计算是本章的重点。
注意事件与概率之间的关系。
本章主要考查随机事件的关系和运算,概率的性质、条件概率和五大公式,注意事件的独立性。
近几年单独考查本章的试题相对较少,但是大多数考题中将本章的内容作为基本知识点来考查。
相当一部分考生对本章中的古典概型感到困难。
大纲只要求对古典概率和几何概率会计算一般难度的题型就可以。
考生不必可以去做这方面的难题,因为古典型概率和几何型概率毕竟不是重点。
应该将本章重点中的有关基本概念、基本理论和基本方法彻底理解和熟练掌握。
【评注】本题是典型的根据全概率公式及条件概率的解题的题型,这类题型一直都是考查的重点。
三、注意事项与线性代数一样,概率也比高数容易,花同样的时间复习概率也更为划算。
但与线代一样,概率也常常被忽视,有时甚至被忽略。
一般的数学考研参考书是按高数、线代、概率的顺序安排的,概率被放在最后,复习完高数和线代以后有可能时间所剩无多;而且因为前两部分分别占60%和20的分值,复习完以后多少会有点满足心理;这些因素都可能影响到概率的复习。
概率这门课如果有难点就应该是“记忆量大”。
在高数部分,公式、定理和性质虽然有很多,但其中相当大一部分都比较简单,还有很多可以借助理解来记忆;在线代部分,需要记忆的公式定理少,而需要通过推导相互联系来理解记忆的多,所以记忆量也不构成难点;但是在概率中,由大量的概念、公式、性质和定理需要记清楚,而且若靠推导来记这些点的话,不但难度大耗时多而且没有更多的用处(因为概率部分考试时对公式定理的内在推导过程及联系并没有什么要求,一般不会在更深的层次上出题)。
概率分析知识点归纳总结
概率分析知识点归纳总结概率分析是数学中的一个重要分支,用于描述和分析随机事件发生的可能性。
概率分析在许多领域中具有广泛的应用,包括统计学、金融学、物理学等。
本文将对概率分析中的一些核心概念和方法进行归纳总结。
一、概率的基本概念1. 随机试验:指具有不确定性的试验,其结果可能有多种情况。
2. 样本空间:随机试验所有可能结果的集合,用Ω表示。
3. 事件:样本空间的子集,表示某些结果的集合。
4. 随机变量:将样本空间的每个结果映射到某个数值的函数。
5. 概率:事件发生的可能性大小的度量,用P(A)表示,0 ≤ P(A) ≤ 1。
二、基本概率公式1.等可能概型:在随机试验中,样本空间中各个结果发生的概率相等。
2.概率的性质:对于任意事件A和B,有P(A) + P(Ā) = 1(其中Ā表示事件A的补集),P(A∪B) = P(A) + P(B) - P(A∩B)。
三、条件概率1.条件概率:已知事件B发生的情况下,事件A发生的概率,表示为P(A|B)。
2.乘法定理:对于事件A和B,有P(A∩B) = P(B) × P(A|B)。
3.全概率公式:对于一组互不相容的事件B1、B2、…、Bn(即Bi 与Bj不相容,i≠j,且它们的并集构成样本空间Ω),对任意事件A,有P(A) = Σ[P(Bi) × P(A|Bi)]。
四、独立性1.事件独立:事件A和B满足P(A∩B) = P(A) × P(B)。
2.条件独立:事件A和B在给定事件C发生的条件下独立,满足P(A∩B|C) = P(A|C) × P(B|C)。
五、期望与方差1.数学期望:概率分布中各个可能值的加权平均值,表示为E(X)。
2.方差:度量随机变量离其数学期望的平均距离,表示为Var(X)。
3.线性变换法则:对随机变量X和常数a、b,有E(aX + b) = aE(X) + b,Var(aX + b) = a²Var(X)。
考研数学概率复习重点归纳
2011年考研数学概率复习重点归纳考研数学的概率部分也是考查的重点所在,下面万学海文的数学考研辅导专家将概率中的复习重点逐一归纳如下,以方便2011年的考生对照复习。
一、随机事件与概率重点难点:重点:概率的定义与性质,条件概率与概率的乘法公式,事件之间的关系与运算,全概率公式与贝叶斯公式难点:随机事件的概率,乘法公式、全概率公式、Bayes公式以及对贝努利概型的事件的概率的计算常考题型:(1)事件关系与概率的性质(2)古典概型与几何概型(3)乘法公式和条件概率公式(4)全概率公式和Bayes公式(5)事件的独立性(6)贝努利概型二、随机变量及其分布重点难点重点:离散型随机变量概率分布及其性质,连续型随机变量概率密度及其性质,随机变量分布函数及其性质,常见分布,随机变量函数的分布难点:不同类型的随机变量用适当的概率方式的描述,随机变量函数的分布常考题型(1)分布函数的概念及其性质(2)求随机变量的分布律、分布函数(3)利用常见分布计算概率(4)常见分布的逆问题(5)随机变量函数的分布三、多维随机变量及其分布重点难点重点:二维随机变量联合分布及其性质,二维随机变量联合分布函数及其性质,二维随机变量的边缘分布和条件分布,随机变量的独立性,个随机变量的简单函数的分布难点:多维随机变量的描述方法、两个随机变量函数的分布的求解常考题型(1)二维离散型随机变量的联合分布、边缘分布和条件分布(2)二维离散型随机变量的联合分布、边缘分布和条件分布(3)二维随机变量函数的分布(4)二维随机变量取值的概率计算(5)随机变量的独立性四、随机变量的数字特征重点难点重点:随机变量的数学期望、方差的概念与性质,随机变量矩、协方差和相关系数难点:各种数字特征的概念及算法常考题型(1)数学期望与方差的计算(2)一维随机变量函数的期望与方差(3)二维随机变量函数的期望与方差(4)协方差与相关系数的计算(5)随机变量的独立性与不相关性五、大数定律和中心极限定理重点难点重点:中心极限定理难点:切比雪夫不等式、依概率收敛的概念。
考研数学概率部分考查重点及要求
考研数学概率部分考查重点及要求
一、随机事件和概率考查的主要内容
1.事件之间的关系与运算,以及利用它们进行概率计算;
2.概率的定义及性质,利用概率的性质计算一些事件的概率;
3.古典概型与几何概型;
4.利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;
5.事件独立性的概念,利用独立性计算事件的概率;
6.独立重复试验,伯努利概型及有关事件概率的计算。
要求:考生理解基本概念,会分析事件的结构,正确运用公式,掌握一些技巧,熟练地计算概率。
二、随机变量及概率分布考查的主要内容
1.利用分布函数、概率分布或概率密度的定义和性质进行计算;
2.掌握一些重要的随机变量的分布及性质,主要的有:(0-1)分布、二项分布、泊松分布、几何分布、超几何分布、均匀分布、指数分布和正态分布,会进行有关事件概率的计算;
3.会求随机变量的函数的分布。
4.求两个随机变量的简单函数的分布,特别是两个独立随机变量的和的分布。
要求:考生熟练掌握有关分布函数、边缘分布和条件分布的计算,掌握有关判断独立性的方法并进行有关的计算,会求两个随机变量函数的分布。
三、随机变量的数字特征考查的主要内容
1.数学期望、方差的定义、性质和计算;
2.常用随机变量的数学期望和方差;
3.计算一些随机变量函数的数学期望和方差;
4.协方差、相关系数和矩的定义、性质和计算;
要求:考生熟练掌握数学期望、方差的定义、性质和计算,掌握由给出的试验确定随机变量的分布,再计算有关的数字的特征的方法,会计算协方差、相关系数和矩,掌握判断两个随机变量不相关的方法。
12 下一页。
考研数学概率复习的重点知识
考研数学概率复习的重点知识考研数学概率复习的重点知识排列是考研数学重要知识点,考生要认真的(学习)把握,才能通过考研考试。
我为大家精心准备了考研数学概率的复习要点,欢迎大家前来阅读。
考研数学概率的重点知识:排列组合的方法及例题解析 1.元素分析法【例】求7人站一队,甲必须站在当中的不同站法。
【解析】要求甲必须站在当中,因此只需对其它6人全排列即可,不同的站法共有几种。
2.位置分析法【例】求7人站一队,甲、乙都不能站在两端的不同站法。
【解析】先站在两端的位置有几种站法,再站其它位置有几种站法,因此所有不同的站法共有几种站法。
3.间接法【例】求7人站一队,甲、乙不都站两端的不同站法。
【解析】考虑对立事件为甲乙都站在两端,共有几种站法;7人站成一队所有的站法共几种,所以甲乙不都站两端的不同站法共几种。
4.捆绑法【例】求7人站一队,甲、乙、丙三人都相邻的不同站法。
【解析】先将甲、乙、丙看成一个人,即相当于5个人站成一队,有几种站法,再对这三个人全排列即得所有的不同站法共几种。
5.插空法【例】求7人站一队,甲、乙两人不相邻的不同站法。
【解析】先将其它五人全排列,然后将甲、乙两人插入所产生的6个空中即可,共几种不同的站法。
6.留出空位法【例】求7人站一队,甲在乙前,乙在丙前的不同站法。
【解析】由于甲、乙、丙三人的顺序一定,因此只要其余4人站好,这7个人就站好了,不同的站法共有几种。
7.单排法【例】求9个人站三队,每排3人的不同站法。
【解析】由于对人和对位置都无任何的要求,因此,相当于9个人站成一排,不同的站法显然共有几种。
数学是考研最重要的学科,而且这一科目需要掌握的内容多,考核的方向也相对固定,因此各位20xx考研的(同学)们应该多下功夫。
考研数学复习常见问题一、忽略对概念的理解概念几乎是一切数学解题的基础,有同学在平时复习中只注重概念的死记硬背,却忽略了对概念的理解。
另外,数学概念众多,久而久之就会出现概念混乱,概念一旦出错,解题就会出现问题。
考研数学概率部分复习的重点
考研数学概率部分复习的重点考生们在准备考研数学的概率部分复习时,要了解清楚有哪些重点内容需要我们去掌握。
小编为大家精心准备了考研数学概率部分复习的知识点,欢迎大家前来阅读。
考研数学概率部分复习的要点▶在文字叙述题上下功夫考生一方面多做些题目,尤其是文字叙述的题目,逐渐提高自己分析问题的能力。
另一方面花点时间准确理解概率论与数理统计中的基本概念。
考生在复习过程中可以结合一些实际问题理解概念和公式,也可以通过做一些文字叙述题巩固概念和公式。
只要针对每一个基本概念准确的理解,公式理解的准确到位,并且多做些相关题目,再遇到考卷中碰到类似题目时就一定能够轻易读懂和正确解答。
▶会用公式解题概率论与数理统计中的公式不仅要记住,而且要会用,要会用这些公式分析实际中的问题。
我在这里推荐一个记忆公式的方法,就是结合实际的例子和模型记忆。
比如二向概率公式,你可以用这样一个模型记忆,把一枚硬币重复抛N次,正面朝上的概率是多少呢?这样才是在理解基础上的记忆,记忆的东西既不容易忘,又能够正确运用到题目的解决中。
▶对概率论与数理统计的考点整体把握考研中,概率论的重点考查对象在于随机变量及其分布和随机变量的数字特征。
所以对于第一条中所讲的古典概型与几何概型这部分,只要掌握一些简单的概率计算就可,把大量精力放在随机变量的分布上。
数理统计的考查重点在于与抽样分布相关的统计量的分布及其数字特征。
▶心理上要重视考研数学试题中有关概率论与数理统计的题目对大多数考生来说有一定难度,这就使得很多考完试的同学感慨万千,概率题太难了!同时也为学弟学妹们传达了概率题目难的信息。
所以同学们在复习之前就已经有了先入为主的看法:概率比较难!但同学们没有注意到,在自己复习之初做得准备都是关于高等数学(微积分)的,在概率上的时间本身就不足。
而且如果你的潜意识中觉得一件事情难的话,那么那件事情对你来说就真的很难。
我一直认为,人的潜力是非常巨大的。
这也与“有多少想法,就有多大成就”的说法相合。
考研数学概率论部分重难点总结
考研数学概率论部分重难点总结1.1概率这门课的特点与线性代数一样,概率也比高数容易,花同样的时间复习概率也更为划算。
但与线代一样,概率也常常被忽视,有时甚至被忽略。
一般的数学考研参考书是按高数、线代、概率的顺序安排的,概率被放在最后,复习完高数和线代以后有可能时间所剩无多;而且因为前两部分分别占60%和20的分值,复习完以后多少会有点满足心理;这些因素都可能影响到概率的复习。
概率这门课如果有难点就应该是“记忆量大”。
在高数部分,公式、定理和性质虽然有很多,但其中相当大一部分都比较简单,还有很多可以借助理解来记忆;在线代部分,需要记忆的公式定理少,而需要通过推导相互联系来理解记忆的多,所以记忆量也不构成难点;但是在概率中,由大量的概念、公式、性质和定理需要记清楚,而且若靠推导来记这些点的话,不但难度大耗时多而且没有更多的用处(因为概率部分考试时对公式定理的内在推导过程及联系并没有什么要求,一般不会在更深的层次上出题)。
记得当初看到陈文灯复习指南概率部分第二章《随机变量及其分布》、第三章《随机变量的数字特征》中在每章开始列出的那些大表格时,感觉其中必然会有很多内容是超纲的、不用细看;但后来复习时才发现,可以省略不看的内容少之又少,由大量的内容需要记忆。
所以对于概率部分相当多的内容都只能先死记硬背,然后通过足量做题再来牢固掌握,走一条“在记忆的基础上理解”的路。
记牢公式性质,同时保证足够的习题量,考试时概率部分20%的分值基本上就不难拿到了。
1.2概率第一章《随机事件和概率》本章内容在历年真题中都有涉及,难度一般不大。
虽然对于本章中的古典概型可以出很难的题目,但大纲的要求并不高,考试时难题很少。
填空、选择常考关于事件概率运算的题目,大多围绕形如)()(BAPABP=、)|()|(ABPABP=、)(CBAP++这样的式子利用各种概率运算公式求解;其它内容如全概率公式和贝叶斯公式在小题中和大题中都有可能考到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
名师指导:2011考研数学概率复习重点归纳
万学海文
考研数学的概率部分也是考查的重点所在,下面万学海文的数学考研辅导专家将概率中的复习重点逐一归纳如下,以方便2011年的考生对照复习。
一、随机事件与概率
重点难点:
重点:概率的定义与性质,条件概率与概率的乘法公式,事件之间的关系与运算,全概率公式与贝叶斯公式
难点:随机事件的概率,乘法公式、全概率公式、Bayes公式以及对贝努利概型的事件的概率的计算
常考题型:
(1)事件关系与概率的性质
(2)古典概型与几何概型
(3)乘法公式和条件概率公式
(4)全概率公式和Bayes公式
(5)事件的独立性
(6)贝努利概型
二、随机变量及其分布
重点难点
重点:离散型随机变量概率分布及其性质,连续型随机变量概率密度及其性质,随机变量分布函数及其性质,常见分布,随机变量函数的分布
难点:不同类型的随机变量用适当的概率方式的描述,随机变量函数的分布
常考题型
(1)分布函数的概念及其性质
(2)求随机变量的分布律、分布函数
(3)利用常见分布计算概率
(4)常见分布的逆问题
(5)随机变量函数的分布
三、多维随机变量及其分布
重点难点
重点:二维随机变量联合分布及其性质,二维随机变量联合分布函数及其性质,二维随机变量的边缘分布和条件分布,随机变量的独立性,个随机变量的简单函数的分布
难点:多维随机变量的描述方法、两个随机变量函数的分布的求解
常考题型
(1)二维离散型随机变量的联合分布、边缘分布和条件分布
(2)二维离散型随机变量的联合分布、边缘分布和条件分布
(3)二维随机变量函数的分布
(4)二维随机变量取值的概率计算
(5)随机变量的独立性
四、随机变量的数字特征
重点难点
重点:随机变量的数学期望、方差的概念与性质,随机变量矩、协方差和相关系数
难点:各种数字特征的概念及算法
常考题型
(1)数学期望与方差的计算
(2)一维随机变量函数的期望与方差
(3)二维随机变量函数的期望与方差
(4)协方差与相关系数的计算
(5)随机变量的独立性与不相关性
五、大数定律和中心极限定理
重点难点
重点:中心极限定理
难点:切比雪夫不等式、依概率收敛的概念。
常考题型
(1)大数定理
(2)中心极限定理
(3)切比雪夫(Chebyshev)不等式
六、数理统计的基本概念
重点难点
重点:样本函数与统计量,样本分布函数和样本矩
难点:抽样分布
常考题型
(1)正态总体的抽样分布
(2)求统计量的数字特征
(3)求统计量的分布或取值的概率
七、参数估计
重点难点
重点:矩估计法、最大似然估计法、置信区间及单侧置信区间难点:估计量的评价标准
常考题型
(1)求参数的矩估计和最大似然估计
(2)估计量的评价标准(数学一)
(3)正态总体参数的区间估计(数学一)
八、假设检验(数学一)
重点难点
重点:单个正态总体的均值和方差的假设检验难点:假设检验的原理及方法
常考题型
(1)单正态总体均值的假设检验。